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ABSTRACT

The method of multiple scales is used to derive a nonlinear

Schrodinger equation for the temporal and spatial modulation of

the amplitudes and the phases of waves propagating in a hard-

walled circular duct. This equation is used to show that mono-

chromatic waves are stable and to determine the amplitude dependance

of the cut-off frequencies.

1



t	 'i

.	 .0
Introduction

Nonlinear wave propagation in hard-walled ducts was investigated

by Coppens l , Pestorius and Blackstock 2 , Maslen and Moore 3 , Burns",

Keller and Millman', and Keller'. Coppens l and Pestorius and Blackstock2

determined the viscous and thermal dissipative effects on the nonlinear

propagation of plane waves. Maslen and Moore 3 used the method of

strained parameters (e.g., Sec. 3.1 of Ref.7) to analyze strong trans-

verse waves in a circular cylinder. Burns' obtained a straightforward

expansion limited to small axial distances because it contains secular

terms. Keller and Millman s determined the nonlinear wavenumber shift

of the symmetric dispersive modes by using the method of strained

parameters. Keller 6 determined the amplitude dependence of the cut-off

frequencies for the case studied by Keller and Millmans.

The nonlinear effects of acoustic materials were investigated

experimentally by Zorumski and Parrott' and Kurze and Allen' and

analytically by Kurze and Allen', Ingard10 , Isakovich" , and Nayfeh and

Tsai""'. Nayfeh and Tsai 14,15 analyzed the combined nonlinear effects

of the gas and the acoustic material.

The purpose of the present paper is to analyze the nonlinear pro-

pagation of a wave packet by deriving a nonlinear Schrodinger equation

governing the temporal and spatial modulations of the amplitudes and

.	 the phases.
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I. PROBLEM FORMULATION

We consider finite-amplitude waves propagating in a hard-walled

cylindrical duct. Although the analysis is valid for any non-rectangular

duct cross section, wa- treat the case of a circular cross section so that

we would be able to cjive an explicit solution. The fluid is assumed to

be inviscid, irrotational, and initially quiescent with a uniform pres-

sure pj and a uniform density p^ so that its subsequent motion can be

represented by a potential function.

We introduce a cylindrical coordinate system (r, 9, x) whose x axis

coincides with the duct axis. Dimensionless variables are introduced

by using the radius of the duct R*, the ambient speed of sound cl, and

the ambient density po as reference quantities. Thus, we let r = r*/R*,

V = v*/cj, p = p*/pj, p = pf/p^c $ 2 , and t = t*ct/R*, where starred and

unstarred quantities denote dimensional and dimensionless quantities,

respectively, r is the position vector, v is the velocity vector, pis

the gas density, p is the gas pressure, and t is the time. In terms of

these dimensionless quantities, the equations describing the conservation

of mass and momentum are

12 + p . 
(Py) a 0	 (1)

Plat + v 40 _ - vp	 (2)

The pressure is related to the density by the isentropic relationship

p*/P1 _ (P*/PW

or in dimensionless quantities by

yp= pY
	

(3)
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where Y is the gas specific heat ratio. Since the duct walls are

assumed to be rigid, the appropriate boundary condition is the vanishing

of the normal velocity at the duct walls; that is,

	

v=0 atr=1	 (4)

where v is the radial component of velocity.

Since the flow is assumed to be inviscid and irrotational, the

velocity v is derivable from a potential function ^(r,t) according to

v	 (5)

Substituting for p and v from Eqs. 3 and 5 into Eq. 2, using the

irrotationality of the gas, and integrating the resulting equation, we

obtain

	

pY -1 = 1 + 0 -. Y) D  +	 ( V^) 2 ]	 (6)

Eliminating p from Eqs. 3 and 6 gives

YP	 + (1 - Y)L4 	 V^)2]}YAY-1)	 (7)=	 t + 2

Differentiating Eq. 6 with respect to t, eliminating p by using Eqs. 1,

5, and 6, and arranging, we obtain

Ott - 
02 0 ° (1 - Y)[0t + 10O)2]02^

IT (0^) 2 - 2 om'o(o^) 2 	 (8)

In terms of the potential function 0, the boundary condition 4 becomes

	

^r-0 atr = 1 	 (9)

To determine an approximate solution to Eq. 8 subject to the boundary

condition 9, we use the method of multiple scales (e.g., chapter 6 of

Ref. 7 ) and let
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2
o(r,e.x,t) = E enon (r.©. X o.Xi. X 2. T o.T i.T 2) + 0(e")	 (10)

n= i

where c is a small but finite dimensionless parameter characterizing the

amplitude of the wave and

	

X  = cnx, T  = cnt	 (11)

Here, Xo is a short scale characterizing the wavelength, X 1 and X 2 are

long scales characterizing the amplitude and phase modulations with

axial distance, To is a short scale characterizing the frequency of the

wave, and T 1 and T 2 are long scales characterizing the temporal ampli-

tude and phase modulations. Using Eq. 11 and the chain rule, we express

the temporal and axial derivatives as

az = a O	 571 + c2 aXz +	
(12a)

at r 
aTo + e a + e2 72 + .	 (12b)

Substituting Eqs. 10-12 into Eqs. 8 and 9 and equating coefficients of like

powers of e, we obtain

Order e

	

(aT -02)01 = 0	 (13a)

a2 + 1 a + 1 a2 + a2
 r ar r3 a^' TX-70-(13b)

	aW ar = 0 at r = 1	 (14)

Order e2

(Q 2 ) = - 2 aT T + 2 a2	+ 0 - Y)	 Qomi - ^ (Domi) 2 (15)

	

42/ar - 0 at r = 1	 (16)
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Order c'

43)_-2 a	-a --2 a	 +2 a- _1.__.
a ; 5T 2	 a	 a ,aTI	 aX,3x2

+ aX 	 + 2a-- 
2

+(1-Y)vo^i

2

	

+ 2(1- Y) a . a X-	 i + (1 - Y)	 vk2

+ (1 - Y) 
8	 vo$i +

( 1 - Y) (vo^i) 2vo^i -	 vo^i)2

-2aTo(aXo	
) - 2 - (vo0i •vo$2) - 2 vo^i •vo(v0$1) 2 (17)

43/ar = 0 at r = 1	 (18)

II. SOLUTION

We take the solution of Eqs. 13 that is bounded at the axis in the

form of a traveling wave packet centered at the frequency w and the wave-

number k; that is, we let

^1 = A(X 1 ,X 2 ,T 1i T 2 )Jm(Kr) exp (i;) + cc	 (19a)

^ = kXo - wTo + me	 (19b)

where J  is Bessel ' s function of order m, cc stands for the complex

conjugate of the preceeding terms, and w and k satisfy the dispersion

relationship

	

W2 - k2 = K 2	 (20)

Substituting Eqs. 19 into Eq. 14, we have

	Jm(K) - 0	 (21)
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In what follows, we exclude the non-dispersive case corresponding to

K = 0 (i.e., plane waves). Note that the function A is still undeter-

mined at this level of approximation; it is determined by invoking the

so-called solvability condition in the second-and third-order problems.

Substituting for 01 from Eq. 19a into Eq. 15, we obtain

(^z) = 21(w as + k 8X1)Jm(Kr)exp(ic)

+ [2iWK 2Jm+l (Kr) - 4iwK.m r Jm+l (Kr)Jm (Kr)

- iW(yW2 - K2 + k 2 ) Jm( Kr)]A 2 exp(2i^) + cc	 (22)

Since the homoger^..:3us second-order problem consisting of Eqs. 16 and

?2 is the same as the first-order problem and since the latter has a

non-trivial solution, the inhomogeneous second-order problem has a

solution if, and only if, a solvability condition is satisfied; this

condition yields

W 8T + k 8X1 0	 (23)

With this solvability condition, the solution of the second-order

problem is

^2 ' [r1Jm(rcr) + r2r'Jm (Kr)Jm+l (Kr) + r3J2m(2Kr)]A2 exp(2ic) + cc

(2-1a)
where

r l = - iW[2 m (y + 1)W2K 2 + 1 1, r2 = 1, i (y + 1)a}3K 

r 3 = - 2r 2 Jm ( K) [Jm+ , (r) + Jm+i ( K )] /KJm(2r_)	 (24b)

t
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Substituting for 01 and 02 from Eqs. 19 and 24 into Eq. 11, we

have

J( 43) _ [21(w as + k ar) - aa'f + aXA]Jm(Kr)exp(% )

- A 2AF(r)exp(ic) + cc + harmonics other than exp (±id	 (25)

where F(r) is given in Appendix A. Since the homogeneous third-order

problem consisting of Eqs. 18 and 25 has a non-trivial solution, the

corresponding inhomogeneous problem has a solution if, and only if,

a solvability condition is satisfied. To determine this solvability

condition, we seek a particular solution of the form

Os = i,(r, X 1, X 2 , T 1, T2) eXp ( %)	 (26)

Substituting this solution into Eqs. 18 and 25 and equating the co-

efficients of exn(id on both sides, we obtain

3r + r a+ ( K 2 - F7= [21(w aT + k ate-)
2	 2

	

- 
aa^2A{ + 

q'v- (Kr) - A 2A F(r)	 (27)

4/ar = 0 at r = 1	 (28)

Multiplying Eq. 21 by NM (Kr), integrating by parts from r = 0 to r - 1,

and using Eq. 28, we obtain the solvability condition in the form

2i(w aA + k 
aA	

a2A
)	

+ a2  = A A 2A	 (29)aT2 	a 2 " ar	 ax

where

A = [f rF(r)Jm(Kr)dr]/[orJm(Kr)dr]	 (30)

Eliminating 9 2A/3Xj from Eq. 29 by using Eq. 23 gives

21 (w ar22 + k 9X 2 ) + (^ - 1) aTA =A A 2A	 (31)
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kk' - w
	

(32)

where V - dk/dw the inverse of the group velocity. Differentiating

Eq. 32 with respect to w gives

kk" - 1 - k' 2 = 1 - w 2/k 2 	(33)

Using Eqs. 32 and 33, letting T  = e nt and X 2 = e 2x, and arranging,

we rewrite Eq. 31 as

az + k' at + 2 i k" 
a 

_ - 2 i e2 V A 2 A	 (34)

Changing thi independent variables from x and t to

C = t - Vx, n = x	 (35)

we express Eq. 34 in the form

aA	 a2A	 1	 2	 2
an + 

2 ik 
TATi ie k A ^	 (36)

which is a nonlinear Schrodinger equation. Letting A = 2 a exp (ia) with

real a and a in Eq. 36 and separating real and imaginary parts, we obtain

as 
	 [aâ— as	 1	 a2aan - k 	 a^ + 2 a a 26 = 0
	

(37)

•	 as ♦ 1 k ., (1 a2 	 a s 21	 1 2 A 2

Fn 2	 L ^' a - (a&) 1_
- g E k a	 (38)

The Case of Monochromatic Waves

For monochromatic waves, as/a& =aa/a^ - 0, and Eqs. 37 and 38 can

be integrated to give

9
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a - ao and 0 n - S e: a$n + Bo	 (39)

where ao and So are constants. Substituting for a and S from Eqs. 39

into Eqs. 19 and 24, we rewrite Eq. 10 in terms of the original

variables as

•	 * - eaJm(Kr) cos (6 - wt + me +Bo)

•	 + E2a^t	 TI j 2 (Kr) + r2 rJm (Kr) Jul (Kr) + raJ im (2Kr)J

cos [ 2(6 - wt + me + Bo) I + 0( E' )	 (40)

where

= k - I
If

 E 2Ak- 'a1 	(41)

This result can be obtained as a special case from the solution of

Nayfeh and Tsai' s by letting the resistivity of the acoustic material to

be infinite. Moreover, our solution reduces when m - 0 (i.e., symmetric

modes) to that of !Geller and M 1111man, which they obtained using the

method of strained parameters.
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Egt A on 41 shows that the nonlinearity of the gas results in a

shift in the wavenunber from k to ^C = k - it Ak- , The numerical

results of Nayfeh and Tsai' s show that the nonlinearity shifts the

wavenunber to lower values resulting in higher phase speeds. The

wavenunber shift increases with increasing frequency and decreases

with increasing azimuthal or radial mode number.

Equations 37 and 38 can be used to analyze the stability of the

aforementioned monochromatic solution. To do this, we let

a =ao+al .S=- 10rin +So+S:	 (42)

where a l and S t are small compared with the preceeding terms. Sub-

stituting Eq. 42 into Eqs. 37 and 38 and neglecting the nonlinear terms

in a l and 01, we obtain

3a	 k "ao 	 0	 (43).

	

ML + l k„ 1 e=at, = 1 
EZ A a a	 (44)an	 2	 ac g 	 '$ k o i

Since Eqs. 43 and 44 linear, we seek their solution in the form

a l = 61 expli( kn - @01. 0 1 41 eXpli(k n - ;)W	 (45)

where `a l and S1 are constants. Substituting this solution into Eqs. 43

and 44 and eliminating A, and 11 , we obtain

k..:r4: (^): -	 E zAa$ /kk")	 (46)

which shows that, it A/k"<0 9 k is always real for all values of w

so that the monochromatic waver given by Eqs. 40 and 41 are neutrally

stable. On the other hand, if A/k">0, k 2 is negative for all
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w < ca, (A/2kk")' /2; consequently, disturbances grow exponentially

with C and monochromatic waves are unstable. Since the numerical

results of Nayfeh and Tsai ' s show that A is positive, monochromatic

waves are stable only if k" < 0. However, Eqs. 20 and 33 show that

k" 11 -K =/k' <0. Therefore, monochromatic waves are stable.

Solut ion Near Cut-Off Frequencies

Although Eqs. 40 and 41 are valid for a wide range of frequencies,

they break down as k-►0 (i.e., near the linear cut-off frequencies)

because the wavenumber shift approaches infinity. However, the basic

equations P and 29 for the modulation of the amplitude and the phase

with axi:.1 :^t;tance and time are valid for all frequencies. In this

section, we specialize these equations to frequencies near the cut-off

values. To do this, we use Eq. 23 to express aA/31 1 as -(k/w) aA/aX,,

substitute this result into Eq. 29, and obtain

21w as  z + 21k 
a-	

+ (1 - wz) a^ = A A ll 	 (411

Letting T 2 = Ot and X  = Enx in Eq. 47, we rewrite it as

	

21w aA + 2ik LA 	 (1 - kl) PA = 0A All 	 (43a)at	 ax	 ax

aA, aA	 i	 „ VA	 1	 i 2	 (48b,31

	

+w az-,iw ax - jiAw" A^	 0

For monochromatic waves, aA/at s 0 and Eq. 48a becomes

	

2ik U + (1 - -kWO d^ = e 2A A 2W	 (49)

which is valid for all frequencies away from zero.
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Equat'on 49 has solutions of the form

A - la exp (is)
	

(50)

where a is constant and

U - ( " k + [k2 -	 ^ (1 - w) Aa 2 ^ 1 ^ 2} (1 -	 )-1
	

(51)

Away from the cut-off frequencies, k is away from zero and the radical

in Eq. 51 can be expanded for small a yielding

ax = - 8 E2A 
k"1 

a 2	 (52)

in agreement with the monochromatic solution obtained above. On the

other hand, when k-+0 (i.e., near the cut-off frequencies), Eq. 51 tends

to

ax = - k + ( k2 - 
T E

2Aa 2 ) 1I2	 (53)

Substituting for A from Eq. 50 into Eqs. 19 and 24, using Eq. 53,

and letting To = t and Xn = cnx, we obtain Eq. 40; however, R of Eq. 41

is modified to

R = ( k2 -	 E2Aa2)1/2	 (54)

Therefore, the cut-off frequencies are solutions of

V - 1 E 2Aa 2 = o	 (55)
4

Since k2 = w2 - K2 according to Eq. 20, the cut-off frequencies are

W = it + g E2 a 2A W +	 (56)

where A (K) stands for the value of A when w = K. These cut-off

frequencies reduce when m = 0 to those obtained by Keller6,

13



Using Eq. 48a, one can carry out a stability analysis and show

that this modified solution is stable.
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Appendix  A

F(r) = K2Jm (Kr) Jm2 (Kr) [ 42 Y-1) w2 + m 5m-3 - 3K2 + 2k2I

- K Jm (Kr) Jm (Kr) Ir, + 2iw ( 2.. mrl + r2Kr)
J

+ 
3K2 J

m2 (Kr) Jm+I (Kr) - 2iwKJm
(Kr)

L r2KrJm+1 (Kr) - 2rlKJm(Kr) J m+l(Kr) + 2r I'o (2Kr) - 2r 3K)21R+1( 2Kr)^

- [ (Y- 1 )w2 +
 2m2

 + 2k2] J'(Kr)

. [

Try  + -k 2 + (Y-1)w2 + 2iwr,]

+ 2iw Jm(Kr) [r2YJm(Kr) Jm+ l (Kr) + r3 
J2m(2Kr)]
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