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1. Introduction

This research is concerned with adaptive learning control systems for

aircraft. The research to date, has led to the development of a learning

control system which blends the gain scheduling and adaptive control into a

single learning system that has the Advantages of both. An important feature

of the developed learning control system is its capability to adjust the gain

schedule in a prescribed manner to account for changing aircraft operating

characteristics. Furthermore, if tests performed by the criteria of the learn-

ing system preclude any possible change in the gain schedule, then the overall

system becomes an ordinary gain scheduling system.

The research accomplished to date is presented in the following sections.

First, a statement of the problem is given and then the development of the

learning control system is described. Two examples are also discussed. The

results of the first example were presented at Langley on July 31, 1975.

2. Statement of Problem

Let the aircraft motion be described by

where x  is the state vector and r is the input vector. The aircraft is con-

trolled using a feedforward gain matrix G and a feedback gain matrix K. The

augmented system is therefore characterized by

x
 = [

A 
p

)+ Bp(y) • K xp + [Bp( X) • GI r	 ( 2)
L

The net of linear equations in Eg. (1) is obtained by linearizing the

nonlinear equations of motion in the neighborhood of the operating point y.

After this is done one obtains data points for the elements of the matrices

Ap(y) and B
p
 (y)for descrete values of y. Lut Y 6 Y, where Y is the vector

(1)



behavior of the aircraft through the continuum of the subspace Y, we inter-

polate the data points and therefore the elements of the matrices A p(y) and

B
p
 (y)become functions of the vector ye Our next step is to obtain a better

i
approximation of the parameters than this initial interpoation has given and

also be able to detect changes in the elements of matrices A (y) and B (y)
p	p

so as to control the aircraft effectively by updating the matrices K and G.

For this purpose we developed an adaptive learning control system or briefly

a learning control system which is described in the next sections.

3.• The Learning Control System

A block diagram illustrating the functional organization of the learn-

ing control system is depicted in Fig. 1. One of the features of this system

is its capability to adjust the feedforward &nd feedback gains in a prescribed

and learned manner to account for changing aircraft operating characteristics.

As shovm in Fig. 1., the leaning system consists of, three basic subsystems:

1. The information acquisition subsystem, 2. The learning algorithm sub-

system and 3. The memory and control process subsystem. The tasks of each

subsystem and their mathematical development are described in the next three

sections.

3.1. The Information- Acquisistion Subsystem

The information acquisition subsystem identifies the values of the

elements of Ap(y) and B
p (

Y) matrices. Several techniques have been formulated -

all were based on the second method of Liapunov to insure convergence of the

identification process. The technique that produced the best results is de-

scribed in this section. In this technique the plant was represented by a model

of the form

x -Fx +(A -F)x + B r	 (3)
-m -m	 m	 -p M_

where F is a stable matrix and the model has the same dimensionality as the
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plant. The adaptation error is defined as

e • •xm •xx	 (4)

and the error differential equation describing the adaptation error is obtained	
f

as

where

R	 ti

ere+biui)x +(^d iwi)r	 (5)

ti

biui - Am - Ap(y) • B
p (y) • K	 (6)

ti

	

diwi . m _ p(Y) • G	 (7)
L=I

Vectors bi and d i are constant for all i, and ui , wi are vectors whose compo-

nents are the misallignments of the parameters of the i•-th row.

An appropriate Liapunov function for Eq. (5) is

ti	 N
V . eTMe +^ uiNiui + wiQiwi

tat	 X81

where M, Ni and Q  are symmetric positive definite matrices with constant

elements. Applying Liapunov's stability criterion to V and its time deriva-

tive V, one derives a set of controller equations which when related to the

model matrices Am and m yields

Am w Ap(Y) + Bp(Y)•K -	 (bi-(biMe)tlildt	 (9)

l' 	 L:i of

n.	 t

B i a By(E) • G	 ALT(-210Qildt	 (10)
^:^ 0

(8)



a convergence criterion. This criterion is defined presently by

#1 • V(t)/V(0) 6 
"Z min
	 (11)

where I min is prescribed by the designer according to his desired accuracy

of identification for a prescribed length of time while the system is sub-

jected to sufficient excitation. Other performance criteria are also being

studied.

3.2. The Learning Al-.aorithm Subsystem

The identified instantaneous values of the parameters affecting the

motion of the aircraft are fitted to predetermined analytical expressions

describing the behavior of the parameters over the subspace Y. The predeter-

mined analytical expressions were obtained by interpolating the apriori avail-

able data and representing it by polynomials. In general, any set of linearly

independent functions can be used for this purpose as long as they span the

space of the parameter functions.

The elements of the model matrices A and B are formed into an nllm	 m

dimensional vector P
I
 (y)given by

PI(Y) - H(Y) • c + v 	 (12)

Vector c is to be updated sequentially upon receiving new information (PI, Y)•

This type of learning falls into the category of stochastic approximation

method. There are a few ways of updating c; a survey is given in reference

( 1) . Examining the dufcrcnt elgorithris for updating vector c one observes

that there is a tradeoff between computation complexity and rate of conver-

gence. In our case, we used the least square error algorithm which converges



P
k+l ' Pk - ' kA+l(Rk+l + Hk+1PkN+1)

 -1

	

	 (14)X 14)

where Rk is the covariance matrix of the error vector

Vk - PI,k - HkCk	
(15)

For CO we use the coefficients of the interpolation polynomials over the

apriori available data and PO can be chosen any positive definite matrix.

The choice of PO influences considerably the rate of convergence of the

algorithm.

A necessary test for the learning algorithm must be to continually

evaluate the validity of the information in vector C k. This test is per-

formed by the confidence criterion

Ok+l 
!C- ( k+l) E	 (16)

i
3

3

K11

where 0k+1 
a

	

	 vivi or iteratively Ok+l a Ok + vk+1Vk+1'
c.,

The quantity d is fixed by the designer, and is the maximum tolerable mean

square error.

j	 3.3. The Memory and Control Process Subsystem

After passing the confidence criterion, vector C is used to compute

the elements of matrices Am and Bm. The stored values of this vector (in a

dynamic memory) are used to compute the elements of matrices Ap(Y) and B (Y).

The gain matrices  K, G are then computed using the equations (6) and (7) by

letting u i a 0, wi a 0. We therefore have



G • pl(y)Bn 	 (18)

After the gains are computed, vector C updates the previous value in the

dynamic memory.

4. Examples

Two examples were studied in order to verify the validity of the learn-

ing control system and be able to check out the programs used in the process.

The first example illustrates the learning of three parameter curves

for a second order representation of the longitudj.nal dynamics of an aircraft.

The stag: variables for this system are pitch rate q and pitch attitude 8. The

independent variable for the parameter curves is e. The three parameter curves

to be learned are Mp(9), Dp(0) and Cp(e) -- (moment, damping and control ef-

fectiveness). The results were presented at.NASA, Langley Research Center on

July 31, 1975.

The second example illustrates the learning of 10 parameter curves for

a fourth order representation of the longitudinal dynamics of the F-8 aircraft.

The state variables of the system are pitch rate q, variational speed V, angle

of attack aC, and pitch attitude e. The parameter curves are functions of the

mach number M and of the altitude. The equations of motion are linearized at

selected flight conditions and can be written as

q	 q

V	 V

°^	 • Along	 °<	 + 
B

long ' `fie	 (19)

e	 8

i
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where

all	 a12	 a13	
0

0	
a22	 a?.3	 9

Along ^	 (20)
1	

a32	 a33	 0

1	 0	 0	 0

bbl

b12

Blong	
b13	

(21)

0

and cfe is a linear combination of the states and the pilot's input. The

aij 's and bij t s are given in reference (2). In this example we used data

from refereri-e (2) and considered the four wing-down (CO) configurations at

sea level; hence the 10 unknown elements . of matrices 
Along and Blong were

functions of the mach number M. We did not use the data point at M = 1 since

it was discontinuous with the rest of the data and it would amount for non

valid predetermined functional representations.

Our first step was to interpolate polynomials through the data in the

least square sense and determine a functional representation of the system

parameters with respect to M. After this was done we had a vector of coeffi-

cients (CIS) for the model. Then we chose a different set of coefficients

(Cp) according to which we computed the plant's unlmown parameters for a given

mach number. We simulated a flight at sea level at three different mach num-

bers and the learning system reproduced the parameter curves (a ij & bij curves).

An interestinq observation is that the parameter curves that multiply

the state var.t3ble V are learned in an easier fashion than the other parar.:eters

or



e=

8.

since the response of V to a given input is sensitive to these parameters.

To overcome the difficulty that the state variables q and @C are not sensitive

to their corresponding parameters we had to give a number of inputs at each

operating condition so as to achieve approximate identification and therefore

good learning. Note that the a ij I s and bij f s discussed in this example are

related to the stability derivatives for the F-8 aircraft as shown on pg. 3

in reference (2).
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Figure 1. A block diagram illustrating the functional organization
of a learning control system.
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