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ABSTRACT

The propagation of plane.waves and higher order .acoustic modes in
a circular multisectioned duct has been studied. A.unique source array
consisting of two concentric rings of sources, .providing phase and
amplitude control.in the radial, as well as circumferential direction,
was developed to generate plane waves and both.spinning and non-spinning
higher order modes. Measurements of attenuation and radial mode shapes
were taken with finite length liners inserted between the hard wall
sections of an anechoically terminated duct. Materials tested as liners
included a glass fiber material and both sintered fiber metals and
perforated sheet .metals with.a honeycomb backing. The fundamental
acoustic properties of these materials were studied with emphasis on
the attenuation of sound by the liners and the determination of local
versus extended reaction behavior for the.boundary condition. A search
technique has .been developed to find the complex eigenvalues for a
liner under the assumption of a locally reacting boundary condition.

The experimental -results were compared with.a .mathematical model
for the multisectioned duct which includes.the.mo&al.transmission and
reflection effects.at .the interface between sections .with different
liner admittance. The good .agreement between measurement and theory
indicates that .the multisectioned duct analysis.can be used to predict
the sound field.in a complicated system of sevéral different liner
sections.

Furthermore, the local reaction boundary condition is valid for the
sintered fiber metal and.perxforated panel liners.but can only be used
in cases of moderate sound‘attenuation.for the .glass fiber material,

For each of the .acoustic modes studied, the sound attenuation character—


http:field.in
http:control.in

istics of the fiber metal .materials .were significantly better than those

for the perforated panels,
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CHAPTER I

INTRODUCTION

Although not a new topic, the subject of duct .acoustics has bhecome
an area of renewed interest. This interest has been generated as a
result of current Jet engine noise reduction programs. A large portion
of these programs have been oriented towards the application of acoustic
treatment to jet engine inlet ducts. Additional interest in duct
acoustics has been motivated by the need to suppress noise in air
conditioning ducts and large air moving systems.

A typical .solution to the reduction of noise.from.a duct system is
to insert an acoustically absorbent liner material in the duct. This
material attenuates the sound before it is radiated from the duct out-
let. However, acoustic propagation in the duct and .attenuation by the
liner are complicated by several factors, including.the modal content
of the sound, the acoustic properties of the material, the finite
length of the liner, the termination of the duct, and.the presence of
flow. The effect of each of these will be briefly discussed.

Much of the.initial work in duct acoustics concentrated on the
propagation and attenuation of plane waves. Studies.to evaluate liner
pexformance were concerned with assigning a single number rating to a
material to describe.its attenuation per unit length.for the plane wave
mode. However, this is .not the only mode present within.the duct. It
has been shown that axial flow compressors and turbines generate higher
order acoustic waves of a spiralling nature in a.duct. .Therefore, the
importance of considering the attenuation of these higher order modes

when evaluating liner performance must be emphasized.
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Test methods for evaluating liner performance often do not yield
significant information on attenuation by individual modes. As an
example, a common test method measures the attenuation of sound through
a lined duct section connected to a broad band noise.at one end and to
an anechoic or.reverberant chamber at the other end. .The insertion
loss of the liner can be determined by measuring the sound attenuation
as a function of frequency. However, the broad band noise source
obscures the effects of higher order modes and this method can only
yield comparative information on the sound attenuation characteristics
of liners.

The acoustic properties of a duct lining material are specified
by a normal impedance which determines the modal attenuation of sound
through the duct.. In certain cases, this impedance can be optimized
to produce maximum attenuation but this result is difficult to achieve
over a broad frequency range or for more than one mode.

When a finite length liner is inserted in.a duct, .the impedance
discontinuity between the surface of the duct and the surface of the
liner causes reflection of an incident wave. This introduces 2 standing
wave in front of the liner. Furthermore, reflection from the termination
plane of the duct must also be considered as it too will cause a
staﬁding wave.

The presence of uniform mean flow within a lined duct will modify
the attenuation of the liner. In general terms, the attenuation-of a
lined duct imncreases for acoustic propagation against.the direction of
flow and decreases for propagation with the direction of flow.

The sound attenuation of indijidual liners can vary significantly

with airflow velocity. As the airflow velocity is varied, the peak
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attenuation varies in a manner which is dependent upon the change in
acousfic properties of the liner. The effect of flow om locally reacting
liners is to increase the acoustic resistance of the liners at low
frequencies, Flow effects on reactance are less significant but tend

to increase the reactance of the liner with Increasing veloedity. ‘Thus
for maximum benefits of sound attenuation, it is necessary to design
lining treatment for.the flow velocity region and acoustic environment

in the duct in which it will be used.

Each of these factors will have an effect on the attenuation of
gound in a lined duct. However, each effect must be understood
separately before the combination of these effects may be studied.

In a final analysis, the individual effects may be-combined to simulate
the environment of an actual jet engine for example.

Recently there has been an interest in acoustic propagation in
circular ducts of several different sections. This work was motivated
by the physical situation of sound radiating through the successive
lined and unlined sections of an aircraft engine inlet duct. Due to the
changes in liner impedance for each duct section, the boundary condition
also changes and an acoustic wave is partially tramsmitted and partially
reflected at the interface between different- sections. Thus, it is
possible to take advantage-of the reflection- effects~between sections
as-well as the transmission effects of the liners to attenuate sound.
Lansing and Zorumski (1) have performed a preliminary analysis- of
acoustic propagation in a multisectioned duct. Their results show that-
a combination- of- several different- duct liners can perform significantly
better than a uniform duct liner. Extensive parametric- studies of

optimum liner configurations have been performed by Beckemeyer and



Sawdy (2) to maximize sound attenuation for a two dimensional multi—
sectioned duct,

Despite the promising analytic work in the area.of multisectioned
ducts, there is a lack.of.experimentalldata to substantiate these
studies. Nonetheless, this analysis provides.a unique approach, as
well as a realistic model, for analyzing sound attenuation in lined
duct systems. |

The basic objective of this study is to investigate current multi-
sectioned duct.theory.through both experimental and.analytical techniques.
The propagation of plaée waves and higher order acoustic modes will be
gstudied in an anechoically terminated circular duct.with three sections.
Measurements of attenuation and mode shapes will be .made.for a variety
of liner materials.over the full frequency range at.which a mode can be
generated. Sound fields necessary for excitation of various modes will
be generated by.a.spinning mode synthesizer. This system is capable of
generating the spinning mo@es characteristic of axial flow compressors
and provides a means of experimentally studying the propagation and
attenuation of higher order.duct modes.

In addition, .the fundamental properties of sound.absorbing liners
will be studied, with emphasis on the attenuation of .sound by the liner
and the determindtion of local versus extended feactidn.behavior.

This work Wili be thducféé ﬁith no %1ows Although high épeed flow
is present in an actual jet engine, the simple case.of .a lined duct
without flow must be fully understood before progress can be made for
the more complitated.situation. It is hoped that the .effects-of flow
will be the subject of a future research project.

Topics to be investigated in this study include:



The development of a source array capable of .generating
plane waves .and higher order acoustic modes in a hollow
circular duct

The experimental measurement of plane.wave.and higher order
mode propagation in a multisectioned duct

The development of a mathematical model for acoustic
propagation in a multisectioned duct

The analysis of boundary conditions and attenuation for

duct liners of various acoustic materials



CHAPTER 1I

THEORY

2.1 Introduction

The basic theory of.acoustip propagation in an.infinite hollow
circular duct will be investigated. Propagation in both am unlined and
lined duct will .be considered. This treatment will serve as aa intro-
duction to the more.complex study of acoustic propagation in a multi-
sectioned duct.

In addition, the.acoustic characteristics of .materials commonly
used as duct liners will be.described. A search.technique was developed
to locate the complex eigenvalues for a duct liner.and will also be
presented. The complex eigenvalues define the attenuation of individual
acoustic modes through.the lined duct,

Unless otherwise noted, the symbols used in this chapter and

throughout the text will be defined in the 1list of symbols.



2.2 Infinite Hard~Walled.Duct Theory

Throughout this study, the non-dimensional analysis presented by
Zorumski (3) will.be used. The wave equation will.be.derived and the
solution to the wave.equation in cylindrical.cooxrdinates will be
studied for a hard-walled.circular duct.

The continuity and momentum equations are

Qﬂf.+ pk V% ° u% = 0 (2.1)
Dr*
—
¥ 23;.+ T p% = 0 (2.2)
Dt

where the starred superscripts refer to dimensional quantities., The

energy equation is given by

Dp* _ yp* Dp*
Dt#* p* Dt*

(2.3)

Throughout this analysis, it will be convenient to work .with dimension-

less quantities, but scales must first be established for each of the
gquantities. The.length.and times scales used will.be.%uand-% respec-
tively. A dimensionless. length can be formed by multiplying by the

wavenumber k and a dimensionless time can be formed by multiplying by

the angular frequency w. Thus

i

R=R¥ k (2.4)

t = thy (2.5)

In a similar manner, the scales chosen for velocity, .density and

pressure are c_, the speed of sound, pa the ambient density, and

pacaz. A scaling parameter € < < 1 iz introduced to account for the
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small amplitude of.variations in the nondimensional quantities. The

resulting variables become

p¥ = p_ (L+epeth) (2.6)
pt=pc? (Ctepet) (2.7)
aa Y '

v = c.€ ;'e"lt (2.8)
Furthermore, ﬁhe operators have the following form

D Rty T (2.9)

DL* bt

VE =k V (2.10)

D _ .

Dt * (2.11)

Using Equations 2.6, 2.7 and 2.8 and grouping similar powers of &, the

non—-dimensional equations become,

Dp _ Dp

Dt Dt (2.12)
Dp 5.

BE-+ V' v=20 (2.13)
DV, =

BE'+ Vp=20 (2.14)

Operating on Equations 2.13 and 2.14 to eliminate the velocity results

in the wave equation.



V2p = —£ (2.15)

In cylindrical coordinates, the non-dimensional wave equation

becomes

2 2 2
5% r 8r r? 36%  3z?

Using the method of separation of wvariables, the solution to the wave

equation for a single progressive wave is

p=I () oin® ri(t-flz) 2.17)
m t—1 -
where
Q=52 (2.18)

The radial dependence of the solution is given by the Bessel functions
of the first-kind of order m and argument Ar. Their behavior is shown
in Figure 3.1. In addition, Neumann and Hankel functions are also
solutions to the wave equation for the radial dependence. However,
these functions are excluded for a hollow duct since they are infinite
at the origin.

The boundary conditions for the duct must now be applied. The

velocity is given in terms of the pressure by Equation 2.14
v=-1Vp (2.19)

For a.hard-walled duct, the normal component of the velocity at the

wall, r = b, must be zero. The boundary condition then becomes
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v, = —-% J ') = 0 (2.20)

The values of Ab which satisfy this equation are called eigenvalues,
They will be located at positions where the Bessel functions in
Figure 2.1 have zero slopes. These eigenvalues.are well known, (4)
and are given in Table 2.1. Since there are an infinite.number of
these eigenvalues for a single value of m, a second .index, U, must be
included in Equation 2.17. This index will specify which of the zero

slope points is taken. Equation 2.17 now becomes

b= 3 E 3,0 o0 & EEym) (2.21)
m = —c© u.="0
and
Qmu = Vl - (2.22)
m2

U

Each acoustic mode is defined in terms of a.particular value of m and
U as an (m, W) mode. The value of m determines.which of the Bessel
functions Jm is -specified and U describes which of the eigenvalues is
specified.

The first few radial mode shapes are shown.in Figure 2.2 and 2.3
for circumferential modes of order m = 0 and m = 1 respectively. The
eigenvalue at zero has meaning only for m = 0 modes where the mode
shape has no radial dependence. For all other modes, the value of the
Bessel functiom is zero at the origin and this represents a trivial
solution. Therefore, all higher order modes will have.a radial ampli-
tude dependence. For the summation over 1, the first mode with radial

dependence will be specified by w = 1. The value.of Yy will then be

equal to the number of nodes between the center of the duct and the
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TABLE 2.1

Zeros of Derivatives of the
Bessel Functions Jm(x)

m= 0 m=1 m= 2 m.=.3.

0 1.8412 3.054 4,201
3.832 5.3314 6.706 8.015
7.016 8.5363 9.970 16.346

10.174 11.7060 13.170 14.586
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duct wall.

The analysis of.radial mode shapes indicates.that-three distinct
types of modes exist. TFirst, there is a.plane wave.which has no
radial or circumferential dependence. Second, there are-higher order
modes for m =.0 which have radial, but no circumferential, dependence,
These modes have a.maximum at the origin.and one.or more nodes between
r =.0 and r = b, the duct.wall. Third, there are modes for ﬁ =1, 2,
3, - - . which have radial, as well as circumferential, .dependence.
These modes have .a.node at r = 0 and Y4 = 1 Aodes in the .region from
the center to the duct wall. Due to the circumferential phase depen-
dence, these waves are called spinning or spiral modes.

The wavenumber .in the.axial direction given by Equation 2.22 must
be examined.for three important cases. A dimensional wavenumber will
be considered in order to determine the relationship.of-this parameter

to the free space wavenumber and the frequency. Thus
k, ==V (2.23)

and

kmu = Amuk (2.24)

When k? = kzmp’ the cut-off.frequencies, fc’ for each of the higher
order modes of the duct are determined by

Ff o= HH (2.25)
2T
These cut-off frequencies are plotted as a function of frequency for
a 12 inch diameter duct in.Figure 2.4, When k% > k?-mu, the driving

frequency is above the cut-off frequeney of a particular mode and the
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Figure 2.4 Cut-off Frequencies for Higher Order
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quantity under the radical is positive. Thus, kz is ?eal and there is
undamped wave propagation, When k* < k2mu, the dfiving.-frequency is
below the cut—off frequency and the expression.under.the'radicai is
negative. Therefore, kz is an imaginary quantity and represents
exponentially .damped wave propagation. Regions exist in Figure 2.4
where only a.few.modes can.propagate and.where.several modes can
propagate simultaneously. Therefore, the modal distribution in a duct
will depend on frequency, duct diameter, and the.phase and amplitude

characteristics of the source exciting sound waves in the duct.
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2.3 Acoustic Materials

There are several different sound.absorbing matexrials available
for applications.as duct liners. These can be roughly grouped.into
three categories.~ porous materials with .or without facings, sintered
fiber metals .with.an.air cavity backing and Helwmholtz resonators which
include perforated.panels.with air.cavity backings. .Porous.materials
in general exhibit .rather uniform absorption.characteristics over a
broad frequency range. Representaéive samples .of .this type of material
include glass-.fiber materials and polyurethane.foams., The use of .these
materials, however, .is often.restricted under adverse environmental
conditions. .In these cases, fiber metals and perforated panels are
often used. For each of these sound absorbers, the material para-
meters or cavity.depths may be modified so that .maximum absorption can
be tuned to a desired frequency range.

This section will destribe.. how the acoustic characteristics of
these three types.of materials depend on the material .properties. The
materials considered included a sintered fiber .metal .material and a
perforated sheet metal both with air cavity.backings and.a glass fiber
material. A complete.description of the physical properties of each
material can be found in Section 3.6.

The acoustic.properties of a material are.commonly.defined by the
specific normal impedance Z which.is the.ratio of.the pressure to the
normal particle velocity at the surface. Unless.otherwise noted, the
term "impedance" as.used in this study, will refer.to the specific
normal impedance defined above and have the.dimensions of Nt-sec/m®
or MKS rayls. If.the pressure and velocity are out of phase, the

impedance will be complex, having a real and imaginary component. The
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impedance of a material can be predicted by theory and is a function
of frequency,.material properties and thickness, .and mounting con—
ditions. All of the materials considered in.this study will have-a.
rigid backing as-.a .mounting conditien.

An important physical property of a material is the specific flow
resistance. This is-defined as the pressure drop across the specimen
divided by the particle velocity of air through and.perpendicular to
the face of the .material. For bulk or porous materials, the specific
flow resistance per unit thickness is commonly used. The flow re—
sistance is essentially constant within a range.of. flow rates corres-
ponding to moderate acoustic levels. Above this range, it increases
rapidly with inereasing values of velocity. Throughout this study,
only moderate acoustic levels will be considered.and the flow re-
sistances will be.considered constant.

The sintered fiber metal material with an.air.cavity backing is

shown in Figure 2.5. Kilmer (5) has shown that the.acoustical per-

formance of a fiber metzl can be determined from.the.flow resistance
Rf and cthe cavity.depth d. The normalized impedance for this com~

bination is given by

Z .
oo Rf + 1 cot(kd) (2.26)

Thus, the resistive comﬁonent of the impedance is contrelled ,solely
by the flow resistance. The impedance and thus the absorption charac-
teristics of .this material can be cuned to a desired frequency range by
changing the flow resistance and cavity depth.

Zwikker and Kosten (6) have shown.that a perforated sheet metal

with a cavity backing is a form of Helmholtz resonator. For the con-
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figuration of cavities and orifices shown in Figure 2.6, the normalized

impedance is

z 1 .
o " 3 R +i(w¥

.- i—ct)] (2.27)
where n1 is the number of perforations per.unit surface, Mt is the
total mass of-fluid vibrating in the perforation together with end
corrections for the mass.on.each side, Ct is the compliance.of the air
in ‘the cavity, and Rt is the acoustic resistance.. The.acoustic re~
sistance is the sum of the radiation resistance of .the perforation given
by Kinsler and Frey (7) and the loss due to viscous flow through the
perforation given by Morse and Ingard (8). The compliance is the major
part of the reactance term at.low frequencies. .

Glass fiber materials and polyurethane .foams.can be modeled as a

porous material with a flow resistance per unit thickness, R For a.

fo
material of thickness d and porosity P, the normalized impedance given

by Beranek (9) is

zZ _G W
oc " P coth[~i 2 Gd] {(2.28)
where
iR
¢ = 1+ pl/2
P

The normal ineidence absorption cecefficient is.a.measure of the
incident acoustic energy absorbed by a material. .This.can be determined
from the impedance.expressions given previously. The absorption co—
efficient & is related to the complex impedance by the following

expression
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4> Rpe

o =- (2.29)
R + pe)? + %2

where R and X are the real and imaginary components.of .the impedance.
The absorption.coefficient, however, has no direct .relationship to the
acoustic performance éf.a material as a duct.liner. .This-behavior is
related to the axial wavenumber and the eigenvalues given as solutions

to the proper boundary conditions..
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2.4 Acoustic Propagation in a Lined Duct

When a duct is lined with sound absorbing material, the boundary
condition and the.corresponding eigenvalues change.from.those given for
a hard-walled duct. .It will be assumed that the 1lining is locally re-
acting and the behavior of the material is completely determined by its
normal impedance. The specific normal impedance is defined as the
ratio of the pressure to the normal particle wvelocity at the surface of
the material. TIf the pressure and velocity are out of phase, the

impedance will be complex, having a real and imaginary part. Thus

7 = l:; = R - iX €2.30)

In terms of an admittance B =-§5 the boundary condition hecomes

1 p
.'E = -iVop (2.31)
Using Equation 2.21, the complete expression is

Bbi Jm_(ﬁ) - mJ (Ab) + Xb T AB) = 0 (2.32)

For a complex admittance, the eigenvalues that are solutions to this
equation will.also be complex. Again, there are an.infinite number of
these eigenvalues for a particular m. Unlike the .hard wall case, there
is no cut-off frequency between successive modes.

In addition, if Amu is complex, then the wavenumber .in the axial

direction Qmu given by Equation 2,22 will also be complex. Thus

Qmu =g+ iT {(2.33)

For a lined duct, an individual mode will then have the following

longitudinal pressure dependence
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P, = e = e e (2.34)

In this case, T represents a damping term with the pressure decreasing
exponentially with .increasing z. Therefore, liner attenuation for an

individual mode in an infinitely lined duct is given by

20 1og10 e T2 =.-8,69 1z (2.35)

The location of the complex eigenvalues given by the local reaction
boundary condition and Equation 2.32 will be discussed in a leter
section,

It is often questioned whether the local reaction boundary con-
dition adequately.describes the acoustic interaction.at  the surface of
a duct liner and .whether it is appropriate for certain _materials. This
boundary condition.assumes that the velocity at.the surface depends
only on the acoustic .impedance and on the local pressure. It is
generally considered valid for materials containing compartmented
cavities wﬁgggiare isolated from each other. Examples.of these types
of duct liners include perforated panels with separated .air cavity
backings and materials backed by a closed cell.honeycomb core cavity.
The local reaction boundary condition is then a valid assumption when
these matetrials are used as duct liners.

The local reaction boundary condition is not always valid for duct
liners of porous materials. When an acoustic wave.propagates through
a duct containing this type of liner, part of the acoustic energy is
transmitted through the liner itself. Therefore, the.velocity at the
surface depends on the combined actions of the propagating waves inside

and outside the lining and cannot be merely expressed in terms of an
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impedance and.pressure.at the surface,. To.determine the wavenumber and
attenuation for.a mode propagating in a duct with a.porous material
liner, the pressure and velocity must be matched .at .the interfaces
between the air.space and liner. This intreoduces the extended reaction
boundary condition.

This boundary.condition is reduced to the simuiltaneous solution of
the wave equations within the air space and lining.subject to proper
continuity conditions. If the porous lining material .is considered
homogeneous and .isotropic, acoustic propagation.in the medium is
assumed to satisfy.the wave.equation. This wave equation has a complex
waVenumber h which defines attenuation .of a.wave.propagating in the
material in terms of real and.imaginary components.hi.and.hz. The
complex wavenumber .h' and.the complex .density.p' of .the.liner can be
determined from.bulk measurements of the material.as.explained by
Scott (10). An alternative approach given by .Pyett.(1l) .compares
standing wave-tube.measurements for samples of .two different thick-
nesses.to determine these parameters and is recommended.for simplicity.

For the lined circular duct in Figure 2.7, the velocity potentials
within the air.space U.and within the liner V must satisfy the following

wave equations.

(2.36)

]
o

(W2 + k) U

(V2 + n®) v (2.37)

I
o
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Figure 2.7 Duct Lined With Porous Material

In terms of a velocity potential U, the pressure and velocity of a

medium are given by
p=-L wpU
v=-VU

where p is the density of ‘the medium. The conditions to.be satisfied

specify that.the pressure be finite at the origin, .the velocity normal

to the hard wall of the duct is zero, and the velocity and pressure

must be continuous at the surface of the lining. These become

1) p =+ Finite at r =0

oV _ _
2y - 55 Datr=a

U _ oV -
3y - i T at v = b
4)-iwpoU=—iwp'V

For any mode .of .propagation along the duct, both U and V will have the

game propagation constant.T

U=10(xr, ©) eiPz e—iwt (2.38)
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Vo= V(r, 0) ell? o I0E (2.39)
Because of condition 1, the radial dependence of U.within the air space
will be defined.only in terms of Bessel Function of the first kind, Jm.
Within the liner, the radial dependence of V is givengby Besszel
Functions of the first and second kind, Jm and Ym° All of the Bessel
functions are.of integer order due to the circumferential dependence
of ©. Substituting Equations 2.38 and 2.39 in the.wave Equations
2,36 and 2.37 and .solving the wave equations subject to conditions

2, 3 and 4 yields

Py Iy OB) I T Gub) ~u 3\ (b))} £ ¥ (a) ~u Y o (ua)l
-0 L) ~u Y b)) 53 (ua) -p T (he)}]
=p F 3, ) =23 OB} [ () £ Y (ua)

WYL )} - Y b)) £ I (a) ~u T, (ub)]
(2.40)

where A? = k2 -T'? and p? = h® -T2, This equation gives the propagation
constant of a mode in terms of'the duct dimensions and material para-
meters. It is now necessary to determine whether this equation or the
equation for the local reaction boundary condition predict proper
attenuation for a duct liner of porous material.

Scott (12) developed a simplified equation corresponding to
Equation (2.40) for a two-dimensional duct. When compared to the

equation for the local reaction boundary condition, this equation will
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yield the same values of propagation constant when h® > > I'2, This
means that the attenuation constant and phase comstant of the bulk
lining material must be much greater than the attenuation comstant and
phase constant associated .with the mode. When these conditions are
satisfied, the results for the extended reactlon boundary conditiom
approximate the results given by the local reaction boundary condition.
Since the solution of Equation 2.40 is difficult, it is important
to investigate conditions under which the local reaction boundary con-
dition is valid for a porous.liner material. The condition that
h® > > I? stipulates that the attenuation in the duct must be sub-—
stantially less than that.in the bulk material and the velocity of
propagation of a given mode.in.the duct must be much higher than that
of the bulk material. For common -glass fiber materials and mineral
wools, the assumption is generally wvalid for wide air passages with

diameters greater than 6 inches according to Scott.

Wyerm§24£13) has-experimentally measured the attenuation constant
and phase constant for several glass fiber materials of-different
‘densities using Pyett's two sample methods (11). Figure 2.8 shows a
comparison berween the.attenuation and phase constants for a bulk glass
fiber material and for the first radial mode of propagation of various
circumferential orders in a 12 inch diameter duct -lined with a one inch
thick glass fiber material. For the propagating modes, these parameters
were determined from the measured impedance and the local reaction
boundary condition. Throughout the frequency range, the attenuation
and phase constants are consistently less for the propagating modes than

for.the bulk material. These same parameters are shown.in Figure 2.9

for the second radial mode of propagation. The phase constant for the



Radian/inch, Ne Per/Inch

28

1.4

j=n
[l

h 4+ 1h
1 2

1.2}

1.0F

02'

Frequency (KHz)

Figure 2.8 Complex Propagation Constants for Bulk
Glass Fiber Material (h) and for the First
Radial Mode (§}) Propagating 4in a Duct
'Liﬂedif.witﬁsgefléizzIﬁoh_i Glags Fiber.Material



Radian/inch, Ne Per/Inch

29

=
It

h +1ih
1 2

1.2 +

1.0

Frequency (KHz)

Figure 2.9 Complex Propagation Constants for Bulk
Glass Fiber Material (h) and for the Second Radial
Mode () Propagating in a Duct Lined with One
Inch Glass Fiber Material



30

propagating mode is still less than that for the bulk material, but the
value of the attenuation constant for each mode varies with respect to
that for the material throughout the frequency range. The attenuation
constant of the bulk material ranges from 40 to 75 dB/ft which is greater
than the attenuation realized by the application of these materials as
duct liners. Thus, for moderate attenuation, the assumption of a local
reaction boundary condition seems valid for the glass fiber material

duct liner.

Scott has outlined the proper boundary conditions for duct liners
of glass fiber materials for two cases. For densely packed liner
materials inserted in a duct with a diameter much greater than the free
space wavelength, the application of the local reaction boundary con-
dition is valid. When a duct lining contains a loosely packed material
or when the air space in the duct is small compared with a wavelength,

the extended veaction boundery condirion must be considered.
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2,5 Multisectioned Duct Theory

Duct liners are used as a means of attenuatring sound along a path
between a source and.a receiver. For an infinite liner, the attenuation
of an individual mode is given by Equation 2.35. However, in many
situations, the duct is not infinitely lined but instead contains
several finite sections of different liner materials. At the interface
betwyeen two different duct sections, an impedance discontinuity exdists
and an incident acoustic wave will chen be partially reflected and
partially traunsmitteds Therefore, the infinite duct solution must be
modified to account for these effects. Zorumski's multisectioned duct
theory, presented in general form in Reference 3, will be applied to a
hollow duct with no flow. Relationships will be developed to account
for the acoustic coupling between sections. In this manner, the sound
field may be defined everywhere throughout a complex duct system.

Characteristic funcrions ‘Pm]Sr) are chosen for the radial dependence

of the sound field and are normalized so that

b 2 _
of r ‘Pmu(r) dr = 1 (2.41)

The characteristic functions for a hollow duct are defined in terms
of the Bessel functions Jm(}"mur) given by Equation 2.21. These are
J (A 1)
¥ (0) = (2.42)
u i

where

N2 = ofb r 20 1) dr

mjt
-b2
=53 m=0,p=0 - (2.43)
J (A b)
IO -0 - (@)% B w0, udo

mu
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Furthermore, the characteristic functions are also orthogonal. Thus

fb T

o ?mu(r) va(r) dr =0 wu#wv (2.44)

For a uniform duct section containing the plane zJ shown in Figure
2.10, the acoustic field may be expressed as the sum of incident and
reflected modes. Limiting consideration to circumferential harmonics,

the subscript m will be eliminated after this point and the sound field

can be expressed by

. -+ _ j. _j
Pm(r, z) = % [A *+] T +] {(x) e152 (z ) A 3 ¥ J(r) et (Z )

]
w0 M u

(2.45)

This equation is known as the acoustic field equation. The coefficient
Azj and A;j are the modal amplitudes of acoustic waves at zj traveling
in the positive and negative directions respectively. The negative sign
in front of Aij has been introduced se¢ that the reflection coefficient
will have a positive real part. Although there are an infinite number

of eigenvalues, the summation over U in Equation 2.45 will be truncated

to a finite number of terms. Written in matrix notation, this equation

beconmes
3 +J
+3 (z—z )J A
pa(ms2 = | BT s o™ &
(2.46)
y 3y [ Fs J (z“zj):] {A‘J}
|_ r -IEW
Furthermore, it is obvious that
+i _ -3
Au A“ (2.47)
gd = gl (2.48)

I I
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For a .duct containing several different sections, planes are
introduced at the interface between each section. The acoustic field
can then be described everywhere in the duct in terms. of the modal -
amplitude at each interface.- If there are N planes, then there must be
2N sets of equations relating these amplitudes., These relationships are
described by.transmission and.reflection matrices T:%+k and Rzafk'whicﬁ_
describe the coupling between amplitudes of am (m,u) and an (m,V) mode,
between the planes j and.k.:-

As a simple example, the uniform duct.section shown in Figure 2.11
will first be cdnsidered:; Within this section, solutions.to the wave
equation are used to determine -transmission and reflection relationships.
Since there are.no.reflections in a uniform duct, the reflection matrix

is-the -null matrix
ik, _
[Ruv 1 =1[0] (2.49)

The transmission. characteristics within a uniform. duct are given by the.
exponential dependence in Equation 2.45, Therefore, the transmission

matrix is

e T (Zk"zj)

s (2.50)
v 1= [éuv e | ]

[T
U

The positive sign -is-used when zk > zJ and the negative sign is used for
zk < zju

The relfection and transmission matrices for an admittance dis-—
continuity in the .duct can'be determined by matching. the pressure and:
axial velocities at the interface. In Figure 2.12,.planes-,zj and zk

are .chosen an.infinitesimal distance apart. The- axial velocity is

related to the pressure throughout Equation 2.14 in the ‘following manner



A) Anechoic Termination

B) Flanged Termination

Figure 2.13 Duct Termination Planes



FELMULRABAA MV VRN BT

...:a.....

Figure 2.14 Sound Power for Imsertion Loss and
Transmission Loss

36



37

v, = i (2.51)

This dependence can be expressed in terms of an axial modal admittance

matrix [BU which has the form

]
fqu = fszu,l (2.52)

Continuity of pressure and velocity on each side of the interface

in Figure 2,12 yields the following equations

W31 B )+ v ) e Wl

P ik “ky g,k
= l‘l’\, (01 T8,°3 {47} + R RNCON I N (a7}

(2.53)
- - +k +k
(1 A"} + 1Y P} (A7)
_ = ¥ w1k | {A;k} (2.54)

The terms in these equations have been arranged so that the left hand
side contains waves traveling cut of the region betwéen the two planes
and the right hand side contains waves traveling into this region.

The W:j(rj term can be eliminated by utilizing the orthogonality pro-
perties of the modes. Multiplying Equation 2.53 by r{T;j(r)}dr and
Equation 2.54 by r[B;j] {?;j(r)}dr and integrating each equation from

r=0tor-b results in
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-3-] =] -] _']+k +k +k
[T 71 B804 ag?y + g Pty

el SR S NG I el T e I Pl

(2.55)
o) a3% + 3% Wl
- [I;il)ﬂj (31 + [1‘3 RN (2:56)
The term
ik, _ b j k
[Iuv] Of r [{Tﬂ(r)} l?v(r)]]dr (2.57)
Is called the integral matrix and the elements are given by
s k
. i bYI(B) ¥ (b) .
W, M
o W - el - 6% (2.58)
v -2 k2
ol -0
and
33051 uw=v )
Iuv -0 u#v (2.59)

Thus, [Iﬂi] is an identity matrix and can be excluded in the following
notation.,

The amplitudes {A;j} can be eliminated from Equations 2.55 and
2,56 by operating on these equations with the proper matrices. These
operations are expressed by matrices of the-form [Wﬂ%] amd the resulting

gquation is
[ﬁﬂi’fk] {A'Ck} {W'3+3] {A Iy 4+ [W“J‘k] {A ky (2.60)

The matrix {W } has the following form
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ik, _ 1k k j ik
W) = (0] t83 - 180 1] (2.61)

where

s 1P ’Pﬂ(b) lP\lj(b)
Vo ol gtk
u v

g% - gd; (2.62)

. i3, . . s .
Furthermore, the matrix [Wui J] is a diagonal matrix with elements

given by

ti-i L =J
Wﬁv 2 Guvﬂv (2.63)

Multiplying Equation 2.60 by [W_J-i-k]-1 gives

oy | obke—k -k i 43
{Av } = [Ruv ] {Av T+ [Tuv i {Av 1 (2.64)

where the reflection and transmission matrices are

-k, itk -l o —j-k
[R5 = mdma™ il (2.65)
Hetiy | ikl =
[Ty 3 = 05717 ] (2.66)

Thus, the amplitudes {A:k} are related to the amplitudes {A;k} by a

+j .. .
reflection matrix and to the amplitudes {AvJ} by a transmission matrix.

In a similar manner, {Azk} may be eliminated from Equations 2.53

and 2.54 so that
=3y = p—3td +] =ik ¢,k
a7y =[RS AFT + 1T 077 (a0} (2.67)
In this case, the reflection and transmission matrices are given by

=iy o pytkeiq-l k]
LN I CASES I UMED (2.68)
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predy oyl ek

w0 1 1 1 (2.69)

It is interesting to note the form-of.the reflection matrices
given by -Equations 2.65 and.2,68., Since Wﬂﬁ in Equation 2.62 is pro-
portional. to the admittance changes.in the duct, the reflection matrix
is also proportional to the admittance changes.

"Equations of the form of 2.64 and-2.67 can be.written for each of
the planes within a complex duct system of N sections, This will yvield-
2N-2 sets of equations. However, since there.are 2N sets of unknown
modal amplitudes, the number of unknowns will always exceed the number
of equations. To complete the set.of equations, radiation conditions
must be specified at the duct termination planes.

Acoustic reflection and radiation from the end of the duct is-
dependent upon how the duct is.terminated. For the infinite duct in

Figure 2.13, there is no reflection from the end and
-k
{47} = {o} (2.70):

If the-duct is terminated with an.open end as-in Figure 2.13, the re—.

flected component of the modal amplitude is given by
=Ky _ oKtk p Ry
{Av } = [RUv 1 {Av } (2.71)

For the cases'of a flanged or unflanged.open.end, the radiation re-
flection matrices are known.éﬁd:given by Zorumski (14) and Lansing (15)
respectively. These can.alsoigé used to compute far field radiation and
directivity patterns.

At the duct-inlet, the source distribution at a point (ro,Go) can

be represented as the product of a Dirac delta function and the source
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strength 0

27 0 G(r-ro) 3(@~90)

Vi(r) = = (2.72)

Using the momentum equation, the acoustic field equation and the modal

orthogonal relations, the radiation equation is defimed by the following

expression
+ Sy, o) e
A = - 14 + .
a7} a7+ d e } (2.73)
H

The source distribution and Equation 2.72 can be modified to account
for an array containing several sources. The extension of this analysis
to a complex source array will be described in a later section.

The previously described radiation and source matrices are combined
with the transmission and reflection matrices for each duct section to
vield a complete set of matrix equations for the wave amplitudes., A
typical set of equations for a duct containing N sections is given by
Equation 2.74. Solving this equation for the modal amplitudes at each
interface, the pressure can be described everywhere in the duct by the
acoustic field equation.

As a result of this analysis, the meodal amplitudes for each'section
can be used to calculate the sound power level at positions throughout

the duct. The intensity I at any point in the duect is given by

I= % Re (pv'") (2.75)

where v" is the complex conjugate of the velocity in the axial direction.
The total sound power W can be determined by integrating the intensity
over the cross sectional area.of the duct, and the sound power level is

calculated with respect to a reference acoustic power level WO of 10 2
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Watts/m*.

L_ = 10 log (2.76)
w 10

Elﬁ

]
The effectiveness of a duct.liner can be measured by the trans-

-misgion loss and the insertion loss. The transmission loss is the
difference between the sound power level in front of and at the end of
the liner. The insertion loss is the difference between the sound power
level at the -same point with and.without the liner inserted in the duct.
Lf the sound power levels.are calculated at the positions in Figure 2.14,
the transmission loss and insertion loss for a finite length liner.are

given respectively by

TL

10 log W -10 log W (2.77)
18 1 10 2

I,

1l

10 log W ~-10 log W {(2.78)
w3 16 2 .

The insertion loss is helpful to describe the effectiveness of a
liner in a particular applicstion while the transmission loss defines

attenuation properties of sound transmitted through the liner.
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2.6 Eigenvalue Search Technidue

Acoustic propagation through a duct in the axial direction is
«determined by the axial wavenumber. This parameter is related to eigen-
values which are solutions to the local reaction boundary condition

given by Equation 2.32
B bJ:.-::.Jm(J\b) -m Jm(}\b) - A.b Jm_'_l(}\b) =0 (2.32)

Several methods have been developed for locating the eigenvalues for a
circular duct.

For a hard-walled duct, the admittance is zero and the local re-
action boundary condition reduces to Equation 2.20. In these cases, the
eigenvalues are real and well ordered and can be found in tabulated form
(4). Even if these values were not known, they could easily be deter-
mined using iteration techniques. This is because the eigenvalues are
real and there is a one to one correspondence between the argument and
the value of the Bessel function.

For a lined .duct with a.romplex admittance B, the eigenvalues
given by Equation 2.32 are complex. 1In this case it becomes. difficult
to observe the dependencé between complex arguments. and complex values
of the Bessel functions. Therefore, iteration methods become more
difficult and uncertain for values of complex admittance. Several
alternate schemes have thus been.devised. Fisher (16) has developed
a series solution to the .eigenvalue.equation which.converges for small
admittance. Rice (17) has exrended this technique for finding eigen-
values to include both large and.small admittances. Similar approxi-
mations for very large or very small admittances are given by Morse and

Ingard (8). Although this method yields reasonable estimates for
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eigenvalues, these approximations on the admittances cannot be made for
all materials,

Graphical.techniques -and nomograms are available for determining
these eigenvalues (18, 8), but there are restrictions with these tech-~
niques. First, the accuracy is.limited in choosing eigenvalues from
graphical techniques and second, eigenvalues for only the first ome or
two radial modes are given by these methods. Thus, alternate methods
mist be examined for locating exact eigenvalues.

Benzakein (19) has transformed the boundary condition equation
into a first-order nonlinear differential equation and then integrated
it numerically to locate eigenvalues. Zorumski (20) has alsc used this
differential equation method.to.solve for complex eigenvalues for a
circular duct. This method maintains a one to one correspondence
between eigenvalues on the-real.axis for 8 = 0 and the complex eigen-
values. The integration is started at the point B = 0 and the end points
are related to the desired specific admittance.

As an altermative to these methods, a search technique using both
contour integrations and an iteration technique was developed. This
method locates eigenvalues in.the complex plane for all values of
admittance. This technique 'was.based-on the Principle of the Argument
which is described in detail by Copson (21). This principle is stated

by the following expression

2oy 2@ 4o, g (2.79)
i ¢ (=)

The left hand side of Equation 2.79 indicates an integration around-a
closed contour C in the complex plane. On the right hand side, p is

the sum of the orders of zeroes within this contour and q is the sum of
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the orders of poles. -Since we arenperforming-an;-integration around a--

closed econtbury Equation 2+79:-can be further.simplified-to

% [Arg F(2)]_ =p - ¢ (2.80)

Now the . number and order:of zoeroes.and poles can be determined by
observing the change in the argument of the function around a closed
contour and examining how many times the argument crosses the branch
cut formed by the negative real axis.

This contour integration is. effective in finding the boundaries of
the roots of a function in the complex plane with no previous knowledge
of the.location or behavior of.the.roots. Once these boundaries have.
been defined, a first approximation can be chosen and an iteration
technique:used to locate the exact value of the root.

This same technique can be used in locating eigenvalue in the -
complex plane.for a.duct-wall with an arbitrary complex admittance.
Successive eigenvalues can be obtained by performing contour integrations
around regions throughout the complex plane. The eigenvalue equation and
the behavior of its roots must first be investigated.

Letting K = APH' the eigenvalue equation for the local reaction

boundary condition becomes

F(K) = Bbi Jm(K) -m Jm(KD +KJ (2.81)

mﬁi(K)

The eigenvalues.are-the zerces of this function and are defined at
values of K such that F(K).= 0...The location of these eigenvalues in
the complex plane is determined by the properties and location of the

wavenumber in the axial direction f2. From Equation 2,18 we see that
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for a progressive wave, { must be located in quadrant I of Figure 2.15,
with 0 > 0 and T > 0 in order that the wave be attenuated and not ampli-

fied as it propagates. Therefore, from Equation 2,22, A is located in

quadrant IV of Figure 2,15.

Im(=z)

T A T

=0+i-T

» Re{z)

III v

Figure 2.15 Quadrants for Locating @ and A

There is an additional eigenvalue -A . located in quadrant IT which also
satisfies Equation 2.80., However, it is the morro£ image of the eigen-
value in quadrant IV and need .not be considered by the search technique.
Now that the-quadrant.containing the successive eigenvalues has
been located, integration contours can.be defined. The integration
contours chosen are shown in Figure 2.16 and are expanded outward from
the origin in successive radial increments. The maximum.radial increment
between successive eigenvalues would be expected to be of the same order
or less than the increments between successive eigenvalues for a hard-
walled duct., However, since the increments -between complex.eigenvalues:
are not.always clearly defined, .these contours were expanded outward-
from the origin in radial increments of 1.0. Integratioms are petfiormed

!
in the clockwise direction according.to.Equation 2.80. Each contour of

integration was divided into 10 steps along the path in the radial
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direction and into 23 steps along.paths in the angular direction. When
integration paths were near an eigenvalue that was located either within
or exterior to the contour, additional subdivisions in-step size were
made.

Since there are no poles associated with Equation 2.32, the din-
tegration yields either zerc or a positive number indicating the number
of eigenvalues within the.integration contour. When the results of the
integration were zero, the contour was expanded radially from the origin
and a further integration was performed with the new contour. When
regions.containing two eigenvalues-were located? the contours were
divided into smaller radial increments until a region containing only
one root was obtained. Situations where ‘Ewo successive eigenvalues are
locatéd in proximity to each other are discussed by Zorumski (20). For
certain specialized cases of admittance, the lowest eigenvalue coalesces
with .a higher eigenvalue to form a double-eigenvalue. In this case, the
double eigenvalue is a solution. to Equation 2.32 and its derivative.

The resulting eigenfunctions are orthogonal to themselves and are linearly
amplified in addition to being attenuated at the expected rate. Ad-
mittance values producing double eigenvalues were neglected in this
study. "

Once the boundaries of a radial contour containing a single root
are -defined, additional divisions shown in Figure 2.16 were made in the
angular direction. Integrations around these contours are performed-to
further define the.boundaries of the.region containing the~eigénvalue.

A first approximation. to. the eigenvalue was chosen at the -center of the
contour and the ‘Newton Raphson.Iteration Technique (22) was used to

lcoate the eigenvalue to the required degree of accuracy.
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Figure 2.16 Integration Contours
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This method locates.eigenvalues in successive radial increments
outward from the origin., The correct:order of these eigenvalues can be
determined from examination since their real component is interlaced
between the real zeroces of the Bessel Function and their derivatives
the.extreme cases for soft and-hard walls respectively,

The- complex eigenvalues describe both the attenuation.of an in-
dividual mode through the liner and the radial mode shape, In addition,
these parameters are needed. to calculate coupling coefficients between

modes at each interface of the multisectioned duct system,



‘CHAPTER, III

EXPERIMENT

3.1 Introduction

To perform an experimental investigation of multisectioned duct
theory, a simple configuration consisting of an anechoically terminated
duct with three sectlons was chosen. Furthermore, since the ejigen—
values and corresponding mode shapes for a hard-walled duct are well
knowvn, the beginning. and-end sections of the duct system had rigid walls.
Between these two sections, liners of various materials were inserted
and radial mode shapes were measured at various positions thsoughout the
duct. Despite the fdct that no flow was considered, the section in front
of the liner will be called the upstream section and the section behind
the liner will be called the downstream section. This terminology does
not strictly define the direction of acoustic pr;pagation in cases

where flow exists, Flow can occur in a direction either with or

against the -direction of acoustic propagation. However, the effect of
flow will not be considered in this study.

The remainder of this chapter will describe the duct system, the
source array developed to generate higher order.acoustic modes, the liner

materials, and-the measurement techniques used in this study.
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3.2 Multisectioned Duct System

The. complete duct system used in this experiment is shown in
Figure.3.1. The hard~walled secFions were made of commercially avail-
able cement pipe with a 12 inch inner diameter and a 5/8 inch wall
thickness. The cement pipe was chosen to eliminate-coupling between
vibrations of the duct wall and the-acoustic field. Although the
diametér of the.duct s.12 inches, there are deviations of up to * 1/2
inch in the diameter at positions throughout its length. The effect of
these variations on the.radial mode shapes will be discussed in Section
3.3 The test section was also made of ceiment pipe with a 14 inch inside
diameter. This section will accommodate one inch thick liners of differ-
ent acoustic materials with no change in cross sectional-area throughout
the duct. Both the.upstream section and test section were placed on
moveable carriages. This arrangement facilitated the .removal and
replacement of liners and the aligoment of the complete system for
testing.

To eliminate acoustic reflection from the end of the duct, an
anechoic termination was coupled to the downstream section. This
arrangement simulates a seémi-infinite duct.: A flanged or.unflanged
open ended duct could have also.been used in this experiment. However, .
since the .open end causes reflection of an incident wave, the anechoic
termination was chosen to.reduce. these reflections. The termination was
made of hardened-liquid fiberlass in. the shape of a hollow cone. The.
cone was filled with glass fiber material with a density of 1,5 pounds
per cubic foot. The construction of. this termination was based .on
results provided by Carrier Corporation (23) for design of a termination

for plane wave propagation within a duct. Before this termination was
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chosen, the performance of several additional configurations to.reduce
acoustic reflection from.the end of.thé duct were investigated. These
included a glass fiber come which was inserted in the end of the duct,
wedges of glass fiber.material also inserted-in the-duct, a sample of
glass fiber material sealing the.end.of the duct, anq-the_previously
described anechoic termination.with.glass fiber wedges.inserted-in.the
enda The best performance was.obtained.with the termination and when
the glass fiber.wedges were.inserted- in the duct. However, as there was
no significant difference between the results for these two configura=lo..:
tions, the cone shaped termination was chosen for.use. This termination
was also used in the experimental studies of Harrington (24) and
McDaniel (25). Preliminary tests for a plane wave revealed a standing
wave ratio of less than 2 dB at 500 Hz in a hard-walled duct with this
termination. However, for.higher. order modes, there is a standing

wave ratio of over 6 dB near the cut-off frequency which decreases:

with frequency. This performance is partially explained by the work of
Vajnshtejn (26) who calculated the reflection coefficients at the-open
end of a duct for higher order modes, This study was an extension of
Levine and Schwinger's (27) work for plane waves. The results showed
that maximum.reflection for individual modes occurred at  their cut—off
frequencies 2nd decreased as the.-frequency was increased. Although

the open.ended duct is not exactiy.similar to the .anechoic termination
described here, it does provide.an.indication of the difficulty in
designing a termintion to eliminate acoustic reflection near the cut-
off frequencies. In subsequent.measurements with plane waves and higher
order modes, the uniformity of amplitudes and mode shapes at several

loecations throughout the duct were indications of a reasonably good
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anechoic termination.

Traversing microphone probes.were designed to measure the radial
mode shapes at stations thorughout the duct. A linear motion potentio-
meter accurately measured the radial displacement of the probes. Within
the-upstream and downstream hard walled sections, one probe was moved to
the different stations shown in Figure 3.l. Within the test section,
modes shapes were measured with an additional probe located at the center
of the.liner.

The-microphone probe tubes were 4 mm in-diameter and coupled to one
half inch. condenser microphones. (28). Although smaller diameter probes
were available for use, the larger.probes were-chosen for. their increased
sensitivity. The presence of the probe should not obscure the acoustic
field since even at 8000 Hz, well.above the upper limit, for measurements,
the diameter of the probe is less than one~tenth of a wavelength.

Resonances of the probe. tube.will appear when the length of the probe
is equal to odd multiples of a.quarter of a wavelength. To obtain a
uniform frequency response, steel wool'was inserted in-the probes to
damp these resonances.in the.manner recommended by Briiel and Kjaer (28).
The response of one.of the probes is shown in Figure 3.2 with and without
damping .  This adjustment was.necessary because the two probes were of
different lengths and the corresponding resomances for each probe would
occur at different frequencies.. With each of the probe. tubes damped,

a more uniform. frequency response can be obtained and used in comparing
relative amplitudes between the levels measured within the linetr section

and within the hard-walled sections.
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3.3 BSource Array

A complex source array was developed to generate plane waves and
higher order. acoustic modes within the -duct. Seiner (29) provided the.
initial groundwork for :development of a spinning mode’ synthesizer.

Eight loudspeakers were located in.an equally spaced circular array and
phased so that the system could generate a spinning mode. Tests in an
anechoic chamber confirmed the.use.of this system to generate higher
order spinning.modes. Oslac (30).has extended this comcept. and designed
an array consistiﬁg_of 16 speakers,.circumferentially spaced in-a baffle
which was coupled to the end of.a.duct. With the increased number of
elements.in this configuration, improved results were obtained in
generating mode shapes of a high.spin number. Oslac has-shown.that the
upper 1limit mmaX.for generation of a circumferential mode by such an

array is given by
- 1) (3.1

where N is the number of speakers in one ring. This characteristic
becomes important when comsidering.the limitations of a source array.,
McDaniel (25) has developed.an improved source array which included
a speaker at the center.of the array in addition to the speakers placed
in an outer ring. This provides:radial as well as circumferential
shading in the array.. .Obviously,.the additional speaker at the center -
could only be used in generating.a non-spinning, m = 0, mode. However,
the encouraging results from this.design prompted the use of additional
elements in the radial direction. Such a design would provide additional
radial.shaping for both spinning.and non-spinning modes and would provide

a better match to desired mode shapes. The optimum configuration would
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provide for continuous phasing and shading in amplitude in the circum-
ferential and radial directions. The limiting factor in such a design
would be the size of the transducers.

Based on these previous concepts, an improved array was designed
with two concentric rings of 2-1/4 inch loudspeakers placed in a 3/8
inch aluminum baffle. The baffle was then coupled to the .end of the
duct.. This speaker was small enough so that several elements could be,
included in the array. It also had reasonably good frequency response
over the frequency range_of interest for generation of the desired
acoustic modes. Typical amplitude and phase response with respect to
a one volt .driving voltage for the speaker as a function of frequency
are shown in Figures 3.3 and 3.4.

To insure that the desired -duct podes would be generated with maxi-
mum efficiency by the array, speakers should be located near positions
where the radial pressure distribution is a maximum. Referring-to the
mode shapes—in Figures 2.2 and 2.3, the concentric rings of speakers
ware pléced.around a speaker at the center. Eight speakers were placed
in an outer ring at.a radius of 5 inches and 4 speakers were placed in
an inner ring at a radius of 2.5 inches. The frequency response of
several speakers was-measured.in order to choose elements for the array
with near uniform phase and amplitude characteristics. The source array
is shown in Figure 3.5.

To generate a single higher order duct mode, elements of the source
array must be- individually adjusted in phase and amplitude to correspond
to the radial and circumferential pressure distribution of.that mode.

The radial pressure distribution for individual modes is given by the
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Bessel functions and the mode shapes- in Figure 2.2-and 2.3. The
circumferential distribution is given by the exponential term ejm@ in. the
solution to the wave equation. .All.of the elements within a ring at one
radial position are adjusted to.thé same amplitude. These elements-are
further adjusted-in phase to correspond to the circumferential order m
of the desired mode.. For a ring of N.elements; there will be.a pro-
gressive.phase difference of gﬁguradians between elements. The:change
in phase in the-circumferential direction must then complete 27m
radians. The relative amplitudes.for elements at different radial
positions are chosen.from the.radial mode shapes in Figure 2.2 and 2.3.
Whenever . the pressure distribution.crosses the r axis, a complete re-
versal in phase must also be accounted for between elements on each side
of the null point. .

A complete .description of. the.electronics necessary to provide phase-
and amplitude control for each,element in the array is given.by Oslac
(30) . Although Oslac-haé showm. that. it is possible to combine several
modes with such an.array, the propagation.of only.individual modes will
be studied here. For the.remainder of this study, the generation of a
mode will refer.to the generation of known mode shapés for a hard-walled
duct.

The source strength of a. typical element of the array was determined
by placing the speaker.in a.baffle.and measurin% far field pressure
regsponse. The-far.field radiated.pressure-from a piston in an infinite ,

baffle at a position ri on-~axis is given by Kinsler and Frey (7) as

R dkr
P _d1kpcBe 1 (3.2)
2 rl

The frequency response-of.an individual speaker was recorded at several


http:speaker.in

62

on-axis positions in an anechoic:chamber and aﬁalyzed in order to
determine the source strength.as. a. function of frequency.

Preliminary-attempts to generate higher order acoustic modes were
made with the source array coupled to the end of a hard-walled duct with
an anechoic termination. Both:.spinning and non-spinning. medes could be
generated within the duct.at. and above their cut-off frequencies and
the corresponding.mode shapes.were. well defined at“posifions throughout
;he-duct. In addition,.measurements of.pressure and phase were made.at
circumferential positions to.insure.that the mode contained the required
spinning. or non-spinning, characteristics. The generation of individual
higher-order modes will be studied to determine the modal purity obtain-
able with the source array.

An -indjcation of the degree. of modal purity can be determined from
the measured level of the.null in the radial pressure distribution.

Any .contamination from other. modes.will raise the-level of the null.

A difference.often.exists.between the radial location of the null
as measured and predicted by theory. This could easily be due to the
slight variations in duct diameter and the miformity of the circular
cross section. These variations would tend to redistribute the acoustic
energy in the radial direction. In fact, a shift of the measured null
to positions on either side of the predicted null is experienced for
both spimning and non-spinning modes at positions along the length of
the duct.

The mode shape for the first non-spinning (m = 0) radial mode is
shown in Figure 3.6. This was generated at 1400 Hz and measured at a
position several duct diameters from the source array.: The comparison

between measurement and theory is also shown. The agreement in this case
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is very good with modal purity deteriorating slightly at higher fre-
quencies. This mode cculd be generated with reasonable purity at fre-
quencies.up to the. cut-off frequency for the second radial mode. The
second radial mode is shown in.Figure 3.7 at-2535 Hz, Although there is
a difference in the (location of.the nulls, the general shape of the mode
is fairly well established.

Spinning modes were investigated mext.in the anechoically terminated
duct. Radial mode shapes for the first spinning mode at 700 Hz are shown
in Figure 3.8, It was possible.to.generate this mode in a frequency
range up to the cut-off.frequency f£or the next radial mode. The second
radial mode, the (1, 2) mode is shown in Figure 3.9 at-1925 Hz. There
is good-agreement between measured.and.predicted mode shapes in both
cases. For a spinning mode, the absence of a clearly.defined null. at
the center is not a positive indication that a poor mode.shape exists.
When measuring radial.mode patterns near the -center of the duct, probe
alignment ‘tﬂmes-a eritical factor. TFor example, the first spinning
mode has a maximum level at the wall and a null at the center where
the dB level should drop to -, TIf the probe is aligned off center, it
will never reach this-null, For an error of only one. degree in alignment,
the greatest difference between the.level at the wall and the "measured
center' becomes-only 32 dB. Although a proper mode shape could exist
in the duct, measurements.would.reveal a poor indication of this mode if
the probe is misaligned. .In'all.cases, precautions were made to ensure
that the probe.was aligped and traveled to the -center of the duct.

Equation 3.1 restricts. the use of the complete source array for
generating spinning modes above the.order m = 1: These higher modes can

only be generated with the eight outer elements of the array. A
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spinning mode of .order:m = 2.generated at 1110 Hz- is- shown in-Figure.3.10.
Tﬁe-agreement between measurement.and theory is good except near the.cen-
ter of the.duct. .This is partially.because only the -outer ring of
elements in the source .array is.used. to match the sound field. In
addition,.this mode is being.generated in a frequency range where
spurious modes, created.by.phase variations between individual.elements
of the array, can.also propagate...The absence-of.a clearly defined null
at the center.is.an indication of.contamination from suprious plane.
waves generated -at a reduced level by the array. An analysis of these
spurious modes is.given in Appendix A. Nontheless, the mode does contain
the general.radial . pattern.and .proper. spin characteristics.

Mode shapes generated.with.only the outer ring of .speakers were.
compared-with mode shapes generated using the entire array. For a
(0, 1) mode, the mode shapes generated with the entire array properly
adjusted and with combinations. of speakers opetrating are- shown-in

Figure 3.11. Similar results for the (1, 1) mode are .shown in Figure

3.12. Thus, the:.mode shapes are.enhanced considerably by providing
radial shading as.well as circumferential .phasing with this unique
array. The advantage of providing.radial shading becomes -especially
important when.generating modes at.frequencies where several lower
order modes with .the same.circumferential dependence can-also propagate.
Evidence.of this is shown in. Figure-3.13 when.a (0, 2) mode.is being
generated with the entire array and then with only the-outer ring of
speakers. .From the difference between.radial mode shapes, the radial
pressure distribution.is greatly enhanced by the radial shaping pro-
vided- by-the array.

Mode shapes generated in the semi-infinite duct system included the
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plane wave, (0, 0) mode, the (0, 1) and (0, 2) non~spinning higher order
modes and the (L, 1), (1, 2) and.(2,.1) spinning modes. Reasonable

modal purity was obtained for all cases except the (2, 1) mode.
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3.4 TFlow Resistance Measurements ...

One of the fundamental parameters used in predicting the acoﬁstic

performance of a sound absorbing material is the flow resistance. The
flow resistance of each material was measured with an apparatus designed
according to specifications outlined.in ASTM-Standard C522-64 (31),
The .apparatus permits control.of.the flow rate through a sample so that
flow resistance can be measured over a range of velocities. A complete
description of the.apparatus and.testing method can be found in Refer-
ences 5 and 13,

Measurements were made._at.flow rates within a range-of particle
velocities corresponding to moderate acoustic levels. For the flow
rates considered, the. pressure drop.associated with the flow resistance
is on the order of a few thousandths.of an inch of water and was measured
with a pressure transducer as opposed to a micromanometer. In all-cases,
the .sample size was 8,73 cm? in area.

Three samples of each material. were chosen from random locations
and tested in.order to determine an.average flow resistance representa—
tive of the entire liner. Typical.results for flow resistance measure-
ments on three samples of fiber.metal. material are shown in Figure 3.14.
The differences between.samples.are the result of variations in material
properties. More important,.however,.is the fact that the flow resis—
tance is essentially constant throughout the range of flow rates con-
sidered. The average values for.each material are given in Section 3.6

where the materials chosen as duct liners are fully described.
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3.5 Impedance Tube.Measurements .

Measurements of the normal impedance and absorption coefficient of
a material as a function of frequency can be made using a standing wave
tube. A Brtiel and Kjaer Type- 4002. Standing Wave Apparatus, which meets
the specifications of ASTM Standard.C384-58 (32), was used for these
measurements. A moveable probe.microphone,is used to measure the stand—
ing wave ratio and thesdistﬁnce-to.the first .node.of the standing wave
pattern. These parameters are used-to calculate the impedance and ab-
sorption coefficient.

The frequency. range over which.plane wave;.may propagate within -the
standing wave tube has an upper.limit.determined by its diameter and the
corresponding. cut~off frequencies forthe first higher order mode.

The propagation of higher.order modes is restricted below this cut—-off
frequency and only plane waves can.exist. To extend measurements with
plane waves over a broader frequency range, two tubes with diameters of
3 cm and 10 cm were used. This also provides.a comparison of measured
values in an overlapping.frequency range. Measurements were possible
from 250 Hz.up.to 4000 Hz.with.an,overlappiné frequency range existing
between 800 Hz and 2000 Hz for the.two tubes. A complete description of

the testing method and apparatus is given in- References 5 and 13.
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3.6 Duct Liners

Duct liners of three different materials were chosen in order to
study their attenuation properties and the local reaction boundary con-
dition. No attempt was made.to optimize the impedance parameters of
our liners by altering material thickness, material properties, or
cavity depth. Instead, it was decided to choose materials that could
be inserted within the one inch depth.provided by the test section.

Two types of sintered fiber wmetals with diffeaigg acoustic
properties were uséd as duct liners. These materials were provided by
Brunswick Corporation and are commercially known as Brunscoustic Plate
(Fuzzy Hole Perforate, 27%.open area) and FM 134. The flow resistance
of each material, tested by the technique described in Section 3.4, was
48 cgs rayls and 25 cgs rayls.respectively. The fiber metals were
tested.with a 7/8 inch thick closed cell honeycomb core backing. The
honeycomb core, produced by Hexcel.Corporation under the trade name of
Acousti Core,.contained:3/16 inch cavities. The special core geometry
of this material allowed.it to be formed into a circular configuration
without.the saddling problems.inherent when ordinary honeycomb is rolled
or deformed along an axis. To seal the cavities, a layer of sheet metal
was tightly wrapped around the honeycomb material before inserting the
liner in the. test section. This.configuration is then a close represen—
tation of the materials used.by the aircraft industries in acoustically.
treating aircraft engine inlet .duct and fan exhaust systems,

A perforated.sheet metal with.a closed cell honeycomb core backing.
was also used as a duct liner. .The use of perforated panels as acoustic
treatment is of considerable interest because of the reduced cost of

this material as‘compared to the fiber metals. Two samples of per-
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forated: sheet metal were chosen with specifications on hole aligrment,
hole spacing and size, and open.area that resembled current perforated
materials used in acoustic applications. The materials chasen each had
1/16 inch diameter holes on staggered.centers - one of 20 gauge aluminum
with 1/8 inch centers and 22.5%.open area, and the other of 24 gauge
steel with 7/64 inch centers.and 30% open area., A cavity depth behind
the material was provided.by the 7/8 inch thick flexible honeycomb

core described -previously. The.configuration was inserted in the one .
inch depth of the duct test section for evaluation.

Both the fiber metal and perforated sheet metal materials were
fabricated into 28-1/2 inch long acoustic liners with a 12 inch inner
diameter. Any further mention of the -fiber metal or perforated liners
will refer to these lengths.

A rigid round glass fiber material of one inch thickness was.the
third type of material chosen. for use d4s a liner. This material is a

commercially available product.distributed by Johns Manville and used

for pipe insulation. Although fiberglass materials are generally
designed for insulation purposes,.they also possess remarkably good

sound absorbing properties. Furthermore, since.their tolerances and
specifications.are chosen for their primary purpose, there ig often a
considerable variation in the resulting acoustic properties of the
materials. This variation is most noticeable in the flow resistance
where it is not uncommon to have variations in the flow resistance within
25% of a nominal value. The average flow resistance for this material
was 78.cgs rayles/inch., Duct.liners of.glass fiber.material in lengths
of 12 inches and 24 inches-were inserted within the test section for

evaluation,
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Throughout. the. remainder. of. this study, the following abbreviations.

for each material will be used.

1. ™1 ~ Fibermetal, 48 cgs rayls, 7/8 inch cavity
2, ®M 2 - Fibermetal, 25 cgs rayls, 7/8 inch cavity
3. Perf 1l ~ Perforated panel, 22.5% open area, 7/8 inch cavity

4, Perf 2

I

Perforated panel, 30% open area, 7/8 inch cavity

5. Fiberglass

One dinch thick fiberglass liner



CHAPTER IV

DISCUSSION

4.1 TImpedance Characteristics of Duct Liners

In order to determine the average impedance characteristics for
each liner material, three samples were taken from random locations and
tested in a standing wave tube. This involved tests fo.three separate
samples within both the large and small impedance tubes. In most cases,
there was a negligible variation between the resulting impedance
characteristics for individual samples and for large and small samples.

The impedance for the two fiber. metals-and two perforated panels,
with 7/8 inch honeycomb backing,.are.presented in Figures 4.1 through
4.4, Throughout the overlapping frequency range, there is no sig-
nificant difference between the.real and. imaginary components of the
impedance for both materials. The measured values of impedance are
also compared with values calculated from. the expressions im Section
2.3 Throughout the entire frequency range, there is good agreement
between these values.

The impedance characteristics for the one thick glass fiber
material, as measured by the impedance tube are shown in Figure 4.5.
Since there is a marked difference between the real and imaginary
components of impedance within ‘the overlapping :frequency range, measure-
ments with,.the small and large tube.are separated. This phenomenon
is characterdistic for each of the-three samples and not just peculiar
to one sample.

To elimin%te the possibility that-gross material variations
between individual ‘samples was the cause of this discrepancy, further

tests were conducted on one gample. The sample .was first tested within
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the large impedance. tube. Next, three. separate smaller samples were

cut .from this piece.and individually tested within-the smaller tube.
Again; this same discrepancy was evident in the gveflapping frequency
range. This characteristic, however,.is not-representative of all glass
fiber materials. Previous impedance tube testing with glass fiber
materials of different densities and thicknesses showed ne variations

in measured acoustic properties within the overlapping frequency range
{13).

The: discrepancy for.this particular.material is unable to be
explained. In cases.where these variations exist, greater emphasis
will be given .to.measurements -with-the.larger sample.of material.

-The .calculated impedance valueg for the glass fiber material are
algo. presented in-this-figure. .For the flow.resistance value of 78 cgs
rayls, the theory underpredicts the real._ component of  the impedance.

It has been shown by Wyerman.(13) that.the value of flow resistance
affects only the -real component.of. the. impedance and .leaves the imapginary-
component . relatively changed for frequencies belows 2000 Hz. Further-
more, a flow resistance of.over 140.cgs.rayls would be necesgsary to
predict impadance values corresponding.to those measured with the stand-
ing wave tube. This same result was . found for- -measurements on several
different glass fiberimaterials, indicating that-the flow resistance, as
used in .Beranek's theory (9), .does not.account for the total -dissipation
within the material and other dissipation mechanisms wmust be present,
Beranek .has. remedied this problem.by. introducing.a dynamic-£low re-
sistance to compensate for this factor...This parameter is determined
from standing wave tube measurements by fitting the ‘experimental -

results to curves for the impedance calculated at different flow
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resistances values. However, this new parameter has no relationship
to the static flow resistaﬁce and has values both above and below the
measured static values for different materials. This indicates that
other.dissipation mechanisms.are involved within the material that are
not' included in the flow. resistance term.

Although the impedance of a material can he reasonably predicted
by theory for all cases except the glass fiber material, the measured
values- of dmpedance will be used with_the eigenvalue equation and the
eigenvalue search technique. For.the glass fiber material, the measured
impedance for the -larger.sample will be used to‘locate.the eigenvalues.

-.It is obvious from the characteristics of ‘materials considered in
this study that .an optimum impedance.exists where sound attenuation
through. a. liner is maximized. .Within.this.study, however, no attempt
was made to model.duct.liners.for optimum.impedance characteristics.
Instead, liners of different -acoustic materials were chosen for.
evaluation that could be readily inserted in the test section of the

duct system.
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4.2 Eigenvalue Search Technique

The. eigenvalues for a.lined duct.section. are determined by solutions
to the local reaction boundary.conditions.. These solutions were located
by the.eigenvalue.search technique.described.in- Section 2.6. To
establish. the validity of:this.method, preliminary. tests were performed
and. compared with the results given by Molloy and Hanegman (18) and by
Zorumski and Mason (20). 1In.all cases,. the. contour integration
located the region containing the eigenvalue and the first approximation
converged to.the exact value. using the.iteration technique. This
method. thus provided an efficient and.reliable method for locating the
complex eigenvalues for a liner material.

The' behavior of eigenvalues for the fiber metal liner FM 1 will be
described for individual circumferential_modes.

The eigenvalues at.several frequencies for a non-spinning mode,

m = 0, are shown in Figure 4.6. The real components of the eigen-
values are interlaced between the.real. zeroes of the Bessel function

J'0 and its derivative J '0. These values. are the extreme cases for soft
and hard duct walls respectively. The general trend of the frequency
dependence of these modes can be seen in each figure. .A graphical
representation of .the coalescence.of. eigenvalues can be seen from the
Morse Charts (8) and from-Zorumski's. (20) treatment of the -behavior

of eigenvalues and double eigenvalues.for.different.values of. impedance.

The attenuation for individual.radial.modes within a lined duct is
related to the eigenvalues.by.the. wavenumber in.the axial direction
and Equations 2.22 and 2.35. .This attenuation is plotted for non-
spinning modes for the.fibermetal material.in Figure 4.7, There are

definite delineations between attenuation for each mode both above and
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below the hard wall cut-off frequencies. .Near these frequencies, the
attenuation.of. individual.modes is.on.the same order. Therefore, there
is a. little distinction between the attenuation characteristics of
two-successive radial modes'in this.frequency domain:

Similar results for eigenvalues.are given in Figure 4.8 for an .

m =.1 spinning mode for the same material. The same ordering of eigen-
values can be seen with respect to the:zeroes for the Bessel function
J1 and its derivative, J'l. The attenuation for the liner is shown in
Figure 4.9. Again,.there are clear.distinctions between the atten-
uation for successive radial modes except near the cut-off frequencies
for.a hard-walled duct.

The treatment was intended to show. the -basic.behavior of successive
eigenvalues for two types of materials with the impedance characteristics
given.in Section 4,1, No conclusions can be drawn from this analysis
about.general eigenvalues for materials with arbitrary impedance
characteristics. The general behavior of.eigenvalues for arbitrary
impedance-is given by the Morse Charts.(8). To-obtain the exact eigen-—
values; it is best to obtain.solutions.directly from Equation 2,32,

. .A.complete set of eigenvalues were.determined, for each material

throughout the frequency range of generation for each mede.
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4,3 Multisectioned Duct Model.

The- analysis of a multisectioned. duct.system was presented in
Section 2,5, This.analysis will.now.be modified to consider an anechoi-
cally terminated duct with three sections. TFigure 4.10 ‘shows the duct
system.and the appropriate interfaces.between each section. The

resulting matrix equation for the system is given.by Equation 4.1.

1 B 1
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| | ] !
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Figure 4.10 Multisectioned Duct Mode

A computer program was developed -teo.analyze.the mathematical model
of the experimental duct system. The.admittance and eigenvalues for
each section were.assigneq,to:the proper interface and were used to
calculate the transmissi;n and.reflection. matrices between each section,
The:real eigenvalues for the hard-walled section are‘known (4) and the
complex eigenvalues for the lined.section.were determined from measured
impedance characteristics and the search. technique ‘described.previously.

The source distribution and Equation.2.72 must be modified to
account for the .experimental source array. .For generation of a circum-—
ferential mode of order M, the-equation becomes
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The relative amplitudes of the-source strengths are related to their
radial positions and the radial pressure distributions as presented in
Figures 2.2 and.2.3. Using the momentum equation and the modal orthog-

onality conditions, the source equation becomes

{Ajl} + {Aj}-= {q"} (4.3)
where
+1 +1 +1
Q') = {Q1 ‘Pu (0) + 4 Q2 ‘iu (1:'1) + 8 Q3 ‘i’u (rz)
+
9 T
U

Each coefficient in -the matrix equation is now specified. The
matrix equation was developed into a system of 9 x um linear equations
where Mo is the number of finite terms included in the summation over
M. These linear equations relate individual modal amplitudes at each
interface to the reflection and transmission coefficients: The modal
amplitudes were evaluated using a computer subroutine to solve the set
of gimultaneous linesar equations,

Once the modal amplitudes are determined, the pressure- field
everywhere throughout the duct can be.defined. Furthermore, the.
transmission.and insertion loss.of-a liner can be calculated from
these .amplitudes.

" The number of radial modes W considered by this-analysis at each

frequency, was limited to all propagating modes and the.next two higher
order cut-off modes. .There.was no significant improvement in results

when additional cut-off modes were included.
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4.4 Multisectioned Duct Measurements

McDaniel (25) has.performed an.experimental study of.the propagation
of higher order modes - through a duct - -containing a finite length liner.
Mode shapes throughout the duct were.measured for two liner materials.
However, there was no effort to compare. theoretical calculations with
these results. In addition, the liners were simply inserted with a
hollow duct, causing an abrupt reduction in the cross-sectional area
within the lined section.

This study provides a significant improvement over.the initial
work ' of MeDaniel.. Progress was made to investigate-acoustic propagation
in a.multisectioned duct through-both“experimentél and - theoretical
techniques. An improved.source.array was develeoped to generate higher
order.acoustic modes.within duct liners. .These liners were imserted so
that there was no.change-in crosg~sectional area throughout the duct.
This - configuration thus provides-a more realistic application of duct
liners.as acoustic ‘treatment. An attempt was made to theoretically
evaluate acoustic propagation in.a multi-sectioned duct,by determining
the  eigenvalues for a lined.duct. section.and-developing a mathematical
model for the system: Finally, sources of.error and discrepancies
between measurement and theory.were. explained.

The soruce array was used to generate higher order modes throughout
a range of frequencies in the multisectioned duct system. These modes
included.a.plane wave, (0, 0) mode,.the.(0, 1) non-spinning mode, and
the (1, 1) and (2, 1) spinning modes. .The. propagation of these modes
wag investigated for each of: the liner.materials described in Section
3.6. Measurements of the sound pressure level and radial mode shapes

were taken at stations throughout the duct. These results were compared
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with the levels and.mode,shapes calculated from the mathematical model
for the multisectioned duct. In addition, the propagation of the (0,2)
and (1,2) higher order modes was investigated with the fiber metal
liner ¥M 1.

There .are two distinct sources for error in the resulting duct
measurements. First, the slight variation in cross.section throughout,
the duct will cause errors.in measured mode shapes. A change of only
1/2 inch in the duct diameter becomes significant at high frequencies
where this change is of the order of the free space wavelength. In _
some , sections of the 12 inch diameter duct, there is an increase of 1/2
inch -in the diameter in one.direction and a corresponding decrease of
ﬁhe same ordef at %ighf éngies to this. Thus, the duct is somewhat
more eliptical in cross section than round. No estimate.of the error
produced by.these non-uniformities can be made other than the fact that
these variations in circular cress section will tend to redistribute the
acoustic energy in the radial direction as well as shift the location
of nulls in the radial pressure distribution,. This variation seems to
have greater effect on the pr0§agation of spinning modes. This is not
unexpected since the majority of acoustic -energy is concentrated near
the outer wall for all spiralling waves. Second, the indivié;al-phase
differences between elements of the source array generate additional
spurious modes together with the desired modes. These spuricus modes
can include plane waves and non-spinning modes as well as circumferen-
tial modes in both the clockwise and counterclockwise directions.
Although.they are generated at-a much lower amplitude than the desired

mode, their presence will often affect the radial mode shapes. The

contribution of these modes is discussed in Appendix A.
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-In the following. figures, the radial mode shapes were measured at
the stations shown in Figure 3.1. The duct system contains a finite
length liner inserted between the upstream.and downstream hard-walled
sections. Measurement positions.at two.upstream locations were chosen
to investigate-the radial mode shape.generated by the source array and
the presence of a standing wave, .The.standing wave is the result of
reflections.at the impedance discontinuity between different duct
sections. These reflections cause.conversion of energy between.modes and
often alter the radial pressure-distribution of the generated.mode.
The.measurement station at the middle of the liner was chosen to investi-
gate the change in radial mode.shapes.due..to the complex eigenvalues for
this. section...Since the anechoic termination eliminates rTeflection from
the.end. of the.duct, only one measurement station.was chosen. in the
downstream. section. In this section,.the.eigenvalues.are the same as
for .the upstream section and the mode shape resorts to the form of the
incident waves.

In some cases, the mode.shape at. the. downstream. station has no
relationship.at.all.to the.generated.mode,.despite the fact that the
eigenvalues. are the.same as for the.upstream.duct.section. There.are
two-reasons. for this. TFirst,.there_are.components from other radial
modes.of.the same circumferential order.which make up the pressure
distribution at this position. These.components are the result.of modal
conversion..of energy.at each-interface.before.this section. Second,
the_spurious modes contributed by.the.source array can appear downstream.
Their. presence. at upstream positions. is.-not. evident .since these modes
are generated at a much. lower level than. the desired mode. However,

since the transmission loss of the liner for individual modes is
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different, these modes are often evident.at .downstream positions

because they are not attenuated.to.the.same extent as the desired mode.
This result is particularly noticeable at-high frequencies where several
lower order modes can propagate. Therefore, when spurious modes exist
and . the.-major component of the propagating.mode is attenuated, an un-
recognizable mode shape which is the combination of several residual
modes results. '

In order to see the.relationship between the mode shapes and levels
at stations throughout the duct, the.mode shapes will all be presented
in one.figure.. Selected mode shapes.at.several frequencies for different
modes.will. be presented for.one limer,.FM.1l. Also, modes for different
liners which exhibit interesting behavior will be presented.

- The. source strengths of individual.elements of the array can be
used to calculate. the sound.pressure.levels throughout the duct.
However, .these levels will be normalized. to.the maximum level in the
upstream.section and plotted as relative levels in the following -
figures.

The lowest order mode in a duct is the plane wave. It is possible
to generate this mode up.to.the.cut-off frequency for the first nomn-—
spinning radial mode. Within this frequency range, the first spinning
mode can also propagate but is suppressed due to source.symmetry and
phasing of the array. Mode shapes measured for a plane wave generated
at 500.Hz are shown in Figure 4.1l.when an FM 1 liner is inserted in
the. test section of the.duct.system.. At.this frequency, the plane wave
is the.only mode. that can propagate.without. exponential attenuation in
the .hard-walled section. ' The relative.sound.pressure levels and mode

shapes as calculated from the multisectioned duct analysis are also
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presented. Despite.the.presence.of.plane.waves at upstream and down-
stream. positions, a plane wave does not exist within the liner section..
This. result is in agreement with Morse. (33) who showed that a plane wave
could. not exist within the lined section of a.duct. The deviation from
plane. wave behavior in the liner is further.emphasized in Figure 4.12
where a.plane wave is generated. at. 800 Hz., Again, a well defined plane
wave. exists. both above and beyond the.liner. but.not in.the liner. In
both. cases, . there. is. good.agreement. between. measurement. and theory. for
both. the acoustic. levels and the.mode shapes.at each of the duct
stations.. Plane.wave propagation-at.1250.Hz,.which. is. just .below the
cut-off frequency for the.first non-spinning. radial mode,.is shown in
Figure. 4.12. 1In.this case,.the.levels.upstream. and. within the liner are
fairly.well. predicted.but.there is an indication of a standing wave in
the .downstream. section.

- The. first non-spinning radial mode. (0,.1) .can be generated at fre-
quencies.-well. above its cut-off.frequency. Furthermore,.this mode is
being-generated in a frequency range.where. the. (1, 1) and. (2,.1)
spinning. modes.can.also.propagate... The.propagation. of. these.modes. is
restricted.- by. the shading and phasing.of.the source array. Mode shapes.
at 1390 Hz_at.the four duct.stations.are.shown.in Figure.4.l4. The.nulls
in the.mode.shapes exhibit a noticeable.shift in radial.position which
is predicted. by.theory. This shift is.due.to the modal.conversion.of
energy at the.interface of each section. .Also, the standing wave
pattern is. emphasized by the difference.in.levels between positions 1
and.2.. . Furthermore, this.standing.wave.is.predicted.by theory with the
station. closest to the liner having a higher. level. The mode shapes at

1600, 2000 and 2500 Hz, well above the cut-off frequency, are shown in
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Figures 4.15, 4.16 and 4.17. Again, similar results for the shift in
nulls.are noticed. Despite the.well.defined_mode shapes upstream, the
mode shapes in the downstream section.show.considerable.distortion in
each case, This is a result of the conversion of energy between the
(0,.1) mode and the (0, 0) mode or.plane. wave, both of which can
pPropagate without exponential. attenuation.at this.frequency.. The mode
shapes within the liner are fairly well.predicted, indicating that the
local.reaction boundary condition ig.a valid assumption. It is inter~
esting to note the differences.between.mode.shapes.within the liner as
a function.of frequency. Although . the.eigenvalues for the liner at a
particular. frequency are._dependent.on.the. impedance, these modes are
similar.in.shape. This is. because. the.impedance.does not exhibit. any
rapid.variations within this frequency range and is only slowly changing
in value..

By properly adjusting the.phase.and.amplitude of each.element in
the-source axray,.the first spinning mode can. be.generated.in the. multi-
sectioned duct.. Radial mode shapes.throughout. the duct-are shown in
Figure 4.18.for.the (1, 1) mode at.670-Hz...Alrhough. the mode shapes are
fairly_well defined, there is a discrepancy. between the.predicted levels
at-each: station.. .This can.be. explained.by: the. presence of:a.significant
standing. wave.due.to. the anechoic.termination.which. exists near the.cut—
off..frequency.. Improved.agreement.between.measurement.and theory is
seen in-Figure 4.19 for this same.mode.at.1000.Hz. .The higher level of
the_station. nearer. the. liner. is.predicted.by. theory as.well.as the modes
shapes.in-each.section. Mode. shapes_at.1500.Hz.are.shown in Figure. 4.20.
The;upstream.modehshapes.are.fairly-well.defined_andnare-in,reasonable

agreement with theory. The absence of a clearly defined null at the
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center. indicates contamination from additional mon-spinning modes.
Within. the.liner, the mode shape is accurately predicted over the major-
ity of the radius. Near the center,.there.is a complete absence of a
null.. Thus the total acoustic pressure.at.this position contains the
generated.spinning mode at a reduced.level_and contributions. from non-
spiniiing.modes. ..In.the. downstream. section,: the.mode shape.has no.
resemblance. to.the. spinning. mode’ which. should have a.null.at the center.
The.measured mode. shapes would seem to:be. a. combination of a plane wave
and-.(0,.1) .mode.- This.is not unexpected.since: both. the.plane.wave and
(0, .1). mode.can propagate at.this frequency.without.exponential.
attenuation. In addition,.the.downstream level.is.much higher than
predicted.by.theory.. This. is.because.the total- upstream:acoustic
pressure. contains: components. of . non-spinning: modes which: are-not
attenuated to the same extent by the liner .as the generated spinning
mode.

To generate a.spinning mode of.order.m = 2, only the outer ring of
speakers was.used. The use.of additional.speakers is.restricted by
Equation.3.l...As.a result.of.using.only. the.eight outer speakers to
generate. this. mode, the.modal purity.suffers.considerably. Mode shapes
at 1250.Hz.axe. shown. in. Figure. 4.21.. .The.nulls at the center of the duct
are-obscured. by the presence.of.additional.modes., Again,.the.mode shapes
upstream. and. in.the. liner .are.fairly well. predicted by theory. The
downstream-comPQnent appears to be a.residual. plane wave and has no
relationship to:the spinning.modes. characteristic' of upstream propagation.
The.transmission. loss' of nearly 40 dB. actoss the.liner for circumferen-—
tial.modes.of order.m = 2, .removes.the.major components.of the. (2,.1)

spinning.mode and leaves only a pressure.distribution which is the sum
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of components of several residual modes., At a higher frequency of
1600.Hz, . the modal purity.begins to.deteriorate, mot only downstream,
but_-within the liner. The upstream.mode.shapes show contamination from
other: medes because of.the absence. of. the.null. at. the.center. The (2, 1)
component of the acoustic pressure is.attenuated.as it.passes through
the liner leaving.an.unrecognizable.mode.shape downstream. This mode
vaguely resembles (0,.1) mode.with a.pressure maximum. at the center- of
the.duct. This mode.is one of.the.least.attenuated.modes: by the:liner
at this.frequency. The.reversed levels of.the.upstream.positions.is
also. predicted in this case.. Due to the.noticeable.contamination.at
position 2,.little.agreement.with theory can be expected within the liner
and in the downstream section.

The propagation of several.additional. higher order modes was
studied for the same fiber metal.limer.. In Figure 4.23 the (0, 1) mode
is being generated at 3000 Hz, which is.significantly.above its cut-
off-frequency as well as the cut-—off. frequency of the second radial mode
(0, 2). The (0, 1) mode.shapes are.well.defined in the upstream section
and.there is no indication of the (0,.2).mode. The levels and mode
shapes throughout the.duct.are reasonably.predicted by theory. It is
not .unexpected that the agreement. for. this.mode..would not be as good as
for-the previous lower order modes.since. three: radial modes of the same
circumferential order can propagate.at.thdis. frequency. Furthermore,
the.slight.variation in duct.geometry.and.duct diameter mentioned
earlier would.have.a greater effect.on-acoustic. propagation.at high
frequencies.where the.wavelength. is.small and of the same-order as
the.non—uniformities in the duct.

The (0, 2) mode.is shown.in.Figures. 4.24.and 4.25. At.2700 Hz,
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the upstream mode shapes are in fairly good agreement with theory.

Within the liner, the mode shape begins to deviate from the form predicted
by theory.and at the downstream position,.the mode shape is distorted
considerably. At 3100 Hz, there is further deterioration in the modal
purity at upstream positions which is reflected throughout the duct.
Nevertheless, the mode shape in the liner is fairly well predicted.for
the.resulting boundary conditions. and.eigenvalues.. The downstream
component indicates contamination from plane waves. and the level is
accordingly higher than predicted by.theory for the (0, 2) mode.

The (1, 1) spinning mode is shown in.Figure. 4,26 at a frequency of
2499 Hz. This mode is generated.at a frequency above the cut—off
frequency for the second radial mede...Although. this mode is not as
clearly defined upstream as for previous. cases. at lower frequencies, the
relative.levels.at the.two.stations.are.predicted...The.mode.shape in the
liner and. in the downstream section are in good agreement with predicted
mode shapes.

The second.radial mode.with circumferential order of m = 1l.is shown
in Figure.4.27.at 2300 Hz.. The null at.the center is well defined for
both.upstream mode shapes. There is a difference between the levels.at
the.wall and the radial position of the.nulls. This could.occur as the
result-of the non-uniformities and.changes.in the.circular cross-
-section. throughout the.duct. The measurements. within Ehe.liner and
downstream.section agree with theory for both the levels and the mode
shapes.

-Mode. shapes for an incident.plane wave, (0,.0) mode, were in-
vestigated for each of the remaining liner materials., The relative .

levels and mode shapes at stations in the duct system are shown in
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Figure 4.28 for a plane wave at 800 Hz and the liner Perf 1. Similar
results are shown at the same frequency for the liner FM 2 in Figure
4,29. The increased attenuation for the fiber metal liner as compared
to the perforated panel liner can be.seen in this figure. The difference
in attenuation between a one foot and two foot glass fiber liner for a
plane wave at 800 Hz is shown in Figures 4.30.and 4.31. The agreement
with theory is good in all cases. The.radial mode .shape within each
liner has the same general form despite the.different- eigenvalues for
each material. This is because the.plane wave is the only circumferen—
tial mode of oxder m = O that can.propagate at this frequency without
exponential attenuation. There is no.conversion of energy by reflection
and.transmission at each interface to lower.order radial modes. and
little, if any, conversion to higher.order modes, This is evident by
Plane wave behavior at positions on.each. side. of the liner. The mode
shapes.at each station for a.one foot glass fiber.liner at 1250 Hz are
shown. in Figure 4.32. There is still. reasonable.agreement. between
measurement. and- theory. This. indicates..that. the: local.reaction boundary
condition is valid for the glass fiber material for the attenuation
produced by a plane wave.

The first non-spinning radial.mode,. (0, 1) was investigated next
for.the different.liners. At 1600 Hz,.the.zradial mode shapes for the
ldners Perf 2 and FM.2 are shown.in.Figures 4.33 and 4.34., The mode
shapes. throughout the duct are.well.defined. .Due to the small attenua-—
tion of the perforated metal liner for the (0, 1) mode, it is difficult
to clearly see the.radial mode shape.within.the liner-which is -
by the eigenvalues. This mode shape. is.shown in Figure 4.35 and compared

with theory. The shift in the radial position of the null is probably
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due to duct non-uniformities. The mode.shape within the fiber metal liner
can-be explicitly seen and is fairly.well predicted.by the eigenvalues
for this material. Mode shapes at the.same. frequency are shown for the
cne-foot glass fiber liner in Figure.4.36. There is reasonable agree-
ment.with. theory for the mode shapes. and. levels at upstream and down-— —
stream. positions. The general. form. of. the mode shape within the
liner is defined. It is interesting. that despite. the reasonably pure
(0,-1) .mode in the upstream section for.all previous cases, the mode
shapes.within. each liner.are completely.different. .These separate
mode. shapes are predicted by the eigenvalues.for each material.
Furthermore,. since.the ﬁlane wave can.also propagate at this frequency,
there can be.conversion of energy.between. these modes for reflection
and.-transmission at each interface.before and after the liner. Mode
shapes.at 2000 Hz for the liners.FM. 2.and.Perf 1 are.shown.in Figures
4.37 and. 4.38. .Again, these different.mode shapes within each.liner are
predicted.by.theory. There is.reasonable agreement between measurement
and. theory at all positions. The (0, 1).mode at 2500 Hz is shown in
Figure.4.31. for the liner Perf 2. .The.agreement with theory is fair
but.since there is little attenuation. for.the perforated panel, the
distinction. between mode. shapes is.not.clearly defined. Therefore, the
mode. shape within the liner is shown in Figure 4.40 and compared with
theory. .The.null.measured near the. outer wall is exactly predicted
by the eigenvalues. for this. liner..

The first spinning mode was next investigated for each of the
liners. The (1, 1) mode at 670 Hz is shown in Figure 4.41 for the one
foot glass fiber liner. The significant attenuation of this mode can

be seen from the difference between upstream and downstream levels.
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The highest level at the upstream station nearest the liner is pre-
dicted by theory. The levels within the liner and in the downstream
section are also fairly well predicted.by theory. Mode shapes at 1000 Hz
are compared in Figure 4.42 for the one foot gléss fiber liner and in
Figure 4.43 for the liner, Perf 2. In both cases, there is good agree—
ment between measurement and theory at-all positions. The mode shapes
within. each liner have.the same general. form despite the different
eigenvalues for each material. This is.because the (1, 1) mode is the
lowest radial mode of circumferential.order m = 1 and.there is little
conversion of energy to the exponentially attenuated higher ordér radial
modes. For the (1, 1) mode at 1500 Hz.in Figure 4.44, there is very
little medal purity in the upstream mode.shapes. The absence of the null
at the. center. indicates contamination. from.non-spinning modes. Evidence
of ~this. is confirmed for downstream-mode. shapes which have the form of
(0,-0).modes or plane waves, Finally,.an. interesting mode shape within
the liner, Perf 1, is shown in Figure 4.45 for the (1, 1) mode at 1800 Hz,
jusﬁ below the cufndff freq&enEf for the Hext Highéf %adiéi mode. There
is gooé agreement for the upstream.mode.shapes and the radial mode
shape. in the liner is reasonably predicted. .At high frequencies, the
agreement.between. measurement- and. theory.was-good for the fiber metal
and-perforated panel liners but.was.poorer for the glass fiber materials.
-. Finally,.the (2, 1) spinning mode.was. investigated. Since only
the.outer. ring. of speakers could be.used. in.generating this mode, there
was_a corresponding decrease in the.modal.purity for the generated mode.
--Mode: shapes for the (2,1) mode at.1250 Hz are shown in Figures
4.46 and 4.47.for the one foot glass fiber.liner and the liner FM 2

respectively. .The.lack.of.modal purity is evident from the radial
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pressure distribution near the center. The presence of non-spimning
circumferential order modes obscures the null at the center. Components

of residual plane waves are evident at downstream locations and even

within the liner. Nevertheless, in both cases, the general form of the
mode is preserved throughout the duct and the agreement with theory is
reasonable. At higher frequencies, the.modal purity for the (2, 1)
mode deteriorates even more and there were corresponding differences
between measurement and theory.

For each of the liner materials considered, the agreement between
theory and measurement of mode shapes and levels in the multisectioned
duct for Both spinning and non=-spinning. modes was generally good.
However,. this agreement was often poorer.nearer the cut-off frequencies
of individual modes. Despite the ease of generation of higher order
modes near their cut-off frequencies,.a significant standing wave is
present which obscures the results, especially for spinming modes.
Even. in. cases. when the agreement with. theory was poor, the mode shapes
and.the relative levels of acoustic pressure at each station were fairly
well defined by theory.

In the preceeding figures, disérepancies between measurement and
theory cannot be attributed solely to either experimental errors or to
assumptions for the mathematical model...This is because a complex
process is involved te finally calculate.the.levels and mode shapes in
a multisectioned duct. For example,.a.measured. impedance is used to
calculate eigenvalues which are then used in the multisectioned duct
model to predict acoustic levels throughout the duct. These predicted
levels. are then compared to experimental.measurements in the duct

system. Sources of error for experimental measurements were discussed
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earlier. Tt is obvious that any error along this path would contribute
to errors.between final measurements and.theory.

Assuming that the average impedance.values determined from standing
wave tube measurements were representative of the entire liner, the
complex. eigenvalues calculated from.the.local.reaction boundary condition
should predict the mode shapes and attenuation throughout the duct.
The-results indicate that the local.reaction boundary condition is a
valid.assumption for both the. fiber.metal liners and the perforated
panel. liners. For a glass fiber material, this assumption is not always
true.. In cases where there.is moderate. sound attenuation, this boundary
condition can,.however,.be applied. When the attenuation for a mode
increases to a.point where it becomes comparable to-the attenuation within
thesbulk.material, the local reaction boundary condition- is invalid for
the-reasons.discussed in Section 2.4, .The: propagation constant would-

then.be better predicted by the extended reaction boundary condition.


http:can,.however,.be

146

4.5 Acoustic Performance of Duct Liners

The acoustic performance of a duct liner for individual modes can
be determined from the transmission loss and the insertion loss. These
parameters were described in Section 2.5.

.-The use of these parameters provides.a significant improvement
over the experimental work of McDaniel (25) for evaluating the acoustic
performance of finite length duct liners. McDaniel measured radial mode
shapes at positions in front.of and.behind. the liner. The average of
upstream levels was compared with the downstream levels to determine
the.attenuation of the liner.. This method: was. an. improvement over
previous test methods since the propagation of individual higher.order
modes at discrete frequencies was analyzed, However, the presence of
a standing wave in front.of the.liner. could- yield little true information.
about: liner:attenuation when upstream levels were averaged for comparison
with. dovnstream: levels.,

- A comparison between the transmission.loss and.insertion loss for
a 28+1/= inch. length of FM 1 is presented. in Figure 4.48 for the first
higher order non-spinning and spinning modes. respectively, There is
little.difference between the transmission.loss and insertion loss
for.an. individual mode at the upper limit of its frequency range.
Since. the. insertion loss describes the. difference in sound power. level.
with-and. without-a liner, this parameter.will.be used to compare the
rerformance of different acoustic materials.

The insertien loss of each. liner. was. studied. throughout.a range of
frequencies for an individual.mode. The-length of the liners were all
chosen. to.be 28-1/2" long so that. relative comparisons can be made

between the attenuation of different materials. Figure 4.49 shows the
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insertion loss throughout the frequency range for generation of a plane
wave. The attenuation for each material increases with frequency. In
Figure 4.50, the imsertion loss of the (0, 1) mode decreases initially
with frequency and remains relatively.constant for each material. The
insertion loss for the (1, 1) and (2, 1) spinning waves are shown in
figures 4.51 and 4.52 respectively. In.both cases, there is con-
siderable attenuation throughout the frequency range for each mode.
This. is not unexpected since for spinning modes, the majority of energy
is located near the outer duct wall next to the liner material. There
is an increase in attenuation near the.cut—off frequency at the beginning
of each frequency range. This is because the group velocity of the
wave is zero at the cut-off frequency.and the energy effectively remains
within. the duct. Thus, the "dwell time" of the wave within the duct

is longer. near cut-off. and serves. to produce. greater attenuation.

- The.attenuation.of the non-spinning.modes complicates the problem
of having residual modes downstream.of the. liner in a multisectioned
duct.. Since these modes are not attenuated by the liner to the same
extent as the spinning modes, their presence is frequently noticed in
mode shapes at: positions beyond. the. liner.- .

. The frequency dependence of.-the. insertion loss for individual modes
is shown.in Figure.4.53 for a 28-1/2. inch. length of FM 1. Even at the
same. frequency, the attenuation.for.individual.modes differs. Thus, it
becomes difficult to assign a single number rating to.a liner as a
measure. of . its effectiveness in. attenuating. sound. Further information
regarding: source: characteristics and.modal. content are necessary to
give an estimation of the effectiveness of an acoustic liner.

The attenuation for individual modes is not directly proportional
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to the length of the liner. The insertion loss of different modes for
one foot and two foot lengths of glass fiber material are compared in
Figures 4.54 through 4.55 to illustrate this point. The insertion loss
is not exactly doubled for the longer liners and is sometimes greater
and-sometimes less than twice the attenuation for the shorter limer.

This is because-the attenuation is a result of the reflection at the
impedance discontinuity between the ends.of the liner and the hard-walled

duct as well as the transmission effects through the liner.
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CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This research program has achieved its goal of understanding the
behavior of acoustic propagation in multisectioned ducts. 1In additionm,
materials used in the study were evaluated. Developments in both
experimental and analytical technigues. were.achieved as a result of this
work and.will be described. in.this section. Furthermore, interesting
topics for future research are outlined,

The propagation of plane waves and higher order modes in ap infinite
hard-walled circular duct was first described. An understanding of this
process. ig necessary for study of more complex cases of acoustic
propagation. This effort was then. expanded. to.consider propagation in
ducts lined with different acoustic.materials,

The fundamental acoustic properties of materials representative of
three types of ducg liners commeonly used in different applications
were studied. These included a porous.glass fiber material, a sintered
fiber metal material with an air cavity backing, and a panel of Helmholtz
resonators. Expressions'were developed. to predict their acoustie
characteristics and the normal impedance.measured by a standing wave
tube was compared with values calculated from theory. Im all cases,
except. for the porous.material, there.was good agreement between measure-
ment and theory throughout the entire frequency range., This ability
to-model a liner material and predict its impedance is a valuable tool
for.designing liners with optimum attenuation properties.

- The properties of these materials as.duct liners were studied
with emphasis on determintion of.lcoal.versus extended reaction boundary

conditions. The local reaction boundary condition was valid for the
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fiber.metal.and resomator cavity type material. However, for cases of
significant sound attenuation within a duct, the extended reaction
boundary condition must be adopted for. liners of porous material.

A method using both contour integrations and an iteration technique
was-developed to find the complex eigenvalues for a liner under the
assumption. of a local.reaction boundary. condition. This search technique
provided.an efficient and reliable.means.for locating successive eigen-
values in.the complex plane for an.arbitrary complex admittance.

Once the fundamental properties of acoustic propagation in lined
and-unlined. ducts are understood, these.effects may be combined to con-
sider propagation in a duct containing successive lined and unlined
sections. Due to the changes in. liner. impedance.for each finite section
of- the. duct, an incident acoustic.wave is.partially transmitted and
partially.reflected at the interface between different sectionms. Using
a matrix technique, relationships were developed to account for the
acoustic coupling between sections of a hollow circular duct with no
flow. The modal amplitudes of the sound field at each interface within
the duct are then defined in terms of modal transmission and reflection
matrices. For a circular duct with multisection liners, the reflection
effects are proportional to the difference in acoustic admittance
between. adjacent liners. Thus, it is.possible to take advantage of the
reflection effects between sections as well as the transmission effects
of each liner to produce attenuation. Because of this characteristic,

a combination of different liners could perform significantly better
in attenuating sound than a continuously.lined duct. A computer program
was.developed to model the multisectioned duct based on the admittance

and eigenvalues for each section.
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A.complex source array consisting.of two concentric rings of sources
was-developed to generate plane.waves. and.both. spinning and non-spinning
higher order modes in a duct. These modes.could be generated at their
cut=off frequencies and throughout a.frequency range extending to the
cut<off frequemcy. fox the next higher radial mode. Through individual
control of the response of. each.element,. the array provided phase and
amplitude.contreol in the radial, as well.as circumferential, directions.
The-radial dependence of the measured mode shapes was enhanced con-
siderably.by the design of this unique array.

Once it was established that the source array could generate modes
with a.reasonable degree of.purity, the propagation of higher order
modes in a multisectioned duct.was studdied. The duct system consisted
of an.anechoically terminated duct 12 inches in diameter with 3 sections.
Mode shapes.generated included the (0,.0).plane wave mode, the (0, 1)
non=gpinning-mode, and the (1, 1) and.(2,.1) spipning modes. Measure-
ments.of .attenuation and.radial mode. shapes.were. taken throughout the
duct.when.a finite length liner was.inserted .between upstream and down—
stream. hard-walled sections. Materials. tested as liners included a
glass fiber material and.both a sinteved.fiber:metal and perforated
sheet.metal.with a honeycomb. backing. -The. experimental .measurements
were. compared-with results calculated. from. the mathematical model of
the.system. There was generally good agreement between measurement
and-theory: for both non-spinning.and. spinning: modes. The comparison
indicates. that the multisectioned duct.analysis.accurately predicts
the.mode shapes and levels at statdons. throughout. the duct. Furthermore,
the.local reaction boundary condition.is.valid for the fiber metal and

perforated panel liners. For low to moderate attenuation of sound, this
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assumption.was valid for the liner.of glass.fiber material but should
be modified in favor of the extended.reaction boundary condition for
significant. attenuation through a.duct.lined.with this material,

Despite the ability of the source. array. to match the sound field
for.both the circumferential and radial pressure dependence, the
generation of an individual mode is often.obscured by contamination
from additional.spurious modes. These.spurious modes are generated as
a result of phase variations between individual elements of the array
and_can include plane waves and circumferential modes in both the clock-
wise and counterclockwise directions. Although they are very seldom
noticed in.an.unlined duct, their presence. is often evident in the down-
stream section of a lined duct. In this case, the desired mode and
each: of the. spurious modes are attenuated at different rates by the liner.
The contribution of these. spurious modes was analyzed for various
phase differences in the array.

The attenuvation characteristics of each of the liner materials
was evaluated by the multisectioned duct analysis. TFor a finite length
liner, the acoustic attenuation cannot be specified in terms of an
attenuation comstant for a particular mode because reflection effects
caused by the impedance discontinuity on each side of the liner must
be considered.. This introduces a standing wave within each section.,
Therefore, the transmission loss and insertion loss were used to evaluate
liner.performance for each material. These characteristics were
determined as a function of frequency for each mode.

The results indicate that there is. greater attenuation for spinning
modes than for non-~spinning modes. for each.of the liner materials.

Furthermore, spinning modes of high circumferential order are attenuated
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more than spinning modes of 16w circumferential order. There is up to
a 16 dB difference between the increased. sound.attenuation of a plane
wave for a 28-1/2" length of fiber metal.liner. than for a perforated
panel.liner.and over 40 dB difference. between.the attenuation of the
first spinning mode for these same materials.

The superior.acoustic performance. of the fiber metal liners is ex—
plained by the strong reactive component.of.the impedance while the
perforated panel liners are predominantly.%eactive'materials at low
frequencies. .The characteristics of these.materials could be used to
advantage in designing segmented.liner.configurations of resistive and
reactive. liners. Such a configuration. could take advantage of the
reflection. effects between successive.liners.of different admittances
and_could.easily be analyzed by the.multisectioned duct theory.

- A further significance of multisectioned: liners is that modal con-—
ditioning.may occur and resul? in increased.attenuation as its primary
effect.. .Thus, an incident acoustic wave.could.be.redistributed by an
initial.liner section into modes which are.more readily absorbed by the
remaining.lining.segments. These aspects provide interesting topics
for future research,.

The results of the study suggest several areas .of further research
in duct acoustics. Of primary importance is the improved liner perform-
ance that may be obtained for a segmented duct configuration of several
.different liners. The multisectioned-duct analysis described in this
study could easily be extended to consider configurations of several
different duct liners. TFurthermore, this analysis could be applied
to annular or rectangular ducts as well.

A complete parametric study of acoustic propagation in a multi-
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sectioned.circular duct would provide. useful information for optimizing
sound attenuation for both spinning and.non-spinning modes. Beckemeyer
and-Sawdy (2) have  performed such an analysis for a two dimensional duct.
Their results show that the reflection. effects. at the interface. between
twordifferent. liner sections.may not.be.as.significant a factor in
improving.- sound. attenuation as the.modal. conditioning: between sections.
An- optimum. two. segment. liner. has been. shown to’ consist of an initial
reactive liner.followed by a resistive.liner.. In this case, the. acoustic
energy. within. the first dection. is. converted: into.modes which are more
easily attenuated within the resistive section. Similarly, the optimum
configuration. for a‘three‘segment liner. consists of a combined reactive -
resistive-reactive configuration. It would be interesting to compare
these results for a two dimensional duet.to.similar configurations in

a circular duct for both spinning and. non-spinning.mode. Furthermore,
additional liner combingtions for a circular. duct should be investigated
to optimize sound attenuation for. various.modes.

-.A-limiting.factor in such an optimization: scheme is the infinite
number of possible liner configurations.and. the resulting computer time
involved-to.anal§ze these combinations...Arnold- (34) has developed a
sparse.matrix. technique applicable.to.multisectioned. duct analysis
which:-greatly reduces computer time. .It.would be recommended that this
technique be implemented for future. studies. involving extensive computer
work.. Since’the acoustic characteristics.of both fiber metal and Helmholtz
resonator. type materials can be controlled: by the material properties,
liners. .wicth desired impedance characteristics can be designed.
Therefore,.the results of optimization.studies.should be used to design

more. effective sound absorbing duct liners which can be implemented for
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experimental- studies. These studies should include duct systems of two
or-more.different liner materials for both annular and hollow circular
ductg,

Further investigations should. include the effects of mean flow and
of various flow profiles on the sound.attenuation produced by segmented
liners. This situaticon would then provide. a more realistic approximation
of the.acoustic enviromment in an actual jet engine. inlet duct. When
flow.is considered, the resulting eigenfunctions are shown by Zorumski
(3) to be non-orthogonal. Due. to the.matrix formulation of the problem,
this effect, however, would not geriously.complicate the analysis. When
flow is. included, continuity of particle.displacement or particle velocity
at-the liner becomes the governing boundary condirion depending on the
flow profile., & discussion of the.differences between each boundary
condition.is given @y Lansing and. Zorumski: (1).

Additional. experimental work is.warranted to study acoustic
propagation and sound attenuation in acoustically lined flow ducts.

This work would provide confirmation.of the proper boundary conditions
in the presence of flow. Since the source. array developed in the study
is placed at the end of the duct, it could.not.be used with experiments
which.include flow. Additional techmniques. for generating higher order
modes: with reasonable wmodal purity would need to be developed in this
case,

When a length of porous material is used as a duct liner, the
boundary condition at the surface must. be.modified to considar acoustic
propagation within the liner as a separate media. This introduces the
extended. reaction boundary condition. It would be interesting to compare

the.successive eigenvalues evaluated for this boundary condition with
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eigenvalues for the same material evaluated. from the local reaction
boundary.condition. The conversion.of.energy- between successive modes
should alsc be studied for the extended reaction boundary condition.
This analysis might provide information on.optimimum segmented liners
consisting of a combination of extended reacting and locally reacting
liners.

The.acoustic characteristics of.glass. fiber.materials, however,
could not be as accurately predicted from. the fundamental material
propexrties. Therefore, additional work.to describe the acoustic
characteristics and dissipation mechanisms. of. these and other porous
material in terms of various physical.characteristics should.be per—
formed. These ?esults would provide a significant improvement over the
phenomenological.approach of.using. a. structure: factor or effective
parameters: determined. from experimental.measurements to explain the
attenuation characteristics of these materials,

Although acoustic propagation in an anechoically terminated
eircular duct of three sections with no flow has been the subject of
the.study, this analysis.may.be easily extended to consider several
different configurations. The multisectioned. duct analysis could be
applied to annular and rectangular ducts, as.well as to other duct
geometries., The matrix formulation used.in this analysis permits
consideration of several different duct sections without undue compli-
cations.

To provide a more realistic approximation.of.the.acoustic environ-
ment in an actual jet engine inlet duct,-flow.may also be included in
this analysis. The resulting eigenfunctions are shown by Zorumski (3)

to be non-orthogonal. Due to the matrix formulation of the problem,
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APPENDIX A

THE EFFECT OF PHASE VARTATIONS IN THE SOURCE ARRAY

It has previously been shown that a spinning mode synthesizer can
generate higher order duct modes of a particular circumferential order
(29). Phase variations between individual elements of.the array will
contribute additional spurious modes of a different circumferential
order but at a much lower amplitude than the amplitude of -the desired
mode. The.contribution of these modes will be analyzed for an array
containing a circumferential ring of N equally spaced elements at a
radius ro.

The boundary condition for the source array is given by Equation
2.72. 1If each of the elements‘has*individual'phasé"variationS'¢ﬁ, the
boundary condition for generation of a circumferential mode of order M
is

. N . 2mnM
w(r) = 21 Q 8(r=ro) . 8(0 - gﬂﬁa e1( 5 + ¢n) (a.1)

T N

n=1

Applying orthogonality conditions, this equation becomes

. N . 2T -~
-fb f2Tr vir) Y (r) enlm@r dr d@ = ¥ (ro) I elE N (1-m) + ¢n]
o o U u ne1l
(A.2)
If ¢n = 0, Equation (A.2) becomes

N 27

Lo —NE(M—m) =N M-m= N
n=1 {(A.3)

0 Otherwise

where g is any integer. Therefore, only circumferential modes of order

m where

OF THE
REPRODUCIBILITY
ORIGINAL PAGE IS POOR
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m=M+ gN (A.4)

can be generated. This includes the mode M as well as several additional
modes of very high circumferential order. The propagation of these high
circumferential order modes is restricted by their high cut-off
frequencies.

When-¢n # 0, additional circumferential modes, other than those
specified by Equation A.4, are generated but at a reduced level. These
spurious modes- include- circumferential modes- in both-the- clockwise: and -
counterclockwise" directions. - If these modes can propagate above their
cut=off- frequencies, their presence further complicates radial mode
sHapes.

For an array containing eight elements with individual-phase
variations, the relative amplitudes of spurious modes, together with:
the desired mode, are indicated in Table A.l. The speakers chosen for
the array designed in-this study, were within- approximately % 12° in
phase. However, ‘the relative levels of" spurious ‘modes-for- the exampiles

in—Table A.1 indicate the significance of these phase variations.
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TABLE A.1

THE GENERATION OF SPURIOUS MODES DUE TO PHASE
VARTATTONS BETWEEN ELEMENTS OF THE SOURCE ARRAY

¢n for 8 elements: -14, -10, -8, 9, 10, 13, 7, -15

Generated Mode Amplitude of Circumferential Mode in dB
M =0 m=l wm=2 =3 ‘p=-1 =2 §a=-3
v 0 -8 -35 -28 ~18 =32 =27
1 -18 0 -18 -35 ~32 =27 ~45
2 -32 -18 0 ~18 =27 -35 -28

¢n for 8 elements: 12, -11, 13, 2, 5, -~15, -5, 8

Generated Mode Amplitude of Circumferential Mode in dB
M m=0 m=l w©=2 =3 mp=-1 @p=-2 mn=-3
0 0 =27 =22 =27 ~-26 =22 -28
1 -26 0 -27 =22 =22 ~28 =21
2 -22 =26 0 =27 ~28 =21 -27

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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