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Abstract 

determine the wwt ..pjpl: potentbl of gr.phite/ 
epxy caposite structures f o r  c a q m m i o n  panel 

S t n u t u r a l  e f f f c i ency  studies wre d e  to 

app l iu t i cm8 .  mb(nr UeQht b t - r t i f f e n e d  .ad 
ap.n -ti- ~ ~ ~ ~ f i s a . t i ~ ~ m  YUC 
us- a d i n e a r  mathcutid p r o g r d -  techd- 
que. 
to study l d  .ad mer bucklilq ebuactaistic.. 
Test r e e u l t s  f o r  23 p ~ o l .  critical in local buck- 
ling md stx p.nal. critical in iSula tuckling u e  
ccrprred ritb 8MlytLcrl d t 8  obtdaed us* 
the -2 brmtcbed p l a t e  butulng p-r. A 
rni.@bt e f f i c i e a c y . c o q u l m m  is udc behrarn CQ) 
mite a d  rlarimr c a p r w s i o a  -la ualag wtal 
test data generated by the MCA. Theore t i ca l  
s t u d k  M a t e  that poteatiLt wt savings of 
up to 502 are p o t ~ i b l e  f o r  caposite h t - e t i f f c n a d  
panels when cclprrcd vlth sirilu: alurfiPu designa. 
Ue-t ..pings of 32% to 42% were e x p e r h a a t a l l y  
achieved. Experience to date suggests tht wet 
of tbe t h e o r e t i c a l  velght saving p o t e n t b l  is 
rpallable i f  des* d e f i c i e n c i t s  are ellmlmted 
and atrict f ab r i ca t ion  control is e x e r c t e d .  

Se lec ted  d i . g u r a t i o a s  were bullt a d  t ee t ed  

A 

1 

bi  

*2 

G12 

Le 
m 

Nx 

pE 

ti 

L 

W - 
e 

5 2  

P 

9!&!2& 

Area 

Panel v i d t h  

D i w n s i o n  of panel d e a e n t  i 

Lslino podulurl i n  f i b e r  d i r e c t i o n  

farina modulus t ransverse  t o  f i b e r  
d i r ec t ion  

Lamina shear modulus 

Panel length 

Effec t ive  panel length  

Buckle mode half  wave number 

Buckling stress r e s u l t a n t  

Euler buckling load 

Thickness of element i 

Panel weight 

C r i t i c a l  s t r a i n  i n  x-direction 

Composite ply o r i en ta t ion  angle 

k j o r  Poisson's r a t i o  

Density 

*Paper presented a t  ASME/AIAA/SAE 16th Structures, 
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Introduc t i o n  

Over t h e  past 5 to 10 ye8rs 8 substantial 
e t  of caposite material hardware ho been 
developed, however. most of t h i s  huduare has been 
in the form of f l l g h t  components or demonstration 
uticles. Ext rac t ion  of fundamental structural 
data from m c h  spacial-purpose hardvare programs is 
very d i f f i c u l t  If not Impossible. Tes t  p rogrars  on 
geaeric s t r u c t u r a l  capoocnts f o r  which s t r u c t u r a l  
parrwtars are sys temat ica l ly  var ied  appear to be 
c a p l e t e l y  lack ing  in t h e  literature. I n  o rde r  to 
take f u l l  advanwe of t h e  potcatid o f fe red  by 
dvloecd caposite materials. data necessary f o r  
design are needed tm a11 phases of s t r u c t u r a l  b e b v -  
lor h c l w b g  M t W W  s t r q t b .  skip bucklbg. 
overall auCUbg, and d e f o r v t i o n  behavior. as vel1 
as o the r  cbaracteriatics vhich are pecu l i a r  to 
colposite ea r s t ruc t ion .  

The information presented herein r ep resen t s  
the initlal results of a p r o g r r  inltiated a t  the 
Lmgley Besearch Cater to e s t a b l i s h  a weight and . 
s t r e n g t h  d a t a  base f o r  e f f i c i e n t  graphite/epory 
compression panels of s t i f f e n e d  cons t ruc t ion .  
h t - s t i f f e n d  conf igura t ion  vu) se l ec t ed  f o r  initial 
comprehensive s t u d i e s  due to its lunnrn s t r u c t u r a l  . 
e f f i c i ency  and t he  r e l a t i v e l y  p red ic t ab le  na tu re  of 
t h e  bucltllng behavior of closed section s t i f f e n e r s .  
Caposite material open s e c t i o n  stiffener': ,  such 
as J and 2 conf igura t ions  a r e  known to exh ib i t  
s t i f f e n e r  r o l l  and modal i n t e r a c t i o n  behavior1 at 
m c b  laver loads  than closed sec t ion  s t i f f e n e r s .  
To date.  t h i s  behavior has not been charac te r ized  
by a "classical" closed-form a n a l y t i c a l  We1 s u i t -  
a b l e  f o r  inc lus ion  i n  an automated des ign  program. 
Since a rap id  ana lys i s  w a s  i npor t an t  f o r  t he  pur- 
poses of the  cu r ren t  design, a comprehensive examl- 
nat ion  of t he  open s e c t i o n  s t i f f e n e r  geometry has 
been defer red  u n t i l  a s u i t a b l e  a n a l y s i s  can be 
e f f i c i e n t l y  coupled with a design syn thes i s  program. 
I n  add i t ion  t o  the  ha t  configuration. l imi ted  
s t u d i e s  have been made of an open corrugation con- 
f igu ra t ion  and r e s u l t s  are reported here in .  

The 

The genera l  approach taken i n  the  present  study 
is q u i t e  d i f f e r e n t  from the  approach used by the  
NACA during the  1940'82-6 where thousands of alumi- 
num panels with paramet r ica l ly  var ied  dimensions 
were t e s t ed  t o  develop s t r u c t u r a l  design allowables 
and e f f i c i ency  cha r t s .  Because of t he  much l a r g e r  
number of design va r i ab le s  assoc ia ted  with composite 
ma te r i a l s  a s  compared with aluminum, i t  w a s  neces- 
s a ry  t o  use automated design methods f o r  t he  iden t i -  
f i c a t i o n  of e f f i c i e n t  panel c ros s  sec t ions  f o r  
experimental evaluation. An advanced vers ion  of t he  
mathemetical programing drsi,;n method developed i n  
Reference 7 was used f o r  t h i s  purpose. Panel 
designs were constrained t o  in su re  f a b r i c a b i l i t y  and 
se lec ted  panel designs were chosen f o r  experimental 
evaluation. For each cross -aec t icna l  geometry 
se l ec t ed ,  sho r t  specimens were used t o  eva lua te  

. .  
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local buckling and ultlmate s t rength .  and 1-a 
vide-column spechens vere used to eva lua te  Buler 
and i n t e r a c t i v e  buckling d e s .  Buckl- results 
are -red v i t h  the BUCLASP-2 branched p l a t e  
buckling a n a l y s i s  pro8ru.8.9 me performaace of 
g r r p h i t d e p a r y  compression panels  is presented In 
the form of s t r u c t u r a l  e f f t r i e n c y  charts f o r  ready 
compariwn v i t h  other configurations and o t h e r  
mteri.l s y s t c u .  

Three panel cross-aectional configurations are 
coarldered In the present  b v e s t l g a t i o a  a d  are 
shorra u c h e u t i c a l l y  in Sketch a. 
muhmded ueas d i n t i l y r i s h  betweeat the orientations 
of the p l i e s  and t h e i r  distribution. 
crws section, labeled conf igu ra t ion  A, was identi- 
f i e d  in ~ltference 7 as 
cient arrangement for carrylna U i a l  c a p r e s o i o n  
lods v f t h  the p ly  orlentatfoll .lyle 6 baing $5.- 
l'be esseati.1 f e a t u r e s  of this des- are (1) that 
0' (Ugh a x i d  s u f f n m )  p l i e s  are louted io the 
ht cap and skfn tr) p r w i d e  colum bend- 
stiffness and (2) that the v e r t k l  uebs are ca- 
wed of a l l  +e (lau =tal s t i f f n e s s )  p l i e s  to 
d n h t z e  the .Ylarrt of ulal l d  carried by the 
webs, thus suppressing l o c a l  buckling. Also. the  
- +8 p l l u r  in t h e  vertical vebs provide t h e  shearing 
stiffness need& to -re coltmn transwere 
s w i n g  dtforYtions. 
famd t o  be very e f f i c i e n t ,  had 0. p l i e s  concen- 

d l g u r a t € o n  B in Sketch a. 
s e c t i o n  considered was a symetrical open corruga- 

The sbded a d  

The first 

a s t r u c t u r a l l y  effi- 

A 8 e c d  deslgc,  whlch was 

- trated under t h e  bat. This concept is labeled as 
The t h i r d  panel c w a  

. ' t ion and is shown I n  Sketch a as conf igu ra t ion  C. 

* 6 PLIES n 
-0" PLIES 

CONFIGURATION A CONFIGURATION B 

v CONFI GURAT I ON C 

Sketch a - Ccmpreasion panel configurat ion opt ions 

The panel designs were achieved by formulating 
t h e  problem In terms of simple a n a l y t i c a l  r e l a t ion -  
s h i p s  and us ing  a nonlinear  l u t h e u t i c a l  programing 
technique t o  search f o r  miniPrPl weight geometric 
propart loas .  
to determine t h e  adequacy of t h e  s impl i f i ed  design 
analysts to rep resen t  c o r r e c t l y  t h e  buckling bchsv- 
ior of t h e  panels. M i f i c a t i o a s  vere d e  in t h e  
syn thes i s  code when d t f i c i e n c i e s  vere indicated.  
Selected pnnel des igns  m e  fab r i ca t ed  and subjected 
to experlmental  evaluat ioa.  
selecttd, speci.cnrr 16 inches lo- vere used t o  
ewaluate local buckling and u l t i m a t e  s t r eng th ,  and 
speciwnrr 60 i n c h  l o a  v u e  used to evaluate Euler 
and interactive buckling d e s .  Tes t  r e s u l t s  are 
report& f o r  23 16-inch-long spf~iranS, and f o r  s i x  
tj+b&-loag specircllll. ExperLental r e s u l t s  are 
compared v i t h  BUCLASP-2 a n a l y t i c a l  r e s u l t s .  

A lora soph i s t i ca t ed  a n a l y s i s  we used 

For each design 

Panel Cross-Section Def in i t i on  

A descriptian of the gene ra l  panel cross sec- 
Wine d e s u n  t i o n  considerad is sham in Pigtare 1. 

var i8b lee  are used to d e f i n c  tbt panel cross sec- 
tiam, which include f o u r  elcllcllt u i d t h s  b i  a d  
f i v e  thicknesses ti. ?&e cross s e c t i o n  MY be 
coosidered to be constructed of four  h s i c  elements. 
B l a m t  1 is t h e  skin under t h e  hat, elenent 2 is 
t h e  s t i f f e n e r  veb, elaent 3 fa t h e  hat cap, and 
element 4 is t h e  skin between s t i f f e n e r s .  For con- 
f i g u r a t i a n  A of Sketch a, t h e  thickness v a r i a b l e  t5 
is taken t o  be equal t o  zero. For conf igu ra t ion  B, 
t h e  thickness  v a r i a b l e  t 4  was taken t o  be zero and 
the  t5 mate r i a l  is l i n e a r l y  tapered a t  the  ends 
and extends 0.35 inch i n t o  element 4. For the  open 
corrugated panel,  configurat ion C, t h e  thickness  
v a r i a b l e s  tl and t2 are taken t o  be equal t o  
zero and t h e  t4 0" material Is d i s t r i b u t e d  sym- 
met r i ca l ly  about t h e  ?e mate r i a l .  

Design nethod 

The design r a t i o n a l e  was t o  seek minisam weight 
panel proport ions sub jec t  t o  t h e  follawfng 
cons t ra in ts :  

1. The l o c a l  buckling load of t h e  s u n  and 
s t i f f e n e r s  Is not t o  be exceeded. 

2. The wide-column Euler buckling load is not  
tu be exceeded. 

3. A prescr ibed al lowable axial s t r a i n  is not 
to be exceeded. 

4. Geometric proport ions are t o  l i e  w i th in  
prescribed llmits d i c t a t e d  by p r a c t i c a l  o r  manu- 
f a c t u r i n g  considerat ions.  

A l i s t i n g  of numerical values  of the  upper and 
lover  bounds placed on t h e  geometrfc c o n s t r a i n t s  
and c r i t i c a l  s t r a i n  i n  t h i s  i nves t iga t ion  a r e  pre- 
sented i n  Table I. 
the  design approach csed here in  and one conrnonly 
used f o r  metal s t r u c t u r e s  is t h a t  a l l  panel elements 
a r e  not  required t o  buckle simultaneously. Instead,  
buckling of t h e  varioua elements is introduced as 
c o n s t r a i n t s  i n  t h e  design process in which i t  is 
only required chat ind iv idua l  element buckling loads 
not be exceeded. 
i n  c e r t a i n  elements of t h e  composite panel cross  
sec t ion  as is discussed subseqoently. 

An important d i f f e r e n c e  between 

Local buckling is never c r i t i c a l  
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The design c a l c u l a t i o n s  vere rade us ing  am 
advanced version of t h e  des ign  method developed i n  
Reference 7. This code uses  classical cloaed-form 
s o l u t i o n s  f o r  buckl ing and a nonl inear  mathgatical 
prwramlng technique t o  search  f o r  m l n i r u r  wight 

lationa f o r  each p l a t e  eluent are based on the 
buckling load f o r  an i n f i n i t e l y  long o r t h o t r o p i c  
p l a t e  simply supported along t he  tuo unloaded edges. 
For overall bucklcliag. t h e  panel is a s d  to  behawe 
as Euler wide colua. 

Analysis Uethods 

cross-scti-1 d-io-. Local buckIiag C ~ C U -  

For panel des igns  and c a p a r i s o n  d t h  W r i -  
menta. three d i f f e r e n t  a n a l y t i c a l  approaches were 
rued for buckling ca lcu la t iofm d are listed 8s 
f ollcrvs : 

1. Classical C l ~ c d - P o r r  S o l u t i w .  Provided 
the r a p i d  buckling calculations required In the 
synthesis program to achieve a rinimm weight 
des-. 
is giveb i n  Appcndf. B c' Reference 7. 

A d e t a i l e d  d e s c r i p t i o n  of these analyses  

2. BUWP-2. An advanced brancbed p l a t e  
buckling a n a l y s i s  which vas used to  w a l u a t e  the 
adequacy of t h e  classical ana lyses  used i n  t h e  
s y n t h e s i s  code and to capare v i t h  t h e  crpcrirental 
r e s u l t s .  BIJCIASP-2, which is presented In Refer- 
ences 8 and 9. treats s t i f f e n e r  r o l l i n g  and modal 
Interactions but is l i r i t e d  to  o r t h o t r o p i c  p l a t e  
elements. 
the loaded edges are simply supported. W a r y  
condi t ions  a t  lateral edges are a r b i t r a r y  and 
r e s i d u a l  thermal strains are ignored. 

R e b u c k l i n g  deformations are ignored a d  

3. BUcLAP2. An advanced an iso t ropic  p l a t e  
buckling a n a l y s i s  which was  used t o  i n v e s t i g a t e  
anisotropic e f f e c t s  on the local buckling of rela- 
t i v e l y  t h i n  p l a t e  elements. 
BUCLAPZ is presented i n  Reference 10. 

A d e s c r i p t i o n  of 

Discussion of Design Program Deficiencies  and 
Ref inements 

During t h e  course of t h e  present inves t iga t ion ,  
several Important s t r u c t u r a l  phencmena were observed 
tha t  were not  considered i n  t h e  design synthes is  
method of Reference 7. Phenomena cons idera t ions  
which were uncwered by the  experimental s t u d i e s  or  
by comparisons with BUCLASP-2 and BUCLAP2 are: 

1. Anisotropic e f f e c t  - This e f f e c t  is 
Important f o r  a r e l a t i v e l y  t h i n  four-ply laminate. 

Column transverse shear ing  e f f e c t  - This 2. 
e f f e c t  is important f o r  c e r t a i n  combinations of 
load ranges and vertical  web thicknesses. 

3. Element l o c a l  buckling boundary condi t ions 
o ther  than simple support  - For heavier  load 
ranges, minimum weight panel proport ions were such 
t h a t  boundary condi t ions of fe r ing  more r e s t r a i n t  
than simple support were appropriate .  

4. Residual thermal s t r a i n s  - Due t o  t h e  
d i f f e r e n t  c o e f f i c i e n t s  of thermal expansion i n  
adjacent  p l a t e  elements caused by d i f f e r e n t  lami- 
n a t e  layups, r e s i d u a l  thermal s t r a i n s  were induced 
during t h e  cool-darn phase of t h e  cure  cycle .  ' 

5. Panel warping - As i n  ita 4, t h e  d i f f e r -  
e n t  c o e f f i c i e n t s  of thermal expansion caused varD- 
ing of t h e  panel during cool ing from t h e  c u r e  tem- 
pera ture  which a f f e c t s  t h e  column buckling load. 

Anisotropic  Effec ts .  To eliminate s t r e t c h i n g /  

I n  general, however, a midplane 
bending coupling, a l l  elements were l a i d  up with 
r fdplwie  s y a e t r y .  
sgrc t r lc  l d n a t e  does possess  bending/h l i s t ing  
coupl ing which reduces t h e  l o c a l  buckling load f o r  
a p l a t e  elaent.11 Calcula t ions  made v i t h  BUCLAPZ 
on long  p l a t e s  simply supported on t h e  unloaded 
edges ind ica ted  t h a t  t h e  reduct ion  i n  t h e  buckling 
load due to  an iso t ropic  e f f e c t s  as compared v i t h  
t h e  o r t h o t r o p i c  va lue  is 24% for a four-ply 
(+45/_*45) graphite/epoxy lamlnate  and 1.2% f o r  an 
eight-ply (55/+45)5 graphite/epoxy laminate. 
Calcu la t ions  f r m  BUCLAPZ f o r  t h e  buckling loads 
and strains of a long four-ply (+e/+@ p l a t e  are 
presented i n  Figure 2 as a funccion of 8. Resul t s  
are given f o r  both t h e  simply supported and clamped 
cases. 
inves t lga t icm was modified to  account f o r  t h e  24% 
a n i s o t r o p i c  reduct ion  i n  t h e  local buckling load 
f o r  four-ply lamlnates and t h e  anisotropic e f f e c t  
vas neglected f o r  th icker  laminates. 

The des ign  program used i n  t h e  present  

The weight pena l ty  inposed by including ani- 
s o t r o p i c  e f f e c t s  f o r  elements 1 and 2 of F igure  1 
are presented i n  Figure 3 which shows panel  w e l g h t  
per u n i t  area per  u n i t  l e n g t h  oJ/U) as a funct ion  
of the load index ( s / L ) .  
l a r g e  (24%) load reduct ion may r e s u l t  from ani-  
s o t r o p i c  e f f e c t s ,  it can be  seen from Flgure 3 t h a t  
very l i t t l e  l o s s  i n  s t r u c t u r a l  e f f i c i e n c y  results 
i f  t h e  e f f e c t  is included i n  t h e  design s y n t h e s i s  
program. 

Although a r e l a t i v e l y  

Transverse Shearing Effec ts .  The expression 
f o r  in lcuding  transverse shear ing  deformations i n  
t h e  buckling of a colunm is taken from Reference 12 
as 

where for these panels is equal  t o  the  web 
cross-sect ional  area and G is the  in-plane shear  
modulus of the  v e r t i c a l  web laminate. Taking 
t h e s e  va lues  f o r  and G assumes t h a t  a l l  of t h e  
shear ing defoi-mation occurs  i n  t h e  v e r t i c a l  web 
(element 2). In the  c u r r e n t  design program, t h e  
above equatior. w a s  used t o  account f o r  column trans-  
verse shearing with t h e  s i a p e  f a c t o r  8 taken as 1. 
Panel weight minimization s t u d i e s  showed very small 
weight p e n a l t i e s  resu l ted  by imposing t h i s  con- 
s t r a i n t .  Ignoring t h i s  e f f e c t ,  however, can r e s u l t  
i n  s i g n i f i c a n t  reduct ions i n  t h e  a c t u a l  load t h e  
panel can carry.  For example, a panel designed f o r  
a load index Nx/L of 300 l b / i n 2  using a 0.022-inch- 
t h i c k  web was s h a m  t h e o r e t i c a l l y  t o  b i c k l e  a t  a 
load 102 lower than t h e  value predicted when column 
t ransverse  shear ing deformations were jgnored. 

Element Local Buckling Boundary Conditions. For 
li h t l y  t o  moderately loaded panels  (Nx/L < 103 l b /  

by cross-sect ion okln and web elements which have 
width-to-thickneqs -atiob ( b i / t i )  of t h e  same order  

In  1 ) minimum welghL configurat ions a r e  character ized 
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of magnitude. The hat cap width is uaual ly  lmtd 
by t h e  O.&inch minimum gage c o n s t r a i n t  (Table I) 
and t h e  h a t  cap  is not local buckling critical (see 
Sketch b). For t h i s  case t h e  assumption that t h e  
intersections of t h e  elerents of t h e  hat are s i r p l y  
supported is a p o d  a p p r o x b t i o n  f o r  local buck- 
l i n g  calculations of t h e  web awl skin el-ts. 

.&----I 

'- a 1  

Sketch b 

Niniaw weight conf igura t ion  B des igns  f o r  
more heavl ly  lodd (N& > 200 lb / in2)  compression 
panels t y p i c a l l y  have b / t  ratios of the hat cap 
and sk in  under the bat, which are much lover t h n  
the b/ t  of the vertical webs or t h e  skin between 
hats. 
the hat elements are s i r p l y  supported a t  their 
intersections was found to be over ly  conservative. 
Designs s tud ied  v i t h  BUUASP-2 shw a typical panel 
to buckle l o c a l l y  i n  a mode shape similar to that 
i l l u s t r a t e d  i n  Sketch c. For s t r u c t u r e s  designed 
f o r  NX/L > 200 lb / in2 ,  l a r g e  concent ra t ioas  a d  
thicknesses of 0' p l i e s  are required and a joint  
s t i f f e n i n g  e f f e c t  increases  t h e  local buckling load. 
I n  t h i s  case t h e  web lateral edge boundary condi t ion  
w a s  found t o  be  between simple support  and clamped. 
The r e s u l t s  presented i n  f i g u r e  2 i l l u s t r a t e  t h e  
a d d i t i o n a l  load c a p a b i l i t y  afforded by t h i s  improve- 
ment. 
v i t h  clamped boundary condi t ion w i l l  buckle a t  a 
load 59% higher than i f  t h e  element were simply 
siippor ted . 

In t h i s  case, t h e  assimption that each of 

A four-ply (+45/+45) laminate, f o r  example, 

node shape 

Sketch c 

The c u r r e n t  design program uses simple support  
boundary condi t ions  f o r  element l o c a l  buckling and 
t h e  advantage mentioned above has not y e t  been 
incorporated. The a d d i t i o n a l  r e s t r a i n t  o f fe red  by 
r e l a t i v e l y  t h i c k  hat caps and s k i n  under t h e  h a t  
was s tudied ,  however, by increas ing  t h e  depth of 
t h e  web element of a synthesized design. 
of t h i s  atudy are presented i n  a subsequent 
sec t ion .  

Resul t s  

Residual The.-mal S t r a i n s .  The c o e f f i c t e n t  of 
thermal expansion f o r  a laminate composed c f  0' and 
- 4 4  p l i e s  can vary widely. 
ments cons is t ing  of l a r g e  concentrat ions of 0' 
p l i e s ,  f o r  example, have a m c h  smaller c o e f f i c i e n t  
than d o  veb elements cons is t ing  of 245' p l i e s .  As 
a consequcnce, r e s i d u a l  thermal s t r a i n s  e x i s t  a t  
roam temperature i n  a panel  which was cured (i.e., 
was s t r e s s  f r e e )  a t  an elevated temperature. 
Residual thermal s t r a i n s  may have both b e n e f i c i a l  

Hat cap and sk in  ele- 

and det r imenta l  e f f e c t s .  One e f f e c t  of r e s i d u a l  
thermal s t r a i n  for hat-s t i f fened panels  is t o  put a 
pres t ressed  tens ion  f i e l d  i n  t h e  veb elements a t  
room t tmperature  which must be r e l i e v e d  before  t h e  
element can buckle. 
e q u i l l b r a t t n g  c a p r e s s i v e  f i e l d  exists i n  t h e  h a t  
cap  and skin. 
residual thermal s t r a i n  e f f e c t s  on local buckling 
haq not been conducted and r e s i d u a l  thermal e f f e c t s  
are not considered i n  t h e  cur ren t  des ign  program. 

A f u r t h e r  result o f  r e s i d u a l  

S ia r l taneous ly ,  a eelf- 

A comprehensive s tudy of these  

Panel  Warping. 
stresses is to  develop warping *long the panel 
length. 
i c a n t l y  degrade the e t r u c t u r a l  performance of vide- 
colurn pancls.13 A methodology f o r  e f f e c t i v e l y  
accounting f o r  t h i s  phenamenon was not  developed i n  
t h e  present  program. 

I n i t i a l  curva tures  of t h i s  type can s i g n i f -  

Tes t  S p e c h e n s  

Materials -- 
Specimens t e s t e d  i n  this  investigation were 

f a b r i c a t e d  us ing  Thornel 300 graphite/Naiarnco 5208 
epoxy i n  e i t h e r  t a p e  or f a b r i c  form. 
erties of these  materials used f o r  design and 
a n a l y s i s  purposes are presented in Table  11. 
prel iminary p r o p e r t i e s  f o r  graphi te /epory tape 
defined in set 1 of Table  I1 were used for t h e  
design of  i n i t i a l  test specimens. 
tional material t e s t i n g  ind ica ted  the material 
p r o p e r t i e s  def ined in set 2 t o  b e  more accura te .  
Subsequent panels  and a l l  of t h e  design curves 
presented i n  t h i s  paper u s e  the elastic proper t ies  
def ined in set 2. 

E l a s t i c  p r o p  

The 

Subsequent addi- 

Fabr ica t ion  Technique 

Specimens 60 inches long and up to 30 inches 
w i d e  were manufactured using t h e  f a b r i c a t i o n  te ,- 
nique i l l u s t r a t e d  i n  F igure  4. 
w a s  machined with t h e  required ha t  or corrugat ion 
s t i f f e n e r  cross-sect ional  dimensions. The 9 web 
ard  0' 1:- p l i e s  were l a i d  i n t o  the  mold a f t e r  which 
a trapezoidal-shaped s i l i c o n e  rubber i n s e r t  was 
posi t ioned i n  t h e  mold and t h e  s k i n  p l i e s  were l a i d  
on top. This  lzyup was covered by a 0.25-inch-thick 
aluminum caul  p l a t e  and t h e  e n t i r e  assembly was 
bagged f o r  cur ing io an autoclave as shown i n  
Figure 4(b). The s i l i c o n e  rubber i n s e r t s  had a hole  
a long t h e i r  l ength  which permitted autoclave pres- 
sure t >  b e  appl ied i n s i d e  t h e  het s t i f f e n e r s .  

An alumimm tot,& 

Specimen Descr ipt ion 

Nine designs generated us ing  t h e  panel synthe- 
sis program were se lec ted  f o r  f a b r i c a t i o a  and test. 
C h a r a c t e r i s t i c  f e a t u r e s  of these  n ine  designs are 
presented i n  Table 111 and dimensions b i  and 
thicknesses  ti are l i s t e d  i n  Table IV. Twenty- 
t h r e e  specimens 16 inches long were used i n  l o c a l  
buckling s t u d i e s  and six specimens 60 inches long 
were b u i l t  t o  eva lua te  Euler and modal i n t e r a c t i o n  
responses. 

Designs A-1 thr6ugh A-6 are ha t -s t i f fened ,  
config r a t i o n  A, cons t ruc t ions ;  designs 8-1 and B-2 
are ha t -s t i f fcned ,  conf igura t ion  B, cons t ruc t ions  
i n  which 0" p l i e ~  fn  *he s k i n  are located only 
under the  ha t  and not  in t h e  skin bet reen  s t i f f e n e r s  
( i . e . ,  t 4  = 0) ;  and desigir i - 1  is an open corruga- 
t i o n ,  configurat ion C,  cons t ruc t ion .  The load 
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index Nx/L is 100 l b / i n 2  f o r  hat-s t i f fened 
designs A-1 through A-5; 300 l b / i n *  for hat- 
s t i f f e n e d  designs A-6, B-1, and B-2; and 30 l b / i n 2  
f o r  t h e  open corrugat ion design C-1. Cross- 
sectional h y u p  p a t t e r n s  f o r  designs A-5 and B-2 
are shmm in Figure 5 and photographs of s e l e c t e d  
specimen cross sections are presented i n  F igure  6. 

As ind ica ted  earlier. t h e  a u t o v t e d  program 
UP& to design specimens vas modified s e v e r a l  times 
during t h e  course of t h i s  inves t iga t ion .  For spe- 
c i f i c  designs,  Table 111 i n d i c a t e s  whether aniso- 
t r o p i c  or o r t h o t r o p i c  p l a t e  theory w a s  used f o r  
l o c a l  buckling, i f  transverse shear  e f f e c t s  were 
included, and the set of material p r o p e r t i e s  used. 
The +e o r i e n t a t i o n  angle f o r  most des igns  was 
taken to  be  45'. Design A-2 and A-3 specimens, 
h w w e r ,  w e r e  Constructed with the same mold used 
to f a b r i c a t e  design A-1 speclmens v i th  o r i e n t a t i o n  
angles  of 52" and 60'. respect ively.  
specimens were also fabr ica ted  in the same mold 
used to  f a b r i c a t e  design A-1 specimens. bat 
graphitelepoxy f a b r i c  w a s  used as t h e  3 5 "  
ma terial . 

Design A-4 

Design B-1 is a v a r i a t i o n  of design A-6 i n  
which t h e  0' p l i e s  in t h e  s k i n  are r e d i s t r i b u t e d  
under t h e  hat r a t h e r  than between s t i f f e n e r s .  The 
Euler bending s t i f f n e s s  of design B-1 is less than 
that of design A-6 since the s t i f f e n e r  depth w a s  
maintaiaed, but  t h e  0' p l i e s  w e r e  moved c l o s e r  to  
t h e  s t i f f e n e r  n e u t r a l  axis. Based on BUCLASP-2 
r e s u l t s ,  t h e  web depths  of design B-2 were increased 
wer t h e  depth given by t h e  synthes is  program to  
t a k e  advantage of t h e  a d d i t i o n a l  restraint afforded 
t h e  web by the r e l a t i v e l y  t h i c k  hat cap  and skin. 

Fabr ica t ion  Related Problem Areas 

During t h i s  inves t iga t ion  several problem 
areas which can reduce t h e  predicted s t r u c t u r a l  
e f f i c i e n c y  of t h e  composite panels  became evident .  
A d i scuss ion  of these  problem areas is presented 
i n  t h e  following sec t ions .  

Laminate Material Propert ies .  The elastic 
proper t ies  of a composite material can e x h i b i t  
r e l a t i v e l y  l a r g e  v a r i a t i o n s .  Parametric s t u d i e s  
shoved t h a t  t h e  synthes is  program can reconfigure 
a hat-s t i f fened panel c ross  s e c t i o n  t o  acconnodate 
r e l a t i v e l y  l a r g e  d i f fe rences  i n  m a t e r i a l  p r o p e r t i e s  
with only minor weight pena l t ies .  However, a con- 
f i g u r a t i o n  constructed of a material w i t h  prop- 
erties d i f f e r e n t  from those used i n  t h e  des ign  may 
be prematurely cr i t ical  i n  l o c a l  buckling. The 
severity of t h i s  problem is i l l u s t r a t e d  using 
remlts for design C-1. This conf igura t ion  was  
designed using preliminary proper t ies  i n i t i a l l y  
es tab l i shed  f o r  Thornel 300/5208 ( s e t  1 l i s t e d  i n  
Table 11). Subsequent t o  the  panel design and 
fabr ica t ion ,  a d d i t i o n a l  material t e s t i n g  ind ica ted  
the  proper t ies  l i s t e d  under set 2 i n  Table 11. 
This  d i f f e r x c e  r e s u l t e d  i n  t h e  open corrugat ion 
panel web being t h e o r e t i c a l l y  c r i t i c a l  i n  l o c a l  
buckling a t  a s t r a i n  26% lover  than t h a t  ca lcu la ted  
using t h e  i n i t i a l  p roper t ies .  The s e n s i '  v i t y  of 
l o c a l  buckling t o  v a r i a t i o n s  i n  t h e  m a t e r i a l  prop- 
e r t i e s  makes i t  necessary t o  e s t a b l i s h  accura te ly  
composite mnterial proper t ies .  

Material Thickness Variat ions.  For design 
purposes, t h e  thickness  of a ply of Thornel 
300/5208 material was assumed t o  be  0.0055 inch. 

The local p ly  thickness  of t h e  i n i t i a l  s p e c h e n s  
reported i n  t h i s  paper were found to vary from -10% 
to +35X from t h i s  value. 
niques have reduced devia t ions  from t h e  design 
thickness  of cri t ical  elements to  f5X. I n  a d d i t i o n  
t o  having obvious d i r e c t  e f f e c t s  on t h e  weight Of 
compression panels, ply th ickness  v a r i a t i o n s  a f f e c t  
t h e  load at which panel elements buckle. I f  it is 
assumed that t h e  membrane s t i f f n e s s e s  are equal  f o r  
two laminates composed of i d e n t i c a l  nuobers and 
o r i e n t a t i o n s  of p l i e s  b u t  d i f f e r e n t  thicknesses .  
then t h e  ratio of t h e  buckl ing loads  of t h e  two 
laminates v a r i e s  a s  t h e  square of t h e  r a t i o  of 
t h e i r  thicknesses .  A 20% increase  i n  thickness .  
f o r  example, w i l l  r e s u l t  i n  a 44% increase  i n  t h e  
l o c a l  buckling load. 

Improved f a b r i c a t i o n  tech- 

Closely r e l a t e d  t o  t h e  problem descr ibed above 
is t h e  manner i n  which m a t e r i a l  property tes t  d a t a  
are reduced and used i n  s t r u c t u r a l  design. Material 
property d a t a  should be es tab l i shed  and repor ted  i n  
conjrinction wi th  a re ference  thickness. 
important that t h e  elastic p r o p e r t i e s  and ply thick-  
nesses  assumed i n  t h e  des ign  be reproduced as 
c l o s e l y  as is p r a c t i c a l  ''1 t h e  f a b r i c a t e d  s t r u c t u r e .  
This is necessary s i n c e  a e v i a t i o n s  i rr  e i t h e r  t h e  
merbrane o r  bending s t i f f n e s s e s  may make t h e  s t r u c -  
t u r e  f a i l  prematurely. 

It Is 

Specimen Weight Growth. Many of t h e  s p e c h e n s  
descr ibed i n  t h i s  r e p o r t  are heavier  than t h e  
design predic t ion  as a r e s u l t  of f a c t o r s  which were 
not  considered i n  t h e  minimum weight design but  
which developed during t h e  design f i n a l i z a t i o n  and 
f a b r i c a t i o n  phases. 
nate problem descr ibed above, d e t a i l e d  des ign  fea-  
t u r e s  ( i l l u s t r a t e d  i n  Fig. 5 )  contr ibuted to  t h e  
panels  being heavier than the weight pred ic ted  by 
t h e  design program. For example. c u t t i n g  and over- 
lapping t h e  f3 material i n  t h e  h a t  cap added 2% 
to t h e  weight of t h e  panel f o r  desigF A-5. For 
design B-2 i n t e r s p e r s i n g  0' and 545' p l i e s  added 
four  e x t r a  5 5 '  p l i e s  t o  t b e  s k i n  under t h e  hat and 
t o  t h e  h a t  cap. These ex:ra 3 5 '  p l i e s  added 9% t o  
t h e  weight of these  specimens. 
material in design B-2 r e s u l t  i n  continuous f i l a -  
ments on t h e  i n s i d e  of t h e  ha t  and around t h e  
i n t e r i o r  f i l l e t  as shown i n  F igure  5 .  
sequence used i n  design A-5 required a f i b e r g l a s s  
i n s e r t  t o  re inforce  t h e  element i n t e r s e c t i o n .  The 
f i b e r g l a s s  i n s e r t  used on design A-5 r e s u l t e d  i n  a 
6% weight penal ty .  

In  a d d i t i o n  t o  t h e  t h i c k  lami- 

The extra p l i e s  of 

The layup 

Thus, i t  can be seen t h a t  seemingly i n s i g n i f i -  
can t  a l t e r a t i o n s  which are incorporated t o  improve 
f a b r i c a b i l i t y  o r  t o  imprwe a preliminary design 
can s i g n i f i c a n t l y  reduce the t h e o r e t i c a l  s t r u c t u r a l  
weight e f f ic iency .  Closer  a t t e n t i o n  t o  these  weight 
problems has r e s u l t e d  i n  recent ly  constructed panels  
which have been only 5 i  rleavier than the  idea l ized  
synthes is  model. To a c  im 2 t h i s  improvement, c l o s e  
laminate thickness  t o l e  dnce was maintained, the  
ha t  cap overlap was reducF t o  0.5 inch, and a 
l i g h t e r  weight f i b e r g l a s s  i n s e r t  was used. 

Experimental Instrumentat ion and T e s t  Procedure 

The 16-inch-long buckling specimens were 
a x i a l l y  COmpresSPd i n  a hydraul ic  t e s t  machine with 
a 300,000-pound c a p a b i l i t y  ( see  Fig. 7 ) .  S t r a i n  
gages were used t 3 measure ax'nl and t ransverse  
s t r a i n s  i n  each 01 t h e  four  h a t  s t i f f e n e r  elements. 
The crosshead movement and l a t e r a l  d i s p l ? r m e n t +  of 
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t h e  panel were measured using a d i r e c t  c u r r e n t  
d i f f e r e n t i a l  transformer (DCDT). S t r a i n s ,  d i s -  
placements. and t h e  compressive load vere recorded 
on magnetic tape  and se lec ted  measur-ents vere 
monitored dur ing  t h e  teet on an osci l loscope.  

The moiri method f o r  observing lateral d is -  
p l a c e m e n t ~ ~ ~  was used to  observe t h e  buckle pat- 
t e r n s  as they developed during loading. 
f r i n g e  l i n e s  are lines of constant lateral d is -  
placmaent and therefore  provide a contour map of 
the buckled d e  shape. 
f o r  t h i s  purpose involves  a high-intensi ty  l i g h t  
source, a wir6 g r i d  of 50 to 100 l ines  per  inch, 
and a casera t o  record t h e  f r i n g e  p a t t e r n  f o r  
se lec ted  loads. 

Moiri 

The basic instrumentation 

S p e c h e n  ends vere pot ted i n t o  a 1-Inch-thick 
block of epoxy and t h e  ends were ground f l a t  aad 
parallel. 
uniforaly,  f i n a l  adjustments were made by p r e l d -  
ing t h e  specimen to a d l  percentage of t h e  u l t i -  
mate load. then a d j u s t i n g  the crosshead p la ten  
u n t i l  all axial s t r a i n  gages on t h e  stiffeners 
displayed approximately t h e  same reading. 

To i n s u r e  that the specinen vas loaded 

A s i ra i lor  procedure wee used to  test t h e  6U- 
These epeci- inch-long Euler  buckling specimens. 

mens were loaded using a 1.2-million-pound capac i ty  
test mnchine. 

Experimental Procedure f o r  Defining Local 
Buckling 

The critical load and s t r a i n  a t  which panels  
exhibi ted local buckling vas defined using t h e  
l o a d i s t r a i n  response and t h e  strain reversal tech- 
nique. 
ha t - s t i f fener  b a s i c  cross-sect ional  elements (skin 
under t h e  hat, web. h a t  cap, and s k i n  between 
s t i f f e n e r s )  permitted i d e n t i f i c a t i o n  of t h e  element 
f i r s t  exhtb i t ing  local buckling. 
reversal technique which uses  d i s c r e t e  s t r a i n  
measurements was complemented by t h e  moiri f r i n g e  
method to provide d e f i n i t i o n  of t h e  buckled mode 
shape. 

S t r a i n  gages mounted on each of t h e  four  

The s t r a i n  

Test Configuration Uidth and Lateral Boundary 
Condition 

The BUCLASP-2 branched p l a t e  buckling program 
was used to  determine the  pane: width and unloaded 
edge boundary condi t ions required t o  experimentally 
s tudy panel buckling behavior. Analyt ical  r e s u l t s  
shoved t h a t  a tuo-stiffener-wld+= Fal'eJ. was adequate 
and would g ive  t h e  same r e s u l t s  as wider panels. 
S tudies  a l s o  shoved t h a t  it was necessary to  e i t h e r  
support t h e  panel unloaded edge or to cu t  back t h e  
f r e e  edge of element 4 to prevent its l o c a l  buck- 
l i n g .  Since t e s t i n g  with a f r e e  edge is less com- 
p l ica ted ,  hat-s t i f fened panels  were t e s t e d  i n  a 
reduced width configurat ion.  RlVXASP-2 r e s u l t s  
showed i t  was necessary, howcver. t o  test open 
corrugat ion specimens using a l a t e r a l  support. 

Resul ts  and Discussion 

Local Buckling Experiments 

A s u w a r y  of t h e  r e s u l t s  of experiments on 
23 local buckling specimens ii presented i n  Table V. 
Resul t s  f o r  two o r  more speritnens a r e  included f o r  
each of t h e  designs def ined i n  Table 111. Ultimate 

s t r e n c - h  as vel1 as local buckling stress r e s u l t a n t  
and s c r a i n  i n f o m a t i o n  is tabulated.  In  addi t ion ,  
the f i r s t  elemeut of t h e  panel  cross s e c t i o n  to 
e x h i b i t  local buckling is indicated.  The panel 
reduced width is presented f o r  each specimen. A l l  
but  tam of t h e  ha t - s t i f fened  panels  were t e s t e d  f n  
a tm-s t i f fener -v ide  configurat ion.  Two of t h e  
specimens of design A-4 were t h r e e  s t i f f e n e r s  wide. 
Open corrugat ion specinens (design C-1) vere t e s t e d  
i n  a f u l l  three-bay width with knife-edge lateral 
supports. 

The s k i n  between s t i f f e n e r s  (element 4) was 
experimentally f m n d  to buckle f i r s t  f o r  designs 
A-2 through A-6. 
t h e  web e i t h e r  buckled simultcneously w i t h  element4 
o r  at  s l i g h t l y  higher  loads.  The ha t  cap  d id  not  
e x h i b i t  local buckling f o r  any of t h e  ha t - s t i f fened  
compression test panels ,  vhich is c o n s i s t e n t  with 
t h e  design predic t ion .  The open corrugat ion panel 
(design C-1) exhib i ted  simultaneous local buckling 
of a l l  elements. 
without exhib i t ing  local buckling. 
des ign  8-2 buckled l o c a l l y  i n  t h e  veb but  d i d  n o t  
e x h i b i t  buckling of o ther  cross-sect ional  elements. 

The s k i n  under t h e  s t i f f e n e r  and 

Specimens of  des ign  B-1 f a i l e d  
Specinen of 

A graph of t h e  stress r e s u l t a n t  as a func t ion  
of t h e  bposed s t r a i n  for t h e  a x i a l l y  or ien ted  
strain gages mounted on one of t h e  des ign  A-2 
specimen ( e  = 52') is presented in Figure  8. Bend- 
ing  e f f e c t s  caused by local imperfect ions or speci- 
men  alinement are probably responsible f o r  t h e  
divergence of back-to-back gages beginning a t  the 
or ig in .  
ers (elemenr 4) w a s  found to  occur at an axial  load 
of 3295 l b l i n .  as shown in Figure 8. 
p a t t e r n s  f o r  s e l e c t e d  loads appl ied t o  t h e  same 
specimen are presented i n  Figure 9.  The moir6 
f r i n g e  shows t h e  development of l o c a l  buckling of 
element 4 a t  loads around 3030 l b l i n .  Camparison 
of s t r a i n  reversal and moir6 f r i n g e  r e s u l t s  indi-  
cates the  development of l o c a l  buckling of the  s k i n  
under t h e  h a t  ( e l m r r , t  1 )  a t  s l i g h t l y  higher  loads 
than f o r  t h e  i : between s t i f f e n e r s .  Thickness 
v a r i a t i o n  along c i e  panel length  may account f o r  
t h e  biased development of buckling f r i n g e  p a t t e r n s  
a t  one end of t h e  panel .  A t  a load of 4166 l b / i n . ,  
t h e  e i g h t  buckling half  w..ves are c l e a r l y  developed 
f o r  t h e  16-inch-long panel. The corresponding num- 
ber  of half  waves €or design A-1 specimens ( € 1 - 4 5 ' )  
snd design A-3 specimens (0 = 60') was 6 and 10, 
respec t ive ly .  ' 

Local ,Juckling of t h e  s k i n  between s t i f f e n -  

Molr6 f r i n g e  

Comparison of t h e  magnitude of l o c a l  buckling 
and u l t imate  loads (Table V and Fig. 8) i n d i c a t e s  
t h a t  some t e c ?  specimens exhibi ted the  c a p a b i l i t y  
to c a r r y  loads beyond the  onse t  of l o c a l  buckling. 
However. cur ren t  specimens were not designed to 
u t i l i z e  post-buckling behavior. Some specimens 
exhib i t ing  post-buckling behavior f a i l e d  a t  loads 
less than the  design load. A l l  elements a r e  
depended upon to  car ry  loads  In proport ion to  
t h e i r  i n i t i a l  a x i a l  s t i f f n e s s .  Theore t ica l ly ,  f o r  
long specimens, t h e  coincidence of local huckling 
and Eu' r buckling i n i t i a t e s  f a i l u r e .  While the  
r e s u l t s  ie re in  i n d l c a t e  t h a t  buckled skin concepts 
might be poss ib le ,  the  b r i t t l e  nature  of g r a p h i t e l  
epoxy composites makes t h e i r  p r a c t i c a l i t y  highly 
specula t ive  a t  t h i s  time. 

Local buckling specimens f a i l e d  u l t imate ly  i n  
one of the  two manners I l l u s t r a t e d  by the  photo- 
graphs of Figures 10 and li .  F a i l u r e s  of ?peclmens 
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of design A-1 through A-6 are cbarac te r i tod  by 
P-ure 10. 
delaminated and separated from t h e  web. 
of desi- B-1 and B-2 u l t i r a t e l y  f a i l e d  in an 
explosive fashion. 
t h e  ak in  a d  a l a r g e  amount of wterial  was 
rated into emall s p l i n t e r s  as seen i n  the photo- 
graph of P m r e  11. 

B-1 a d  B-2 were at  r e l a t i v e l y  htgh straina and 
exceeded t h e  Euler  design s t r a i n  by 47% and 292, 
respect ively.  Specireas  of des igns  A-1 through 
A-5, which f a i l e d  at strains greater than 
0.007 in./ln., exhibi ted,  i n  a l u t e 4  fashion,  
some explosive f a i l u r e  c h a r a c t e r i s t i c s .  
Lam whether t h e  type  of f a i l u r e  is r e l a t e d  to t h e  
configuration (A or B) or to  the  f a c t  that confm- 
r a t i o n  B specirrns were more heavi ly  loaded 
(NJL = 300 l b l i n 2 )  a d  r e s u l t e d  i n  t h i c k e r  concen- 
trations of  0' p l i e s  i n  the hat cap a d  s u n  under 
t h e  hat. 
counted in t h i s  observat ion shce these  specimens 
failed at r e l a t i v e l y  low axial strains. 

BUCUSP-2 Analy t ica l  Model 

The hat cap  is broken and t h e  s k i n  18 
S p e c b r u  

The s t i f f e n e r  detached f r a  

%e u l t i m a t e  f a i l u r e  of specimens of des igns  

It Is not 

Spechen, of des ign  k 6  have been dis- 

M e l i n g  of a s t r u c t u r e  composed of  t h i c k  hat 
cap and s k i n  elements such as deseilpls B-1 and B-2 
was Qaplined t o  determine the b e s t  a n a l y t i c a l  
representat ion.  A less accura te  representa t ion  
w i l l  result i f  t h e  element junc tures  are not care- 
f u l l y  s p e c i f i e d  s i n c e  local buckling is d i r e c t l y  
r e l a t e d  to  t h e  elentent width. For BUCLASP-2 the 
element width is t h e  d i s t a n c e  between g r i d  points. 
The tvo models formulated f o r  designs B-1 and B-2 
presented i n  Figure 12 i l l u s t r a t e  t h i s  problem. 
The d i f fe rence  in t h e  two models is t h e  width of 
the  web (element 2). For d e l  I t h e  width of 
element 2 is t h e  dimension from t h e  point of con- 
tact  v i t h  dement  1 to t h e  point  of contac t  with 
element 3. For model I1 t h i s  width is the dimen- 
sion from t h e  center l i n e  of t h e  element which 
represents  t h e  0.35-inch tapered s k i n  region ( s e e  
Fig. 1) t o  t h e  center l ine of t h e  ha t  cap. E l e -  
ments are o f f s e t  f o r  both models t o  permit correct 
representa t ion  of t h e  overall bending s t i f f n e s s .  
Differences of 24% and 29%, respec t ive ly ,  were 
obtained f o r  t h e  local buckling load f o r  designs 
B-1 and B-2 using these  two models as shovn in 
Figure 12. 
t ion ,  is considered t h e  b e t t e r  representa t ion .  
R e s u l t s  prasented In this  paper u s e  model I t o  
represent  cross s e c t i o n s  composed of t h i c k  lami- 
nates. The two models converge t o  approximately 
the  same solu t ion  f o r  designs composed of t h i n  
laminate elecients. 

Model I, which yielded t h e  higher  solu- 

Experimental and Analy t ica l  Comparison 

Analyt ical  r e s u l t s  f o r  t h e  l o c a l  buckling of 
test panel designs obtained using BUCLASP-2 are 
presented i n  Table V. 
nominal c'esign dimensions and thicknesses  presented 
i n  Table IV. 

Calculat ions are based on 

A comparison of experimental and BUCLASP-2 
r e s u l t s  f o r  l o c a l  buckling is presented i n  Figure 
13. The agreement is good f o r  some configurat ions 
and poor f o r  othc-c. Par t  of t h e  lack of corre-  
l a t i o n  is because uJCLASP-~ does not account f o r  
an iso t ropic  o r  r e s i d u a l  thermal s t r a i n  e f f e c t s  and 
a l l  r e s u l t s  are based on nominal thicknesses .  

Critical elements for des igns  A-1, A-2, A-3, and 
A-5 were th icker  than t h e  nominal design th ickness  
which increased t h e i r  test r e s u l t s .  Conversely, 
spechas  of des- A-6 were found to be th inner  
than t h e  wainel which decreased t h e i r  buckling 
loada. The web depth dimension f o r  des ign  I t 2  vas 
i n t e n t i o n a l l y  increased over the i n i t i a l  design 
value. This  increased t h e  Euler  bucl$ng capabi l -  
i t y  but  a l a o  made t h e  four-ply (+45/+45) web lami- 
nate t h e  only element critical La local buckling 
for t h i s  design. 

For design purposes, it was assumed t h a t  local 
buckling is independent of  panel  length  and modal 
i n t e r a c t i o n  is ignored. The v a l i d i t y  of t h i s  
assumption was s tudied  using BUC'LASP-2. 
r e s u l t s  from BUCLASP-2 f o r  des igns  A-1 ( e  = 45.). 
A-2 (e = 52'), and A=3 (e - 60') are presented i n  
Figure 14, which s h o w  t h e  panel  cri t ical  s t r a i n  as 
a fuoc t ion  of panel length.  These r e s u l t s  show the 
local buckling loads  f o r  design A-1 to be  constant  
f o r  panel  lengths  less than 25 laches, the i n t e r -  
active d e s  to  d a i n a t e  f o r  lengths  from 25 to 
32 inches,  and t h e  Euler lodes to be critical f o r  
longer  l e n g t h  panels. 
Obtabed  f o r  designs A-2 and A-3. 
ling cr i t ica l  s t r a i n  f o r  des ign  A-2 is higher  and 
t h e  va lue  f o r  design A-3 is lover than t h e  cr i t ical  
s t r a i n  f o r  design A-1. Modal I n t e r a c t i o n  reduces 
by 12% t h e  buckling strain c a p e b i l i t y  of a design 
detennlned by t h e  i n t e r s e c t i o n  of the  BUCLASP-2 
local and Euler buckling curves. 

Analy t ica l  

S iml la r  results were 
The local buck- 

Local buckling experimental r e s u l t s  are a l s o  
presented i n  Figure 14. Local buckling cr i t ical  
s t r a i n s  were higher  f o r  s p e c h e n s  of des igns  A-2 
and A-3 than f o r  speclmens of design A-1. Thick 
laminates account f o r  p a r t  bu t  n o t  a l l  of t h e  d is -  
crepancy between experimental and BUCUSP-2 r e s u l t s .  
The BUCLAPZ aniso t ropic  p l a t e  s o l u t i o n  f o r  t h e  
cri t ical  s t r a i n  of  t h e  web and s k i n  under t h e  hat 
of design A-1 adjusted f o r  a 20% t h i c k  laminate is 
0.004 in . / in .  This a n a l y t i c a l  result is In good 
agreement vitlr experimentally determined values .  

Residual thermal s t r a i n s  may have an e f f e c t  on 
local buckling, bu t  t h e  importance has not  been 
thoroughly examined. The magnitude of r e s i d u a l  
s t r a i n s  in t h e  web of specimens of  designs A-1 and 
A-2 were experimentally measured. S t r a i n  gages 
mounted on t h e  web were read before  and a f t e r  t h e  
web was c u t  from t h e  s t i f f e n e r .  An axial r e s i d u a l  
t e n s i l e  s t r a i n  of 0.0001 and 0.0008 i n / i n . ,  
respec t ive ly ,  ex is ted  i n  t h e  web of specimens of 
designs A-1 and A-2 p r i o r  t o  i ts  removal. This 
r e s i d u a l  t e n s i l e  strain must be re l ieved  before  
compressive s t r a i n s  are imposed on t h i s  element. 
This  e f f e c t  may p a r t i a l l y  account f o r  t h e  high 
experimental r e d u l t s  indicated i n  Figure 14. 

The design assumption of requi r ing  l o c a l  and 
Euler buckling t o  occur simultaneouly and ignoring 
modal i n t e r a c t i o n  was also evaluated using BUCLASP-2 
€or a design which included t h i c k  ha t  cap and sk in  
elements (design B-1). The buckling s t r a i n  f o r  
design B-1 p lo t ted  a s  a func t ion  of t h e  panel length 
is presented i n  Figure 15. 
observed t o  be a continuously decreasing func t ion  
of t h e  panel length.  Local buckling modes a r e  
c r i t i c a l  f o r  lengths  less than 8 inches,  modal 
i n t e r a c t i o n  is c r l t i c e l  f u r  lengths  between 8 and 
25 i n c h w .  and t h e  Euler mode is c r i t i c a l  f o r  
lengths  g r e a t e r  than 25 inches. The l o c a l  mode is 
character ized by l a t e r a l  displacements of t h e  webs. 

The buckling s t r a i n  is 
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The buckling s t r a i n  of the web was also cal- 
cu la ted  f o r  s i n p l e  support  or clamped lateral adge 
b o d u y  condi t ions a d  v i t h  o r t h o t r o p i c  and ani- 
s o t r o p i c  theory us ing  BUCLAP2. 
MICLASP-2 r e s u l t s  f o r  the  local buckling s t r a i n ,  
based on or thot ropid  theory, agrees w i t h  t h e  
B U W 2  or thot ropic  s o l u t i o n  wi th  clamped lateral 
edges of t h e  web. This result i n d i c a t e s  that the 
t h i c k  hat cap and skin elements provide clam@ 
edge support to t h e  t h i n  four-ply web. 
type of panel, a design based on simple support  
a n i s o t r o p i c  p l a t e  theory for local buckling which 
also wets Euler buckling requirements is a con- 
servative desiga. 

It is o b s u v e d  that 

For t h i s  

The merlmental d a t a  f o r  local buckling oE 
specinexus of design B-1 p l o t  higher  than the theo- 
retical r e s u l t s .  The f a c t  t h a t  cross-sect ional  
e l a e n t s  were th icker  than the nominal des- 
th ickness  by approximately 10% p a r t i a l l y  expla ins  
t h i s  discrepancy. 
exhibiting local buckling. 

Compression Panel S t r u c t u r a l  Eff ic iency 

The s p e c h e n s  f a i l e d  vithart 

A theoretical conparison of t h e  r e l a t i v e  
s t r u c t u r a l  e f f i c i e n c i e s  of gtaphite/epoxy and 
aluminum compression panels  is presented i n  t h e  
logari thmic graph of  Figure 16 in  which panel  
weight per  u n i t  area per  u n i t  l ength  @/AI.) is 
p l o t t e d  as a funct ion of t h e  load index (&/L). 
These curves were generated by t h e  compression 
panel  design program used i n  t h i s  s tudy,  t h e  con- 
s t r a i n t s  def ined i n  Table I, and property sets 2 
and 4 l i s t e d  i n  Table 11. Graphitelepoxy rewlts 
are presented f o r  a hat-s t i f fened paw!  (Pig. 1) 
and f o r  a n  open cor ruga t ion  panel ( c m f i g u r a t i o n  C). 
The ply  o r i e n t a t i o n  angle  a was taken to be  45'. 
The cusps of the  curve Zorrcspond t o  imposing t h e  
c o n s t r a i n t  that 3 5 '  material is used i n  sets of 
four  symetric p l i e s .  It was found t h a t  t h e  design 
program could reconfiaure t h e  c ros3  s e c t i o n  so t h a t  
very l i t t l e  weight penal ty  resu l ted  from t h e  
f u r t h e r  requirement t h a t  t h e  thicknesses  
and t5 must a l s o  be  d i s c r e t e .  The discrete thick- 
ness  cusps s h i f t  r e l a t i v e  pos i t ions  depending on t h e  
panel  design length. 
s tudy,  a panel length of 30 inches was se lec ted .  
Open corrugat ion parlels were found t o  be approxi- 
mately 20% l i g h t e r  than ha t -s t i f fened  panels  and 
graphite/epoxy hat-s t i f fened panels  are approxi- 
m a t e l y  50% l i g h t e r  than comparably designed alumi- 
?urn hat-s t i f fened panels. 

t 3 ,  t 4 ,  

For t h e  purposes of t h i s  

Test r e s u l t s  f o r  60 inch long buckling speci- 
mens constructed using designs A-1, A-2, A-4, A-5, 
8-2. and C-1 are presented i n  Table VI and are 
a l s o  shown i n  Figure 16. 
these  test panels is presented i n  Figure 17. Hat- 
s t i f f e n e d  panels  were tes ted  with clamped boundary 
condi t ions on t h e  loaded ends and with t h e  lateral 
edges unsupported. 
length of test panels was defined using strain-gage 
d a t a  and the  d a t a  reduct ion technique described i n  
Reference 15. This  length was found t o  be approxi- 
ma te ly  31 inches f o r  a 60-inch-long clamped end 
panel. For the hat-s t i f fened panels, t h e  sk in  
element f r e e  edge was reduced i n  width t o  circum- 
vent  its premature buckling. 
panel was tes ted  with knife-edge l a t e r a l  supports  
i n  a f u l l  width configurat ion.  The a c t u a l  test 
panel width was used i n  calculacions of the  stress 
r e s u l t a n t  Nx f o r  a l l  panels except specimen B-2. 

A photograph of one of 

The e f f e c t i v e  simple support 

The open corrugat ion 

Since only a small  percentage of t h e  t o t a l  s t i f f -  
ness f o r  specimen B-2 was i n  t h e  s k i n  between 
s t i f f e n e r s ,  t h e  p a n d  v i d t h  was based on t h e  typi- 
c a l  s t i f f e n e r  spacing. 
the  panels  (A-1. B-2. and C-1) a r e  u l t i m a t e  va lues  
8 lnce  these  panels  were tested to des t ruc t ion .  
Alternate load condi t ions  are planned f o r  panels  
A-2, A-4, and A-5 and t h e r e f o r e  loading on t h e s e  
panels KIM terminated s h o r t  of t h e  u l t imate ,  and 
t h e  critical load was ex t rapola ted  from test d a t a  
us- t h e  f o r c e l s t i f f n e s s  method descr ibed i n  
Reference 16. 

C r i t i c a l  loads  f o r  t h r e e  of 

The In i t i a l  curva ture  vhich e x i s t e d  i n  each of 
t h e  test panels  is also presented i n  Table V I .  The 
maximum d e v i a t i o n  a t  t h e  c e n t e r  of t h e  panel from 
a straight l i n e  drawn through the  eads of t h e  
60-inch-long specimens var ied  from 0.005 inch f o r  
t h e  open corrugat ion specimen C-1 t o  0.100 inch f o r  
hat-s t i f fened specimens A-2 and A-4. 
corrugat ion s p e c h e n  had almost n e g l i g i b l e  i n i t i a l  
curva ture  s i n c e  specimen C-1 has a syometric cross 
sec t ion .  The 0.100-inch i n i t i a l  curva ture  which 
ex is ted  in s p e c h e n s  A-2 and A-4 was s u f f i c i e n t  to  
reduce t h e  load c a p a b i l i t y  of t h e s e  panels  by 
approximately 20%. 

The open 

Experimental r e s u l t s  are also presented i n  
Figure 16 f o r  near ly  2000 aluminum panels of hat, 
J aad Y s t i f f e n e d  construct ion.  Aluminum d a t a  
are iaken from NACA reports.2'6 The minimno weight 
curve generated f o r  aluminum hat-s t i f fened cmpres-  
sion panels  forms t h e  lower bound f o r  hat-s t i f fened 
panel experimental data .  A few d a t a  p o i n t s  f o r  t h e  
Y c o n f i  r a t i o n  (which is a more e f f i c i e n t  config- 

aluminum hat -s t i f  f end panels. 
u ra t ion)  r f a l l  below t h e  miniruum weight curve f o r  

Test r e s u l t s  f o r  graphite/epoxy hat-s t i f fened 
specimens are 32% t o  42% l i g h t e r  i n  weight than 
r e s u l t s  f o r  t h e  b e s t  des ign  a v a i l a b l e  f o r  similar 
aluminum panels  (see Fig. 16). Although these  
results represent  i n i t i a l  e f f o r t s ,  64% t o  84% of 
the  t h e o r e t i c a l  weight reduct ion a v a i l a b l e  f o r  hat- 
s t i f f e n e d  composite ompression members has been 
demonstrated. ResaI.s of t h i s  i n v e s t i g a t i o n  ind i -  
cate t h a t  most of t h e  remaining t h e o r e t i c a l  weight 
savings are a v a i l a b l e  i f  a t t e n t i o n  is given t o  t h e  
design and f a b r i c a t i o n  problem areas i d e n t i f i e d  
earlier i n  t h i s  paper. Improved f a b r i c a t i o n  tech- 
niques have subsequently been developed i n  which 
specimen weights c l o s e l y  mntch design weight esti- 
mates. Improved design and f a b r i c a t i o n  procedurcs 
which r tduce  t h e  magnitude of thermally induced 
i n i t i a l  curva tures  w i l l  permit composite panels  t o  
meet design load requirements. 

The open corrugat ion composite panel test 
result is 58% l i g h t e r  than the  t h e o r e r i c a l  r e s u l t  
f o r  an aluminum hat -s t i f fened  panel .  
a x i a l  load car r ied  by t h i s  panel represents  90% of 
t h e  design load. This  panel weighed only 0.312 l b /  
f t 2  which m k e s  it an a t t r a c t i v e  candidate  f o r  
l i g h t l y  leaded s t r u c t u r a l  a p p l i c a t i o n s  which do not  
requi re  a smooth sur face .  

The 812-lb/in. 

Axial S t i f f n e s s  of Minimum Weight Panels 

Minimum weight panels  s tudied i n  the  cur ren t  
program are designed t o  e f f i c i e n t l y  c a r r y  a x i a l  
compressive loads and an inplane s t i f f n e s s  require-  
ment was riot imposed. I t  is recognized t h a t  inplane 
s t i f f n e s s  is important fo .  many s t r u c t u r a l a p p l i c a t i o n s .  

! 
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It i n  of  i n t e r e s t ,  therefore ,  to examine t h e  
axial s t i f f n e s r e s  which r e s u l t e d  f o r  the minimum 
weight aluminum and graphite/epoxy c a p r e s r i a n  
panels  presented In  Figure 16. 
of t h e  axial  s t i f f n e s s  f o r  theae panels  as a func- 
t i o n  of load i a d u  N& is presented in Figure 18. 
F i n i t e  jumps occur i n  the  axial s t i f f n e s s  a t  magni- 
tudes of yI/L f o r  which t h e  minimum weight panel 
changes values of t l  and t 2  (see Fig. 16). 

The minimum-weight graphi te /epory axial s t i f f -  
ness  f l u c t u a t e s  between beink less s t i f f  and more 
s t i f f  than t h e  corresponding dnimuwweight  aluminun 
panel. It Is also seen  t h a t  t h e  opt ion  a is ts  a t  
load ind ices  i n  regtone where minimum-weight co3- 
f i g u r a t i m a  changes va lues  of tl and t 2  to have 
alternate panels  with approximately the sane weight 
but d i f f e r e n t  axial s t i f f n e s s e s .  
t h e  smaller va lue  of tl and t 2  w i l l  b e  approxi- 
mately tvfce as stiff ae t h e  design with t h e  larger 
va lue  of t l  and t2. This r e f l e c t s  a larger pex- 
centage of 3 5  o r i e n t e d  m a t e r i a l  for t h e  less s t i f f  
design. 

Concluding Remarlw 

Preliminary f ind ings  of an a n a l y t i c a l  and 
exper fsenta l  program t o  e s t a b l i s h  a weight and 
s t rength  d a t a  base f o r  e f f i c i e n t  graphite/epoxy cam- 
press ion  panels  of  s t i f f e n e d  cons t ruc t ion  have been 
presented. 
and des ign  assumptions used i n  t h e  panel design 
program is given as w e l l  as a d iscuss ion  of a 
branched p l n t e  buckling a n a l y s i s  which was used f o r  
c o r r e l a t i n g  a n a l y t i c a l  and experimental r e s u l t s .  
The results presented are f o r  several hat-s t i f fened 
panel designs and f o r  one open cor ruga t ion  compres- 
s i o n  panel. 
specimens to s tudy local buckling and u l t i m a t e  
s t rength ,  and on longer wide-column specimens which 
were used to  eva lua te  Euler buckling and modal 
in te rac t ion .  

A logar i thmic graph 

The design with 

A b r i e f  d e s c r i p t i o n  of t h e  c o n s t r a i n t s  

Experiments were conducted on s h o r t  

Resul t s  from t h e  t h e o r e t i c a l  design s t u d i e s  
i n d i c a t e  t h a t  G/E hat-s t i f fened compression panels  
possess a weight savings on t h e  order  of 50% when 
compared with comparably designed aluminum compres- 
s ion  panels. 
experimentally achieved i n  t h e  c u r r e n t  invest iga-  
t ion.  Rea l iza t ion  of the  f u l l  50% weight savings 
p o t e n t i a l  w i l l  r e q u i r e  close a t t e n t i o n  to  design 
and f a b r i c a t i o n  d e t a i l s .  
epoxy designs were shown t o  be approximately 20% 
l i g h t e r  than raphite/epoxy ha t -s t i f fened  designs.  

31-inch simple support l ength  experimentally carried 
an a x i a l  load of 812 Ib / in .  which is 90% of the  
t h e o r e t i c a l  p o t e n t i a l .  

Weight savings of 32% to  42% were 

Open corrugat ion graphi te /  

A 0.312-lb/ft 1 open corrugat ion specimen with a 

A hat-s t i f fened panel having s t i f f e n e r  v e r t i -  
c a l  webs composed e n t i r e l y  of 55' material with 
the 0" p l i e s  located i n  t h e  ha t  cap and s k i n  was 
shown t o  have high s t r u c t u r a l  e f f ic iency .  Locating 
0" p l i e s  i n  the  sk in  d i r e c t l y  under t h e  h a t  cap and 
not i n  the  sk in  between s t i f f e n e r s  was found to  
provide f u r t h e r  s t r u c t u r a l  e f f i c i e n c y  ga ins  f o r  
moderately loaded designs (Nx/L > 200 lb / in2) .  
improved s t r u c t u r a l  e f f i c i e n c y  is a result  of a 
boundary s t i f f e n i n g  e f f e c t  on the  h a t  v e r t i c a l  *.rhs 
from t h e  t h i c k e r  connecting ha t  cap and skin 
element s . 

This  

Differences I n  t h e  c o e f f i c i e n t  of thermal 
expansion of web, h a t  cap, and s k i n  elements of 
hat-s t i f fened composite s t r u c t u r e s  can r e s u l t  i n  
r e l a t i v e l y  l a r g e  r e s i d u a l  thermal stresses from t h e  
cur ing  process. 
panel  t h e m 1  warping and may a f f e c t  the  l o c a l  
buckling behavior. Corre la t ion  between a n a l y t i c a l  
and e x p e r h e n t a l  r e s u l t s  i n  t h i s  i n v e s t i g a t i o n  is 
marginal 0s a consequence of v a r i a t i o n s  i n  laminate  
thicknesses ,  a n i s o t r o p i c  e f f e c t s ,  and t h e  above- 
mentioned r e s i d u a l  thermal stresses which were ' 

accounted f o r  i n  t h e  a n a l y s i s .  

These t h e m 1  stresses can  cause 

The prel iminary r e s u l t s  presented h e r e i n  f o r  
cont ro l led  tests have i d e n t i f i e d  important areas i n  
which f u r t h e r  research  must b e  conducted i f  r a t i o n a l  
design methods are to  be  developed f o r  e f f i c i e n t  
composite c a p r e s s i o n  panels. 
(1) t h e  development of a des ign  c a p a b i l i t y  which 
properly accounts f o r  t h e  d i f f e r e n t  thermal s t r a i n s  
which occur as a consequence of  e levated tempera- 
t u r e  cur ing,  (2) t h e  development of a spec ia l -  
purpoee an iso t ropic  branched p l a t e  buckling a m l y a i s  
vhich can account f o r  coupled modes, and (3) t h e  
establ ishment  of a r a t i o n a l e  f o r  determining elastic 
p r o p e r t i e s  and material allowable8 vhich w i l l  enable  
t h e i r  c o n s i s t e n t  use  throughout the design,  experi-  
mental and a n a l y t i c a l  phases of a composite s t r u c -  
t u r e s  development program. 

hong these  are 

The design s t u d i e s  conducted during t h e  course 
of t h i s  program indica ted  t h a t  smaller w i g h t  penal- 
t ies w i l l  result i f  performance degrading e f f e c t s  
such as transverse shear ing  deformations, aniso- 
t r o p i c  e f f e c t s ,  and thermal warping are taken i n t o  
account e a r l y  i n  t h e  design cyc le .  r a t h e r  than con- 
s i d e r i n g  them later. It was a l s o  observed t h a t  t h e  
panel ex tens iona l  S t i f f n e s s  could vary by as much 
as a f a c t o r  of 2 f o r  two d i f f e r e n t  panels  which 
have weights approximately t h e  same. This  result 
i n d i c a t e s  t h z t  s t r u c t u r a l  s t i f f n e s s  should a l s o  be 
considered e a r l y  i n  the  design cycle. 
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TABLE I. UPPER AND LOWER BOlMDS ON GEOMETRIC CONSTRAINTS AND STRAIN 

Aluminum * Graphite/ epoxy 
(Thornel 300/5208) Constraint  

In teger  sets of four  - >0.005 i n .  
5' t2 symmetric p l i e s  

- <0.25 in .  None 

>0.8 in .  - >0.8 in. bl* b3 - 

- >0.8 in .  - >0.1 in .  

* 
See Figure 1 f o r  geometry d e f i n i t i o n s .  
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TABLE 11. MATERIAL ELASTIC PROPERTIES 

Set 

1 Thornel 300/5208 
unidirectional tape 21.0 2.39 0.65 0.314 0.055 

~ 

2 Thornel 300/5208 
unidirectional tape 19.6 2.1 0.76 0.314 0.055 

3 Thornel 300/5208 
balanced fabric  9.0 9.0 0.65 0.010 0.055 

4 Aluminum 10.5 10.5 3.95 0.330 0.100 

TABLE 111. TEST PANEL DESIGN W ,  "TERISTICS 

* 
Design features  

Number of Number of 
N Anisotropic or (A) Transverse Material P l y  16-inch 60-inch E* shear properties or ientat ion specimens ~~, 

b e s i g d  
orthotropic ( 0 )  effects us& in angle laminate included design** 6 .  deg 

L At 

lb / in2  lb/ in3 theory 

A-1 100 0.000153 0 No 1 45 3 1 

A-2t 100 0.000153 0 No 1 52 3 1 

A-3t 100 0 .  W 1 5 3  0 No 1 60 2 0 

A-4+ 100 0.000192 0 do 1, 3 45 (fabric) 4 1 

A-5 100 0.000157 A Yes 1 45 2 1 

A-6 300 0.006257 0 No 1 45 3 0 

B-1 300 0.000254 0 10 1 45 2 0 - - 
B-2 300 0.000260 A* 'Yes 2 45 2 1 

. --" - 
c-1 30 0.0000719 A No 1 45 2 1 

* 
Designs based on L - 30 inches. 

See Table I1 for  property s e t  def ini t ions.  
** 

+Configuration aimensiono are the same as derign A-1 thus the design is not necessarily of minimum 

*deb Gepth increased based on BUCLASP-2 studies. 

'See Sketch a. 

weight.  
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bl* b2 b3* b4m 5' t2 '  t3' t4' -* h ia. ha. ia. ie. in. ia. in. in. 

A-1 1.320 1.349 0,800 1.016 0.OZ 0.022 0.066 0.0165 0 
(4) . ( 4 )  (U) (3) 

~~ ~ ~ ~ 

A-2 1.320 . 1.349 0.800 1,016 0.022 0.022 0.066 0.0165 0 
(4) (0 (12) (3) 

A-3 1.320 1.349 0.800 1.016 0.022 0.022 0.066 0.0165 0 
(4 (4 )  (12) (3) 

M 1.320 1.349 C.WO 1.016 0.030 0.030 0.066 0.0165 0 
(2) ( 2) (12) - (3) 

A-6 i.178 1.391 0.m 1.1?5 0.022 0.022 0.2035 0.055 0 
( 4 )  (4 )  (37) (la) 

B-1 1.178 1.391 0.809 1.175 0.022 0.022 0.2035 0 0.0825 
( 4 )  ( 4 )  (37) (15) 

B-2 1.177 1.680 0.803 1.491) 0.022 0.022 0.253 0 0.099 
(4) (4) (46) (18) 

( 4 )  ( 4 )  (4) 
c-1 2.713 1.036 0.8935 0.895 0 0.022 0.022 0.022 0 

See ?*re 1 for d L a s i o n  and thickness definitions. 

m e r  of plies.  
t* 
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TABU V. LOCAL BUCRLIW; WSIJLTS FOR 16-INcII-LoNc PANELS 

Experimental regllts 
 CLASP solution 

Elcaent for  1oc.l 
Local Buckling f i r s t  buckling** Panel Ultimate 

exhibiting miga width,* 
- 

klx: lb/in. E=, in./in. - local in. 
Nx? lb/in. E ~ ,  in. /in. Nx? lb/in. E;, ia. / in.  

A-1 5.32 3819 0.0050 2763 0.0036 2 3230 0.00443 

A-1 5.32 38h3 0.0048 3102 0.0040 1, 2, 4 3230 0.00443 

A-1 5.21 3992 0.0056 2917 0.0041 4 3230 0.00443 

A-2 5.28 4743 0.0063 3295 0.0048 4 3172 0.00461 

0.00461 A-2 5.26 5115 0.0077 4413 0.0065 4 3172 
- ~ ~ ~- ~ 

A-2 5.28 4934 0.0073 4015 0.0057 4 3172 0.00461 

A-3 5.31 5021 0.0074 4072 o.Oo60 1, 2, 4 2831 0.00419 

A-3 5.31 5309 0.0074 3691 0.0054 4 2831 0.00419 

A-4 5.24 5703 0.0076 4890 0.0063 4 5284 0.00700 

A-4 5.26 5 G X  0.0063 4639 0.0057 2. 4 5284 0.00700 

0.00696 A-4 8.60 4826 0.0066 4535 0.0060 2 5037 

A-4 8.60 4535 0.0060 F-ne Hone None 5087 0.00696 

A-5 5.32 5103 0.0072 4192 0.0056 4 3120 0.00394 
~ ~ - ~~~ ~~ 

A-5 5.30 4283 0.0060 4019 0.0056 4 3120 0.00394 

A-6 5.35 8402 0.0045 6168 0.0030 4 9724 0.00489 

A-6 5.28 8352 0.0040 7008 0.0033 4 9724 0.00489 

A-6 5.28 8236 0.0038 6440 0.0030 2 9724 0.00689 
~ ~~ -~ ~ 

51 5.32 16900 0.0077 None None None 17556 0.00785 

51 5.32 17430 0.0076 None None None 17556 0.00785 

B-2 6.72 14590 0 * 0063 8209 0.0036 2* 11752 0.00474 

B-2 6.72 14440 0.0065 10896 0.0049 2* 11752 0.00474 
~- ~- - - ~- ~ - ~~ 

c-1 10.90 960s 0.0034 651 0.0023 2. 3 1173 0.00387 

c-1 10.90 10089 c.0034 688 0.0023 2, 3 1173 0.00387 

* 
Specimen l a t e r a l  edges reduced for  free edge test condition. 

Calculations based on design dimensions and thicknesses listed i n  Table IV and material property Set 2 
i n  Table 11. 

t* 

'Nx calculations based on test panel width. 

*Elements 1, 3, and 4 did not buckle during the tes t .  

'Specimen l a t e r a l  edges supported by knife edge. 
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I n i t i a l  

in. 

U t 

dL,' curvature.* 
U 
ii. 

Panel 
NX' 

In. lb/ f  t2 lh/ln3 lb/ io2 
spcciwn l b / h  

A-1 3000 18.75 1929 66.8 0.786 0.000176 0.060 

A-2 3000 22.06 ZUO' 73.1 0.786 0.000176 0.100 

A-4 3000 22.25 221b5 71.0 0.924 0.000207 0.100 

A-5 3000 22.75 . 24b79 83.7 0.844 0.000189 0.040 

B-2 9oQo 15.63 7630 246.2 1.295 0.000290 0.020 

c-1 900 2 r . d  812 25.9 0.312 O.ooOo70 0.005 

Specimen lateral edges reduced for f r e e  edge test c o d i t i o n .  

Test panel vidth used to calculate 
incldios r-ved edges y.8 used (17.8 in.). 

*t 
& except f o r  specimen B-2 here  v id th  

tHffective sirple support length Le e r p e r i w n t r l l y  found to be approximately 31 inches. 

h x h m  deviation a t  center of panel from s t r a igh t  l i n e  drawn through ends of 60-Inch- 

*Critical l o d  extrapolated from test data using fo rce l s t i f f aes s  technique.16 

'&uxhen l a t e r a l  edges supported by knife edge. 

long apcciren. 
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Figure 13. Comparison between analyt ica l  and 
experimental tuckl ing resul ts  for local 
buckling sppcimens. 
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Figure 14 .  Buckling s tra in  as a function of panel 
length for designs A-1, A-2, and A-3. 
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Figure 16. Comparison of s truc tura l  e f f i c i e n c i e s  of graphite!epoxy and aluminum compression panels .  
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