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ABSTRACT
 

The propagation of plane.waves and higher order.acoustic modes in
 

a circular multisectioned duct has -been studied. A-unique source array
 

consisting of two concentric rings of sources, .providing phase and
 

amplitude control.in the radial, as well as circumferential direction,
 

was developed to generate plane waves and both-spinning and non-spinning
 

higher order modes. Measurements of attenuation and radial mode shapes
 

were taken with finite length liners inserted between the hard wall
 

sections of an anechoically terminated duct. Materials tested as liners
 

included a glass fiber material and both sintered fiber metals and
 

perforated sheet.metals with.a honeycomb backing. The fundamental
 

acoustic properties of these materials were studied with emphasis on
 

the attenuation of sound by the liners and the determination of local
 

versus extended reaction behavior for theboundary condition. A search
 

technique has .been developed to find the complex eigenvalues for a
 

liner under the assumption of a locally reacting boundary condition.
 

The experimental-results were compared witha.mathematical model
 

for the multisectioned duct which includes the.modalotransmission and
 

reflection effectsat.the interface between sections with different
 

liner admittance. The good.agreement between measurement and theory
 

indicates that.the multisectioned duct analysis .can be used to predict
 

the sound field.in a complicated system of several different liner
 

sections.
 

Furthermore, the local reaction boundary condition is valid for the
 

sintered fiber metal and:perforated panel liners.but can only be used
 

in cases of moderate sound attenuation.for the-glass fiber material,
 

For each of the-acoustic modes studied, the sound attenuation character­

http:field.in
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istics of the fiber metal -materials.were significantly better than those
 

for the perforated panels.
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CHAPTER I
 

INTRODUCTION
 

Although not a new topic, the subject of duct-acoustics has become
 

an area of renewed interest. This interest has been generated as a
 

result of current jet engine noise reduction programs. A large portion
 

of these programs have been oriented towards the application of acoustic
 

treatment to jet engine inlet,ducts. Additional interest in duct
 

acoustics has been motivated by the need to suppress noise in air
 

conditioning ducts and large air moving systems.
 

A typical solution to the reduction of noise.fromna duct system is
 

to insert an acoustically absorbent liner material in the duct. This
 

material attenuates the sound before it is radiated from the duct out­

let, However, acoustic propagation in the duct and.attenuation by the
 

liner are complicated by several factors, including.the modal content
 

of the sound, the acoustic properties of the material, the finite
 

length of thr-liner, the termination of the duct, and the presence of
 

flow. The effect of each of these will be briefly discussed.
 

Much of the.initial work in duct acoustics concentrated on the
 

propagation and attenuation of plane waves. Studies.to evaluate liner
 

performance were concerned with assigning a single number rating to a
 

material to describe-its attenuation per unit length.for the plane wave
 

mode. However, this is-not the only mode present within.the duct. It
 

has been shown that axial flow compressors and turbines generate higher
 

order acoustic waves of a spiralling nature in a-duct. -Therefore, the
 

importance of considering the attenuation of these higher order modes
 

when evaluating liner performance must be emphasized.
 

http:Studies.to
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Test methods for evaluating liner performance often do not yield
 

significant information on attenuation by individual modes. As an
 

example, a common test method measures the attenuation of sound through
 

a lined duct section connected to a broad band noise.at one end and to
 

an anechoic or.reverberant chamber at the other end. .The insertion
 

loss of the liner can be determined by measuring the sound attenuation
 

as a function of frequency. However, the broad band noise source
 

obscures the effects of higher order modes and this method can only
 

yield comparative information on the sound attenuation characteristics
 

of liners.
 

The acoustic properties of a duct lining material are specified
 

by a normal impedance which determines the modal attenuation of sound
 

through the duct.- In certain cases, this impedance can be optimized
 

to produce maximum attenuation but this result is difficult to achieve
 

over a broad frequency range or for more than one mode.
 

When a finite length liner is inserted in.a duct,.the impedance
 

discontinuity between the surface of the duct and the surface of the
 

liner causes reflection of an incident wave. This introduces a standing
 

wave in front of the liner8 Furthermore, reflection from the termination
 

plane of the duct must also be considered as it too will cause a
 

standing wave0
 

The presence of uniform mean flow within a lined duct will modify
 

the attenuation of the liner. In general terms, the attenuation-of a
 

lined duct increases for acoustic propagation against.the direction of
 

flow and decreases for propagation with the direction of flow.
 

The sound attenuation of individual liners can vary significantly
 

with airflow velocity. As the airflow velocity is varied, the peak
 

http:noise.at
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attenuation varies in a manner which is dependent upon the change in
 

acoustic properties of the liner. 
The effect of flow on locally reacting
 

liners is to increase the acoustic resistance of the liners at low
 

frequencies. Flow effects on reactance are less significant but tend
 

to 
increase the reactance of the liner with increasing velocity. Thus
 

for maximum benefits of sound attenuation, it is necessary to design
 

lining treatment for the flow velocity region and acoustic environment
 

in the duct in which it will be used.
 

Each of these factors will have an effect on the attenuation of
 

sound in a lined duct. 
However, each effect must be understood
 

separately before the combination of these effects may be studied.
 

In a final analysis, the individual effects may be-combined to simulate
 

the environment of an actual jet engine for example.
 

Recently there has been an interest in acoustic propagation in
 

circular ducts of several different sections. This-work was motivated
 

by the physical situation of sound radiating through the successive
 

lined and unlined sections of an aircraft engine inlet duct. Due to the
 

changes in liner impedance for each duct section, the boundary condition
 

also changes and an acoustic wave is partially transmitted and partially
 

reflected at the interface between different- sections. Thus, it is
 

possible to take advantage-of the reflection-effects-between-sections
 

as-well as the transmission effects of the liners to attenuate sound.
 

Lansing and Zorumski (1) have performed a preliminary analysis-of
 

acoustic propagation in a multisectioned duct. Their results show that­

a combination- of- several different- duct liners can perform- significantly 

better than a uniform- duct liner; Extensive parametric- studies of 

optimum liner configurations have been performed by Beckemeyer and 
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Sawdy (2) to maximize-sound attenuation for a two dimensional multi­

sectioned duct,
 

Despite the promising analytic work in the area.of multisectioned
 

ducts, there is a lack-of.experimental data to substantiate these
 

studies, Nonetheless, this analysis provides-a unique approach, as
 

well as a realistic model, for analyzing sound attenuation in lined
 

duct systems.
 

The basic objective of this study is to investigate current multi­

sectioned duct .theory through both experimental and-analytical techniques.
 

The propagation of plane waves and higher order acoustic modes will be
 

studied in an anechoically terminated circular duct.with three sections.
 

Measurements of attenuation and mode shapes will be.madexfor a variety
 

of liner materials.over the full frequency range at-which a mode can be
 

generated. Sound fields necessary for excitation of various modes will
 

be generated by.a.spinning mode synthesizer. This system is capable of
 

generating the spinning modes characteristic of axial flow compressors
 

and provides a means of-experimentally studying the propagation and
 

attenuation of higher order.duct modes.
 

In addition, the fundamental properties of sound.absorbing liners
 

will be studied, with emphasis on the attenuation ofisound by the liner
 

and the determindtion of local versus extended teacti6nbehavior.
 

This work will be cohductd with no flow. Although high speed flow
 

is present in an actual jet engine, the simple case.of,a lined duct
 

without flow must be fully understood before progress can be made for
 

the more complicated situation It is hoped that the.effectsr:of flow
 

will be the subject of a future research project.
 

Topics to be investigated in this study include:
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1. 	The development of a source array capable of-generating
 

plane waves.and higher order acoustic modes in a hollow
 

circular duct
 

2. 	The experimental measurement of plane.waveand higher order
 

mode propagation in a multisectioned duct
 

3. 	The development of a mathematical model for acoustic
 

propagation in a multisectioned duct
 

4. 	The analysis of boundary conditions and attenuation for
 

duct liners of various acoustic materials
 



CHAPTER II
 

THEORY
 

2.1 Introduction
 

The basic theory of-acoustic propagation in an.infinite hollow
 

circular duct will be investigated. Propagation in both an unlined and
 

lined duct will-be considered. This treatment will serve as an intro­

duction to the more-complex .study of acoustic propagation in a multi­

sectioned duct. .
 

In addition, the.acoustic characteristics of.materials commonly
 

used as duct liners will be-described. A search.technique was developed
 

to locate the complex eigenvalues for a duct liner and will also be
 

presented. The complex eigenvalues define the attenuation of individual
 

acoustic modes through.the lined duct.
 

Unless otherwise noted, the symbols used in this chapter and
 

throughout the text will be defined in the list of symbols.
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2.2 Infinite Hard-Walled.Duct Theory
 

Throughout this study, the non-dimensional analysis presented by
 

Zorumski (3) will'.be used. The wave equation will .be.derived and the
 

solution to the wave.equation in cylindrical.coordinates will be
 

studied for a hard-walled.circular duct.
 

The continuity and momentum equations are
 

20 + p* = 0 (2.1) 
Dt*
 

P* k* + V* p* = 0 (2.2)
 
Dt*
 

where the starred superscripts refer to dimensional quantities. The
 

energy equation is given by
 

Dp* - yp* Dp* (2.3) 

Dt* p* Dt* 

Throughout this analysis, it will be convenient to work.with dimension­

less quantities, but scales must first be established for each of the 

quantities. The lengthand times scales used will be. -and - respec­

tively. A dimensionless. length can be formed by multiplying by the 

wavenumber k and a dimensionless time can be formed by multiplying by 

the angular frequency W. Thus 

R R* k (2.4)
 

t = (2.5) 

In a similar manner, the scales chosen for velocity,.density and
 

pressure are ca' the speed of sound, pa the ambient density, and
 

PaCa 2 A scaling parameter C < < 1 is introduced to account for the
 

http:will'.be
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small amplitude of.variations in the nondimensional quantities. The
 

resulting variables become
 

P* = a (1-+ c p e - i t ) (Z.6) 

p pc (i + s pe t) (2.7) 
a a y 

= e v e-it (2.8) 

Furthermore, the operators have the following form 

= [_ + C v V] (2.9) 
Dt* Dt 

= k V (2.10) 

Dt
 

Using Equations 2.6, 2.7 and 2.8 and grouping similar powers of c, the
 

non-dimensional equations become,
 

Pp= DP 
 (2.12)
 
Dt Vt
 

LE + V v = 0 (2.13)
Dt
 

D+ p =0 (2.14) 

Operating on Equations 2.13 and 2.14 to eliminate the velocity results
 

in the wave equation.
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V2p = DZ-p (2.15)
 
2


Dt


In cylindrical coordinates, the non-dimensional wave equation
 

becomes
 

2p + . -p + L !p + "2p + P= 0 (2.16) 
2 r 2 a2 az2 r r r


Using the method of separation of variables, the solution to the wave
 

equation for a single progressive wave is
 

im® i(t-4z)

p = Jm(r) e e (2.17) 

m ­

where
 

A2
1 - (2.18) 

The radial dependence of the solution is given by the Bessel functions
 

of the first-kind of order m and argument Ar. Their behavior is shown
 

in Figure 3.1. In addition, Neumann and Hankel functions are also
 

solutions to the wave equation for the radial dependence. However,
 

these functions are excluded for a hollow duct since they are infinite
 

at the origin.
 

The boundary conditions for the duct must now be applied. The
 

velocity is given in terms of the pressure by Equation 2.14
 

v -iV p (2.19)
 

For a.hard-walled duct, the normal component of the velocity at the
 

wall, r = b, must be zero. The boundary condition then becomes
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Vr = i 
A m 

(Ab) = 0 (2.20)
 

The values of Ab which satisfy this equation are called eigenvalues.
 

They will be located at positions where the Bessel functions in
 

Figure 2.1 have zero slopes. These eigenvalues.are well known,(4)
 

and are given in Table 2.1. Since there are an infinite-number of
 

these eigenvalues for a single value of m, a second-index, p, must be
 

included in Equation 2.17. This index will specify which of the zero
 

slope points is taken, Equation 2.17 now becomes
 

im
 p= Z Z J(A r) e e)-i(t-mPZ ) 2 

m P. m mid 

and
 

= _ X(2.22) 

Each acoustic mode is defined in terms of a particular value of m and
 

p as an (m, p) mode. The value of m determines-which of the Bessel
 

functions J is-specified and 11describes which of the eigenvalues is
m 

specified.
 

The first few radial mode shapes are shown.in Figure 2.2 and 2.3
 

for circumferential modes of order m = 0 and m = 1 respectively. The
 

eigenvalue at zero has meaning only for m = 0 modes where the mode
 

shape has no radial dependence. For all other modes, the value of the
 

Bessel function is zero at the origin and this represents a trivial
 

sblution. Therefore, all-higher order modes will have.a radial ampli­

tude dependence. For the summation over p, the first mode with radial
 

dependence will be specified by V = 1. The value.of p will then be
 

equal to the number of nodes between the center of the duct and the
 

http:value.of
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TABLE 2.1 

Zeros of Derivatives of the 
Bessel Functions J (x) 

1 

2 

3 

4. 

m 0 

0 

3.832 

7.016 

10.174 

m =.1 

1.8412 

5.3314 

85363 

11.7060 

m = 2 

3.054 

6.706 

9.970 

13.170 

m.=,3­

4.201 

8.015 

16.346 

14.586 
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duct wall.
 

The analysis of.radial mode shapes indicates-that-three distinct
 

types of modes exist. First, there is a.plane wave.which has no
 

radial or circumferential dependence. Second, there are-.higher order 

modes for m =.O which have radial, but no circumferential, dependence. 

These modes have a-maximum at the origin.and one,or more nodes between 

r =.O and r = b, the duct.wall. Third, there are modes for m = 1, 2, 

3, . . which have radial, as well as circumferential,-dependence. 

These modes have-a'.node at r = 0 and p = 1 nodes in the.region from
 

the center to the duct wall. Due to the circumferential phase depen­

dence, these waves are called spinning or spiral modes.
 

The wavenumber.in the.axial direction given by Equation 2.22 must
 

be examined.for three important cases, A dimensional wavenumber will
 

be considered in order to determine the relationship of-,this parameter
 

to the free space wavenumber and the frequency. Thus
 

k k2(2.23)z kazk

ZM11 mu
 

and
 

k = Mk (2.24)
 

k2
When k 2 = the cut-roff.frequencies, fc for each of the higher
 

order modes of the duct are determined by
 

f _ mI (2.25) 
C 27T 

These cut-off frequencies are plotted as a function of frequency for
 

a 12 inch diameter duct in.Figure 2.4. When k2 > kz the driving
 

frequency is above the cut-off frequency of a particular mode and the
 

http:wavenumber.in
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quantity under the radical is positive. Thus, k is real and there is
z ­

undamped wave propagation. When k2 < k2M, the diivingfrequency is
 

below the cut-off frequency and the expression under.the radical is
 

negative. Therefore, k is an imaginary quantity and represents
 

exponentially damped wave propagation. Regions exist in Figure 2.4
 

where only a-few.modes can.propagate and where-several modes can
 

propagate simultaneously. Therefore, the modal distribution in a duct
 

will depend on frequency, duct diameter, and the-phase and amplitude
 

characteristics of the source exciting sound waves in the duct.
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2.3 Acoustic Materials
 

There are several different sound -absorbing materials available
 

for applications.as duct liners. These can be roughly grouped into
 

three categories.- porous materials with.or without facings, sintered
 

fiber metals withan-air cavity backing and Helmholtz resonators which
 

include perforated-panels-with air cavity backings,. Porous,materials
 

in general exhibit rather uniform absorption characteristics over a
 

broad frequency range. Representative samples of-this type of material
 

include glass-tfiber materials and polyurethane.foams The use of.these
 

materials, however,.is often-restricted under adverse environmental
 

conditions. .In these cases; fiber metals and perforated panels are
 

often used. For each of these sound absorbers, the material para­

meters or cavity.depths may be modified so that maximum absorption can
 

be tuned to a desired frequency range0
 

This section will destribe- how the acoustic characteristics of
 

these three types.of materials depend on the material.properties. The
 

materials considered included a sintered fiber.metal.material and a
 

perforated sheet metal both with air cavity backings and a glass fiber
 

material. A complete.description of the physical properties of each
 

material can be found in Section 3.6.
 

The acoustic.properties of a material are.commonlydefined by the
 

specific normal impedance Z which-is theratio of.the pressure to the
 

normal particle velocity at the surface. Unless.otherwise noted, the
 

term "impedance" as.used in this study, will refer.to the specific
 

normal impedance defined above and have the.dimensions of Nt-sec/m 3
 

or MKS rayls. If the pressure and velocity are out of phase, the
 

impedance will be complex, having a real and imaginary component. The
 

http:refer.to
http:types.of
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impedance of a material can be predicted by theory and is a function
 

of frequency,,material properties and thickness, and -mounting con­

ditions9 All of the materials considered in-this study will have-a.
 

rigid backing as-a-mounting condition.
 

-Animportant physical property of a material is the specific flow
 

resistance. This is-defined as the pressure drop across the specimen
 

divided by the particle velocity of air through and.perpendicuiar to
 

the face of the-material. For bulk or porous materials, the specific
 

flow resistance per unit thickness is commonly used. The flow re­

sistance is essentiallr constant within a range-of.flow rates corres­

ponding to moderate acoustic levels. Above this range, it increases
 

rapidly with increasing values of velocity. Throughout this study,
 

only moderate acoustic levels will be considered-and the flow re­

sistances will be-considered constant.
 

The sintered fiber metal material with an-air-cavity backing is
 

shown in Figure -2.5. Kilmer (5) has shown that the.acoustical per­

formance of a fiber metal can be determined from-the-flow resistance
 

Rf and the cavity.depth d. The normalized impedance for this com­

bination is given by
 

Z = R + i cot(kd) (2.26) 
PC f
 

Thus, the resistive component of the impedance is controlled solely
 

by the flow resistance. The impedance and thus the absorption charac­

teristics of-this material can be cuned to a desired frequency range by
 

changing the flow resistance and cavity depth.
 

Zwikker and Kosten (6) have shown.that a perforated sheet metal
 

with a cavity backing is a form of Helmholtz resonator. For the conr
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figuration of cavities and orifices shown in Figure 2.6, the normalized
 

impedance is
 

Z 1 +-i(W M - 1(C ] (2.21)PC n- [Rt t 
1 t 

where n1 is the number of perforations per-unit surface, Mt is the
 

total mass of-fluid vibrating in the perforation together with end
 

corrections for the mass~on.each side, C is the compliance.of the air
 
t
 

in the cavity, and Rtis the acoustic resistance.. The-acoustic re­

sistance is the sum of the radiation resistance of.the perforation given
 

by Kinsler and Frey (7) and the loss due to viscous flow through the
 

perforation given by Morse and Ingard (8). The compliance is the major
 

part of the reactance term at-low frequencies..
 

Glass fiber materials and polyurethane.foams.can be modeled as a
 

porous material with a flow resistance per unit thickness, Rf. For a,
 

material of thickness d and porosity P, the normalized impedance given
 

by Beranek (9) is
 

Z G oth[-i Gd] (2.28) 
PC F C 

where
 

G (I+ iRf) 1/2 
Pb) 

The normal incidence absorption coefficient isoa~measure of the
 

incident acoustic energy absorbed by a material° .This.can be determined
 

from the impedance-expressions given previously. The absorption co­

efficient a is related to the complex impedance by the following
 

expression
 

http:compliance.of
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4--._Rpc4pc(2.29)
 
22 + x

(R + pc)


where R and X are the real and imaginary components .of.the impedance.
 

The absorption.coefficient, however, has no direct .relationship to the
 

acoustic performance ofa material as a duct-liner. .This-b ehavior is
 

related to the axial wavenumber and the eigenvalues given as solutions
 

to the proper boundary conditions.­

http:4pc(2.29
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2.4 Acoustic Propagation in a Lined Duct
 

When a duct is lined with sound absorbing material, the boundary
 

condition and the.corresponding eigenvalues change-from.those given for
 

a hard-walled duct. It will be assumed that the lining is locally re­

acting and the behavior of the material is completely determined by its
 

normal impedance. The specific normal impedance is defined as the
 

ratio of the pressure to the normal particle velocity at the surface of
 

the material0 If the pressure and velocity are out of phase, the
 

impedance will be complex, having a real and imaginary part. Thus
 

-Z = = R - iX (2.30)
v 

In terms of an admittance S =c the boundary condition becomes 

I = (2 31)
5 -i V p 

Using Equation 2.21, the complete expression is
 

Sbi Jm (Ab) - m J m(b) + Xb Jm+1 (Xb)= 0 (2.32) 

For a complex admittance, the eigenvalues that are solutions to this
 

equation willalso be complex. Again, there are an-infinite number of
 

these eigenvalues for a particular m, Unlike the.hard wall case, there
 

is no cut-off frequency between successive modes,
 

In addition, if X is complex, then the wavenumber -in the axial
 

direction 0M given by Equation 2.22 will also be complex. Thus
 

2Mi = + i T (2.33) 

For a lined duct, an individual mode will then have the following
 

longitudinal pressure dependence
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i(?z i~z -tz
 = pz e =e e (2.34) 

In this case, T -represents a damping term with the pressure decreasing
 

exponentially with -increasing z. Therefore, liner attenuation for an
 

individual mode in an infinitely lined duct is given by
 

20 log e -TZ --8.69 Tz (2.35)

10
 

The location of the complex eigenvalues given by the local reaction
 

boundary condition and Equation 2.32 will be discussed in a leter
 

section.
 

It is often questioned whether the local reaction boundary con­

dition adequately.describes the acoustic interaction.at-the surface of
 

a duct liner and.whether it is appropriate for certain-materials. This
 

boundary condition.assumes that the velocity at the surface depends
 

only on the acoustic-impedance and on the local pressure. It is
 

generally considered valid for materials containing compartmented
 

cavities which are isolated from each other. Examples.of these types­

of duct liners include perforated panels with separated.air cavity
 

backings and materials backed by a closed cell.honeycomb core cavity.
 

The local reaction boundary condition is then a valid assumption when
 

these matetials are used as duct liners,
 

The local reaction boundary condition is not always valid for duct
 

liners of porous materials. When an acoustic wave.propagates through
 

a duct containing this type of liner, part of the acoustic energy is
 

transmitted through the liner itself. Therefore, the.v'Jocity at the
 

surface depends on the combined actions of the propagating waves inside
 

and outside the lining and cannot be merely expressed in terms of an
 

http:Examples.of
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impedance andvopressureat the surface.. To-determine the wavenumber and
 

attenuation for.a mode propagating in a duct with a.porous material
 

liner, the pressure and velocity must be matched at-the interfaces
 

between the air.space and liner. This introduces the extended reaction
 

boundary condition.
 

This boundary.condition is reduced to the simultaneous solution of 

the wave equations within the air space and lining.subject to proper 

continuity conditions. If the porous lining material.is considered 

homogeneous and.isotropic, acoustic propagation.in the medium is 

assumed to satisfy the wave equation. This wave equation has a complex 

wavenumber h which defines attenuation-of a.wave.propagating in the 

material in terms of real and-imaginary components.h..and.h . The 
1 2 

complex wavenumberh'and-the complex.density.p of.the-.liner can be
 

determined from.bulk measurements of the material.as-explained by
 

Scott (10). An alternative approach given by.Pyett.(ll).compares
 

standing wave-tube~measurements for samples of.two different thick­

nesses-to determine these parameters and is recommended for simplicity.
 

For the lined circular duct in Figure 2.7, the velocity potentials
 

within the air.space U-and within the liner V must satisfy the following
 

wave equations.
 

(V2 + k2 ) U = 0 (2.36)
 

(Vz + h2 ) V = 0 (2.37)
 

http:propagation.in
http:material.is
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a
 

Figure 2.7 Duct Lined With Porous Material
 

In terms of a velocity potential j, the pressure and velocity of a
 

medium are given by
 

p=--i W p U
 

where p is the density of the medium. The conditions to.be satisfied
 

specify that-the pressure be finite at the origin,.the velocity normal
 

to the hard wall of the duct is zero, and the velocity and pressure
 

must be continuous at the surface of the lining. These become
 

1) p 4 Finite at r = 0
 

2) -r9V 0 at r = a
Dr
 

V
3)--U r = b3)~~ -at-L 
ar ar
 

4) - i w 0 U = - i W P' V
 

For any mode-of,propagation along the duct, both U and V will have the
 

same propagation constant.F
 

i z -i t
U = U(r, 0) e r e w (2.38)
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V = V(r, 0) erz elit (2.39) 

Because of condition 1, the radial dependence of U.within the air space
 

will be.defined.only in terms of Bessel Function of the first kind, J .
 
m 

Within the liner, the radial dependence of V is given by Bessel
 

Functions of the first and second kind, J and Y . All of the Bessel
m In 

functions are-of integer order due to the circumferential dependence 

of 0. Substituting-Equations 2.38 and 2.39 in the .wave Equations 

2.36 and 2.37 and.solving the wave equations subject to conditions
 

2, 3 and 4 yields
 

Oo m lb)am Jml { db)
PO J Cb {mJ(jb) -1 Jn+l ( (ab)1Ym (pa) - V Ym+l (pa)} 

(Pb ) } -{ Y (Pb) -P Y fa J (pa) -p J (pa)}]
ma n-i- a m n+l
 

t
p {; J (Ab) -A Ji(b)1 [J(jib) {M Ym(Ia) 

( a )  - pp - m(Pb) {@a J (pa) Jm+l (ib))] 

(2.40)
 

where A2 = k2 -r2 and p2 = h2 -r 2. This equation gives the propagation 

constant of a mode in terms of the duct dimensions and material para­

meters, It is now necessary to determine whether this equation or the 

equation for the local reaction boundary condition predict proper
 

attenuation for a duct liner of porous material.
 

Scott (12) developed a simplified equation corresponding to
 

Equation (2.40) for a two-dimensional duct. When compared to the
 

equation for the local reaction boundary condition, this equation will
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yield the same values of propagation constant when h2 > > rz. This
 

means that the attenuation constant and phase constant of the bulk
 

lining material must be much greater than the attenuation constant and
 

phase constant associated with the mode. When these conditions are
 

satisfied, the results for the extended reaction boundary condition
 

approximate the results given by the local reaction boundary condition.
 

Since the solution of Equation 2.40 is difficult, it is important
 

to investigate conditions under which the local reaction boundary con­

dition is valid for a porous .liner material. The condition that
 

h2 
> > r2 stipulates that the attenuation in the duct must be sub­

stantially less than that in the bulk material and the velocity of
 

propagation of a given mode in-the duct must be much higher than that
 

of the bulk material. For common-glass fiber materials and mineral
 

wools, the assumption is generally valid for wide air passages with
 

diameters greater than 6 inches according to Scott.
 

Wyerman (13) has-experimentally measured the attenuation constant
 

and phase constant for several glass fiber materials of-different
 

-densities using Pyert's two sample methods (11)0 Figure 2.8 shows a
 

comparison between theattenuation and phase constants for a bulk glass
 

fiber material and for the first radial mode of propagation of various
 

circumferential orders in a 12 inch diameter duct -lined with a one inch
 

thick glass fiber material For the propagating modes, these parameters
 

were determined from the measured impedance and the local reaction
 

boundary condition. Throughout the frequency range, the attenuation
 

and phase constants are consistently less for the propagating modes than
 

for-the bulk material. These same parameters are shown-in Figure 2.9
 

for the second radial mode of propagation The phase constant for the
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propagating mode is still less than that for the bulk material, but the
 

value of the attenuation constant for each mode varies with respect to
 

that for the material throughout the frequency range. The attenuation
 

constant of the bulk material ranges from 40 to 75 dB/ft which is greater
 

than the attenuation realized by the application of these materials as
 

duct liners. Thus, for moderate attenuation, the assumption of a local
 

reaction boundary condition seems valid for the glass fiber material
 

duct liner,
 

Scott has outlined the proper boundary conditions for duct liners
 

of glass fiber materials for two cases. For densely packed liner
 

materials inserted in a duct with a diameter much greater than the free
 

space wavelength, the application of the local reaction boundary con­

dition is valid. When a duct lining contains a loosely packed material
 

or when the air space in the duct is small compared with a wavelength,
 

the extended reaction boundary condition must be considered.
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2.5 	Multisectioned Duct Theory
 

Duct liners are used as a means of attenuating sound along a path
 

between a source and.a receiver, For an infinite liner, the attenuation
 

of an individual mode is given by Equation 2.35. However, in many
 

situations, the duct is not infinitely lined but instead contains
 

several finite sections of different liner materials. At the interface
 

between two different duct sections, an impedance discontinuity exists
 

and an incident acoustic wave will then be partially reflected and
 

partially transmittede Therefore, the infinite duct solution must be
 

modified to account for these effects, Zorumski's multisectioned duct
 

theory, presented in general form in Reference 3, will be applied to a
 

hollow ducc with no flow. Relationships will be developed to account
 

for the acoustic coupling between sections. In this manner, the sound
 

field may be defined everywhere throughout a complex duct system.
 

Characteristic functions Pmr) are chosen for the radial dependence
 

of the sound field and are normalized so that
 

fb r T (r) dr = 1 	 (2.41) 

The characteristic functions for a hollow duct are defined in terms
 

of the Bessel functions Jm(XMr) given by Equation 2.21. These are
 

Jm(Am r) 
TV (r) m (2.42)
Ml N
 

where
 

N'a 	 = fb r J2 (Xm r) drM11 	 0 m M1l 

b2~~~ 	 m=0 
 .(2.43)
 

M2 ]= 	 [(bXm)2 _ - (b) J22(m0b )  m 

m1O
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Furthermore, the characteristic functions are also orthogonal. Thus
 

f r TI (r) mv (r) dr = 0 p # v (2.44) 

For a uniform duct section containing the plane zj shown in Figure
 

2.10, the acoustic field may be expressed as the sum of incident and
 

reflected modes. Limiting consideration to circumferential harmonics,
 

the subscript m will be eliminated after this point and the sound field
 

can be expressed by
 

P(r, z) = Z [A+j w+J (r) e j (z - A- PJ(r)eip (z-z
m P=0 P 111 1 

(2.45)
 

This equation is known as the acoustic field equation. The coefficient
 

A+J and A are the modal amplitudes of acoustic waves at z traveling
 

in the positive and negative directions respectively. The negative sign
 

in front of AU has been introduced so that the reflection coefficient
 

will have a positive real part. Although there are an infinite number
 

of eigenvalues, the summation over 1iin Equation 2.45 .willbe truncated
 

to a finite number of terms. Written in matrix notation, this equation 

becomes
 

+* ij -j) A~1 
Pm(r,z)= JL 11 v ei% (z-z )] A1 11 

(2.46)
 

3
 
- (~Ir) 6 e'i+ (z-z%] {A11
 

Furthermore, it is obvious that 

J =- X-J (2.47)

11 P 

ej= - 2i(2.48)
 

it P­
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For a duct containing several different sections, planes are
 

introduced at the interface between each section. 
The acoustic field
 

can then be described everywhere in the duct in terms.of the modal,
 

amplitude at each interface.- If there -are N planes, then there must be
 

2N sets of equations relating these amplitudes. These relationships are
 

described by-transmission and reflection matrices T j+ k and R j+ k which
 
]AV 11V
 

describe the coupling between amplitudes of an (m,p) and an (m,V) mode.
 

between the planes j and-k.'
 

As a simple example, the uniform duct-section shown in Figure 2.11
 

will first be cdnsidered; 
 Within this section, solutionsto the wave
 

equation are used to determine:transmission and reflection relationships.
 

Since there are.no.retlections in a uniform duct, the reflection matrix
 

is -the-null,matrix 

[Rtj±k] - [0] (2.49)
 
PV
 

The transmission,characteristics within a uniform,duct are given by the.
 

exponential dependence in Equation 2.45. 
 Therefore, the transmission
 

matrix is 

[±+k " ± j - "­

[,+k
Irv 

] [ 
11V 

e p (2.50) 

The positive sign-is-used when zk > zj and the negative sign is used for
 

k o 

The relfection and transmission -matrices for an admittance dis­

continuity in the.duct can-be determined by matching the pressure and,
 

k
axial velocities at the interface. In Figure 2.12,.planes-zj and z


are.chosen an.infinitesimal distance apart. The-axial velocity is
 

related to the pressure throughout Equation 2.14 in the-follwing manner
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S=- (2.51) 

This dependence can be expressed in terms of an axial modal admittance
 

matrix [] which has the form 

= ta1 (2.52) 

Continuity of pressure and velocity on each side of the interface
 

in Figure 2.12 yields the following equations
 

IT-,(r)]I t 3 .j {A-}I +J( j Nk+ I-U+kI 

= [YJ(r)j r+J4 {A+ j } + 4 k*(r) I -k {A-k I 
V V V V 

(2.53) 

1TJr J{A j } + (r)j {A Ik } 

____~ -P~(r)4I {A+ j} + -~ki(,4-k 0 


The terms in these equations have been arranged so that the left hand 

side contains waves traveling out of the region between the two planes 

and the right hand side contains waves traveling into this region. 

The j(r) term can be eliminated by utilizing the orthogonality pro­

perties of the modes. Multiplying Equation 2.53 by r{WJ (r)}dr and 

Equation 2.54 by r[ j ] {T[j(r)Idr and integrating each equation from 

r = 0 to r - b results in 
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A1
-T 3 rsj + [.IJ+kJ U +k(I 

[rr'3I rVIt {AVj} + --- kj {AAkI 
]IV V V V V V 

(2.55) 

fT 3 -j) {A~jj + [ 1 -i+k A+kI
 
I
111v 1IV I 

= -j+jj {Aj} + [ 1 thkJ -k 

The term 

Jk ob r [{TJ(r)} tk(r)j]dr (2.57)
 

is called the integral matrix and the elements are given by
 
i b j(b) T % (b) [ j _ ](.8
 

j kPV Oj 2 _ ak2 (2.58)
 

and
 

J) =0 1.I v (2.59)

11V =0 P itfV 

Thus, [Inj ] is an identity matrix and can be excluded in the following
 

notation.
 

The amplitudes {A-j} can be eliminated from Equations 2.55 and
 

2.56 by operating on these equations with the proper matrices. These 

operations are expressed by matrices of theform [W j k ] amd the resulting 
PSV
 

equation is 

{AVkI
[W I+k] = [W-j ] {A-Jl + [W k] {AVk (2.60) 

The matrix [Wk ] has the following form
1XV
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W ° [ tkk t- J [ (2.61) 

where 

k~ i b T'(b) T (b) 
Wj +.-lk [k-j (2.62) 

ii V 

-
Furthermore, the matrix [W ] is a diagonal matrix with elements
 
-V 

given by
 

W+ j - j = 2 6 (2.63)
 
11V 1IVA
 

-
Multiplying Equation 2.60 by [W-J+k 1 gives
 

{A=k +k-k {A kI kj{A [Rk- I -k + [T+k+J] {AV++ } (2.64) 

where the reflection and transmission matrices are
 

[R )I = w1 (2.65)

11V PV PMV 

tl,]= 
PV1V 

[wJ+k1- [W
PV 

(2.66) 

+kk 

Thus, the amplitudes {AkI 
V 

are related to the amplitudes {A k I 
V 

by a 

reflection matrix and to the amplitudes {A~ j l by a transmission matrix. 
+k V 

In a similar manner, {[A } may be eliminated from Equations 2.53
 
V 

and 2.54 so that
 

f{A> = [RE j]*+J A 1 + [T-k {VkI (2.67)
V 1V V 11V 

In this case, the reflection and transmission matrices are given by 

[RJ+j] - [W+k-j] -1 rw+k+j- (2.68)
1V.V W ) ] 



40
 

[T 4 ,] I- [Wkk]WW-1 (2.69)
iiv lv 1Xv 

It is interesting to note the form'ofthe reflection matrices
 

given by-Equations 2.65 and.2.68. Since W in Equation 2.62 is pro­

portional to the admittance changesin the duct, the reflection matrix
 

is also proportional to the admittance changes.
 

"Equations of the form of 2.64 and-2.67 can be~written for each of
 

the planes within a complex duct system of N sections. This will yield'
 

2N"2 sets of equations. However, since there.are 2N sets of unknown
 

modal amplitudes, the number of unknowns will always exceed the number
 

of equations. To complete the setof equations, radiation conditions
 

must be specified at the duct termination planes.
 

Acoustic reflection and radiation from the end of the duct is.
 

dependent upon how the duct is~terminated. For the infinite duct in
 

Figure 2.13, t ere is no reflection from the end and
 

{A k -= {0} (2.70)V 

If the-duct is terminated with an.open end as in Figure 2.13, the rer->
 

flected component of the modal amplitude is given by
 

{Ak} - k+k - +k­kR j
I = kA' (2.71) 
V 1iv 

For the cases'of a flanged or unflanged..open.end, the radiation re­

flection matrices are known.,Xid: given by Zorumski (14) and Lansing (15)
 

respectively. 
These can also bP used to compute far field radiation and
 

directivity patterns,
 

At the duct inlet, the source distribution at a point (r ,0 ) can
 
0 0
 

be represented as the product of a Dirac delta function and the source
 

http:and-2.67
http:and.2.68
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strength 0 

2w 0 6(r-r ) a(0-0 ) 
V(r)0 0 (2.72) 

Using the momentum equation, the acoustic field equation and the modal
 

orthogonal relations, the radiation equation is defined by the following 

expression 

+J(r) e-ne 

S+ } (2.73) 

The source distribution and Equation 2.72 can be modified to account
 

for an array containing several sources. The extension of this analysis
 

to a complex source array will be described in a later section.
 

The previously described radiation and source matrices are combined
 

with the transmission and reflection matrices for each duct section to
 

yield a complete set of matrix equations for the wave amplitudes. A
 

typical set of equations for a duct containing N sections is given by
 

Equation 2.74. Solving this equation for the modal amplitudes at each 

interface, the pressure can be described everywhere in the duct by the
 

acoustic field equation.
 

As a result of this analysis, the modal amplitudes for each'section
 

can be used to calculate the sound power level at positions throughout
 

the duct. The intensity I at any point in the duct is given by
 

I = 1 Re (pv") (2.75)
 

where v" is the complex conjugate of the velocity in the axial direction.
 

The total sound power W can be determined by integrating the intensity
 

over the cross-sectional area-of the duct, and the sound power level is
 

-
calculated with respect to a reference acoustic power level W of 10 12
 
0 



[T] 

T+2+1 [I+2 

[I] 

{A+ l} Q 

-[T(N-1) (N-2) I M[R(N-II 

_[T(N-i) (N-i) [-I 

[I] -[T-1 ­2 ] 

(N-i) I 
{A+ N 

{A-I 

I 

1 2+ 2 ] [I] -[T-2-3] {A-21 

-N+N 

-[R 

[I] -T- -- NI {A- N-1)I 

-N 

24{A) 

(2.74) 
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Watts/ma.
 

L = 10 log10 W (2.76)
 
0 

The effectiveness of a duct liner can be measured by the trans­

-mission loss and the insertion loss The transmission loss is the
 

difference between the sound power level in front of and at the end of
 

the liner. The insertion loss is the difference between the sound power
 

level at the-same point with andwithout the liner inserted inthe duct.
 

If the sound power levels.are calculated at the positions in Figure 2.14,
 

the transmission loss and insertion loss for a finite length liner are
 

given respectively by
 

TL = 10 log W - 10 log W (2.77)
10 1 10 2 

ILL= i0 log10 W3 - l0 log20 W2 (2.78) 

The insertion loss is helpful to describe the effectiveness of a
 

liner in a particular application while the transmission loss defines
 

attenuation properties of sound transmitted through the liner.
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2.6 	 Eigenvalue Search Techni4ue
 

Acoustic propagation through a duct in the axial direction is
 

-determined by the axial wavenumber. This parameter is related to eigen­

values which are solutions to the local reaction boundary condition
 

given 	by Equation 2.32
 

bi.J 	(Ab) - m J (Ab) - A.b J (Ab) = 0 (2.32) 

-n m n+l 

Several methods have been developed for locating the eigenvdlues for a
 

eircular duct.
 

For a hard-walled duct, the admittance is zero and the local re­

action boundary condition reduces to Equation 2.20. In these cases, the
 

eigenvalues are real and well ordered and can be found in tabulated form
 

(4). 	 Even if these values were not known, they could easily be deter­

mined using iteration techniques. This is because the eigenvalues are
 

real 	and there is a one to one correspondence between the argument and
 

the 	value of the Bessel function.
 

For a lined-duct with a.complex admittance 8,the eigenvalues
 

given by Equation 2.32 are complex. In this case ,itbecomes difficult
 

to observe the dependence between complex arguments and complex values
 

of the Bessel functions. Therefore, iteration methods become more
 

difficult and uncertain for values of complex admittance. Several
 

alternate schemes have thus been.devised. 
Fisher (16) has developed
 

a series solution to the eigenvalue equation which.converges for small
 

admittance. Rice (17), has extended this technique for finding eigen­

values to include both large and.small admittances. Similar approxi­

mations for very large or very small admittances are given by Morse and
 

Ingard (8). Although this method yields reasonable estimates for
 



45
 

eigenvalues, these approximations on the admittances cannot be made for
 

all materials.
 

Graphicaltechniques -and nomograms are available for determining
 

these eigenvalues (18, 8), but there are restrictions with these tech­

niques. First, the accuracy is.limited in choosing eigenvalues from
 

graphical techniques and second, eigenvalues for only the first one or
 

two radial modes are given by these methods. Thus, alternate-methods
 

must be examined for locating exact eigenvalues.
 

Benzakein (19) has transformed the boundary condition equation
 

into a first-order nonlinear differential equation and then integrated
 

it numerically to locate eigenvalues. Zorumski (20) has also used this
 

differential equation method.to.solve for complex eigenvalues for a
 

circular duct. This method maintains a one to one correspondence
 

=
between eigenvalues on the-real-axis for 0 and the complex eigen­

values. The integration is started at the point 8 = 0 and the end points 

are related to the desired specific admittance. 

As an alternative to these methods, a search technique using both
 

contour integrations and an iteration technique was developed. This
 

method locates eigenvalues in.the .complex plane for all values of
 

admittance. This techniquewas~based-on the Principle of the Argument
 

which is described in detail by Copson (21). This principle is stated
 

by the following expression
 

1 f f'(z) dz = p - q (2.79) 

27ri c f(z) 

The left hand side of Equation 2.79 indicates an integration around-a 

closed contour C in the.complex plane. On the right hand side, p is 

the sum of the orders of zeroes within this contour and q is the sum of 
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the orders of poles,. -Sihcewe arenperformiifg,,anintegration around a-­

closed contbfirq .Equation 2": 79: -an be fnrther-, simpl--fed - to 

1 
[Arg F(z)], = p - q (2.80) 

Now the.number and order~of zoeroes.and poles can be determined by 

observing the change in the argument of the function around a closed 

contour and examining how many times the argument crosses the branch 

cut formed by the negative real axis.
 

This contour integration is.effective in finding the boundaries of
 

the roots of a function in the complex plane with no previous knowledge
 

of the-location or behavior of.theroots. Once these boundaries have
 

been defined, a first approximation can be chosen and an iteration
 

technique'used to locate the exact value of the root.
 

This same technique can be used in locating eigenvalue in the
 

complex plane-for a.duct-wall with an arbitrary complex admittance.
 

Successive eigenvalues can be obtained by performing contour integrations
 

around regions throughout the complex plane. The eigenvalue equation and
 

the behavior of its roots must first be investigated.
 

Letting K Ab i" the eigenvalue equation for the local reaction
 

boundary condition becomes
 

F(K) = 0bi Jm(K) - m Jm(K) + K Jm+l(K) (2.81)
 

The eigenvalues are the zeroes of this function and are-defined at
 

values of K such that F(K).= 0...The location of these eigenvalues in
 

the complex plane is determined by the properties and location of the
 

wavenumber in the axial direction Q. From Equation 2.18 we see that
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for a progressive wave, 2 must be located in quadrant I of Figure 2.15,
 

with a > 0 and T > 0 in order that the wave be attenuated and not ampli­

fied as it propagates. Therefore, from Equation 2.22, A is located in
 

quadrant IV of Figure 2.15.
 

Im(z)
 

II I
 

= 0+ iT 

o Re(z)
 

III IV
 

Figure 2.15 Quadrants for Locating 2 and A
 

There is an additional eigenvalue -A--
 located in quadrant II which also
 

satisfies Equation 2.80. However, it is the morror image of the eigen­

value in quadrant IV and need-not be considered by the search technique.
 

Now that the-quadrant.containing the successive eigenvalues has
 

been located, integration contours can be defined. The integration
 

contours chosen are shown in Figure 2.16 and are expanded outward from
 

the origin in successive radial increments. The maximum.radial increment
 

between successive eigenvalues would be expected to be of the same order
 

or less than the increments between successive eigenvalues for a hard­

walled duct. However, since the increments-between complexeigenvalues
 

are not.always clearly defined,-these contours were expanded outward
 

from the origin in radial increments of 1.0. Integrations are performed
 

in the clockwise direction according-toEquation 2.80. Each contour of
 

integration was divided into 10 steps along the path in the radial
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direction and into 23 steps along-paths in the angular direction. When
 

integration paths were near an eigenvalue that was located either within
 

or exterior to the contour, additional subdivisions in-step size were
 

made.
 

Since there are no poles associated with Equation 2.32, the in­

tegration yields either zero or a positive number indicating the ,number
 

of eigenvalues within the integration contour. When the results of the
 

integration were zero, the contour was expanded radially from the origin
 

and a further integration was performed with the new contour. When 

regionscontaining two eigenvalues-were located, the contours were
 

divided into smaller radial increments until a region containing only 

one root was obtained. Situations where -two successive eigenvalues are 

locatdd in proximity to each other are discussed by Zorumski (20). For 

certain specialized cases of admittance, the lowest eigenvalue coalesces
 

with.a higher eigenvalue to form a double eigenvalue. In this case, the 

double eigenvalue is a solution-to Equation 2.32 and its derivative.
 

The resulting eigenfunctions are orthogonal to themselves and are linearly 

-amplified in addition to being attenuated at the expected rate. Ad­

mittance values producing double eigenvalues were neglected in this
 

study.-


Once the boundaries of a rad-ial contour containing a single root
 

are-defined, additional divisions shown in Figure 2.16 were made in the 

angular direction. Integrations around these contours are performed-to
 

further define the-boundaries of the-region containing the eigenvalue.
 

A first approximation to-the eigenvaluewas chosen at the-center of the
 

contour and the -NewtonRaphson.Iteration Technique (22) was used to
 

lcoate the eigenvalue to the required degree of accuracy.
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This method locates-eigenvalues in successive radial increments
 

outward from the origin. The correct.order of these eigenvalues can be
 

determined from examination since their real component is interlaced
 

between the real 
zeroes of the Bessel Function and their derivatives
 

the-extreme cases for soft andhard walls respectively.
 

The complex eigenvalues describe both the attenuation of an in­

dividual mode through the liner and the radial mode shape. In addition,
 

these parameters are needed.to calculate coupling coefficients between
 

modes at each interface of the multisectioned duct system.
 



CHAPTER III
 

EXPERIMENT 

3.1 Introduction 

To perform an experimental investigation of multisectioned duct
 

theory, a simple configuration consisting of an anechoically terminated
 

duct with three sections was chosen. Furthermore, since the eigen­

values and corresponding mode shapes for a hard-walled duct are well 

known, the beginning. andend sections of the duct system had rigid walls. 

Between these two sections, liners of various materials were inserted
 

and radial mode shapes were measured at various positions thsoughout the
 

duct. Despite the fdct that no flow was considered, the section in front
 

of the liner will be called the upstream section and the section behind
 

the liner will be called the downstream section. This terminology does
 

not strictly define the direction of acoustic propagation in cases
 

where flow exists. Flow can occur in a direction either with or
 

against the direction of acoustic propagation. However, the effect of
 

flow will not be considered in this study.
 

The remainder of this chapter will describe the duct system, the
 

source array developed to generate higher order acoustic modes, the liner
 

materials, and'the measurement techniques used in this study.
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3.2 Multisectioned Duct System
 

The- complete duct system used in this experiment is shown in 

Figure.3.1. The hard~walled sections were made of commercially avail­

able cement pipe yith a 12 inch inner diameter and a 5/8 inch wall 

thickness. The cement pipe was chosen to eliminate-coupling between 

vibrations of the duct wall and the-acoustic field. Although the 

diameter of the.duct is.12 inches, there are deviations of up to ± 1/2 

inch in the diameter at positions throughout its length. The effect of 

these variations on the-radial mode shapes will be discussed in Section 

3.3 The test section was also made of cemnent pipe with a 14 inch inside
 

diameter. This section will accommodate one inch thick liners of differ­

ent acoustic materials with no change in cross sectional-area throughout
 

the duct. Both the.upstream section and test section were placed on
 

moveable carriages. This arrangement facilitated the removal and
 

replacement of liners and the alignment of the complete system for 

testing. 

To eliminate acoustic reflection from the end of the duct, an
 

anechoic termination was coupled to the downstream section. This 

arrangpment simulates a semi-infinite duct.- A flanged or.unflanged 

open ended duct could have also-been used in this experiment. However,­

since the open end causes reflection of an incident wave, the anechoic 

termination was chosen to-reduce these reflections. The termination was 

made of hardened-liquid fiberlass in-the shape of a hollow cone. The, 

cone was filled with glass fiber material with a density of 1.5 pounds 

per cubic foot. The construction of. this termination was based on 

results provided by Carrier Corporation (23) for design of a termination 

for plane wave propagation within a duct, Before this termination was
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chosen, the performance of several additional configurations to reduce
 

acoustic reflection from-the end of-th4 duct were investigated. These
 

included a glass fiber cone which was inserted in the end of the duct,
 

wedges of glass fiber-material also inserted,in the-duct, a sample of
 

glass fiber material sealing the-endof the duct, and the previously
 

described anechoic termination.with glass fiber wedges-inserted in.the
 

end; The best performance was~obtainedwith the termination and when
 

the glass fiber-wedges were-inserted-in the duct. However, as there was
 

no significant difference between the results for these two configura=io.:
 

tions, the cone shaped termination was chosen for.use. This termination
 

was also used in the experimental studies of Harrington (24) and
 

McDaniel (25). Preliminary tests for a plane wave revealed a standing
 

wave ratio of less than 2 dB at 500 Hz in a hard-walled duct with this
 

termination. However, for.higher.order modes, there is a standing
 

wave ratio of over 6 dB near the cut-off frequency which decreases­

with frequency. This performance is partially explained by the work of
 

Vajnshtejn (26) who calculated the reflection coefficients at the-open
 

end of a duct for higher order modes. This study was an extension of
 

Levine and Schwinger's (27) work for plane waves. The results showed
 

that maximumreflection for individual modes occurred attheir cut-off
 

frequencies and decreased as the.-frequency was increased. Although
 

the openended duct is not exactlysimilar to theanechoic termination
 

described here, it does provide-an-indication of the difficulty in
 

designing a termintion to eliminate acoustic reflection near the cut­

off frequencies. In subsequent.measurements with plane waves and higher
 

order modes, the uniformity of amplitudes and mode shapes at several
 

i1d6ctions 'throughout the duct were indications of a reasonably good 
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anechoic termination.
 

Traversing microphone probes.were designed to measure the radial
 

mode shapes at stations thorughout the duct. A linear motion potentio­

meter accurately measured the radial displacement of the probes. Within
 

the-upstream and downstream hard-walled sections, one probe was moved to
 

the different stations shown in Figure 3.1. 
Within the test section,
 

modes shapes were measured with an additional probe located at the center
 

of the-liner.
 

The-microphone probe tubes were 4 mm in-diameter and coupled to one
 

half inch condenser microphones. (28). Although smaller diameter probes 

were available for use, the larger-probes were-chosen for their increased
 

sensitivity. The presence of the probe should not obscure the acoustic
 

field since even at 8000 Hz, welltabove the upper limit:for measurements,
 

the diameter of the probe is less than one-tenth of a wavelength.
 

Resonances of the probe-tube.will appear when the length of the probe 

is equal to odd multiples of a-quarter of a wavelength. To obtain a 

uniform frequency response, steelwwool-was inserted in-the probes to 

damp these resonances in the-manner recommended-by Brilel and Kjaer (28) . 

The response of one of the probes is shown in Figure 3.2 with and without
 

damping.- This adjustment was.necessary because the two probes were of
 

different lengths and the corresponding resonances for each probe would
 

occur at different frequencies -With each of the probe.tubes damped,
 

a more uniform. frequency response can be obtained and used in comparing 

relative amplitudes between the levels measured within the liner section 

and within the hard-walled sections. 
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3.3 Source Array
 

A complex source array was developed to generate plane waves and
 

higher orderacoustic modes within the-duct. 
 Seiner (29), provided the.
 

initial groundwork for deve-opmentof a spinning mode'synthesizer.
 

Eight loudspeakers were located'inan equally spaced circular array and
 

phased so that the system could generate a spinning mode. Tests in an
 

anechoic chamber confirmed the.useof this system to generate higher 

order-spinning.modes. Oslac (30) .has extended this concept. and designed 

an array consisting of 16 speakers,.circumferentially spaced in-a baffle
 

which was coupled to the end ofoa.duct. With the increased number of
 

elements.in this configuration, improved results were obtained in
 

generating mode shapes of a high.spin number. 
Oslac has-shown.that the
 

upper limit mmax.for generation of a circumferential mode by such an
 

array is given by
 

N 
ma = (N- ) (3.1)max, 2 

where N is the number of speakers in one ring. This characteristic
 

becomes important when considering-the limitations of a source array.
 

McDaniel (25) has developed,an improved source array which included
 

a speaker at the centerotthe array in addition to the speakers placed
 

in an outer ring. This provides: radial as well as- circumferential
 

shading in the array..,Obviously,.the additional speaker at the center­

could only be used in generating.a non-spinning, m = 0, mode. However,
 

the encouraging results from this-design prompted the use of additional
 

elements in the radial direction. Such a design would provide additional
 

radial.shaping for both spinning,and non-spinning modes and would provide
 

a 
better match to desired mode shapes. The optimum configuration would
 

http:elements.in
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provide for continuous phasing and shading in amplitude in the circum­

ferential and radial directions. The limiting factor in such a design
 

would be the size of the transducers.
 

Based on these previous concepts, an improved array was designed
 

with two concentric rings of 2-1/4 inch loudspeakers placed'in a 3/8
 

inch aluminum baffle. The baffle was then coupled to the -end of the
 

duct.. This speaker was small enough so that several elements could be
 

included in the array. It also had reasonably good frequency response
 

over the frequency range of interest for generation of the desired
 

acoustic modes. Typical amplitude and phase response with respect to
 

a one volt.driving voltage for the speaker as a function of frequency
 

are shown in Figures 3.3 and 3.4.
 

To insure that the desired-duct modes would be generated with maxi­

mum efficiency by the array, speakers should be located near positions
 

where the radial pressure distribution is a maximum. Referring.to the
 

mode shapes-in Figures 2.2 and 2.3, the concentric rings of speakers
 

were placed around a speaker at the center. Eight speakers were placed
 

in an outer ring at.a radius of 5 inches and 4 speakers were placed in
 

an inner ring at a radius of 2.5 inches. The frequency response of
 

several speakers was-measured.in order to choose elements for the array
 

with near uniform phase and amplitude characteristics. The source array
 

is shown in Figure 3.5.
 

To generate a single higher order duct mode, elements of the source
 

array must be-individually adjusted in phase and amplitude to correspond
 

to the radial and circumferential pressure distribution of-that mode.
 

The radial pressure distribution for individual modes is given by the
 

http:was-measured.in
http:Referring.to
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Bessel functions and the mode shapes- in Figure 2.2-and 2.3. The
 

circumferential distribution is given by the exponential term ejm @ inthe
 

solution to the wave.equation. All-of the elements within a ring at one
 

radial position are adjusted to the same-amplitude. These elements-are
 

further adjusted in phase tq correspond to the circumferential order m
 

of the desired mode.. For a ring ofUN elements; there will be-a pro­
2m
 

gressivephase difference of radians between elements. Thechange
 

in phase in the-circumferential direction must then complete 2rm
 

radians, The relative ,amplitudes-for elements at different radial
 

positions are chosenfrom the.radial mode shapes in Figure 2.2 and 2.3.
 

Whenever -the ,pressure distriibution. crosses the r axis, a complete re­

versal in phase must also be accounted for between elements on each side
 

of the null point-


A complete-description of the electronics necessary to provide phase,
 

and amplitude control for eachelement in the array is givenby Oslac
 

(30). Although Oslac-has shownthat-it is possible to combine several
 

modes with such anarray, the propagation of only.individual modes will
 

be studied here. For the-remainder of this study, the generation of a
 

mode will refer-to the generation of known mode shapes for a hard-walled
 

duct,
 

The source strength of a.typical-element of the array was determined
 

by placing the speaker.in a-baffle.and measuring far field pressure
 

response. The-far-field radiated-pressure-from a piston in an infinite,
 

baffle at a position r- on-axis is given by Kinsler and Frey (7) as

1
 

4k p c 0 e ikr 1(32
P ikc=e 1(3.2)
 

2ir
 
1
 

The frequency responseof~an indiiidual speaker was recorded at several
 

http:speaker.in
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on-axis positions in an anechoic chamber and analyzed in order to
 

determine the source strength.as.a.function of frequency.
 

Preliminary attempts to generate higher order acoustic modes were
 

made with the source array coupled to the end of a hard-walled duct with
 

an anechoic termination. Bothspinning and non-spinning. modes could be 

generated within the duct.at-and above their cut-off frequencies and
 

the corresponding.mode shapes.were-well defined atpositions throughout
 

the-duct. In addition,-measurements of.pressure and phase were made.at
 

circumferential positions to insure.that the mode contained the required
 

spinning, or non-spinning, characteristics. The generation of individual 

higher-order modes will be studied to determine the modal purity obtain­

able with the .source array.
 

An-indication of the degree of modal purity can frombe determined 

the measured level of the.null in the radial pressure distribution.
 

Any -contamination from other. modes-will raise the-level of the null. 

A difference.oftenexists between the radial location of the null
 

as measured and predicted by theory. This could easily be due to the
 

slight variations in duct diameter and the uniformity of the circular
 

cross section. 
These variations would tend to redistribute the acoustic
 

energy in the radial direction. In fact, a shift of the measured null 

to positions on either side of the predicted null is experienced for 

both spinning and non-spinning modes at positions along the length of 

the duct. 

The mode shape for the first non-spinning (m = 0) radial mode is 

shown in Figure 3.6. This was generated at 1400 Hz and measured at a 

position several duct diameters from the source array.- The comparison 

between measurement and theory is also shown. The agreement in this case
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is very good with modal purity deteriorating slightly at higher fre­

quencies. This mode could be generated with reasonable purity at fre­

quencies.up to the- cut-off frequency-for the second radial mode. The
 

second radial-mode is shown in-Figure 3.7 at -2535 Hz. Although there is
 

a difference in thelocation of.the nulls, the general shape of the mode
 

is fairly well established.
 

Spinning modes were investigated next in the anechoically terminated
 

duct. Radial mode shapes for the first spinning mode at 700 Hz are shown
 

in Figure 3.8. It was possible-to-generate this mode in a frequency
 

range up to the cut-off.frequency fdr the next radial mode. The second
 

radial mode, the (1, 2) mode is shown in Figure 3.9 at'1925 Hz. There
 

is good-agreement between measuredand-predicted mode shapes in both
 

cases. For a spinning mode, the absence of a clearly,defined null.at
 

the center is not a positive indication that a poor mode.shape exists.
 

When measuring radial.mode patterns near the-center of the duct, probe
 

alignment becomes-a critical factor. For example, the first spinning
 

mode has a maximum level at the wall and a null at the center where
 

the dB level should drop to -=. If the probe is aligned off center, it
 

will never reach this-null. For an error of only one,degree in alignment,
 

the greatest difference between the-level at the wall and the "measured
 

center" becomes-only 32 dB. Although a proper mode shape could exist
 

in the duct, measurements.would-reveal a poor. indication of this mode if
 

the probe is misaligned. In all cases, precautions were made to ensure
 

that the probewas aligned and traveled to the-center of the duct.
 

Equation 3.1 restricts.the use of the complete source array for
 

generating spinning modes above the.order m = 1; These higher modes can
 

only be generated with the eight outer elements of the array. A
 

http:quencies.up
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spinning mode ofiorderm = 2.generated at 1110 Hz-is-shown in-Figure.3.10..
 

The-agreement between measurement-and theory is good except near the~cen­

ter of the.duct- -This is partially-because only the-outer ring of
 

elements in the sourcearray is-used-to match the sound field. 
In
 

addition,. this mode is being-generated in a frequency range where
 

spurious modes, created by-phase variations between-individual,elements
 

of the array, can also propagate.. -The absence-of a clearly defined null
 

at the center is.an indication of contamination from suprious plane,
 

waves generated -at a reduced level by the array. An analysis of these
 

spurious modes is-given in Appendix A. Nontheless, the mode does contain
 

the general radial-pattern,and proper: spin characteristics.
 

Mode shapes generatedwith.only the outer ring of-speakers were.
 

compared-with modeshapes generated using the entire array. 
For a 

(0, 1) mode, the mode shapes generated with the entire array properly 

adjusted and with combinations of speakers operating are-shown-in -

Figure 3.11. Similar results for the (1, 1) mode are shown in Figure 

3.12. Thus, themode shapes are-enhanced considerably by providing 

radial shading as well as circumferential .phasing with this unique 

array. The advantage of providingradial shading becomes-especially 

important when-generating modes atfrequencies where several lower
 

order modes with the same circumferential dependence can -also propagate.
 

Evidence.of this is shown in-Figure-3.13 when-a (0, 2) mode.is being
 

generated with the entire array and then with only the-outer ring of
 

speakers. Fromthe difference between.radial mode shapes, the radial
 

pressure distribution,is greatly enhanced by the radial shaping pro­

vided-by-the array.
 

Mode shapes generated in the semi-infinite duct system included the
 

http:in-Figure-3.13
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plane wave, (0, 0) mode, the (0, 1) and (0, 2) non-spinning higher order
 

modes and the (1, 1), 
(1, 2) and. (2,4i) spinning modes. Reasonable
 

modal purity was obtained for all cases except the (2, 1) mode.
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3.4 	 Flow Resistance Measurements . 

One of the fundamental parameters used in predicting the acoustic 

performance of a sound absorbing-material is the flow resistance. The 

flow resistance of each material was measured with an apparatus designed 

according to specifications outlined-in ASTM-Standard C522-64 (31). 

The-apparatus permits controltof-the flow rate through a sample so that
 

flow 	resistance can be measured over a range of velocities. A complete
 

description of the.apparatus and.testing method can be found in Refer­

ences 5 and 13.
 

Measurements were made-at flow rates within a range-of particle
 

velocities corresponding to moderate acoustic levels, For the flow
 

rates considered, the.pressure drop.associated with the flow resistance
 

is on the order of a few thousandths.of an 
inch of water and was measured
 

with a pressure transducer as opposed to a micromanometer. In all-cases,
 

the-sample size was 8.73 cm2 in area,
 

Three samples of each material, were chosen from random locations
 

and tested inorder to determine an-average flow resistance representa­

tive of the entire liner, Typical.results for flow resistance measure­

ments on three samples of fiber.metaltmaterial are shown in Figure 3.14.
 

The differences between. samples.are the result of variations in material
 

properties, More important,.however,.is the fact that the flow resis­

tance is essentially constant throughout the range of flow rates con­

sidered, The average values for-each material are given in Section 3.6
 

where the materials chosen as duct liners are fully described
 

http:important,.however,.is
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3.5 	 Impedance Tube.Measurements
 

Measurements of the normal impedance and absorption coefficient of
 

a material as a function of frequency can be made using a standing wave
 

tube. A Br~el and Kjaer Type-4002.Standing Wave Apparatus, which meets
 

the specifications of ASTM Standard.C384-58 (32), was used for these
 

measurements. A moveable probe.microphone,is used to measure the stand­

ing wave ratio and the--distance-to. the first.node.of the standing wave
 

pattern. These parameters are used-to calculate-the impedance and ab­

sorption coefficient.
 

The frequency.range over which-plane waves may propagate within-the
 

standing wave tube has an upper.limitdetermined by its diameter and the
 

corresponding,cut-off frequencies forthe.first higher order mode.
 

The 	propagation of higher.order modes is restricted below this cut-off
 

frequency and only plane waves can.exist. To extend measurements with
 

plane waves over a broader frequency range, two tubes with diameters of
 

3 cm and 10 cm were used. This also provides.a comparison of measured
 

values in an overlapping.frequency range. Measurements were possible
 

from 250 Hz.up-to 4000 Hz.withan overlapping frequency range existing
 

between 800 Hz and 2000 Hz for the..two tubes. A complete description of
 

the 	testing method and apparatus is given in-References 5 and 13.
 

http:first.node.of
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3.6 	 Duct Liners
 

Duct liners of three different materials were chosen in order to
 

study their attenuation properties and the local reaction boundary con­

dition. No attempt was made to optimize the impedance parameters of
 

our 	liners by altering material thickness, material properties, or
 

cavity depth. Instead, it was decided to choose-materials that could
 

be inserted within the one inch depth provided by the test section,
 

Two types of sintered fiber metals with differing acoustic
 

properties were used as duct liners. These materials were provided by
 

Brunswick Corporation and are commercially known as Brunscoustic Plate
 

(Fuzzy Hole Perforate, 27%open area) and FM 134. The flow resistance
 

of each material,. tested by the technique described in Section 3.4, was
 

48 cgs rayls and 25 cgs rayls-respectively. The fiber metals were
 

tested.with a 718 inch thick closed cell honeycomb core backing. The
 

honeycomb core, produced by Hexcel.Corporation under the trade name of
 

Acousti Core,-contained:3/1-6 inch cavities. The special core geometry
 

of this material allowed it to be formed into a circular configuration
 

without-the saddling problems-inherent when ordinary honeycomb is rolled
 

or deformed along an axis. To seal the cavities, a layer of sheet metal
 

was tightly wrapped around the honeycomb material before inserting the 

liner in the, test section. This.configuration is then a close represen­

tation of the materials usedby the aircraft industries in acoustically­

treating aircraft engine inlet .duct and fan exhaust systems.
 

A perforated.sheet metal with-a closed bell honeycomb core backing.
 

was also used as a duct liner, The use of perforated panels as acoustic
 

treatment is of considerable interest because of the reduced cost of
 

this 	material as compared to the fiber metals. Two samples of per­
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forated:sheet metal were chosen with specifications on hole alignment,
 

hole spacing and size, and open.area that resembled current perforated
 

materials used in acoustic applications. The materials chosen each had
 

1/16 inch diameter holes on staggered.centers - one of 20 gauge aluminum
 

with 1/8 inch centers and 22.5%.open area, and the other of 24 gauge
 

steel with 7/64 inch centers.and 30% open area. A cavity depth behind
 

the material was providedby the 7/8 inch thick flexible honeycomb
 

core described-previously. The -configuration was inserted in the one
 

inch depth of the duct test section for evaluation.
 

Both the fiber metal and perforated sheet metal materials were
 

fabricated into 28-1/2 inch long acoustic liners with a 12 inch inner
 

diameter. Any further mention of the-fiber metal or perforated liners
 

will refer to these lengths.
 

A rigid round glass fiber material of one inch thickness was. the
 

third type of material chosen.for use as a liner. This material is 
a
 

commercially available product-distributed by Johns Manville and used
 

for pipe insulation. Although fiberglass materials are generally
 

designed for insulation purposes,. they also possess remarkably good
 

sound absorbing properties. Furthermore, sincetheir tolerances and
 

specifications.are chosen for their primary purpose, there is often a
 

considerable variation in the resulting acoustic properties of the
 

materials. This variation is most noticeable in the flow resistance
 

where it is not uncommon to have variations in the flow resistance within
 

25% of a nominal value. The average flow resistance for this material
 

was 78.cgs rayles/inch. Ductiliners of~glass fiberwmaterial in lengths
 

of 12 inches and 24 inches-were inserted within the test section for
 

evaluation.
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Throughout the remainder.of-this study, the following abbreviations.
 

for each material will be used.
 

1. FM 1 - Fibermetal, 48 cgs rayls, 7/8 inch cavity
 

2. FM 2 - Fibermetal, 25 cgs rayls, 7/8 inch cavity
 

3. Perf 1 - Perforated panel, 22.5% open area, 7/8 inch cavity
 

4. Perf 2 - Perforated panel, 30% open area, 7/8 inch cavity
 

5. Fiberglass - One inch thick fiberglass liner
 



CHAPTER IV
 

DISCUSSION
 

4.1 	Impedance Characteristics of Duct Liners
 

In order to determine the average impedance characteristics for
 

each liner material, three samples were taken from random locations and
 

tested in a standing wave tube. This involved tests fothree separate
 

samples within both the large and small impedance tubes. In most cases,
 

there was a negligible variation between the resulting impedance
 

characteristics for individual samples and for large and small samples.
 

The impedance for the two fiber-metals-and two perforated panels,
 

with 7/8 inch honeycomb backing,.are presented in Figures 4.1 through
 

4.4. Throughout the overlapping frequency range, there is no sig­

nificant difference between the real and. imaginary components df the
 

impedance for both materials. The measured values of impedance are
 

also compared with values calculated from-the expressions in Sect-ion
 

2.3 Throughout the entire frequency range, there is good agreement
 

between these values.
 

The impedance characteristics for the one thick glass fiber
 

material, as measured by the impedance tube are shown in Figure 4.5.
 

Since there is a marked difference between the real and imaginary
 

components of impedance within the overlapping :requency range, measure­

ments with.the small and large tube.are separated. This phenomenon
 

is characteristic for each of the three samples and not just peculiar
 

to one-sampleo
 

To eliminate the possibility that-gross material variations
 

between individual-samples was the cause of this discrepancy, further
 

tests were conducted on one sample. The sample-was first tested within
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the large impedance tube. Next, three.separate smaller samples were
 

cut.from this piece.and individually tested within~the smaller tube.
 

Again; this same.discrepancy was evident in the Qvelapping frequency
 

range. This characteristic, however,-is not'representative of all glass
 

fiber materials. Previous impedance tube testing with glass fiber
 

materials of different densities and thicknesses showed no variations
 

in measured acoustic properties within the overlapping frequency range
 

(13). 

The,discrepancy for.this particular.material is unable to be
 

explained. In.cases.wherp'these variations exist, greater emphasis
 

will be given .to.measurements -with the. larger sample of material. 

-The ;calculated impedance values for the glass fiber material are
 

also,presented in'this-figure. For the flowresistance value of 78 cgs
 

rayls, the theory underpredicts the real component ofthe impedance.
 

of flow resistanceIt has been shown'by Wyerman. (13), that. the value 

affects only the real component- of- the. impedance and. leaves the imaginary-

Further­component.relatively changed for frequencies belbw, 2000 Hz, 

more, a flow resistance of.over 140. cgs.rayls would be necessary to 

predict impadance values corresponding-.to those measured with the stand-

This same result was~found for-measurements on several
ing wave'tubeo 


different glass fiberymaterials, indicating that-the flow resistance, as
 

used in .Beranek's theory (9),.does notaccount for the total -dissipation
 

within tbematerial and other dissipation mechanisms must be present.
 

-Beranek has.remedied this problem.by introducing .adynamic-flow re­

sistance to compensate for this factor...This parameter is determined 

from standing wave-tube measurements by fitting the-experimental 

results to curves for the impedance calculated at different flow 

http:corresponding-.to
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resistances values. 
However, this new parameter has no relationship
 

to the static flow resistance and has values both above and below the
 

measured static values for different materials. This indicates that
 

other-dissipation mechanisms are involved within the material that are
 

hot- included in the flow-resistance term.
 

Although the impedance of a material can he reasonably predicted
 

by theory for all cases except the glass fiber material, the measured
 

values-of impedance will be used with-the eigenvalue equation and the
 

eigenvalue search technique. 
For the glass fiber material, the measured
 

impedance for the larger.sample will be used to locatethe eigenvalues.
 

_It is obvious from the characteristics of'materials considered in
 

this study that an optimum impedance-exists where sound attenuation
 

through-aoliner is maximized. Within-this.study, however, no attempt
 

was made to model.duct- liners-for optimum.impedance characteristics.
 

Instead, liners of different-acoustic materials were chosen for­

evaluation that could be readily inserted in the test section of the
 

duct system.
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4.2 	Eigenvalue Search Technique
 

The.eigenvalues for alined duct-section are determined by solutions
 

to the local reaction boundary.conditions., These solutions were located
 

by the-eigenvalue.search techniquedescribed-in- Section 2.6. To
 

establish the validity of-thismethod, preliminaryttests were performed
 

and.compared with the results given by Molloy and Hanegman (18) and by
 

Zorumski and-Mason (20). In.all cases,,the-contour'integration
 

located the region containing the eigenvalue and the first approximation
 

converged to.the exact value using the.iteration technique. This
 

method thus provided an efficient and.reliable method for locating the
 

complex eigenvalues for a liner material.
 

The-behavior of eigenvalues for the fiber metal liner FM 1 will be
 

described for individual circumferential-modes.
 

The eigenvalues at-several frequencies for a non-spinning mode,
 

m = 
0, are shown in Figure 4.6. The real components of the eigen­

values are interlaced between the.real-zeroes of the Bessel function
 

J and its derivative ' . These values, are the extreme cases for soft
0 	 0 

and hard duct walls respectively. 
The general trend of the frequency
 

dependence of these modes can be seen in each figure. 
A graphical
 

representation of the coalescence~ofeigenvalues can be seen from the
 

Morse Charts (8) and from-Zorumski.s (20) treatment of the behavior
 

of eigenvalues and double eigenvaluesfor~different.values of-impedance.
 

The attenuation for individual radial.modes within a lined duct is
 

related to the eigenvaluesbythe-wavenumber in.the axial direction
 

and Equations 2.22 and 2.35. .This attenuation is plotted for non­

spinning modes for the.fibermetal material.in Figure 4.7. There are
 

definite delineations between attenuation for each mode both above and
 

http:material.in


-Im (Xb)
 

2 

0] 

A 800 Hz 
1250 Hz 

D 1600 Hz 
<c 2000 Hz 
o 2500 Hz 
0 2700 Hz 
O 3100 Hz, 

--­ J'=0 
0 

A 4.6
' I' 

I 
Ia o 

[] 
I 

I i I 

li." 2 , 3 4 5 6 7 8 9 Re(Xb) 

Figure 4.6 Ordering of Eigenvalues for FM 1 Liner, m = 0
 



dB/ft 

120 )­

100 - 10 

80 0 

20 0% 

40 " 

20 - - 0 

.6 

Figure 4.7 

1.0 1.4 1.8 2.0 

Frequency (KHz) 

Attenuation for Successive Radial Modes for FM 1 Liner, m = 0 



89 

below the hard wall cut-,off frequencies. -Near these frequencies, the
 

attenuation.of individualmodes is-on-the same order. Therefore, there
 

is a-little distinction between the attenuation characteristics of
 

two-successive radial modes in this.frequency domain;
 

Similar results for eigenvalues-are-given in Figure 4.8 for an,
 

m =_1 spinning mode for the same material. The-same ordering of eigen­

values can be seen with respect to the:-zeroes for the Bessel function
 

J and its derivative, J' . The attenuation for the liner is shown in1 1 

Figure 4.9. Again,.there are clear distinctions between the atten­

uation for successive radial modes except near the cut-off frequencies
 

for-a hard-walled duct.
 

The treatment was intended to show-the-basicbehavior of successive
 

eigenvalues for two types of materials-with the impedance characteristics
 

given.in Section 4.1. No cDnclusions can be drawn from this analysis
 

about.general eigenvalues for materials with arbitrary impedance
 

characteristics. The general behavior of.eigenvalues for arbitrary
 

impedance-is given by the Morse Charts.(8). To-obtain the exact eigen­

valuess it is best to obtainsolutions-directly from Equation 2.32.
 

-A~complete set of eigenvalues were-determinedfor each material
 

throughout the frequency range of generation for each mode.
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4.3 Multisectioned Duct Model.
 

The-analysis of a multisectioned duct.system was presented in
 

Section 2.5. This-analysiswillnowbe modified to consider an anechoi­

cally 	terminated duct with three sections. Figure 4.10 shows the duct
 

system.and the appropriate interfaces-between each section. The
 

resulting matrix equation for the system is givenby Equation 4.1.
 

"+1 +2 1 +3 +41 +5 
t
F----A A -p -A A I ---W-A 

1 -2 II 1 

1 	 23 45
 

Figure 4.10 Multisectioned DuctMode
 

A computer program was developed -to.analyze.the mathematical model
 

of the experimental duct system. The.admittance and eigenvalues for
 

each section were.assigned to:the proper interface and were used to
 

calculate the transmission and.reflection.matrices between each section.
 

Thetreal eigenvalues for the hard=walled section are-known (4) and the
 

complex eigenvalues for the lined.section-were determined from measured
 

impedance characteristics and the search,technique-described.previously.
 

The source distribution and Equation.2.72 must be modified to
 

account for the experimental source array. generation of a circum­-For 


ferential mode of order M, the-equation becomes 
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The relative amplitudes of the source strengths are related to their
 

radial positions and the radial pressure distributions as presented in
 

Figures 2.2 and,2.3. Using the-momentum equation and the modal orthog­

onality conditions, the source equation becomes
 

{A I } {A1 1}= IQ') (4.3) 

where 

Q T (0) + 4 Q T1(r) + 8 Q 1(r)
{Q} =,f 2 11 3 1 . 

Each coefficient in-the matrix equation is now specified. The
 

matrix equation was developed into a system of 9 x Jm linear equations
 

where Pm is the number of finite terms included in the summation over
 

p. These linear equations'relate individual modal amplitudes at each 

interface to the reflection and transmission coefficients. The modal
 

amplitudes were evaluated using a computer subroutine to solve the set
 

of simultaneous linear equations,
 

Once the .modal amplitudes are determined, the pressure-field
 

everywhere throughout the duct can be-defined. Furthermore, the.
 

transmissionand insertion lossof-a liner can be calculated from
 

these-amplitudes;
 

- The number of radial modes IM considered by this-analysis at each 

frequency, was limited to allpropagating modes and the-next two higher 

order cut-off modes, -Therewas no significant improvement in results 

when additional cut-off modes were included. 
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4.4 Multisectioned-Duct Measurements
 

McDaniel (25) has.performed an-experimental study of.the propagation
 

of higher order modes-through a ductcontaining a finite length liner.
 

Mode shapes throughout the duct were.measured for two liner materials.
 

However, there was no effort to compare-theoretical'calculations with
 

these results. In addition, the liners were simply inserted with a
 

hollow duct, causing an abrupt reduction in the cross-sectional area
 

within the lined section.
 

This study provides a significant-improvement over the initial
 

work-of McDaniel., Progress was made to investigate-acoustic propagation
 

in a-multisectioned duct through-hoth.experimental and-theoretical
 

techniques. An improved-source array was developed to generate higher
 

order acoustic modes.within duct liners. -These liners were inserted so
 

that there was no-change-in cross-sectional area throgghout the duct.
 

This-configuration thus provides-a more realistic application of duct
 

liners~as acoustic treatment. An attempt was made to theoretically
 

evaluate acoustic propagation in-a multisectioned ductby determining
 

the-eigenvalues for a lined-duct.section andI-developing a mathematical
 

model for the system- Finally, sources of.error and discrepancies
 

between measurement and theory were.explained.
 

The soruce array was used to generate higher order modes throughout
 

a range of frequencies in the multisectioned duct system. These modes
 

included.a plane wave, (0, 0) mode,-the-(O, 1) non-spinning mode, and
 

the (1, 1) and (2, 1) spinning modes. Theipropagation of these modes
 

was investigated for each of- the liner~materials described in Section
 

3.6. Measurements of the sound pressure level and radial mode shapes
 

were taken at stations throughout the duct, These results were compared
 



96
 

with the levels and-mode.shapes calculated from the mathematical model
 

for the multisectioned duct. In addition, the propagation of the (0,2)
 

and (1,2) higher order modes was investigated with the fiber metal
 

liner FM 1.
 

There are two distinct sources for error in the resulting duct
 

measurements. First, the slight variation in cross.section throughout
 

the duct will cause errors.in measured mode shapes0 A change of only
 

1/2 inch in the duct diameter becomes significant at high frequencies
 

where this change is of. the order of the free space wavelength. In
 

some sections of the 12 inch diameter duct, there is an increase of 1/2
 

inch-in the diameter in one~direction and a corresponding decrease of
 

the sane orderi at tight 'ngles to this. Thus, the duct is somewhat
 

more eliptical in cross section than round No estimate-of the error
 

produced by~these non-uniformities can be made other than the fact that
 

these variations in circular cross section will tend to redistribute the
 

acoustic energy in the radial direction as well as shift the location
 

of nulls in the radial pressure distribution.. This variation seems to
 

have greater effect on the propagation of spinning modes, This is not
 

unexpected since the majority of acoustic-energy is concentrated near
 

the outer wall fo4 all spiralling waves. Second, the individual-phase
 

differences between elements of the source array generate additional
 

spurious modes together with the desired modes. These spurious modes
 

can include plane waves and non-spinning modes as well as circumferen­

tial modes in both the clockwise and counterclockwise directions.
 

Althoughthey are generated at'a much lower amplitude than the desired
 

mode, their presence will often affect the radial mode shapes. The
 

contribution of these modes is discussed in Appendix A.
 

http:errors.in
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-In the following-figures, the radial mode shapes were measured at
 

the stations shown in Figure 3.1. The duct system contains a finite
 

length liner inserted between the upstream.and downstream hard-walled
 

sections. Measurement positions.at two,upstream locations were chosen
 

to investigate-the radial mode shape-generated-by the source array and
 

the presence of a standing wave. The-standing wave is the result of
 

reflections.at the impedance discontinuity between different duct
 

sections. These reflections causezconversion of energy between.modes and
 

often alter the radial pressure-distribution of the generatedvmode.
 

The,-measurement station at the middle of the liner was chosen to investi­

gate the change in radial mode.shapes-due.to the complex eigenvalues for 

this.section. . Since the anechoic termination eliminates reflect on from 

the-end. of the- duct, only one :measurement station. was chosen. in the 

downstreamsection. In this section,.the.eigenvalues.are the same as
 

for -the upstream section and the mode shape resorts to the form of the
 

incident waves.
 

In some cases, the mode -shape at.the.downstream,station has no
 

relationship.at.all-to the.generated.mode,.despite the fact that the
 

eigenvalues.are the.same as for the-upstream.duct.section. There.are
 

two~reasons for this. First,.there-are.components from other radial
 

modes-of.the same circumferential order-which make up the pressure
 

distribution at this position. These-components are the result-of modal
 

conversion..of energy-at each-interface.before.this section. Second,
 

the-spurious modes contributed by.the-source array can appear downstream. 

Theinpresence.at upstream positions, is-not-evident.since these modes 

are generated at a much-lower level than-the desired mode. However, 

since the transmission loss of the liner for individual modes is 

http:Theinpresence.at
http:shapes-due.to
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different, these modes are often evident-atdomnstream positions
 

because they are not attenuated-to the.same extent as the desired mode.
 

This result is particularly noticeable at-high frequencies where several
 

lower order modes can propagate. Therefore, when spurious modes exist
 

and-the-major component of the propagating.mode is attenuated, an un­

recognizable mode shape which is the combination of several residual
 

modes results,
 

In order to see the relationship between the mode shapes and levels
 

at stations throughout the duct, the-mode shapes will all be presented
 

in one.figure.. Selected mode shapes.at.several frequencies for different
 

modes.willbe presented for-one liner,.FM.l. Also, modes for different
 

liners which exhibit interesting behavior will be presented.
 

.The-source strengths of individual-elements of the array can be
 

used to calculate the sound.pressure-levels throughout the duct.
 

However,.these levels will be normalized.to.the maximum level in the
 

upstream.section and plotted as relative levels in the following
 

figures.
 

The lowest order mode in a duct is the plane wave. 
 It is possible
 

to generate this mode up.to the.cut-off frequency for the first non­

spinning radial mode. Within this frequency range, the first spinning
 

mode can also propagate but is suppressed due to source-symmetry and
 

phasing of the array. Mode shapes measured for a plane wave generated
 

at 500AHz are shown in Figure 4.11when an FM 1 liner is inserted in 

the-test section of the-duct.system.- At.this frequency, the plane wave 

is the.only mode-that can propagate-without exponential attenuation in 

the -hard-walled section. ' The relative.sound.pressure levels and mode 

shapes as calculated from the multisectioned duct analysis are also
 

http:shapes.at
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presented. Despite.the.presence-of-plane-waves at upstream and down­

stream-positions, a plane wave does not exist within the liner section.-


This.result is in agreement with Morse-(33) who showed that a plane wave
 

could not exist within the lined section of a-duct. The deviation from
 

plane.wave behavior in the liner is further,emphasized in Figure 4.12
 

where a-planewave is generated,at800 Hz. Again, a well defined plane
 

wave-existsboth above and beyond the.linerbut.not in-the liner. In
 

both.cases,-there. is,.goodagreement-between-measurement-and theory-for
 

both-the acousticllevels and the.mode shapes at each of the duct :
 

stations. Plane.wave propagation-at-1250.Hz,.which.is.just -below the
 

cut-off frequency for the-firstnonspinning~radial mode, is shown in
 

Figure.4.12. In-this case,-the-levels-upstreamand-within the liner are
 

fairly-wellpredicted.but-there is an indication of a standing wave in
 

the-downstream.section.
 

The-first non-spinning radial mode-(0,-).can be generated at fre­

quencies-wellabove its cutroff frequency. Furthermore,,this mode is
 

being-generated in a frequency range-where.the- (, 1) and. (2,.i)
 

spinningamodes~can.also.propagate.. The.propagationof these-modes.is
 

restrictedbythe shading and phasing-of.the source array. 
Mode shapes.
 

at 1390 Hz-at-the four duct.stations.are-shown.in Figure.4.14. The-nulls
 

in the-mode shapes exhibit a noticeable.shift in radial-position which
 

is predicted-bytheoryo This shift is-due-to the modal.conversion-of
 

energy at the-interface of each section -Also, the standing i6ave
 

pattern is emphasized by the difference. in-levels between positions 1
 

and-2.- Furthermore, this standing-wave-is-predicted-by theory with the
 

station.closest to the liner having a higher level. 
The mode shapes at
 

1600, 2000 and 2500 Hz, well above the cut-off frequency, are shown in
 

http:Figure.4.14
http:stations.are-shown.in
http:these-modes.is
http:Figure.4.12
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Figures 4.15, 4.16 and 4.17. 
Again, similar results for the shift in
 

nulls.are noticed. Despite the-well-defined.mode shapes upstream, the
 

mode shapes in the downstream section-show-considerable,distortion in
 

each case. This is a result of the conversion of energy between the
 

(0,-i) mode and the (0, 0) mode or.plane.wave, both of which can
 

propagate without exponential attenuation-at this-frequency.. The mode
 

shapes within the liner are fairly well-predicted, indicating that the
 

local-reaction boundary condition is-a valid assumption. It is inter­

esting to note the differences-betweenmode.shapes within the liner as
 

a function of frequency. Although .theeigenvalues for the liner at a
 

particular- frequency are-dependent-on.the. impedance, these-modes are
 

similar, in.shape This is. because the.impedance,does not exhibit.any
 

rapid-variations within this frequency range and is only slowly changing
 

in value..
 

By properly adjusting the.phase.and.amplitude of eachelement in
 

the-source array,.the first spinning-mode can.be generated.in themulti­

sectioned duct.. Radial mode shapes-throughout the duct-are shown in 

Figure 4.18-for-the (1, 1) mode at.670-Hz...Although.the mode shapes are 

fairly-well defined, there is a discrepancy.between the.predicted levels 

at-each: station, .This can-be-explained-by: the presence of:a-significant 

standing wave-due- to- the anechoic-termination.which exists near the. cut­

off--frequency. - Improved.agreementbetween.measurement, and theory is 

seen in-Figure 4.19 for this same.mode-at-1000.Hz. The higher level of 

the-.station nearer the.liner. is.predicted-by.theory as.well.as the modes 

shapes-in-eachsection. Mode.shapes-at-1500Hz-are-shown in Figure-4.20. 

Theupstream. mode- shapes. are. fairly-well. defined and. are reasonablein. 

agreement with theory. The absence of a clearly defined null at the
 

http:same.mode-at-1000.Hz
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center-indicates contamination from additional nonrspinning modes.
 

Within.theJliner, the mode shape is accurately predicted over the major­

ity of the radius. Near the center,-there.is a complete absence of a
 

null.- Thus the total acoustic pressure-at this position contains the
 

generated.spinning mode at a reduced-level-and contributions-from non­

spiniing-modes-...In.the.downstream section,:the-mode shape-has no
 

resemblance to.the spinning-mode-wbich should have a-null-at the center.
 

The-measured mode-shapes would seem to, be a.combination of a plane wave
 

and.(O,.l)-mode.- This-is not unexpected-since-both-the.plane-wave and
 

(0,-1).mode.can -propagate at.this frequency-without-exponential.
 

attenuation. In addition, the-downstream level,is.much higher than
 

predicted-by-theory.. This.is-because-the total-upstream-acoustic
 

pressure-contains: components-of.nonspinning-modes which: are: not
 

attenuated to the same extent by the liner as the generated spinning
 

mode.
 

To generate a-spinning mode of-orderzm = 2, only the outer ring of
 

speakers was-used. The use.of additionaLspeakers is. restricted by
 

Equation-3.1..-As.a result.of-using-only. the.eight-outer speakers to
 

generate-this-mode, the-modal purity~suffers-considerably. Mode shapes
 

at 1250.Hz-are shown,in.Figure. 4.21. -The.nulls at the center of the duct
 

are-obscuredby the presenceaof.additionalmodes. Again,.the.mode shapes
 

upstreamand in.the-liner.are-fairly well-predicted by theory. The
 

downstream-component appears to be a-residual.plane wave and has no
 

relationship to-. the spinningamodes.characteristic-of upstream propagation.
 

The-transmission.loss-of nearly 40 dB.across the-liner for circumferen­

tial-modes..of order-m = 2,.removes.the.major components.of the (2,.1)
 

spinning.mode and leaves only a pressure-distribution which is the sum
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of components of several residual modes. At a higher frequency of
 

1600-Hz,.the modal puritybegins to-deteriorate, not only downstream,
 

but-within the liner. The upstream mode.shapes show contamination from
 

other-modes because of the absence of.the-nLufat-the.center. The (2, 1) 

component of the acoustic pressure is-attenuatedas it.passes through 

the.liner leaving.an.unrecognizable-mode-shape downstream. This mode 

vaguely resembles (0,.l) mode-with a-pressure maximum.at the center-.of 

the .duct. This mode-is one of the-least-attenuated modes: by-thez liner
 

at this-frequency. The-reversed levels oftheupstream positionsis
 

also-predicted in this case.. Due to the-noticeable.contamination-at
 

position 2,littleoagreementwith theory can be expected within the liner
 

and in the downstream section.
 

The propagation of several-additional, higher order modes was
 

studied for the same fiber metal liner.. In Figure 4.23 the (0, 1) mode
 

is being generated at 3000 Hz, which is.significantly.above its cut­

off-frequency as well as the cut-off frequency of- the second radial mode
 

(0, 2). The (0, 1) mode-shapes arewelldefined in the upstream section
 

and-there is no indication of the (0,-2)-mode. The levels and mode
 

shapes throughout the.duct.are reasonably.predicted by theory. It is
 

not -unexpected that the agreement-for-this-mode would not be as good as
 

for-the previous lower order modes-since-three radial modes of the same
 

circumferential order can propagate-at- this- frequency. Furthermore,
 

the-slight-variation in duct-geometry.andduct diameter mentioned
 

earlier would-have-a greater effect.on-acoustic-propagation-at high
 

frequencies-where the-wavelength,is-small and of the same-order as
 

the-non-uniformities in the duct.
 

The (0, 2) modeis shown-in.Figures.4.24-and 4.25. At.2700 Hz,
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the upstream mode shapes are in fairly good agreement with theory.
 

Within the liner, the mode shape begins to deviate from the form predicted
 

by theory.and at the downstream position,.the mode shape is distorted
 

considerably. At 3100 Hz, there is further deterioration in the modal
 

purity at upstream positions which is reflected throughout the duct.
 

Nevertheless, the mode shape in the liner is fairly well predicted.for
 

the.resulting boundary conditions.and.eigenvalues.. The downstream
 

component indicates contamination from plane waves,and the level is
 

accordingly higher than predicted by.theory for the (0, 2) mode.
 

The (1, 1) spinning mode is shown in.Figure.4,26 at a frequency of
 

2499 Hz. This mode is generated.at a frequency above the cutroff
 

frequency for the second radial mode.-.Although. this mode is not as
 

clearly defined upstream as for previous.eases.at lower frequencies, the 

relative-levels.at the- two-stations-are-predicted..The-mode.shape in the 

liner and.in the downstream section are in good agreement with predicted 

mode shapes. 

The second-radial mod with circumferential order of m = 1.is shown 

in Figure.427-at 2300 Hz.. The null at. the center is well defined for 

both-upstream mode shapes. There is a difference between the levels.at
 

the-wall and the radial position of the-nulls. This could occur as the
 

result-of the non-uniformities and-changes.in the.circular cross 
 -

-section-throughout the.duct. The measurements within the-liner and
 

downstream.section agree with theory for both the levels and the mode
 

shapes. 

-Mode- shapes for an incident.plane wave, (0;.0) mode, were in­

vestigated for each of the remaining liner materials. The relative 

levels and mode shapes at stations in the duct system are shown in 

http:levels.at
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Figure 4.28 for a plane wave at 800 Hz and the liner Perf 1. 
Similar
 

results are shown at the same frequency for the liner FM 2 in Figure
 

4.29. The increased attenuatibmfor the fiber metal liner as compared
 

to the perforated panel liner can be.seen in this figure. The difference
 

in attenuation between a one foot and two foot glass fiber liner for a
 

plane wave at 800 Hz is shown in Figures 4.30-and 4.31. The agreement 

with theory is good in all cases, The-radial mode .shape within each 

liner has the same general form despite the-different-eigenvalues for 

each material. This is because the plane wave is the only circumferen­

tial mode of order m = 0 that can-propagate at this frequency without 

exponential attenuation. There is no-conversion of energy by reflection 

andwtransmission at each interface to lower order radial modes.and 

little, if any, conversion to higher-order modes. This is evident by
 

plane wave behavior at positions on-each.side of the liner, The mode
 

shapes-at each station for a-one foot glass fiber.liner at 1250 Hz are
 

shown.in Figure 4.32. There is still reasonable.agreement-between
 

measurement.and-theoryo This.indicates..that.the:localreaction boundary
 

condition is valid for the glass fiber material for the attenuation
 

produced by a plane wave6
 

The first non-spinning radial mode,. (0, 1) was investigated next 

for the different.liners. At 1600 Hz,-the.radial mode shapes for the 

liners Perf 2 and FM.2 are shownin.Figures 4.33 and 4.34. The mcde 

shapes, throughout the duct are.welLdefined.- Due to the small attenua­

tion of the perforated,metal liner for the (0, 1) mode, it is difficult
 

to clearly see the.radial mode shape.within.the liner-which is
 

by the eigenvalues. This mode shape.is.shown in Figure 4.35 and compared
 

with theory. The shift in the radial position of the null is probably
 



_ _ _ 

-- -

- -

0 

-10 

-20 

3 - AA A A­
. -- T-.. -:_. .-­_-

-40 Theory 
Station I.A 
Station 27 
Station 30 

-50 Station 40 

0 1 2 3 4 

Radius (inches) 

Measurement
 

...
 

5 6 

Figure 4.28 Radial Mode Shapes for (0,0) Mode, 800 Hz - Perf 1 Liner 



0
 

-10
 

-20 - ^
 
A A 

H -30 
4Theory Measurement
 
rStation 
 I n 

Station 2'7 
Station 30 -- -

Station 40 ....
 

-50
 

Radius (inches)
 

Figure 4.29 Radial Mode Shapes for (0,0) Mode, 800 Hz - FM 2 Liner 



0 

-10 

oq -30 

O -40 TheoryStation l Measurement 

C1 Station 2 7 
Station 30 

-50 Station 40 

S0 23 45 6 

Radius (inches) 

Figure 4.30 Radial Mode Shapes for (0,0) Mode, 800 Hz - One Foot Glass Fiber Liner 



0 

-10 

-20 

i-30 

0 00 00 0 0 

-40 

-50 

Theory 

Station 1 A 
Station 2 v 
Station 3 0 
Station 4 0 

Measurement 

-­

-­

.... 

0 !I 1 - I I2 3 

Radius (inches) 

-4 I56 

Figure 4.31 Radial Mode-Shapes for (0,0) Kode, 800 Hz - Two Foot Glass Fiber Liner HU• Ln
 



0 

-10 

-20O 
2---

-
0-

-- o -- o 
0-

- O 
-

O. 
-

_- -- " 

S-30 

C) 

-50 

Theory 
Station 1 zA 
Station 27 
Station 0 
Station 4 

Measurement 

- -

-. '. 

0 1 

Radius 

3 

(inches) 

4 5 6 

Figure 4.32 Radial Mode Shapes for (0,0) Mode, 1250 Hz - One Foot Glass Fiber Liner 



-10 

-20 

.o -30 \ " 

-40 
Theory 

Station 1 A 
Measurement 

/ b a / 
Station 2 '7 "o 
Station 3 0 

-50 Station 4 0 ... \ 

SI I I 

0 1 2 3 4 5 6 

Radius (inches) 

Figure 4.33 Radial Mode Shapes for (0,1) Mode, 1600 Hz - Perf 2 Liner 



0
 

-10 
-20 CL. 

-0 " / 

4Theory- Measurement
 
E-40 Station 1 A 

'. 0'Station 2\ 


Station 30 -- "- \I \
 
Station 4 


-50,° 
-

/
 

II I I I I
 

0 1 2 3 4 5 6
 

Radius (inches)
 

Figure 4.314 Radial Mode Shapes for (0,I) Mode, 1600 Hz - FM 2 Liner 00 



0­

-10 

-209 

S-30 -

-40 

r4 

Station 3 
0 Theory 

Measurement 

0 

0 

\o 

\ 

0 

0 

-50 

0 1 2 

Radius 

3 

(inches) 

4 5 6 

Figure 4.35 Radial Mode Shape in Perf 2 Liner, 1600 Hz
 



130
 

due to duct non-uniformities. The mode.shape within the fiber metal liner
 

can-be explicitly seen and is fairly-well predicted.by the eigenvalues
 

for this material. Mode shapes at the-same frequency are shown for the
 

one-foot glass fiber liner in Figure.44 36. There is reasonable agree­

ment-with theory for the mode shapesand-levels at upstream and down­

stream.positions. The general.form of. the mode shape within the
 

liner is defined. It is interesting-that despite the reasonably pure
 

(0,-l).mode in the upstream section for.all.previous cases, the mode
 

shapes-within,each liner, are completely.different. .These separate
 

mode.shapes are predicted by the eigenvalues.for each material.
 

Furthermore,.since-the plane wave can.also propagate at this frequency,
 

there can be-conversion of energy.between. these modes for reflection
 

and-transmission at each interface,before and after the liner. 
Mode
 

shapes-at 2000 Hz for the liners.FM.2and.Perf 1 are.shown.in Figures
 

4.37 and 4.38. .Again-, these different-mode shapes within each-liner are
 

predicted.by.theory. There is reasonable agreement between measurement
 

and-theory at all positions. The (0, l)-mode at 2500 Hz is shown in
 

Figure.4o31 for the liner Perf 2. .The.agreement with theory is fair
 

but-since there is little attenuation.for.the perforated panel, the
 

distinction,between mode.shapes is.not-clearly defined. Therefore, the
 

mode.shape within the liner is shown in Figure 4.40 and compared with
 

theory. .The.null.measured near the.outer wall is exactly predicted
 

by the eigenvalues.for this.liner..
 

The first spinning mode was next investigated for each of the
 

liners. The (1, 1) mode at 670 Hz is shown in Figure 4.41 for the one
 

foot glass fiber liner. The significant attenuation of this mode can
 

be seen from the difference between upstream and downstream levels.
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The highest level at the upstream station nearest the liner is pre­

dicted by theory. The levels within the liner and in the downstream
 

section are also fairly well predicted.by theory. Mode shapes at 1000 Hz
 

are compared in Figure 4.42 for the one foot glass fiber liner and in
 

Figure 4.43 for the liner, Perf 2. In both cases, there is good agree­

ment between measurement and theory at-all positions. The mode shapes
 

within.each liner have.the same general.form despite the different
 

eigenvalues for each material. This is-because the (1, 1) mode is the
 

lowest radial mode of circumferential order m = 1 and-there is little
 

conversion of energy to the exponentially attenuated higher order radial
 

modes. For the (1, 1) mode at 1500 Hz-in Figure 4.44, there is very
 

little modal purity in the upstream mode-shapes. The absence of the null 

at the-center. indicates contamination.from,non-spinning-modes. Evidence 

of -this is confirmed for downstream-mode shapes which have the form of 

(0,-0).modes or plane waves0 Finally,.an.interesting mode shape within 

thCliner, Perf 1, is shown in Figure 4o45 'for the (1, 1) mode at 1800 Hz, 

just below the cut-off frequendy for the hdkt higher tadial mode. There 

is good agreement for the upstreammode.shapes and the radial mode 

shape-in the liner is reasonably predicted. At high frequencies, the
 

agreement.betweenwmeasurement- and.theory.was-good for the fiber metal 

and-perforated panel liners but-was-poorer for the glass fiber materials.
 

-Finally,.the (2, 1) spinning-mode-.was.investigated. Since only
 

the.outer ring.of speakers could be.used-in.generating this mode, there
 

was-a corresponding decrease in the-modal,purity for the generated mode.
 

-,Mode;shapes for the (2,1) mode at- 1250 Hz are shown in Figures
 

4.46 and 4.47. for the one foot glass fiber-liner and the liner FM 2 ­

respectively. The.lack-of.modal purity is evident from the radial 

http:Finally,.an
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pressure distribution near the center. The presence of non-spinning
 

circumferential order modes obscures the null at the center. 
Components
 

of residual plane waves are evident at downstream locations and even
 

within the liner. Nevertheless, in both cases, the general form of the
 

mode is preserved throughout the duct and the agreement with theory is
 

reasonable. At higher frequencies, the.modal purity for the (2, 1)
 

mode deteriorates even more and there were corresponding differences
 

between measurement and theory,
 

For each of the liner materials considered, the agreement between
 

theory and measurement of mode shapes and levels in the multisectioned
 

duct for both spinning and non-spinning-modes was generally good.
 

However,.this agreement was often poorer.nearer the cut-off frequencies
 

of individual modes. Despite the ease of generation of higher order 

modes near their cut-off frequencies,. a- significant standing wave is 

present which obscures the results, especially for spinning modes. 

Eventin.cases-when the agreement with.theory was poor, the mode shapes 

and-the relative levels of acoustic pressure at each station were fairly
 

well defined by theory.
 

In the preceeding, figures, discrepancies between measurement and
 

theory cannot be attributed solely to either experimental errors or to
 

assumptions for the mathematical model. -This is because a complex
 

process is involved to finally calculate.the-levels and mode shapes in
 

a multisectioned duct, For example,. a. measured.impedance is used to 

calculate eigenvalues which are then used in the multisectioned duct
 

model to predict acoustic levels throughout the duct. These predicted
 

levels-are then compared to experimental-measurements in the duct
 

system. Sources of error for experimental measurements were discussed
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earlier. 
It is obvious that any error along this path would contribute
 

to errors.between final measurements and-theory.
 

Assuming that the average impedance-values determined from standing
 

wave tube measurements were representative of the entire liner, the
 

complex.eigenvalues calculated from.the.local,reaction boundary condition
 

should predict the mode shapes and attenuation throughout the duct.
 

The-results indicate that the local, reaction boundary condition is a
 

valid-assumption for both the-fiber.metal liners and the perforated
 

panel-liners. For a glass fiber material, this assumption is not always
 

true.- In cases where there-is moderate sound attenuation, this boundary
 

condition can,.however,.be applied. When the attenuation for a mode
 

increases to 
a.point where it becomes comparable to-the attenuation within
 

theubulk.material, the local reaction boundary condition-is invalid for
 

the-reasons.discussed in Section 2.4. .The:propagation constant would­

thenbe better predicted by the extended reaction boundary condition.
 

http:can,.however,.be
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4.5 Acoustic Performance of Duct Liners -

The acoustic performance of a duct liner for individual modes can
 

be determined from the transmission loss and the insertion loss. 
 These
 

parameters were described in Section 2.5,
 

-The use of these parameters provides.a significant improvement
 

over the experimental work of McDaniel (25) for evaluating the acoustic
 

performance of finite length duct liners. 
McDaniel measured radial mode
 

shapes at positions in front-of and.behind-the liner. The average of
 

upstream levels was compared with the downstream levels to determine
 

the-attenuation of the liner.- This method:wasanimprovement over
 

previous 
test methods since the propagation of individual higher.order
 

modes at discrete frequencies was analyzed. However, the presence of
 

a standing wave in front.of the-liner could-yield little true information­

about: liner-attenuation when upstream levels were averaged for comparison
 

with-downstreamlevels.
 

. A comparison between the transmission-loss and.insertion loss for
 

a 28+i/- inch length of FM 1 is presented.in Figure 4.48 for the first
 

higher order non-spinning and spinning-modes.respectively. There is
 

little-difference between the transmissionjloss and insertion loss
 

for-an individual mode at the upper limit of its frequency range.
 

Since-the.insertion loss describes the-difference in sound power/level.
 

withzand.without-a liner, this parameter.will.be used to compare the
 

performance of different acoustic materials.
 

- The insertion loss of each.liner-was-studied-throughout-a range of 

frequencies for an individual.mode The-length of the liners were all 

chosen-to,be 28-1/2" long so that relative comparisons can be made
 

between the attenuation of different materials. 
 Figure 4.49 shows the
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insertion loss throughout the frequency range for generation of a plane
 

wave. The attenuation for each material increases with frequency. 
In
 

Figure 4.50, the insertion loss of the (0, 1) mode decreases initially
 

with frequency and remains relatively constant for each material. The
 

insertion loss for the (1, 1) and (2, 1) spinning waves are shown in
 

Figures 4.51 and 4.52 respectively. In-both cases, there is 
con­

siderable attenuation throughout the frequency range for each mode.
 

This-is not unexpected since for spinning modes, the majority of energy
 

is located near the outer duct wall next to the liner material. There
 

is an increase in attenuation near the-cut-off frequency at the beginning
 

of each frequency range. 
This is because the group velocity of the 

wave is zero at the cut-off frequency and the energy effectively remains
 

within the duct. 
Thus, the "dwell time" of the wave within the duct
 

is longer near 
cutroff.and serves. to produce.greater attenuation.
 

- Theattenuation-of the non-spinningmodes complicates the problem
 

of having residual modes downstream of the.liner in a multisectioned
 

duct.. Since these modes are not attenuated by the liner to the same
 

extent as 
the spinning modes, their presence is frequently noticed in 

mode shapes at: positions beyond-the.linero- ­

* The frequency dependence of. the insertion loss for individual modes
 

is shownxin Figure.4.53 for a 281/2.inch.length of FM 1. 
Even at the
 

same.frequency, the attenuation for individual modes differs. 
Thus, it
 

becomes difficult to assign a single number rating to.a liner as a
 

measure-of-its effectiveness in attenuating,sound. 
Further information
 

regardingsourcecharacteristics and.modal.content are necessary to
 

give an estimation of the' effectiveness of an acoustic liner.
 

The attenuation for individual modes is not directly proportional
 

http:Figure.4.53
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to the length of the liner. The insertion loss of different modes for
 

one foot and two foot lengths of glass fiber material are compared in
 

Figures 4.54 through 4.55 to illustrate this point. The insertion loss
 

is not exactly doubled for the longer liners and is sometimes greater
 

and-sometimes less than twice the attenuation for the shorter liner.
 

This is because the attenuation is a result of the reflection at the
 

impedance discontinuity between the ends of the liner and the hard-walled
 

duct as well as the transmission effects through the liner.
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CHAPTER V 

SUMARY, CONCLUSIONS AND RECOMMENDATIONS 

This research program has achieved its goal of understanding the
 

behavior of acoustic propagation in multisectioned ducts. In addition,
 

materials used in the study were evaluated, Developments in both
 

experimental and analytical techniqueswere..achieved as a result of this
 

work andwillbe described.in-this section. Furthermore, interesting
 

topics for future research are outlined,
 

The propagation of plane waves and higher order modes in an infinite
 

hard-walled circular duct was first described, An understanding of this
 

processxis necessary for study of more complex cases of acoustic
 

propagation. This effort was then expanded to-consider propagation in
 

ducts lined with different acoustic-materials.
 

The fundamental acoustic properties of materials representative of
 

three types of duct liners commonly used in different applications
 

were studied. These included a porous,glass fiber material, a sintered
 

fiber metal material with an air cavity backing, and a panel of Helmholtz
 

resonators. Expressions were developed,to 
predict their acoustic
 

characteristics and the normal impedance-measured by a standing wave
 

tube was compared with values calculated from theory. In all cases,
 

except.for the porous.material, therewas good agreement between measure­

ment and theory throughout the entire frequency range. This ability
 

to-model a liner material and predict its impedance is a valuable tool
 

for-designing liners with optimum attenuation properties.
 

- The properties of these materials as.duct liners were studied 

with emphasis on determintion of.lcoal.versus extended reaction boundary
 

conditions, The local reaction boundary condition was valid for the
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fibernmetaltand resonator cavity type material. However, for cases of
 

significant sound attenuation within a duct, the extended reaction
 

boundary condition must be adopted for-liners of porous material.
 

A method using both contour integrations and an iteration technique
 

was-developed to find the complex eigenvalues for a liner under the
 

assumption.of a local-reaction boundary.condition. This search technique
 

provided.an efficient and reliable.means.for locating successive eigen­

values in-the complex plane for an.arbitrary complex admittance.
 

Once the fundamental properties of acoustic propagation in lined
 

andtunlined.ducts are understood, these.effects may be combined to con­

sider propagation in a duct containing successive lined and unlined
 

sections. Due to the changes in.liner.impedance for each finite section
 

of-the.duct, an incident acoustic.wave is-partially transmitted and
 

partially.reflected at the interface between different sections. 
Using
 

a matrix technique, relationships were developed to account for the
 

acoustic coupling between sections of a hollow circular duct with no
 

flow. The modal amplitudes of the sound field at each interface within
 

the duct are then defined in terms of modal transmission and reflection
 

matrices. For a circular duct with multisection liners, the reflection
 

effects are proportional to the difference in acoustic admittance
 

between.adjacent liners. Thus, it is.possible to take advantage of the
 

reflection effects between sections as well as the transmission effects
 

of each liner to produce attenuation. Because of this characteristic,
 

a combination of different liners could perform significantly better
 

in attenuating sound than a continuously,lined duct. A computer program
 

was-developed to model the multisectioned duct based on the admittance
 

and eigenvalues for each section.
 

http:provided.an
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A complex source array consisting.of two concentric rings of sources
 

was-developed to generate plane.waves and.both.spinning and non-spinning
 

higher order modes in a duct. These modes-could be generated at their
 

cutroff frequencies and throughout a-frequency range extending to the
 

cut~off frequency.for the next higher radial mode. Through individual
 

control of the response of each.element,. the array provided phase and
 

amplitude, control in the radial, as well.as circumferential, directions.
 

The-radial dependence of the measured mode shapes was enhanced 
con­

siderably-.by the design o- this unique array.
 

Once it was established that the source array could generate modes
 

with a-reasonable degree of.purity, the propagation of higher order
 

modes in a multisectioned duct.was studied. The duct system consisted
 

of an-anechoically terminated duct 12 inches in diameter with 3 sections.
 

Mode shapes.generated included the (0,O).plane wave mode, the (0, 1)
 

non=spinning-mode, and the (1, 1) and-(2,.l) spinning modes. Measure­

ments.of.attenuation and.radial.mode shapes.-were taken throughout the
 

dut.t-when-a finite length liner was-inserted.between upstream and down­

stream.hard-walled sections. Materials.tested as liners included a
 

glass fiber-material and.both a sintered.fiber:metal and perforated
 

sheet-metal.with a honeycomb.backing. -The.experimental.measurements
 

were-compared-with results calculated from-the mathematical model of
 

the-system. There was generally good agreement between measurement
 

andutheory-for both non-spinning,and.spinning: modes, The-comparison
 

indicates that the multisectioned duct.analysis.accurately predicts
 

the-mode shapes and levels at stations. throughout.the-duct. Furthermore,
 

the-local reaction boundary condition. isxvalid for the fiber metal and 

perforated panel liners. For low to moderate attenuation of sound, this
 

http:siderably-.by
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assumption.was valid for the liner, of glass-fiber material but should
 

be modified in favor of the extended-reaction boundary condition for
 

significant-attenuation through a.duct lined.with this material.
 

Despite the ability of the source-array.to match the sound field
 

for.both the circumferential and radial pressure dependence, the
 

generation of an individualmode is often.obscured by contamination
 

from additional.spurious modes, These.spurious modes are generated as
 

a result of phase variations between individual elements of the array
 

and-can include plane waves and circumferential modes in both the clock­

wise-and counterclockwise directions. Although they are very seldom
 

noticed in.an.unlined duct, their presence.is often evident in the down­

stream section of a lined duct. In this case, the desired mode and
 

each-,of the.spurious modes are attenuated at different rates by the liner.
 

The contribution of these,spurious modes was analyzed for various
 

phase differences in the array.
 

The attenuation characteristics of each of the liner materials
 

was evaluated by the multisectioned duct analysis. For a finite length
 

liner, the acoustic attenuation cannot be specified in terms of an
 

attenuation constant for a particular mode because reflection effects
 

caused by the impedance discontinuity on each side of the liner must
 

be considered,- This introduces a standing wave within each section.
 

Therefore, the transmission loss and insertion loss were used to evaluate
 

liner.performance for each material, These characteristics were
 

determined as a function of frequency for each mode.
 

The results indicate that there is.greater attenuation for spinning
 

modes than for non-spinning modesfor each.of the liner materials
 

Furthermore, spinning modes of high circumferential order are attenuated
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more than spinning modes of lw circumferential order. There is up to
 

a 16 dB difference between the increasedsoundattenuation of a plane
 

wave for a 28-1/2" length of fiber metal.linerthan for a perforated
 

panel.liner-and over 40 dB differencebetween.the attenuation of the
 

first spinning mode for these same materials.
 

- The superior acoustic performance-of the fiber metal,liners is ex­

plained by the strong reactive component.of. the impedance while the
 

perforated panel liners are predominantly,reactive materials at low
 

frequencies. .The characteristics of these.materials could be used to
 

advantage in designing segmented/liner, configurations of resistive and
 

reactive-liners. Such a configuration.could take advantage of the
 

reflection.effects between successive.liners,of different admittances
 

and-could-easily be analyzed by the-multisectioned duct theory.
 

- A.further significance of multisectioned liners is that modal con­

ditioning.may occur and result in increased.attenuation as its primary
 

effect...Thus, an incident acoustic wave-couldbe.redistributed by an
 

initial-liner section into modes which are.more readily absorbed by the
 

remaining/lining.segments. These aspects provide interesting topics
 

for future'research.
 

The results of the study siggest several areas'.of further research
 

in duct acoustics. Of primary importance is the improved liner perform­

ance that may be obtained for a segmented duct configuration of several
 

.different liners. The multisectionedduct analysis described in this
 

study could easily be extended to consider configurations of several
 

different duct liners. Furthermore, this analysis could be applied
 

to annular or rectangular ducts as well.
 

A complete parametric study of acoustic propagation in a multi­

http:areas'.of
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sectioned.-circular duct would provide.useful information for optimizing
 

sound attenuation for both spinning and-non-spinning modes. Beckemeyer
 

and-Sawdy (2) have-performed such an analysis for a two dimensional duct.
 

Their results-show that the reflection.effects.at the interface,between
 

two..dfferent liner sections.may not-be.as. significant a factor in 

improving sound.attenuation as the.modal.conditioning:between sections.
 

An optimum.two-segment-linerhas been.shown to-consist of an initial
 

reactive liner, followed by a resistive, liner.. In this case, the. acoustic 

energy. within. the first section-is.converted into.modes which are more 

easily attenuated within the -resistive section. Similarly, the optimum 

configuration for a-three segment liner,consists of a combined reactive 
-

resistive-reactive configuration. It would be interesting to compare
 

these results for a two dimensional duct.to-similar configurations in
 

a circular duct for both spinning and-non-spinning.mode. Furthermore,
 

additional liner combinations for a circular.duct should be investigated
 

to optimize sound attenuation for.variousmodes.
 

-.A-limiting-factor in such an optimization:scheme is the infinite
 

number of possible liner configurations.and. the resulting computer time
 

involvedto.analyze these combinations,.-Arnold'(34) has developed a
 

sparse-matrix technique applicable.to.multisectioned.duct analysis
 

which .greatly reduces computer time. -It.would be recommended that this
 

technique be implemented for future-studies- involving extensive computer
 

work., Since:the acoustic characteristics. of both fiber metal and Helmholtz 

resonator.type'materials can be controlled:by the material properties,
 

liners.<.wirh desired impedance characteristics can be designed.
 

Therefore,,the results of optimization studies.should be used to design
 

more-effective sound absorbing duct liners which can be implemented for
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experimental-studies. These studies should include duct systems of two
 

or-more.different liner materials for both annular and hollow circular
 

ducts.
 

Further investigations should, include the effects of mean flow and
 

of various flow profiles on the sound-attenuation produced by segmented
 

liners. This situation would then providea more realistic approximation
 

of theacoustic environment in an actual jet engine inlet duct. When
 

flow,is considered, the resulting eigenfunctions are shown by Zorumski
 

(3) to be non~orthogonal. Due-to the-matrix formulation of the problem,
 

this effect, however, would not seriously-complicate the analysis. When
 

flow is,included, continuity of particle-displacement or particle velocity
 

at-the liner becomes the governing boundary condition depending on the
 

flow profile. A discussion of the.differences between each boundary
 

condition-is given by Lansing and.Zorumski:(1).
 

Additional.experimental work is.warranted to study acoustic
 

propagation and sound attenuation in acoustically lined flow ducts,
 

This work would provide confirmation-of the proper boundary conditions
 

in the presence of flow. Since the source.array developed in the study
 

is-placed at the end of the duct, it could.not,be used with experiments
 

which-include flow, Additional techniques. for generating higher order
 

modest with reasonable modal purity would need to be developed in this
 

case.
 

When a length of porous material is used as a duct liner, the
 

boundary condition at the surface must.be.modified to consider acoustic
 

propagation within the liner as a separate media. This introduces the
 

extended-reaction boundary condition. It would be interesting to compare
 

the-successive eigenvalues evaluated for this boundary condition with
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eigenvalues for the same material evaluated,from the local reaction
 

boundary.condition. The conversion,of energy-between successive modes
 

should also be studied for the extended reaction boundary condition.
 

This analysis might provide information on-optimimum segmented liners
 

consisting of a combination of extended reacting and locally reacting
 

liners.
 

The-acoustic characteristics of-glass fiber.materials, however,
 

could not be as accurately predicted from the fundamental material
 

properties. Therefore, additional work-to describe the acoustic
 

characteristics and dissipation mechanisms of.these and other porous
 

material in terms of various physical-characteristics should.be per­

formed. These results would provide a significant improvement over the
 

phenomenological.approach of.using.a.structure:factor-or effective
 

parameters:determined,from experimental-measurements to explain the
 

attenuation characteristics of these materials.
 

Although acoustic propagation in an anechoically terminated
 

circular duct of three sections with no flow has been the subject of
 

the.study, this analysis-may be easily extended to consider several
 

different configurations, The multisectioned.duct analysis could be
 

applied to annular and rectangular ducts, as.well as to other duct
 

geometries. The matrix formulation used-in this analysis permits
 

consideration of several different duct sections without undue compli­

cations.
 

To provide a more realistic approximation.of.the.acoustic environ­

ment in an-actual jet engine inlet duct,-flow.may also be included in
 

this analysis. The resulting eigenfunctions are shown by Zorumski (3)
 

to be non-orthogonal. Due to the matrix formulation of the problem,
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APPENDIX A
 

THE EFFECT OF PHASE VARIATIONS IN THE SOURCE ARRAY 

It has previously been shown that a spinning mode synthesizer can
 

generate higher order duct modes of a particular circumferential order
 

(29). Phase variations between individual elements of the array will
 

contribute additional spurious modes of a different circumferential
 

order but at a much lower amplitude than the amplitude ofthe desired
 

mode. The-contribution of these modes will be analyzed for an array
 

containing a circumferential ring of N equally spaced elements at a
 

radius ro.
 

The boundary condition for the source array is given by Equation
 

2.72. If each of the elements-has-individual-phase-variations- -, the
 
n
 

boundary condition for generation of a circumferential mode of order X
 

is
 

)
2n Qr6(r~r°) N_ (2imM + n (A.1)
v(r) 2EQ E n 

r n=l N 

Applying orthogonality conditions, this equation becomes
 

27 -m) r N [2no of v(r) T (r) e dr dG= T (ro) Z e[ - (-m) nn=l 

(A.2) 

If 4) = 0, Equation (A.2) becomes 
n
 

N in 
ei -(M-m) = N M-m = gN 

n=l (A.3) 
= 0 Otherwise 

where g is any integer. Therefore, only circumferential modes of order
 

m where
 

REPRODUCIBIITY OF THE 

ORIGINAL PAGE IS POO"R 
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m = M + gN (A.4) 

can be generated. This includes the mode M as well as 
several additional
 

modes of very high circumferential order. The propagation of these high
 

circumferential order modes is restricted by their high cut-off
 

frequencies.
 

When4n A 0, additional circumferential modes; other than those
 

specified by Equation A.4, are generated but at a reduced level. These
 

spurious modes-include-circumferential-modes-in both-the-clockwise-and
 

counterclockwise-directions-.- If these modes can propagate above their
 

cut-off- frequencies, their presence further complidates radial mode
 

shapes.
 

For an array containing eight elements with individual-phase
 

variations, the relative amplitudes of spurious modes, together with­

the desired-mode,-are indicated in Table A.I. 
The speakers chosen for
 

the array designed in- this study, were within-approximately-± 12' in
 

phase. However, the relative levels of-spurious-modes-for-the-examples
 

in-Table A.1 indicate the significance of these phase variations.
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TABLE A.1
 

THE GENERATION OF SPURIOUS MODES DUE TO PHASE
 
VARIATIONS BETWEEN ELEMENTS OF THE SOURCE ARRAY 

4n for 8 elements: -14, -10, -8, 9, 10, 13, 7, -15
 

Generated Mode Amplitude of Circumferential Mode in dB
 

M m0 m=l m=2 m=3 m=-i m=-2 m=-3 

0 0 -18 -35 -28 -18 -32 -27 

1 -18 0 -18 -35 -32 -27 -45 

2 -32 -18 0 -18 -27 -35 -28 

4n for 8 elements: 12, -11, 13, 2, 5, -15, -5, 8
 

Generated Mode Amplitude of Circumferential Mode in dE 

M m0 ml m=2 m3 m=-1 m7-2' =-3 

0 0 -27 -22 -27 -26 -22 -28 

1 -26 0 -27 -22 -22 -28 -21 

2 -22 -26 0 -27 -28 -21 -27 

REPRODUOIBILITY OF THE
 
ORJGINAL PAGE IS POOW
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