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ABSTRACT
 

An Interactive Scene Interpretation System (ISIS) is beinn
 

developed by Stanford Research Institute's Artificial lntellioence
 

Center aS a tool for constructinq and experimentina With man-machine
 

and automatic scene analysis methods tailored for particular image
 

domains. This report describes a recently developed reoion analysis
 

subsVstem based on the Paradigm of Brice and Fennema. USino this
 

subsystem a series of exteriments was conducted to determine cood
 

criteria for initially Partitionino a scene into atomic regions and
 

for mergina these revlons into a final oartition of the scene alone
 

object boundarieS. Semantic (Problem-dePendent) knowledqe is
 

essential for complete, correct partitions of complex real-world
 

scenes, An interactive approach to semantic scene seomentation was
 

developed and demonstrated on both landscape and indoor scenes* This
 

anroach provides a reasonable methodoloay for segmentina scenes that
 

cannot be Processed completely automatically at 'present, and is a
 

promisinG basis for a future automatic system. The report also
 

describes a program that can automatically aenerate strateaies for
 

findina specific objects in a scene based on manually desiegnated
 

mictorial examples.
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1. INTRODUCTION
 

This report describes recent research in interactive scene,
 

analysis using- the Interactive Scene Interpretation System (TST1
 

developed at SRT, Our overall objectives are to! (I) devise
 

interactive, methodologies for ravidlV nrogramming computers to
 

recoonize objects in Particular real-world Pictorial domains, and' r2)
 

-for
develop techniques cooperative scene anlysis whereby humans-can
 

provide the computer with guidance When comPletely automated
 

processing is infeasible,
 

Scene analysis is still more of am art than a science, The
 

field is characterized by a few general orinciotes and a growing
 

collection of ad hoc techniques perfected, largely by trial and
 

error, for particular domains, Even experienced researchers have
 

difficulty predictJng which, If any, of these techniques apply to a
 

new domain. ISIS was oriqinally developed to help researchers refine.
 

their intuitions. Data can be observed on a gray scale or color
 

display as it is perceived by the computer. Primitive operators can
 

be applied to selected areas of the scene to determine directlV (in
 

,numerical terms) which features provide the best discrimination among
 

particular -objects. fblect finding strateiies can be formulated An
 

terms of these features and tested on-line, by remuestinet the system
 

to illuminate all instances observed In a displaved scene. It was
 

possible to construrt strategies for fimdino each of the princ6al
 

surfaces in a silple room scene (pa.,, floor, tabletoP, cheirseat,
 

and wall) in a matter of hours Ell. These strategies were based
 

on Primitive operators for extracting hUe, saturation, height, and
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surface orientatlon from correlated arrays of color and similatee
 

rancte data'. Attribute descriptions fe.o., the color buff and the
 

orientation horizontal) were.developed in a similar fashion and used
 

to express additemnal-object finding strateotes in symbolic ters,
 

ISIS is a 'step toward more natural pictorial communication
 

with machines, Ideally, one would like to program 8 computer to
 

find unfamiliar Objects as one would instruct a person by Pointing at
 

examPles, or by provi-dinq crude Verbal descrintions; A, tree, for
 

examolep right he described as a "areen, leafY reeton above a tall,
 

brown, vertical, barketexturel region.," Unfamiltar concepts such as
 

"oreen" or "leafy".could in turn be defined by Pointing at examples.
 

The computer might demonstrate comorehension by outlinina instances
 

of the described object in a displayed imaae. The nroarammer could
 

-then refine the descri.ption eiPiricallv to correct errors in the
 

computer's internretation. while we are still"far from achievinc"
 

this ideal, some significant proaress has been male.
 

1.1 Summary of Research Procress
 

This project has addressed-several major limitations
 

of the initial Version ot ISIS described in meferenrel. First, the
 

preliminary system lacked disolay capabilities, primitives, and scene
 

seamentation techniauis needed to function effectively in natural
 

(ie.,, outdoor) scenes, Second, while Providino helpful tools, it­

left the major procrammino burden, with the user. Third, the system
 

provided no capabilities for high-level qraphical communication Such
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as "pointing;"
 

Our ability to observe data as thev apnear to the
 

computer was Significantly enhanced by the aca isiti-on of a' color 

image display, The display was particularlv helpful in investioatinn 

color and' texture discrimt'nation in landscape scenes. T nlike 

Patnted objects found in room scenes., mdst naturalIv occurr'na 

objects cannot be distingilished solely on the oasis of locallV 

sampled attributes such aS hue and saturation. Therefore, outdoor 

scenes must be Partitioned into coherent renions so that 716bal 

attributes (e.a., texture and shape) and spatial relations with othpr
 

reqions (eaq., adjacency, vertical Dostti.on, and the likel can he
 

used.
 

Various syntactic, and semantic techniques for' scene
 

parti.tioning were exoerimentally evaluated usiria TSIS, A -new
 

interactive- apfroach to s'emant-ic Scene seamentation was demomstr4ted
 

on both landscape and indoor scenes. This approach is of" interest
 

both as a reasonable way to segment scenes that at nresent canrtt be
 

Processed completely automatically and aS a promis-inq base for a
 

future 'automatic system,
 

Progress was made in automatino' the- intefactive
 

generatio6 of -strateaies for findina ob1ects -in room Scenesy
 

Soecifically, a program was developed whicl accents pictortal
 

exampl:es of object sutrfaces (e~q,, floor, wall, tabletop, and other
 

objects) outlined'on a -display screen by 'a human trainer, and
 

attempts to desion a cood strateav for selectinq samples of those
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surfaces in future jmaees, The nronram em'nIotss the empIricaI
 

apnroach of a human trainer? the examole is first rharacterie in
 

terms of feature extraction onerators, A set of features is selected
 

that distincuishes the example from examnles-of previouslV learned
 

concepts. Finallv, a correspondtn, Predicate is -vgeneratel and
 

applied to random Iraie samole Points. The selected feature set Is
 

emnirtcallv refined, if necessary, to exclude sample points nmt
 

belonqina to the example, or to Include omitted Samples of the
 

example. The human trainer can n'lide the machine's
 

experimentation bY descrlbinO the new mhject in terms of attributes
 

of nreVIously characterized objects or by directlv suaestina which
 

operators to try.
 

Desionatino examples bv pointino with a cursor is
 

usually more natural than drawini a detailed ojtline, eSmeciallv mr
 

spatially amorphois oblects such as trees. qowever, nointina is
 

intrinsically ambioUOus! the trainer could he desionatino anVthino
 

from the Particular Picture element to the entire nicture., The
 

machine must first nuess the examnle that it Is expectod tn describe.,
 

Two rointino inference mecha-Isms were devised, one based on re7i.or
 

arowina for use In outdoor scenes and the otler on automatic strategv
 

aeneration fnr use in indnor scenes, -In the fitrst instance, the
 

reciion arower was modified to grow outward froi desirnated startin
 

points.inside and outside the nolect of interest. Tr the second
 

case, a stratedy was aPnerated soeciflcallv for dlstlnquishina
 

between samples desidnated to be on an ohlect of interest and those
 

designated to be on adjaeert objects. In both cases, after the.
 

computer's nuess is displaved, the trainer can ejahorate on ms
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intent by desianating additional samples on and off the object.
 

The auessing process then iterates until trainer and computer agree.
 

The interactive techniques described in tlis report
 

are not Yet integrated into a single system. moreover, many of the
 

scene analysis results have yet to be rigorously tested in a, large
 

number of Scenes. The project has recently reached a very fertile
 

experimental stace, as indicated.by the fact that new ideas for scene
 

analysis are occurring much more frequently than ideas for improvina
 

the system.
 

1.2 Development of QLISP Lanquage
 

A portion of this project has supported development
 

of a high-level proqrammina lanr.uaqe called QLISP. The OLISP
 

language provides most of the features of QA4 embedded within the
 

ITERL!SP system, Thus, OLISP provides a rich varietv of data
 

types, a data base for content-directed retrieval of expressions, a
 

Powerful pattern matching capability, pattern-directed function
 

invocation, and a mechanism for manipulating data contexts. These are
 

all available in a programming environment that provides a versatile,
 

LISP-oriented aditor, an easy-to-use file package for maintainine
 

symbolic filesp a "programmer's assist-nt" which allows commands to
 

be Undone or alteredi and an error correction system which can. fix
 

many simple user errors automatically.
 

Al-thouch OLISP has not been used as the vrogrammino
 

lanquace for the work described elsewhere in this report, the
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requirements of that work have provided direction to the effort to
 

streamline a Sonhisticated but costly tanquae Into an efficfent tool
 

for problem solvimq.
 

Durina the period covered by this report, the basic
 

features of the lanquage were implemented and incorporated into a
 

rather reliable and easy-to-use packaoe. A compiler has been
 

implemented, and other modifications have been made to improve the
 

lanquage's. efficiency, Compiled Programs written in OLISP run about
 

30 to 50 times faster than the correspondina 044 procrams,
 

The most serious drawback to QLISP is that it tends
 

to force the proarammer who uses it into an Unnecessarily restricted
 

framework,. Thus, for example, OLISP's data storace and retrieval
 

statements are implemented in such a way as to prohibit the use of
 

the data base as a network of iteis that could be easily traversed.
 

Furthermore, the "arain" of the available statements is sometimes too
 

coarseg i~e., it is not always possible to specify precisely how a
 

retrieval operation Should be carried out. These are the Primary
 

reasons why it was decided not to implement ISIS in OLISP.
 

However, QLI8P has been shown to be a useful tool for
 

Problem solvino, simulation, and automatic programming.
 

Therefore, work. will continue, under other supnort, to further
 

improve and streamline this lanouaqe, Durin0 the cominq year, we
 

plan to install a new pattern matcher which can merform Unification
 

(metchinq two patterns, both of which contain variables) as well as
 

do simple.-atches more quickly. We will install a new data base
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mechanisr that will ellod more efficient access of related structures 

in the aSsociatlve store, We will investleate the extension of the 

associative store to secondary storace. Finally, when the 

Bohrow-Weabreit control stack foralis is incroorated into 

TATERIISP, we will add facilities torr seUroe-nt.4lel nrocesStnn tr 

QOTTSP.
 

OLISP is available over the ARPA net, and has 81reAdv
 

been used on an exnerimental baSiS at Several sites atourd th­

network,
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2. SYSTFM DFVETOPMENT
 

A substantial amount of effort during the past year was
 

devoted to system development, A simple digitizing device for
 

ohotooraphic transparencies was constructed. A co-Ior display was
 

acuired and interfaced, necessitatinq the development of both low­

and hiah-level color display software., rhe'oriotnal ISIS system
 

described In Reference t was extensively overhauled to improve bot,
 

efficiency and memory utilization.
 

2.1 Hardware
 

2.1.1 Slide Dilitizer
 

A direct view slide 'liqtizer was constructed
 

1sinQ a sheet-of translucent volakote as the optical interface.
 

Imaaes viewed throuh a rounrd 7lass interface had undesirable grain,
 

and images viewed on a conventional projection screen had dull,
 

unsaturated color, A 1:1 field lens was also tried as a direct view
 

interface. It Provided brilliant cnlors but the imaene was too small
 

for the zoom optics built into our camera,
 

Pictures were ,dinitized at a samolinc
 

resolution of 120 X 120 elements, 5 bits/color. The camera gain and
 

tris were peaked for each color filter, so that the brishtest white
 

in the scene (usually-a cloud) was barely saturated. This stratev
 

optimized the contrast and siqnal to noise for each filter over most
 

of- the briohtness range anA also comoensated for varving filter
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densities, so that white orodeiced a uniform response.
 

There are well-known problems in ElSine
 

Vidicon teleVision cameras for Photometric meisurements [2]. The
 

dynamic briahtness rance of typical outdoor scenes, whether viewe4
 

live-or on slides, aenerally exceeds the available t00:1 dvnamic
 

ranae of most televsi'on cameraS. Quantitative comparisons of
 

briahtness observed throuqh multiple color filters are frustrated hv
 

spectral variations in tarqet sensitivitv and by automtiC O'in
 

Circuitry built into the camera electronics. One way to avoid thes.
 

oroblers is to dihitize slides with a mpchanical scanner usino a
 

ohotomultiplier, Time ran then be directlv traded for any desired
 

combination of sensitivity, intensity resolution, spiral/noise,
 

dynamic rane, ani so forth. Lackin" such hardwarP ourselves, we
 

were fortunate to acouire over the APPA net a small library of
 

accurately digitized' scenes from researchers at rarnegie Mellon
 

Universi-ty, These imaues were oridinally dialtized or a Mltuir-head 

Irum at the University of Southern California Imsae Processinn-

Laboratory. The orkiqinal date c',ntalned P bits/color at a Snatial 

resolution of 600 X 820, ThASe dAt'a Were s'ibseauently resampled 

down to 240 X 240 resolution. Some of these imaaes were used in ­

reior arowino exneriments reported later, 

2.1.2 Color Display
 

A PRATEK* GXI0O color video display was
 

acuired and interfaced, replacina-An Adare Vector display used in
 

earlier ISIS versions.' The Ramtek system consists of an 18 inch color
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TV monitor refreshed throlqh D/A converters by a series of*MS shift
 

registers. Each individuatl.v addressable shift reolster for memorv
 

plane) stores I hit of brightness- information for each discrete
 

raster element, The svstei nurchased by SRT contains a total of 14
 

memory Planes which can he contfiured to orodlce two basic
 

capabilities:
 

(t) 	DisPlaY a 256 X 256 element color image, each
 

element disolayed usOat 4 bits of intensity
 

information each for red, green, and blue.
 

Two 	overlays, bright red and brinht green, are
 

available for superimoosina vector araphics,
 

cursors, and so on without disturbina the
 

underlvinq image.
 

(2) 	lisplav a 296 X 256 element arev scale image,
 

each element displayed with R bits of brightness
 

on a black and white monitor'.
 

These capabilities reDresent an economic balance between the soat.Sal
 

and brightness resolutlon available from nour sensors and the cost of
 

alditional memory.** Solid State memorv '(as chosen so as to avoid
 

difficulties ir svncbronizina multiple color planes because of skew
 

and stability errors inherent in disk refreshed syst@ms.
 

All of our work to date has been pprformee
 

With the color monitor, althouch we anticipate several future
 

applications that will benefit trom the high resolution grey scale
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compa illty. " ualitatively, t))e ima'ps are quite adenUatp for 

experimental work, Fiqure la itlustrates the Rartelc's basic 

capabilities with ideal data. Filures Ib to le show ijsplays frdr 

our principal experimental domains, 

**The cost of each memory plane for 2%6 X 756 spatial resoltiton was
 

aoproximatelv S1,0no. Memory cost increases linearlV with additional 

bri'tltness resolution and as the square of snatial resolution, Thus, 

an adlitional bit of color resolution for each nrimary color adds 

$3,000 to the total cost, While'doublino spatil resolutin td S? X 

512 at 4 bit/conr dualruDles me-orv cost to S4O,lo. 

*Ramtek Corporation, Sunnyvale, California 94086,
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(a) 	 (6) 

(CI 	 (d) 
TA-8721-6 

FIGURE 1 	 (a) SYNTHETIC COLOR TRIANGLE; (b) SRI OFFICE SCENE; (c) LANDSCAPE 
SCENE (MONTEREY, CALIFORNIA); (d) CARNEGIE-MELLON OFFICE SCENE 
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2.2 Software
 

The core of ISIS consists of the following basic
 

software modulest
 

* Graohics Support
 

* Primitive feature extraction operators
 

" Iconic and symbolic data structures
 

* General application programs (fltering. 

scanning, region growing, region classifying,
 

statistics gathering, and so forth),
 

These components are being continually modified in an uoward,
 

compatible manner to improve efficiency and to increase the system's
 

generality, Two improvements in the past year were Particularly
 

noticeable. First, the FORTRAN data structure used for storing
 

region and sample descriptions has been replaced by a more compact
 

and efficient structure implemented using special features Of
 

INTERLISP. Second, filtering and similar comrutationallv expensive
 

functions are now executed efficiently in FORTRAN, This has been
 

made possible by software that allows arrays of image samples as Well
 

as conlunctive filter predicates to be communicated between LISP and
 

FORTRAN,
 

A device-independent graphics package was implemented
 

which allows displays with albhanumeries, points, vectors, grey
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Scale, and full color data to be develoned in LISF, FPRTRAN. or SAT? 

and displayed At run time on either the R,,tek. Aaje, or 

Hewlett-Packard 4lsplays sutiect to hardware caoabilities. lip to I0O 

displaY lists ran he defined, which are manipulated indePendentlv. 

Specialitzed suprort routines for the Ramtek allow
 

arbitrary sized color lwaqe arravs to he shown at a soecified scale
 

and location on the display screen. ')sers can thus create rtriaaes
 

of imaqes at various staes of orocessino. Alphanumeric and vector 

overlays are Automatically scaled to errespond with underlying imat7e 

disolays. Graohics can t-e outnut o, any memorv olane, althoieh 

usually the red overlav blame is used, Informative color nraphics
 

suc as barerars, histooramst false color imaa renditions, and So
 

forth, can he synthesized corvelentlv with rediei colorina routines.
 

Examples illustratio the use of these caeoailities anear throuhoit
 

this rebort, Petailed Qrtahics software doeuetaelor Is Availihle
 

from the authors.
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3. PRIMITTVV nPEHATOA
 

Scene aralysis requires nrimltlv, orerators that rCn
 

distiflIish aron, objects In a domain of interest. A comination o#
 

local attritntes such As hue, heioht, ad erlprtntion prnvl4.s
 

aleauate discrimination t simple room sconPs, Nut nnt in landScapes.
 

Natural Colors tend to be *eaklV saturated with broad spectral neeks
 

(See Fiqllres 2a,b). M'st of the rnundarv information 'sualiv
 

associated with Color is Actually caused ev hrilhtress 41e0 (Thure
 

2c). HeiOht and eriemtatimn are more characterlstic of plare surfaeed
 

room furniture that, of irrptolarlv contoured surfaces in natural
 

scenes. (it is also much harder outlmors to ontain the rin'e Iota
 

reeled for measurtnn these teatures,) AnalVses of "attira! sce-es
 

consenuently must use atirtitnal, ooal fostures derived Pri'arity
 

from visual data. The remAinder of this section describes
 

exmerimental rrlmitives for three alooiA features: texture, share,
 

and scatial context.
 

3.1 Texture
 

3.1.1 IntroAtetloan
 

Texture Is an ill-leftnej proerty that olves
 

nonhomoaeneous renions A em'erent ancearanee. Texture arises from
 

reular (possiblv statistical) variAtions in l5cal attrihutes (such
 

as brightness, hue. ani saturation) and exists at all levels of
 

description. Thus, a hillside of trees, e treetop. amd the surface
 

of a sinnle leaf each have Characteristic textures. rime is uuallv
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(a) 	 (b) 

to) 	 (d) 

4e) 	 If)
 

TA-8721-30 

FIGURE 2 	 (a,b) COLOR CODED SCATTER PLOT OF HUE VERSUS SATURATION FOR 
REGIONS DESIGNATED IN FIGURE 2b; (c) LANDSCAPE SCENE FROM FIGURE 
lc WITH BRIGHTNESS INFORMATION REMOVED (BRIGHTNESS 
NORMALIZATION ACHIEVED BY DIVIDING THE RED, GREEN, AND BLUE 
COLOR COMPONENTS OF EACH PICTURE ELEMENT BY THE SUM OF THOSE 
COMPONENTS); (d) LANDSCAPE SCENE SAMPLED TO 40 x 40 RESOLUTION; 
(e) 20 DEGREE QUANTIZATION INTERVALS DISPLAYED ON COLOR 
TRIANGLE; (f) LANDSCAPE SCENE WITH EACH SAMPLE DISPLAYED IN THE 
COLOR OF THE 20 DEGREE INTERVAL TO WHICH IT IS CLASSIFIED 
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most aware of the cross texture of the smallest scene elements
 

involved in an articulated description.
 

The texture detail available in a digitized
 

image depends on viewing scale (i.e., marniticationl and spatial
 

samplino density. The level of texture needed to distinguish, say, a
 

region of grass from a region of water has not been clearly
 

determined. It Would, of course, be Preferable to rely on macro
 

texture where grass might be characterized as a region containing
 

green, brown, and yellow Patches. One could then sample very coarsely
 

(e.g., 40 X 40 or less) and avoid the mass of data needed to
 

characterize the individual blades, We thus concur with Hanson and
 

Riseman 31 who questioned Balcsy's arguments for Using a
 

quantization qrid several times finer than the finest texture element
 

(4]. Figure 2d shows the same scene as Ficure ic (120 X 120
 

resolution), sampled at 40 X 40 resolution. Viewed at a distance of,
 

say, 15 feet, this figure is quite recognizable. Therefore,
 

qualitatively it Probably contains sufficient texture data to
 

characterize its component objects.
 

Texture, unlike brightness and hue, Is not a
 

monolithic attribute and cannot Qenerally be expressed by any sinale
 

functional representation. Investigators have used a wide variety of
 

features to classify or distinguish particular textures, but have
 

been unable to formalize how features should be Selected for a
 

particular class of scenes. ISIS is a useful tool for determinina
 

aporopriate texture features experimentallvy operators can be applied
 

to selected recors of a Scene individually and In Weighted feature
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vectors to test discriminitinn.
 

3.1.2 Texture Coerators
 

"e are aceuulatin 'a librarv of corlonlV 

Used texture overatorS ind orocedtures (Tatlp 3.t). These oneraters 

are crouped into two classesl micro-textures ani macrO-teXtirps. 

Micro-textures are characterized by statisticaJ distributilons of 

brilhtmess, hue, and 'sAt'ratton at the Picturp element '1Avel. 

MAcro-textures are composed of 7rouoins mf elpmentary regions (ite., 

regions of homogeneous colr and briQhtness) and are characterized by 

distributions - oi shane, density, statial Arrangement, and 

micro-texture of those regions. 
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Table 3.1
 

A BASIC LIBPARY nF TEXTUPE OPERAT3PS
 

Micro Textures
 

1, Distribution -statistJcs for brihtness, hue, and saturattor 
(taken directionallv or rondirecttonaltvit 

ae, 	 Mean 
b. Mde
 
C, 'Standard deviation
 
d. Skew
 
e., Kurtosis
 

2, 	 Features derived from directi.onal, soatia3 lePendencv
 
arrays (51:
 

a, 	 Fnerav 
be Entropv
 

*3. Edde density and directional edue-densitv (vertical edge
 

,0ensity/horizontal edge denSlty) 161!
 

*4, 	 Statistics derived from Fourier Power and phase spectrum (4]:
 

a. 	 Peak power, bimode, and so on,
 
be, 	 ,ltnauisticfeaturesi monodirectional, linear,
 

bidirectional, blobs, and so on,
 

*Macro Textures
 

Statistics derived from distributions of elpmentarv r-nion nroverties
 

a, Shape (based on moments)
 
be Size (perimeter, area)
 
C, Density (averaqe number of reqions/untt area)'
 

vet been implemented*These o~eratorS not 2ave o our system. 
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3-.t.3 Texture Displays
 

A number- of special displays have been
 

formulated to help visualize the effectiveness of various texture
 

onerators. An experi'mentet can circle two regions of the scene and
 

obtain superimposed histograms of hue, saturation, and brightness
 

(see Figure 3), He can also obtain superimposed two-dimensional
 

scatter Plots of hue versus saturation for multiple regions. (The
 

yellow and red scatter points in Figure 2b correspond respectively to
 

the Yellow and red regions designated in Figure 2a,) He can display
 

the original image sampled to an arbitrary resolution (Figure 2d).
 

Furthermore, each sampole can be shown with the averace or modal
 

brightness or hue of the surrounding area (Figures 4, 5). Spatial
 

dependency arrays (giving the probability of encountering, a
 

transition between two specified brightness levels when scanning the
 

image horizontally, Vertically, or diagonally) can be displayed for
 

selected regions as two-dimensional brightness arrays rather than as
 

large arrays of meaningless numbers (Figure 6).
 

3.1.4 Discussion
 

A systematic evaluation of temture operators
 

iS not one of our oblectives, although a facility Such as ISIS would
 

be helful In such an undertakina, From a cursory examinatinn, It
 

Appears that statistics for spatial texture implemented so far do not
 

discriminate substantially better than a comparison of brightness,
 

hue, or saturation distributions usina standard tests of'significance
 

such as chi-square or Kolrogorov-Smirnov (KS). Encouraqing
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0 	 1 0 01 

(b) 

TA-8721-4 

FIGURE 3 	 (a,b) OVERLAPPING HISTOGRAMS-OF BRIGHTNESS, HUE, AND SATURATION 
FOR REGIONS OUTLINED IN FIGURE 3B 
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FIGURE 4 	 SAMPLED LANDSCAPE SCENE WITH EACH SAMPLE DISPLAYED AT THE 
AVERAGE BRIGHTNESS OVER A 3 x 3 NEIGHBORHOOD 
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FIGURE 5 	 SAMPLED LANDSCAPE SCENE WITH EACH SAMPLE DISPLAYED AT THE 

MODAL BRIGHTNESS OVER A 3 x 3 NEIGHBORHOOD 
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(a) (b) REGION 1 

(c) REGION 2 (d) REGION 3 
TA-8721-10 

FIGURE 6 SPATIAL DEPENDENCY ARRAYS FOR REGIONS DESIGNATED IN FIGURE 6a 
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DISTRIBUTION 	 FOR REGION B 
1.0 

05 

DISTRIBUTION FOR REGION A 

0 

HUE, SAT, OR GRAY LEVEL 
TA-8721-5 

FIGURE 7 	 MODIFIED KOLMOGOROV-SMIRNOV SIMILARITY CRITERIA: 
TWO CUMULATIVE DISTRIBUTIONS ARE COMPARED ON THE 
BASIS OF AVERAGE MAGNITUDE DIFFERENCE, SHOWN SHADED 

(After Muerle 	 and Alien [8]). 
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experimental resIlts have been obtained usini a modification of the
 

KS criteria first trorosel by WJerle anei 11en {rp and illustrated in
 

Fiqure 7.
 

A promisin f.-ture direction is the Ise of 

TSIS to c educe ad hoc characteristics tnat Aitstinoash particular 

textures in a limiteA scene domain. For example, a reoton Miiht be 

adeauately rharacterize, at the micro-texture level, stmoly as the 

set of .sanrles with a rrescribed Drnximitv to samoles havinn a 

distincuished hue (the detailed hue distribution of the selected 

ooints beina unimnortant). In one Particular scene, regions of sky 

and lake both cortained manv samnples with virtuall v identical blue 

hues. However, in the lake, the blu1e samples were lihenllv 

interspersed with distinctive oreen samwrles. At the PacrO-texture'
 

level, a recion could be described in terms of distinqUishtio 

attributes of comnrnnt realms, as when desrrioino crass as a realorn 

contaninq reen, vellos, and brown blobs. A particularly simol 

macro-texture descriptor Is the nummer or density of smaller reclons 

contained in a standardized '.indow. In Flrure 8. for instance, the 

river and bushes are oartitioned into many small relIons, while 

crass, skv, and trees are renresemted by a few laroe recions. 

Althouqh texture should someday sianificartly
 

enhance color discrimination, it sil not alwavs allow 'lniI'2e
 

interpretation. Recions of ground, dark tree bark, and treetop in
 

Ficure Ic are virtu]v indistinau~shahle to the htiman eve when
 

vtewed throuch small slits in a rask. The same confusion acolies
 

to regions of mountain and sea and of rock and tiaht tree bark.
 

Clearly, shaoe an4 spatial context are also necessary.
 

•p 27
 
9Uo?r49 



71, .-J.N..
n mr-

t=+ffmumU UNSUE U m/n 

mmmuui~xu mnuln 

MmamiiongINS ....am
 
""i'm. -' 9 WIN+ um"-.+ n i
 

mlTn-Sfllu-1 1
 
a mm aAS 283
 

FIURRVE CEE EM AEDIMT 5 EAIEYHMGNOSRGOS
 

ILUT AIGTEUE EINDNIYA ETR ETR
 

nvmx 28
 



3.2 ShaPe
 

Shape, like texture, is nmt a monelithic attrihute
 

and therefore is not amenable to universal representation. Table
 

3.2 lists some two dimensional shape primitives. So far, onlv the 

first two primitives have been imlemented. The ratio of (.ertical 

perimeter/horizontal perimeter) was tested and Proved effective in 

distinquishina thin, vertically elonnated reeions of "treebark" from 

non-elonqated rectlons ot "round" and .trsetop, in partitioned 

landscape scenes. (Sections of la'oed bourrarv With horizontal nr
 

vertical extent less than two were ionoxed In elmoutinc this ratio.)
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Table 3.2
 

SHAPE PRIMITIVES FOR REGIONS
 

A) Global Shape
 

1. 	 Compactress: (perimeter squared/areA)
 

2. 	 Orientation: (Vertical oerimeter/horizontal perimeter)
 

3. 	 Aspect Ratio: (Ienqth/wRlt of tightest boundino
 
rectanq4 e)
 

4,-	 Moments
 

5. 	 Skeletor, baraetertstics (e.'j., hranehinc structure)
 
(91
 

B) Boundary rT)scrirtors (location and e7lobal)
 

a. Curvature Points (101
 

b, Fourier expansion of boundary curve [it, 121
 

C, Chain code features !131
 

d. Linnuistic descriptions r14, ]i)
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3.3 Spatial Relations
 

Spatial context is an important factor in resnlvicl
 

interpretation ambicuities. Procedural representations have been
 

Implemented for some common three dimensional spatial relationshins
 

between two reoions, based on the relative world coordinates of
 

vertices in their polyannal boundaries. These reoresentations are
 

described in Table 3,Ja and demonstrated in Table 3.3h usino the test
 

renions in Ficure 9.
 

The above representations were oriainallv developed for ronm 

scenes, assumina availability of ranae data. The accuracy of rut 

developmental ranaetinder has, thus far, been dtSaplointilnt: 

inches/l feet. However, rance accuracy is much less critical In
 

determininy olobal relations than In deternino local attributes,
 

such aS surface 6ripntation, Moreover, all of the relations excent
 

for Dlanaritv can be reformulated in terms of two-dimensional image
 

coordinates for standard eye level views.
 

IDRIGINA PAGE IS
 
POOR QUA=
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Table 3.3A 

REPRiESETATlOS FOR SPATIAL RELATIONS BETEERN TWO PLANAR SURFACES
 
GIVEN 2 REGIONS--A (e.g., a Horizontal Chair Seat) and B (e.g. a Vertical Chr Back)
, 

/ 

M I '..ON 

/I IaI% 

/ 

/~l 

/thene
 

A Regio 	 PeSAo/ islnfi 


Left oflflgb oof
 

Let Mei, Aset r ofloue and oneonun A oa coordinae of bondary points of Region A
 
= , a -n enu Xeuman si sof b oundary of Region A
.. -. ad I a coinate points 


then
 

A Region A is loft of Region A
 

liff + N Arnm + Atoms
tiesin Stat 


and Bxain > Aemax or
 

Flax (Moedn. lStsis) - Aewax-

Min foxcax - Anen, essex - Semds) + 1 4
 

(he last donlton providesaaresonable Interpretation of the concept "left" in ease, where Ragions A and B par­
t.il overlap) 

B. 	 Region A is right of Region A
 

Iff geain + B InAmain + Asego
 

and A(isn or S -Rea' 

His (Armar - gerain, Errs'. - wen) + 1 .4
 

Le Aeri eAtaheight at oaxirum end minions Y image coordinates of boundary points of Region A (hori zonal surface) 
"sin, leeas - height anir mxso and ninnbou Y Iage coordinates of boundary poits of RgionA 

then 

A. 	 e,on A is below Regios e
 

Iff lBasin+ - -eesAunto + MA~
 

and Basn Aron or
 

'Inc (Amelo .. i. ) Ais 

His (A.o.s- Armn, Smot~e) + -L' 

8. Region. A i. ba-. Regin. A 

iff Roins -I Rzes', Amoin + Arena's
 
2 and Aain Ber or
 

'U. f-emr, Re ) - A-oin + 1 
'ho (A rsssn- A a- ¢nl inen + 1
 

(As additional re Inteen, direcl abo-ld erectly below may be doefined by requiring that tine regions involved not be 
to the rIght, left, in iront, or . en k of cash ot1nr.) 

3. Froot/lack 

LotAriAmcome - onsicaen and nininm range of boundary paints-of Regios A
 
I=:in Irm, - mosines aid ninimuca range of boundary points of Region B (vertical surface)
 

than
 

Aw..Regon A is in front of Region A 

iff groin . Brm- Amenl + A.,sa
 
and Brai > Areso
 

lA, CArols. IGo) - Areas 
.I. (Aema. - Arnut, ia- - Brain) + 1 . 

Frontifnak (Concluded) 

B. ReinA In in bacik of ReinB 

Itt Arnin + Irma's A-in + Areas
 
nd A-in I tests.or
 

Min (Arean.. B.an) - A-oin + I 
'fin (A-a' - Atom., Bra. - Seeks) +- 1 '. 

4. Coolanar 

Let 	 VIA, leas sqa p lanarnarface fit-to. boundary pInt, o Region A
 
PRA, 1:las suarc p lnr surfce fi Cot boundary podnts of RegionA
 

then
 

Region A send Region B are coplanar 1ff the following criteria hold:
 

(1) TMe surfacencoreals of PLA and PL1 must be parallel to within 10 degrees. 

(2) 	 Each local plane =at interept the same coordinate axis (X, Y, or Z) cl osest to the orn. 

(3) These (oust reliable) Intereepts osttagree weithin IM 

- (M~ese above cri teris carpentere heuristicalIly for unscertaint igs in rango data.) 
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Table 3.3o 

RELATIONS OF SIRFACFS IN VIG1PF q iis514 RWPRFSE TATIl4S IN TAH1F la 
(Table lists relations of object I to e',leet 2) 

where A 2 above F = I frn.t L z Left 
AT a below RX a im back P z rjoht 

fr)JFrT 7 

Crairback Cnalrseat Door Picture Tbletop Wall 'astebAsket 
nOFCT I 

Chairack --- A.RK Qm0* F R,Bt PA 

Chalrseat PF "." R RRLF LF PS, P.A 

foor 1, L --- tT I' I,, K 

Picture L,A t,A,BPC --- A,RK H PA 

T-bletnv BK 4.FY P St,F .. PBl RA 

WAll LA ,A R 1 LA --- P.A,RK 

Wistebasket L,BL 1.,8L R,F LBL L,BL,F --­
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CHAIR SAC 

TABLE TOP3
 

FIGURE 9 REGIONS USED TO TEST SPATIAL RELATIONS (TABLE 3-b) 
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4, A PEGION ANALYSIS SUPSYSTEM FOR ISIS
 

I.trduction
4.1 


Post analyses of natural scenes first attempt to
 

partition the Jiaqe Into coherent regions corresnninq to known
 

objects-44, 16, 11, 183, Regions provide a convenient basis for
 

semantic analysis by. reducina both the amount of detail and the
 

ambieluties of interpretation found at the picture element level.
 

Several models of reolon analysis have appeared in
 

the literature. Rottom-un methods begin hy exhaustivelvypartitionne
 

a scene into elementarv atomic regions and ormceed by merging
 

togeth'er adjacent reoions -ith weak common houndaries (17. Al).
 

Top-down methods beeln With a sinale recion encomrassing the. entire
 

image and SUcceSSivelv segment it into smaller,, homogeneoUS
 

subreaioris .20]., These methods can, be comined with increased
 

efficiency by allowing both mergine and seimentation to proceed from
 

an Initial intermediate- level partition obtained by ImpoSino an.
 

arbitrary arid (21, 221. Regions can also be rronn independentlv
 

from startino kernels selected with semAnttc information [23).
 

This section - oresonts the region analysis 

capabilit-ies -being developd tor ISTS. '4e first evaluate some 

nonserantic reaion, analvsts technigues se and other researchers have 

develoPed and tren discuss further improvements based,On SeMan.tics 

(oroblem-dependent knowedael.and user. interactinn., 
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4,2 Basic Model
 

Rpaion analysis Procedures were develoned for ISTS
 

using a bottom-up aradiom evolved from Brice/Fennema, There are twe
 

principal stages of Processina: first oartition and rerlion arowjnn,
 

The Purpose of first Partition is.'to obtain an initiAl segmentation­

of the image which is conservative in the sense that each region
 

consists of Picture elements belOnqinra to only one object, In the
 

region growing stage, adlaeent regions with 'similar characteristics
 

are merged into a single region to further siolfy the organization.
 

The desired result is a Set of reitons correspondino to distinct
 

objects in the scene.
 

The most conservative first partition is obtained hv
 

making every Picture element a SeParate renton. However# re-ijon
 

analysis- is comnutationally expensive, makina it-s infeasible to,
 

process this amount of detail in a reasonable amount of time, The
 

common Practice is to first samnle the nicture to reduce resolution
 

ant- then immediately merge adjacent samples " ith lentiral
 

characteristics. Brice/Fenema sampled' a ,120 X i2o image wtth't6
 

levels of brightness down to 60 X 60 resolution, and then comhinet"
 

adjacent elements with eual brightness, vieldino about 1.AnoO
 

elementary regions in a blocks xorld scene. iqhen data are finelv
 

cuantized or fiultidiensioral Ci,e*, colmr and range data are
 

available), demaneAinn strict eguality of all attributes can lead to
 

an unnecessarily large number of, regions, many caUSed by guantizetion
 

noise. In such cases it maV hel' to first classifv each sampol into
 

a small number of categories and then treat Picture elements assigned
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to the same category as identical. Yakimovscv, for example, sorted
 

each imace sample into one of 29 color categories "overing
 

distinctive combinatiOns of hue and Saturation in his outdoor' scoenes
 

[17). Lieberman obtained an adeouate partition of two simple
 

landscapes usino onV s'even categories of hue C41. Experiments have
 

been conducted With several Samplin and quantization Schemes jor
 

obtaining first partitions of landscape and office scenes, and a few
 

methods have' been proved empirically to be aieouate. fur findinds
 

are reported in Section 4.4.
 

Heci6n arowin proceeds hy ser!Allv selertilna the 

pair of adjacent regions in" the current' or7anizatton which are 

globally "most alike," and meraina these into a sincde region. The 

order in which rpeions are merged is determined hv a function that 

compares the similarity of a given oair of adjacent regionS wtth the 

similarities 'of other pairs of regions'that remain as candidateslto 

be merged, A variety Of criteria for region stmilarjtv have 5een 

used, inclidina averaQe brightness contrast [11, 1g1 and averate' 

color contrast tIf, Brice/Fennema'als'o used a-welnhtine factor 'that 

weakened the effective contrast of relions that meet alona meanderjnn 

boundaries, A common characteristic Of guantiratlon contours EIq'l n 

Our system the function that determines similarltv (and hence merap 

priority) of adjacent regions i's a separate ormqra module allo'inm 

exPerimentatlon with a variety of criteria that may include 'Poblen 

dependent considerations, Experimental results "wit'h vArioiis" 

similaritv functions are oresented in Section 4.5, 

Various algorithms have been used to control the
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order and extent of mergino. Brice/Fennema meroel boundaries in
 

arbitrary order so lon7 as the weiohted strenoth was below an
 

experimentally determinrd absolute threshold. The resultiro
 

nartition was denendent or the order of meraino, This promoted
 

YakirovskY to merhe boundaries on a weakestnfirSt baSis, terminati
 

when either an absolute difference threshold or a minimum nuinher of
 

reojons Was exceeded. Another method, procoSed bV Freuder r24], was
 

to merae-two reoons, without regard for absolute houn.Aarv strength,
 

whenever both were more similar to each other than to any other
 

neiahbors. The reaion growinq procedures eveloPed for ISIS foliov'
 

Yakimovsyls meroe strateay bv keen.in nairs of adjacent recions on a
 

orier'ity queue, Ind always first merqlng across the aloballY Weakest
 

boundary.
 

The basic region analysis process is 1llustrated bv
 

an example depicted in Fioures J0 through 13., Tie first partition
 

staqe is based on the brightneSS Values associated ,0ith a 40 X ,40
 

sAmplina of the image, Reqion pairs are alded to the orioritv
 

queue, usina a similaritv measure based on averace absolute
 

briaatness and color difference across their common boUndiries.
 

Region pairs are then removed from the queue one at a time, in order
 

of similarity, and a merme performed in the region data structure.
 

The-f rst partition (Figure 10) Yielded 806 initial recions (half as
 

many .reqions as individual picture elements), -The results of
 

subsequent meraina are illustrated with 600, 450, and 250 reotons
 

remainino,
 

All relion-based techniques that effectively analyze
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nontrivial scenes make use of context-spnsittveprtules based pn
 

proble'-relat-ed knowledge, we 'gill refer to such rilles under the
 

general head-n of semantics.
 

SemfantiCs have been intrvAuced into meraoin0 decis'ions
 

in a variety of ways, The 5rice/Fennema weeknesrs heuristic contains
 

an imnlijit semantic statement! edges of obleets are straight ir the
 

blocks .world. After an initiAl nhasP of mernino based on
 

nonsemantic similarity criteria, Yakimmvskv's rrotram continules
 

merqino wi.th a semantic measure of, boundary strenth used to set
 

merge priori-ties. This jeasure used a Bayesian model to compute the
 

likelihood that two adjacent regions had the same Interpretations,, 

based on both their individual attributes. (P.o., color, size, anA 

texture) as well as on attributes of their co-mon boundary (e,,., 

length, Shape, orientation). 

Liererman's program, after qrouping samoles into
 

reoi.pns of homoneneous. hue, identified the largest regions and the,
 

invoked.semantic (object -erendent) Procedures to extend and refine
 

boundaries. For example, regions th'ttght to he sky were extended
 

to ad6dinini regions having a homoaeneous texture, while r-ctons
 

thoucht to be around Were extended to adjacent regions havinO a
 

vertically recedina texture gradient, - T he Harlow and EisenheiS
 

program used semantic krowledae (nrimarilv exnected briahtness and
 

image location, of each region) to select startino locations for
 

regions corresponding to the, princloal anatomic features in a cest
 

x-ray (23J. Initial reainns were formed hv indenenlentlvy mnrrna
 

starting kernels with adjacent samnles of similar briohtness. The
 



similarity threshold differed for each featurp denendina on exoec'ted
 

brightness variations, This Stane terminated when the iniiatl
 

regions had reached a significant size, but befbre they crew
 

together, subsequent meraing was constrained bY a set of semantic
 

"structure rules" that tried to ensure that the final reojons 

complied wIth known spatiaI relationships amnd 'the features.' 

Semantic considerations are'hv definition related te(
 

specific problems or picture doains, and hence they are inherently
 

ad hoe, For this reason, man-machine interaction is the appropriate'
 

mechanism for lnterieetino" semantic information that guides the
 

region arowdn process and for experimenting with dfffereit semantic
 

rutes and-determinina empirically their, usefulness in a, specific
 

problem domain, With an interactive facility, the researcher.can
 

oropose a set of semantic rules and instruct the system to -continue
 

processing until a sPecified state of the world or error condition is
 

reached, At this Point, he can investiate the properties of r'otons
 

and their relationships and modlify the knowledge base gulding the
 

analysiS. It is here that we feel the region aralvsis technigUes
 

developed for TSIS constitute a significant oriminal contribution'tn
 

the field,
 

4.3 Interactive Features
 

Some interactive control features are provided-to Aid
 

in .the formulation Of etfective region crowing strategies, and in the
 

selection of appropriate stopping criteria. Merges can be performed
 

in lster" -mode, one merge at a time, allowing the dynamic
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characteristics of a prioritv function to be observed. Prnnosei 

meraes are indicated on the disolay prier to execution. The user may 

then simulate.alternative merqine criteria bV modlfyinO the OueUe 

manually. For example, recions Car he selectivplv deleted from the 

queue, thus becomin unmerneable. The user can study the dVnamics 

of a particular erroneoIs merge bV reqUesttno tne system to enter 

step mode whenever a merqe is oroposed within a desiqnated 

rectanular Window. 

The ability to buil'd and modify the nriorltv queue­

interactively is also isefuj for Pxneriments in coorerative" 

(man-machine) rector analYsis. For Instance, the queue 'av be 

originally built with a few manually selected reotons and their 

"feihbosts (adjacent reoions). These reojns then serve as
 

"kerrels" from which all subsecuent new reacins crow.
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4,4 First Partition Experiments
 

The objective of first partition is to croup together
 

adjacent picture samples with similar attributes, so as to obtain the
 

fewest initial regions without riskin a false merge, tn the
 

introductory example, the picture was first samnled to 40 X 40
 

resolutions 'then adjacent samples with identical tdrfqtness were
 

combined to form homogeneoUS atomic regions (Figure 10). This
 

section reports on attempts to obtain improved first partitions using
 

different Sampling functions and different criteria for Judotna the
 

similarity of adjacent samples.
 

4,4,1 Experiments on Sampling
 

Proressina time considerations dictate that
 

region analysis be performed at the lowest resolution that preserves
 

important details in the image, The experiments reported in this
 

section compare first Partitions obtained with straight sampling,
 

modal sampling, and mean sampling, All experiments were aerformed-on
 

gray scale images usina a 40 X 40 rectangular SamPling arid. (In
 

scenes with neriodic texture, a random samplina strategy is
 

recommended to avoid aliasina effects,) In modal sampling rFiqure
 

14), the gray level of each grid Point is taken to be the most
 

frequently occurring value of gray level .tor nearby points, The
 

number of initial regions obtained in this manner is signifieantly
 

reduced (by about one-third), because a lot of small "noise" Points
 

in the treetop and around disappear, However, the fine detail In the
 

small central branch of t4%'ree is lost, and the separation between
 

ORINAI PAGE) 13 46

OFP POOR QUAIITT
 



2-4 

ar - i
 

AMR= *l 	 wasli ulluxm 

7RS4A, 

SAMPLES~ar OFFGRE5(3RRGOS 

FIGURE 14 	 FIRST PARTITION OF LANDSCAPE SCENE PRODUCED FROM MODAL 
SAMPLES OF FIGURE 5 (536 REGIONS) 
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tho around and the treetrunk are lost bV the modal smoOthtma. 

Semolina the mean cray-level in a small neiahborhood around each arid 

ooint is a poor technique because of its extreme tenAenrv to smooth 

discontinuities,.as seen in Fiure 4. 

We concluded that first partitions based on a 

simple Sampling of the qray scale imaec taken throuqh a neutral' 

density filter contain all of the informatteon needed to 

conservatively partiti6n most real indoor and landscape scenes. This 

conclusion is supported by the absence of most boundaries in imaces 

which have had briahtness information removed by normalization 

(Fiaure 2c). 

4.4.2 Experiments on Classification
 

The experiments presented above relied solely
 

on k-riawtness information for sub'dividinq the imace. The resultinc
 

narti,'tions seem overconservative, with manv objects unneceSsarily
 

fraaented. Since the recion growina stace is ouite time consuming,
 

we were motivated to see whether additional sensory modalities (Ie.,
 

color and ranae date) could be used in conjunction with briqhtness to
 

reduce the number of initial regions,
 

4.4.2a Nonsemantic Classiftcation
 

In the-following experiments, the hue
 

of each picture sample was quantized into 20 degree intervals as
 

shown in Fiqure 2e. (The-'hue of each samnle is expressed as a
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spectral anle from 0 to 360 degrees based on a transformation of the
 

raw color data given in ADpeniix B of Reference 1.) Reotons were then
 

formed by crounino adjacent samples with hues faltino In the same
 

interval, Fiaure 2f is a false color Presentation of Floure le,
 

with each sample displayed in the hue of the 20 dearee interval to
 

Which it is classified. Figure 15 snows the Dartition resiltin from
 

this classification,
 

Twenty degree hue intervals were
 

thought to be conservative compared with the far cruder quantizations
 

employed by both YaKirovskV and Lieberman, The. resultinG partitions,
 

however, were consistently worse than brichtness partitions, Major
 

leaks occurred between semantically distinrt renlirrS in both indoor
 

and outdoor scenes. Moreover, in outdoor scenes, because of
 

textural irrecularities, the total number of reolons was actually
 

areater- than tre number Produced by a briohtness partition.
 

Therefore," we concluded that in the absence of semantic information,
 

a partition based on brightness was suoerior to one based solely on
 

huie.
 

4.4.2b Semantic Classification
 

One micht expect to improve color
 

partitions in a aiVen domain by selectina quantization intervals
 

corresrondino to characteristic colors oi the orominent objects.
 

Recall that Lieberman had obtained reasonable partitions using Ju1st
 

seven carefully selected classes of hue. These resultts co"ld not
 

be replicated in our landscape scenes becAusp of the overlappin hue
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FIGURE 15 	 FIRST PARTITION OF LANDSCAPE PRODUCED FROM SAMPLES QUANTIZED 

INTO 20 DEGREE HUE INTERVALS (918 REGIONS) 
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distributions of the principal oblects. Pesults in roor scenes were
 

also unsatisfactory, thou'yh frr different reasons. While Some
 

interior surfaces have broadly jistrihuted hues (e.O., Patterned
 

rues, pictures, shiny tabletoos, etc.), the malority have snarolv
 

defined hues, Tn color coordinated roons, these hues tend to cluster
 

in a very narrow rAnce, deereasint the retliahiity of classification
 

and increasina the attendant risk of an erroneous merqe,
 

Althouqh the overall partitions
 

qenerated with semantic color classifications were lnarcentable,
 

oarticular reoions with distinctive h.ies could be reliably extracted.
 

For example, the oranne hue of the chair annearino in room scenes 

sunDl ed by Reddy and fhlander is uninue in those scenes fSee Riaure 

id). Conseouentiv, Imaoe sarPleS from the seat and back of that 

chair could he orouped into reafons without risk of false meroes. The
 

nuimber of regions that can be extracted in this way increases
 

significantly When claSsification is based on rnUltiole attrihutes 

rather than Just color. Skv, for examrle, is the only reQin 

unsaturated in our landscape scenes ,rirlhter than 3n (on a scale of
 

31). Tableto is the onlv horizontal surface hiaher tflan two feet
 

found in SRI office scenes. These observations rrompted a chance
 

in erphasisp rather than atte'pt to use ranae anti color data directly
 

in the partitoninc process, these attributes would instead be Used
 

in a preliminary rhase to extract regions Composed of samnles with 

clear semantic interpretations. Remaining areas of the scene 

(e.o., those containino semantlcallv ambluous samples) could then he 

partitioned conservatively based on brightness. 

A number of, experiments were
 

DIRGfNA PAGE IS 51
 

OF POOR QUALHY1
 



Derformed whereln saples of jistinouishina oblects were identifl d
 

and grouped Into reajons prior to deneral oartitioinn. A set of
 

predicates were emrpricallv developed for selectina samples of eec?
 

distincuished objert. These predicates arm sprilar to nredtcates
 

used for filterina in object acquisition (see Section 50. Predicates
 

were applied seauentially tm all unclassified imaqe samples. Tlese
 

Samples Pas ho a oredicate were aSSi7ned a corresnonlina semAnttc
 

label And removed from further consideration. Sa'roles failin, 1l
 

predicates received a nonse'antic label hasod on brightness. ha
 

Scene was then vArtitjoned in the conventional waY bY combnjn, intm
 

reqiens adloinina samples With the same labels.
 

The two mmst sUCCegsfu] results Are 

documented in Ficures 16 and 17. These results sioni1d be romoare. 

with the correspendino briahtness based nartitions shown in Flcures 

18 and 9. Tables 4.1 ant 4.2 dociment the splectlve clAssIficatlOn 

criteria used. The folloina points are 'ertjnent: 

(1) 	 In seauential classitication, later predicates may be 

able to take advantage of context reAuctions achieve4 

by earlier Dredicates. For eXaenle, the nirture On 

the wall In Fiaure 1-d is a coimnex oattern. lPowerer. 

it was removed bV a simple heiabt critearrn, once the 

Wall Samples had been accounted for. 
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FIGURE 16 SEMANTIC FIRST PARTITION OF SRI OFFICE SCENE (235 REGIONS) 
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FIGURE 17 	 SEMANTIC FIRST PARTITION OF CARNEGIE-MELLON OFFICE SCENE 
(151 REGIONS) 
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FIGURE 18 	 NONSEMANTIC BRIGHTNESS PARTITION OF SRI OFFICE SCENE
 

(583 REGIONS)
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(7) Absolute classification is not essential, samples from
 

different objects can satisfv the same classification
 

rule without onnsenuence, privjded that those objects
 

are not pictorially adjacent, Thus, no harm arises from
 

the fact that remions of both door and nicture in
 

,Figure 16 satisfy the fourth rule Aiven in Table 4-1,
 

since pictures in this domain are constraineA to hano
 

only on walls.
 

(3) 	Even when objects cannot he comnletely discriminated from
 

their neighbors, it may still be possible to Pull out
 

substantial portions Intact. The takletop in Fiaure 11
 

was Partitioned semanti-calkv into two characteristic Mark 

regions while an arb-iouous olossy area in the center waS 

martiti-oned nonsemanticallv on the basis of brightness. 

(A) 	Selective classification schemes are essentially lirited
 

to scenes where objects tend to be homoneneous and
 

distinguishable by local attributes. Thus. while
 

selective classification has given us oo results for
 

indoor scenes, it has Proved to have little utility in
 

outdoor scenes,
 

Given a suitable domain, it should be
 

DoS'Sible to use the acquisition Planner described In Section 5 to
 

derive the classification oredicates automatieallv from.pictorial
 

eXam les, The classification task should, in fact, bP simpler them
 

global acquisition, since the Predicate need discriminate only amono
 

pictorially adjacent surfaces.
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Table 4.1
 

SELECTIVE CLASSIFICATION CRITEFIA FOR.rGupE 16 

I,. 	 Extract floor samples by heiaht ro.i feet). 

2. 	 Extract chairseat samples b' characteristic
 

hei.qht and horizontal orientation.
 

3. 	 Extract tableteo samples by ch-racteristic
 

hetaht and horizontal orientation.
 

4. 	 Extract picture samples ih too passes.
 

a, By characteristic heiqht and saturation
 

oreater than maxirum saturati6n for wall.
 

b, By charaeteristic height and hue outSide the
 

hue range of wall,
 

5. 	 Extract chairback samples by characteristic heleht,
 

vertical orientation, and saturation.
 

6t 	 Partition remainino samples by hrightness.
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Table 4.2
 

SELFCTTVF CLASSIFICATTON CRITEPIA mnR F1GURP 11 

i, 	 Extract wall samples by their distinauished
 

combination of hue, s~t'uration, and briahtness-,
 

2. 	 Extract nicture samoles by splectina all
 

remaininc .samples,in u~ner third of imaqe.
 

3. 	 Extract chair samnles by their distinouished
 

hue and saturation,
 

4, 	 Extract couch saDrles bv their distinnuished
 

hue and saturation.
 

5. 	 Extract floor samples by the-ir distinquished
 

hue and saturation.
 

6. 	 Extract tablet@k SaiDleS by their dist,inflUished
 

huep saturation, and brlghtness,. 

7 Partition rema4ninT samnles by hriahtness. 
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4,5 Mere Priority Experiments
 

The purpose of these exteriments was to 'determine
 

some fairly conservative nonsemantic measures of rector similarity to
 

use in definina the merge priority durino reaion arowina. It Is
 

important to note that at some point, all nonsemantic measures will
 

commit errors. since they haVe'no hicher-level'infor"ation about the
 

scene domain, An example that illustrates 'this fact Was sugqested by
 

Yakimovsky, who Pointed out that in one part of a scene, it may be
 

appropriate to merae small ireen and yellow renions eomrisincl qrass.
 

while in another nart of the scene, where yellow reilons are part of
 

a car. this merging is -in error.
 

The nonsemantle merae orioritv criteridn is intended
 

to be used in conlunction with functions that apply semantic context
 

to each proposed merge. The Priority function should establish a
 

reasonable meroe order based on similarity me-asures, so, that the
 

semantic eMbeddino can be Performed on relatively well-defined
 

portions of the scene,
 

The oualltv of nonsemantic similarity reasures was
 

compared by performing a first partition based on brightness, and
 

then iollowino a alobal best-first merae SeaUence Usina each
 

similarity measure until there were only 250 regions remaining in the
 

Scene. The outcomes of the different proPosed merae seauenceS were
 

compared to see how well they honored the correct organization of the
 

scene,
 

The first similarity measure tested was based only on
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the rightness information obtained through a neutral densitV filter.
 

For each boundary between two regions-, the average absolute
 

difference 'in briahtness across the bnundarv was computed. This
 

average is computed as follows:
 

N 
(e) Aversoe absolute briahtmess contrast l br, - brb I 

N, 

where.i'ranges over the set of N adjacent picture element pairs Almnn
 

the boundary between reclons a and b. br, IS the briihtness threul
 

a neutral densitv filter of picture elements in reation A, and brbi Is
 

the briahtness of correspondihg points in region h, The pair tf
 

regions With the smallest briahtness contrast was meraed first.. The
 

result is shown in Firure 20. Several serioiis, thouah very narrow
 

leaks, occurred: the sea and ground were connected hv a rarrow neck
 

to the left of the main tree trunk, the around, Sea, and horizontal
 

tree branch were Toined tooetner to the'right of the trunk, and thP
 

center vertical trunk became merged With the 	treetor. A major leak
 

occurred between the main trunk and the 	around, but this was not
 

surorising, given the Io contrast in that area,
 

Better results Aere obtained usina-a measure that was
 

like 'the first, but that gas based on the slim of the contrasts In
 

each color separation, Thus, for each point on the cnmmon boundary
 

between two regions, the absolute difference in-r, Q, and b was
 

computed, and the averaae of this "color contrast" was computed for
 

each pair of adjacent regions. The formula is:
 

N 

(2) 	Average color boundary contrast = =- r rb.1+ bai - 9b+ bai- bb!I
 
1=1 N
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FIGURE 20 	 LANDSCAPE SCENE MERGED TO 250 REGIONS USING AVERAGE BRIGHTNESS 
CONTRAST ALONG THE BOUNDARY (EQUATION 1) 
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where rl, "g, P* and ba, are the brihtness of the ith bobUndarv 

element from region a seen through the ret .areen. and blue filters 

respectively, and rb! , *bbi are corresondjna date from region b, 

and i and N are defined as above. The result of -ergini reflions with 

smallest color contrast first is shown in Fiaure t3. "Je also tried a
 

similarity measure based on the sun of snuared enntrast difterences.
 

and obtained results that lid not differ sianificantlV from the
 

results Using abSolute differences (See Fiaure 21).
 

Another similaritv meas're "'as to roroute the average
 

alon the boundary between two adjacent reolons of the maximum color
 

contrast- between any two nictture elements drawn from samplino
 

neighborhoodS on npnr Site Sides of the boundarv. The attraction of
 

this method is that it should behave very cnservativelv, declinlnn
 

to merne two reuions if there is evidence in 'the full resolution
 

picture that they are dissimilar. UnforttunatelV, this measure is too
 

conservative, and noisy regions, like the mrouns anJ' treetop# fall to
 

coalesce betore distinct smooth regions have orown toaether. The
 

results are shown In Fioure 22.
 

The similarity measures destrrber so tar are all
 

based on boundarv cmntrast nrooerties, Another class of m'Rsures is
 

based on the similarity of average region nronerties. On the basis
 

of our - success with the color contrast criterion discussed
 

previously, we tried a similarity measure that used the absolute
 

difference in averace r. a, and b for each nair of adjacent regions.
 

The formula for this similarity criterion is
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FIGURE 21 	 LANDSCAPE SCENE MERGED TO 250 REGIONS USING AVERAGE COLOR 

CONTRAST SQUARED ALONG THE BOUNDARY (EQUATION 2) 
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FIGURE 22 LANDSCAPE SCENE MERGED TO 250 REGIONS USING MAXIMUM COLOR
 

CONTRAST ALONG THE BOUNDARY AT FULL RESOLUTION
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(3) Averaae reoi" color .lifference l-7i+ F- 1+ -Tb1
iF 


the averaae brirhtnesses of realon 4 seen
where T , g , and ba are 

throuah the red, areen, and lue fiers, anA , b and 

The result, shown in are the corresnondina brightness of reton h, 


Fia'1re 23, Is very close to and blue filters. The result, shnwn in
 

is 'verv close to the result using color boundarV contrast.
Fiqure 23, 


The best results were nbtained us1ne a technique that
 

combined our two best previous criteria. We defined the contrast.
 

between two recions to be the maximum of the color bmntdarv contrast
 

(Equatiom 2) and the average reqion color difference (Equation 3),
 

and compared these maxima for Pach ,vir of adjacent reatons. The 

results are shown in Figure 24. This was the similaritv criterior 

used for subseaUent experiments with semantics. 
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FIGURE 23 	 LANDSCAPE SCENE MERGED TO 250 REGIONS USING AVERAGE COLOR 
CONTRAST OVER THE REGIONS (EQUATION 3) 
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FIGURE 24 	 LANDSCAPE SCENE MERGED TO 250 REGIONS USING THE MAXIMUM OF 
THE AVERAGE COLOR CONTRAST COMPUTED ALONG THE BOUNDARY 
AND OVER THE REGIONS (EQUATIONS 2 AND 3) 
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4,6 Semantic Reaton Grngti
 

We have seen in the reaton rnwino experiments above 

that recardless of the priority function, sooner Or lator an 

erroneous meroe is nroposed. Semanties can be used elther to refine
 

the boundary strenoth criteria so as to nroooss fewer erroneous
 

merges [113 or else te hloc pronosed merges that are incorrect.
 

Steppinq thro~lIo nernes-Droposed by the nonsemantic color difference
 

criteria illustrated in Fioure 24, it was observed that' serious fafse
 

merges Seldom occur until the rmgions involved have nrmwn
 

sufficiently larme to permit semantic internretations based on recion
 

properties. This observation Would suacest that reraina errors
 

could be avoided on semantic grounds simply by refusing to meroe
 

regions With difterent Interpretations.
 

4,6.1 An Experiment in Semantir Retorn Growth
 

The above contention 10as tested
 

int'eractively. The basic nonserantic reqion arolno aloortthm was
 

modified to check semantic comratibilitv before nerformina a nroposed
 

merde, Merges are approved only if both rectons carry the Same 

interpretation, or if at least ore 'of the reiors ' has not vet 

received an interpretation. Newly merced renions inherit the 

interpretatioh of their parents cor Parent if only one carried an 

interpretation),- When two uninterrr'eted reqions are merged, i# the 

size of the resultant redion exceeds a threshold (in oractice, the 

size of the smallest region typically involved in a significant 

erroneous merger), the nrogram reauests the exnerimenter to supply 
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manually a correct interpretation,
 

The modified proerram still runs primarily in
 

a nonsemantic modep merqine recions across the currently Weakest
 

bOUndaryp Subject to semantic override, This process .contlnUes Until
 

all semantlcally compatible merges have been performed, terminatinn
 

with a complete, semantically labeled Partition of the scene. An
 

indoor and an outdoor scene were each Partitioned With only minor
 

errors (ue mainlv tn inadequate spatial samolino), The results are
 

shown in Figures 25 and 26.
 

Tr both experiments, the size threshold for
 

manual interpretation was set at seven samples. However, the qreat
 

malority of recions inherited correct labels throuch merqing before
 

attaininq that size. The final partition depicted in Fioure 25 was
 

based on the-semantic first partition shovn in Viture 16* Manual
 

interpretations were Provided initially for the 0 i1rst partitlon
 

rertions (out of 235) that exceeded threshold Size. Twenty additional
 

interpretations were provided durina the subseouent analVsis when
 

uninterpreted regions attained threshold size by merqina. All major
 

surfaces were extracted essentially intact except for chairleos and
 

tableleaS, .Thpse surfaces were too narrow for the available
 

sampling density, and therefore correspondinn semantic catemories
 

were emitted, The final partition in Fioure 26 xas based on an
 

initial brightness partition CFigure 10). Althouqh this .first
 

partition contained substantiallv more regions than the semantic
 

partition used above, -tt& number of (initial and total) manual
 

interpretations required was surprisinoly similar, In oarticular, 21
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FIGURE 25 FINAL SEMANTIC PARTITIONING OF SRI OFFICE SCENE 
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FIGURE 26 FINAL SEMANTIC PARTITIONING OF LANDSCAPE SCENE 
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first partition reaons Were laroer than six elements (Vjvure 27) And
 

received initial interpretations. The final oartitlor (Fioure 26)
 

Contains minor leaks between the sea and nrcund (in the lower rinht
 

corner of scenep)and between two franments of sea across the left
 

most tree limI. The Sea-aroun leA. could have been avoided bV
 

setting the labelina thresholA at six samoles, the size of .the sea
 

fragment when the leek occurred. The. sea-sea ipak was a more
 

fundamental error, resulting from a oraduel erosion, of small "tree
 

bark' reiions into the nejanboring sea reions before a cohesive
 

piece of "tree bark" cnuld he identified.
 

The above results confirmed the oriQinal
 

contentions that leakeae occurred mainly between sizeable reaions and
 

that leakaqe could be minimized, orovided that such renions could-- be
 

semantically labeled. It was surprising how well a handful of 

manually introduced interoretations could improve nn a completelv 

nonSepmantiC scene partition. 

4.6.? 	 An Experiment in Semantic Peclion
 

Ctassifiratic'n
 

The success of the ahove .exppriments
 

suqnested a second set of experiments aimed, At studyinn the
 

feaSibility of assianino interpretations ailtomaticalily to regions
 

that attain threshold size; In the following experiments, rpainns
 

were classified by comnarln6 local attributes (e.q., hue and
 

saturation distrihutions) With those of 1arqe training reGions
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designated by the exnerimenter.
 

Classifications were performed on each-of tho 

first partition regions that had received a manual interpretatioi in 

In room scenes, mostthe experiment described in Section 4.6,1 


reqiins were, uniquely distinguished by a conjunction of local
 

attributes which included heiqht and surface orientation (from
 

simulated range data) in addition to hue and saturation. The large
 

relions in Fiourete were uniouely Internrete 'ith the exception
 

that the bottom of the door and the wastebasket could not be
 

distinguiShed, Tn outdoor scenes, local discrimination (based only
 

on hue, saturation, and briohtness) Proved much more difficult. In
 

this case, automatic classification based on' hue, saturation, and
 

brightness eliminates only the orOsslV unaceentable interpretations,
 

leaving many ambicuities-to be resolved,
 

Table 4-3 simmarizes the results of 

classifyin; reaions in Fiaure 27 accordina to the trainino reipon's 

outlined in Fioure 2,8. Each- test reo3 on Was comoared .to crl trajninn 

reqions using a Koloorov-Smirnoff test on the correspondlnn 

distributions of brinhtness, hue, and saturation (see Ftaiure 1), 

These'comParisons establiSh for each test recion three rank orderinqs 

of similar training regions. Trainino reolons that apear in first 

or second Place'in at least two of these rank orderinas are-chosen as 

POSSIble interpretat.Ions for the test renion (Presented in the third 

column of Table 4-3), A second type of classification was obtained
 

usina a Bayesian classifier described in Anendx A, onlV
 

interpretations with a likelihood.areater than 10 percent of the
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FIGURE 27 	 REGIONS FROM FIRST PARTITION OF LANDSCAPE SCENE (FIGURE 10) 
LARGER THAN 6 SAMPLES 
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FIGURE 28 TRAINING REGIONS USED IN CLASSIFICATION EXPERIMENTS 
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likelihood of the most probable interpretation wre retained. The
 

results are shown In the fourth column ot Table 4-3, with the 

Bavesian likelihood (between 0 and 11 in naremtneses. The correct 

interpretation is not always the best atcih but is almost always 

amona the top two or three alternatives, In several instanceS the
 

interpretation ambiouities that occur ari not serious because the
 

alternative interoretations never aovear nictorta1ly adIacent. Note
 

that these results are for trailnlnn retgions in the same scene as t'he­

test data, Worse results can be expected for distinct scenes chose"
 

from a common domain.
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Tah)e 4.3
 

CLA5SIFIC6TTO. 9F PEGT),S Il FIGI'WF 27
 
ACCOPDIN(: TO TPATO'TIG RH%,OTS IN FTIRuRE 26
 

Reaion Correct ?l.Jority VS Baysian 
Interrretation Classifier Classifier 

I Treetop Treetop T reetor(.236) 

2 Treetop Treetop Groindl.22A) 
Treetop(.2) 

I Treetmn Treetop rrounm-i.20)
Trpetoo(.202) 

4 Treetop Treetop round(.223) 
TrUnK (.*q4) 
Treetoo(.133) 

5 Treetop Trunk GrounriU.211 
Treetoi Trunkfr)5)

Treetor,(~l1 

6 Treetop Trepton trpetop(.257) 

7 Sky Skv Skv(.9851 

8 5 " S-ev Skv(l.P) 

0 Mountain Sea Molntal, (.o,3O) 
l, Uftain 

to IoUntaln P .Untajm .gat(T8 

11 Mountain "oultain Mourtinr.0Ag) 

12 tlountair ?.untaln rountain(.653) 

13 Mourtaln Mountain oUnt.an( .P63) 

14 .Sa Sea Sea(.562) 

15 Trunk Ground Groumdc.?nl) 
Treetnr.(IQII 
Trunv r.161) 

16 Trunk Trunk Trunv(.946) 
Trppton GrO-Irf.24 

17 Trunk Treetop Groulndr.212) 
TrIlc C.147) 

IR sea/PocO Sea 
Mountiin 

Trunlrc.337)
Treetn,(°.52) 

Sea(.O862)
 

19 Trunk Trunk 	 TruikC.206)( 
Ground .2C5) 

20 Ground qrourd 	 Ground(.205)
 
Treetmo(.196)
 

21 
 Ground 	 Treetop Grou~lf.71g)
 
Ground Treetmrt.1Q6)
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4.7 Toward Automatic Peaior bnalvsis
 

The classification experiments show that in order to
 

automate semantic reoion arowina., the hasie paradigm must be
 

augmented to handle regions with ambiguous internretations. In this
 

section, we shall outline briefly some plans for how this r'iaht he
 

accompliShed,
 

Tn admitting regions with muiltiple interrretations,
 

provision must be made (a) for determining the serrantir Compatihilltv
 

of a proposed merge, (b) for deter'ininq the intprpretation of a
 

newly merged reoion, and (c) for ultimatelv resolVina any
 

ambiaulties, Newly meroed regions will aCnuire the set of mossille
 

interpretations formed by intersecting tre inteoretation sets 6f its
 

parent reglons. If this set is. emoty. the meraer is obviouslv
 

incompatible, ntherwise, compatihi ity denerds on whether the
 

interpretations left in the intersection set are ever rictoriallv
 

adlacent In the domain oftnterest. This point is best illustrated
 

by example, In Figure Ic two reoions, earh elassifted as "treetop or
 

around," can always he merged without risk Of a leak because
 

"=treetoo" and "around" Are never adjacent in thp Imacie. Thus, since
 

these two regions adJomn, they must hava the same interpretation,
 

either both are "treeton" or noth are "oroun." on the other henl.
 

two regions', each labeled "treeton or treebark," should not
 

necessarily be merged because an error would occur if the actuql
 

identity of one region was "treetop" while the other turned out to be
 

"treebark," In the latter case, a decision on the mermer must be
 

deferred until the individual region interpretations can be further
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constraired.
 

Ambiauous reninn interoretations can be refined In
 

basically two *avs: by Considerine, additional, eylobal reajon
 

attributes (e.a., texture and ShaRe), and bV considering contextual
 

constraints imposed by the nossible intervretations of nearby
 

(arimarilv adjacent) recIens. For instance, renions of "treebaric"
 

"ground," and "treetop," In Fioure It have sirilar color and texture.
 

Howeverp "tree trunk" realons, unlike most reqions of "around" and
 

"treetop," are Predominantly thin and Vertically elenoatpd (e.a..
 

high ratio of vertical oerimeter/horizontal nerimeter). Treebark
 

regions are further distinguished by their extended vertical
 

boundaries with their neicrhbortn re'ions of "mountain" and ",Water".
 

Such distinctions will be exploited by levelopinq, with ISIS, an hoc
 

domain dependent representations for distinnuishinq arongoarticular
 

interpretation amticuities.
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The Above ideas evolveA from two related ohlpctives!
 

Ca) we wanted a semantir recion orower that could use the kind of As
 

hoe ser&ahtie constraints "that are so easV to develop Irteractively ir
 

ISIS, and (b) we wanted a svste-- that could he trained incremental-lv
 

by introducing new semantics to block specific errors as they are
 

obs~rved'. The Proposed syst-em USes two tves nf semantic rules- one
 

set defines distinouishina features of particular interbretations,
 

while 'the' ether defines which interbretations' can be lecallv
 

adjacent. Erroneous meroes can occur if the re~ionS involved Are
 

unaware that the assirne$.
mislabeled, or if the system is 


internretatiOns may be adjacent. In the former rasp, a trainer rotulA
 

use ISIS to refine emDprically the local and contextual features
 

associated with- recoonizina the missina tnternrotation. In the
 

latter case, he wonlri merely orovIle an explicit constraint
 

Prohihitina the mere'of reolons With those assiired intprPretatiolos.
 

Our proposed Prqer semantics are cInsest in spirit
 

to the structure rules advocated by Harlow and Eisenstat, which could
 

be added incrementallv to block soeific leaks. Mew rules could,
 

however, interact with existina rules in ways that are difficult to
 

oredict d priori. YaimoVSkv's Rave-slan semantirs, on the other 

hand, are Intrinsically interdePende't ani mist he meouired over manv 

trials uslno stochastic learning oroceiures. The rrobanilittes
 

are also not Used directly to block merges but mnly to order the
 

priority in which wermes are Proposepd. t is conseruentlv difficult
 

to introduce semantic constraints in lirect response to specific
 

errors. There are other iinor contrasts between our Pronosed
 

system and Yakomovskyv's, In our system, no distinction Is drawn
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between svntactic and semantic ' stAmes. ..Semantics are
 

continuously introduced into the analvsis as individual regoions
 

achieve .a coherent size. We also do not subscribe to Yakimovskv's
 

assumption that houndary and recion semantics are independent.
 

Rather., it Would seem that boundary relationships ma?, nn.occasslon,
 

be the stronqest clue to a reon's identity, which in turn could
 

improve semantic boundary strength.estimates used in settina meralna
 

priority. YakimovskyVS svstem, however, is still the most sUcceSSful
 

automatic reaton analyzer Implemented to date,
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4.8 
 Toward Interactive Pegior Analvs'is
 

For the foreseeable future, A larne nuomber of, Scene 

domains will he too c6mplex to process crmpletltv automaticaI v. Snm'e 

of these scenes are also too detailed to segment raodly by hand. For 

such scenes, an interactive methodoloqv like that IlSed earlier in 

studying semantic region analysis may prove useful in its own riht
 

as an, altiernative to Purely automatic or purely manual partitioninn,
 

the human time and effort in entern rouihlv 20 semantic labels are
 

Probably less than the time and effort renuired to oUtline each of
 

the 50 regions in the final partition of Fi'oire 76. However, when
 

interactive region analysis is' identified as an explicit coal,
 

numerous improvements come immediately to mind. The experimenter
 

can, with relatively little effort, crudely Autline and label the
 

malor regions, This crulde outline can be used directly as a qoomd
 

initial partition from which detailed boundaries Car be rapidly
 

crown. The outline can also provide training date for automAticaliv
 

classifyino the few addi'tional reaions trat mlaht attain threshold
 

size without inheritino an ihterpretatio froT the initial reionS.
 

(4ote that for this tirDose, generality of the classifier over
 

several scenes is not even an issue.)
 

Two other schemes for interactive region analysts
 

were tried experimentally and are reported here, for completeness' In
 

the first experiment,-the scene was conventionally Partltloned into
 

regions of homoaeneous briahtressp however, the njobal priority queue
 

qas not built, Instpad, the user was'asked to notnt at significant
 

oblects in the' scene with a cursor. Fach time re pointed, the 
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boundaries between the first partition region at that location and
 

its neiohbors were entered onto the priority eueue. When the user
 

had indicated what he felt were the mAlor scene entities, the system
 

began to merge .reions nonsemanticallv acrr,ss the weakest bouindarv
 

currently on the quetle, After each merge, the oueue was updated to
 

include additional boundaries between the new rerion and Its
 

neirhborS, We expected that regions would, crow out from each
 

starting kernel, and since meroina was still done on a "best first"'
 

basis, that realons would halt at object boundaries. This
 

expectation Was not realized in experiments on landscape scenes
 

because of the similar coloring of many Oblects and the textural
 

variations within obleets, Spatial oroximit thus hecame a Pr-imarV
v 


factor in determlninn the kernel to which a aiven Picture element
 

would, ultimately become attached, Still, this method Mirtht he
 

useful-<for rapidly obtaining a crude partition, provided that- (a)
 

the kernel regions. are large and centrally located within each
 

oblect, and (b) the meraino Process is terminated early enough (sav,
 

with 100 regions remainino). Users were aided J, their choice, mf
 

kernels by superimposing the actual first partition renions or the
 

displayed scene.
 

In the second experiment, semanttr labels worp
 

asslAnked to the sel-ected kernels, and were s'ibsei'iertlv used to block 

incompatible mergers. The resultini partitions were consist.entlv 

better than the nonsemantic version. However, qualitv still 

demended critically on the number of kernels selected and on their 

Placement. For example, leakage can he minimized by eheosiny a 

succession of kernels alonj opposite sides of a desired final 
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boundary and then'assionina different semantic labws to kernels on
 

each side, Splectine7 at least one kernPl in each pictoriailv
 

isolated patch of an object re.cT.. fracments of sea isolated by tree
 

limbs) allows meraina to continue further towari a comnlete partition
 

without committinq errors.
 

Allowind a user to choose semantic kernels all at
 

once consumes considerably leSS of his time than requirina him to
 

stand by to supply interpretations throughout an analysis, On the
 

other hand, it is difficult to know a priori which kernel reQimans
 

will Ultimately lead to good oartitions. Conseauentlv, partitions
 

resultin from semantic kernels were poorer than those obtained when 

interpretations were requeSted during the analysis. A ontributinc 

cause is the fact that in the kernel scheme, the best were canhidate 

Is selected from a-restricted universe of regions directly descended 

from the original kernels, rather than the set Of all jirst Partition 

reqions, The kernel scheme is thus much more likely to Propose 

erroneous merqers early in the analysis, when this discrepancy is 

qreatest, A user's cost-effectiveness mtcht be optimized bv some 

combination of these approaches whereir requests for internretatlmn
 

can be minimized by SUPPlyino initial kernels.
 

The semantic kernel Approach might Prove more suite&
 

for partitioninn a scene into two classes (ie., figure and ground)
 

than for obtaining a complete partitionina. We Olen to inVeStigate
 

its use as an alternate means for inferrin intent when a user points
 

at an ohiect,
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5. AUTOMATING GFNERATTO tJ OF OBJECT FINITIG STPATEGIFS* 

Introduction
5.1 


In this section we describe a system that can be
 

rapidly proqramrqed to find major surfaces in relatively co5moex
 

real-world environments. Objects are desimnate to the SyStem bv
 

circling examples with a cursor in a displayed imace. The svstem 

formulates a strategy tor fjndino the object, based on knowledge of 

available Picture processing techniques And abo'Jt the mAke'1n of the 

current pictorial domain, The resulting nroTram is then run on 

representative scenes and debucaed inter~ctivety as errors 

materialize. This Work is nart of a system that can be raridlv 

programmed to find objects in office scenes As described in Hl). 

Previously wp have used TSTS tm develop Interactivplv 

a set of Procedures for finding objects in office sceneS, The basic 

idea underlvina these strategies is to raidilv disiualifV Obvlouslv
 

irrelevant areas of the scene by samoling for clardeteristic
 

attributes of the desired object (also referred to as the target
 

ooiect or taraet)*. Additional local rrooerties are then tested to
 

eliminate those Samples helonoinq to other objects that Share the
 

accuisition attributes. The surface containln the Ac uired
 

samples is then bounded, and the resultina renion is tested for
 

aporopriate size and Shape. Programs of this sort have been
 

developed for finding various objects comonly found in office scenes
 

(including door, table, chiir, wall, picture, and floor).
 

*4orMk reported in this section Was supported in part bv the Advanced
 

Research Projects Agency under Contract DMHCO4.72-C-0008.
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A Plan for finding a door mictht consist of accuirino
 

Samples at a 1eiqht likely to contain fe thinos besideS a door, and
 

then validating by eliminatina thosP samples which, on the basis of
 

remaining local attributes, have low likelihood of-beina part of a
 

door. The door boundary is then ohtained bv qrowina-a region around
 

the initial samples, using attributes such as hue and saturation. fme
 

alternative approach would he to first sCan downward from the top of
 

the imace to a Point whose heioht is uJnique to door and wall. Thp
 

edge of the door is then obtained by scannine horizontally from this
 

point, seeking an abrupt chance in saturation. (Doors in SRI offices
 

are deep brown while walls are tan.) f this edae has sufficient
 

vertical extent, the door houndary Is then Inferred from the known
 

shape and size of our office doors', and tre local surface orientation­

measured in the imace on the door's side of. the elscontinuitv.
 

Finally, the predicted boundaries are confirmed by testin- for
 

evidence of edges in the imace.
 

The above Strateqies can he schemati7ed Into
 

acquisition, validation, and boundi-ng ohases. Speciflc 
 techniques
 

for accomplishine each Phase are chosen from available methods or the
 

basis of current Information about the Pictorial domain,
 

5.1,1 Acculsition Methods
 

The most straiohtforward way of accuirino
 

ORIG]WA PAGE IS 87 
OF POOR QUALUX 



samples of the object 15 to filter ranim nieturp Sanrles, rejectinn
 

any sample that fails to pass a predicate descrintive of the desired
 

object. For example, the sampl'ed scene may he filtered to retain onlv
 

those samples at a certain hPlaht. Alternatively, the scene can he
 

sampled alono a locus to detect I1stinouishngq houndarV
 

discontilnuities. These DredicateS are generated autmwAtically from
 

eictorial examples.
 

5.1.2 ValidAtion Methods
 

Acomired samples are validated by checking,
 

adlittional local characttristics that distinouish the desired omhect'
 

from others with common acquisition attributes. These adlitional
 

attributes are examined senuenttallv, reducing the number of samnles
 

that must be examined by successive tests. Total cost is minimized bv
 

deferring comutattOmally expensive procedures. When the cost of
 

olanninq the optimal order exceeds the mnown cost of usino all
 

remainino attributes, samnles are classilied With respect to possible
 

objects, Those samnles ludled likely to belono to the desired object
 

are retained, 'Samples'Alord a boundary are further validated by
 

testino the boundary lenath, strenoth, drd orientation usiq suitable
 

masks.
 

5.1.3 Bollding Methods
 

The final boundin phase is accomplished in
 

variolos ways, Given a suitable ceometric model of the object and a
 

prolective camera transform, a orocedure can compute analytically the
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best olobal boundary co#tsistent with detected edce noints. The
 

computed boundary can be projected onto the imaoe and validated usinn
 

extent masks as above, Procedural models are available for common
 

surface types such as horizontal.and vertical rectanoles. In the
 

absence of such models, 'a reoion mav be irown around Validate'd
 

nonts, neiqhbors of validated samples qhtch pass a chosen predicate
 

(often the acquisition predicate) are aided to a Oush-down stack.
 

Neighbors of points on this stack are then examined recursively. All
 

accepted noints are collected tocether into a reaion, for which a
 

crude boundary can be obtained bY'comnUtjnq a convex hull.
 

5.2 Automatic Generation of Predicates
 

The work described Mere is an attemot to automate
 

tnree key decisions involved in ODlannino a diStinautshinQ features
 

strateqyt
 

(1) What attributes should oe uSed for acquirinc7 

initial samoles? 

(2) What attributes should be usee for validatina 

those samples? 

(3) 	hat attributes should be used in region
 

crowing to obtain a complete outline?
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a
All three-decisions involve distinqulshinq a desired surface in 


context of other surfaces that may he oresent. Acouisttion, for
 

instance, involves distinauishind a surface from other known surfaces
 

in a domain, validAtion involves distinoutshinl a surface from other
 

surfaces known to satisfy the acqUisition attributes, and bo'Indina
 

involves distiniishin a surface from All surfaces that could
 

possibly be adjacent to it in the ira-ye.
 

Tn order to explain predicate ceneration, a
 

digression to describe the date base is recuired, Objects are
 

characterized bY local surface attributes, symbolic propertieS, and
 

relations with other objects. The local surface attributes that are
 

currently used as descriptors are: brigihtness, color rsenarated into
 

hue and saturation cooonents), and when range data are aVailahle,
 

heiart and local slrface orientation (referrel to as 'orientation").
 

Local properties are stored as cumulative histograms rerresentino the
 

probability densitV functions for tho object's attribute values.
 

These histograms allow the 'probabilitv of an object havinr an
 

attribute in a given ranoe to be computed by a simple subtraction.
 

These histograms may be augmented bY svmbolic or Perties Such as 

boundary descriptions, size and extent values, surface 

characteristics re.o., horizontal), and spatial relations (e.a., 

adjacent to, above, or left of). The creation and molification of
 

these descriptions are described below.
 

A detector (or a "simple detector") is a Procedure
 

that checks whether a samole's attribute value lies within a olven
 

contiguous range of attribute values, A "composite detector" is a
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conlunction of simple detect'ors, A "predicate" is the eorrespondin
 

LISP program for a detector. A pre1icate returns T (true) it the
 

value is Within the ranae, and NIL (false) otherwise,. The terms
 

detector and predicate oill often be used synonomouslv.
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5,2.1 Desion of Acauisition.Predicates
 

Filtering randomly -selected -Samples with a
 

predicate that accepts only those of interest has proved tO he an
 

extremely useful acquisition tool in manual strateoies. Acquisition
 

predicates should pass a few points on the desired object while
 

excludino all others, They Should be as cheap end reliahle As 

possible.. Naturally, these reoilrements are somewhat 

contradictory; usnally a detector that allows ost points on th. 

target object to pass Will also Pass some points from other ohlects.
 

To overcome this dtfficultv, the proara attempts to aenerate
 

compound detectors that exclude all samples from undesired objects,
 

allowil at least a few points on the dasired obiect to Pass. The
 

Prooram returns a list of any undesired objects that cannot be
 

completely eXcluded, So that these may be distInoulshed Subsequent to
 

filtering, using more expensive alobal attributes.
 

The expected cost and confidence of apolvi n
 

a detector can he comoutes for each object. The confidence of an
 

object aiven a detector Is loosely defined as the probability that* a
 

sample accepted by the detector belonas to the object 'inquestinon.
 

The complete derivation is cnntaine in Appendix A. Cost is
 

defined as the expected cost (measured in milliseconds of CPU time)
 

of application of the detector to the imaqe, Given a detector and
 

the expected number of points from the set to be filtered that will
 

both he part of the object and be accepted bV the 4etector," it is
 

possible to compute the sampling frequency and the anticipated cost.
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This derivation is also corteined in Apoenriix A.
 

The oualitv nf a !etrctor is evaluated usina
 

a heuristic function of cost and confilence that reflects the design
 

priorities listed aboVe-, .4tb this detector qualitv function, Q
 

(described belowi, the oenoration Of good compound deteetors,-becomes
 

(for combinatorial reasons) a problem in he'Ir1Stie search. Tbe
 

search proceeds as follows. First a iood initial Set Of Simple
 

detectors is selected. The candidate dete&tor with the best 0 is
 

then combined with others to see if the combination improves the a
 

function. The best combination, in turn, is Combinel with remninnao
 

candidates, and so on, until a terminating onndition Is reached,
 

either the set of candidates is exhausted, some combination exceeds a
 

preset 0 threshold, or Some effort bound is exceeded.
 

The heuristic oualitv function, 0, which is
 

used to order a set of detectors, is shown 'raohtcally in Fiar0 79.
 

Its maximum value is the confidence of the ohiect and rptector (which 

cannot be greater than 1.0), and its minimum valux Is n, The Cost of
 

applying the detector deterpines where the 4etector falls in the
 

curve. For eiual contidence, and costs below a certain minimlm,
 

MTNCST (currentlv eaual to 2 seconds), the 0 function is indiffprent
 

as to which detector is selected, For costs above a certain
 

maximum, MAXCST (now Set to 100 SecondS), the function returns A. In
 

essence, any cost below mINCST is effectivelv zero and any cmst above
 

MAXCST is effectivelv infinite. In hetween, the rurue is linear vith
 

a slope determined by the confidence. 'IrCST iAXCST. Py
.- and 


making the maximum value of 9 be the confidence, added emphasis IS
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TA-8721-31 

FIGURE 29 HEURISTIC QUALITY FUNCTION Q 
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given to the goal of Prodtcino high confidence tests. Of twn. 

competing tests, the one with lower confidence must also have lower
 

costs In order to be considered better. Q was defined erpirically to
 

ProVide the functional characteristics detailed above. The Parameter
 

values were also chosen empiriceallv on the bastsof best results.
 

Two heuristics are used to select candidate
 

simple detectors, The first Uses the function, PEAKS, to locate Peak
 

attribute values for the object. PEAKS examines the characterizetion
 

of the object (AhbCh are probability densitv cuirves and will be
 

discussed Later) for a Peak providinj a certain mininum area
 

underneath. The function wi'll then narrow the oeek if it can do so
 

without sianificantlV decreasn the area, MIrnimuir accentable nea'
 

Size' and other variableS are empiricallY determined Parameters,
 

PEAKS, which currently can only find a sinlepneak for each attribute
 

curve, outputs a set 6f simple detectors corresponding to the
 

attributes considered,
 

The second selection nrnaram, MINPANF,
 

generates distinguishina detectors by iooing for continuous ranges
 

of attribute Values which minimize the set of anbiauous ohjectS. The
 

program scans a range of an attribute for the tiroet object, checkin'7
 

to see what other oblects share the .ranie. MINRANGE also returns a
 

set of single detectors,
 

The orespnt imolementation of the heuristic
 

predicate generator creates only composite letectors from the initeil
 

set supplied by PEAKS and MIURANGE, The program cannot yet generate
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detectors that are dislunctions (such as mrtht he reouired for
 

locating a red and white checkered tablecloth) or decision trees.
 

Despite thesi limitations (which will probably be removed in tme
 

futute), the detectors generated &re Quite effective.
 

To generate these composite detectors, thp
 

orogram, DACO (Default ACQuisition), selects the current best tin
 

"terms'of Q) detector onthe list and tries to combine it with all the
 

simple detectbrs on the initial list. Detectors that would violate
 

the description' aivert above Ce.g,, Which'wold combine two detectors
 

with the sane attribute), or those in which the eompositp does not
 

have a smaller amhbiguitv set than the terents are not constlered.
 

When a candidate is selectel, a comnoSite detector is formed and
 

-retained only if its value of 0 Is'hinher than that of both'parents..
 

Before adding the new cindidate to the aporonriate spot in the list
 

of detectors, a Quick check is Pade to See if it colild ever bp 'etter
 

than the current best detector. This is done by computing 0 for a
 

hypothetical detector with the same cost, but With a confidence of 1.
 

If the 0 of this'cnmbination 1S hiaher than the best 0 so far, the
 

new candidate is kept, Other'ise, it is Jiscarded.
 

A candidate that is retained',s added'to the
 

Droper-location in the'orderei list of candidate,. After the first
 

detector has been tried With all the possible single detectors, it is
 

marked as having been expanded, and PACQ iterates with the new list.
 

If no candidates are tetained, DACQ continues with the next lest
 

detector on the list.
 

When there are no more candidatess or when P 
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detector is aenerated with a 0 above a'certain thresho)d, the Drora
 

terminates, returninq the complete ordered list of detectors
 

generated,
 

DACQ - spends considerable time attemptinn 

minor improvements to its best candidates,- Therefore, a CPT] time 

limit was provided to alloul the user to decide how much effort DACO 

should expend, If the time quantum Provided by the user is 

exceeded, the program interrupts, prints the best candidate, and asks 

the User whether it should continue. If the reply is NO, or there is 

no reply within ten seconds (enuivalent. to a NO reply), DACQ 

terminates-with the best so far. It the user wishes to.proceed, DACO 

will continue for another quantum of time. The predlicates nroduceA 

bY DACO Within, the time constraints (currently aboUt I0 Seconds) are 

typically the same as those produced by letting it run to ompletion, 

Also,, the detectors Pr6duced are usually as ood as,-or better than, 

predicates defined, manuallv by expertenceI users, an6 often they arp, 

the same.
 

The final stens in the automation of
 

filtering are straightforward, The best compound detector is
 

converted to an equivalent LISP LAMBDA expression, which is then
 

compiled and saved, The system already knows 4hat sampling density is
 

required for the detector, since it is a by-product of the cost
 

computation (see Appendix A). The image is then randomly sampled
 

at the'aporopriate~densitv,, and the resulting samples are filtered.
 

with' the LISP tredicate to obtain a fe acqUisition samples. These
 

samples may reed further, validation tests to discriinate residual 

ambiguities, Examples are found in section 5.3.
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restin 'of Boundtn- PreAteates
5,2. D 


The next sten In oblect findin -after 

validatino the aeoulsition samoles Is to extract the boundary of the 

SurroundIno surface, Roun-1inq a Sinole Soecitie obIert is .a 

sianlficantlv different task than the flnbaI scene nartitioninn 

descrit-ed in Section IV of this report. 

In ohlect boundino," a reoion is grown from
 

acoulsitlon, samplesy ineludina all contliud5us samoles that Sdtistv
 

an appropriate ourdeiro tredjeate. SoeclfleallV, the prooram, Gpnw,
 

applies the predicate to saerles adjacent to the aeauisition samples. 

If P sample i-s accepted, its neiflhrors (either 4-adjacent or 

8-adjacent) are added to a list to.be recursively examined. "4hen 

all possible samples have accreted to the oriainal set, GRnW ret1rns 

the resultina new reajon. 

The houndlnq predlcates differ fror
 

acituisitior, predicates in two Jlportamt wavs. First, th? particular
 

reoon being bOUnded need oly be diStin!uiiheO fro Pictoriallv
 

adjacent objects, as. opoosed to All oniects in -the scene. Second,'
 

region Orowth reiires predicates capable of collectina all noints on
 

the object.
 

The basic realon 'rower can be speeded tip bhy
 

scannino out horjzortally and Vertical)y from tme init~ll acqtisttior 

samples until a discontinuity Is detected, Points located or the 

boundary are tten joined Into a new, laroer reotln, end iRfl'1sused 
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to fill in any holes, Scanners are cood for auicklv loratina ed'es,
 

but suffer by.requirinq that all points between the startina point
 

and the desired edoe Point oass the Predicate, A Point that fdils
 

terminates the scan, The region grower is less directed, hut as a
 

result, can "go around" isolated points where thA predicate fails.
 

The Combination of sceannina and crowina has rrrven very effective,
 

Since the Predicate must accept all Points on
 

the object, the task of aeneratiho.an initial predicate is greatly
 

simplified--we need only create detectors-hased on the complete ranqe
 

for all attributes (a "full-range detector"), There is relatlvelv.
 

little risk in using these wile range detectors. simce they need only
 

discriminate objects adjacent to the acquired oblect. fowever, it the
 

system has specific knowlece about object adlacenctes, the full-rance
 
I.
 

prelicate can he refined by conicinin it with reqated full-rtnn.
 

Predicates for those adjacent objects.
 

A major shortcomino of the above approach is
 

that the region crowing predicateS are aDOlied uniformly to all
 

Points, Often, it is known that the color (say) of a region is
 

darker at the bottom than at the ton. Such information should be used
 

to oroduce more Selective Predicates that respond differently at
 

different points In the region. Predicates coulld also be desiared
 

which continuously chanqe their expectation of what should come next,
 

based on What has recently been seen,
 

Other shortcoTinos are due to noor predicate
 

Specification from the outset, This oroblem can arise When the
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system receives an incotplete lescriotion of the ohiect initially. 

nermaps rot Knowing enough about other objects in the environment, or 

often not knowing7 of aood iescriotors which, altho'1eth obvious tM a 

person, may not ke obvious to tre svstem. Pe-rjles for these
 

shortcomings will be discussed in an umeomInq dissertation t25].
 

In the COminn months'. the semantic
 

segmentation techniaues described In Speetion IV will be studied as Rn
 

alternatlve means of boundir, objects. Grnw.functions strictly by
 

crowing reqions o'-tward from initial kernal points on the tarnet
 

object. The other segmentation system could be used to nrew
 

simultaneously from kernels on the taraet and on adjacent objects.
 

Additional knowledqe about relatonsnips of the target And its
 

neiqhbors cnUld be used to obtain ImprovoA boundaries.
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5.3 ExampIes
 

Fioures 30 threuah 37 ill]iSttte the etlect f injin 

ormcess usirl the linae sheon I F1,urp in. The orierts tm be 

located are the ricture end the Major surfaces of the rhair, the seat 

and the back. These Object$ Caleni with others that ar ear in the
 

ilaqe) were shown to the system l other irames of the sa'e sene.
 

Descrivtons were Amtomaticatlv oenerated. and from these, the svste
 

was able to create strategies for locatino the objects. In the 

fiqures, the reonos created in the course of locattnG the O ,icts 

are oenerallv szh"a As a houmelary with a few ooints isilde. T.P 

bo'lnaries fin tois case) Are cnvex hulls createi from the Sam'leS 

by ISIS in order to emphasize the re.ion for the user, In the TTSP 

oredlrates mentioned below, the function tTmTTp is used as the 

orimarv detector function, its format ise T.IITP Attribute samnli 

low hiqh). LTMTTP accents sarcles whose Attributes lit within the 

range from low to hi h. 

The first example shoos the systeT lmritini the 

picture, Figure 30 nives the result of filterincl a ranc"' sarpolin of 

the imaoe with te Predicate (LAMBDA CX) (rdX TP IPIGHT X .1Q 

4.76)1. This oredirate keecs onlv samples at a hent withir the 

ranne of 3,tQ feet to 4,76 feet. Since only ooints from the wall, 

door, and Picture Should be found At this nelat, the valilatfon 

phase need only distinouish &Ton trese three obipcts. The results nf 

validation are shown in ioure It. The system the, irows the reaon 

Shown In Figure 32 with the predicate LA'nIA () rTn tPtCP X) (PiT 
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FIGURE 30 INITIAL ACQUISITION REGION FIGURE 31 PICTURE POINTS AFTER 
FOR PICTURE VALIDATION 

FIGURE 32 FINAL PICTURE REGION 
AFTER REGION GROWTH 
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C4ALTP X)))). P!CP * Is a t,13P OrediCate flinctimn, qonprteCi rv the 

system which returns T itf thbe seole has the nrnrerties of the 

Oicture. eAItP Is a similar prelleAte tir te wall. The cniolete 

IrnWth Predlcate renuires that the sAmple look like a Ptrture Point, 

but not like a wall noirt.
 

Tr Fiotires 31 threuV' 37, the sVstem locates the 

chair sent ard bark. In Ftoure 33, the semOled Scone has beer 

filtered for Points on the chair Ack, isinj the ore,4teete CLA? A 

Cx (AmtJ CLIMYTP HFICNT X 1.6? 7.1%) CTT 1T!P 
110 X tl.O A,1)l), This 

oredleate, eheekino heliht anr nue, seleets Anly the snate SAole
 

show in the riort midile of the Crairback In Floure 33, The samrle
 

is retained durIno validetlor, Ani is used is a stArtmq Poit for
 

the reolen arower Whir? qenerates aI 'ses a oredicate to
 

dliscriminate the saples if the chairharI( ro" those of Adtacent
 

tAhle an %all areas resultin to the reolen Showr In Fioure 34.
 

The accuisitior. vall4uit"e, ar'4 bhotunina Process for 

the chair seat Is shewn In FignirpS 3r tril.ih 11. The reolno shown In 

FinUre 35 is the result of tilterina with the rredlcate (LAmBt )A (X) 

* These preeliAt.s are eo"iunetlons of fall ranlP rreltrdtes tnr the 

objects In question. Tat is, theV Check that te value of each 

attribute of a sa"mlP falls within the nossible rTne of values tor 

the rtiect in ouestinn.
 

ORIGINAL PAGE 1
 
OF PooR QUALI 103
 



FIGURE 33 SINGLE POINT ACQUIRED 

AND VALIDATED ON CHAIR BACK 

FIGURE 34 REGION GROWN FOR CHAIR BACK 
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(&ND (LITTp HFIGPT X 1,09 1.62) (LTMTTP nPIFT X M 36.0))), which
 

selects samples with heiaht and orientation aporocriate tor the chair
 

Set. One Point is ellmtnate durina valilatiom. since its color dnes
 

not 'iatch that of the spat qjvjnc the reaP", shown in Filur. 1.
 

Finally, Figure 3 shows the results of drowino with a oredicate that
 

liStinoUSshes the Seat tram the floor and the wa ll,
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36 POINTS REMAINING AFTERFIGURE35 POINTS ACQUIREDFIGURE VALIDATIONCHAIR SEAT 
ON CHAIR SEAT 

FIGURE 37 FINAL CHAIR SEAT 

AFTER GROWTH 

REGION 
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6, DISCUSSIOn
 

This retort has discussed exnerinents in automatic and
 

coopt@ratf'vP- (man-'achjne) -scene analysis, usino interactive 

faci'lit-ies of ISIS and associated suhsvstems. Slonificant results- in 

the past year'incl'ud:1 (1) development of techniquesofr cooperative 

scene analysis and their succeSSful aPnltcation to landscape Scene5', 

(2). develropftent of, a 'new interactlve-v trailahle 'semantic reoten 

qrowii eov ar diom (based' on 1,' and (3) levelopment, of a program. 'that 

can.' Automeatica 1v eneate strateeies -for findina or distin-'uishino 

object's,' qiven pictbrial examnles. 

The biaaest- auestlons remardini the utilitv -at 

interactive methodelogv concern ' its aenefalitv. fur resuLts so 

far, are'in-depth-arla'lyses'of A few selected rictures from three 

domains. In the comina veer, we will bein seriously to investiqate
 

aenerality or two fronts: ri,) the aplicail1ltv of. strateqies and
 

semantics develoned .:.in one 'r1cture to other--pictures in the same
 

domain, Ant (2) the- 'e'olicabiiltv ot the -basic ,ethedoloav to
 

additional 'omains, includino several bio-edic l 'anolicatiots already
 

underway.
 

The nunher of v~riables characteriz'in both scenes and scene 

analysis stratemies :present. ,a bia bstacle to systematic 

exnerimentation, and cou- d extlain why suoch eXoerfientetion has been 

qeneraltv avoided. To rite 'One examolp, 'the effectiveness of 

manuallY sunplie semantic kernels on seame.ntation depends, amona 

other thinrs, on which re7fos ere, selected as kernels, on the order 
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in which they are chosen, and on the tvop of first partition belnn
 

used. Exoerimentation is also relatively time consumina on a heavilv
 

loaded time shared svstpm. For these reasons the eXperi'ental
 

Process must be automated to run on an annotated library of correctly
 

analyzed aictures, Such.a data base will allow evnerimenters to
 

test the ceneralitv of oroposed semantic deserjptions in multiple
 

Scenes, It. will be used to monitor the performance of automatic
 

scene analVsis strateqies and alert -the experimenter when*an error is
 

about to occur. The data base' can even supnly reQuested
 

interpretations when testina interactive proorams, The data base will
 

be developed usino interactive techniaues to obtain perfect
 

seqmentations.
 

The- continuin qml'bal oblective of this broiect is to
 

facilitate the process whereby a comnuter acquires the knOwlee4ae
 

needed to analyze a set of scenes from a common domain. Our qoals.
 

for the cominq year are set forth in the foltowina scenario: A -user
 

selects a representative scene from a new domajn, crudelV circles the
 

principle reiions on a display, and provides their interpretations..
 

The sYstem then completes the sermentation, perhaps requestino a few
 

additional interpretations. The resultina Dartition is then used by
 

the system to train classification almorithms and to deduce
 

contextual constraints. IsIry this knowledcle, the system, next
 

attempts automaticaily, to partition additional scenes from the same
 

domain, The user modifies the System's Vnowlele base when errorS
 

are observed.
 

The above scenario Is based on clearly defined extensions of
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present capabilities. Work has already bem-in on refinino Ar
 

initial crude oitllne into a complete nart'ition (see Saction 4,Rl,
 

The semantic reajon arowin oaradiq gill be iltoTated in aram1ial
 

steps alono lines sugaested in Section 4.7. Tnitially, recions
 

reachini critical size will be automaticallv classified with respect
 

to traininq regions. However, human assistance will hr soUnht to
 

resolve ambiquities. The second step will attemnt to resolve
 

ambinuities automatiCallY, 'sino additional, interactively fOrmilated
 

reqion attributes re., Shape and toxture) and conteXtual
 

constraints, An implmente constraint satisfaction system will
 

contihuouslv monitor the tonsistencv of newly rnoposed retion
 

interpretations with those nreVioUslv assioned, in order to reSo'Ve
 

both currert and ore-existina a'biquities f18], The third and most
 

tentative step will he to use the Pethods of Seetion 5 to deduce
 

region descriptions ind contextual constraints automatically from
 

examples In a correctly secimented scene.
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APPENDIX Al
 

CqST and CONFItDFNCE,
 

This anoendcx defines the concents of cost and reliability
 

(or confidence) USed in eValUatn: detectors. and, derives their
 

computational tormulas.
 

ConfI dence
 

Tm the course of Dlannin a st-rateav, or exmrinina a picture
 

interactivelv, an imortant question freaolentiy arises: "riven A 

particu3ar set at attribute measure~ent on an Iterm a reqion or 

samOple), what set of objects col" it oossily belerC to?" Ii the 

measurements have already heen taken from some reaimn cor samole), 

the qanswer to the question allows the system to "classifv".the item 

as helongir to some element of a set of objects. If the systom is 

considerino aereratInq some letector for takin7 the measurements, 

then the answer to the question allows in estimate Of ho6 Well t.he 

detector shoulO tnrk.
 

In addition to kno'elo the st Mf oossible objects Which
 

could orovide the measurements, it IS also important to know the
 

relative likelihood' of each object in the set. For examnle, if the
 

system know's that the local (surface) orientation of a sample in
 

horizontal, them it should know not only that it hPlomqS to either
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tableto or floor, hut also that it is more likeiv to belona to t1'e 

floor sinee the floor (usually) takes un murh more of the imaos than 

does the tableton. Tf the system also meisures the height of the 

sample to be 2 1/2 feet. then it should realize that the sample has 

to belOno to tabletop, since that is the onlY obert which has both 

properties. Finally, it the reasurements iWan a wide range of values, 

then several objects' attribute ranges may overlan the measured 

range. In this rase, the system stuld take into account the amount 

of overlap. 

we can formulate a set of recuirements for a' system which
 

answers our oricinal coestjon. The system Shouli account tor a nrirl
 

probahilties of the item belonging to an o',iect, should be able to
 

handle combinations if attribute measurements, and should he able to
 

measure and use the degree of attribute ranqe oVerlap.
 

The prodra' that satisfies these recuirements, COJF, measures
 

the confidence that -a samople belongs to an object, based -on a set'of
 

detector outcomes. A recursive Baves ProcedUre Is Used in the
 

comoutatlons [261. AttributP measurements are taken as indepen'dent
 

events which are lin)ed tocether thro'uih object descrintios. That
 

is, if no oblect desrrifntlons were available, the easlrements Would
 

b truly rrobabalisticallv irderendent events. iowever, havin2 object
 

descrltions allows the svste to comDute lenendent nrohabilitips.
 

Betore becinnina the discussion of the Procedure, some 

notation is reollired. The set of outcomes ot the apolication of a set 

of detectors, IDn, Dn1.  D1[ will he written, Dn. A detector, DkD 
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Since the outcome of a detector is affected only by the oh1ec-s it is
 

of other detectors,
conditioned on-, and not by the outco~es 


1

P(Dn 1, D"- ) is reduced to P(D0) and the exrression becomes: 

P(D 10) x P(OID n- ) 

npD ID -1 ) 

This -is the Usual wAv of writima the recursive Bayes expression.
 

P(DnlO ) IS thP probabilitv that a ranlo" samole from object, 0i
 ,


will have outcome Dn when the detector is arpliedrThis probability
 

data bY sumwina the samples that would
is comPUted from stored 


produce the civen oUtcome, and divid-ino tV the total number of 

samples measured. The data used for this step Come from 

charA-cterizations aererated hv the System from "examPles of the 

OhJect.
 

n
The term, p(OID '1) is Comouted recursively, termiriatina
 

with P(OiPI) which is PxoandPd in thP norma way,
 

P(0 ID) - P(D1 10) x P(O) 

(3)P(D1) 


P(O) is the a -rinr le!lihood of a randomly selected samnle
 

helonoino to 0 . This is usually computed hv comparina the exoectei
 

orolected two-dinensional area of the object with the area of the'
 

reflects the set of ohlects expected to be present.imare, p(Oi also 

Bv settina ,P(-O to Zero, the ohject is effecetivelV eliminatei from1 


Cons i erratj om, 
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To comrutp -P(DI),P P(D 10) Is suied over all objects.­

P(D1 ) = 	 Z P(D10) x P(01 ) f4) 
0 

flow, with the derivation of P(0ilD 1 ) , and tharefore the derivation of 

p(0,ID n-1) , the final details for the jpriqgial - computation of 

P(OIDn) can he completed, 

T.he last term to be expanded is P(DnDn-) . This is wheret 

t'e detec-tor outcomes ar-e linked throua, the object descriptions. As 

in. Euation 4, the term will be expanded over-all Oblects, 

R(D IDn-') = Z P(Dn[Dn-1 , 0,) x P(OiDn- 1 ) 
0 

As mentioned rreviously, the outcome of A detector depends on 

objects, rot on other detectors eXeeDt insofar as they select 

objects, Therefore, the term P(D, ID" 1 , O,) is redUred to P(DnlO). 

and-the expression is rewritten as 

P(DnlDn'I).= Z P(DnIO0 x P(O,.ID n '4 )  	 95 

0 

This express-in is Eauation 4, Conditione@ on the remaininq set of 

detectors, Dn -1 , 

Several-points need to be emphasized. It is 4'miortant to, be 

able to limit the. set.of mbtects under consideration, Limi-tinq this 

set allows the' syster, to-reduce its window into the scene. from a 

full imeqe, to a selected subimae. This reduction tvpically comes 
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about when :the sVstem locates some object and then 'looks in the 

immediate vicinitv for other objects. The initial object then 

oroviles a new Window into the scene, !s1uallV with An apPreciablV 

smaller subset of objects that need to be considered. 

Another importent. noint is that the deriv~tiors use the
 

outcomes of the set of detectors, and do not denend on the valueP of
 

the outcomes. That IS, the comoutatios do not reaire that all the
 

detectors accept the sample, buit only that there is some outcome.
 

This fact allows for the possibilitv of aemeratino decision trees
 

Where one branch of the tree is taken ftr an acceptance, and the
 

other for, a rejection. Althnugh the svst"" does not currently
 

'7ene-rate decision trees (but onlV conjunctions that require that all
 

outcomes. are arcenarces), there Are no theoretical barriers,
 

COS-


In this disrussion, cost wil be the anticipated cost 

(measured in milliseconIs of CPU time) of aoalyInc a detector to a
 
samPle (regions ArP not aPlicable here), In the discussion of
 

confidence, the order of anolicatio, of detectors was Immaterial,. 

since all 01lteomes were needed, In this discl'ston, .detectors will be 

limited, to co-inosite detectors, i.e., cmnlunctinns of s3mole 

detectors aDotlied seouenttallv. The cost -of aoplication of a 

composite detector to an itrape is hichav orier dependent, since a 

relection by one detector in a sequence imPlies that thb remainino
 

detertors In the seqoence reed not bh aoclied.
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most of the rotation required here- was defined in the
 

oreceding section. Let Cs(Dn) be t'e Per Semolp cost of aPnlytno
 

n

detector secuence, D , and let CS(D ,) be the Der sample cost of the 

sinale detector, oI * The smnole detector costs are measured 

nreviouslV by the system. 

The-cost of applicatiom of the Hetector Sequence, Dn , IS
 

Cs(Dn) ' Cs(D 1) + Cs(D 2) x P(D1) + C,(D3 ) x P(D1, D2) + 

n 
'
 

n C(D) x P(D-1) * 

Di is always Applied, A fraction of the samples tested with D, 

(i.e., those accepted) will also be tested with D2 * The percentaae" 

of samples passed by D1 end D2 will also be tested by D3 # and so 

on. 

The cost of application of a detector to the image (or to a 

window) is the per samole cost of the detector times the number of 

samples tobe tester'. Since the number of samples to be 'tested. Also 

lenenris- 'n the detector, that number is derived here. It is ass'lIed 

that a certain alven number of jamnles on tr- tarret ohlect should be 

accepted hV the detector. This number, nreset ny the user, is ND. 

From and sore obiect data, it is possible to commute a sa-olinoNO 


density, 8, whir' will Vrovide a sufficient number of samples on
 

the Object, Such that ND Should be accePted bV the detector. NT IS
 

the total number Of samples that should fall On the ohlect, qiven a
 

samnltnq density, , and the expected object size, 'S(0),
 

NT x S(O) (71
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But since onlv the fractinn, P(DnIO) , of Anv rad'd samnling ef 0 r-an 

be exvected to he accoeted bv Dn, 

ND = NT x P(Dn[O) •(8 

Therefore,
 

N) = 8 x S(O) x p(DnlO) rq 

and
 

NO
 

S(O) x p(DnlO) 

Since the System dreS not retain the correl1te date necessary ti 

'letermtne P(DnIO) , It instead uses the miltwmT- Af these set o 

probAbilities, Ip(D110) ... , P(DnrO)1 • 

.Wlitrh , the totAl nurmher of saDles, Nw , to be chocked in 

A window, V, is the windo,# sIe times 8, or 

Nw = S x S(W) (in) 

Thjs civPs a totoal erst of
 

C(D0 ) = Nw x C,(D n ) . 

No S(W)
 
- x - x Cs(Dn)
 
P(D "O) s(o)12
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