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PREFACE

The .general objective of. this .pro .ieat was . to dete,-mine the

improvement in the measurement of water depth from space using the

Skylab Earth Resources Experiment Package notably the S--192 multi-

sprectral scanner and the S-190B camera system. This work continues a

research program at ERIM conducted since 1969 as to the feasibility

of .remote bathymetry from aircraft or spacecraft altitude while
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relying on signal processing of reflected sunlight obtained in narrow

spectral bands in the blue-green portion of spectrum, Previous

research with multispectral s-anners mounted in .aircraft was sponsored .

by the National Oceanic and Atmospheric Agency's Spacecraft Oceano-

graphy Group (formerly of the Naval. Oceanographic Office) . under the

direction of John Sherman 111. Subsequently, LANDSAT 1 data was used

to test the concept from spacecraft altitudes under Contract
NAS5-21783,.Task I.

This report is .submitted in fulfillment of NASA Contract

NAS9-1327$. The Principal.Inves,tigator for the project was Fabian C.

Polcyn and the work was carried out.by the Infrared and Optics

Division of ERIM under the direction of Mr. Richard R. Degault.



HIM
UNIVERSITY OF MICHIGAN

i

FORMERLY WILLOW RUN LABORATOMES. THE

CONTENTS

E
I. INTRODUCTION 7	 -

2. METHODS OF EXTRACTION OF DEPTH INFORMATION 10'

3. DISCUSSION OF RESULTS 	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 15

3.1	 Pass b: Southwestern Puer o Ri co 15
3.1.1 Southern Coast 15
3.1.2 Western Coast 23

3. 2 	Pass 14: Central Lake Michigan. Shoreline 31

3.3	 Pass 54: Eastern Puerto Rico 41

3.3.1 Escollo de Arenas 4.1.
3.3.2 Aves (Bird) Island .

4. CONCLUSIONS ..	 ...	 ..	 .	 .	 .	 . . 52

5. RECOMMENDATIONS .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 54

APPENDIX:	 ERROR .ANALYSIS	 .	 ..	 .	 .	 .	 . 56

REFERENCES .	 .	 .	 .	 .	 . .	 63

DISTRIBUTION LIST	 ... ..	 . .	 ..	 64

^t

s

9

4

1

j



3

FIGURES

1.

	

	 S-190D Photograph of Southwestern Puerto Rico, 	 16
(Pass 6 - June 9, 1973)

2. Processed S-192 Imagery for Southwestern Puerto Rico
(Pass 6 - June 9, 1973).
(a) Band 3: 0.50-0.55 um	 17
(b) Band 11: 1.55-1.73 11tH	 18
(c) Band 13: 10.2-12.5 um	 19

3. Bathymetric Chart for Southern Coast of Puerto Rico,	 21
Made from 5-192 Band 3.

4.

	

	 Portion of Coast and Geodetic Survey Chart 901,	 22
Showing Southern Coast of Puerto Rico

5.

	

	 S-192 Band 2 and 3 Signals Versus Depth, .Escollo 	 25
Negro Area (Pass 6 - June . 9, 1973).

6.

	

	 Bathymetric Chart for Western Coast of Puerto Rico,	 26
Made from <S--192 Bands 2 and 3.

7.	 Portion of Coast and Geodetic Survey Chart 901, 	 27
j	 Showing Western Coast of Puerto Rico.
i

8.

	

	 Calculated and Chart Depths'Along Line 1450	 28
(Escollo Negro).

9. Calculated and Chart Depths Along Line 1440	 29
(Escollo Negro),

l
1	 10. S-190B Photograph of Eastern Lake Michigan, 	 32

(Pass 14 - August 5, 1973).

11. Processed S-192 Imagery for Eastern Lake Michigan



I	 i	 I

LIB
FOR 	 WlILOW RUN LADOAATO pIES,THE 11N1YEA51TY OF M4LW[GAN

14. 5-190 Film Density Versus Distance from Shoreline for the
Same Transect as in Figure 13. 38

15. Portion of Lake Survey Chart 77, Showing Lake Michigan 40
Shoreline Near Pentwater, Michigan.

16. 5-190B Photograph of Eastern Puerto Rico, (Pass 54 - .4.2
November 30, 1973).

17. Processed 5-192 Imagery for Eastern Puerto Rico, 	 (Pass 54- 43
November 30, 1973).	 Band 2 (.45 - .50 dim).

18. Portion of Coast. and Geodetic Survey Chart 904, 44
Showing Escollo de Arenas.

19. Comparison of Water Depth (Top Curve), ..5-192 Data Values 45
(Center Curve), and 5--190B Film Density (Lower Curve)
for Transect Through the Escollo de Arenas.(Pass 54-
November 30, 1973).

20. Enlargement of 5-190B Photograph Showing Aves (Bird) 48
Island (Pass 54 - November 30	 1973).

1

21 Portion of Naval Oceanographic Chart 2551, Showing 49
Aves (Bird) Island. -

22. Densitometer Trace of 5-190B Photograph for Transect 50
Through Aves Island Shoran. in Figure 2.1.

23. Comparison of Total Error for Three . Depth Algorithms 62

I ,#
{



ILmm	 -	 F(MAERLY WILLOW RUN LARORATORIE5, THE IJNIVERSITY OF MICHIGAN

SKYLAB REMOTE BATHYMETRY EXPERIMENT

1

INTRODUCTION

The research reported here is an outgrowth and continuation of

previous research projects carried out at the Environmental Research
Institute of Michigan for.the purpose of developing methods of
extracting water-depth information from multispectral scanner data
collected by aircraft and satellites [1--4]. In particular, reference

[4] describes three such methods which were successfully applied to

ERTS-1 data from the Caribbean and Lake Michigan. The present report
describu.a the application of these methods to data collected by the

Earth Resources Experiment Package (EREP) of the Skylab program. In

addition, this report contains an examination of the accuracy of the

results as compared with published navigational charts, and an analysis

of the types and magnitudes of errors inherent in each computational
method.

The application potential of this technique can be seen from the

recent announcements of losses of valuable crude oil as a result of

collision of supertankers in different shipping lanes around the

world. In general, world navigation charts are not current due to
length of time for ship collection of data and subsequent map making

and the dynamic.processes for shifting sand bars and creating new 	 1
i

shoals after storms. Also charts contain notations of shoal areas that

are not verified in their depth or their location is known.only
approximately. Space acquired data offers the potential for providing
more up-to-date information for navigation purposes thereby helping to
reduce losses to life and property:

The data used in this research included the S-192 (multispectral
scanner) and 5-190 .(photographic) products from all three Skylab
m;cc;.nn0	 _TIAn 1nnnt-inns nnrl Ant-ac of i-ba tbvimp nv4nn-innl Antn 2 pt- ficirp!
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Skylab 2, Pass b: Southwestern Puerto Rico - June 9, 1973

Skylab 3, Pass 14: Central Lake Michigan 	 August 5, 1973

Skylab 4, Pass 54: Eastern Puerto Rico	 - November 30, 1973

Photographic products from several other passes were received, but were

considered to be too cloudy to be useful for analysis. Data were

received in the form of photographic transparencies (5-190 A and B),

magnetic tapes containing the S-192 scanner data, and screening films

made from these tapes.. Processing of the films included enlarging

and printing. by ERIM's photographic laboratory, and in some cases

scanning portions of the films with a Jarrell--Ash densitometer.

Magnetic tapes Caere first- converted to ERIM format on the University

of Michigan's IBM 370 computer, and subsequently processed on ERIM's

IBM 7094 computer.

The end-product of the digital processing is a computer--generated

map on which different symbols are printed corresponding to various

ranges of mater depth. In this report two such maps are presented

for portions of the southern and western coasts of Puerto Rico. On

both maps, depths from 0 to 15 meters are indicated in 3 meter intervals

by means of five symbols. 	 A sixth symbol indicates a depth from 15

to 20 meters, and a seventh indicates a depth •greater than 20 meters.

'In the case of the Lake.Michigan data.set,.the number of points at

which the depth could be computed was too small to justify or require

such a display, and the results are presented in graphical form along

a transect perpendicular to the shoreline, The same is true of the

Eastern Puerto Rico data set, where a single transect through the

Escollo de. Arenas is presented . as a means of comparing: the S-190B film.

density with the 5--192 data values and the water depth. 	 1

This report is organized chronologically, in the order in which

the data were collected; received, and processed. The steps taken in	 i

analyzing the data are described and the results are presented and	 -	 i
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discussed for each tt_st site. Conclusions are stated in the last
section., and an error analysis is included . in the Appendix.
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2

METHODS OF EXTRACTION OF DEPTH INFORMATION

The Skylab multispectral scanner (S-192) receives energy in

13 spectral bands. The scanner operates in a linear mode, so the

signal recorded in each band is proportional to the radiance received

in the corresponding wavelength interval. That is,

r

I

V._ki Ri (1)

where R. is the radiance in band i at the detector and ki is the

sensitivity constant for the detector.

The radiance observed over shallow water is the result of

sunlight reflecting from the bottom and the water surface, as well

as of the scattering of sunlight in the water and the atmosphere.

That part of the signal resulting from bottom reflection contains

information about the depth of the water through which the light

has passed. In order to extract this information, one mus.t.first

separate the bottom-reflection signal from the rest of the observed

signal, and then determine how this signal is related to the water

depth.

Assuming the linear relationship (see Eq. 1) is correct, the

signal observed over shallow water may be expressed as follows:

H.	 1	 -az(sec 
e'+ sec 0z

i	 V	 ikR + k.T:R + k.^.	 p.	
e

pi	 i 1 sl	 ^ I r ..i. ^2	 {.2)i 

i

'i
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where Rpi = atmospheric path radiance 	 j

Ti = atmospheric transmittance

Rsi = radiance resulting from (water) surface reflection

R. = solar irradiance incident on water surface.
3.

p, = bottom reflectance

n = index of refraction of wafer

a, = attenuation coefficient of water
i
9 = angle of observation (under water)

= solar-zenith angle (under water)

z = water depth

This equation neglects volume scattering of sunlight from the mater

itself, which is usually small compared to the other components when

conditions are favorable (i.e., when the water is fairly clear).

The first term of this equation accounts for the scattering of

sunlight by the atmosphere; the second for the snecular reflection

of diffuse sky radiation by the water surface. The reflection of

direct sunlight from the water surface into the scanner, known as
sun glint, is avoided by restricting angles of observation to less

than the solar-zenith angle.

5incF these two terms contain no information about the water

depth, they are considered as the background signal which must be

removed before the actual depth processing is done. This background
signal,

Vbi kiRpi + k.T.Rsi	 (3)'

may be determined by scanning over deep water, where there is no

bottom--reflected signal. When this background signal is subtracted

from the data, the remainder represents the light which has been
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reflected from the bottom and attenuated in the intervening water

layer. From Equation (2), this part of the signal may be expressed

as

Hi	 1 -ai (sec 6 + sec ' ) z
AVi = Vi - V

bi - k i 
T 
i	 Pi 2 e
	 (4)

n

The depth dependence of this signal arises from the attenuation of

light in the water, expressed by the exponential factor in this

equation.

Three methods of extracting water depth from the multispectral

data have been used in the research reported, the single channel

method, the ratio method, and the optimum-decision-boundary method.

The single channel method works best when uniform conditions prevails

in bottom reflectivity and water absorption characteristics. The

ratio method yields the smallest error due to changes in the bottom

reflectivity or water quality, but is susceptible to errors due to

noise or changes in the surface--reflected signals. By using two

channels, quantitative measurement of depth is obtained at the expense

of calculating depths to the maximum depth of the second channel

which is less than the maximum depth from the best penetrating channel.

The optimum-decision-boundary technique is not limited in this way

and gives the best results when two equally penetrating channels are

used. The best method for any given application area depends on the

data quality, channels available, and type of changes occurring in

the scene.

For the single channel method, the depth z is

1	
Lb

Z- of 9.n	 (5)
0

j
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where Lo = radiance at zero water depth

a = water attenuation coefficient

f = see e + sec ¢r

e = scan angle (under water)

= solar zenith angle (under water)

Lb = bottom reflected signal

Calculation of errors with this method (see Appendix) shows that

the error due to bottom changes is independent of depth, the error

due to water attenuation changes in proportion to depth, and the error

due to noise or surface fluctuations increases exponentially with

depth. Therefore, at large depths, the latter type of error is

always predominant.

In the ratio method, the radiance is measured in two channels i

and j and the water depth is calculated using the following equation:

Lb. Lo.

	

--L 3-	 (6)

3

z	
(a -ai)f Q Lo i Lb.

where symbols are defined as before but for different spectral channels.

The advantage of this method is that in some cases,/'a pair of

channels can be found in which the ratio of the bottom reflectivities

remains constant throughout the scene, or that the changes due to

absorption differences are nearly the same for all wavelengths.

In the optimum-decision-boundary method the depth is calculated

by the following expression

1	 Lb i Lb .
z =	 2	 Lai Qn L 

+ a_Qn	 ]	 (7)
(a^+a )f	 o3.	 of

13
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In some cases by choosing spectral channels where reflectivities

are negatively correlated, the error due to changes in bottom

reflectivity may be reduced.

In this method, the error due to noise or surface reflectance

changes is smallest if the two attenuation coefficients are equal.

or nearly equal.

A total error comparison was conducted for the three methods used

and the results are given in the Appendix.
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3

DISCUSSION OF RESULTS

3.1 PASS 6: SOUTHWESTERN PUERTO RICO

3.1.1 SOUTHERN COAST

On June 9, 1973 at 15:16.30 GMT, Skylab-2 passed over the

southwest corner of Puerto Rico at a ground heading of 137.5°

(approximately southeast) at an altitude of 440 Icm. The solar zenith

angle at this time was 17.5°. Most of the southern coast was under

clear skies, but a large bank of clouds covered the center of the

island and extended over parts of the west coast. Photographic

products and screening films were received at BRIM in late 1973,

and a test tape containing six c"annels of data over the southern

coast only was received early in 1974.

Upon receipt of the magnetic tape, the data was read and copied

onto a new tape in a format compatible with the programs developed at

BRIM for processing multispectral scanner data. An initial digital

map was then made in order to locate line and point numbers of recog

nizable features on the map. Some analysis was also made of data

quality, and band 3 (.50-.55 pm) was identified as the most useful

channel from the point of view of water penetration and noise.

Some of the photographic and scanner imagery in this site are shown

in Figures l and 2. Figure 2a shows good cater penetration while 2b

in the near infrared region shows only land/cloud and surface water 	
i

boundary. Figure 2c gives the thermal image f'or.the same . area. No

correlations were seen in this image between off-shore currents and

shallow coastal zones either because no temperature gradients

existing or the di€ference.in temperature sensiit1:0-ty of . 5-192 was..

too large for subtle differences to be detected. Color coding to

improve contrast also dial not show any detectable gradients.

Working on the assumption that the bottom reflectivity and

water quality were fairly uniform throughout the scene, (also
15

t:
I



LERIM
FDRM ERLY WILLOW RLlN LA @pRATORIES _ YNE UNIV ER SI;Y OF MICHIGAN

I

FIGURE I. S-190B PHOTOGRAPH OF SOUTHWESTERN PUERTO RICO
(PASS 6 - JUNE 9, 1973)
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FIGURE 2a. PROCESSED S-192 IMAGERY FOR SOUTHWESTERN PUERTO RICO
(PASS 6 - JUNE 9, 1973) BAND 3: 0.50-0.55 jim
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FIGURE 2b. PROCESSED S-192 IMAGERY FOR SOUTHWESTERLY PUERTO RICO

(PASS 6 - JUNE 9, 1973) BAI D 11: 1.55-1.73 µni
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FIGURE 2c. PROCESSED S-192 IMAGERY FOR SOUTHWESTERN PUERTO RICO
(PASS 6 - JUNE 9, 1973) 13AND 13: 10.2-12.5 Am
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confirmed by inspection of S-190B photography) an attempt was then

made to associate data values in the visible band 5 with depths

indicated on Coast and Geodetic Survey Chart 901. (A tide.table

was also consulted, and it was. found that tidal variations were

on the order of one foot . in this area and could thus be neglected.)

The digital signal observed over deep water was found to be approxi-

mately 68 counts. Subtracting this value from the shallow-water

signals and plotting them versus depth on semi-log paper, the

attenuation coefficient of the water was found to be about .08m 1.

This value corresponds with published values [1] . for mean oceanic

water.
The relationship thus established between data values and water

depth was used to generate a hater .depth map .(Figure 3) for the }

southern coast of Puerto Rico from Cabo Rojo to Punta Montalva.
i

Figure 4 shows a corresponding portion of Coast and Geodetic Survey
1

Chart 901...

Several features of this depth map deserve comment. First,.the
r	 1i

curved streaks running through the data are caused by low frequency

noise. In an attempt to reduce this noise, the data was smoothed 2

lines x 2 points, so that each pixel in Figure 3 actually represents

-the average of four original pixels. However, a significant amount
1

of low--frequency noise_ remains, and. cannot be removed without further

degradation of spatial resolution.

Second, although there appears to be fairly good general

agreement between the digital depth map and the Coast and Geodetic

Survey Chart, there are a number of anomalous areas where the-water

depth is overestimated, notably to the east of Cabo Rojo and ;Arrecife 	 f

Margarita. It was at first assumed that.these were due to . the presence

of dark bottom materials, and an attempt was made to remove the

anomalies using the ratio method described in the Appendix. This	 i

i	 .20	
-
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attempt was unsuccessful, and it was finally concluded that the anomalies

were caused by ringing in the processed S-192 data. This ringing is
clearly present in the processed S-192 imagery shown in figure 2a and is
not present in the 5-190 photography, 'The anomalies always occur in the

data immediately behind bright areas, such as Cabo Rojo and Arrecife

Margarita, (scan lines run from loner left to upper right in the portion

of the data shown in Figure 3).

Because of these data problems, no detailed analysis.of the

accuracy of the depth map (Figure 3) was attempted. However, the

8 fathom (15 meter) ledge southwest of Cabo Rojo can be seen on the

depth map, indicating a substantial improvement over the 9 meter.

penetration depth reported for LANDSAT data [4].

3.1.2 WESTERN COAST

In September 1974, a set of data tapes .was .received. for the
same pass over Puerto Rico after undergoing revised signal processing

procedures at Johnson Space Center. This set contained all 22 channels,

and the noise in some of the channels (notably band 2) was less than

that oex the first tape received. The new tapes also contained data
,from about 10 seconds earliar, thus including . parts of the western
coast of Puerto Rico. This was important because the data collected

just before the large could bank over Puerto Rico contains much less
low-frequency noise 'then the subsequent data (apparently the noose was
caused by the high signal received over the clouds).

After examining various parts of the data set it was decided
1

to process the area off the West Coast of Puerto Rico. This area
i

includes shallow water features (indicated as Escollo Negro on the
I

Coast and Geodetic Survey Chart) and appears to have:less.noise than:..

the, - southern coast data. A large past of the Crest coast is obscured
by clouds and by a large. dark plume.extending .outward fro.m..Mayaguez.

23	
,.
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I	 This plume has been tentatively identified as industrial waste

products (possibly including fish oil and/or molasses) from plants 	 i

J

	

	 near Mayaguez. Within the designated area, the plume follows the deep

water boundary quite closely and, therefore, does not greatly affect

j	 the depth chart.

Processing of this area began by selecting a set of points

where depths were indicated on Coast and Geodetic Chart 901. Data
values in bands 2 and 3 at these points were then extracted from the

tape. The deep-water signal Vs was subtracted from each data value

and the results plotted versus depth on semi.--log paper (Figure 5).

A linear regression analysis of this data yielded an attenuation

coefficient of approximately 0.05.m l for both bands, in agreement

with minimum oceanic values published in the Smithsonian Physical

tables.

A digital depth chart was then produced for this area, using

the optimum-decision-boundary techniques (Section 4 and Appendix) with

the input parameters..genera.ted by the `foregoing analysis. This chart

is shown in Figure 6, where the symbols correspond to the depth ranges

f in Figure 3. The white area in the upper right-hand corner is the tip

of Punta Guanajibo. A portion of Coast and Geodetic Survey Chart 901

covering the same area is reproduced as Figure 7.

Next, an .accuracy check was .made by comparing depth values

calculated by the optimum--decision-boundary technique with values read

from the Coast and Geodetic Survey Chart. Both sets of values are

plotted in Figure 8`along line 1450 taken from the digital depth map
i
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difference between the calculated and observed values along this

line is approximately 3.8 meters.

The greatest difference between calculated and observed depths .

occurs in the narrow channel running through the Escollo Negro (at

approximately point 384 in Figures 8 and 9). .Neglecting the possibility

that this channel has actually filled in since the depth measurements

were made, the error here is probably due to slow time-response

characteristics of the S-192 sensor. Calculated depths in the Canal de .

Guanajibo are also smaller than the measured values. This difference

is perhaps due to an increased surface-reflected signal due to nearby

clouds. Other sources of error include changes in the surface-

reflected signal due to sea-state conditions, and changes in water

quality or bottom reflectance.

Errors due to changes in water quality or bottom reflectance

can be minimized by the use of the ratio method 141, but only at the

expense of increased error due to changes in the surface-reflected

signal. For the present case, the minimum overall error was obtained 	 i

by the use of the optimum-decision-boundary technique; chiefly because

of the relatively poor data quality in'the red band (band 5) which is

used in the ratio method. A more complete discussion of the errors
i

,inherent in each depth calculation technique is included in the 	 ?
5

1

Appendix..

The calculation of depth accuracy is hampered by lack of precise
i

knowledge of the location of the depth transects. In addition, some

discrepancy is expected due to the difference between the area resolution.

of Skylab data and that of the sonar data which was used in compiling the

Coast and Geodetic Survey chart. Furthermore, Coast and Geodetic Survey 	 i

data were taken at a different time than Skylab overpass and some bottom

changes due to currents, wave action, and growth of sand bars may have_

occurred.

_	 ^	 1
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There is need for a well conducted experiment where depths are

obtained simultaneously with the overpass of the satellite and the

position accuracy of. the depths measured can be accurately related

to the pixel elements of the MSS image as stored in the CCT's for the

scene.

3.2	 PASS 14: CENTRAL LAKE MICHIGAN SHORELINE
In order to test the technique under a variety of water

transparency conditions, a second test site was chosen where the

attenuation was greater than that encountered near Puerto Rico.

Data tapes from Skylab-3 pass 14 over Lake Michigan were

received at BRIM in October 1974. Data was taken.over the eastern

shore of Lake Michigan during this pass at 15:01:30 GMT on 5 August

1973. Skies were clear over the Michigan shoreline and the solar

zenith angle was approximately 45	 The S-190B photography and

screening films for this area are shown in Figures 10 and lla and b.

Notable features on the lake include a white streak along the

shoreline on the lower half of the frame. This streak bears a

striking resemblance to clouds on the S-190B photography, but its

absence on the thermal imagery (Figure llb reveals it to be a

sediment plume in the water.

Very little shallow water is visible in the scene because of
the rapid drop--off in water depth along the shoreline... However, an

enlargement of S-190B photography (Figure 12) of the shoreline near
Pentwater, at the center of the frame, shows a series of two or three
sand bars parallel to the shore. The water seems to be fairly clean in

this area because of its protected position between Big Sable Point

(to the north) and Little Sable Point (to the south).

i
i
e

e
i

9

a
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FIGURE 10. S-190B PHOTOGRAPH OF EASTERN FAKE MICHIGAN (PASS 14 - AUGUST 5, 1973)
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FIGURE Ila. PROCESSED IMAGERY FOR S-192 EASTERN LAKE MICHIGAN
(PASS 14 - AUGUST 5,1973) BAND 3: 0.50-0.55 µm

33



^	 E	 I	 !

LE 9 im FORMERLY WILLOW Rul. LARORATORIE S, THE UNIVERSITY OF MICHIGAN

FIGURE 11b. PROCESSED IMAG%RY FOR S-192 EASTERN LAKE MICHIGAN
{PASS 14 - AUGUST 5, 1973) BANS} 13: 10.2-12.5 Ani
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FIGURE 12. ENLARGEMENT OF S-190B PHOTOGRAPH SHOIWING MULTIPLE SAND BAR
STRUCTURE ALONG THE MICHIGAN COASTLINE

35

1JEMDUCENLITY OF THE
®RIf SAL PAGE IS POOR

{



WILLOW RUN
	 OF MICHIGAN

These sand bars have dimensions only slightly.larger than

the S-192pixel size (determined as 70 meters by a comparison of line

and point numbers with a topographic map), so they are not . resolved

consistently in the scanner data. At certain locations, however,

evidence of the sand bars can be seen in the scanner data by averaging

several pixels together parallel to the shoreline. This was done

for a transect approximately I mile south of Pentwater, Michigan, .

where the scan lines happened to be exactly parallel to the.shoreline.

Scene points 535 through 538 were averaged together on a line-by-line

basis for lines 3577 through 3590 in bands 3 and 4 of the S-192 data.

The results, plotted in Figure 13, show a peak signal at lines 3579,

3582, and 3584. These are at distances of approximately 560, 350,

and 210 meters, respectively, from the shoreline (line 3587).

In order to confirm these distances, the S-190B photographic

transparency was examined using a Jarrell-Ash scanning densitometer.

The instrument.was set to scan along the same transect south of

Pentwater, at a rate of I millimeter per minute. The aperture was set

at a size . equivalent to .015 mm by .125 mm on the film, the longer

dimension being perpendicular to the scan direction. This corresponds

to a spot size of approximately 14.5 by 120 meters on the ground (the

scale of the transparency was found to be 1;967,000 by.d.irect measure-

ment and comparison with the topographic map). The output from the

densitometer, in units proportional to the film transmission, was

recorded on a strip chart moving .at .3 inches per minute. Each half-

inch division on the chart thus corresponds to a ground distance of

about 160 meters . (same .horizontal scale as .F.igure: 13)
The densitometer scan. (Figure 14) shows three peaks at locations

corresponding very closely to the peaks in the S7192 data. Assuming.

these are sand bars, the water depth can be . calculated at each sand b^.e:r

if the water attenuation coefficient is known. Unfortunately, no

j 
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ground truth data was collected at this time of the overflight.

However, an estimate can be made by using the attenuation coefficient

a = .055 f t_l reported by Brown at al. [31 for hake Michigan water at 	 3

the wavelengths corresponding to band 3. The equation relating signal

to .depth is:

V = Vs + Vo e--afz

where V = signal at depth z in band 3

Vs = signal over deep water (z = °°)
Vo = bottom-reflected signal at shoreline (z = 0)

a = water attenuation coefficient

f = sac 0 + sec

0. = scan angle (under water)

= solar zenith angle (under water)

Using the observed values V s = 55, Vo = 15, and f = 2.42 from the S°-192

data, the depths calculated for Bach sand bar are 13.4 ft., 10.0 ft., and

8.3 ft., respectively.

No direct depth measurements were made in this area at the time

of the overflight. However, sand bars are common in this area, and

Lake Survey Chart 77 shows two sand bars south of Pentwater (Figure 15),

at distances; of about 210 and 360 meters from shore. The depths are

indicated as about 6 and 10 ft., respectively, in fair agreement with

the calculated depths. No third sand bar is shown on the Lake Survey

Chart, but its existence is possible since they are known to form and

disappear quite rapidly due to wave action.
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3..3	 PASS. 54: EASTERN PUERTO RICO

3.3.1. ESCOLLO de ARENAS

In the Lake Michigan data set, the high-resolution

S-190B photography was used to confirm the presence of very small

features just marginally within the resolution capability of the S--192

scanner. An opportunity to attempt to use the photography in a more

quantitative fashion was provided by a second data set collected over

Eastern Puerto Rico during Skylab Pass 54.

Skylab-4 passed over the southeast corner of Puerto Rico at

16:43:30 GMT on 30 November 1973. The solar zenith angle was

approximately 42° and skies were partly cloudy. Some shallow water

features are visible on the photography (Figure 16) and screeni7 tilm

(Figure 17), the most prominent being a long narrow shoal extending

upward from the west end of Isle de-Vieques. This shoal, thL Escollo de

Arenas, is indicated on Coast and Geodetic Survey Chart 904 (Figure 18),

although with a slightly different shape. The minimum depth indicated

on the chart is approximately 2.5 meters.

In order to compare water depths with S-192 data values and

S-190B film density, a transect was drawn through the center of

Escollo de Arenas and depths were read along this transect from the

Coast and Geodetic Survey Chart. The results are platted in Figure 19

(top curve) at.a'scale of approximately 1.6 km per inch. Data values

along limes 2184 and 2185 of the scan line-straightened S-192 data

(band 3) were then read from the magnetic tape on ERIM's PDP-8

computer. These two lines were averaged together on a point--by-point

basis from points 900 to 1030 and plotted in Figure 19 (center curve)

at a scale of 25 points per inch.

Finally, the S-190B photographic transparency,was placed in the

Jarrell-Ash densitometer and the same transect was scanned. at 5 mm/min

with the aperture set at .025 x .125 mm. In order to make the best

41
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FIGURE 16. S-19013 PHOTOGRAPH OF EASTERN PUERTO RICO
(PASS 54 - NOVEMBER 30, 1973)
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FIGURE 17, PROCESSED S-192 IMAGERY FOR EASTERN PUERTO RICO
(PASS 54 - NOVEMBER 30, 1973 BAND 2, 45-50 jLm)

43

^^GIXAL PAGE IS
OF PppR IQUALrry



-.

^^IM
CORM ERLY WILLOW RUN LA BORA70RIE5. THE UPiIV ER$f7Y o p MICHI6AH

.rot un Om	 - ^.

^^ytj:d. 1..,52 ^ ,r' •..' 	 10

^^ SC ,`.' 6 V̂̂  7 a

7	 a	
yt^z J.. 4',	 9!

a 5A J. r! 5^ !.. Sl

6. 64
7 '• 54L	 a

7 7

Si

-PPOHIBITED 7 	7
WING GROUND
note A) 205.80 a

r	 9
Q	

9

6
8

6	 $

8

/ 0 

4	 fi ..., ^4,......	 $54 A 3 `	
5l 7	 8	 8	 fi^ 1 B

	

1
: .':r

.....	
51	

5;	 y 
B	

8	 iR '4

Fe 

2.4,e
	 :ii	 Ard

.; r,R^	 5.	 ? u 61	 ^	 -,^ltr Ay!	 -•	 7 R A D A S R O SE L
. ,I	 5+	 a,i	 51	 7	 6^	 R G 4sm PA	 I

3% 4}	 7	 5^	 7	 6 ^' '	 `	 62	 Re 1i74r „7.. 7	 1 And

9 5^ Zd

	

6. G. I.N . 6;	 T	 of	 61	 EXPLOSIVES ANCH

5 ^Si	 4i 6^ T	 5i5l1	 `w* ^• 5	?	 7	 ^^0.2^5	 6: 6

	

a.
e	 ^^"	 Ord	 6}*"	 y •.	 S^

7PROH !TE	 51	
a	

6s	 61 ,	 ita	 ^w} ......4 .	 61 (see note A) fii 51^
D5	 S.	 =	 6v''.	

lie
I}

UD
,A	 6t 63N(; GRO	 g	 \ 6` 52 T	 53	 ;w''	 o	 /t e
	 51 5t I	 :"r: 6 I

'k lsee note A/H	 7	 5a	 * \	 ., q	 /	 5.	 4a
.8205 80 6*	 7 _	 53-	 ^' 13	 : ^^

" I 	 Sk	
^. .

	
lordrd	 -	 \^\3ti'•, , X's	 T - 2i*r W" •^r. -w.:+Yi`-2

Sit IIMSi	
9	

9	 Ard	 `	 51	 `'y ` ^F5''	 t 11 RESTRICr£R.RREA I} 
I

rl	 !^-^	 ... i,	 7	 a	 . -1	 -•'_	 ^=:` I	 R a +	 I I	 I	 A)(sce Aprr 

	

II`	
'	 st 	 3;

	

9	 7 5i*  
1	 12	 101	 fi 

likh'-.	 II i u	 'Md	
/ 5. 

5i	 ^h	
1	 Tank,71	 `	 \

II	 14	 II	 61	 ^.	 .^

r̂9 22.!a•' 	141 . 13 w'g^
t2 	 64	 64
 t7 J IIEXP }SlVES Al1lCH F 5; .^ ` * Be(aa ^;! /^^; \	 ,^

i3	 , . ..•	 13 r s	 9	 AJ E	 <a +^	 \ ^ _ 1 j	 I	 y^^i.^•
f 13

2 	 5: 110.245	 62
12	 14., 7sYr61	

IZ^.	 7	 isr	 be^Plta
u

•^	
9	

_101	 (sbf nWe A) 5t	 ^ 	 '4.1^`^•	 ^^.	 ^YICRO Tk
155	 f6	 9 	 5}	 ^.

	170 S' 13	 19	 IS	 I,^ _t ^^.^10}	
'!7	

16	
I'34 _ .-

;101	 , `6 i• *y w't	ks[Rf
2 DANGER AREA	 4.23c?	

1'	 14	
^	 15	

I^ .,; •::;:: ±• •	 ..,^16^ 15 9 -. ^^. _..	
h.q I ♦ 	 ^` . 14	 5'' v`r;4rn ..

FIGURE 16. PORTION OF COAST AND GEODETIC SURVEY CHART 904, SHOWING
ESCOLLO de ARENAS

5f 8

A,d 9

8
7

s
s
c PA

II

44



LE R -Im- -	 FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

Le

x
E-

En
E-4

z

^D

0

L)

N

c1

z

0

rn
rn
z

rH

---- -

O
------- -- -- ---

AA

—C3

FIGURE 19. COMPARISON OF WATER DEPTH (TOP CURVE), S-192 DATA VALUES
(CENTER CURVE), AND S-190B FILM DENSITY (LOWER CURVE) FOR TRANSECT

THROUGH THE ESCOLLO de ARENAS. (PASS 54 - NOVEMBER 30, 1973)

45



comparison with band 3 of the S-192 data, a standard green filter (#58)

was placed over the light source in the densitometer. The output from

the densitometer, expressed as percent transmission,was recorded on

a strip chart moving at 3 inches/min. The resulting trace, reproduced

in Figure 19 (lower curve), therefore,.has approximately the same

scale as the depth transact.

Most features appear to be correlated in all three curves,

although the densitometer scan shows a banded structure inside the

shoal which is not resolved in the scanner data and is not indicated

on the depth chart. An approximate relationship among water depth,

band 3 data values, and filtered film transmission obtained from this
0

comparison is shown in `Fable 1.

3.3.2 AVES (BIRD) ISLAND
a

Although the S-192 scanner was turned off shortly after

passing Isle de Vieques, S-190 coverage extended several hundred.

kilometers further southeast. Aves (Bird) Island, which is located

approximately 330 km southeast of Puerto Rico in the Caribbean, was
covered on S-190B frame 90--066 An enlargement of this frame is

shown in Figure 20. A portion of Naval Oceanographic Chart 25161,

compiled from British surveys between 1840 and 1850, is shown in

Figure 21 for comparison.	 ?i
A densitometer scan was also made across Aves Island at 1.5 mm/min

with the green filter in place. The results of this scan are shown in
Figure 22, A shelf (light blue tone) is observed to extend nearly one

kilometer to the southwest of the island (to the left on Figures 20 and
22) . The .film transmission at the .edge of this shelf is about 10 per- .
cent, corresponding to a depth of about 6 meters according to Table 1.
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FIGURE 20. ENLARGEMENT OF S- 190B PHOTOGRAPH SHOWING AVES (BIRD) ISLAND
(PASS 54 - NOVEMBER 30, 1973)
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CONCLUSIONS

The examples discussed in this report indicate that space
1

acquired imagery can be an aid to the location of shallow water features

and under certain conditions, bathymetry can be estimated. The 5-1905

photographs provide greater spatial resolution . than either 5-192 or

LANDSAT MSS, but multispectral scanner data is more useful in dis-

tinguishing underwater features from surface phenomena and in

providing estimates of water depth.

Significant improvement in depth penetration and spatial

resolution over LANDSAT-1 data has been noted in Skylab scanner and

photographic data. Skylab sensors have better band '.cation, band-

width, and gain characteristics than LANDSAT--1. However, the Skylab

scanner has been plagued with noise and poor response characteristics,

which have in some cases rendered the data less useful than LANDSAT--1

data. Attempts to use ratio depth processing have been less

successful with Skylab than with LANDSAT data because of the noise in

band 5. Methods of reducing noise by smoothing are less successful

because of the conical scan configuration. However, the striping

problem in LANDSAT due to differences-in calibration of the six sensors. 	 R

is not present in Skylab.

The longer line length of Skylab data (1038 points as compared 	 {

with 810 points in LANDSAT) and the larger number of data channels can
	 a

cause some problems in data processing due to the limited storage
	 i

capacity of some commonly available computer systems..

Coordination of data products and determination of orbital and

sensor parameters has been more difficult with Skylab than with LANDSAT

data. Despite these problems, however, Skylab has generated a large
amount of useful data which could be exploited by the techniques

reported here. They can . cont.ribute to the general store of hydro-
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'	 graphic information and solve specific problems where an up-to-date

knowledge of shallow water bottom topography over a large area is

'	 needed.



i
I

A

a
f 	 l

:Eq IM FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF M1C!•gGAN

5

RECOMENDATIONS

Since the potential for remote bathymetry with the use of passive
multispectral scanner from aircraft [1-31 and spacecraft has been

demonstrated, further development and work should be aimed at

improvements of the technique and in optimizing system parameters

for best penetration and most accurate depth determinations.

Skylab data supports the use of blue/green wavelengths for water

penetration. The success of narrower band channels is also demon-

strated in the improvement in water penetration of Skylab band 5

(0.50-0.55 um) over that of band 4 of LANDSAT '0.5-0.6 um).

Experience with low-altitude data [1-31 has indicated the optimum

channels to be used with the ratio method fo •_ determining water depth

as 0.55 - 0.58 pm and 0.58 -- 0.63 } gym. These wavelengths are probably

not optimum for space platforms, because of the larger atmospheric

effects and the lower signal-to-noise ratios obtainable with satellite

systems. Nevertheless, the use of two or more bands for determining

depths should be incorporated in future satellite systems because of

the increased information available and also because of the increased

potential for signal processing with two or more bands, e.g., ratio,

subtraction, correlations, and averaging.

The use of to or more control points (where the depth is known)

in a given scene for aiding in calculating water parameters such as

water attenuation and bottom reflectance could be incorporated in

future satellite operations. Either ship data taken in the day of an

overpass or transmitting beacons from moored areas could provide the

necessary ground control. information. As a minimum, such information

would consist, of the water depth at the time of overpass. Additional

measurements of the water attenuation and solar irradiance would also

be useful
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Further theoretical formulations would be helpful on the effects

of atmospheric attenuation, surface reflection, light scattering in

water due to suspension, and changes in bottom reflectivity. These

theoretical formulations would help in defining more precisely the

optimum spectral intervals and band location for future MSS. Particular

attention should be afforded to sensors with adequate signal to

noise ratios and proper dynamic range of the transmitted signal for

best measurements use.
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APPENDIX

ERROR ANALYSIS

Three methods of extracting water depth from multispectral data

have been mentioned in this report: the single-channel method, the

ratio method, and the optimum-decision-boundary method. All three

methods are subject to errors when the characteristics of the bottom,

the water, transmission, or the surface reflection properties

change. The magnitude of these errors are calculated for each of

the three methods in this appendix. The ratio method yields the

smallest error due to changes in the bottom and the water quality,

but the largest error due to noise or changes in the surface-

reflected signal. In addition, the ratio method requires the use of

two channels. which are relatively widely separated in wavelength,

such as a green channel and a red channel [3]. Thus the maximum

depth is limited by the penetration depth of the least penetrating

channel. The optimum-decision-boundary technique has no such

limitations on channel selection, and in fact gives the best results

when two equally penetrating channels, are used. The best method

for any given application area then depends on the data quality, the

channels available, and the type of changes occurring in the scene.

In this section, analytical expressions are given for the error

(AZ) in the calculated depth due to changes in bottom reflectance

.(Apb) and water. attenuation coefficient (Am), and to errors in the

estimation of the bottom-reflected signal (ALbi). The Latter errors

may be caused by system noise or by fluctuations in the surface-

reflected radiance.(Zs) or the atmospheric path radiance . (Lp). These

expressions are then evaluated. for an arbitrary set of conditions and

the..total error is plotted versus depth fcr all three methods. This

plot is. not intended to indicate the actual error in any of the
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0

situations described in this report, but is included only to illus-

trate the relative errors given by the three methods.

A.1 SINGLE CHANNEL METHOD

in our analysis, the total radiance observed over water is

assumed to be the sum of three components.

L= Lp +Ls +Lb	(A-1)

where the .first two components, Lp, the atmospheric path radiance,

and Ls, the surface-reflected radiance, are assumed to be constant

throughout the scene. The third component, Lb , the bottom-reflected

radiance, has the following dependence on water depth Z:

Lb = L 0 afz	 (A-2)

where Lo = radiance at zero water depth,

a = water attenuation coefficient,

f = sec 6 + sec,

9 = scan angle (under water)

solar zenith angle (under water)

Inverting equation (A--2), the water depth using a single

channel is given by:

L	 1

The radiance at zero water depth., L° ; is directly proportional

to the bottom reflectivity pb . A change Apb in the bottom reflecti-•

vity,.therefore, leads to an error in the calculated depth of



i
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^f

aL	 Ap
j	 _	 1	 0	 _ 1	 b1	

Alb r of Lo 8pb Ap
b - of 

pb	
(A-4)

c
I

Likewise, a change in the attenuation coefficient a will yield

an error

Aa	
Aa

	

AZ =	

Qn(Lb

L 	
z	 (A-5)

a a2f	 o

If there is system noise or if there are fluctuations in the

first two components of equation (A-1), the bottom-reflected signal

Lb will be incorrectly measured. This error may be estimated by

calculating the standard deviation of the radiances measured over

deep water. For an errorLb the corresponding error in the calculated

depth is

AZ - 1 AL - 1 ALb e of z

n of L	 of Lob	
(A-b)

Note that the error due to bottom changes is independent of

depth, the error due to water attenuation changes is proportional

to depth, and the error due to noise or surface fluctuations increases

exponentially with depth. At large depths, therefore, the latter type

of error is always predominant.

A.2 RATIO METHOD

In the ratio method, the radiance is measured.in two channels,

i and j, and the water depth is calculated using the following

equation:
a
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L L
__	 1	 bi of

Z	 (a -a,)f kn 
L L (A-7)

i	 of bj	 1
9

If the bottom reflectivity in channel i changes by Apbi , and

that in channel j changes by Ap bj , the error in the calculated depth 	 j

is

1	 Apbi A_ _^
AZb - (ay a^)f	

pbx - Pb^	

(A-8)

i

The advantage of this method is that in some cases a pair of 	 3

channels can be found in which the ratio of the bottom reflectivities

remains constant throughout the scene, even though the reflectivities

themselves may change. In such cases the error given by equation

(A-S) reduces to zero.
v	 '^

The error due to changes in water attenuation is given by:

Am, - qa.
AZ 1 Z	 (A-9}

a	 ai - a j

where Au. and Aa are the changes in the attenuation coefficient in
J

channels i and j. If these changes are.due to variations in con-

centration of _a substance in suspension which does not exhibit 1

significant spectral variation (e.g., sand), the changes in the i

attenuation coefficient are nearly the same for all wavelengths.

In this case, the error from equation (A--9) again reduces to zero. i

..Finally, the error due to system noise or surface fluctuations .

is

2	 2 2a.fz .112

AZ 	
1 ..	 A'bi.	 e2ai fz + Ate_ e 3	 (A-10)

n	 (a a)f	 L	 L
i-	 of	 of
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which is larger than the corresponding error using the single

channel method.

A.3 OPTIMUM DECISION BOUNDARY METHOD

In this method, the water depth is calculated as follows:

	

L	
HLb

	

bi
Z (a 2)f ai Qn L	

jQ.n 	 (A-^11)

The error due to changes in bottoms reflectivity is given by:

Ap	 Ap
1	 bi	 bj	 (A-12)}	 Zb T (ate) f ai pb^ + aj pbj

I

This error may be reduced by choosing two channels where the bottom

reflectivities are negatively correlated. This is not possible for 	 4

all bottom types, but may be possible for some types, such as green

vegetation and sand.

The error due to changes in water attenuation is given by:

a Aa + a Aa	 i

AZ	
i i	 j Z	 (A-13)a	 ail  + 

a 2

It is not possible to reduce this error to zero, because changes

in the attenuation coefficient in two channels are always positively
-	 9

correlated. If the attenuation coefficient changes are the same in

both.channels, this error: is intermediate between the corresponding

Ì	errors using the single-channel method on each channel.
I

The error in this method due to noise or surface reflectance i
changes is
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pL	 2a.fz 	 2a.fz
. Az =	 1abll e+ a. 2

 ( AL
,.1 e	 (A-14)

n W+ a2) f 	 i Loi / 	 Loj J

I

	

	
^

This error is smaller than that for the single-channel or ratio method

j	 if the two attenuation coefficients are equal or nearly equal.

3
i

A.4 TOTAL ERROR COMPARISONi

These expressions were evaluated, and the total error calculated

using the equation

(AZ) 2
	

(AZb ) 2 + (Aza.) 2 + ^Az^) 2	 (A-15)

for clear oceanic water at 0.55 pm (channel i) and 0.60 Um (channel

with a 20 percent change in bottom reflectance and attenuation

coefficient. A noise figure of 2 percent was used, which is less than

the noise observed in our S-192 data, but is approximately equal to

the noise we have seen in LANDSAT data (i.e., signals over deep water

vary across 4 digital counts).	 9

The smallest error at very shallow depths is obtained by the

ratio method. However, the errors using this method increase very

rapidly .with.depth. At large depths the least error is obtained using.

the single channel with the lowest attenuation coefficient. The

optimum-decision-boundary method reduces the error when two channels

with nearly equal attenuation coefficients are used. However, when

the two channels are widely separated, as in this example, only a

marginal improvement over the boast penetrating channel is obtained.

'i
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FIGURE 23. COMPARISON OF TOTAL ERROR FOR THREE DEPTH ALGORITHMS
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