General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
TABLE OF CONTENTS

1. Introduction 1

2. Numerical Results 5
 2.1 Angular Data 6
 2.2 Spectral Data 8

3. Conclusions and Suggestions for Future Work 10

References 11

Figures 12

Appendix: Scattering by a Cylindrical Resistive Shell 48
 A.1 Formulation 48
 A.2 Scattering by a Resistive Membrane 49
 A.3 Scattering by a Cylindrical Resistive Shell 54
 A.4 Computer Programs 65
Abstract

An integral equation approach is developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method extensive numerical data are presented at wavelengths in the infrared for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.
1. **Introduction**

This is the Final Report on NASA Grant NSG 5044 and describes the work carried out in computing the scattering and absorption of electromagnetic radiation by columnar sheath ice crystals. In this first section we begin by citing some of the important geophysical problems which require such data, and note some of the consequences of the lack of sufficiently accurate values for the scattering and absorption properties of single ice crystals. After surveying the work done in recent years to remedy this deficiency, we then summarise our own contributions to the subject. The detailed results are given in the remaining sections of the report.

The reflection, transmission and absorption of visible and infrared radiation by clouds and by polluted atmospheres is of considerable importance in many practical areas. Cirrus clouds are composed of ice crystals. They are found over the entire globe and their infrared and optical scattering properties have a profound effect on the atmospheric heat balance. The clouds scatter and absorb the primarily infrared radiation resulting from the earth and the lower regions of the atmosphere as well as the mainly shorter wavelength solar radiation incident from above. The difference then plays a major part in the atmospheric heat balance which governs the global location of energy sources and sinks and, hence, the atmospheric circulation patterns (Cox, 1971; AFWG, 1972). Similarly, but on a much smaller scale, the cirrus clouds created artificially by jet contrails have been observed to markedly affect local weather (Appleman, 1966; Reinking, 1968); and a knowledge of the scattering by clouds is also needed in using satellite measurements of the IR emission of water vapor to estimate the relative humidity of regions above the clouds. Finally, we remark that the use of LIDAR as an atmospheric probing tool depends on the difference in the reradiation of the aerosols and the much smaller background molecules (Grams, 1975).
Techniques for calculating the transfer of electromagnetic radiation through clouds of particles have been summarized by Plass et al. (1973), and one of their most basic ingredients is a knowledge of the scattering and absorption properties of the individual particles. This may involve either single scattering or multiple scattering in the case of optically thick clouds. Since each scattering event can affect the polarisation by producing an electric field having a component orthogonal to the incident vector as well as parallel to it, and this field is in turn incident on another particle, an accurate treatment of the transfer problem will involve the complete scattering and absorption matrices for a single particle.

In an atmospheric cloud, the particles are either water droplets or ice crystals. The water drops are close to spherical and it is not unreasonable to model them as spheres. This enables Mie theory to be applied and the results obtained are reasonably accurate. Ice crystals, however, are another story. The shapes, sizes, concentrations and fall patterns which have been observed in clouds have been discussed by Mossop and Ono, 1969; Ono, 1969; Aufm Kampe and Weickman, 1957; and Heymsfield and Knollenberg, 1972. Both plate crystals, i.e. cylinders of length much less than their diameter, and columnar crystals, i.e. long thin cylinders, hollow as well as solid, are commonly found, and for shapes as varied as this, a sphere cannot provide an accurate simulation of the scattering behavior. Nevertheless, for lack of a more accurate method for calculating the scattering properties, the Mie theory has been widely used even for ice crystals, thereby introducing unknown and possibly large errors in the values for the radiation transfer, which are the end products of extensive and expensive computations (Kattawar and Plass, 1972).

The importance of using the proper scattering matrix when the particles are irregular is clear from the data presented by Holland and Gagne (1970). They measured the elements of the scattering matrix for clouds of irregularly shaped, randomly oriented silicon flakes. The results were quite different from the matrix elements predicted by Mie theory, particularly for back and forward scatter, and the depolarization was also poorly predicted by the theory.
The last few years have seen several attempts to calculate the scattering of more realistically-shaped crystals, and it is appropriate to mention here the work of Jacobowitz (1971) and Liou (1972 a and b; 1973) which has been directed at the scattering properties of columnar ice crystals. Jacobowitz's data were obtained for infinitely long crystals hexagonal in cross section using ray tracing. All end effects were necessarily omitted, including the 45° deviation of the rays passing through the end faces which contributes to the large halo observed about ice clouds (see Minnaert, 1954, section 104). The method also excludes all diffraction effects produced, for example, by the six longitudinal edges of the cylinder, as well as polarization effects, and the calculations were limited to cylinders not less than 40 μm in diameter (for a wavelength of 0.55 μm) with the apparent objective of assuring the reasonable validity of geometrical optics. Finally, no account was taken of internal absorption by the ice in spite of the fact that the appreciable imaginary part of the refractive index at some infrared wavelengths suggests that absorption may not be negligible.

Liou's analyses are based on the assumption that the ice crystal can be modeled by an infinitely long, homogeneous dielectric cylinder of circular cross section. For this simplified geometry there is a mathematically exact expression for the scattered field in the form of a series of Bessel and Hankel functions analogous to the Mie series for a sphere. It is therefore possible to compute the scattering matrix precisely, with all polarization information present, and with internal absorption taken into account. Nevertheless, end effects are omitted by virtue of the model chosen, and the assumption of a circular cylinder necessarily suppresses those features of the scattering which are peculiar to the hexagonal cross section of an actual ice crystal.

The retention of the hexagonal geometry is one of the key features of the work carried out under the present Grant. Based on an integral equation approach, a numerical technique has been developed to compute the scattering patterns, and the scattering and absorption spectra for cylindrical dielectric shells of arbitrary cross sectional shape when illuminated by a plane wave of either principal polarization. The dielectric can be lossy, and by applying the method to infinitely long cylinders
hexagonal in cross section, scattering and absorption data have been generated applicable to hollow columnar (sheath) ice crystals in the infrared.

The method originated from a study of the scattering properties of resistive sheets and membranes (Knott and Senior, 1974) in which the non-zero thickness sheets were simulated by infinitesimally thin sheets of appropriate electromagnetic properties. Accordingly, a hexagonal shell cylinder whose actual walls are composed of a material of (complex) dielectric constant \(n \), having thickness \(\tau \) (small compared to the free space wavelength \(\lambda \)), is replaced by a hexagonal membrane having a complex relative resistivity

\[
\frac{R}{Z} = \frac{\frac{i\lambda}{2}}{(n^2 - 1)2\pi\tau}
\]

ohms per square. It is then possible to derive an integral equation for the current which an incident plane wave of either principal polarization induces in the membrane, and the integral equation is quite amenable to solution by digital techniques. The formulation of the equation and its subsequent solution constitute a significant contribution to the theory and application of integral equation methods to electromagnetic scattering and absorption problems. The mathematical details are given in the Appendix along with a listing of the computer programs employed in generating the data in this Report. For the most part the formulas are applicable for arbitrary angles of incidence, but the numerical results presented here are for broadside incidence only. The problem is then two-dimensional, and we now turn to a presentation and discussion of the data obtained.
2. **Numerical Results**

Our numerical results are given in the form of cross sections which are defined as follows. For a power density S incident on the cylinder, the bistatic scattering cross section is

$$\sigma(\theta) = \frac{2\pi I}{S}$$

where I is the power scattered per unit length of the cylinder per unit angle about the direction θ and measured in the far field of the cylinder. The angle θ is defined so that $\theta = 0$ is in the backscattering direction and $\theta = \pi$ is in the forward. The total (or integrated) scattering cross section is then

$$\sigma_T = \frac{1}{2\pi} \int_0^{2\pi} \sigma(\theta) \, d\theta.$$

The absorbed power is measured by the absorption cross section

$$\sigma_A = \frac{1}{S} \text{(power absorbed)}$$

and the extinction cross section is the sum

$$\sigma_{\text{ext}} = \sigma_T + \sigma_A.$$

Formulas relating these two dimensional cross sections to the currents which are computed are given in the Appendix, eqs. (37) through (41).

The computations were carried out using the refractive indices $n = n_r + i n_i$ for ice in the infrared wavelength range given by Irvine and Pollack (1968; hereafter referred to as IP) and Schaaf and Williams (1973; referred to as SW). Their data are plotted in Figs. 1 and 2 and show significant discrepancies in certain wavelength ranges. To obtain some idea of how sensitive the scattering is to the particular refractive index chosen, computations have been made at two wavelengths using the values from each reference.

For a given wavelength and perimeter of the hexagonal sheath, the scattering has been computed for the incident plane wave polarized with its electric
vector parallel to the axis of the cylinder (E polarization) and also with its magnetic vector parallel to the axis (H polarization). The directions of incidence and observation are always in a plane perpendicular to the axis, but for each polarization we have considered two directions of incidence corresponding to 'edge-on' and 'face-on' as regards the hexagon, viz.

Most of the calculations have been for a hexagonal cylinder 3 μm on a side with a wall thickness \(\tau = 0.1 \) μm. Only these data are presented here though we have carried out some exploratory calculations for other parameter values. Table 1 lists the wavelength, the corresponding refractive index and its source, the appropriate resistivity value and the Figure numbers where the computer-generated plot of the bistatic scattering versus \(\theta \) can be found. Each of these Figures shows the data for edge-on and face-on incidence on the left and right respectively, with the intensity on top and the phase below. The phase is that of a scattered field component at a large (constant) distance from the axis of the cylinder and is shown relative to that of a line source on the axis. The intensity plotted is actually the dimensionless quantity \(\sigma(\theta)/\lambda \) in dB. This particular normalization is convenient for computation and presentation purposes, but since \(\sigma(\theta) \) is a very complicated function of \(\lambda \) (through, for example, the refractive index), it must be borne in mind that \(\sigma(\theta)/\lambda \) is not a wavelength-independent quantity.

Spectral information is presented in Figs. 31 through 35 where \(\sigma(0), \sigma(\pi), \sigma_T, \sigma_A \) and \(\sigma_{\text{ext}} \) are plotted (in dB μm) versus \(\lambda \). Note that the explicit factor \(\lambda \) has been removed, so that here the 'normalization' is relative to a micron (μm).

2.1 Angular Data

The curves in Figs. 3 through 30 are self explanatory. They clearly show
Table 1: Computed Data for Hexagonal (Shell) Cylinder
3 \(\mu m \) on side, 0.1 \(\mu m \) thick

<table>
<thead>
<tr>
<th>(\lambda (\mu m))</th>
<th>Pol.</th>
<th>(n)</th>
<th>Ref.</th>
<th>(R/Z)</th>
<th>Fig. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.76</td>
<td>E</td>
<td>1.307</td>
<td>IP</td>
<td>11.70784</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.61</td>
<td>E</td>
<td>1.293 + i0.000365</td>
<td>IP</td>
<td>0.00536 + i3.81395</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>E</td>
<td>1.291 + i0.00161</td>
<td>IP</td>
<td>0.02977 + i4.77438</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>E</td>
<td>1.254 + i0.001</td>
<td>SW</td>
<td>0.02740 + i6.25466</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>E</td>
<td>1.278 + i0.000213</td>
<td>IP</td>
<td>0.00486 + i5.65462</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>E</td>
<td>1.206 + i0.00080</td>
<td>IP</td>
<td>0.03876 + i9.10550</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>E</td>
<td>1.152 + i0.0123</td>
<td>IP</td>
<td>13.5260 + i11.17250</td>
<td>9</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>E</td>
<td>1.130 + i0.2273</td>
<td>IP</td>
<td>7.79740 + i3.41910</td>
<td>10</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>E</td>
<td>1.045 + i0.429</td>
<td>SW</td>
<td>5.26973 - i0.54082</td>
<td>11</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>E</td>
<td>1.280 + i0.3252</td>
<td>IP</td>
<td>4.20510 + i2.69040</td>
<td>12</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>E</td>
<td>1.530 + i0.0625</td>
<td>IP</td>
<td>0.55090 + i3.84930</td>
<td>13</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>E</td>
<td>1.422 + i0.0163</td>
<td>IP</td>
<td>0.24680 + i5.44060</td>
<td>14</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>E</td>
<td>1.312 + i0.045</td>
<td>SW</td>
<td>2.82939 + i17.23610</td>
<td>15</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>E</td>
<td>1.289 + i0.043</td>
<td>SW</td>
<td>4.09006 + i22.90586</td>
<td>16</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>E</td>
<td>1.093 + i0.242</td>
<td>SW</td>
<td>31.03981 + i17.98514</td>
<td>17</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>E</td>
<td>1.387 + i0.422</td>
<td>SW</td>
<td>12.08921 + i17.70071</td>
<td>18</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
how the number of maxima and minima in \(0 \leq \theta \leq \pi \) increases with decreasing \(\lambda \), and at wavelengths which are much longer than the side length of the hexagon, i.e. \(\lambda \geq 8 \mu m \), the cross section has almost no angular structure. Changing the incidence from edge-on to face on has most effect in the directions closest to backscattering, and we also note the substantial differences between the results for E and H polarizations.

2.2 Spectral Data

The particular cross sections \(\sigma(0), \sigma(\pi), \sigma_T, \sigma_A \) and \(\sigma_{\text{ext}} \) are shown as functions of \(\lambda \) in the infrared range in Figs. 31 through 35. Each Figure has two parts, covering the ranges 0.76 to 3.5 \(\mu m \) and 8 to 12.5 \(\mu m \). Separate curves have been included wherever the results for edge-on and face-on incidence are clearly distinguishable. For the most part this is only with the backscattering cross section or for \(\lambda \leq 1.5 \mu m \), and in other cases the differences are confined to the immediate vicinity of local maxima or minima in the data.

In the shorter wavelength range most of the data were computed using the IP values for the refractive index. This range covers the main absorption band centered on \(\lambda = 3 \mu m \) and a secondary one at \(\lambda = 2 \mu m \) as seen in the IP data plotted in Fig. 2. The wavelengths close to these show the main discrepancies between the IP and SW data, and at \(\lambda = 2.25 \) and 3 \(\mu m \) we therefore ran computations using both sets. The different refractive indices at \(\lambda = 2.25 \mu m \) do indeed produce substantial differences in the cross sections, and because of this sensitivity, we have not extended our detailed computations through the third absorption band centered at \(\lambda = 1.25 \mu m \) in the IP data. For \(\lambda < 1.61 \mu m \) the scattering has been computed only at the single wavelength \(\lambda = 0.76 \mu m \) of interest for a particular application. Since the IP data are given only for \(\lambda > 0.95 \mu m \), the necessary refractive index was obtained by extrapolation.

The SW data for the refractive index were used in the longer wavelength range \(8.0 \leq \lambda \leq 12.5 \mu m \).

The geometrical effects are particularly pronounced for \(0.76 \leq \lambda \leq 3.5 \mu m \). This is not surprising since the dimensions of the cylinder are then comparable to
the wavelength, or are low multiples thereof, and this is the region where resonance effects and other interactions between the various contributors to the scattering are most important. As an example, while σ_A has a strong local maximum near the maximum in n_i at $\lambda = 3.075 \mu m$, the shape and overall width of the maximum in σ_A is apparently affected by the side length of the hexagon being close to this wavelength. $\sigma(0)$ and $\sigma(\pi)$ both show a corresponding drop in this absorption region.

The behavior is quite different near the secondary maximum in n_i at $\lambda = 2 \mu m$. For H-polarization but not for E, σ_A is large as expected, while $\sigma(0)$ and $\sigma(\pi)$ have local maxima for λ just above $2 \mu m$ with both polarizations.

Further evidence for the way in which a geometrical effect can dominate a material absorption effect can be found by comparing the absorption cross sections at $2.25 \mu m$ computed from the IP and SW data. At this wavelength the SW value for n_i is roughly five times the IP value, with n_r almost equal in both listings, but the SW value produced an absorption cross section which is about eleven times less than that given by the IP value for the refractive index.

It is therefore obvious that any predictions of absorption and scattering based only on the properties of the material of which the scatterer is composed may be considerably in error.
3. Conclusions and Suggestions for Future Work

In this Report we have derived the theoretical basis for determining the scattering and absorption of electromagnetic radiation by thin-walled cylinders of infinite length and arbitrary cross sectional shape. Numerical procedures have been developed and have been used to obtain data for hexagonal cylinders which model sheath crystals of the type found in cirrus clouds. The procedures are economical for cylinders whose cross sections are not more than about 15 wavelengths in perimeter, with the cost decreasing rapidly with decreasing size.

For wavelengths comparable to or less than the face length of the hexagon, the results (particularly for the back scattering) are quite sensitive to the polarization and direction of the incident plane wave, i.e. on whether the field is incident edge-on or face-on as shown on p.6. At any given wavelength, the results can also be very sensitive to the refractive index employed. Geometric effects can so influence the absorption that it is not at all safe to assume that the absorption versus wavelength curve will follow that of the imaginary part of the refractive index.

The time available for the present study did not permit an adequate investigation of the effect of wall thickness, nor allow us to do a detailed comparison of the results with those of the Mie-type series for hollow cylinders circular in cross section. Although our data for the bistatic scattering cross section versus angle are somewhat similar to those previously published (Liou, 1972a) for solid circular cylinders at near broadside incidence, data showing the precise role played by the geometry should have a high priority in any future continuation of the study. With only minor modifications our computer programs can also handle irregular additions to the hexagonal surface, thereby simulating rimed crystals, and allowing us to compute the effects of riming. Since the theory for non-broadside incidence has been derived, we would also like to develop the computer programs necessary to obtain numerical data in this more general case, and once these types of data are in hand, it would be possible and desirable to examine the forms of averaging that could simplify the practical applicability of the data without losing its essential properties.
REFERENCES

Schaaf, Joel W. and Williams, Dudley, (1973), "Optical constants of ice in the infrared," J. Optical Soc. of America, 63, 728-732.

Fig. 1: Data for the (reduced) real part of the refractive index of ice:
--- (Irvine and Pollack, 1968), • • • (Schaaf and Williams, 1973).
Fig. 2: Data for the imaginary part of the refractive index of ice:

--- (Irvine and Pollack, 1968), \(\cdots \) (Schaaf and Williams, 1973).
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
ICE CRYSTAL, 3 MICRONS ON A SIDE. MDTH= 2.03 MICRON (E-POL) SDGHT IN/MIICON= 0.51I298 - 3.05 DEG

ICE CRYSTAL, 3 MICRONS ON A SIDE. MDTH= 7.03 MICRON (E-POL) SDGHT IN/MIICON= 0.53189 - 15.54 DEG SDGHT IN/MIICON= 0.61785 - 3.70 DEG

Fig. 11
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 24
Fig. 25
ICE CRYSTAL, 3 MICRONS ON A SIDE.
$\theta = 90^\circ$ ANGLE.

Fig. 26
Fig. 27
Fig. 28
Fig. 29
ICE CRYSTAL, 3 MICRONS ON A SIDE, LAMBDA=12.50 MICRON (H-POL)
SIGMA/TOA (H-POL)= 0.00122 -29.12 DB
SIGMA/A (H-POL)= 0.00427 -13.95 DB

ICE CRYSTAL, 3 MICRONS ON A SIDE, LAMBDA=12.50 MICRON (H-POL)
SIGMA/TOA (H-POL)= 0.00122 -29.12 DB
SIGMA/A (H-POL)= 0.00427 -13.95 DB

Fig. 30
Fig. 31: Computed backscattering cross sections of hexagonal (shell) cylinders. In this and the following four figures, * and o show edge-on and face-on results respectively for IP data; similarly x and @ are for SW data.
Fig. 32: Computed forward scattering cross sections of hexagonal (shell) cylinders.
Fig. 33: Computed total scattering cross sections of hexagonal (shell) cylinders.
Fig. 34: Computed absorption cross sections of hexagonal (shell) cylinders.
Fig. 35: Computed extinction cross sections of hexagonal (shell) cylinders.
Appendix: Scattering by a Cylindrical Resistive Shell

A-1 Formulation

The shell crystal is simulated by a hexagonal cylindrical shell of uniform thickness and constitution, which is in turn treated as an infinitesimally thin, electrically resistive membrane.

The concept of such a membrane arises naturally from a consideration of a thin sheet of highly conducting material whose permeability μ is that of free space. If σ is the conductivity and τ is the thickness, we can define a surface resistivity R as

$$ R = \frac{1}{\sigma \tau} = \frac{i}{\omega \epsilon_0 \chi_e \tau} $$

(1)

where χ_e is the electric susceptibility, ϵ_0 is the permittivity of free space and a time factor $e^{-ik\tau}$ has been assumed; and as $\tau \to 0$ we can imagine σ to be increased in such a manner that R is finite and non-zero in the limit. The result is an idealized (infinitesimally thin) electrically resistive sheet whose electromagnetic properties are specified by the single quantity R. In terms of the (complex) refractive index n of the layer material

$$ R = \frac{iZ}{(n^2 - 1)k\tau} $$

(2)

where k and Z are the propagation constant and intrinsic impedance of free space, respectively.

Mathematically at least, the membrane is simply an electric current sheet whose strength is related to the tangential electric field via the resistivity R ohms/m^2, which may be a function of position. Since $\mu = \mu_0$, there is no magnetic current present and

$$ \hat{n} \cdot (\vec{E}^+ - \vec{E}^-) = 0 $$

(3)
where the affixes \(\pm \) refer to the positive (upper or outer) and negative (lower or inner) sides of the sheet and \(\hat{n} \) is the outward normal to the positive side. If \(\mathbf{J} \) is the total current

\[
\hat{n}_A (\mathbf{H}^+ - \mathbf{H}^-) = \mathbf{J}
\]

and from the definition of the surface resistivity

\[
\hat{n}_A (\hat{n}_A \mathbf{E}^+) = -R\mathbf{J}.
\]

The tangential components of the electric field are therefore continuous across the sheet, whereas the tangential components of the magnetic field have a jump discontinuity \(\mathbf{J} \) directly related to the electric field via the resistivity \(R \). With \(R \) specified, the conditions (3) - (5) define a transition problem for the electromagnetic field and were first used by Levi-Civita (see Bateman, 1915) in studies of charges and currents close to a conducting sheet.

A-2 Scattering by a Resistive Membrane

It is convenient to start by considering a general resistive membrane in three space dimensions illuminated by an arbitrary electromagnetic field. We treat first an open sheet for which a representation of the scattered field was obtained by Knott and Senior (1974) and then examine the case of a closed resistive shell.

If \(S \) is an open electrically resistive sheet and we surround it by a closed surface \(S_1 \), the scattered field at any point \(\mathbf{r} \) outside \(S_1 \) can be written as

\[
\mathbf{E}^S(\mathbf{r}) = \nabla \times \mathbf{A}^s + ikz \nabla A^s
\]

\[
\mathbf{H}^S(\mathbf{r}) = \nabla \times \mathbf{A}^s - ik\gamma \nabla A^s
\]
where \(\mathbf{Y} = \mathbf{Z}^{-1} \) and \(\mathbf{x} \) and \(\mathbf{x}^* \) are the electric and magnetic Hertz vectors defined as

\[
\mathbf{x}(\mathbf{r}) = \frac{4\mathbf{Z}}{k} \int_{S_1} \mathbf{n} \cdot \mathbf{H} g \, dS' \tag{7}
\]

\[
\mathbf{x}^*(\mathbf{r}) = -\frac{4\mathbf{Y}}{k} \int_{S_1} \mathbf{n} \cdot \mathbf{E} g \, dS' ,
\]

and

\[
g = g(\mathbf{r} | \mathbf{r}') = \frac{e^{ikd}}{4\pi d} \tag{8}
\]

with \(d = |\mathbf{r} - \mathbf{r}'| \) is the free space Green function. On collapsing \(S_1 \) to the two sides of \(S \), the expression for \(\mathbf{x}(\mathbf{r}) \) reduces to

\[
\mathbf{x}(\mathbf{r}) = \frac{4\mathbf{Z}}{k} \int_{S} \mathbf{n} \cdot (\mathbf{H}^+ - \mathbf{H}^-) g \, dS' ,
\]

i.e.,

\[
\mathbf{x}(\mathbf{r}) = \int_{S} j(\mathbf{r}') g \, dS' \tag{9}
\]

where the integration is now a one-sided integration along \(S \). Since

\[
\hat{\nabla} (\mathbf{E}^+ - \mathbf{E}^-) = 0 ,
\]

we have similarly

\[
\mathbf{x}^*(\mathbf{r}) = 0 \tag{10}
\]

and eqs. (9) and (10) are precisely those which would have been obtained by starting with the concept of an electric current sheet. Hence

\[
\mathbf{E}(\mathbf{r}) = \mathbf{E}^i(\mathbf{r}) + \nabla \cdot \nabla \cdot \mathbf{X} \tag{11}
\]

\[
\mathbf{H}(\mathbf{r}) = \mathbf{H}^i(\mathbf{r}) - ik \mathbf{Y} \mathbf{X}
\]

where \(\mathbf{E}^i, \mathbf{H}^i \) are the incident field vectors.
If \(\mathbf{r} \) is not on \(S \), the derivative operations can be applied directly to the integrand of (9) giving

\[
\begin{align*}
\mathbf{E}(\mathbf{r}) &= \mathbf{E}^{t}(\mathbf{r}) + \mathbf{A}^{t}(\mathbf{r}) + \mathbf{A}^{s}(\mathbf{r}) + \mathbf{A}^{d}(\mathbf{r}) + \mathbf{kZ} \int_{S} \left\{ \mathbf{J}(\mathbf{r}') \mathbf{g} + \frac{i}{k^{2}} \left[\mathbf{J}(\mathbf{r}') \cdot \nabla' \right] \nabla' \mathbf{g} \right\} dS', \\
\mathbf{H}(\mathbf{r}) &= \mathbf{H}^{t}(\mathbf{r}) + \int_{S} \mathbf{J}(\mathbf{r}') \times \nabla' \mathbf{g} dS'.
\end{align*}
\]

(12) (13)

In the particular case when the incident field and the surface \(S \) are both independent of a Cartesian coordinate \(z \), eq. (12) was the starting point for the analysis of resistive sheets by Knott and Senior (1974). Integral equations for the tangential components of \(\mathbf{J} \) were developed by taking the limit \(\mathbf{r} \rightarrow S \), and similar results can be obtained even in three dimensions.

On the other hand, a somewhat different expression for the electric field is also possible. By applying standard vector identities to the second term in the integrand of (12), we have (Senior, 1975)

\[
\begin{align*}
\mathbf{E}(\mathbf{r}) &= \mathbf{E}^{t}(\mathbf{r}) + \mathbf{A}^{t}(\mathbf{r}) + \mathbf{A}^{s}(\mathbf{r}) + \mathbf{A}^{d}(\mathbf{r}) + \mathbf{kZ} \int_{S} \left\{ \mathbf{J}(\mathbf{r}') \mathbf{g} - \frac{1}{k^{2}} \left(\mathbf{\nabla'} \mathbf{J} \right) \mathbf{g} \right\} dS' \\
&\quad - \frac{\mathbf{kZ}}{k} \int_{L} \mathbf{\nabla'} \mathbf{g} \mathbf{J}(\mathbf{r}') \cdot \hat{n}' \mathbf{d}l
\end{align*}
\]

(14)

where \(\mathbf{\nabla}' \mathbf{g} \mathbf{J} \) is the surface divergence operator and the line integral is in the positive direction around the edge \(L \) of \(S \). For a perfectly conducting surface the line integral vanishes by virtue of the edge condition. The electric field expression (14) is then identical to that given by Poggio and Miller (1973) for a closed surface \(S \), and since

\[
\mathbf{\nabla}' S \cdot \mathbf{J} = \frac{ikY \rho}{\varepsilon_0} = \frac{ikY}{\varepsilon_0} (\mathbf{E}^{t} - \mathbf{E}^{s}),
\]

(15)
it is also identical to that produced by application of the appropriate Stratton-Chu formula (Stratton, 1941) to the closed surface consisting of the two sides of S. For a nonmetallic surface, however, the line integral is in general nonzero. The Stratton-Chu formulas are no longer valid and to avoid the occurrence of a line integral it is necessary to use the representation (12).

If S is a closed resistive shell, the Stratton-Chu formulas can be used to give the following expressions for the total field at a point \mathbf{r} outside S:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}^t(\mathbf{r}) + \int \int_S \left\{ \text{i}kZ(\mathbf{a}^\dagger \cdot \mathbf{H}^+)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E}^+)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E}^+)\nabla' \mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E}^+)\nabla' \mathbf{g} \right\} dS' \tag{16}$$

$$\mathbf{H}(\mathbf{r}) = \mathbf{H}^t(\mathbf{r}) + \int \int_S \left\{ -\text{i}kY(\mathbf{a}^\dagger \cdot \mathbf{E}^-)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{H}^-)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{H}^-)\nabla' \mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{H}^-)\nabla' \mathbf{g} \right\} dS' \tag{17}$$

where the unit vector normal is directed into the space containing \mathbf{r}. In contrast to (12) and (13), the surface integrals now involve the fields on one side of S alone, rather than their jump discontinuities across S. We recall, however, that (16) and (17) are obtained by application of the vector Green's theorem to the volume exterior to S containing the observation point. If, instead, we apply the theorem to the volume interior to S with the observation point still outside S, \mathbf{g} will be regular throughout the entire volume of integration, implying

$$0 = \int \int_S \left\{ \text{i}kZ(\mathbf{a}^\dagger \cdot \mathbf{H}^-)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E}^-)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E}^-)\nabla' \mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E}^-)\nabla' \mathbf{g} \right\} dS' \tag{18}$$

$$0 = \int \int_S \left\{ -\text{i}kY(\mathbf{a}^\dagger \cdot \mathbf{E}^-)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{H}^-)\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{H}^-)\nabla' \mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{H}^-)\nabla' \mathbf{g} \right\} dS' \tag{19}$$

By choosing \mathbf{r} the same as in eqs. (16) and (17), subtraction of (18) from (19) gives

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}^t(\mathbf{r}) + \int \int_S \left\{ \text{i}kZ(\mathbf{a}^\dagger \cdot \mathbf{H})\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E})\mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E})\nabla' \mathbf{g} + (\mathbf{a}^\dagger \cdot \mathbf{E})\nabla' \mathbf{g} \right\} dS'$$

where $[\mathbf{E}] = \mathbf{E}^+ - \mathbf{E}^-$ and $[\mathbf{H}] = \mathbf{H}^+ - \mathbf{H}^-$. Similarly

52
\[H(\mathbf{r}) = H^f(\mathbf{r}) + \sum \int_S \left\{ -ik\mathbf{Y}(\mathbf{r'}, \mathbf{r}) \mathbf{E} + (\mathbf{r'} \cdot \nabla) H^f + (\mathbf{r'} \cdot \mathbf{H}) \nabla^f \right\} dS' \]

and when the boundary conditions (3), (4) and the relation (15) are used, we have

\[E(\mathbf{r}) = E^f(\mathbf{r}) + ik \sum \int_S \left\{ J(\mathbf{r'}) g - \frac{1}{k^2} (\nabla' \cdot J) \nabla^f \right\} dS' \quad (20) \]

\[H(\mathbf{r}) = H^f(\mathbf{r}) + \sum \int_S J(\mathbf{r'}) \nabla^f g dS' \quad (21) \]

The above results could also have been obtained using a Hertz vector representation of the scattered field, and are identical to those for an open resistive sheet when the line integral contribution to the electric field is ignored. More to the point, when the steps leading from (12) to (14) are reversed and applied to (20), eq. (12) for an open sheet is recovered, thereby validating this integral representation for both open and closed resistive sheets.

For a closed shell either (12) or (20) can be used to generate an integral equation for \(\mathbf{J} \), but the two equations are significantly different. On selecting the tangential components of (20) and then allowing the observation point to lie on either side of \(S \), we have

\[\mathbf{E}_A(\mathbf{r}) = \mathbf{E}_A^f(\mathbf{r}) + ik \lim_{\mathbf{r} \to S} \int_S \left\{ \mathbf{E}_A \mathbf{J}(\mathbf{r'}) g - \frac{1}{k^2} (\nabla' \cdot \mathbf{J}) \mathbf{E}_A \nabla^f \right\} dS' \quad (22) \]

and since

\[\mathbf{E}_A \nabla^f g = (\mathbf{\hat{r}} - \mathbf{\hat{r}'}) \nabla^f g + \mathbf{\hat{r}'} \nabla^f g, \]

the more singular term in the integrand contains only tangential derivations of the kernel at the self point \(\mathbf{r}' = \mathbf{r} \). It follows that the integral in (22) is continuous as \(\mathbf{r} \) approaches \(S \), allowing us to apply the limit directly to the integrand, and imposition of the boundary condition (5) then gives
for \(\mathbf{r} \) on \(S \). This is a valid integral equation whose only disadvantage is the occurrence of surface derivatives of \(J \).

This difficulty can be overcome if we use the integral representation (12). On paralleling the steps leading from (20) to (22), we have

\[
\hat{A}_\Lambda \hat{E}_\Lambda^{\dagger}(\mathbf{r}) = \hat{A}_\Lambda \hat{E}_\Lambda^{\dagger}(\mathbf{r}) + \frac{1}{2} \int \left[\hat{J}_\Lambda J(\mathbf{r'}) d\mathbf{S'} - \frac{1}{k^2} \left(\nabla' \cdot \hat{J}_\Lambda \right) \hat{D}_\Lambda \nabla' \right] d\mathbf{S'}
\]

and because of the higher order, non-integrable singularity of the integrand at the self point, it is no longer possible to apply the limit directly to the integrand. Since the contribution of the 'self cell' tends to infinity as the cell size tends to zero, even the limit shown in (24) does not exist, and though (24) differs from (22) only through an integration by parts applied to the second term in the integrand, it does not constitute an analytically valid integral equation. Nevertheless, it can be used as the basis of a numerical solution provided the segmentation of the integral which is inherent in such a method is performed prior to the limiting operation, with the segment size remaining non-zero. The resulting equation is in some respects preferable to (22) and has been found more convenient for our present purposes.

A-3 Scattering by a Cylindrical Resistive Shell

We now turn to the problem of a closed cylindrical shell illuminated by a plane wave at oblique incidence, and consider the form which the above integral equations take in this particular case.

Since the shell is independent of the \(z \) coordinate, the entire dependence on \(z \) is that produced by the incident field. If, therefore,

\[
\hat{E}_\Lambda^{\dagger}(\mathbf{r}) = \hat{E}_\Lambda^{\dagger}(\rho) \exp(ik_z z), \quad \hat{H}_\Lambda^{\dagger}(\mathbf{r}) = \hat{H}_\Lambda^{\dagger}(\rho) \exp(ik_z z)
\]

54
where $\mathbf{r} = \mathbf{p} + \mathbf{z} \hat{z}$, the total fields admit the same decomposition and, in particular,
\[J(\mathbf{r}) = J(s) \exp(ikz) \] (26)

where s is the circumferential distance around the shell in the plane $z = 0$. Thus
\[\int_S \int J(\mathbf{r}') g(dS') = \frac{1}{4} \exp(ikz) \int_C J(s') H_0^{(1)}(\kappa d) ds' \]

where (now)
\[d = \mathbf{p} - \mathbf{p}' \]

and
\[\kappa = \sqrt{k^2 - k_z^2} \] (27)

The remaining integration is with respect to the circumferential distance s around the (closed) perimeter of the shell in the plane $z = 0$. Also,
\[\nabla_s \cdot J = \exp(ikz) \left\{ \frac{\partial}{\partial s} J(s) + ik \frac{\partial}{\partial z} J(s) \right\} \]

and since
\[\int_S f(\mathbf{p}') \exp(ikz') \nabla' \cdot g(dS') = \frac{1}{4} \exp(ikz) \int_C f(s') (\nabla' \cdot \mathbf{v}') \cdot \frac{\partial}{\partial s} J(s') + ik \frac{\partial}{\partial z} J(s') \]

where ∇' is the two-dimensional (transverse) del operator in the plane $z = 0$.

eq. (23) becomes
\[\hat{\mathbf{h}}_n \cdot \mathbf{E}(s) = R \hat{\mathbf{h}}_n \cdot \mathbf{J}(s) + \frac{k}{4} \int_C \left\{ J(s') H_0^{(1)}(\kappa d) - \frac{1}{2} \left[\frac{\partial}{\partial s} J(s') + ik \frac{\partial}{\partial z} J(s') \right] \cdot (\nabla' \cdot - ik \frac{\partial}{\partial z}) H_0^{(1)}(\kappa d) \right\} ds' \] (28)

The \mathbf{E} component is simply
\[\mathbf{Y} E_z^i(s) = \mathbf{Y} R J_z^i(s) + \frac{k}{4k} \int_C \left\{ J_z(s') + \frac{kz}{2} \frac{\partial}{\partial s} J_z(s') \right\} H_0^{(1)}(\kappa d) ds' \] (29)

55
which is a coupled integral equation involving the longitudinal and circumferential components of the current. Likewise, from the \(\hat{\epsilon} \) component of (28) we obtain the second coupled equation

\[
\mathbf{Y} \mathbf{E}^\prime_s(s) = \mathbf{Y} \mathbf{R} \mathbf{J}_s(s) + \frac{k}{4} \int_C \mathbf{j}_s(s') (\hat{s} \cdot \hat{s}') \mathbf{H}_0^{(1)}(kd) \left[-\frac{\mathbf{k}}{\kappa} \frac{\partial \mathbf{j}_s}{\partial s'} + \mathbf{i} k \mathbf{j}_z(s') (\hat{s} \cdot \hat{d}) \mathbf{H}_1^{(1)}(kd) \right] ds'.
\]

and though it is not in general possible to decouple (29) and (30), we can eliminate \(\mathbf{j}_z \) from the integral portion of (30). Differentiating (29) with respect to \(s \), we have

\[
\int_C \mathbf{j}_z(s') (\hat{s} \cdot \hat{d}) \mathbf{H}_1^{(1)}(kd) ds' = \frac{4k \mathbf{Y}}{3} \frac{\partial}{\partial s} \left[\mathbf{R} \mathbf{J}_z(s) - \mathbf{E}_z^i(s) \right]
- \frac{k}{\kappa} \int_C \frac{\partial \mathbf{j}_s}{\partial s'} (\hat{s} \cdot \hat{d}) \mathbf{H}_1^{(1)}(kd) ds',
\]

and when this is substituted into (30), the integral equation becomes

\[
\mathbf{Y} \left\{ \mathbf{E}_s^i(s) - \frac{k}{2} \frac{\partial}{\partial s} \mathbf{E}_z^i(s) \right\} = \mathbf{Y} \left\{ \mathbf{R} \mathbf{J}_s(s) - \frac{k}{2} \frac{\partial}{\partial s} \mathbf{R} \mathbf{j}_z(s) \right\}
+ \frac{k}{4} \int_C \left[\mathbf{j}_s(s') (\hat{s} \cdot \hat{s}') \mathbf{H}_0^{(1)}(kd) - \frac{\partial \mathbf{j}_s}{\partial s'} (\hat{s} \cdot \hat{d}) \mathbf{H}_1^{(1)}(kd) \right] ds'.
\]

which now involves \(\mathbf{j}_z \) only as a pseudo excitation term.

Formally at least, the corresponding equations resulting from (24) can be obtained from (20) and (30) by integrating by parts the terms involving \(\frac{\partial \mathbf{j}_z}{\partial s'} \).

Equation (29) is then replaced by
\[\mathbf{Y}_{E}^{1}(s) = \mathbf{Y} \mathbf{R} \mathbf{J}^{z}(s) + \frac{2}{4k} \int_{C} \left[J_{z}(s')H_{0}^{(1)}(kd) - i \frac{k}{\kappa} J_{s}(s')(\hat{s} \cdot \hat{d})H_{1}^{(1)}(kd) \right] ds' \quad (32) \]

and (30) by

\[\mathbf{Y}_{E}^{i}(s) = \mathbf{Y} \mathbf{R} \mathbf{J}^{s}(s) + \frac{k}{4} \int_{C} J_{s}(s')(\hat{s} \cdot \hat{d})H_{0}^{(1)}(kd) ds' \]

\[+ \frac{\kappa}{4k} \lim_{\rho \to C} \int_{C} J_{s}(s') \frac{\partial}{\partial s'} \left\{ (\hat{s} \cdot \hat{d})H_{1}^{(1)}(kd) \right\} ds' \]

\[- i \frac{k}{4k} \int_{C} J_{z}(s')(\hat{s} \cdot \hat{d})H_{1}^{(1)}(kd) ds'. \quad (33) \]

The latter is meaningful only if the second integral on the right hand side is handled in the manner described earlier. With this proviso, however, (32) and (33) are adequate for a numerical determination of the currents and we can, of course, eliminate \(J_{z}(s') \) from the integral portion of (33) if we so desire.

The case considered now is that in which the plane wave is incident in a plane perpendicular to the \(z \) axis of the cylindrical shell. Then \(k_{z} = 0 \) implying \(\kappa = k \), and (32) and (33) reduce to

\[\mathbf{Y}_{E}^{1}(s) = \mathbf{Y} \mathbf{R} \mathbf{J}^{z}(s) + \frac{k}{4} \int_{C} J_{z}(s')H_{0}^{(1)}(kd) ds' \quad (34) \]

\[\mathbf{Y}_{E}^{i}(s) = \mathbf{Y} \mathbf{R} \mathbf{J}^{s}(s) + \frac{k}{4} \int_{C} J_{s}(s')(\hat{s} \cdot \hat{d})H_{0}^{(1)}(kd) ds' \]

\[+ \frac{1}{4k} \lim_{\rho \to C} \int_{C} J_{s}(s') \frac{\partial}{\partial s'} \left\{ (\hat{s} \cdot \hat{d})H_{1}^{(1)}(kd) \right\} ds' , \quad (35) \]
Fig. A-1. Geometry.
which are two uncoupled integral equations for the longitudinal and transverse current components \(J_z(s) \) and \(J_s(s) \) respectively.

If the incident field is \(E \) - polarized, i.e.,
\[
E^i = z e^{-ik(x \cos \theta_0 + y \sin \theta_0)}
\]
where \(\theta_0 \) is the angle of incidence with respect to the negative \(x \) axis (see Fig. A-1), only the component \(J_z(s) \) is excited and we shall refer to (34) as the \(E \) - polarized equation. Once \(J_z(s) \) has been found, the scattered electric field in the far zone is
\[
E^s = \frac{2}{\pi k \rho} e^{i(k \rho - \pi/4)} P_E(\theta, \theta_0)
\]
where the complex scattering amplitude \(P_E \) is given by
\[
P_E(\theta, \theta_0) = -\frac{kZ}{4} \int_C J_z(s') e^{-ik \hat{\rho} \cdot \hat{L}'} ds'
\]
with
\[
\hat{\rho} = \hat{x} \cos \theta + \hat{y} \sin \theta
\]
and in terms of \(P \), the two dimensional scattering cross section is
\[
\sigma(\theta, \theta_0) = \frac{4}{k} |P(\theta, \theta_0)|^2.
\]

If, on the other hand, the incident field is \(H \) - polarized, i.e.,
\[
H^i = \hat{z} e^{-ik(x \cos \theta_0 + y \sin \theta_0)}
\]
the only component excited is \(J_s(s) \) and this can be obtained from the \(H \) - polarized equation (35). In the far zone
\[
H^s = \frac{2}{\pi k \rho} e^{i(k \rho - \pi/4)} P_H(\theta, \theta_0)
\]
where
\[
P_H(\theta, \theta_0) = -\frac{k}{4} \int_C \hat{\rho} \cdot \hat{n}' J_s(s') e^{-ik \hat{\rho} \cdot \hat{L}'} ds',
\]
from which the \(H \) - polarized cross section can be found using (37).

Two quantities of particular interest are the total (integrated) scattering and the absorption cross sections \(\sigma_T \) and \(\sigma_A \) respectively. The former is given by
and from the forward scattering theorem the absorption cross section is
\[\sigma_A(\theta_0) = - \sigma_T(\theta_0) - \frac{4}{k} \text{Re} \, P(\theta_0 + \pi, \theta_0). \] (40)

We remark that for a finite shell of length \(\ell \) \((\gg \lambda) \) each three dimensional cross section \(\sigma^{(3)} \) for incidence in a plane perpendicular to the length and computed on the assumption that the surface field is the same as for the infinite shell is related to the corresponding two dimensional cross section by
\[\sigma^{(3)} = \frac{2\ell^2}{\lambda} \sigma \] (41)
where \(\lambda \) is the free space wavelength.

A-4 Computer Programs

The integral equations (34) and (35) are special cases of those solved by computer program RAMVS (Liepa et al., 1974), and because of the availability of this general program we chose to concentrate on these equations rather than the ones involving the derivatives of the currents. While seeking to refine RAMVS and to make it more efficient for a polygonal shell, we became aware of certain errors and/or deficiencies in the program which are most apparent when the resistivity is small. These had not shown up in the testing and verification done earlier, and it proved quite time consuming to locate the errors and rectify them. We believe this has now been done. In addition, the program has been extended to compute the normalized two dimensional cross sections and to plot the normalized bistatic scattering cross section, where the normalization is with respect to the free space wavelength to make the quantities dimensionless. The two programs that resulted are designated RICE and RICH and are based on eqs. (34) and (35) for E- and H- polarization respectively.
Both equations are solved by breaking up the integrals into N equal segments or cells within each of which the current is assumed constant, but because the kernels are infinite when the integration and observation points coincide, the self cells must be treated analytically. This is a rather trivial matter in the case of eq. (34) whose kernel has an integrable singularity. From the small argument expansion of the Hankel function we have

$$H_0^{(1)}(kd) \simeq \left(1 + \frac{2i}{\pi} \left(\ln \frac{kd}{2} + \gamma \right) \right) \left(1 - \left(\frac{kd}{2} \right)^2 \right) + \frac{2i}{\pi(kd)^2},$$

where $\gamma = 0.577215 \ldots$ is Euler's constant, and hence, for the self cell Δ of width 2δ,

$$\int_{\Delta} J_z(s')H_0^{(1)}(kd) ds' \simeq 2\delta J_z(s) \left(1 + \frac{2i}{\pi} \left(\ln \frac{2\delta}{\lambda} + 0.028798 \ldots \right) \right).$$

Equation (34) now becomes

$$\mathbf{Y} E_z^i(s) = \left[\mathbf{Y} R + \frac{\pi \delta}{\lambda} \left(1 + \frac{2i}{\pi} \left(\ln \frac{2\delta}{\lambda} + 0.028798 \ldots \right) \right) \right] J_z(s)$$

$$+ \frac{\pi}{2\lambda} \int_{C-\Delta} J_z(s')H_0^{(1)}(kd) ds',$$

and this is the equation used in program RICE.

The same reasoning applied to the first integral in (35) gives

$$\int_{\Delta} J_s(s')(\hat{s} \cdot \hat{s}')H_0^{(1)}(kd) ds' \simeq 2\delta J_s(s) \left(1 + \frac{2i}{\pi} \left(\ln \frac{2\delta}{\lambda} + 0.028798 \ldots \right) \right),$$

but the second integral is more difficult to treat. When the self cell is excluded from the range of integration, the limiting operation can be applied to the integrand directly, and since $J_s(s')$ is assumed constant over each cell,
\[
\lim_{\rho \to \infty} \int_{C-\Delta} J_s (s') \frac{\partial}{\partial s'} \left\{ (s \cdot \hat{a}) H_1^{(1)} (kd) \right\} ds' = \sum_{j=1}^{N} J_s (s_j) \left[(s \cdot \hat{a}) H_1^{(1)} (kd) \right]_{\rho' = \rho_j + \delta} \sum_{j \neq 1}^{N} J_s (s_j) \left[(s \cdot \hat{a}) H_1^{(1)} (kd) \right]_{\rho' = \rho_j - \delta}
\]

where the subscripts \(j \) and \(i \) denote the integration and observation points respectively. To evaluate the self cell contribution we first use the fact that

\[
\frac{\partial}{\partial s'} \left\{ (s \cdot \hat{a}) H_1^{(1)} (kd) \right\} = k \left\{ (\hat{a} \cdot \hat{a}) (\hat{a} \cdot \hat{a}) - (s \cdot \hat{a}) (s \cdot \hat{a}) \right\} H_1^{(1)} (kd)
\]

with the prime attached to the Hankel function denoting differentiation to express the contribution as

\[
J_s (s) \lim_{\rho \to \infty} I
\]

where

\[
I = k \int_{\Delta} \left\{ (\hat{a} \cdot \hat{a}) (\hat{a} \cdot \hat{a}) - (s \cdot \hat{a}) (s \cdot \hat{a}) \right\} H_1^{(1)} (kd) ds'.
\]

For a locally plane element with the observation point a small distance \(y \) above its midpoint,

\[
I = 2k \int_{0}^{\delta} \left(\frac{y^2 - t^2}{y^2 + t^2} \right)^2 H_1^{(1)} (k \sqrt{y^2 + t^2}) dt
\]

and on inserting the small argument expansion of the Hankel function, we have

\[
I \approx \frac{4i\delta}{\pi k} \frac{1}{y^2 + \delta^2} + k \int_{0}^{\delta} \left(\frac{y^2 - t^2}{y^2 + t^2} \right)^2 \left[1 + \frac{2i}{\pi} \left(k \sqrt{\frac{y^2}{2} + \delta^2} + \frac{1}{2i} \right) \right] dt.
\]
\[\lim_{y \to 0} \left\{ \frac{4i}{\pi k \delta} - k \int_{0}^{\delta} \left\{ 1 + \frac{2i}{\pi} \left(\frac{\lambda}{\pi} \frac{2\delta}{\lambda} + \frac{1}{2} \right) \right\} dt \right\} = \frac{4i}{\pi k \delta} - k \left\{ 1 + \frac{2i}{\pi} \left(\frac{\lambda}{\pi} \frac{2\delta}{\lambda} + 0.528798 \ldots \right) \right\} \]

the first term of which becomes infinite as the cell size tends to zero. Equation (35) now has the form

\[\chi s \left(s \right) = \left[\chi_{R} + \frac{i}{2} \lambda \frac{2\delta}{\lambda} \left\{ 1 + \frac{2i}{\pi} \left(\frac{\lambda}{\pi} \frac{2\delta}{\lambda} + 0.028798 \ldots - 0.5 \right) \right\} \right] J_{s} \left(s \right) + \frac{\pi}{2\lambda} \int_{-\Delta}^{\Delta} J_{s} \left(s \right) \left(\hat{s} \cdot \hat{s}' \right) H_{0}^{(1)}(kd) ds' \]

\[+ \frac{1}{4} \sum_{j=1}^{N} J_{s} \left(s \right) \left[\left(\hat{s} \cdot \hat{s}' \right) H_{1}^{(1)}(kd) \right]^{\rho'} = \rho_{j} + \delta \]

\[J_{s} \left(s \right) \left[\left(\hat{s} \cdot \hat{s}' \right) H_{1}^{(1)}(kd) \right]^{\rho'} = \rho_{j} - \delta \]

whose solution is computed by program RICH.

Of the two programs it is evident that RICH is the more complicated, and to obtain a feeling for the rapidity of convergence as a function of the cell size, the program was run for edge-on incidence on a hexagonal shell 3μ on the side at a wavelength 2.6μ. The normalised resistivity employed was

\[\chi_{R} = 0.03876 + i9.10650 \]

corresponding to a shell 0.1μ thick and the refractive index

\[n = 1.206 + i0.00080 \]

for ice at 2.6μ quoted by Irvine and Pollack (1968). The results of decreasing the total number N of cells from 72 down to 24 are listed in Table A-1, and we observe that the total scattering and absorption cross sections are relatively insensitive to
TABLE A-1: Effect of Cell Size

<table>
<thead>
<tr>
<th>N</th>
<th>cells per wavelength</th>
<th>time used (sec.)</th>
<th>$\sigma(\theta_0, \theta_0')/\lambda$ (dB)</th>
<th>$\sigma(\pi + \theta_0, \theta_0')/\lambda$ (dB)</th>
<th>$\sigma_T(\theta_0)/\lambda$</th>
<th>$\sigma_A(\theta_0)/\lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>10.4</td>
<td>10.911</td>
<td>-44.33</td>
<td>-6.45</td>
<td>0.02229</td>
<td>0.00158</td>
</tr>
<tr>
<td>60</td>
<td>8.7</td>
<td>6.645</td>
<td>-44.70</td>
<td>-6.45</td>
<td>0.02230</td>
<td>0.00157</td>
</tr>
<tr>
<td>48</td>
<td>6.9</td>
<td>3.768</td>
<td>-44.48</td>
<td>-6.45</td>
<td>0.02233</td>
<td>0.00155</td>
</tr>
<tr>
<td>36</td>
<td>5.2</td>
<td>1.948</td>
<td>-44.04</td>
<td>-6.46</td>
<td>0.02241</td>
<td>0.00153</td>
</tr>
<tr>
<td>30</td>
<td>4.3</td>
<td>1.332</td>
<td>-43.63</td>
<td>-6.46</td>
<td>0.02250</td>
<td>0.00151</td>
</tr>
<tr>
<td>24</td>
<td>3.5</td>
<td>0.895</td>
<td>-42.91</td>
<td>-6.46</td>
<td>0.02272</td>
<td>0.00149</td>
</tr>
</tbody>
</table>
N, as is the forward scattering cross section, but the backscattering changes noticeably on decreasing the sampling rate below (about) 9 cells per wavelength. In running the program we have therefore used 9 or more cells per wavelength whenever possible consistent with the maximum of N = 100 allowed by the matrix inversion routine used.

Listings of the two programs follow.
COMPLEX REAL, LAST, INK

REAL*4 X(200), Y(200), XN(200), YN(200), S(200), NS(10), AS(361), RS(361)

INTEGER*4 ID(I), LUMP(200), TP0L(7), LV(100), MM(100)

DATA MH/100/
DATA PIFS, PI, TP0L, PIPI, YZ, RED, NIG
DATA IPOL /"FFE", "HNM/
DATA IPP/1/

C.. READ INPUT DATA AND GENERATE RANDY PROFILE

5 READ (5,100) IN
READ (5,200) M0R, KN0, ZFAC, WAVE, FIRST, LAST, INK
WRITE (7,100) IN
WRITE (7,101) WAVE
WRITE (7,199) FIRST, LAST, INK, IPP

101 FORMAT ('LAMBRDA=', F5.2, ' MICRAND')

199 FORMAT (1X, 3F10.5, 13)

! WHICH = 1
IF (REAL(ZFAC), EQ.O, ANO, AIMAG(ZFAC), EQ.O.)
8ZFAC=(I.F-E-20.I.E-20)
WRITE (6,150) ID
WRITE (6,300)
CALL GEOM(LUMP, X, Y, XN, YN, S, NS, Z, M)
MT=M/2
LL=LUMP(M)

20 IF (KN0, NE.O) GO TO 25
NINC=1
NRIT=1+IFIX((LAST-FIRST)/INK)
GO TO 30

25 NRIT=0
NINC=1+IFIX((LAST-FIRST)/INK)

30 WRITE (6,150) ID
WRITE (6,400) IPOL(IPP), LL, M0R, NINC, NRIT, WAVE, ZFAC
WRITE (6,425) FIRST

38 DO 35 I=1, LL
35 ZSI(I)=ZS(I)*ZFAC

35 NSO(I)=NSO(I)/WAVE
XK=TP0L/WAVE

C.. CONSTRUCT MATRIX ELEMENTS

IF (WHICH, EQ.2) GO TO 37
CALL MTR(M, MH, XK, Y, XN, YN, NSO, LUMP, ZS, A)

C.. COMPUTE INCIDENT FIELD AND INVERT MATRIX

37 TETA=FDN*FIRST
CT=CSN(TETA)
ST=SN(TETA)

! DO 60 I=2, M+2
HOLD=-XK*(CT*X(I)+ST*Y(I))
DFL=CMPLX(C0S(HOLD), SIN(HOLD))

60 PINK(I/2)=DFL
CALL FLIP(A, MT, MH, LV, MM, PINK, PHI, WHICH)
C. PRINT OUT CURRENTS AND ELEMENT PROPERTIES FOR FIRST ANGLE
WRITE (6,500)
IT=0
DO 65 I=2,M+2
IT=IT+1
AMP=CARSPH1(1T))
PHASE=DIG*ATAN2(DIMAGPHI11T),REALPHI1IT))
ISFG=LUMP(I)
65 WRITE (6,250) IT,ISEG,X1),Y(I),S(I),NS0(1SEG),ZS(1SEG),AMP,PHASE
C. WRITE OUT THE APPROPRIATE FIELD FACTORS
THE=FIRST-INK
K=0
IF (KNOE.EQ.1) G0 T0 70
WRITE (6,800) FIRST
G0 T0 75
70 WRITE (6,600)
75 THE=THE+INK
IF (THE.GT.LAST) G0 T0 105
IF (THE.EQ.FIRST) G0 T0 85
C. IN THE FOLLOWING LOOP, PINK IS NOT NECESSARILY THE INCIDENT FIELD
TETA=RFD*THE
CT=COS(TETA)
ST=SIN(TETA)
DO 80 J=2,M+2
HOLD=-XKCTX(J)+STY(J))
DFL=CMPLX(COS(HOLD),SIN(HOLD))
80 PINK1J/2)=DFL
IF (KNOE.EQ.0) G0 T0 85
CALL FLIP(A,MT,HL,M,PINK,PHEL,2)
85 SUM=CMPLX(0.0,0.0)
C. ADD UP THE CURRENTS
DO 95 J=2,M+2
JT=J/2
95 SUM=SUm+PH1(JT)*PINK(JT)*NS0(LUMP(J))
SUM=SUM
SUMR=REAL(SUM)
SUMI=IMAG(SUM)
SUMSQ=SUMR+SUMR+SUM1*SUM1
SCAT=10.*ALOG10(SUMSQ)+1.9612
K=K+1
ASUM(K)=SUMSQ
RSUM(K)=REAL(SUM)
PHASE=DIG*ATAN2(SUM1,SUMR)
WRITE(6,901) THE,SCAT,PHASE
WRITE(7,900) THE,SCAT,PHASE
G0 T0 75
105 DIFF=LAST-FIRST
IF(IDIFF.NE.180.0.AND. DIFF.NE.360.0) G0 T0 205
INDD=MDD(K,2)
IF(DIFF.EQ.360.0.AND. INDD.NE.1) G0 T0 205
IF(DIFF.EQ.180.0) FAC=2.0
IF(DIFF.EQ.360.0) FAC=1.0
C*** SIMPSON INTEGRATION OF CROSSSECTIONS

KLAST=K
IF(INDO.EQ.0) KLAST=KLAST-3
SIGT=ASUM(1)+ASUM(KLAST)
SIG=0.0
203 I=1,KLAST,2
SIG(SIG+ASUM(I)
SIGT=SIGT+4.0*SIG
SIG=0.0
KLAST=K-2
210 I=3,KLAST,2
SIG(SIG+ASUM(I)
SIGT=SIGT+2.0*SIG
SIGT=SIGT+INK/3.0
IF(INDO.EQ.0) SIGT=SIGT+3./R.*INK*
&ASUM(K-3)+ASUM(K)+3.*(ASUM(K-2)+ASUM(K-1))
SIGT=SIGT*FAC*REN/4.
C*** END SIMPSON INTEGRATION

KF=K
IF(FAC.EQ.1) KF=(K+1)/2
SIGF=-ASUM(KF)
SIGA=SIGT+SIGF
IF(KNDF) 220,220,240
220 SIGTDR=10.0*ALN10(SIGT)
IF(SIGA,0.0) GO TO 225
SIGADR=10.0*ALN10(SIGA)
GO TO 230
225 WRITE(6,825) SIGT,SIGA,SIGF
WRITE(7,825) SIGT,SIGA,SIGF
GO TO 205
230 SIGTDR=10.0*ALN10(SIGT)
WRITE(6,850) SIGTDR,SIGA,SIGADR
WRITE(7,851) SIGT,SIGTDR,SIGA,SIGADR
GO TO 205
240 SIGTDR=10.0*ALN10(SIGT)
WRITE(6,875) SIGT,SIGTDR
825 FORMAT(/15X,'SIGMA(T)/LAMBDA=',FR.5,FR.2,3H DB,M5X,'SIGMA(A)/LAMBDA=',FR.5,FR.2,3H DB)
850 FORMAT(/15X,'SIGMA(T)/LAMBDA=',FR.5,FR.2,3H DB,M5X,'SIGMA(A)/LAMBDA=',FR.5,FR.2,3H DB)
875 FORMAT(/15X,'SIGMA(T)/LAMBDA=',FR.5,FR.2,3H DB)

205 IF (MORF.EQ.0) GO TO 5
50 I=1,LL
ZS(I)=ZS(I)/ZFAC
103 DSQ(I)=DSQ(I)*WAVE
DEL=ZFAC
P WAVE=WAVE

ORIGINAL PAGE IS OF POOR QUALITY
READ (5,200) NROF,KODE,ZFAC,WAVE,FIRST,LAST,INK
WRITE(7,100) IN
WRITE(7,101) WAVE
WRITE(7,199) FIRST,LAST,INK,IPP

IF(RFAC=1.F-20,1.F-20)
&.AND.WAVE,FO,PWAVE) ISWHICH=2
GO TO 20

100 FORMAT (1HA4)
150 FORMAT (1HI,1HA4)
200 FORMAT (12,13,1D9.5)
250 FORMAT (215,1D10.5,1D10.3)
300 FORMAT (10H0SEG.shtml,1X,24HENDPOINTS OF THE SEGMENT,19X.,
&1H8SEGMENT PARAMETERS/11H WITH CELLS,6X,2HXA,8X,2HYA,8X,2HXB,8X,
&2HY,AX,24HANGLE LENGTH,4X,14HRF=-Z IM-Z/)
400 FORMAT (//31X,14HKEY PARAMETERS//
&16X,21HINCIDENT POLARIZATION,22X,141/
&16X,23HNUMBER OF SEGMENTS USED,121/
&16X,33HNUMBER OF CELLS ON THE BOUNDARY,111/
&16X,35HNUMBER OF INCIDENT FIELD DIRECTIONS,119/
&16X,29HNUMBER OF INCIDENT DIRECTIONS,115/
&16X,10HWAVELENGTH,F34.5/
&16X,14HPERIOD PARAMETER,F10.5/
425 FORMAT (///,3A9,1HSURFACE FIELD DATA/.,27X,
&29HFOR INCIDENT FIELD DIRECTION=.F7.2,)
500 FORMAT (11HO-I,SEG-4X-4H(X(I),6X,4HY(I),6X,4HS(I),5X,6HNSO(I)),
&4X,APRS(I),4X,6HXS(I),6X,6HSDA(I),4X,6HARG(I),J/)
600 FORMAT (11HI,27X,2A-PARAPACKSCATTERING CROSS SECTION/23X,
&3AHTHETA SIGMA/LAMNA,OR PHASE,DEG)
800 FORMAT (11HI,23X,23HRSTATIC SCATTERING CROSS SECTION/23X,
&29HFOR INCIDENT FIELD DIRECTION=.F7.2/73X,
&3AHTHETA SIGMA/LAMNA,OR PHASE,DEG)
900 FORMAT (15X,F13.2,F14.2,F15.1)
901 FORMAT (15X,F13.2,F14.2,F15.1)

END

SUBROUTINE MTX(M,MH,XK,X,Y,XM,YN,NSO,LUMP,KS,A)

C RICE VERSION, Z-POLARIZATION
REAL*4 X(1),Y(1),M(1),YN(1),NSO(1)
INTEGER*4 LUMP(1)
COMPLEX*8 A(MH,1),ZS(1),HZ,NUM
COMMON /PIES/ PI,TP1, PIT, LUMP, YZ, RENDIG
IH=0
DO 10 I=2,M,2
IH=IH+1
X=X(I)
Y=Y(I)
JH=JH+1
ISFG=LUMP(J)
NS=NSO(ISFG)
IF(IH.EQ.JH)GO TO 50

69
RX=XI-X(J)
RY=YI-Y(J)
RX=SQRT((RX*RX+RY*RY))
RK=R*RX
CALL HANKZH(RK,N,HZ,NUM)
AIH(JH)=PIT*M7*NS
GO TO 10
50 AIH(JH)=ZS(ISEG)+
&NS*CMPLX(PIT,ALNG(NS)+.0279837)
10 CONTINUE
RETURN
END
SUBROUTINE GEOM(LUMP,X,Y,XN,YN,S,NSQ,ZS,N)
C THIS VERSION READS AND GENERATES SEGMENTS IN COUNTER-CLOCKWISE DIRECTION.
C THE SURFACE MUST BE CLOSED.
C POINTS ARE GENERATED AT THE START AND MIDPOINTS OF EACH CELL.
C THE START POINT OF THE FIRST CELL EVENTUALLY COINCIDES
C WITH THE END POINT OF THE LAST CELL.
COMMON /PIES/ PI,TP1,PI2,PIPI, YZ,REN,NIG
I=0
L=0
C READ INPUT PARAMETERS AND PREPARE TO GENERATE SAMPLING POINTS
10 READ (5,200) N,Z,XA,YA,XR,YR,ANG
IF(N.LT.1) GO TO 120
LIM=2*N
TX=XA-XA
TY=YA-YR
D=SQRT((TX*TX+TY*TY))
L=L+1
ZS(L)=Z
IF (ANG.FLT.0.0) GO TO 20
T=0.5*FND*ANG
TRX=TX+TY*COTAN(T)
TRY=TY-TX*COTAN(T)
RAD=0.5*D/SIN(T)
ARC=2.0*RAD*T
ALF=T/N
NSQ(L)=2.0*RAD*ALF
GO TO 30
20 RAD=999.999
ARC=0
NSQ(L)=N/N
C START GENERATING
30 NSS=0.
NS=NSQ(L)/2.
DO 50 JJ=1,LIM
I=I+1
J=JJ-1
S(J)=NSS
NSS=NSS+NS
ORIGINAL PAGE IS
OF POOR QUALITY
LUMP(I)=L
IF (ANG.EQ.0.0) GO TO 40
ARG=J*ALF
SINO=SIM(ARG)
COSO=CNS(ARG)
X(I)=A0.5*(TRX*(1.0-COSO)-TRY*SINO)
Y(I)=A0.5*(TRX*SINO+TRY*(1.0-COSO))
XN(I)=A0.5*(TRX*COSO+TRY*SINO)/RAD
YN(I)= A0.5*(TRX*SINO-TRY*COSO)/RAD
GO TO 50
40 X(I)=A0.55*TX/N
Y(I)=A0.55*TY/N
XN(I)=TY/N
YN(I)= TX/N
50 CONTINUE
100 WRITE(6,300) L,N,XA,YA,XR,YR,ANG,RAD,ARC/Z
GO TO 10
120 M=1
LL=L
200 FORMAT(12,3X,7F10.5)
300 FORMAT(13,16,4X,4F10.5,F7.2,4F10.5)
RETURN
END
SUBROUTINE HANKS(1,R,N,HZER0,HME)
C...... HANKEL FUNCTIONS ARE OF FIRST KIND—J+IY
C...... M=0 RETURNS HZER0
C...... M=1 RETURNS HME
C...... M=2 RETURNS HZER0 AND HME
C...... SUBROUTINE REQUIRES R>0
C...... SUBROUTINE ADAM MUST BE SUPPLIED BY USER
DIMENSION AL(7),AI(7),C(7),D(7),E(7),F(7),G(7),H(7)
COMPLEX HZER0,HME
DATA A(7),C,D,E,F,G,H/1.0,-2.74999971,1.265620,9,-0.3163866,
0.0444479,-0.0039444,0.002114,0.36744691,0.6059366,-0.74350344,
0.25300117,-0.04261214,0.00427916,-0.0024844,0.5,-0.56249985,
0.21099573,-0.03954244,0.0043319,0.00031761,-0.00011094,
& -0.6365198,0.2217991,2.162799,-1.3164827,0.3123951,-0.0406976,
& -0.0027873,0.74788566,-0.0000077,-0.0055274,-0.00009512,
& 0.00137237,-0.00072905,0.00014476,-0.78539816,-0.04163976,
& 0.00003954,0.00262573,-0.00056125,-0.00026633,0.00013558,
& 0.79788456,0.00000156,0.01659647,0.00017105,-0.00249511,
& 0.00136453,-0.00020033,-2.35619449,0.1249612,-0.0006565,
& 0.00637779,-0.00074364,0.00079824,-0.00029166/
IF (R.LT.0.0) GO TO 50
IF (N.LT.0.0) GO TO 50
IF (R.GT.3.0) GO TO 20
X=R*R/9.0
CALL ADAM(A,X,RJ)
CALL ADAM(B,X,Y)
RY=0.6366198*AL*NG(0.5*R)*RJ+Y
HZFR0=CMPLX(RJ,RY)
IF (N.EQ.0) RETURN
10 CALL ADAM(C, X, Y)
 RJ=R*Y
 CALL ADAM(D, X, Y)
 RY=0.636619*R*ALOG(N*5*R)*RJ+Y/R
 HNE=CMPLX(RJ, RY)
 RETURN
20 X=3.0/R
 IF (N.EQ.1) GO TO 30
 CALL ADAM(F, X, Y)
 F0NL=Y/SQR(R)
 CALL ADAM(F, X, Y)
 T=R+Y
 RJ=F0NL*COS(T)
 RY=F0NL*SIN(T)
 HZER=CMPLX(RJ, RY)
 IF (N.EQ.0) RETURN
30 CALL ADAM(G, X, Y)
 F0NL=Y/SQR(R)
 CALL ADAM(H, X, Y)
 T=R+Y
 RJ=F0NL*COS(T)
 RY=F0NL*SIN(T)
 HNE=CMPLX(RJ, RY)
 RETURN
50 WRITE(A,90) N, R
90 FORMAT(32HOSICK DATA IN HAMZI = QUIT, N=I2, 2X, 2HR=E11.3)
 CALL SYSTEM
 FND
 SUBROUTINE ADAM(C, X, Y)
 DIMENSION C(7)
 Y=X*C(7)
60 10 I=1, 5
 Y=X*(C(7-I)+Y)
 Y=Y+C(1)
 RETURN
 FND
 SUBROUTINE FLIP(A, N, MI, L, M, X, Y, IAT)
 COMPLEX A(MI, L), X(1), Y(1), N, RIGA, HOLD
 DIMENSION L(1), M(1)
 IF (IAT.GT.1) GO TO 150
 R=CMPLX(1.0, 0.0)
70 80 K=1, N
 L(K)=K
 M(K)=K
 RIGA=A(K, K)
70 20 J=K, N
 L(K)=I
 M(K)=J
 IF (CARS(RIGA).GE.CARS(A(I, J))) GO TO 20
 RIGA=A(I, J)
 L(K)=I
 M(K)=J
20 CONTINUE
 J=L(K)
 IF (J.LE.K) GO TO 35
 NN 30 I=1,N
 HOLD=-A(K,I)
 A(K,I)=A(J,I)
30 A(J,I)=HOLD
35 I=M(K)
 IF (I.LE.K) GO TO 45
 NN 40 J=1,N
 HOLD=-A(J,K)
 A(J,K)=A(I,K)
40 A(I,K)=HOLD
45 IF (CABS(RIGA).GE.0.0) GO TO 50
 N=CMPLX(0.0,0.0)
 RETURN
50 NN 55 I=1,N
 IF (I.FO.K) GO TO 55
 A(I,K)=-A(I,K)/RIGA
55 CONTINUE
 NN 65 I=1,N
 NN 65 J=1,N
 IF (I.EO.K.NR.J.FO.K) GO TO 65
 A(I,J)=A(I,K)*A(K,J)+A(I,J)
65 CONTINUE
 NN 75 J=1,N
 IF (J.FO.K) GO TO 75
 A(K,J)=A(K,J)/RIGA
75 CONTINUE
 N=N*RIGA
80 A(K,K)=1.0/RIGA
 K=N
100 K=K-1
 IF (K.LE.0) GO TO 150
 I=L(K)
 IF (I.LE.K) GO TO 120
 NN 110 J=1,N
 HOLD=A(J,K)
 A(J,K)=-A(J,I)
 A(J,I)=HOLD
110 A(J,I)=HOLD
120 J=M(K)
 IF (J.LE.K) GO TO 100
 NN 130 I=1,N
 HOLD=A(K,I)
 A(K,I)=-A(J,I)
130 A(J,I)=HOLD
 GO TO 100
150 NN 200 I=1,N
 Y(I)=CMPLX(0.0,0.0)
 NN 200 J=1,N
200 Y(I)=A(I,J)*X(J)+Y(I)
 RETURN
END
C**C
C INPUT FORMAT FOR PROGRAM RICH, SFPT, 1975
C**C
C CARD 1 FORMAT (18A4) TITLE CARD: USE UP TO 72 COLUMNS
C
C CARD 2 FORMAT (12,13,5F10.5) MORE, KNDF, ZFAC, WAVE, FIRST, LAST, INK
C MORE=0 THIS WILL BE THE LAST RUN FOR THIS DATA SET
C MORE=1 THERE ARE MORE DATA TO BE READ AFTER THIS SET
C KNDF=0 COMPUTES BISTATIC SCATTERING PATTERN
C KNDF=1 COMPUTES BACKSCATTERING PATTERN
C ZFAC A COMPLEX FACTOR MULTIPLYING ALL ELEMENTS
C WAVE WAVELENGTH
C FIRST INITIAL SCATTERING AND INCIDENCE ANGLE
C LAST FINAL ANGLE
C INK ANGULAR INCREDMENT
C
C CARD 3 FORMAT (12,5X,7F10.5) Z, XA, YA, XR, YR, ANG
C Z NUMBER OF SAMPLING POINTS ON THIS SEGMENT
C XA, YA, XR, YR SEGMENT ENDPOINTS
C ANG ANGLE SUBMITTED BY THE SEGMENT ZER0 IN COL 7 SHUCS OFF
C READING OF SEGMENTS
C
C CARD 4 FORMAT (12,13,F10.5) MORE, KNDF, ZFAC, FIRST, LAST, INK
C THIS CARD IS USED ONLY IF
C ON CARD 2, MORE=1
C
C**C
C IN SPECIFICATIONS:
C 5: INPUT DATA; 6: OUTPUT (PRINTER); 7: OUTPUT (GRAPHICS)
C
C**C
C COMPLEXXR A(100,101), PHI(100), PIK(100), ZS(10)
C COMPLEXXR N,F, SHM, ZFAC
C REALK4 LAST, INK
C REAL12 X(200), Y(200), XM(200), YM(200), S(200), DSO(10), ASUM(361), RSUM(361)
C INTEGER4 ID(18), LUMP(200), IPOL(2), LTV(100), MM(100)
C DATA MM/100/
C COMMON /PIFS/ PI, TPI, PIT, PIPI, Y7, RED, DIG
C DATA IPOL /'FEFF', 'HHTH'/
C DATA IPP/2/
C
C READ INPUT DATA AND GENERATE BODY PROFILE
C 5 READ (5,100) IN
C READ (5,200) MORF, KNDF, ZFAC, WAVE, FIRST, LAST, INK
C WRITE (7,100) IN
C WRITE (7,101) WAVE
C WRITE (7,199) FIRST, LAST, INK, IPP
C 101 FORMAT (' LAMDA='F5.2, ' MICRONS')
C 199 FORMAT (1X, 3F10.5, 13)
C IWWICH=1
C IF (REAL(ZFAC), F.0, AND AIMG(ZFAC), EQ. 0.)
C ZFAC=(1.F-20,1.F-20)
C CALL GEOM(LUMP, X, Y, XM, YM, S, DSO, ZS, M)
C MT=M/2
C LL=LUMP(M)
C
C**C
C ORINAl PAGE IS OF POOR QUALITY.
20 IF (KNODE.EQ.0) GO TO 75
NINC=1
NRAT=1+IFIX((LAST-FIRST)/INK)
GO TO 30
25 NRAT=0
NINC=1+IFIX((LAST-FIRST)/INK)
30 WRITE (6,150) ID
WRITE (6,400) [POL(IPP),LL,MT,NINC,NRAT,WAVE,ZFAC
WRITE (6,425) FIRST
38 DO 35 I=1,LL
ZS(I)=ZS(I)*ZFAC
35 DSQ(I)=DSQ(I)/WAVE
XK=TP1/WAVE.
C....CONSTRUCT MATRIX ELEMENTS
IF(IWHICH.EQ.2) GO TO 37
CALL MTR(M,MH,XK,X,Y,XN,YN,DSQ,LUMP,ZS,A)
C....COMPUTE INCIDENT FIELD AND INVERT MATRIX
37 TETA=RFD*FIRST
CT=COS(TFTA)
ST=SIN(TFTA)
DO 40 I=2,M,2
HOLD=-XK*(CT*X(I)+ST*Y(I))
DEL=CMPLX(COS(HOLD),SIN(HOLD))
40 PINK(I/2)=DEL*(XN(I)*CT+YN(I)*ST)
CALL FLIP(A,MT,MH,LL,MM,PINK,PHI,IWHICH)
C....PRINT OUT CURRENTS AND ELEMENT PROPERTIES FOR FIRST ANGLE
WRITE (6,500)
IT=0
DO 45 I=3,M,2
IT=IT+1
AMP=CABS(PHI(IT))
PHASE=DIAG*ATAN2(IMAG(PHI(IT)),REAL(PHI(IT)))
ISF=FLM(P,IT)
45 WRITE (6,250) IT,ISF,X(I),Y(I),S(I),DSQ(ISEG),ZS(ISFG),AMP,PHASE
C....DOPE OUT THE APPROPRIATE FIELD FACTORS
THF-FIRST-IN
K=0
IF (KNODE.EQ.1) GO TO 70
WRITE (6,800) FIRST
GO TO 75
70 WRITE (6,600)
75 THF=THF+IN
IF (THF.GT.LAST) GO TO 105
IF (THF.EQ.FIRST) GO TO 85
C....IN THE FOLLOWING LUMP, PINK IS NOT NECESSARILY THE INCIDENT FIELD
TETA=RFD*THF
CT=COS(TFTA)
ST=SIN(TFTA)
DO 50 J=2,M,2
HOLD=-XK*(CT*X(J)+ST*Y(J))
DEL=CMPLX(COS(HOLD),SIN(HOLD))
80 PINK(J/2)=DF*(XM(J)*CT+YN(J)*ST)
 IF (KIND.EQ.0) GO TO 85
 CALL FLIP(A,MT,MH,LV,MM,PINK,PHI,2)
85 SUM=CMPLX(0.0,0.0)
C****** ADD UP THE CURRENTS
 DO 95 J=2,M+2
 JT=J/2
95 SUM=SUM+PHI(JT)*PINK(JT)*DSQ(LUMP(J))
 SUMR=REAL(SUM)
 SUMI=AIMAG(SUM)
 SUMSO=SUMR*SUMR+SUMI*SUMI
 SCAT=10.0*ALOG10(SUMSO)+1.9612
 K=K+1
 ASUM(K)=SUMSO
 RSUM(K)=REAL(SUM)
 PHASE=DIGN(TAN2(SUMI,SUMR))
 WRITE(6,901) THE,SCAT,PHASE
 WRITE(7,901) THE,SCAT,PHASE
 GO TO 75
105 DIFF=LAST-FIRST
 IF (DIFF .NE. 180.0 .AND. DIFF .NE. 360.0) GO TO 205
 INDD=MOD(K,2)
 IF (DIFF .EQ. 360.0 .AND. INDD .NE. 1) GO TO 205
 IF (DIFF .EQ. 180.0) FAC=2.0
 IF (DIFF .EQ. 360.0) FAC=1.0
C*** SIMPSON INTEGRATION OF CROSS SECTIONS
 KLAST=K
 IF (INDD .EQ. 0) KLAST=KLAST-3
 SIGT=ASUM(1)+ASUM(KLAST)
 SIG=0.0
 DO 203 I=2, KLAST, 2
 203 SIG=SIG+ASUM(I)
 SIGT=SIGT+4.0*SIG
 SIG=0.0
 KLAST=K-2
 DO 210 I=3, KLAST, 2
 210 SIG=SIG+ASUM(I)
 SIGT=SIGT+2.0*SIG
 SIGT=SIGT*INK/3.0
 IF (INDD .EQ. 0) SIGT=SIGT+3.0*INK*
 (*ASUM(K-3)+ASUM(K)+3.0*(ASUM(K-2)+ASUM(K-1))
 SIGT=SIGT*FAC*RFN/4.
C*** END SIMPSON INTEGRATION
 KF=K
 IF (FAC .EQ. 1) KF=(K+1)/2
 SIGF=-RSUM(KF)
 SIGA=-SIGT+SIGF
 IF (KINDF) 220,220,240
220 SIGFDR=10.0*ALOG10(SIGF)
 IF (SIGA .LE. 0.0) GO TO 225
 SIGADR=10.0*ALOG10(SIGA)
 GO TO 230

ORIGINAL PAGE IS OF POOR QUALITY
225 WRITE(6,A25) SIGT,SIGA,SIGF
WRITE(6,A25) SIGT,SIGA,SIGF
GO TO 205
230 SIGTDR=10.0*LOG10(SIGT)
WRITE(A,A50) SIGT,SIGTDR,SIGA,SIGADR
WRITE(A,A51) SIGT,SIGTDR,SIGA,SIGADR
GO TO 205
240 SIGTDR=10.0*LOG10(SIGT)
WRITE(A,A75) SIGT,SIGTDR
A25 FORMAT(//,5X,40H=END OF NEGATIVE ABSORPTION CROSS SECTION\,//
&15X,5HSIGT=,FR.5,5X,5HSIGA=,FR.5,5X,5HSIGF=,FR.5)
A50 FORMAT(//,15X,5HSIGT=,FR.5,FR.2,3H DR,5X,5HSIGA=,FR.5,FR.2,
&3H DR)
A51 FORMAT(//,15X,10SHSIGAVE=,FR.5,FR.2,3H DR)
205 IF (MNR.EQ.0) GO TO 5
DN 103 I=1,LL
ZS(I)=ZS(I)/7FA5
103 NSQ(I)=NSQ(I)*WAVE
DFL=ZFAC
PREAD=DEFL
READ (5,200) MNR,KNNF,ZFAC,WAVE,FIRST,LAST,INK
WRITE(7,100) ID
WRITE(7,101) WAVE
WRITE(7,199) FIRST,LAST,INK,IPP
IF(ICH=1
IF(REAL(ZFAC).LT.0.AND.AIMAG(ZFAC).LT.0.)
&DIFAC=1.0/F-20,1,F-20)
IF(REAL(ZFAC).LT.0.AND.AIMAG(ZFAC).GT.0.)
&AND.WAVE,FO,PMA5) IHICH=2
GO TO 20
100 FORMAT (1RA4)
150 FORMAT (1H1,1RA4)
200 FORMAT (12,13,6F10.5)
250 FORMAT (215,7F10.3)
300 FORMAT (10H0SEG ,NUM,11X,24HEND POINTS OF THE SEGMENT,19X,
&18SEGMENT PARAMETERS/11H NUM CELLS,6X,2HXA,8X,2HYA,8X,2HXR,8X,
&2HYR,6X,25HANGLE RADIUS LENGTH,4X,14HREV-7 IMP-Z/)
400 FORMAT (//31X,14HKEY PARAMETERS//
&16X,21HINCIDENT POLARIZATION,22X,1A1/
&16X,23HNUMBER OF SEGMENTS USED,121/
&16X,35HTOTAL NUMBER OF CELLS ON THE RANDY,111/
&16X,35HNUMBER OF INCIDENT FIELD DIRECTIONS,19/
&16X,29HBRISTATIC DIRECTIONS,115/
&16X,10HWAVELENGTH,F34.5/
&16X,16HIMPEDANCE FACTOR,F16.5,1,F10.5)
425 FORMAT (///,34X,18HSURFACE FIELD DATA///,27X,
&29HFOC INCIDENT FIELD DIRECTION=F7.2)
500 FORMAT (11HO SEG,4X,4HXR(I),6X,4HY(I),6X,4HS(I),5X,6HNSQ(I),
&4X,6HRS(I),4X,6HXS(I),4X,6HMOD(J),4X,6HARG(J)/)
600 FORMAT (1HI, 27X, 2AH, "RACK SCATTERING CROSS SECTION/23X,
SIGMA/LAMDA, DR PHASF, DEG)
800 FORMAT (1HI, 23X, 33H, "STATIC SCATTERING CROSS SECTION/23X,
SIGMA/LAMDA, DR PHASF, DEG)
900 FORMAT (15X, F13.2, F14.2, F16.1)
901 FORMAT (15X, F13.2, F14.2, F15.1)
END

SUBROUTINE MTX(M, MH, XX, Y, XN, YN, DSM, LUMP, ZS, A)

C RICH VERSION, H-POLARIZATION

REAL*4 X(1), Y(1), XN(1), YN(1), DSM(1)
INTEGER*4 LUMP(1)
C(NM)X*R A(MH, 1), ZS(1), HZ, H1A, H1R, DUM, HIRL, HZA, HZB, HZBL
COMMON /PIES/ PI, TPI, PIT, PIPI, YZ, RED, DIG

IH=0
IL=0

DO 10 I=2, M, 2
 IH=IH+1
 XI=X(I)
 YI=Y(I)
 XNI=XN(I)
 YNI=YN(I)
 JH=0

DO 25 J=2, M, 2
 JH=JH+1
 ISFG=LUMP(J)
 DS=DSM(ISFG)
 IF(IH. EQ. JH) GO TO 50
 JA=J-1
 JB=J+1
 IF(J. EQ. M) JR=1
 XJA=X(JA)
 YJA=Y(JA)
 XJB=X(JB)
 YJB=Y(JB)
 XNJ=A(XN(JA)-)
 YNJ=A(YN(JA))
 XNJR=XN(JB)
 YNJR=YN(JB)
 RX=XI-X(J)
 RY=JI-Y(J)
 R=SOR(T(RX*RX+RY*RY))
 SDRP=XNI*XN(J)+YN(J)*YN(J)
 RK=R*KK
 CALL HANKZ1(RK, O, HZ, DUM)
 HZ=HZ*KK
 RX=XI-XJR
 RY=J-JR
 R=SOR(T(RX*RX+RY*RY))
 SDR=(RX*YNI-RY*XNI)/R
 SDRP=XNI*XNJR+YNJR*YNJR
 RK=R*KK
 78

"
CALL HANKZ1(RRK,2,HZR,H1R)
H1R=H1R*SDR
HZR=SDSP*HZR
IF(XJA.FQ.XJRL.AND.YJA.FQ.YJRL.AND.I.EQ.IL) GO TO 15
RX=XI-XJA
RY=YI-YJA
R=SORT(RX*RX+RY*RY)
SDR=(RX*YNI-RY*XNI)/R
SDSP=XNI*XNI+YNI*YNI
RAK=R*XK
CALL HANKZ1(RAK,2,HZA,H1A)
H1A=H1A*SDR
HZA=SDSP*HZA
GO TO 20
15 H1A=H1RL
HZA=HZRL
20 A(IH,JH)=PIT*DS/A.*(HZA+4.*HZ+HZR)-0.25*(H1R-H1A)
XJBL=XJBR
YJBL=YJBR
H1RL=H1R
HZRL=HZR
GO TO 25
50 A(IH,JH)=ZS(ISEG)+
&COMPLX(PIT*DS/2.*1./DS/PIPI+DS*(ALOG(DS)+0.0287937)/2.)
25 IL=1
10 CONTINUE
RETURN
END
SUBROUTINE GENM(LUMP,X,Y,XN,YN,S,NSO,ZS,M)
C THIS VERSION READS AND GENETATES SEGMENTS IN COUNTER-CLOCKWISE DIRECTION.
C THE SURFACE MUST BE CLOSED.
C POINTS ARE GENERATED AT THE START AND MIDPOINTS OF EACH CELL.
C THE START POINT OF THE FIRST CELL EVENTUALLY COINCIDE.
C WITH THE END POINT OF THE LAST CELL.
COMPLEX*8 ZS(1),Z
REAL*4 X(1),Y(1),XN(1),YN(1),S(1),NSO(1)
INTEGER*4 LUMP(1)
COMMON /PIES/ PI,TPI, PIT, PIPI, YZ, RFD, DIG
I=0
L=0
C.....READ INPUT PARAMETERS AND PREPARE TO GENERATE SAMPLING POINTS
10 READ (5,200) N,Z,XA,YA,XR,YR,ANG
IF(N.LT.1) GO TO 120
LIM=2*N
TX=XA-XB
TY=YA-YR
N=SORT(TX*TX+TY*TY)
L=L+1
ZS(L)=Z
IF (ANG.FQ.0.0) GO TO 20
T=0.5*RFD*ANG
RETURN
END
ORIGINAL PAGE IS OF POOR QUALITY
\begin{align*}
\text{TRX} &= TX + TY \cdot \cot \tan(T) \\
\text{TRY} &= TY - TX \cdot \cot \tan(T) \\
\text{RAD} &= 0.5 \cdot \alpha / \sin(T) \\
\text{ARC} &= 2.0 \cdot \text{RAD} \cdot T \\
\text{ALF} &= T / N \\
\text{DSO}(L) &= 2.0 \cdot \text{RAD} \cdot \text{ALF} \\
\text{GO TO 30} \\
\text{20} & \text{RAD} = 999.999 \\
\text{ARC} &= 0 \\
\text{DSO}(L) &= D / N \\
\text{C} & \text{... START GENERATING} \\
\text{30} & \text{DSS} = 0. \\
& \text{NS} = \text{DSO}(L) / 2. \\
& \text{NN} = 50 \\
& \text{JJ} = 1 \cdot \text{LIM} \\
& \text{I} = \text{I} + 1 \\
& \text{J} = \text{J} - 1 \\
& \text{S} (I) = \text{DSS} \\
& \text{DSS} = \text{DSS} + \text{NS} \\
& \text{LUMP} (I) = L \\
& \text{IF} (\text{ANG} = \text{PD} = 0.0) \text{ GO TO 40} \\
& \text{ARG} = J \cdot \text{ALF} \\
& \text{SINO} = \sin(\text{ARG}) \\
& \text{COSO} = \cos(\text{ARG}) \\
& \text{XI}(I) = XA - 0.5 \cdot (\text{TRX} \cdot (1.0 - \cosO)) - \text{TRY} = \sinO \\
& \text{YI}(I) = YA - 0.5 \cdot (\text{TRY} \cdot \sinO + \text{TRY} - (1.0 - \cosO)) \\
& \text{XN}(I) = 0.5 \cdot (\text{TX} \cdot \sinO - \text{TY} \cdot \cosO) / \text{RAD} \\
& \text{YN}(I) = 0.5 \cdot (\text{TX} \cdot \cosO - \text{TY} \cdot \sinO) / \text{RAD} \\
& \text{GO TO 50} \\
\text{40} & \text{XI}(I) = XA - 0.5 \cdot J \cdot \text{TX} / N \\
& \text{YI}(I) = YA - 0.5 \cdot J \cdot \text{TY} / N \\
& \text{XN}(I) = -TY / D \\
& \text{YN}(I) = \text{TX} / D \\
\text{50} & \text{CONTINUE} \\
\text{100} & \text{WRITE}(A,300) L,N,XA,YA,XB,YB,ANG,RAD,ARC,Z \\
& \text{GO TO 10} \\
\text{120} & \text{M} = 1 \\
& \text{LL} = L \\
\text{200} & \text{FORMAT}(12,3X,7F10.5) \\
\text{300} & \text{FORMAT}(13,16,4X,4F10.5,16,4F10.5) \\
& \text{RETURN} \\
& \text{END} \\
& \text{SUBROUTINE HANKZL(R,N,HZER,HONE)} \\
& \text{C} \text{..... HANKEL FUNCTIONS ARE OF FIRST KIND--J+IY} \\
& \text{C} \text{..... N=0 RETURNS HZER} \\
& \text{C} \text{..... N=1 RETURNS HONE} \\
& \text{C} \text{..... N=2 RETURNS HZER AND HONE} \\
& \text{C} \text{..... SUBROUTINE REQUIRES R>0} \\
& \text{C} \text{..... SUBROUTINE HANKZL MUST BE SUPPLIED BY USER} \\
\end{align*}
DIMENSION A(7), R(7), C(7), D(7), E(7), F(7), G(7), H(7)

COMPLEX HZFRN, HMF

DATA A, R, C, D, E, F, G, H / 1.0, -2.2499997, 1.2656208, -0.3163866,
0.0444479, -0.0036444, -0.0021, 0.36746691, 0.0599366, -0.74350384,
0.2530017, -0.04261714, 0.00427916, -0.00024846, 0.5, -0.56249985,
0.21093573, -0.03954289, 0.00443319, -0.00031761, -0.0001109,
0.6366198, -0.2212091, 2.1682709, -1.3164827, 0.3123951, -0.0400976,
0.0027873, -0.7978846, -0.00000077, -0.0055274, -0.00009127,
0.00137237, -0.00072805, 0.00014478, -0.78539816, -0.04166097,
0.0003954, -0.0026573, -0.00054125, -0.0002933, -0.0013558,
0.7978846, -0.000156, 0.01659667, 0.0001705, -0.00249511,
0.00113653, -0.0020033, -2.35619449, 0.12499612, 0.0000565,
0.00037879, -0.0007348, 0.00079824, -0.000291667

IF (R*.LT.0.0) GO TO 50
IF (N.GT.0) GO TO 50
IF (R.GT.3.0) GO TO 20
X=R*R/9.0
IF (N.FLT.0.1) GO TO 10
CALL ANAM(A, X, RJ)
CALL ANAM(R, X, Y)
RY=0.6366198*ALOG(0.5*R)*RJ+Y
HZFRN=CMPLX(R, I, RY)
IF (N.EQ.0) RETURN

10 CALL ANAM(C, X, Y)
RJ=R*Y
CALL ANAM(N, X, Y)
RY=0.6366198*ALOG(0.5*R)*RJ+Y/R
HMF=CMPLX(R, I, RY)
RETURN

20 X=3.0/R
IF (N.FLT.0.1) GO TO 30
CALL ANAM(F, X, Y)
FNL=Y/SORT(R)
CALL ANAM(F, X, Y)
T=RY
RJ=FNL*COS(T)
RY=FNL*SIN(T)
HZFRN=CMPLX(RJ, RY)
IF (N.EQ.0) RETURN

30 CALL ANAM(G, X, Y)
FNL=Y/SORT(R)
CALL ANAM(H, X, Y)
T=RY
RJ=FNL*COS(T)
RY=FNL*SIN(T)
HMF=CMPLX(RJ, RY)
RETURN

50 WRITE (6, 90) N, R
90 FORMAT(32HOSICK DATA IN HANKZ1 =QUIT* N=n, I2, 2X, 2HR=r, F11.9)
CALL SYSTEM
END
SUBROUTINE ANAM(C, X, Y)
DIMENSION C(7)
Y=X*C(7)
DO 10 I=1, 5

ORIGINAL PAGE IS OF POOR QUALITY
10 \(y = x \cdot (7 - i) + y \)
\(y = y + c \cdot i \)
RETURN
END
SUBROUTINE FLIP(A, N, M, L, M, X, Y, IAT)
COMPLEX A(M, 1), X(1), Y(1), D, RIGA, HOLD
DIMENSION L(1), M(1)
IF (IAT.GT.1) GO TO 150
D=CPLX(1.0, 0.0)
DO 80 K=1, N
L(K)=K
M(K)=K
BIGA=A(K, K)
DO 20 J=K, N
20 CONTINUE
J=L(K)
IF (J.LT.K) GO TO 35
DO 30 I=K, N
HOLD=A(K, I)
A(K, I)=A(J, I)
30 CONTINUE
I=M(K)
IF (I.LT.K) GO TO 45
DO 40 J=I, N
HOLD=A(J, K)
A(J, K)=A(J, I)
40 CONTINUE
45 IF (CAR(A, BIGA), NE, 0.0) GO TO 50
\(D=CPLX(0.0, 0.0) \)
RETURN
50 DO 65 I=1, N
55 CONTINUE
A(I, K)=A(I, K)/RIGA
55 CONTINUE
60 DO 65 J=1, N
IF (I.EQ.K) GO TO 65
A(I, J)=\(A(I, K) \cdot A(K, J) + A(I, J) \)
65 CONTINUE
70 IF (J.EQ.K) GO TO 75
A(K, J)=A(K, J)/RIGA
75 CONTINUE
D=D*BIGA
80 A(K, K)=1.0/RIGA
K=N
ORIGINAL PAGE IS OF POOR QUALITY
100 K=K-1
 IF (K.LE.0) GO TO 150
 I=L(K)
 IF (I.LE.K) GO TO 120
 DO 110 J=1,N
 HOLD=A(I,K)
 A(J,K)=-A(J,I)
 110 A(J,I)=HOLD
 J=M(K)
 IF (J.LE.K) GO TO 100
 DO 130 I=1,N
 HOLD=A(K,I)
 A(K,I)=-A(J,I)
 130 A(J,I)=HOLD
 GO TO 100
150 DO 200 I=1,M
 Y(I)=CMPLX(0.,0.,0.,0.)
 DO 200 J=1,M
200 Y(I)=A(I,J)*X(J)+Y(I)
 RETURN
END

COMMON/PIES,PI,TPI,PIT,PIPI,YZ,RFN,NIG
DATA PI,TPI,PIT,PIPI,YZ,RFN,NIG/3.1415927,6.2831853,
81.5707963,9.8696044,0.0026525824,0.01745329,57.29578/