NASA TECHNICAL MEMORANDUM

NASA TM X-64934

AN ANALYSIS OF THE DAHL FRICTION MODEL AND ITS EFFECT ON A CMG GIMBAL RATE CONTROLLER

By Gerald S. Nurre
Systems Dynamics Laboratory

November 1974

NASA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
An Analysis of the Dahl Friction Model and Its Effect on a CMG Gimbal Rate Controller

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Prepared by Systems Dynamics Laboratory, Science and Engineering

Recent interest in fine pointing control systems for large orbiting astronomical telescopes has stimulated investigations into the low level torquing characteristics of medium size control moment gyroscopes. The most significant phenomenon that limits the linearity and response at low torque levels is frictional torque in the gimbal pivot. Recent measurements of frictional torque in ball bearings have shown that a stick-slip friction characteristic is not a valid model, as was previously thought, but that a more accurate representation is one developed by Dahl. This report presents an explanation of the Dahl friction model and shows, by analytical development, some of its characteristics. The last section of the report shows how friction, represented by the Dahl model, affects the response of a typical gimbal rate control system.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. DESCRIPTION OF THE SQUARE LAW FRICTION MODEL</td>
<td>2</td>
</tr>
<tr>
<td>III. ANALYTICAL CONSIDERATIONS</td>
<td>4</td>
</tr>
<tr>
<td>IV. SIMULATION RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>V. THE EFFECT OF THE FRICTION MODEL ON THE JIMBAL RATE CONTROL SYSTEM</td>
<td>10</td>
</tr>
<tr>
<td>VI. SUMMARY AND CONCLUSIONS</td>
<td>19</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dahl friction model for ball bearings</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>$\dot{\theta}$ versus T_f</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>θ versus T_f</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Gimbal rate controller</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Motion caused by frictional torques</td>
<td>11</td>
</tr>
<tr>
<td>6.</td>
<td>Motion caused by frictional torques</td>
<td>12</td>
</tr>
<tr>
<td>7.</td>
<td>Gimbal rate controller step response</td>
<td>14</td>
</tr>
<tr>
<td>8.</td>
<td>Gimbal rate controller step response</td>
<td>15</td>
</tr>
<tr>
<td>9.</td>
<td>Gimbal rate controller step response</td>
<td>16</td>
</tr>
<tr>
<td>10.</td>
<td>Gimbal rate controller step response</td>
<td>17</td>
</tr>
<tr>
<td>11.</td>
<td>Gimbal rate controller step response</td>
<td>18</td>
</tr>
<tr>
<td>12.</td>
<td>Gimbal rate controller sinusoidal response</td>
<td>20</td>
</tr>
<tr>
<td>13.</td>
<td>Gimbal rate controller sinusoidal response</td>
<td>21</td>
</tr>
<tr>
<td>14.</td>
<td>Gimbal rate controller sinusoidal response</td>
<td>22</td>
</tr>
</tbody>
</table>
AN ANALYSIS OF THE DAHL FRICTION MODEL
AND ITS EFFECT ON A CMG GIMBAL
RATE CONTROLLER

1. INTRODUCTION

Recent design work on the fine pointing control system for the Large
Space Telescope (LST) has generated a keen interest in the low level torquing
characteristics of momentum exchange devices, particularly medium size con-
trol moment gyros (CMGs). This attention to CMG actuators stems from the
desire to find a single actuator that is adequate for all pointing and maneuver
modes of the LST. The definition of low level torquing for the purposes herein
is that level of torque resolution required to point the LST to ~ 0.001 arc
see, or approximately 0.01 N-m for a control system natural frequency of 1 Hz. The
difficulty in achieving this torque resolution becomes apparent when one cal-
culates the associated gimbal rates. For a 200 N-m·s CMG, as an example, the
gimbal must be accurately processed at a rate of 5 × 10⁻⁵ rad/s, an angular rate
nearly an order of magnitude lower than that of the hour hand of a clock. The
problems in building a CMG and its gimbal control system for good low signal
performance are primarily caused by frictional torques in the gimbal pivots.
Frictional torques in bearings and brushes generally exhibit a nonlinear charac-
teristic at small angular velocities and, consequently, complicate gimbal rate
control for small rates about zero.

The precise nature of the frictional mechanism is the subject of some
controversy. Since applications that required such extremely low torque levels
were nonexistent until recently, only a small amount of information on the
subject, either theoretical or experimental, has been published. Consequently,
the classical stiction characteristic was used in the initial modeling work. This
characteristic, of course, made the medium size CMG undesirable as an
actuator for a fine pointing system, and it was not long before the validity of
the stiction model began to be questioned. Based on investigations by Dahl¹ and
some recent experimental work at Sperry Flight Systems in Phoenix, Arizona,

(3107-18)-1, May 1968.
It is now generally felt that the frictional torque in a gimbal pivot is not at all characterized by the classical stiction model but is more closely represented by a nonlinear spring, with torque being a function of the gimbal displacement. In his report Dahl discusses the various mechanisms for frictional forces arising from various surface conditions in both rolling and rubbing contact. Special emphasis is given to the model for friction in ball bearings, including experimental data which show close agreement with the analytical model. While this agreement in itself lends strong support to the validity of the model, Dahl's representation also seems to incorporate all the phenomena that one might intuitively consider essential to the friction mechanism.

The objective of this document is to extend the interpretation of what the Dahl model does; nothing new is added to the basic theory. There is a section that describes the model and another one, entitled Analytical Results, wherein some interesting dynamical characteristics become apparent as the result of equation manipulations. Another section gives the results of a digital simulation of the equations of motion for rotating mass supported by a roller bearing pivot and influenced only by frictional torque. The last section indicates how frictional torques affect the design of a gimbal rate control system.

II. DESCRIPTION OF THE SQUARE LAW FRICTION MODEL

If \(T_f(\dot{\theta}) \) is defined as the frictional torque, its time derivative can be written as

\[
\frac{dT_f}{dt} = \frac{dT_f}{d\theta} \frac{d\theta}{dt},
\]

where \(\theta \) is the shaft angular displacement. If, then, one can define the function \(\frac{dT_f}{d\theta} \) for a given bearing pivot, the frictional torque can be computed. It is apparent, then, that the choice of \(\frac{dT_f}{d\theta} \) determines the model. Dahl has postulated the following form for this function:

\[
\frac{dT_f}{d\theta} = \gamma \left(T_f \frac{\dot{\theta}}{|\dot{\theta}|} - T_f\theta \right)^2,
\]
the reasonableness of which is supported by experimental data. A block diagram representing equations (1) and (2) is shown in Figure 1. \(T_{f0} \) is the maximum frictional torque that can occur and is equivalent to what is commonly termed running friction.

![Block Diagram](image)

Figure 1. Dahl friction model for ball bearings.

To show the operation of the model, one should determine what happens within the block diagram as the input, \(\dot{\theta} \), is varied. It is important to note, first of all, that \(\frac{dT_f}{d\theta} \), the output of the square law block, is always positive.

Assume that initially all variables are zero, then \(\dot{\theta} \) goes positive. Since, for \(T_f = 0 \), \(\frac{dT_f}{d\theta} = \gamma T_{f0}^2 \), \(T_f \) will have a finite positive value and \(T_f \) will begin to increase. Because \(\dot{\theta} \) is positive the switch is in the positive position; and as \(T_f \) increases, \(\frac{dT_f}{d\theta} \) becomes smaller. This process continues until \(T_f = T_{f0} \) when \(\frac{dT_f}{d\theta} = 0 \) and \(T_f = T_{f0} \) so that \(T_f \) can no longer increase. If \(\dot{\theta} \) becomes negative, the input to the square law block changes sign and, at the instant \(\dot{\theta} \) goes negative, \(\frac{dT_f}{d\theta} \) jumps from zero to \(-\gamma T_{f0}^2 \). Thus, \(T_f \) is negative and the integrator begins integrating down from \(T_{f0} \). It is interesting to note at this point that the frictional torque is in a direction to increase the angular velocity in the negative direction; or colloquially, the friction torque is aiding the motion. This kind of phenomenon is generally not associated with frictional torques; and, if one defines friction as an energy loss mechanism, then it is obvious that the Dahl model incorporates more than energy loss in the pivot. The integrator then continues to integrate from \(T_{f0} \) to \(-T_{f0}\).
In his report Dahl indicates that T_f has some randomness associated with it due to the nonuniformity of the two contacting surfaces and he has shown how this might be incorporated into the model. This part of the model, however, is not considered in this report.

III. ANALYTICAL CONSIDERATIONS

In the case of a mass free to turn in a pivot and influenced by frictional torques, the equations defining its motion are:

$$\dot{\theta} = -T_f$$

(3)

and

$$\dot{T}_f = \gamma \left(T_f \frac{\dot{\theta}}{|\dot{\theta}|} - T_{f0} \right)^2 \dot{\theta},$$

(4)

where I is the moment of inertia of the rotating mass about the pivot axis.

Now, consider small motions about the equilibrium point, $T = \dot{\theta} = 0$, so that the equations can be linearized about this point. If the square function on the right-hand side of equation (4) is expanded in a Taylor series, all terms except the first are either zero or second order, and equation (4) reduces to

$$\dot{T}_f = \gamma T_{f0}^2 \dot{\theta},$$

which is directly integrable. Thus, equation (3) becomes

$$I \ddot{\theta} + \gamma T_{f0}^2 \dot{\theta} = 0,$$

(5)
the equation for a linear oscillator with \(\gamma_f f_0 \) being the spring rate and natural frequency \(\omega \) given as

\[
\omega^2 = \frac{\gamma_f f_0}{l}.
\]

(Hence, to first order, the friction model behaves as an oscillatory second order system with no damping. The absence of a damping term in the linearized equations does not, however, preclude the possibility of asymptotic stability.

It is also of interest to compute \(T_f \) as a function of \(\dot{\omega} \) and \(\omega \) where

\[\dot{\omega} = A \sin \omega t. \]

Equation (4) can then be integrated in the form

\[
\int \frac{dT_f}{\gamma_f (T_f - T_{f0})^2} = \int_0^t A \sin \omega t \, dt
\]

for \(0 \leq \omega_0 t \leq \pi \). Integration of equation (7) gives

\[
\frac{T_f}{T_{f0}} = \frac{1}{\frac{1}{T_{f0}} + T_{f0} \gamma \frac{A}{\omega_0} (1 - \cos \omega_0 t)} + \frac{1}{\frac{1}{T_{f0}} + 1} \]

The proper value of \(T_{f1} \) for a given \(A \) and \(\omega_0 \) can be found from equation (8) from the condition that \(T_f = T_{f1} \) for \(\omega_0 t = \pi \), and the ratio \(T_{f1} / T_{f0} \) has the
The angular velocity, \(\dot{\theta} \), is a sinusoidal function with a constant amplitude \(A = 0.002 \text{ rad/s} \) and \(\omega_0 \) is varied as a parameter.

These curves, plotted from simulation results, appear in Dahl's report, and he makes the observation that as \(\omega_0 \) decreases, the shapes of the \(T_f \) versus \(\dot{\theta} \) curves approach the form of the classical stiction characteristic. This can be seen from equation (8), since as \(\omega_0 \to 0 \), \(T_f/T_{f0} \to 1 \) for an arbitrary value of \(t \). On the other hand, as \(\omega_0 \) increases, the curves become more elliptical in shape. This is indicative of the fact, for \(T_f \ll 1 \), \(T_f \) is a linear function of \(\dot{\theta} \) as shown in equations (4) and (5) which will produce an ellipse. Likewise the curves of \(T_f \) versus \(\theta \) approach a straight line through the origin.

The quantity, \(1/\gamma T_{f0} \), has the unit of rad and can be interpreted as a characteristic angle for the friction model. The relative size of \(A/\omega_0 \), the amplitude of the angular motion, with respect to the characteristic angle determines the shape of the curves in Figures 2 and 3. It can be shown, for instance, that the two inflection points in the graphs for small \(\omega_0 \)'s disappear for \(T_{f0} \gamma (A/\omega_0) \approx 2 \). Hence, the shapes of the curves change most significantly for amplitudes that are approximately twice the characteristic angle.

IV. SIMULATION RESULTS

In order to verify the analytical results of the previous section, a digital simulation was developed for the gimbal control system depicted in Figure 4. The equations of motion for this system are the following:
Figure 2. \(\dot{\theta} \) versus \(T_f \).

\[
\dot{\omega} = 0.002 \sin \omega_{st} \text{ rad/s}
\]

\[
T_f = 0.27 \text{ N m}
\]

\[
\gamma = 1.48 \times 10^5 \text{ (N m rad)}^{-1}
\]
Figure 3. θ versus T_1.

$\delta_c = 0.002 \sin \omega_c t \text{ rad/s}$

$T_{10} = 0.27 \text{ N m}$

$\gamma = 1.48 \times 10^4 \text{ (N m rad)}^{-1}$
\[I \ddot{\theta} = K_p (\dot{\theta}_1 - \dot{\theta}) + K_I (\theta_1 - \theta) - T_f \]

(10)

\[K_p \dot{\theta}_1 = K_I (\dot{\theta} - \dot{\theta}_1) \]

(11)

and

\[T_f = \gamma \left(T_f \left(\frac{\dot{\theta}}{|\dot{\theta}|} - T_{f0} \right)^2 \right) \]

\[\dot{\theta} \]

(12)

where \(I \) is the effective inertia of the gimbal, \(K_p \) and \(K_I \) are control system gains, and \(\dot{\theta}_1 \) is the commanded gimbal rate. \(T_f \) is the frictional torque.

Since initially interest lies in the dynamics due to frictional torques alone, \(K_p \) and \(K_I \) are set equal to zero. If, then, the rotor is given an initial velocity, it should come to rest under the influence of the frictional torque.
The motion during this time will indicate the general characteristics of the friction model. Figure 5 shows results for an initial $\dot{\theta} = 0.002 \text{ rad/s}$, and $T_0 = 0.0421 \text{ N-m}$, and $\gamma = 0.85 \times 10^4 \text{ (N-m rad)}^{-1}$; these values of T_0 and γ were measured experimentally by Dahl. The inertia, I, was chosen as 5 slug ft2, which is typical of the effective gimbal inertia of a medium size CMG. Figure 5 shows that for the first quarter of a second, until $\dot{\theta}$ changes sign, $T_f = T_0$. The motion thereafter is similar to that of an underdamped second order system. The period of the oscillatory motion taken from Figure 5 is 3.6 seconds while that computed from equation (6) is 3.65 seconds. Thus, the spring mechanism is evident. It is also noteworthy that as the amplitudes become smaller, the damping decreases, as was found above.

Figure 6 shows similar results for a case with $T_0 = 0.27 \text{ N-m}$ and $\gamma = 1.18 \times 10^5 \text{ (N-m rad)}^{-1}$. These values are the result of fitting some experimental data taken on a CMG pivot. These numbers have increased the natural frequency considerably with the measured period equal to 0.138 second and that calculated from equation (4) 0.135 second. If one compares the plots of $\dot{\theta}$ and T_f in Figures 5 and 6, it appears that the two variables are in phase and that T_f is sinusoidal in nature. However, a closer look at T_f subsequent to the times when $\dot{\theta}$ is changing sign indicates that T_f decreases more rapidly than it would if it were a true sine wave. This is due to the switching from a low to a higher gain in the friction model and has the effect of producing damping. As the amplitude decreases, this effect is seen to diminish, since the change in gain at the switching instant becomes less and less.

The characteristics shown in Figures 2 and 3 were verified by commanding a sinusoidal input for $\dot{\theta}_e$ through the control system with $K_I = 10^4$ and $K_p = 280$. The results compare well with those calculated in the previous section.

V. THE EFFECT OF THE FRICTION MODEL ON THE GIMBAL RATE CONTROL SYSTEM

If gimbal pivot friction is neglected, the gimbal rate controller is given by equations (10) and (11) with $T_f = 0$. The natural frequency, ω_c, and damping factor, ζ, for the controller are given by

$$\omega_c = \frac{K_I}{I}$$
and

\[\zeta = \frac{K_p}{2\omega_c I} \]

While the design natural frequency of the control loop depends on the particular application, generally it is above 5 Hz. In Section III it was shown that there was a natural frequency associated with the pivot friction loop given by the equation

\[\omega_f^2 = \frac{\gamma T_{f0}^2}{I} \]

For the values of \(\gamma \) and \(T_{f0} \) in Dahl's report, \(\omega_f = 0.28 \text{ Hz} \) as shown in Figure 5. Figure 6, on the other hand, shows that, for the values obtained from a curve fit to CMG data, \(\omega_f = 7.4 \text{ Hz} \). Hence, it is conceivable that \(\omega_f \) could be similar in magnitude to \(\omega_c \). To what extent, then, is such a situation detrimental to the system's performance?

Figures 7 through 10 show the step response for the system defined by equations (10), (11), and (12) for various parameter values. The step commanded gimbal rates, \(\theta_c \), of \(5 \times 10^{-4} \text{ rad/s} \) or \(5 \times 10^{-5} \text{ rad/s} \) are used to show the effect of commanded magnitude on the system response. Figure 11 shows that, for the values of \(\gamma \) and \(T_{f0} \) in Dahl's report, the natural frequency of the friction loop, \(\omega_c \), and the frictional torque are so small that even for the low level command the friction has very little effect; the response with and without friction are very nearly identical. Figures 8 and 9 show that for \(T_{f0} = 0.27 \text{ N-m} \gamma = 1.48 \times 10^6 \text{ [N-m rad]}^{-1} \) the response is affected significantly by the magnitude of \(\theta_c \) in the range of interest. In the responses of Figures 10 and 11 the control system natural frequency has been increased by a factor of 2, and still there is serious deviation from the desired response.
Figure 8. Gimbal rate controller step response.
Figure 9. Gimbal rate control
Figure 10. Gimbal rate controller step response.
Figure 11. Gimbal rate controller step response.
In Figures 12 through 14 $\hat{\delta}_c$ is a sinusoidal function with a frequency of 2π rad/s. The loss in gain is apparent as the amplitude is decreased.

VI. SUMMARY AND CONCLUSIONS

The basic characteristics of the Dahl friction model have been shown by means of analytical and simulation methods. The effects of friction, represented by the Dahl model, on a CMG gimbal rate control system was investigated by digital simulation. The conclusion from these simulation results is that gimbal pivot friction can have a significant effect on the gimbal rate control system. The magnitude of the problem this presents depends on the characteristics of the actual pivot. It would appear from this preliminary look that one solution is to insure that the control system natural frequency is higher by some prescribed amount than the natural frequency of the friction loop.
\[\Delta \theta = 5 \times 10^{-4} \sin 2\pi t \]

\[\omega_{\text{ref}} = 8.4 \text{ Hz} \]

\[\omega_{\text{bf}} = 7.4 \text{ Hz} \]

Figure 12. Gimbal rate controller sinusoidal response.
Figure 13. Gimbals rate controller sinusoidal response.
Figure 14. Gimbals rate controller sinusoidal response.
APPROVAL

AN ANALYSIS OF THE DAHL FRICTION MODEL
AND ITS EFFECT ON A CMG GIMBAL
RATE CONTROLLER

By Gerald S. Nurre

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

James C. Blair, Chief
Control Systems Division

J. A. Lovingood, Director
Systems Dynamics Laboratory