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A THEORY OF SEA SCATTER AT LARGE
INCIDENT ANGLES

A K, Fung
H. L. Chan

ABSTRACT

A theory for sea scatter at large incident angles (82230%) is developed using
a two~scale roughness model. The essumed small scale waves are to satisfy the smull
perfurbation assumptions and the large scale waves to satisfy the physncal optics
opprox:mahons. Measur:.d sea surface slope density and sea spectra reported by

" oceanographers are incorporated info the theory fo explain effects of incident angle g

“polarization, frequency, wind speed and anisotropie characteristics of the sea__s_urface. E

It is observed that the increase. of the backscaﬁering coefficients with the wind
is due primarily to the growth of the sea spectrum and, fo a Iesser extent, to the inter~
uuulcu m.m'cmu the Two scales of :uugnllcaa. This tnieraciion errr..cr 5 aiso the cause

of the shift of the minimum of the scattering coefficient around the crosswind direction

towards the downwind direction. The. difference between the upwind and the crosswind_ L

- ohservations is the result of the anisotropic characieristics in the sea speci'rum, whlle
the dlfference berween the upwmd and downwind observations is the consequence of
“the skewness in the slope probublhty density function of the large scale waves, Com=

parison with some experimental dafa shows satisfactory dgreements, -
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1,0 INTRODUCTION

It has been generally cz'greer:!'l"5 that the seattering properties of the sea
surface can be explained reasonably well in terms of a two=scale roughness mede!
where the small scale waves are assumed fo satisfy the small perturbation assumptions
while the large scale waves are to satisfy the Kirchhoff approximation. The basic
~ approach is fo use the first order result of the sinall perturbation method fo cempute:
the scattering coefficient due to small scale waves and to account for the tilring
effoct of the large scale waves by averaging this scattering coefficient over the slope
distribution of the large scale waves, This averaged scattering coefficient is such
that for near grazing incidence the vertically polarized scattering coefficient so
- computed is always larger than the corresponding horizontally polerized coefficient,
- Since recent experimental data™ indicate that there are cases where the converse i,
 true, it Is clear that such a theory may not be applicable near grozing incidence. |

) How:avar, for incident angles beiWeen 30° and 80° the theory is expeci'ed to be valid,”

2.0 THE SCATTER THEORY

| “Many authors! 7278 have shown thet for a slightly rough surface which satfsfies
* the small perturbation assumption, the backscatiering coefficient is given by (Figure 1) -

Ty (e, 5) = sx“a IOC.ppl?'W(@ ¢>> o
whate for hbr’izonfdl"'fpol’ari'iafion ; p:h and

: ahh" cos 9 |Rh|

o Rh is the Fresnel reFiecrlon coeffucxeni' For honzonfal polarlzqhon cmd for Verhcal ke
| polorlzchon, p=v und ' '

. Rv cos G + (k' kz)_ 'I\.'_zsi.r.f2 [ (zk'z__)_ |



where Ry and Tv are the Fresnel reflection and transmission coefficients for vertical

- polorization, In a, ¢ k 1s the wave number in air; k' Is the wave number in sea water
and € is the angle ofP incidence, W(8,9) is the norrnalized anisotropic sea spectrum
and or.i‘q_m the variance of the small scale sea waves, To include the tilting effect of
the large scale waves, it is necessary’to average o over the slope distribution

(os viewed by the receiver) of the lorge scale waves, Thus, the incident angle in (1)
becomes the local incident angle (denoted by 8' in (2)) and the averaged scattering
coefﬁclent ts Figure 1)

o
pp (O ,9) ff Pp(e' )% @ Zy)ded:ay ?
: ~00 ~cot 8 . .
Note that the local incident angle €' is o Funchon of the mcidenr angle 8 and rhe
surface slopes, Zx and Zy, In (2) Pg (Zx', Zy") is the slope distribution of the large
scale waves as viewed at an incident angle 8 and is defined in the prime coordinates
* whese x' ~ axis is'parallel to the wind direciion, It is assumed that the plane of in=
~cidence is the XZ plane and that the angle between the x ~ axis and the x' = oxis is
$ so.that an upwind observahon occurs when ¢ = 0, _ | |

It is important fo note that the probability of oceuirence ot a slope on a gwen '

“surface varies with the direction of observation, To illustrate this point consider a - -

~piece of one~dimensional surface depicted in Figure 2,  The probability of occurrence
for slope Zx,, when viewed from an angle @ is

- A . .
N T

" where 8= 2 ¢cos8 - £5in8 and ?13 are unit normal vectors fo the surface, On the other
hond, it becomes - ' :




when viewed from the vertical, Henee,

Po (sz) = 'l'_' 9 (cos@ + sz sing) '.P (sz)

Since the total probability must be cne, the ratio L/Le can be determined by this
condition, Similarly, for two~dimensional surface, the slope probability density function
viewad from an angle 8 can be shown to relate to the slepe probability density func~

FHon viewed from the vertical o5

Pg (Zx', Zy) = (| + Zx* tang) P (Zx', Zy') : @
Alremprs fo measure P(Zx! Zy‘) for fhe ocean surface were made by Cox and

Munk ‘and for a slick sea surFacc (one whlch excludes small scale waves) it wes
' .reporfed that o

F('Zx‘,Zy'). exp [- 2#:2. Zylg ]
2 2

o - 22
2]'{0'" ac Ub 2 UC.

P(Zx* Zy') =

where

.c (Zy'2 |)le -_ Cos(Zx'3 K SZx')

| F(Zx  Zy')= 1 2 z /o, 5. \ay, Oy /
Stz +3) LG (my? ) (2
24 \04 70.::}.' L4 el U2.

+£:.3£- (2341_6 'Zx'2+3>' R . _T
24 \a,* = of /) R




Each constont in F(Zx',Zy") was reporfed by Cox and Munk to lie within a
range of values, Further study by ether oeranographers may lead to more refined
estimates. For the purpose of illustration only one value is ¢hosen for cach constant
as follows: |

0, 20,007:+0,78X10" U
0, 20,0050, 84X10°3y

Ci=0  Cos=m0,05  Cio=0.36
Cz'z_‘=0.1 Ca{-‘=0.26

~ In the expressions for (J'U2 and 6%, U is.the wind speed in meter par second at an |
altitude of 41 feet above the sea hor:zon. The relations between the surface slopes

in the prlmecl cmd unprimed coordmutes are as follows (see Figure 1):

2

Tt = 7x cosff’ + Zy sing
Zy'= Zy cos¢p = Zx sing

3.0 THE SEA SPECTRUM = -~

| The spectrum for the small scalu waves to be used in this pcper is & modification
of Pierson and Stacy's sea spac‘rruma. The major change proposed by Pierson’ is that -
their speciium expressmn for the capillary region hos been replaced by the one repon‘ed
by Mitsuyasu and FHonda' 10, The important characteristics fo be noted in this speciral
- model are (1) the specirum grows with the wind; (2) in the cupll!ury region the larger
the K number the faster is the growth and (3 ‘I‘hIS mode! is'valid te about 38 knofsB.
" In accordance with Mitsuyasu and Honda, their model can be valid to friction velocity

as high as 33m/sec ot 10 meters above the sea horizon,: Thus, the theory may be valid ny i

to higher wind speed than the 38 knots when operating frequency is such that only their \
~ portion of the sea spectrum Is the s:gmﬂcanf contributor, Also, it should be noted that
' fhe deFlmhon of W(B g)in (4) s nof fl'le same as ﬂ‘le one Used by Plerson and Sfdcy '



tn thar W(8,9) Is defined for all # between 0 and 2. IF Pierson and Stacy's sea
speetrum s extended to cover the same anguler range, it can be shown that the com=
plete expression of the medified directional sea spectrum fs os follows:

o WK, #)= SIK) (1 4a,c052) / K )

whara higher order terms in & hos been fgnored;

- yel specified; ond where

5 (l\) 5; (K), K <K<K

a+34K2/13.1769

a, is the only unknown parameter not

Sy )= 0,875 m) |

(gK+gi<3/13 1769)("1+1 7

(K)—1 473x10 4u K 69

Ky<K<K,

K4<K< 0



K 4 San bc found numerteally by sottings S 4 (K 4) cqual to 55 (K4)
U, = friction velocity, U*>U*
K= (13,1769)/2 |
0 =lloarg S50)/5406,] / logy o Kp/Kg)
P] =5,0- Iong,, - '
o = 0,684/, +4,28 %107 U2 ~4,43 x 1072
U(U* (U,,,/O 4) In(z/z ) em/soc

a =4,05%10°
g =980 cm/sec
U*m-*: 12 em/sec

: 4, 0 THEORETIGAL RESULTS AND COMPARISON WITH EXPERIMENTAL DATA

- Upen combmmg (1) (3) and {4) and subsmuhng into (2) , we obfcun for the -
- backscattered case :

° (0,8) fw f i Jepl [(w% o 29 i o
- ol —-cota ) | (5)
5(2k sin 0') (1 + ZX' tunﬂ) p (Zx‘ Zy') dedZy

In (5) the unknown constani a,, can be estimated by plotting o° versus ¢ curves and
comparing these curves with experimental deta, In all Figures 3-8 wind speeds are
computed at 19.5m above the sed horizon. In Figure 3 and 4 ¢° versus ¢ curves are
”plorfed for two different wind speeds af 8 = = 30° and 8 = &0° and for various choices
of’a . Ar8=230° only vertically polarized curves are shown since the difference in
o due to polarization is small, At 60° the difference in ¢° becomes significant and
hence o for both oolanzahons are shown. The data points In F:gure 3 and 4 were
obi"amed from reference H . ) ' '



In Figure 4a, the data Indfeated by circlos were taken for ¢ betweon 0° ond
180° and the squares denote data for  between 180° and 3£0%, The squore=data -
were folded back under symmefry assumptions to compare with the circle data, 1t
follows from 3a and 4a that a = 0,3 at 12 knots and & = 0,40 af 30 knots, It is also
noted from these curves that fwo local moxima occur around the upwind and the
downwind directions and a local minimum occurs neer the crosswind dircetion. In
‘addition, the location of ¢° minimum tonds o shift towards the downwind dircetion
as wind speed or Incident anglo increases. This effect s most significant for horizontal
polarization, The fuct that o° upwind is larger than o® downwind 1s due to the skew=
ness in the slope density Funchon, Pg (Zx', ZyY). -

In Figure 4b and 4e o° versus # curves using only the first order small per=
turbation theory are also plotted. Results correspend to the case when there is no
tilting offect due to large seale waves, Comparisen batween these curves and thoo
, obl'q_inéd by using () indicates that the use only of the first order small perturbation

" theery fails to account for (1) thi difference between the'.upwind and the downwind

“scattering coefﬂclenfs (1) the possible shift of the minimum of o° fowards downwind
and (ifi) the true o° values around the crosswind dsrecrion whmh are higher duo fo
 the interaction hetween the two scales of roughness,
With a chosen to be 0, 3, 0.4 and 0,50 of wind specds at 6,2, 12,6 and 18 -
m/sec rospectively, o° versus win’d-*speed curves are computed for two different -
- frequencies, polarizations and incident angles as shown in Figure 5 through Figure 8.
~ In general, upwmd scattering coeff:c;enf, UU, is found to increcse faster with wind )
) speed than the downv.und cocfficient, UD’ which Tn turn increases faster than the eross
wind coefficient, O'C;. Al three scattering cocfficionts are found to increase faster
-~ with the wind speed as either the incident frequency or the incident angle increeses.
The rate of increase of the scattering cocfficients with wind speed is larger for hori-
: zontal poldrizaf_io_n than for vertical polarizdrioh. For incident angles beyond 60°
the level differences between these coefficients also increases with wind speed., When
the theoretical 6° versus wind speed result is fitied over the wind speed range from 12,5
knots to 25,4 knots by the equation 0% = AU where. A is a constant; U is wind speed ond

Y. is the wind speed power coefflcxem‘ a table for ¥ can be constructed for different fre- -

. quencles, d:rechons, polanzahons, cmd mcudeni cmgles. Such a ruble For two dafferenr
. Frequencles is gwen below, e . e



~ THEORETICAL ¥
| 8,9 Gz 13,9 GHz
DIRECTION | POLARIZATION | INCIDENT ANGLES | INCIDENT ANGLES
| C A% s0° 60 |40 s0° &
Yoo (140 148 1.55|1.63 180 1,00
.38 145 14916 175 1,75

.07 106 1.2 [1.8 1.2 145 |

HE 147 1e2 17370 1,98 2
{12 TS 186 1.6 182 1,83
LI 126 1.36] 1.3 143 1.4

nvel Aavc

_ To see that the wind dependence predicted from the present theory Is in
general agreement with expe'rim'ental data, a teble sh_owi_ng the ¥ values reported o
by Jones, ot al,,’ ! end Moore, R, K., et al' is reproduced bolow, Comparison

" belween these tables shows that general agreement is, indeed, obtained for the 13,9
GHz data, o ' -

- . o N2L {0,9 Glis} AAFE ﬂa.@.ﬁm-‘) SRYLAL. S"I?J. (13,9 SHe)

DIRECHION | POLARIZATION |7\NGinENT ANGLE | INCID.NI ANGLE | INCIDENT ANGLE
1 W T e° oy £2° 40° £°

Y w Coes | o vm | e | e | e

SR S b ooeo | eso | w2 | s | =

¢ B N P R
iU HH 007 | 103 | 1,98 | 1. 1,69 an

c 146 | 18




5.0 CONCLUSION

9,10

A growing sea speetrum’? ' and o tworscale rousahncss--modell"s recommended

by many investigaters for studying radar sed seatter have boen extonded to include |
anisotroplc charactoristics of the sea surface, From such a theory, the following
ohscrvations mey be mede: | : |
- {1) In the o® versus g'curves the local minimum oceurs around thoe erosswind
direction and tends to shift towards the downwind sida os the incldent angle
tncreases. This is particulerly truo for horizontal polarization,
~ (2) Stronger wind dependonce oceurs at larger incident angles end higher
frequencies, ' -
(3) The wind dependance of ° upwind is strongor than ¢° downwind which
in turn Is stronger than o° cresswind, | |
{4) Major factors contributing to anisotrepy are the anlsotropic sca spockum

" and the nonzero mean slepe n the large~scale=wave slope density function-

defined with respoct to the plane perpendicular to the fook direction, .

e
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FIG 2 DIAGRAM ILLUSTRATING THE RELATION BETWEEN P_(Z ) AND P(Z,5)
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L Figure 5b, Wind Dependence of o°at 6 = 40° and 8,9 GHz qu \'A% .
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" Figure 6a, Wind Dependance of 6° at 8= 60° and 8,9 GHz for HH
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Figure 8a, Wind Dependence of ot 9= 60°7 and 13,9 GHz for HH
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