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FOREWORD

This report presents the results of a study to access the plasma
disturbance created by a large body of Space Shuttle dimensions
traversing the ionosphere. This study was commissioned by the
Plasma Flow and Interaction Section of the Atmospheric Magnetospheric
and Plasmas in Space (AMPS) science definition working group. The
study was performed by Lee Parker, Inc. of Concord, Mass. for the
NASA, Marshall Space Flight Center under the direction of W. R. Roberts

of the AMPS Task Team.
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CHAPTER 1
INTRODUCTION

The problem of theoretically calculating the structure of the dis-
turbed plasma {frequently referring to the wake and/or sheath) around 2
moving body in space is equivalent to that of solving a complicated sys-
tem of coupled nonlinear partial differential/integral equations. The
equations consist of the Vlasov (collisionless Boltzmann) equations for
the ions and electrons, and the Poisson equation relating the electric
field to the distributions of ions and electrons. The difficulty is
essentially a numerical one because analytic solutions are not possible
(for cases of interest), and there is no unique approach. In cases of
stationary bodies (Parker, 1973 and 1975), as well as mcving bodies
(uther theoretical references of this report), combinations of numerical
techniques (finite differences, iteration, gquadratures, etc.) are required
for treating various parts of the problem. For either stationary or mov-
ing bodies, the choices of techniques and their use to achieve consistent
solutions for any given set of physical parameters (defining body and
plasma) have never been obvious. Innovations are frequently required.
The purpose of this report is to review some of the available techriques
for a moving body (with emphasis on the wake), to describe in detail a
new combinaticn of techniques which appear to be reasonably successful
over a larae range of the physical parameters, and to present sample

solutions as well as the impnlementing ccmputer program.

Various approaches which have teen used for this type of problem are
surmarized in Chapter 2. In all such calculations simplifying assumptions
are made. The customary ones are:

- Collisions negligible.

- Geomagnetic field neqligihle.

- Simple geometry (sphere, disk, cylinder, etc.)

- Simple surface reactions (usually, charqged particles are
neutralized).

-  Prescribed surface emission (usually none, but simplified



photoelectron and secondary-electron emission are
includable).

- Conducting body (usually perfectly conducting, but
finite conductivities are includable).

- Steady state,

These assumptions may be questioned (for example the neglect of time-
dependent phenomena), but they may be at least partially relaxed by employ-
ing known techniques to generalize the calculations. In the interest of
achieving reasonably economical calculations within the limits of available
computers, the above assumptions in their usual form are adopted in the pre-
sent work.

The techniques and computer program described in Chapters 2 and 3 and
in the Appendices have been developed to solve the coupled Poisson-Vlasov
system of equations to obtain distributions of ion and electron density,
and potential, abcut 3-dimensional bodies (with axial symmetry about the
direction of plasma 7low). The program uses the "inside-out" method devel-
oped by the author in 1964, which follows ion and electron trajectories
backward in time from the poirt in space at which it is desired to know the
velocity distribution, to *heir origin in the undisturbed plasma where the
distribution is known.

Briefly, the present approach (see Chapter 2) differs from that of
Call (1969) and Martin (1974) by including both the ion and the electron
thermal motions, whereas Call and Martin represent the distribution of ions
by a cold beam, and of electrons by the Boltzmann factor. The approach
differs from that of Taylor (1967) in that (a) it is applied to 3-dimensional
bodies whereas Taylor treats an infinitely-long cylinder, and (b) the Poisson
and Vlasov calculations are cycled until self-consistency is achieved, where-
as Taylor's calculation is terminated after the first cycle. The approach
differs from that of Grabowski and Fischer (1975) because they (a) assume
that quasineutrality holds throughout space (which is invalid in the very
near wake), and (b) apply their method to an infinitely-long cylinder, Dif-
ferences with other methods are outlined in Chapter 2. The most similar
calculation previously done was for an infinitely-long cylinder by Fournier



(1971), using the inside-out method. In general, the present approach uses
fewer simplifying assumptions and is thus applicable to a larger range of
parameters than other available methods.

Two major advances are represented by the present program, as opposed
to previous approaches, particularly with regard to wakes of 3-dimensional
bodies:

(1) Thermal motions of ions as well as of electrons are treated
realistically by following their trajectories in the electric field.

(2) The technique for achieving self-consistency is promising for large
bodies many orders-of-magnitude larger than the Debye length (the Shuttle-
Orbiter or the moon, for example).

Solutions may be obtained with réasonab]e amounts of computer time by
judicious choices of grid points and other numerical parameters, The
method can be extended to include an arbitrarily-shaped body (presently a
body of revolution). '

The structure of this report is as follows.

Chapter 2 comprises a review and summary of previous approaches, clas-
sified on the basis of how they treat the Vlasov problem (calculation gf jon
and electron densities and currents). In particular, the inside-out method
is treated in detail. The computaiional method for number and current den-
sity quadratures is given in Appendix A. (Throughout the report the words
"orbit" and "trajectory" are used interchangeably.)

In Chapter 3, the method of self-consistent solution by Poisson-Vlasov
iteration is treated. The method of solution of the Poisson problem by fin-
ite differences is described in Appendix B. The "ion-density option" dis-
cussed in Chapter 3 is appropriate for the large-body problem (see also
Appendix B and Chapter 4).

The FORTRAN listing for the computer program, and the descriptions of
input and output data, are given in Appendix C.

Chapter 4 presents numerical solutions for three sample disk problems,
showing the effects of changes in body size and in ion Mach numher. The
results are presented in the form of transverse profiles of ion aonsity,
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electron density, and potential, in the wake. (Data on the sheath ip
front of the disk are available but are not given in this report.) The
key results are the following.

For a relatively small body (radius = 5 Debye lengths), at potential =
-4 kT/e and ion Mach number = 4, there is no prominent wake structure such as
large~amplitude “"bumps" (enhancements/depletions) in the ion or electron density.
The wake becomes filled in between 2 and 3 body radii downstream, and there
is no potential well. The wake disturbance is essentially confined to a
region of length in the axial dimension about 4 radii, and transverse
radial dimension about 1.5 radii.

For a large body (radius = 100 Debye lengths, i.e., larger than has
been previously treated realistically), and for the same body potential and
ion Mach number as above, the wake begins to fill up again between 2 and 3
body radii downstream. The wake disturbance extends more than 6 body radii
downstream, but transversely only between 2 and 3 radii. There is & poten-
tial well near the wake surface of the disk, and quasineutrality is valid
outside of a cone-shaped region near the wake surface (with the disk forming
the base of the cone).

For the same large body, but with ion Mach number 8 instead of 4, the
dimensions of the wake-disturbance region are not significantly changed,
but the filling-up occurs further downstream. The potential well becomes
wider and longer, although the depth is similar. In addition, there seems
to be a central core of essentially ambient density along the axis, for
both ions and electrons.

To more comprehensively establish the practical applicability of the
present computer method to future AHMPS/Spacelab missions, it would be of
interest to compare theory and experiment for cases where in-situ and labora-
tory simulation data are available. At present there are more laboratory
results (Oran et al., 1975; Fournier and Pigache, 1975), than in-situ results
(Henderson and Samir, 1967; Saxir et al., 1973). However, it is presently
still difficult to simulate ion transverse velocity distributions in the
laboratory, and the effective ion temperature is frequently low. Since vari-
ous ratios of ion temperature to electron temperature may be treated by the



program with relatively minor modifications, computations should be made
with "cool® ions to facilitate lab-theory comparisons. The present theo-
retical model should also be compared, using selected ionosphere-magnet-
osphere example problems, with other available theoretical models. The
other models may be less realistic but they may have advantages of rela-
tive simplicity and economy; they may also be "calibrated" through such
comparisons,

The present computer method gives information regarding the dimensions
of the disturbed zone about a body. Irnformation of this kind should be
useful for estimating the lengths of baoms to be deployed, for example,
on the Spacelab to keep outboard instrumentation outside the disturbance
created by various structures on the spacecraft. In this sense, the com-
putations may be regarded as a phase of a feasibility study.



CHAPTER 2
APPROACHES: REVIEW AND SUMMARY

A1l of the approaches to the body-in-a-plasma problem have in common
the following elements. The quantities to be computed include (a) the
potential distribution and (b) the ion and electron density distributions.
One may also include the associated surface current densities. The equa-
tions to be solved simultaneously are (a) the Vlasov equation for ions,
(b) the Vlasov equation for electrons, and (c) the Poisson equation. The
solutions of the Vlasov equations (velocity-distribution functions) are
used to compute number densities (and surface current densities). The
number-density distributions become input to the (right-hand side of the)
Poisson equation which yields the potential distribution. Finally, an
iterative procedure is used for self-consistency, wherein the density and
potential distributions are successively cycled until satisfactory conver-
gence has been achieved.

The steady-state Vlasov equations for ions and electrons state that
the velocity-distribution functions remain constant along particle tra-
jectories. With the electric field assumed given (numerically in terms
of a spatial grid about the body), solving the Vlasov equations means
formally that one determines, from the shapes of the trajectories, the
ion and electron velocity distributions at the grid points. The trajec-
tories relate local velocities at a given grid point to those at infinity.
Through these relationships, the ion or electron number density at the
point may be evaluated by a velocity-integral over the local velocity
distribution. Similarly, the current density may be evaluated at desired
locations (usually the body surface).

It is convenient to classify the various theoretical approaches on
the basis of hcw they treat the trajectory part of the Vlasov problem.
"Inside-out" methods follow the trajectories backward in time into the
undisturbed plasma, while "outside-in" methods follow the trajectories
forward, in the direction of physical motion of the particles. (In an
outside-in method, the velocity-distribution function is not calculated;



rather, the density is evaluated directly.) "Other" methods denote approxi-
mations where trajectories are not followed at all. The three approaches
are discussed below.

There exists as yet no systematic comparison of the results of the
various approaches with one another.

Before discussing the various approaches, we may define here the
parameters of interest:

Plasma Parameters

n, = unperturbed numter density at infinity
Ti’Te = ion, electron temperatures

m; = ion mass (electron mass not required)
A = electron Debye length

Borly Parameters

-3
n

characteristic dimension

0

Vo = velocity

%, = body potential

g = e@o/kTe = dimensionless body potential

M =‘Vo Ami/ZkTi = jon Mach number (electron M2zh number assumed
: negligible)

Ap = lﬂ/ra = Debye number

Hencefortii al: lengths are to be considered normalized by o Thus, Ap
will denote the dimensionless Debye number. Potentials are normalized by
kTe/e, so that ¢(F) denotes the dimensionless potential at the spatial
point *. Number densities are normalized by Ny» SO that n(¥) denotes the
dimensionless density at ¥. In the calculations involving integrations
over velocities, Vv will denote a velocity normalized by the value of

Y 2kT/m associated with the particles of interest. Similarly, E will
denote total energy normalized by kT, Velocity-distribution functions
(denoted by f) will be normalized by Ny For a given body geometry, there
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are four dimensionless physical parameters of interest, namely, AD’ 9o
and M, along with the temperature ratio Ti/Te‘ Table 2-1 shows a sampling
of the parameters used in various previous calculations,

2A. INSIDE-OUT METHOD

Consider a single species of (charged) particle, i.e., iors or elec-
trons, The electric field is assumed to be known. In order to compute
the number density n(r) at the point ¥, one must evaluate the triple
integral over velocity space:

o) = [ [ [, 9) av g, (2-1)

where f(r, V) is the distribution function which satisfies the Boltzmann
equation for the given species of particle, ¥ is the radius vector of the
space point of interest, and V is the local velocity of a particle at r.
The velocity-volume element is written as if cartesian coordinates were
being used, but the product dvxdvydvz is intended to symbolize an arbitrary
coordinate system. Similarly, in order to compute the collected current
density at points on the surface of a body, one must evaluate at each point
a triple integral over velocity spa-e of the form

j(?_) = ]fff(?, v) vndvxdvydvZ (2-2)

where v_ is the component of the particle velocity normal to the surface

n
at the point ¥. 3

The problem is thus to evaluate f. Since the problems of interest
are assumed to be collisionless and constant in time, the distribution
function f satisfies the steady-state Vlasov (or collisionless Boltzmann)
equation, namely,

>
v

-vf+3’°vvf=o (2-3)



TABLE 2-1
PARAMETERS ADOPTED IN PREVIOUS WAKE CALCULATIONS

Ion-Attractive
Mach Number Debye Number Body Potential
Fournier (1971) | 1, 6, 10 s % -3, 0, 1, 2.75,
6, 40
. 1 1

Davis and 6 »17 2’ 10 20 - 10090

Harris (1961)
Call (1969) 18 -}5-+ 5 0 > 40
McDonald and 03 1, 3;_ » 10 10, 25

Smetana (1969) .
Maslennikov and 2, 7 1, 12 0 - 40

Sigov (1964)
Liu and Jew ] 1

(1968, 1969) 4, 8 G5} L5
Kiel et al. - 111 3

(1968) ’ 1000° 100" 10
Martin (1974) 4+10 %» 1 5, 9
Grabowski and . .

Fischer (1975) 0-+1.4 0 (quasineutral) irrelevant
Taylor (1967) 6 2/3 0.25 >~ 20
(f%rst order only)




where 3 is the vector acceleration of a particle passing with velocity v
through the point *. The gradient operators v and vv operate cn the com-
ponents of ¥ and of 7, respectively. Equation (2-3) states that f is con-
stant along a particle orbit, which is characterized by the constants of
the motion. In a general electrostatic field (here assumed given) whose
sources are volume and surface charges, the total energy E is conserved,
where the dimensionless E is defined by

E -2+ (F) (2-4)

and ¢(r) is the dimensionless potential energy of the particle at r.

With ¢(¥) a known function of T, one may evaluate the integrals in
Eqs. (2-1) and (2-2) by following orbits backward in time with trajectory
calculations to a point where f is known. For example, in the case of a
body immersed in a plasma, f is assumed to be known at infinity (where ¢
vanishes), and is assumed to have at infinity a prescribed energy distri-
bution, such as a Maxwellian with drift, or a more general distribution.
Also, f is assumed to be known on the surfaces of electrodes. If a sur-
face emits particles, its distribution function must be prescribed. If
the surface absorbs without re-emitting charged particles, the distribu-
cion functior (of emitted particles) is prescribed to be zero. Thus, f
is discontinuous in velocity spacé: That is, the physically-possible
velocity space (at the point ?) is divided into two domains, namely, the
domain of orbits which have come to ¥ from infinity, and the domain of
orbits which have come to v+ from electrode surfaces. In the latter
domain, f vanishes if there is no emission. Thereiure, f is discontinu-
ous on the boundary between the two domains in velocity space. The shape
of the boundary between the two domains depends, of course, on the geom-
etry and the potential function ¢, and it is the heart of the problem
(a) to determine the boundary of the domain of orbits coming from infinity,
and (b) to evaluate the integrals Eqs. (2-1) and (2-2) over that domain of
velocity space.

In practice, one need not in general determine explicitly the boun-
dary of the domain in velocity space of orbits coming from infinity.

-10 -



Rather, one may follow a large number of orbits backward in time (computi-
tionally), and evaluate the moment integrals, Eqs. (2-1) and (2-2), auto-
matically from the results of the orbit-following. .t may, however, under
some circumstances be more accurdte and efficient to determine this boun-
dary. To do so woula cemplicate the computer pregrasming.

For a Maxwellian distribution driftirj with Hach number M, the dimen-
sionless velocity-distribution function at infinity may be written:

2

- ZMVZm), 7 le+vo 4 Mz - ZMva)

(2-5)

{velocities in units sf v2ki/m ,
¥, = axial component of velocity)

where vmz = v2 +  may be identified with the tctal energy E, and Vie
with £ times the cosine of the angle tetween V; and the axis. The
moment integral (2-1) for number density may be approximated by a quad-
rature sum as follows:

I J
sf v =Y Y VoA s, (f) (2-6)
f}f ol 2; ijk "ijk =3 ik

where d3V is a short-hand notation for the element dvxdvydvz, and § is a
cut-off {or step) function, equal to unity or zero according as the tra-
jectory is found to come from infinity or the body surface, respectively,
In the sum, the three indices refer to discrete values of three components
of velocity, where the values are chosen in accord wiych a quadrature scheme
(Gaussian), and the ccefficients Aijk are proportional to the associated
weights. Ffach term in the sum represents an individual trajectory. A sim-
ilar sum is obtained for the current density (see Appendix A).

Figure 2-1 indicates schematically how one of the trajectories (with
indices i, j, &) from the sum in Eq. (2-6) is traced backward from the

-1 -



\/To grid boundary (infinity) 6iik =1l, and
<

~ use computed v,
PN
VA . -
/ _——1— local velocity (v)iik' at P where
/ § n is evaluated
[ P
|

l
[~——To body surface &,,=0

YA

Evaluation of 5ijk for (i,j,kj-th trajectory by following (reversible)

trajectories backward in time.

FIG. 2-1.  INSIDE-OUT METHOD
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point P (usually, a grid point), and found either to reach the body sur-
face, or to reach "infinity" at the boundary of the grid.

This constitutes the inside-out method of solution of the Vliasov
problem. Further details including the discrete velocities and coeffi-
cients of the sum are given in Appendix A.

The advantages and disadvantages of the rethod are:

Advantages of Inside-Qut Method

1. Density points can be chosen individually and at random.
Hence the method is flexible.

2. Suitable for- electrons as well as ions.
Disadvantage (ralatively minor)

Information carried by trajectories is lost upon moving to
another density point. Hence the calculation tends to be
time-consuming.

The inside-out method was developed by Parker (1964), and has subse-
quently been used by Fournier (1971) and by Grabowski and Fischer (1975)
to calculate the wake of an infinitely-long moving circular cylinder.
Grabowski and Fischer also assumed complete quasireutrality, thus restrict-
ing the generality of their method. It was also used by Taylor (1967} for
the wake of an infinitely-long cylinder of rectangular cross-section (a
"thick strip"), but the calculation was not carried beyond the first itera-
tion, and is therefore not self-consistent. Parker and Whipple (1967, 1970)
have used the method for two-electrode probes on a satellite, and Parker
(1970, 1973) has used the method for two-electrode rocket-borne and labora-
tory probe systems, and for the problem of a small probe in the sheath of
a large electrode,

2B, OUTSIDE-IN METHODS

Qutside-in methods may be divided into two types, the methcd of flux-
tubes and the method of superparticles or weighted deposition. The two

-13 -



types of outside-in methods are illustrated in Fig. 2-2. The trajectories
are injected from the outer boundary of a grid.

In the method of flux tubes, the flux of particles in a tube is con-
stant . The tube is defined by two neighboring trajectories. Since the
cross-sectiora. area of the tube is known vrom the trajectory calculation,
and the particle velocity is also known, the particle density may be deter-
mined at any point in the tube (as indicated in the figure). The density
is usually assigned to the rearest grid point along the path of the tube.

The advantages and disadvantages of the flux-tube outside-in method
are:

Advantages of Method

A relatively fast calculation.

Disadvantaqges

1. Invalid if trajectories cross or reverse direction.
Hence the region near the body's wake surface cannot
be treated.

2. Suitable only for an axisynmetric body with cold ions
in a beam.

The flux-tube technique has been used by Davis and Harris (1961) for
the cold-ion wake of a sphere, by Call (1969) for the cold-ion wakes of a
strip, disk, infinitely-long cylinder, and spnere, by Martin (1974) for
the cold-ion wakes of a strip and a disk, and by McDonald and Smetana (1969)
for the wake of an infinitely-long cylinder in a monoenergetic-ion plasma
with drift,

In the method of weighted deposition, the space is divided into cells,
with each cell associated with one of the grid points. The contribution of
a trajectory to the density in the cell is proportional to the time spent
in passing through the cell.

The advantages and disadvantages of the method of weighted deposition
are:

-14 -



METHOD OF FLUX TUBES

Tube defined by two neighboring trajectories

N = number entering
tube per second
at outer boundary
of grid.

F[RST

Cr
Op
Y

4

“SEconD 1R :
ORY

nAv = constant

A, A', A" = cross-sectional area at points P, P*, P"
v, v', v" = local speed at P, P*', P"

N _H _ N
EAav e TAWT e T AW

(Method assumes n = constant on cross-section of tube)

METHOD OF SUPERPARTICLES
OR WEIGHTED DEPOSITION

CELL

Nﬁ'_\\as\

Contribute fto
density in cell

Contribution to density in cell proportional to time (at = as/v) spent in cell,

n = N at - l:lAs
{voTume of cell] ~ v x (volume of cell)

A

(methoa assumes n = constant within cell)

FIG. 2-2. OUTSIDE-IN METHODS
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Advantages of Method

1. Mo difficulty with trajectory crossings.

2. Related to and adaptable to time-dependent computer
simulation.

Disadvantage
Many trajectories needed vor good statistics within cells,

This method was studied by Parker (1964) for a monoenergetic-ion dis-
tribution with drift, and was used by Maslennikov and Sigov (1965) for the
cold-ion wake of a sphere.

2C. (OTHER METHODS

Other methods include approximate treatments which avoid trajectory
calculations. Liu and Jew (1968, 1969) assumed that the ion axial compe-
nent of velocity is constant. They then determined limiting trajectories
for the density integral by further approximations, namely, an additional
assumed approximate constant of the motion, evaluated using the local field
in the vicinity of the point in question. They applied their method to the
wakes of a sphere and a cylinder., Kiel, Gey, and Gustafson (1968) treated
the wake of a sphere, assuming neutral ion trajectories (straight-line paths,
neglacting the electric field). They also assumed that the electron densi-
ties were given by approximate formulas designed to include the effect of
the potential barrier in the wake. For the wake of a strip, a disk, and an
infinitely-long cylinder, Gurevich et al.(1969) assumed quasineutrality,
with ion and electron densities both equated to the Boltzmann factor, In
addition, they assumed that the ion axial component of velocity is constant
and that the ion Mach number is large.

- 16 -



CHAPTER 3
SELF-CONSISTENT SOLUTIONS BY POISSON-VLASOV ITERATION

The “inside-out" method for obtaining ion and electron densities, in
a given electric field defined by the values of the electric potential at
a chosen set of grid points, has been described in Chapter 2, with compu-
tational details given in Appendix A. This constitutes the "Viasov prob-
lem." The Vlasov problem must be solved separately for the electrons and
each species of ions (when there is more than one). In going from one
species to another, or to electrons, the potentials are multiplied by the
appropriate scale factor.

How the electric field is obtained when the ion and electron densi-
ties are given is discussed in detail in Appendix B. Here, the Poisson
equation is replaced by a set of difference equations based on the chosen
set of grid points, with one equation for each unknown potential at a grid
point. The derivation of the coefficients of the unknown potentials in
the difference equations, and the method of solution, are given in Appendix
B. The system of simultaneous equations for the unknown potentials is ,
solved by a relaxation procedure. This constitutes the "Poisson problem.”

The boundary conditions for the potentials in the Poisson problem
are as follows. At points representing the body surface, the normalized
potential is fixed at the chosen value 9o At the external (boundary)
points of the grid, where "infinity" is represented on the computer, a
"floating" condition is optionally used, namely, a linear relation between
¢ and 34/9n, the normal component of v¢. The exact relation of ¢ to 3¢/an
is not important when the external boundary of the grid is sufficiently far
away. (For the calculations to be reported, the assumed relation was the
same as for a Coulomb potential.) In any case, either the fixed condition
¢ = 0 or the floating condition will give the same results, provided the
grid boundary is moved sufficiently far out. The effects of various types
of boundary conditions representing "infinity" have been studied by Taylor
(1967), and by Parker and Sullivan (1974). In general, the floating con-
dition appears to be computationally more efficient than the fixed one. Of
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course, the floatidg condition becomes ideal when the true relation
between ¢ and 3¢/93n is used, but this requires that the asymptotic form
of the solution be known in advance. (See, for example, Parker and Whip-
ple (1970).)

An iteration method is used for computing self-consistent charged-
particle and potential distributions. This is herein referred to as the
“Poisson-Vlasov iteration.” Two principal options are employed for this
procedure. In one of the options, the “charge-density” option, the space
charge is initially and arbitrarily assumed to be zero. For this case,
one obtains the Laplace (space-charge-less) electric field from the Poisson
problem. This is the "zero-order® potential distribution, which becomes
input to the Vlasov problem. The resulting solution of the Vlasov problem
yields the ion and electron densities at the grid points, which are com-
bined to make "zero-order" charge densities. These become input to the
next Poisson problem, which then yields the "first-order" potentials, and
so on, In this procedure one usually "mixes" successive charge-density
iterates to improve stability. Otherwise the process can "blow up." One
can also mix potential iterates rather than densities if desired. The
dependence of the stability and convergence of the above procedure on the
mixing parameter have been studied analytically by Parker (1970) and
Parker and Sullivan (1974). (No other analysis of this type has been pub-
lished to the author's knowledge.) This (charge-density) option is most
effective when the spatial region of interest is not many Debye lengths
across. The analysis shows that one can (probably always) choose a mixing
parameter sufficiently small to ensure convergence, but at the expense of
additional iterations.

In the other option, the "ion-density option," the ion density distri-
bution alone is assumed initially. Initial guesses which can be employed
include (a) zero ion density everywhere, (b) unit ion density (the ambient
value) everywhere, and (c) the neutral ion density which obtains when there
are no forces. Whichever choice is made for the initial guess is desig-
nated the "zero-order" ion density. Now if one assumes the electron den-
sity to be given by the Boltzmann factor exp(¢), the Poisson equation may
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solved, holding the ion densities fixed, but regarding both the potentials
and the electron densities at the grid points as unknowns. This is a non-
linear problem, which is solved by a modification of the relaxation pro-
cedure used for the "charye-density" option. The new procedure is an

important advance since the iteration is not as sensitive (tending to blow
up) to small Debye numbers as in the charge-density option. Thus, very
large bodies (in multiples of the Debye length) can be treated. This has
been the method used to obtain the results reported in Chapter 4. Similar
ideas have been used by Call (1969) and Fournier (1971), but these werkers
have not treated large bodies.

The assumption that the electron density is given by the Boltzmann
factor becomes invalid when the body surface potential is near zero, or
when there is a potential barrier in the wake such chat the wake potentials
are more negative than the surface potential (causing electrons to be
attracted to the surface rather than repelled from it). In this case it is
still possible to use the ion-density option, with its large-body capability,
provided that, within each cycle, where the ion densities are held fixed, a
"minor iteration" is carried out such that the electron densities are com-
puted by trajectory calculations.
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CHAPTER 4
SAMPLE RESULTS

Calculations were made for three sample problems, using the computer
prcgram listed in Appendix C, based on the theory of this report. The
resuits presented here are preliminary in the sense that they are intended
as an illustration of the capability of the program, rather than a system-
atic study. The body is assumed to be a circular disk with its plane nor-
mal to the flow, and the problem is specified by the dimensionless physical
parameters ¢ , M, and A,, defined by (Chapter 2): .

¢° = e@c/kT
- 2

M= m, /2kT

Ab = AD/ro

where T is either the ion or electron temperature (assuming equal temper-
atures), 00 is the disk potential, Vo is the disk velocity, m is the ion
mass (M is assumed to be negligible for the electrons), o is the disk
radius, and AD is the dimensional Debye length.

Numerical parameters for the calculations include 89 grid points,
distributed mostly in the wake region, and in most cases 512 trajeccories
per grid point (8 values each for the polar and azimuthal angles, and 8
values for the energy; see Appendix C).

The potential was set to zero on the downstream computational boun-
dary, and was allowed to "float" on the upstream and side boundaries.
(The boundary conditions at the various outer grid surfaces can be either
fixed or floating.) The downstream boundary for the present calculations
was set at 6 radii,i.e., beyond the Mach number of radii for the two prob-
lems with M=4, The electron density ne was assumed to be given by the
Boltzmann factor exp(¢). This is reasonable for ¢o=-4 on the surface, and
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leads of course to computer economy (by avoiding trajectory calculations
for electrons). However, it must be emphasized that this does not repre-
sent an essential restriction; the program is specifically designed to
compute Ngs as well as Nis realistically when necessary, by trajectory
calculations. Moreover, in cases where a potential well occurs in the
wake near the surface, the Boltzmann-factor assumption becomes invalid
and the trajectories mist then be computed, at least for points near the
surface.

With the Boltzmann-factor assumption, an option is available in the
Poisson-solution part of the program. This i5 the "ion-density"” option
(Chapter 3) which includes the Boltzmann factor in the equations for the
potential distribution; the equations thereby become nonlinear rather
than linear. This is a simplified case of a possible general technique
where, during each "major” iteration cycle in which the ion densities
are held fixed, self-consistent potentials and electron densities are
simultaneously determined. This technique is as yet in an experimental
stage, but it seems promising in that it may produce solutions with iea-
sonable costs for large-body problems; in such problems, the conventional
Poisson-Viasov iteration based on the "charge-density" option (Chapter 3)
becomes expensive (Parker and Sullivan, 1974). A disadvantage of the ion-
density option, however, is that its convergence properties are not
understood; therefore its costs are difficult to predict. This is in con-
trast to the case of the charge-density option where an analysis is avail-
able (Parker and Sullivan, 1974),

The three calculations to be described next were all made with the
jon-density option. The cases are:

(a) ¢, = -4, M= 4, Ap = 1/5
(b) ¢, = -4, M= 4, A = 1/100
() ¢y =-4, M =8, Ap = 1/100

Transverse profiles of normalized ion density ("i)’ electron density
(ne), and potential (¢) in the wake region downstream of the disk are
shown below for the three cases. The profiles are in transverse planes
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at various distances downstream, and all lengths are normalized by the
disk radius. (z denotes axial distance dowrstream, in radii, with z=0
defined as the plane of the disk, and r denotes transverse, i.e., radial,

distance from the axis.) The profilés are presented in Figs. 4-1 to 4-3,
and in Tables 4-1 to 4-3.
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4.1 Case ¢ = -4, M=4, and Ap = 1/5

For this case (Fig. 4-1, and Tables 4-1 to 4-3), the parameter values
illustrate a ¢! .s of problems of physical in*‘erest, such as a small TAD
at high altitudes, or a prote mounted on or near a spacecraft,

Twelve major iterations (Poisson-Vlasov cycles) were computed, in
which successive ion-density iterates were mixed, with a mixing parameter
0.5, starting with uniform ambient ion density as an initial gquess. In
the last four iterations, 8192 trajectories were used at points at and
near the wake axis. This increase of the number of trajectories by a
factor 16 was made to increase the accuracy in the investiqation of pos-
sible structure (enhancements or depletions in ion or electron dJensity)
near the axis.

Ficure 4-1 shows three sets of profiles, one for n;, one for Moo
and one for ¢. Mriiin each set, the profiles are arrangcd vertically in
order of increasing axial distance z. There are eight values of z, namely,
z = 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0. Each profile is constructed
using nine values of r, namely, r = 0, 0.1, 0.3, 0.6, 0.8, 1.0, 1.2, 1.5,
and 2.C, with straight-line segments connecting the values of the func-
tions ("i’ Na» OF ¢) computed at these points. (The nine values of r and
eight values of z are the coordinates of the 72 grid points chosen to
reprecent the wake region of this problem, for which a total of 8% points
W dsed.)

The ¢-profiles (right side of figure) and the newprofi]es (middle
of figure) are thc 12ih- order iteration values. These ¢-values are also
given in Tabi2 4-3, 2nd the ne-values are given, in parenthcses, in Table
4-1. On the left side of the figure, there are two sets of n.-profiles,
one labelled "A", and the other unlabelled. The "A"-profiles for n; are
the 11th-order values (Table 4-2), from which the ¢-profiles (and N~
profiles) in the figure are derived. The unlabelles prefiles for n; are
the 12th-order ni-values (Table 4-1) resulting from traiectory c2lcula-
tions using the ¢-profiles (Table 4-3). The juxtaposition of the "A" and
unlabelled ni-profiios indic~o. o 0 - extent to which the Poisson-Vlasov
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iteration has converged. At z = 1 and below, the two profiles are suf-
ficiently close to be considered well convergad for the present purposes.
Tables 4-1 and 4-2 give the numerical values of the 12th and 11th orders
of n; (unlabelled and “A"), respectively.

The convergence is more complete at some points than at others. The
non-convargance at z = 2 and beyond seems to be small-amplitude numerical
"noise," but the over-all solution is sufficiently well defined for the
present purposes. The difficulty of the convergence at and beyond z = 2
may be associated in part with insufficiencies in the numbers of grid
points, numbers of trajectories, and individual trajectory accuracy;
impirovements in these parameters requires more computer time. At points
along the axis more trajectories were used than at points off the axis,
so that the accuracy is relatively high along the axis. In contrast to
off-axis points, the convergence is clearly excellenrt at the axial points
beyond z = 1, The accuracy of n; at off-axis points far downstream where
¢ is small is estimated to be about 1C percent.

Tatles 4-1 and 4-2 also give the dimensionless ion and electron cur-
rent density (j and jg ) at the center of the wake side of the disk, (je
is seen to have the value exp(-4).) The electron density (n ) profiles
are given in Fig. 4-1 (middle profiles) and in Table 4-1 {in pa“onthef"s)i;
Na is assumed to be unity (ambient velue) at the downstream boundary z = 6 =
where ¢ is assuned to be zero. Figure 4-1 and Table 1-1 indicale that
quasineutrality (n. = ne) is roughly valid within the accuracy c¢f the cal-

culation at - t z = 4 and beyond.

The fea.ures of the wake structure are as follcws: There is no prom-
inent structure such as large-amplitude ion or electron density bumps.
The apparent structure in the ion profiles at z = 2 and bevond suggests
the possibility of small-amplitude ion structure near the axis, beyond
z = 2. The apoarent jon structure near the axis at z = 5 is clearly not
associated with the local potential profile (since ¢ is essentially zers
in this region); hence this structure must b2 associated with upstream
perturbations, i.e., the deflection of ion trajectories passina near the
edge of the disk. [t is also evident that the downstream boundary at z = 6
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has been chosen sufficiently for downstream. This evidence is based on
the smoothness with which the potential has already fallen off to negli-
gible values at z = 5.

The reality of the small-amplitude structures (as opposed to itera-
tive noise) can be verified by more accurate calculations, with changes
in the numerical parameters such as numbers of grid points and trajec-
tories. Persistence of the structure despite changes in the numerical
parameters may be taken as an indication of its reality. In spite of this
uncertainty, the important gross features clearly indicated by the profiles
are that (a) the wake becomes filled in by 2lectrons and ions somewhere
between 2 and 3 radii downstream, i.e., less than the Mach aumber of radii,
and (b) the wake disturbance is essentially confined within a region
extending to about z = 4 downstream, and outward to about r = 1.5 in the
transverse dimension.
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4.2 Case 00 =4, M=4, and XD = 17100

For this case (Fig. 4-2 and Tables 4-4 to 4-6), the parameter values
differ from those of the preceding problem only in XD’ which is very small so
that the problem applies to a large body, namely 100 Debye lengths in
radius. This size of moving body is larger than has been previously
treated by trajectory-following, i.e., realistic, calculations. (In the
large-body calculations of Kiel et al. (1968), the particle trajectories
were not treated realistically.) The results show what may be expected
for th~ wake structure of large bodies in general. This case requires
more effort (ccmputer time and judicious selection of numerical param-
eters) than that of a smaller body. The solutions shown, therefore, are
intended tc be illustrative rather than accurate.

Six iterations, or Poisson-Vlasov cycles, were computed in which
successive iterates were used without mixing, starting with the neutral
ion density as an initial guess. The nominal number of trajectories, 5i2,
was used at all grid points.

The profiles of Nys Moo and ¢ in Fig. 4-2 are constructed in the same
way and at the same grid point; as in Fig. 4-1. The wake is assentially
"empty" of both ions and electrons between z = 0 and z = 1, anud begins to
fill up between z = 2 and z = 3. In this way, the wake is qualitatively

similar to that in Fig. 4-1.

Again, two sets of ion-density profiles are shown on the left side
of Fig. 4-2, the unlabelled profiles for the 6th order (6th iteration,
Table 4-4), and the profiles labelled "A" for the 5th order (Table 4-5).
The 6th-order potentials are given in Table 4-6, and the 6th-order N~
values are given, in parentheses, in Table 4-4. Comparison of the e~
values in Table 4-4 with the Sth-order ni-va]ues (1abelled "A") in Table
4-5 indicate that the quasineutrality assumption is valid everywhere out-
side a cone-shaped region near the wake surface; the cone height along the
axis is between one and two radii. This is in accord with expectation for
a large body. Near the wake surface, however, quasineutrality is violated
because thz effective Debye length is large. The similarity of the n.-
profiles {labelled "A") and the ny profiles in Fig. 4-2 is a consequence
of near-quasineutrality.
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Comparison of the 5th and 6th order ni-profiles (1abelled "A" and
unlabelled) in Fig. 4-2 show that the solution is reasonably converged
for z = 1 and below, but that there is incomplete convergence at z = 2
and beyond., The incomplete convergence and apparent structure at z = 2
and beyond may be artifactual due to insufficient numerical accuracy.

(No attempt was made to achieve high accuracy since this was regarded as
a trial run.) The structure and lack of convergence are seen to extend
past z = 5, so that the downstream boundary should be placed further than
at z = 6.

Compared with the previous case (and despite any inacCcuracies), one
may infer additional physical conclusions indicated by Fig. 4-2, namely,
(a) the suggestion of a core of high (approximately ambient) density of
jons and electrons on the axis, and (b) the occurrence of a potential
well in the near wake, defined as a region with ¢-values below -4. The
shading in the two lowest ¢-profiles of Fig. 4-2 denote cross-sections of
this well. The wake-surface current densities (Table 4-4) are less than
in the previou: case; the electron current density is less than exp(-4),
as would be expected in the presence of a potential well.

The reqion of wake disturbance is not as well defined as in the pre-
vious case of the smaller body, but it probably extends more than € radii
downstream, and between 2 and 3 radii in ihe transverse direction.
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4.3 Case co = -4, M=8, and xD = 1/100

This case (Fig. 4-3 and Tables 4-7 to 4-9) is another large-tody
case similar to the previous large-body case except that the Mach number
is increased from M = 4 to M = 8. Ten iterations were computed in which
successive iterates were used without mixing, starting with uniform
ambient ion density. (The latter starting condition was inadvertently
different from that of the M = 4 calculation which was started with the
neutral ion density, but this difference should become unimportant after
many iterations.) Similar statements may be made about the incomplete-
ness of the convergence as in the M = 4 case. The 9th and 10th-order ior
densities are labelled "A* (Table 4-8) and unlabelled (Table 4-7), respec-
tively. On comparing these, the convergence seems fairly good at z = 0.5
and z = 1, Again, the disturbance extends beyond z = 5, so that the down-
stream boundary should be moved further than z = 6.

Despite inaccuracies, the consistency is such that physical conclu-
sions may be drawn as foilows. In this case the wake is seen to remain
empty funther downstream than in the M = 4 case. In addition, the sugges-
tion is much stronger that there is a central core of ambient density for
both iors and electrons along the axis. Moreover, the potential well is
wider and longer than in the M = 4 case, although the depth is abcut the
same. The disk-wake-surface electron current density (Tcble 4-7) is
slightly less than the M = 4 value, and ig again less than exp(-4).

The conical region behind the disk where quasineutrality breaks
dovin is now longer than in the M = 4 case, extending to between z = 4
and z = 5 along the axis.

The region of wake disturbance is probably longer than 6 radii
downstream, as in the M = 4 case, but may not extend beyond about 2
radii in the transverse direction.
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TABLE 4-1

NORMALIZED ION (AND ELECTRON) DENSITY IN WAKE

(¢o- ‘4. M = 4’ AD = ]/5)

z r=0 r=,1 r=,3 r=.6 r=,8 r=1,0 r=1,2 r=1.,5 r=2.0
6 1.03 1.03 1.09 0.95 0.95 0.95 1.09 1.09 1.09
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

5 1.03 0.79 1.02 0.95 1.01 1.02 1.08 1.06 1.06
(0.98) (0.98) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

4 1.01 0.89 1.00 0.99 0.96 0.97 0.95 0.95 0.95
(0.95) (0.95) (1.01) (1.02) (1.03) (1.03) (1.03) (1.03) (1.03)

3 0.96 0.82 1.01 1.06 1.07 1.09 1.09 1.07 1.07
(0.91) (0.91) (0.97) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99)

2 0.39 0.46 0.53 0.51 0.64 0.73 0.79 0.96 0,95
(0.58) (0.58) (0.61) (0.63) (0.69) (0.75) (0.83) (0.96) (1.00)

1 0.016 0.018 0.016 0.15 0.49 D.68 0.79 *0.88 0.98
(0.19) (0.19) (0.21) (0.31) (0.45) (0.61) (0.74) (0.87) (0.96)

0.5 0.00034 0.00037 0.00047 0.0035 0.20 0.77 0,9 0.88 0.97
(0.088) (0.085) (0.094) (0.14) (0.23) (0.42) (0.65) (0.84) (0.95)

0.2 2.3x10'5 2.2x10'5 2.6x10'7 2.0x'|0'5 0.00039 0.82 1.00 0.93 0.97
(0.036) (0.036) (0.038) (0.049) (0.071) (0.15) (0.46) (0.81) (0.94)

r, z in units of disk radius

i = 9.6x1078, j

e " 0.0183

IT = 12, 9/8/75, a = .5

¢ = 0 at z,
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TABLE 4-2

NORMALIZED ION DENSITY IN WAKE (A)
(6o = =4, M =4, 2y =1/5)

2z r=0 r=.1 r=,3 r=,6 r=,8 r=1.0 r=1,2 r=1.5 r=2.0
6 1.04 1.04 0.95 0.95 0.95 0.95 0.95 0.95 0.95

5  1.04 0.91 1.00 1.00 1.00 0.99 0.97 0.97 0.97

4 1.00 0.77 1.05 1.05 1.08 1.06 1.09 1.07 1.07

3 0.9 0.59 0.99 0.99 0.98 0.97 0.95 0.96 0.94

2 0.40 0.45 0.71 0.54 0.60 0.72 0.79 0.98 1.03

1 0.017 0.018 0.016 0.15 0.50 0.67 0.79 0.88 0.98
0.5 0.00035  0.00037  0.00048  0.0035 0.19 0.77 0.91 0.90 0.98
0.2 0.000022  0.000022  2.6x10"’  0.000020  0.00039  0.82 1.00 0.93 0.97

3; = 9.4x1078, 5, = 0.0183 IT = 11, 9/8/75, a = .5

¢=0atzN



TABLE 4-3

NORMALIZED POTENTIAL IN WAKE
(6= -4, M =4, Ay =1/5)

'Vs'

-

dHL J0 ALI'THIONA0ddEd

G

Slipals

d40Ca 8! ADVd v

r=0 r=,1 r=.3 r=.6 r=.8 r=1.0 r=1,2 r=1.5 r=2.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-0.016 -0.019 -0.00046  0.0016 0.0016  7.5x107° -0.0037 -0.0041 -0.0027
-0.046 -0.048 0.0075 0.022 0.030 0.029 0.033  0.030  0.026
-0.096 -0.099 -0.027 -0.011 -0.0073  -7.0058  -0.0064 -0.0053 -0.0083
-0.54 -0.54 -0.49 -0.47 -0.37 -0.28 -0.18  -0.037  0.0013
-1.66 -1.64 -1.54 -1.17 -0.79 -0.50 -0.30  -0.14  -0.045
-2.48° -2.46 ~2.36 -1.98 -1.49 -0.86 -0.42  -0.17  -0,055
-3.33 -3.32 -3.26 -3.03 -2.65 -1.87 -0.78  -0.21  -0.059
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TABLE 4-4

NORMALIZED ION (AND ELECTRON) DENSITY IN WAKE
(%: -4, M =4, Ap = 1/100)

z r=0 r=.] r=.3 r=.6 r=.8 r=1.0 r=1,2 r=1.5 r=2.0
6 1.08 0.87 0.87 0.80 0.88 0.91 0.98 0.9 0.92
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)  (1.00)  (1.00)
5 1.09 0.79 0.75 0.78 0.95 0.9 0.97 0.90 0.91
(0.91) (0.52) (0.85) (0.75) (0.75) (0.84) (0.89)  (1.07)  (1.06)
4 1.00 0.28 0.58 0.76 0.95 0.85 0.81 0.89 0.99
(0.81) (0.76) {0.63) (0.65) (0.78) (0.79) (0.81)  (0.91)  (0.9a)
3 0.76 1.12 0.65 0.72 0.63 0.75 0.81 0.88 0.95
(0.52) (0.50) (0.66) (0.62) (0.60) (0.72) (0.80)  (0.85)  (0.94)
2 0.96" 0.24 0.44 0.36 0.36 0.67 0.76 0.85 0.95
(0.57) (0.65) (0.63) (0.42) (0.43) (0.67) (0.76)  (0.87)  (0.95)
1 0.14 0.12 0.639 0.11 0.30 0.59 0.75 0.86 0.96
(0.044) (0.13) (0.049) (0.16) (0.27) (0.64) (0.74)  (0.86)  (0.97)
0.5  0.00020 0.00058  0.0037 0.019 0.13 0.57 0.79 0.84 0.94
(0.0047)  (0.0050)  (0.0063)  (0.024) (0.19) (0.55) (0.73)  (0.89)  (0.97)
0.2  0.0095 2.7x107°  1.3x10"°  2.8x10"3  0.00054  0.56 0.80 0.83 0.94
(0.0038)  (0.0038)  (0.0041)  (0.0059)  (0.013)  (0.56) (0.75)  (0.91)  (0.98)
s = 2.4x1077, iy = 0.0043 IT = 6, 9/19/75
¢ =0 at z

N



-98-

Ve L

AHL O ALLLvn ot

H004 St .

TABLE 4-5

NORMALIZED ION DENSITY IN WAKE (A)

(6= -4, M =4, x;=1/100)

pd r=0 r=.1 r=.3. r=,6 r=,8 r=1.0 r=1.2 r=1.5 r=2.0
6 0.94 0.84 0.84 0.77 0.86 0.96 0.94 1.09 1.09
5 0.94 0.52 0.86 0.75 0.75 0.84 0.89 1.07 1.06
4 0.81 0.76 0.63 0.65 0.78 0.79 0.81 0.91 0.94
3 0.52 0.50 0.66 0.62 0.60 0.72 0.80 0.85 0.94
2 0.56 0.65 0.63 0.42 0.43 0.67 0.76 0.87 0.95
1 0.00063 0.14 0.046 0.16 0.27 0.64 0.74 0.86 0.97
0.5 0.0017 . 0.0925 0.0033 0.021 0.19 0.56 0.73 0.89 0.97
0.2 0.000035 5.4x'lO'7 8.9x10'6 0.000033 0.00050 0.57 0.75 0.91 0.98

iy = 1.x108, 5, = 0.0044

IT = 5, 9/19/75

¢ = 0 at zy



TABLE 4-0

NORMALIZED POTENTIAL IN WAKE
(¢,= =4, M =4, iy =1/100)

z r=0 r=.1 r=.3 r=.6 r=.8 r=1.0 r=1.2 r=1.5 r=2.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 -0.090 -0.65 -0.16 -0.29 -0.29 -0.17 -0.12 0.065 0.057
4 -0.21 -0.28 -0.46 -0.44 -0.24 -0.24 -0.21 -0.095 -0.057
3 -0.65 -0.68 -0.42 -0.48 0,51 -0.33 -0.22 -0.17 -0.058
2 -0.56 -0.44 -0.46 -0.87 w,-0.83 -0.40 -0.28 -0.14 -0.047
1 -3.12 -2.03 -3.01 -1.86 -1.30 -0.45 -0.30 -0.15 -0.031
0.5 -5.35 -5.30 -5,07 -3.72 -1.67 -0.59 -0.32 -0.12 -0.032
0.2 -5.57 -5.56 -5.49 -5.14 -4,32 -0.58 -0.29 -0.095 -0.022
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TABLE 4-7

NORMALIZED ION (AMD ELECTRON) DENSITY IN WAKE
(%= -43 M= 8’ AD = .'/]00)

z r=0 r=.1 r=.3 r=.6 r=.8 r=1.0 r=1,2 r=1.5 r=2.0
6 1.1 1.09 0.71 0.80 1.01 1.32 1.10 1.10 1.1
(1.00) (1.00) (1.00) (1.00) (1.00;  (1.00)  (1.00)  {1.00)  {1.£0)
5 1.0 1.24 0.045 0.80 0.63 0.9] 1.12 .11 1.2
(1.08) (0.18) (0.038) (0.44) (1.30) (2.99) (1.10) (1.1) (1.12)
4 1.04 0.0019 0.24 0.63 0.64 0.96 1.04 1.14 1.15
(1.21) (0.085 (0.057)  (0.38) (0.54)  (0.87)  (1.20)  (1.13)  (1.18)
3 .27 0.015 0.095 0.0065 0.71 1.08 0.99 1.24 1.27
(0.53) (0.055)  (0.31) (0.023)  (0.87)  (0.95)  (0.99)  (1.13)  (1.10)
2 1.04 0.00064  0.00081  0.0070 0.46 0.85 0.98 .12 1.06
(1.12) (0.022)  (0.11) (0.061)  (0.47)  (0.85)  (1.05)  (1.26)  (1.21)
1 127 1.5x107°>  9.7x107'3 0.00019  0.0014  0.87 1.01 1.28 1.32
(0.85) (0.0071)  (0.0025)  (C.0039)  (0.014)  (0.79)  (0.98)  (1.07)  }1.08)
0.5 5.0x107'%  4.4x1071°  3.0x10°6  4.6x107'3  8.6x107°  0.90 1.01 1.12 1.08
(0.0018)  (0.0017)  (0.0018)  (0.0034)  (0.013)  (0.82)  (0.95)  (1.11)  (1.21)
0.2 6.9x10°7  1.6x1077  9.4x10°1%  1.3x10°'0  3.6x10"6 0.87 1.16 1.18 1.18
(0.0032)  (0.0032)  (0.0036)  (0.00/7)  (0.20)  (C.86)  (0.96)  (0.93)  (1.30)
3; = 4221079, 3, = 0.0037 IT = 10, 9/19/75

¢

0 at zZ\
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TABLE 4-8

NORMALIZED ION DENSITY IN WAKE (A)

(9= -4, M =8, Xp=1/100)

z r=0 r=,1 r=,3 r=.6 r=,8 r=1,0 r=1,2 r=1.5 r=2.0
6 1.1 1.07 0.33 0.79 1.33 .33 1.10 1.10 1.1

5 1.1 0.18 0.032 0.44 1,31 0.90 1.10 1.1 1.12

4 1.3 0.075 0.052 0.38 0.54 0.87 1.20 1,13 1.14

3 1.0 0,039 0.31 0.011 0.87 0.95 0.99 1.13 1.10

2 .27 0.0038 0.11 0.056 0.47 0.86 1.05 .26 1.21

1 1.0 0.000017  ©,000037  0,00095  0,0044 0,80 0.94 .07 1.08
0.5 2.1x10718  4.6x107'°  3.0x10"%  3.8x107°  0.0014  0.83 0.95 1.1 1.21

0.2 6.9x107  6.2x1077  4.3x1077  8.2x1077 0.2 0.87 0.96 0.93 1.3)

3y = 7.4x107%0, 3. = 0.0029 1T = 9, 9/19/75

$ = 0 at 2y
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TABLE 4-3

NORMALIZED POTENTIAL IN WAKE

(%= -4, M=8, ,=1/100)

2 r=0 r=,1 r=,3 r=,6 r=,8 r=},0 r=1,2 re1.,5 r=2.0
6 0.0 0.0 0.0 0.0 0.0 0.C 0.0 0.0 0.0

5 0.039 -1.7 -3.26 -0.82 0.26 -0.10 0.094 0.1 0.12
4 0.19 -2.52 -2.87 -0.96 -0.62 -0.14 0.19 0.13 0.13
3 -0.073 -2.90 -1.18 f3'75 -0.14 -0,047 -0.015 0.12 0.0%4
2 0.1 -3.80 -2.24 -2.79 <0.75 -0.16 0.051 0.23 0.19

1 -0.16 -4,95 -5,98 -5,55 -4,30 -0.23 -0.059 c.070 0.081
0.5 -6.33 -6.38 -6,31 ~5.69 -4,38 -0.19 -0,053 0.1 0.19 °
0.2 -5.75 -5.74 -5.63 -4.86 -1.60 -0,15 -0.044  -0,077 0,27



APPENDIX A
THE VLASOV PROBLEM: DENSITY CALCULATION

For the purpose of evaluating density and current-density iaiteqrals,
it is convenient to transform to energy and angle variables in velocity
space, Since we will be interested primarily in Maxwellian energy distri-
butions (with drift), we adopt the following units in terms of which dimen-
sionless variables may be defined:

kT = unit of enerqgy, where T is the temperature of the
Maxwellian distribution
v2kT/m = unit of velocity, ramely, the most probable velocity
n, = unit of particle density, namely, the unperturbed

density
The energy and angle variables are:

energy in mu'tiples .. kT

E =
a = polar angle with respect to z-axis (Fig. A-1)
g = azimuthal angle with respect to the plane containing
the z-axis and the point r (Fig. A-1)
z-axis = 3xis of svicmetry of body as well as direction of

plasma flow
The definiticns of the angles of a and 8, which define the orientation of

the velocity-vector 7, are illustrated in Fig. A-1, The potential energy
¢ will also be a multiple of kT,
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z-axis

FIG. A-1. ANGLE VARIABLES IN VELOCITY SPACE



The integral for the particle density follows from appropriate trans-
formation of the volume element in velocity space of Chapter 2, namely,

[ I I f v2 dv sin a da d8

(const) I I I f - /E -4 dE sin a da dB (A-1)

=
]

where there is a step-function § (a "cut-off" factor) vhich is defined as
unity if the orbit connects with infinity (an "escaping" orbit), and as
zero otherwise. The step-function thus automatically takes care of the
restriction to the domain of escaping orbits. However, whether § is unity
or zero is decided only after the orbit has been folloved backward in time

sufficiently far (by performing an orbit calculation in the given potential
distribution).

For the Maxwellian distribution with drift, we have

L] T 2“
n= —J-—- "E - ¢ dE sin a da C-U(E'G’B) &ds (A-2)
2x3l2
Max (0,4) 0 0
where
UzE+M+ 2M/E cosa_ (A-3)

with M denoting the Mach number (plasma-flow velocity divided by +2kT/m),
and a_ denoting the value of the polar angle a of the velocity-vector at
infinity.

The limits on the integral correspond to the full ranges of the vari-
ables. The lower Vimit, "Max(0,4)," on the E-integral is defined to be
zero if ¢ < 0 (attractive potential), and to be ¢ if 5 > 0 (repulsive
potential). For ¢ =0 and 6 = 1, a_ is equal to a and n becomes unity (the
unperturbed value),
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The current density integral may similarly be written

j= I I I f v3 dv cos a sin a da dB

(
= (const) J [ I f - (E - ¢)dE cos a sin a da d8 (A-3)

where the normal component of velocity o is identified with the

z-component of velocity, if the surface of interest on which the current

is to be calculated s perpendicular to the z-axis. The constant in

front will now be adjusted. Specializing Eq. (A-3} to the Maxwellian distri-
buticn (with drift), we may write

n/2

2%
= %‘I~ (E - ¢)dE l COS a Sin a da [ e'U(E’a’B) 6ds  (A-4)
0 Max(0,¢) 0

(-ur-d.

The current density is expressed as the ratio j/j0 where j0 denotes the
“random" current density (namely, nOJET7?§ﬁ) which would be collected in
the absence of plasma flow and if there were no electric fields, i.e.,

such that ¢ = 0 and § = 1 over the ranges of inteqration., In the remainder
of the report it will be convenient to take j to mean ATAR (j0 = 1).

The inteyrals in Eqs. (A-2) and (A-4) represent infinite numbers of
orbits (continuous distributions in ., a, And g8). In approximating the
integrals by quadratures, we replace the infinite sums by finite numbers
of terms, each corresponding to an orbit. Thus, transforming the ranges
of integration into intervals betwezen -1 and +1 in preparation for the
Gaussian quadrature, we may write

E(c) = }-{—%—+ Max(0,4) (A-5)
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-1

a = cos a for density

(A-6)
a = sin']‘/l—%—e-for current density
g = %-(] +b) (A-7)

Then the transformed density and current density integrals become

el 1)
n = 1 [ { e-U(c,a,b) VE(S < ¢ - 6 ° dc da db (A-8)

/x a - o)
i T I
and
1 1
e %[ I J e () - 416 c(’: . (;bﬁ (A-9)
-c
% I A

In a case where a potential barrier exists, "Max (0,4)" in Eq. (A-5)
should be replaced by the barrier height.

We now have the integrals in a form suitable for Gaussian quadratures,
where the new variables (c, a, b) all lie in the range -1 to +1. For flex-
ibility, we now divide the c-range into Me sub-intervals, and apply a
Gaussian quadrature of order 2 to each of these sub-intervals. Similarly,
we divide the a-range into Ma sub-intervals, and the b-range into Mb sub-
intervals, with Gaussian quadratures of order 2 in each sub-interval. Then
both Eqs. (A-8)and (A-9) may be put in the form

L N I
I= [ [ { T(E) * 6{E, a, 5) * dc da db (A-10)
4 T4 R

which may be approximated by the sum:
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DI R

+ T(En’ an’ B“) . 6(E“, un’ Bu)] (A_]])

where T is defined by

“EZEI:E:E-for density
e-U(C,a,b) /1—1-
T(E) = 5 ‘ (A-12)
(1 -c) E(c) - ¢ for current density
with
E' = E(¢'), E" = E(c")
a’ = afa'), " = a(a*) (A-13)
Bl = B(b.), 8" = B(D“)

and with E(c), afa) and

The special values

g(b) defined by Egs. (A-5) through (A-7).

c', c", a', a", b', and b" are defined by formulas

based on the abscissas (13']/2) for the Gaussian (Order-2) quadrature
applied to the multiple sub-interva‘s, namely,
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¢ = t‘rr“]"'z“e“‘“g
es /3- .
1 1 )
¢ = —~+—+2k -1 ~-M
e
Me\ l3' eJ
S I A ]
a 'ﬁ;'/}*z"a“‘"a
1 [, 1 )
a" = —|[+—+2K -1-M
Ma /5 d a‘
b. = L"—]'+2Kb‘]‘Mb
% | 73 J
b* = ll‘l—;—l+2’<b']'"b‘ (A-14)
b | 3 ‘

Again, the function § is the unit step-function which is unity for escap-
ing orbits. Note that the Gaussian coefficients are (conveniently) all
unity for this quadrature scheme.

In the absence of plasma flow (M = 0), or for electrons, one can
consider I to be a sum of monoenergetic contributions, which becomes evi-
dent by rearranging the sum, namely:

M
[
S = -.‘-i- Z [T(E') - F(E") + T(E") - F(E")] (A-15)
: 35

where F(E) is a new quantity defined by:

FE) = gy Z [6(E, o', 8') * 8(E, a", 8")]  (A-16)

ab
Kd=1 Kb=l
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Note that, since § is either unity or zero according as the orbit escapes
or is absorbed, the sum of Eq. (A-16) is the quotient of two integers,
namely, the number of orbits escaping divided by the total number of
orbits (4MaMb)’ for the given energy E. Thus, F is a fraction between
zero and unity, and becomes unity if all orbits escape. Note also that
information regarding the energy distribution resides in T. Thus, a non-
Maxwellian distribution may be treated by suitably modifying T. In par-
ticular, for a monoenergetic distribution we simply set E equal to unity
and replace S, Eq. (A-15), by the single term:

1 -4 current density
Smono = - F(1) for (A-17)
1 - ¢ density

where F(1) is given by Eq. (A-16) with E = 1 and represents the fraction
of orbits which escape. The dimensionless potential ¢ is now a multiple
of the singular energy of the particles.

The equations derived here are suitable for a computer program and
have been incorporated into the program used for the results discussed
in Chapter 4.

The method of computation of orbits involves integration of the
equations of motion, with the forces given by the components of the gradi-
ent of potential., These components are obtained by interpolation between
values of potential defined at the points of a grid in space as described
in the next appendix. The criterion for "escape" of an orbit (i.e., evalu-
ation of &) depends on the geometry of the problem and of the grid. The
equations of motion are integrated step-by-step until the orbit either
passes out of the outer boundary of the grid ("escapes" so that § = 1) or
returns to one of the metal surfaces (is "absorbed" so that § = 0). The
orbit computation time-step is not of physical importance in these time-
independent problems where only the shape of the orbit matters. The time-
step is kept as large as possible consistent with maintaining the energy
loss or gain within desired limits. The method of integrating the equations
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of motion, the interpolation method to find the forces, and the control
of step size, are discussed in Appendix C.

An important consideration is the accuracy of the quadrature-sum,
Naturally, the accuracy is related to the number of terms used, that is,
the number of orbits where each term corresponds to a unique orbit. The
total number of orbits involved in Eq. (A-11) or Eq. (A-15) is given by
8MeMaMb' In a test of the energy quadrature alone, and with M = 0, the
unperturbed value of density (unity) was computed for values of M= T, 2,
4, 8, 16, and 32, The corresponcing numerical errors were -6%, -7%,
+1.5%, -0.05%, +0.013%, and +0.0137%. This test was independent of geom-
etry (the a and 8 integrations were numerically exact). Thus, Me = 4
(8 values of E) is taken to represent sufficient accuracy (within a few
percent) for the purposes of computing density for a Maxwellian distri-

bution without drift (or, for electrons).

A device for improving the accuracy of the quadratures at large Mach
numbers, without increasing the total number of orbits and therefore com-
puter time, is to suitably weight the integrand in the domains of importance.
Thus, one modification is to multiply the term "(1 + ¢)/(1 - )" in Eq.

(A-5) by M2
contributions of orbits having E in the vicinity of w2, Another modifica-
tion is to replace "a" in Eg. (A-6) by the function "-1 + 2((1 + a)/Z)M".
This emphasizes the contributions of orbits having a in the vicinily of =,
that is, directed upstream. When these modifications are used, tke quad-

when M exceeds a suitable value, say unity. This emphasizes the

rature sums must also be multiplied by additional corresponding factors,
namely, "Mz“ and "M((1 + a)/Z)M'l", resnectively.
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APPENDIX B
THE POISSON PROBLEM: POISSON DIFFERENCE EQUATIONS

In the problems treated in this report the electrostatic field is
axially symmetric and is defined on a mesh of spatial grid points, such
that at any point (including grid points) the potential and electric
field are obtained by interpolation,

Assume that the space charge density is known at the grid points.
Consider a group of interior grid points, forming a portion of the over-
all grid as shown in Fig. B-1, In this figure, the vertical and hori-
zontal directions are the z and r directions, respectively, where z and
r denote the cylindrical axial and cylindrical radial coord‘nates,
respectively. Three horizontal grid lines, of constant z-vaiues Zi 1
Z;, and z,,,, and three vertical grid lines, of constant r-values ri-1e
rys and Fies are shown in the fiqure. (Note that the index (i) of z
increases as z decreases.) 1he set of grid lines intersect at 9 grid
points, or nodes, as shown. Each point may be considered to be asso-
ciated with a volume of space, and to have a group of four neighboring
points which "interact" with it. Thus, consider the central point of
the group, labelled C in the figure. Associated with this point is a
volume of revolution (a torus) whose r-ass-section is rectanqular and
is shown by the rectangular shaded area surrounding Pnint C. The shaded
area is defined by connecting the mid-points of the .urrounding mesh
rectangles. Let t denote the volume of the torus, and let the neighbor-
ing points (above, below, to the right of, and to the left of C) be
labelled N, S, E and W (north, south, east and west, respectively).

Let the Poisson equation be written in dimensionless form as

% = -0 = (n, - 0 )1 (8-1)

where Nes Nys Ap» ¢ and p denote the dimensionless electron density, ion

density, Debye length, electrostatic potential and space-charge density,

respectively; and all lengths are in units of the body radius. Now inte-
grate Eq. (B-1) over the volume ¢ of the torus associated with point C:
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FIG. B-1.  GROUP OF INTERIOR GRID POINTS IN r,z GRID
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I I I v dr = - ] I f pde ¥ - pr (8-2)

T T

where Pe is known at the grid point C. The right-hand side has been
approximated as shown since t is small in principle, and pc is the value
of p at Point C. By the divergence theorem, the left-hand side becomes

I[ﬁ4z¥ (8-3)

vher> r denotes the surface of the torus; 3$/3n is the component of v¢

in the outward normal direction at the surface; AN’ AS, AE’ and Aw denovte
the areas of the north, south, east, and west surfaces, respectively; and
the quantities (a¢/an)N,S,E,w denote values of 3¢/an taken to be constant
on the corresponding surfaces.

(a¢/’3n)N S E.W My be approximated by difference quotients, namely,

(o - ¢)
) =z N -
(an}n (zi4 - 73) (B-4)
(6 - o)
3) = \¥s
s> s .
) - (o - ) (8-6)
8“‘E Irj_’_] - rJ-T

[égj RSTRE

Bn‘w T Tr. - r.

(B-7)
J J-:y



where ¢ denotes the potential at Point C and e 950 ¢pr By dencte the
neighboring potentiais. The areas AN’ AS, AE‘ and AH ar: given by

Ay =g llrgg ® 'j’z - ey ey 24 (8-8)
As = Py (8-9)
A = 7 ('j+1 + rj)(zi-] - 2 (8-10)
Ay =5 e v e )z - 2iy) (8-11)

and the volume t is given by

Ay

=7 (g - 3a) (8-12)

Thus, equating Eq. (B-3) with Eq. (B-2), and substituting the foregoing,
we obtain the difference equation in the form

Cy oy + Codg + Cpop * Gy - Co = - oer (8-13)
where
C =Cy+Co+CptCy (8-14)
and
A
AR (8-15)
i-1 ~ 4
A
AR 7yro (B-i6)
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C = S (8-17)
R Cowrwy (8-18)

This shows how to form tna difference equations used for the Poisson prob-
lems of this report. Equition (8-14) holds only for an "interior" point
of the grid, that is, a point surrounded by neighbors on all four sides.

If Point C < not an interior point, cne or more of the terms on the
left-hand side of Eq. (B-13) may vanish. To see how this happens, con-
sider an example grid shown in Fig. B-2 where there are 16 grid points,
tut only 13 of these correspond to unknown potentials to be solved for.*
The grid points where the potentials are unknown are numbered and indi-
cated by circles. The three solid circles labelled by the letters a, b,
and ¢ denote electrode surface points where the potentials are known.
Points No. 1, 2, 4, 5, 9, 10, and 12 are special points all of which have
different properties, and are indicated by small crosses wi“hin the cir-
cles. Among these points, the only interior point is No. 10.

Consider Point No. 10, which has a known potential, namely o = 4>
as its southern neighbor. The equation for this point is given by a modi-
fication of Eq. (B-13) in that the term Cpg is now known and is trans-
ferred to the right-hand side. For this point, Eq. (B-14) still holds.

Consider Point No. 5, which is on the axis. Its equation is given
by the modification of Eq. (B-13) in which Cw vanishes, and the remaining
coefficients are evaluated with rj = rj_] = 0, Equation (B-14) still holds,
but with CH nct appearing.

Consider Point No. 9, which is both on the axis and has a kncwn neigh-
bor (¢a = ¢S). The modification of Eq. (B-12) includes both the modifica-
tions for Points No. 5 and 10. Equation (B-14) still holds, but with Cw
not appearing.

*This grid illustrates only the space behind the body; at points else-
where around the bodv the formulas are similar.
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The modifications for Points No. 1, 2, 4, and 12 depend on the fact
that these points are on the outer boundary of the grid, where a “float-
ing" boundary condition is used., Namely, the potentials are assumed to
satisfy the linear laws

9 _ 3 . _ -

an ~az -~ M'e (8-19)
and

39 _3 _ _ o -

an - ar - - B¢ (8-20)

on the z-boundary (north, or south), and on the r-boundary (east), re-
spectively. The formulas chosen for A' and B' depend on the assumed
potential model. As a result of using Eq. (B-19) or (B-20) (or both for
a corner point), corresponding terms do not appear on the left-hand side
of Eq. (B-13), and the coefficient C is suitably modified so that Eq.
(8-14) no longer holds. That is, for Points 1, 2, 4, and 12, C is given,
respectively, by

C-= A'AN + CS + CE (Point 1) (B-21)
C-= A‘AN + CS + CE +C (Point 2) (8-22)
C-= A'Aﬁ + CS + B'Aé + Cy (Point 4) (8-23)
C= CN + CS + B'Aé + Cw (Point 12) (B-24)

where it is understood that the coefficients in the above equations depend
on the location of the point in question, (A& and Aé denote modifications
of Ay and Ag; see examples given in Parker (1968).)
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Once the coefficients of all of the equations (corresponding to the
grid points where the potentials are unknown) are computed, the system of
linear equations may be solved by iteration. Point-successive over-
relaxation has been found to work well (Parker, 1968).

The relaxation procedure may be illustrated by re-writing Eq. (B-13)
in the form

ntl _ n, n+l
Co" " = (Cu‘u + Coég + Cpop *+ Cpoy * oct (B-25)

The superscripts n and n+l denote the n-th and (n+1)-th iterates, respect-
ively. At the beginning of each "sweep” through the equations, all ¢" are
considered known. Then new values of ¢ are obtained by putting on the
right-hanu side of Eq. (B-25) the most recently updated values of § at the
neighboring grid points. The superscripts “n, nt1" on the right-hand side
of Eq. (B-25) imply that one or more of the quantities Syr bgr bp» OF Oy
might have been already updated by appearing on the left-hand side of a
previous equation during the sweep. Thus far, the iteration scheme indi-
cated by Eq. (B-25) is known as the “"Gauss-Seidel" iteration. Convergence
usually requires many iterations for problems involving many grid points.

A more efficient procedure which will reduce the number of iterations
is to modify the ¢n+] obtained from Eq. (B-25) before going on to the next
equation in the sweep. The modification is given by the "relaxaticn" equa-
tion

"™ eauss. + (1-0)0" (8-26)

Seidel

n+l _
(o )modified = w(e

where v is a relaxation parameter and the first term on the right-hand

side of Eq. (B-26) involves as a factor the ¢"+] resulting from Eq. (B-25).
The parameter » may be less than unity ("under-relaxation") or greater than
unity ("over-relaxation”). In practice it is found that the number of iter-
ations is minimized dramatically when » is close to but less than 2. For
example, simply increasing the value of « from 1.0 (Gauss-Seidel iteration)
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to 1.9 (over-relaxation) typically reduces the numbers of iterations, in
the problems of this report, from the order of thousands to the order of
hundreds (for convergence to within a fractional change of one part in
10° in all potentials).

A simple modification of the foregoing procedure "forces" the poten-
tial to have arbitrary desired values at any of the grid points. This
means that one may, for example, set the potential to zero at the outer
grid points if for some reason this is felt to give a better representa-
tion of "infinity" than the floating one, Or it allows one to arbitrarily
specify the shape of the body surface, which may be of value for three-
dimensional problems. The modification consists of re-defining (over-
riding) the appropriate values of potential as soon as they are updated
on the left-hand side of Eq. (B-25). This procedure is valid since the
convergence of the iteration is not significantly affected.

Another modification which is of value for large bodies is afforded
when the potential distribution is such that Na is approximable by the
Boltzmann factor exp(¢). In this case, one may replace Iq. (B-25) by
the equation

C¢n+] nsntl

2 n+ly _
+ n o/ (8-27}
177D

and then solve this nonlinear equation for ¢"*]

held fixed.

, with "i corsidered o be



APPENDIX C
COMPUTER PROGRAM

This prcgram impiements the calculational procedures described in
Chapters 2 and 3, and in Appendices A and B. The main controlling pro-
gram name is DWAXE [for “Disk Wake") or TDWAKE (for "Thick-Disk Wake,"
referring to modifications for a thick disk or short cylinder). There
are two principail subprograms (FIELD and DENSTY), and eight subroutines
serving these programs. The control hierarchy is listed as follows.

DUAKE or TDWAKE (main)

FIELY (Poisson problem) DENSTY (Ylasov problem)

LEFT INTERP
MIDDLE TRACK
RIGHT

PRINT

SEIDEL

ROOT

The program operation is as follows,

FIELD solves the Poisson problem for the potentials when (optionally)
either the ion or charge densities are given. DENSTY solves the Vlasov
problem for the number and current densities when the potentials are given,
The subroutines LEFT, MIDDLE, RiGHT, PRINT, and SEIDEL are called by FIELD,
while INTERP and TRACK are called by DENSTY. FIELD and its subroutines con-
stitute one overlay, while DENSTY and its subroutines constitute the other
overlay. SEIDEL in turn calls ROOT if the ion-drnsity option is selected.

DWAKE reads the input data (described below) consisting of tne posi-
tions of the grid lines, the values of the potential at points on the metal
surfaces, the Debye number, the Poisson-Vlasov major-iteration mixing
parameter a, the maximum rumber of majo: iterations, the array of input ion
or charge densities, and various parameters affecting the options, orbit
calculations, quadrature orders, single space-point coordinates, and single-
orbit initial conditions.
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A Poisson-Vlasov iteration cycling loop is set up in which DWAKE
calls FIELD and DENSTY, in each iteration cycle. DENSTY is called twice,
once to compute the ion or charge densities and then to compute the cur-
rent density. (In the appended listing the current density is computed
only at the central wake point.) The cycling is continued for the desired
maximum numbe of iterations, with the potentials or densities (normally,
the potentials) being punched out on cards at every cycle for possible use
in continuation.

C.1 Operation of FIELD and Its Subroutines

FIELD sets up the coefficients of the potential-unknowns in the linear
equations resulting from the differencing of the Poisson equation as des-
cribed in Appendix B, Subroutine LEFT is called if the point in question
is on the axis; subroutine RIGHT is called if the point is on the right-
hand grid-boundary line; subroutine MIDDLE deals with an interior point.

For each point corresponding to an unknown value of potential, FIELD obta’ns
the values of the variables C, CN, CS, CE, and CW corresponding to the coef-
ficients used in the equations of Appendix B. The values of these coeffi-
cients, as well as the volume of the volume element (V) associated with the
point in question, are printed out and saved (in the order in which they
wouid appear as matrix elements) by subroutine PRINT, The right-hand sides
of the Poisson difference equations are also set up u,ing the input ion or
space-charge densities. When the setting-up has been completed, FIELD calls
SEIDEL to obtain the solution, which is accomplished by point-successive
over-relaxation. If the option is selected in which the nonlinear equation
at the end of Appendix B is to be solved (appropriate for large bodies and
where the Boltzmann factor can be used for the electrons), then SEIDEL calls
ROOT within its over-relaxation loop. In ROOT, solution of each nonlinear
equation is achieved by Newton's method for root evaluation. If the thick-
disk option is selected, the body potential overrides the calculated poten-
tials at grid points covered by the body. After SEIDEL nhas obtained the
potentials in the form of a one-dimensional solution-vector X, the main pro-
gram converts these to the two-dimensional potential arrays PHIN and PHIS
used by DENSTY for the Vliasov probiem,
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C.2 Operation of DENSTY and Its Subroutines

DENSTY sets up an outermost lgop in which one or mora space points
(or all grid points) are to be processed. First, the positive ions are
treated, and then the electrons are treated by changing the sign of the
potentials, There is a number density option and a current density option.
The orbit quadrature loops are then set up, in which the energy and two
velocity-angles are the variables of integration (summation). One option
is that of a single orbit; another cption is that of a single energy (mon-
energetic)ﬁiw which only the angle sums are carried out. The quadratures
are slightly different for the current and number density options. Each
oarbit is traced step-by-step backward in time until it terminates either
on the metal surfaces or at “infiﬁity" (outer boundary of the grid). At
each step of the orbit, DENSTY calls INTERP and TRACK. It calls INTERP
to find the potential and the components of the potential gradient (by
interpolation within the grid) for use in the equations in motion. It
calls TRACK to update the position and velocity components through the
Newton equations of motion. In INTERP z and r are located by means of a
table search, either in the North region or in the South region. In order
to save time, after the first step in which the whole table is seaiched,
the search is confined only to nearest-neighbor table entries. After tne
"box" containing z and r is identified, the potentials at the 4 corners
of the box are used for a double-linear interpolation.

TRACK, where the Newton equations of motion are used, monitors the
"non-conservation" of energy, that is, the relative deviation between the
assigned total energy E and the sum of the kinetic plus potential energies,
where the latter two are subject te numerical errors as the orbit is propa-
gated. The degree of energy non-conservation is kept under control by
means of a time-step control governed by an input variable (STEP). Since
the time-step control logic is probably not self-evident, this logic is
explained as follows.

During each time-step, the acceleration a is assumed to be constant.
Therefore, if a is approximately constant within each grid zone (i.e.,
between two adjacent grid points in r and in z), the error (and, therefore,
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energy loss or gain) would be that incurred upon crossing a boundary
between two grid zones during a time step. Let a, and a, be the constant
accelerations in the first and second grid zones, respectively. Then the
absolute valua of the energy loss or gain, |AE|, would be given by

|aE} = |a, - all S,

where Sz is the path length in the second zone. Now we know a and not ay.
However, we estimate |a2 - all to be of the same order as |a]|. Moreover,
we estimate 52 to be the larger of the two quantities

[vqlat or Ia]l(At)2

where At is the time-step interval. Hence, |AE| is estimated as the larger
of the two quantities

|3]V1|At or a%(At)2

Thus, if |AE| = fE is considered as known, the appropriate At may be esti-
mated as the smaller of the two quantities

fE /TE

|31V]| or |a]|

In the program, the fraction f is identified with the input variable STEP.
There is an additional control on At, to avoid taking too many steps,
namely, a minimum value At = AS/IV]l where 4S = .01 somewhat arbitrarily,
representing of the order of 100 steps per unit length. For no electric
field, At is taken to be the minimum value, with STEP replacing aAS.
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C.3 FORTRAN Input VYariables

The following variables are read by DWAKE as input:
Card No. 1

DATE = any identification (alphanumeric, 80 columns),
Card No. 2 (integers only, 5 columns each)

NCOLSN = number of r-valyes on North (wake) face of disk.

NCOLSE = number of r-values East of disk (between disk and grid
boundary).

NCOLSS = number of r-values on South (front) face of disk.

NROWSN = number of z-values, North region (between disk wake

surface and grid boundary).
NROWSS = number of z-values, South region (between disk front
surface and grid boundary).

Card No. 3 (8 fields of 10 columns each, per card)
RHON1 = r-values on North face of disk.

Card No. 4 (8 fields of 10 columns each, per card)
RHOE = r-values East of disk.

Card No. 5 (8 fields of 10 columns each, per card)
RHOST = r-values on South face of disk.

Card No. 6 (8 fields of 10 columns each, per card)
N = z-values, North region.

Card No. 7 (8 fields of 10 columns each, per card)
AN = z-values, South region.

Card No. 8 (8 fields of 10 columns each, per card)

PHI = potential values at the grid points on North and South
faces of dick.

Card ho. 9 (7 fields of 10 columns each)

DEBYE = Debye number,
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ALPH = {teration parameter q«,

RBOUND = r-value of East boundary of grid. (If this is greater
than unity, r-values East are proportionally scaled
between unity and RBOUND.)

INBOUND = 2-value of North boundary of grid, (If this is greater
than zero, z-values North are proportionally scaled
between zero and ZNBOUND.)

ISBOUND = z-value of South boundary of grid. (If this is less
than zero, z-values South are proportionally scaled
between zero and ZSBOUND.)

RWAKE = radius in wake such that additional iterations are
applied to grid points lying within RWAKE, if option
(ITALL > 1 on Card No. '0) is chosen.

IFRONT = negative z-value of front face of thick disk. If this
is not zero, the disk is treated as having thickness equal
to -ZFRONT. (Program TDWAKE.)

Card " (integers only, 5 columns each)

ITS number of iteration cycles allowed (beyond the initial
one). If this is zero, only one iteration is performed.

IT = initial iteration cyzle number (zero for new problem;
greater than zero if continuing from previous probiem).

NEWPHI = zero for charge-density option; greater than zero for
ion-density option.

MAME = nonzero only if additional accuracy (more trajectories)
desired tor points in wake near axis.

ITALL = nonzero if it is desired to apply more iterations to

points in wake than to other points; indicates that all
points are to be computed once every "ITALL-th" itera-
tion, If this is zero, all points are computed every
iteration.

Card No. 11 (if IT = 0) Normally applies to number densities,

NPRINT = printout option regarding orbit details (MPRINT = 0 for
minimum normal printout). (Column 1.)
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MD=0,>0

MC=0,>0

MB
ME
STEP
RSAVE
ZSAVE
ALPHA
BETA
EE

XMSAVE

indicates one, or more than one, space point tc be pro-
cessed (normally greater than zero on Card No. 11),
(Column 2.)

indicates whether charge- or current-density is to be
calculated (normally equal tec zero on Card No. 11).
(Column 3.)

number of quadrature intervals Ma for polar angle a.
MA=0 indicates single orbit. (Columns 4 and 5.)

number of quadrature intervals Mb for azimuthal angle 8.
(Columns 6-10.)

number of quadrature intervals Me for energy E. ME=0
indicates single energy. (Columns 11-15.)

orbit step-size control, for control of accuracy.
(Columns 16-20.)

in*tial value of r for single oruit or for single space
point. (Columns 21-30.)

initial value of z for single orbit or for single space
print. (Columns 31-40.)

initial value of polar angle a for single orbit.
(Columns 41-50.)

initial! value of azimuthal angle B8 for single orbit.
(Coluins 51-60.)

value of energy E for single orbit or for monoenergetic
velocity distribution. (Columns 61-70.)

drift Mach number for Maxwellian with drift. (Columns
71-80.)

Card No. 12 (if I7=0) Normally applies to current densities.

Same as above, except that MD=0 and MC>O0.

Additional Data Cards for Continuation

If IT (iteration cycle number) is greater than zero on Card No. 10,

that is, if the caiculation is a continuation, then an array (normally of

potentials) punched from the previous calculation is read in, after Card
fo. 10 but before Cards No. 11 and 12.
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C.4 FQRTRAN Gutput Variables (Normally Generated by Program)

| 1
Qutput generated by DWAKE (main program)

Geometric and other {nput data, potential arrays, and iteration cycle

number,

Output generated by PRINT (called by FIELD)

In the'followina. CN, CS, CE, CW, and C are the non-vanishing coeffi-
cients in the Poisson difference-equation matrix: (initial cycle only)

INDX
INDXN
CN

INDXS
¢S

INDXE
CE

INDXW
CW

[1]

[}

index of unknown potential (equation number)

index of North-neighbor potential

coefficient of North neighbor in equation number given
by INDX

index of South-neighbor potentiai

coefficient of South neighbor in equation number given
by INDX

index of East-neighbor potential

coefficient of East neighbor in equation number given
by INDX

index oT West-neighbor potential

coefficient of West neighbor in equation number given
by INDX

coefficient of central unknown in equation associated
with INDX

volume of space associated with central unknown in
equation associated with INDX

Output generated by SEIDEL (called by FIELD)

X

solution of Poisson problem
one-dimensional array of potentials

OQutput generated by DENSTY

PHIN
PHIS

1l

two-dimensional array of potentials, North region
two-dimensional array of potentials, South region
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NUMBER = number of trajectories (orbits) for each energy. (Off
the axis, this is giver by 4 "a"b; on the axis, this is
given by Zﬂa since only one value of g is necessary by
sysmetry. )

If the number-density opticn 1s chosen (MC=0), the following output

is given fn a single line:

K, RSAVE, ZSAVE, PHISAY = point number, r-coordinate, z-coordinate,
and potertial, of point where density is
calculated.

hicSA, DENST, CD = jon number-density, electrca number-dznsity, and
charge {net) density.

If computations are done at 2 froup of space points {MD>0, usually
for all the grid points), the output includes the ion or charge density
summary tabulation:

kSV, ZSV, COSV = r-coordinate of point, z-coordinate of point,
and ion or charge density at that point.

To monitor which trajactory takes the most steps, the following cut-
put is giver on 2 single line:

MOSTPS, NSAVE, KES, utS, KBS, JBS, KAS, JAS = the largest number of
steps tiken by a trajectory, the index of the
associated space point, and the velocity-
coordinate indices of the trajectory (in the
quadrature cum) taking the iargest number of
steps.

In addition, the ion densities are printed out as two-dimensional
arcays, DNORTH and DSOUTH.

If the current-density option is chosen (1'C>0), the following cutput
is given:

For every value of energy E caiculatec .y the quadrature formula, a
line is printed, consisting of
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NOESC = mumber of trajectories escaping
NUMBER = tctal mumber of trajectories at the poist of interest
FRACT = the fraction escaping (NOESC/NUMBER)

E = the gnergy E
DENS = the partial density in the susmation associated with
energy E

The following output is also given, as a single line:

RSAVE, ZSAVE, PHISAV

r-coordinate, z-coordinate, and potential,
of point where current density is calculated.

PARTCL, DENST “ion" or "electron,” and value cf current

Gnsity.
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The listing for the TDUAKE program is given in the following pages.
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OVERLAY(DISKUS+0,0) e o

S¥sy¥v3333 MODIFICATICN FOR FINITE DISK THICKNESS

X Xx X3 X2 X1

o1 RZU S7052) 4PHINU2042C) 4PHIS(2:520) ,C0( 532) 4IFIRST,H N

Vess¥r¥2¥% MOOIFICATION FOR FINITE DISK_THICKNESS

I

OO0 OND

|

PROGRAM TDWAKE LINPUT, OUTPUT,TAPE6O=INPUT,TAPE61=0UTPUT,PUNCH) .

. SATELLITS WAKE PROBLEM _ _(UNSYMMETRIC DISK_ = DISKUS)
MIXING OF POTENTIALS PATHER THAN DENSITIES
OPTIONAL ITERATION BY SWEEPING GROUPS OF POINTS (UPSTREAM TO DOWNSTREAM
MODIFICAYION TO TREAT PILLBOX OR THICK DISK (-ZFRONT=THICKNESS)

COMMON JJNgIINoJJSpIIS.NTOT'RVT(SC),ZNT(SQ)'QST(SOI ZST(SD),

COMMON/FLD/NCOLSN o MCOLSE, NCOLSS s NROWSM, X(530) 4 NROWSS ,023YE ,0-BYE2,
~ 1 RHON1(5(),RHOE(S50) ,RHOS1(53) ,ZN(S2), ZS(53) yPHI(5%) ,NGAP,NDISK
COMMON/DEN/NPRINT s MOy MCoHAy M3y NE,STEP, RSAVE 4 ZSAVE » ALPHALBETALEE,

1 XMSAVZ ,RADIUS
COMMON/OSN1/IT ,MAME ,NERPHI , ISAVE,NGR, NGROUP( SﬂﬂloDSAVE( 504)

1 s ZFRONT
DIMENSION ODATEt20), X1( S0CY __

FOR DENSITY AND CURRENT CALCULATIINS e e e
INTEGER INPUTS ARE NPRINT,MO,MG,MA,MB,ME. NPRINT= :3y1+2,3 FIR PQINTING
NO INTERMZDIATE DATA, ESCAPING INDICES, FIRST _AND LAST STEPS, AND _ALL
STEPS. HMD=0,1 FOR ONE SPACE POINT (RSAVE,ZSAVE) IR ScVERAL SPACE
POINTS tRSAD IN RyZ VALUES). MC=0,1 FOR CHARGE DENSITY OR CURRENT DEN-
SITY. MA=C MEANS ONE TRAJECTORY (READ RSAVE,ZSAVE,ALPHA,BETA,EE). MNE=O
MEANS ONE ENERGY (READ EE). OTHERWISS, MA,M3,ME, DENOTZ THE NUMSBER O
ALPHA-INTERVALS, BETA-INTERVALS, AND NERGY-INTZKVALS.

9999 FORMAT(31HLUNSYMMEI RIC DISK FIELD PROBLEM ,20A4)

L=60
=61 ) _ L
IPUNCH=0
IFUNCH=1
ISAVE=D
_ DEBYE2=0. _
1 RTAD(L,9993) DATE

9998 FORMAT(23A4)

IF(EQF(L)) 99,15
1% HWRITE (M,9999) OATE

READ(L,111) NCOLS? -NCOLSE, NCOLSS,NROWSN,NROHSS
NRCWSE=1
JJIN=NCOLSN#NCOLSE
TIN=NROWSN+1

J 1S=NCOLSS+NCOLSE
+[S=N2OWSS+1
NOTSK=NCOLSN+NCOLSS _
NGAP=NDISK*1

NTIT=JIN* NROWNSN#NCOLSE+JJIS*K.ONSS e
RELD(L,222) (RHON1(J) yJ=1,NCOLSN) REPRODUCIBILITY OF THE
RAN(L,222) (RHOE(J),J=1,NCOLSE) ORIGINAL PAGE IS POOR
READ(L,222) (RHOSL(J) ,J=1,NCOLSS)

RE"D(L,222) (ZN(I),I=1,NROHSN)

RZA49(L,222) (ZS{I),I=1,NRONWSS)

RZA0(L,222) (PHI(J)4J=1,NDISK)

PHTI(NGAP) =,E* (PHL “NCGLSN) +PHI (NCOLSN#1))

RADIUS=RYON1(NCOLSN)
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sesssssvse MODIFICATICN FOR FINITE DISK THICKNESS

Qs a0(Ls222) DEIJYE L ALPH,RBOUND, ZNIOUND, ZSSOUND, RHAKE o ZFRONT

HWRITE (My 220 )DEBVE s ALPH,RBOUND s ZNSOUND o 2SBO0UND s RAAKE o ZFRONT

READ(L,111) ITS, IV, NEWPHI,MANME,ITALL

WRITE(M,110) ITS,IT,NENPHT, MANE,ITALL

TTMAXSTTSeIY 77

DO 17 N=g,.NTOT o

XIN)=X1(N}=B.  ~— T T ot ITTTTTETTTTT -

OSAVE (N) =0,

CDN) =0,
17 CONTINUE -

T T NTOTAL=NTOT

IF(ISAVE.GT.0) READIL,52)NTOT,NTOT, (DOSAVE(N) 4N=1,NTOT) N

IFUIT.EQ.0) GO TO 21 T

IF (DEBYE.GT.0.) READIL,52)IT,NTOTALys( XIN),N=1,NTOTAL)

IF {DEBYE.GT+0. .AND.NTOTAL.NE.NTOT) GO TO 18

GO TO 21

18 WRITE(M,668)

668 FORMAT(////1Xs41HTROUBLE -~ INCORRECY NUMBER OF POINTS RSAD)
GO TO 99

c
21 IF (NEWNPHI .EQ.0.ANB.DEBYE.GT.0,)  ~~~— '~~~ ~ 7777~
1 WRITE(M,230) OCBYEALPH, ITMAX,IT,(N, X{N),N=1,NTOT)
T T T T IFINEWPHI oGV.0.AND.DEBYE.GTL0.) 0 T T
1 WRITE(M,2301)DEBYEALPH,ITMAX,IT,INy, XIN},N=1,NTOT)
¢ :
C RESCALE GRID LINE POSITIONS TO FIT WITHIN INPUT BOUNDS.
c
RATIO=(RBOUND-RADIUS) 7 (RHOE (NCOLSE) -RADIUS) )
00 23 J=1,NCOLSE =~~~ TrroTmTmTe T O
IF(RATIO.GT.0.) RHOE(JI=RAODIUS + RATIO®(RHOZ (J)-RADIUS)
23 CONTINUE - ' ST T . T T
RATIO=ZNBOUND/ZN(1)
00 24 I=1,NROWSN TUTTITT T TTTTTT T e mer e e
IF (RATIO.GT .0.) IN(I)=RATIO*ZN(D)
TTTTR28TT O CONTINUE - T T T T T T T T T T T T T
RATIO=2SBOUND/ ZSC{NRONSS)
GO 25 I=1,NROHSS S T
IF (RATIO.GT.0.) ZSII)=RATIO®ZS: I) ,
25 CONTINUE T T T TT T e

TTTTTTTTTT OWRITE (M, 112) NCOLSN,NCOLSE, NCOLSS, NROWSN, NROHSS T
HRITE(M,223) CJ,RHONL(J) 3 J=1,NCOLSN)
HRITE(M;224) (J,RHOZ(J) 9J=1,NCOLSE)
WRITE(My,225) (J,RHOS1(J),J=1,NCOLSS)
WRITE(Ms2268) (I,ZN(I),I=1,NROWSN)
WRITE(M,228) (I,2S(I),I=1,NROWSS)
TTTTTTT T WRITE((N,229) UJ,PHIWIY,LJU=1,NGAPY T 7 T TTTTT T
1 16HALL POINTS EVERY 4 I3,24H-TH ITERATION AFTER IT=2)
111 FORMAT(161I5)
112 FORMAT(//71X+,13,25H COLUMNS (R-VALUZS) NORTH/
1X3I13.25H COLUMNS (R-VALUZS) EAST 7/
T 7T T 1R413,25H COLUMNS (R-VALUES)Y SOQUTH/Z —~ ~ 7777
1X+I3,22H ROWS (Z-VvALUES) NORTH/
1X¢I3,22H ROWS (Z-YALUES) SOUTH)
220 FORMAT(1X ,6HOEBYE=yF10.5y5X sSHALPH=4,F10.5,

1
Ui
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S 9388

222

22h
225
226
228
229

230  _

2307

____59%0
cuen
5979

52

<

2

3

'R

S

6

7

231
232
233
234

c

71

72

.223.

" DO 5 J=1,NCOLSS

1 10X,7HRLOUND 5, F7,2+5X,8HZNBOUND=, F7.295X,8HZSBOUND=, F7 .2,
¥3¥33 MODTFICATICN FOR FINITE OISK THICHNESS

2 5Xo GHRUWAKE=y FT™ 42/1X,THZFRONT=, F7.2)
FORMAT(2-'10,.5?

FOPMAT(//15H R-VALUES_NORTH/(I3,1PE15.4))
FORM/ T(/7¢16H R-VALUES EAST/ (I3, 1PELS.4))
FOR T(7/715H R-YALUES SOUTH/(I3,1PE15.4})

FORMATU//15H Z-VALUES NORTH/(TI3,1PE15.4))
FrORNMATI/71SH 2-VALUES SOUTH/(I3,1PE15.4))  _
FORMAT( /2cdA POTENTIALS ON 0ISK SURFACESI(I391P515 %))
FORMAT{/ZEHC _ CONVENTIONAL ITERATION,, .

1 3JH POTENTIALS WITH OEBYE NUMBZR, F10.5,5X,6HALPH =,

2 FLO0-595No6HITMAX =3 I4,5Xy3HIT=,16/7(1Xs I3,1PELS. &)Y _
FGRMATU/Z2EHCEXP-IN-POISSON ITERATION,,

! 32H POTENTIALS NITH OEBYE NUMBERy F10.5:5X.6HALPH =, __
2 F10.59S5Xs6HITMAX= 3 T4 45Xy IHIT= 3 I/ (1X9 I3+ 1PELS4))
FORMAT(1HO,I4,16H ORDER POTENTIAL)
FORMAT(1HO,IL,21H OROER DENSITIES )
FORMAT(1HO,I4,22H ORDER CURRENT DENSITY)
FORMAT(2I5,1P7€10.37( 8£16.3))

DO 2 J=1,NCOLSN

_RNT (J)=RHON1{J)
D0 3 J=1,NCOLSE
JPN=J+NCOLSN
RNT (JPN) =RHOE (J)
DO & I=1,NROHSN _ _
ZNT(I)=ZN(I)
INTEIIN) =0,

RST(J)=RHOS1(J)
00 6 J=1,NCOLSE
JPS=J#NCOLSS
RST {JPS ) =RHOE (J)
2ST(1)=0.

T DO 7 I=1,NRONWSS

IPS=I+t
ZST(IPS)=ZS (1)
WRITE (M,231) (J,RNTUJ) 3J=1,JJN?
HRITE (My232) (J4RST(J)4J=1,4JS)
_HRITE (M,233) (I,ZNTU(I),I=1,IIN)
THWRITE (M,234) (I,ZST(I),I=1,11IS)

FORMAT (//1X,27HAUGMENTED  R-VALUES, NORTH/(I3,1PE15.4))
FORMAT (//1X,27HAUGMENTED  R-VALUSS, SOUTH/(IZ,1PE15.4)) -
FORMAT €//1X,27HAUGMENTED  Z-VALUSS, NORTH/(I3,1PE15.4))
FORMAT (//1X,27HAUGMENTED  Z-VALUSS, SOUTH/(I3,1PE15.4))
OUTPUT  RHO AND_ 2 ARRAYS

DO 71 I=1,NROWSN
DO 71 J=1,JUN
JRZ=(I-1) *JUN+J
RZ TJRZ,1) =RNT (J)
RZ (JRZy2) =ZNT (1)
DO 72 J=1,NCOLSE _
TJRZ={NROWSN*JUN) ¢ T
RZ (JRZ,1)=NT (NCOLSN+J)
RZ (JRZy2) =ZNTLIIN)
NE=NROWSN*JIN+NCOLSE

| ;“J"HY OF THF
PAGE IS Poog

fl\ ;?
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73

DO 73 I=1,NRONSS o
00 73 J=g,dd8 T T T

JRZ=NE (1-11%S4d

RZ(JRZ,1)=RSTEIY “‘ ;

R2(JRZy2) =ZSIT) -

1

1

e -—"

C OefFl

13

R BEEER

12

1201

NFPP=(NTOT/300) ¢%

0Q 85 IP=1,NFPP-~ ~— 7 = T TTTTIT oo

WRITE (M,80)

FORMAT (1H146XoiHIAX 6 RIID LX,4HZII) )

00 85 I=1,608

K1=I+3G0*(IP-1)

K2=K1+60

K3=K2+60 ~~— ~ T~ T TTrTrTTe

Kt=K3+€E0

KS=K4+60
IF(KS.LE.NTOT) HRITE (M48)K1,RZIK141),RZ(K152) 4X2sRZ(K2,1),RZ(K2,2),
K3sRZIK341)43RZIK3I42) oKl yRZ (Kl 31) sRZ (K4 42) 4KSyRZEKS,1),RZ(¥5,2)

IF (KS.LE.NTOT) GO JO 85

IF(KG LENTOT)HRITE (Ny8)K1,RZIK1,1) 9RZ(K1,2) yK2,RZ(K2,1) sRZ(K2,2),
K3sRZ(K3+1)yRZ(K3+2) yK4sRZ (Kb 91) yRZ(Kb52)

IF (K4.LE.NTOT) GO TO 65 o
IFIK3.LE.NTOT) WRITE(M,8)K1,RZIKL,15 sRZ(K1+2) 9K2,RZ(K2,1) sRZIK2,2)

IF (K3.LE.NTCT) GO T0 85
IFUK2LE.NTOT)WRITE(M,8)K1,RZIK141) yRZIK142) yK2,RZ(K2,1) yRZ(K2,2)
IF (K2.LE.NTOT) GO TO 85
IF(KLLE.NTOT)HRITE(M,8)K1,RZ(K1,1),RZ(K1,2)

CONTINUE

FORMAT (5(1I8,F10.3,F8.3)) -

RZINTOT+1,1)=0.

RZINTOT#+1,2)=0, ~~~ —~— 77—
NGRPS=1

IF(ITALL.LE.1) ITALL=t "7 CTrThTmmTm o o
IF(ITALL LE.1) GO TO 1201

NE GROUPS 1, 2y ETC.s IN THE WAKE, IN ORDER OF AXIAL DISTANCE FROM O
ZGROUP=ZN {(NROHWSN) .

NGR=1

DO 12 N=1,NTOT CoT o TmTmTmm o o T
NREV=NTOT-N#g

NGQOUPINREV)=0 - o T
IFI{RZ(NREV,2) .LE.0..OR.NREV.LE.JJN) GO TO 12
IF(RZ(NREV,2) .NE.ZGROUP) GO TO 13
IF(RZINREV,1).GT,RWAKE) GO TO 12

NGRQOUP (NREV)I=NGR o
GO TC 12
ZGROUP=RZINREV,2)  — T T T
TEMPORARY JUMP TO FORCE NGR=1 FOR ALL HWAKE PTS,

JuMpP=1 ' ' ’ ST T ey
IF(JUMP.EQ.1) GO TO 12

NGR=NGR#+1 B

CONTINUE

NGRPS=NGR T -

CONTINUE =~ - - C
READ(L, 666’NPRINTiaH01,H01.n41 MB1,ME1,STEP1,RSAVEL,ZSAVEL,
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1

666 FORMATIII1,12421I5,F5.346F10.5)

1
-C

ALPHAL,8ETAL,EEL , XMSAVEL

READ(L,65E)NPRINT2,M02,MC2,NA2,M4B2,452,STEP2,RSAVE2,ZSAVE2, _ .

ALPHAZ , BETAZ,EE2 o XNSAVE2

°

" IFIRST=0.

C.

C DO POTENTIALS

.G
10

.. 1

51

53

56

129
1

91

..NGR=NG

00 S0 J=1,J.N

_ CONTINUE __

" JPLUSS=NCOLSS+1

" INOX=INDX#1

D0 30 NG=1,NGRPS

IF(IFIRST.EQ.G.OR.IT:Ié:é.OéclTALL-LEoi.OR.HODKIT.ITALL).EQ-G)

NGR=0

CALL OVERLAY(6LOISKUS,150,0)

IF {NGR.LE.1) WRITE(MN,5C50) IT
NGO=1
IFINGO.EQ.1) GO_TO &S

00 20 N=1,NTOTAL
IF(IFIRST.EQ.0) X1 IN)= X(N)

X1 (N)=ALPH® X(N) +(1.-ALPH)* X{i (N)

X{N)= X1(N}
00 50 I=1,NROWSN

INDX=J3(I=1)*JIN
PHIN(I,J) =X(INDX)
DO 51 J=1,NCOLSN
PHIN(IIN,J)=PHI(J)
IF(IT.SQ.0) PHINCIIN,J) =0,

JPLUSN=NCOLSN+1
00 53 J=JPLUSN,JJN _

INDX=INDX+1
PHINCIIN,J) =X (INDX)
INDX=INDX-NCOLSE

DO S& J=1,NCOLSS
NSUBVR=NDISK-{J-1)
PHIS(1,J) =PHI {NSUBVR)
IF(IT.EQ. Q) PHIS(i,J) =00< L
CONTINUE

DO 55 J=JPLUSS »JJS

PHIS(1,J) =X(INDX)
00 56 I=2,IIS

00 56 J=1,JJS
INOX=INDX#1
PHIS{I,J)=X{INDX)

Y et i h"

EF“;:’,a

R

r\""'Y OF THE .

"Pa;

o ‘q D;\}R

L

CONTINUE

IF(NGO.EQ.2) GO TO SO0
NGO=2

WRITE(M,120) IT,NGR

FORMAT(///,1X323HPOTENTIAL ARRAY = NORTH,5X,4HIT =413,3Xy5HNGR =,

13

WRITE(M, 20064) (RNT(J) 4J=1,JIN)

00 91 I=1,IIN

HRITE (M,123) T,ZNTUID,(FHIN(I,J) 3J=1,JJN)

CONTINUE
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WRITE (M,122) S ~
122 FORMAT (///7.,1X,35H POTENTIAL ARRAY - SOUTH. 77)
WRITE(M,20058) (RSTLJ) yJ=1,JJS) o
2004 FORMATI/1Xs2HR=916F B8, 4/71/3X916F8.4))
00 93 I=1,IIS o
WRITE (My123) I2ZSTII) L (PHIS(T2J) 0Jd=1,4JS)
93 CONTINUE
123 FORMAT(/5H LINE,I&,5X42HZ=,F8.4/(/7F16.8))
c

= e & ——— — ——— s —— e

GO TO 11

500 CONTINUE . e

T IF(IPUNCHLGT.0) PUNCH 52, IT,NTOTAL, (X(N),N=1,NTOTAL)
IF(IT.GT.ITHAX) GO TO 1

c
C FIRST DO DENSITVIES
o B U
NPRINT=NPRINT1
NO=MD1
MC=MC1
MA=MAL
HB=MB1
ME=MEL ~~ T T o e
STEP=STEP1
T7CSTOP IN DENSTY IF STEP LE ZERO,
RSAVE=RSAVEL
ZSAVE=ZSAVEL
ALPHA=ALPHAL
BETA=BETAL
EE=EE1
XMSAVE=XMSAVEL
CALL OVERLAY(6LDISKUS,2+0,0)
IF (IFIRST.EQ.0.OR.NGR.EQ.0) GO TO 31~
30 CONTINUE
31 CONTINUE T

IFIRST =IFIRST+1
"7 WRITE(H,664) NPRINT,ND,MC,MA,MB,ME,STEP,RSAVE,ZSAVE, ALPHA; BETALEE,

1 XMSAVE -

664 FORMAT(1X,22HNPRINT,MD,MC,MA,MB,ME- 4614/
1 1X,37HSTEP,RSAVE s ZSAVE ALPHA , BETA 4 EE o XMACH=»7F10.5)
WRITE(M,5G60) IT o

c
"7 G THEN ‘00 CURRENTS
c

NPRINT=NPRINT2 " "7 77 )
MD=MD2
MC=MCZ2
MA=MA2

- MB=MB2
ME=MEZ2
STEP=STEP2

C STOP IN DENSTY IF STEP LE ZERO.
RSAVE=RSAVL2
ZSAVE=ZSAVE2

o ALPHA=ALPHA2 — T~ —7 e

BETA=3ETAZ2
EE=EE2
XMSAVE=XMSAvVE2
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v IT=ITH

CALL OVERLAY(6LDISKUS,2,0,6HRECALL) e et

HRITE (M, 66&) NPRINT.HD.NC.HAnHBoHE.STEP.RSAVE.ZS!V&.ALPHA.BETA.EE,
1 XMSAVE .
IF (MC2.GT.0) WRITE(M,5C70) IT

G0 70 10
99 STOP _. e - i e e aan
ENO
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100 CONTINUE __

200 _ CONTINUE

SUSROUTINE ROOY(‘.B’X)

PP Y

COHNON JJN!IINQJJSQIIS.NTOYQRNT(SU'QZNT(SJ’;RST(SO)9257(50)0

C FIND RQOT OF X+B®EXP(X)=zA,
__KPRA=(

1 RZC 50042) yPHIN(2G+2G) yPHIS(2C+20),COt S3I) 2 IFIRSTHN

B8Y NEWTON NETHOOD,

KPRB=0

X0LO=X=0.

KMNAX=1C00 _
DO 108 K=1,KMAX
XoLo=X

e e —— e e =

e EPS=1.E-6 e

- ———— e et + e mes

KPR=K
F=X + BR*EXPIX) - A__ .
FP=1. & BREXP(X)
OX=0., . __.

IF (FPQGT. 00, OX‘-FIFP
_X=XOLD + DX

DELTA=0X

IF(ABSIX) .GT.1.E~8) DELTA=DX/X

IF(KPRALGY,U) WRITE(M,1000) KoAsB,X,0X, DELTA'F-FP

1000 FORMATI1X22HK A48,y XsDX0ELTR,FsFP=,1I5,1P7E14,.4) - e

1F (ABS{DELTA).LTLEPS) GO

TOo 200

WRITE(M,9999) KMAX

9999 FORMAT(///7/1Xy SHMORE THAN,IS,

STOP.

1 40H ITERATIONS IN ROOT. HENCE PROGRAM STOP.)

¢

PDSLTA=100.*DELTA

IFIKPRB.,GT.L) WRITE(M,2088) EPSyX,POZLTA,KPR

2900 FORMAT(1X,3SHCONVERSENCE IN Q007 WITHIN EPSILON=,1PEQ.1,1H.,10X,
1 3HX =,E12.,&s7H WITHIN,E10.2,11H 2SRCENT IN,I4,12H ITERATIONS,)

RETURN
END
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OVERLAY (DISKUS+4,0)
PROGRAM FIELD

UNSYMMETRIC DISK FIELD
_ SEIDEL._METHOD

13X X:X1X3])

)

e ——— - cme v e [ -— -

COMMON JJUNsIINgJJISsIISoyNTOT 4RNT (503 9ZNT(53) 3RSTI50) 9 2ZSTI50), .. .
1 RZU SC042)4PHINC2042C) yPHISI2C,20) yRHAND( 500) sIFIRST,M

_. .. COMMON/FLD/NCOLSNsNCOLSEyNCOLSSyNROWSN X (5G0) ¢ NROWSS+DEBYEDcBYE2,.
1 RHON1(50),RHOE(SC) »RHOS1(50) ,ZN(53), ZS(50) yPHItSU) 4NGAP4NDISK
COMMONZA/CNsCS+CE4CHyCyVy ~ INDX,JSAT,RHO+Z,INDXN( 503) 4INDXS( 503)
1, INOXEL SCO)sINDXWL SCC)yCONSTI 50046)
COMNON/DENL/ITMANC ,NEWPHI, ISAVE,NGR,NGROUP( 5030} ,0SAVE( 500) _ _ __

*3s¥s333%3 MODIFICATION FOR FINITE DISK THICKNESS
1__ZFRONT

c

C ASSUNME ASYMPTOTIC MONOFOLE :
ALPHAF {RR,22)==22/(22%%2 + RR**2)
BETAF (RR»ZZ) =-RR/(ZZ%*2 & RR**2)

c
_ C_NTOT RESTORED AFTER MODIFICATION IN DENSTY
NTOT=JJIN*NROWSN + NCOLSE + JJS*NROWSS
IF(IFIRST.EQ.0) GO VO 45 . - o
IF A(NEWPHI +EQ.0 ¢ AND +DEBYE.GT o0o) WRITE(M,222) DEBYE,IT,NGR,
1 (N,RHAND (N),N=1, NTOT) e
IF (NEWPHT .GT+0 .AND.DEBYE.GT oG o) WRIVE(M,223) DEBYE,IT,NGR,
1 (N,RHAND(N),N=1,NTOT)_
222 FORMAT(1H1/18HOFIELD CALCULATION, 10X,
1 41HINPUT=CHARGE DENSITIES WITH ODEBYE NUMBER=,F10.5,
2 10X, 4HIT =,13,3X,5HNGR -,13/
3 (28X,13,4PE15.4)) )
223 FORMAT(1H1/18HOFIELD CALCULATION, 10X,
1 4L1HINPUT=  ION DENSITIES WITH DEBYE NUMBER=,F10.5,
2 10Xo8HIT =,I3,3X,SHNGR =,137
3 (28X,I3,1PE15.4))

e ——— [

c NORTH + NORTHEAST REGION
C L - A e S,
T 745 CONTINUE TCINAD
JSAT=0 o B o
I=1

IF (IFIRST.EN.0) WRITE(M,333)
333 FORMAT(/////25H NORTH + NORTHEAST REGION///)
o IF(IFIRST.EQ.0) WRITE(M,334) I
334 FORMAT(//SH LINE,I3,93H N W
1 c E Sy
J=1
INDX=J
INDXN(INDX) =0
_ INDXSUINDX)=J#¢JIN o
INDXE(INDX)= INDX & 4
INDXH CINOX) =0
Z=IN(T)
RHO=RNT (J)
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HN=0,

HS= Z - ZN(I+1)

HE=RNT .J+1)-RHO

HHN=0. .

ALPHA=ALPHAF(RHO, 2)
e eN= 0 T

CS= 0.125%HE®®2/HS

GE= HS/4., ‘

GH=0,

C= 0.125%HE*INE/HS + 2.%HS/HE « ALPHA®HE)

V= HST*HE¥*2/16,

CALL PRINT L o

3

MIDODLE POINTS, FIRST LINE =~

(s Ny Ny

JMAX=JIN-1
D0 5 J=2,JMAX
TINDX=J
INOXN(INDX) =0
INDXSCINDX)=J4JIN
INOXEC(INDX) =INDX+4
INDXW{INOX)=INDX-1
Z=2ZN(I)
"RHO=RNT(J)
HN=0.
HS=Z-ZN(I+1) — T T
HE=RNT(J+1) -RHO
HW=RHO-RNT(J-L)
ALPHA=ALPHAF{RHO,2)
T T CN=0, T T T T B
CS=0. 5‘(HE*HH)IHS'(RHO*(HE-HH)IQ-I
CE=0.5HS/HE* {PHO+HE/Z2.,) T
CH=0.5%H3/HH*(RHO-HW/2.)
C=7,5S*HS* (HE+HW) * (RHO/HE/HN#+(1 . ~ALPHA®* HS) /HS*¥2* (RHO+ (HE-HW) /4 .))
V=0, 25'HS'(HE+HH)‘(RHO#(HE-HH)I“ )
TTT77 85 CALL PRINYT T T T -
c
C LAST POINT FIRST LINE o T T o T
C

J=JJN . e el e =
INDX=J

T INDXN(INDX) =0T -
INDXS(INDX)=J4+JJN
INDXE(INDX) =0 o o
INDXW(INDX) =INDX~1
Z=7ZN1I)
RHO=RNT (J)

TTTTTTTT  HN=0, T 7T )
HS=2Z~ ZN(I+1)
HE=0, B o
ALPHA=ALPHAF(RHO,2)
BETA=BEZTAF(RHO,2)
HW= RHO RNT(J‘i)

cam o am coam v - cN 0 . Mmoo cme o A em L damas oR e molfmsmmoemAl e m e e s IS TIT momer s s S e s e T T
CS=0.5%HH/HS* {RHO-HW/4,)
CE=0.,
CH=0.,5*HS/HW* IRHO-HHW/2.)
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c
c
C

"INOXE {INOX) =INOX+1

C=JeS* (L (HW/HS+HS/HH-ALPHA®HN) * (RHO-HW/&4 .)~-HS® (BETA®RHO+ 0 .d5);

V=14 25*HSPHNY (RHO=HWZ 4, )

CALL PRINT . . o

MIODLE _LINES

IMAX=NROWSN-t . == S T

IF(IMAX.LT.2) GO TQ 16
DO 10 I=2,IMAX _ o

IF (IFIRST.EQ.0) WRITE (M,334) I
DO 10 J=1+JJN _ :

- — © - ——— ——— —— - —

INDOX=J+{I~-1)%JUN
INDXNCINOX) =INOX=JJN .

INODXS{INOX) =INOX+JJIN

Z=ZNII) e e e
HN=ZN(I-1)-2
HS=Z-2ZN(I#1)

-RHO=RNT LJ)

JGo=2 _— —

IF(J.EQ.1) JGO=1 °
IF(J.EQ.JJIN) JGO=3

GO TO (6,47,8),JG0
INODXECINDX) =INDX+L

INOXWI(INDX)=0,
HE=RNTUlJ#1)-RHO__ _
HW=0.

CALL LEFT(RHO, HNy HSeHEyHH4CN,CS,CELCHyCy V)

GO TO ¢

INOXH(INOX) =INOX~1
HE=RNT({J+1)-RHO

HH=RHO-RNT(J=1)

CALL MIDOLE(RHOysMNyHS HE HN yCN3sCSsCELCH,C,V)

GO T0 9
INOXE (INOX) =0

INDXW (INDX) =INCX~1
HE=U.

YW=RHO-RNT(J-1)
3ETA=BETAF(RHO+2)

CALL RIGHT (RHOyHNyHS 3HE,HH yBETA,CNyCSsCE,CHyCyV)

CALL PRINT

CONTINUE

LAST LINE ABOVE DISK SURFACE, NORTH-NORTHEAST REGION

I=NROWSN
IF (IFIRST.EQ.0) WRITE (M,334) I

DO 11 J=1,NCOLSN
INOX=J+(I-1)*JUN
INOXN{INDX) =INOX=JJN
INDXS (INDX) =0

INDXE (INDX) = INDX+1
IF(JeGT+1) INDXH{INDX) =INDX~-1

IF(J.EQe 1) INDXHIINDX) =0
Z=ZIN(T)

RHO=RNT (J)

HN=ZN(I-1)-2
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HS5=2

HE RNTIJ#1) ~-RHO

IFCJ.»T.1) Hﬂ:@ﬂﬂ-RNT!J-i’

IFt..EQ.1) Wi=0,

T-(J.EQ. 1) CALL LEFT(RHO'HN,HS'"E'""QC"QCSQCEQC“QCQV]

IF(JoGT L ICALLNIDOLEC(RHO JHN gHS JHE NN oCNCSoCELCNsC, V)

JSAT=J

CALL PRINT
11 CONVINUE

¢ e e - — e ae -

c

——
JHIN=NCOL SN#4

00 15 J=JMIN,JJN

INCX=J+U{I-1)%J0UN
INDXNUINGX) =INDX-JJN

INDXS (INDX) =INOX+NCOLSE

LAST LINE AMAY FROM DISK SURFACE, NORTH-NORTHEASY REGION

o mm = ———————— —— i © — - —

T IF(J.LTJIN) 16GO=1
IF(J.EQ.JUN} IGO=2

THOXH(INDOX) =INOX-1
Z=ZNLI) e o

RHO=RNT (J)
HN=ZN{I-1)-2Z

HS=2

HY =RHO-RNT(J-1)

CO TO (12,13), IGO
12 INDXE(INOX) <INOXe1

HE=RNTUJ+1)-PHO

T YOI T T T T T T e
13 INOXE(INOXI=Q

HE=0 )

BETA=BETAFIRHO,Z)

CALL RIGHT'RHOJHN,HSsHE HH,BETA,CN,CSoCE,CiHsC,V)
14 CAlL PRINI

T°7 7715 CONTINUE — T

EAST REGION

Inonno

TUTTIF(IFIRSTL.EQ.D) WRITEMM, L4LY
Lut FORMATU//7/7/71?K EAST REGIONZZ/)
I=1 '
IF(IFIRST.EQ.0) WRITE(M,336) I
00 26 J=1,NCOLSE N
INDX=J+NRCYISN*JIN

T INDANCINDX) =INOX-NCOLSE
INCXSUINDX) =INOX+JJS
R 'G=RHOE (J)
I=0.
iGt=2
I tJ.EQ. 1)0G0=1

T1FLJSEQLNCOLSE) "060=3 ~—— T T T
HN=ZN{NROUWSN)
HS=-7251{})
GO TO {20+21,22)4J60
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20

23

26

26

OOHOOOMO

~ e
c
c

29

GO0 V0 23 .

_CONTINUE

555

INODXE(INOX)=INOXe L .
INOXNIINDOX) =0

JSAT=NGAP = e e e e

HE=QHOE (J+1) - RNO

HN=RHO-RNT{NGOLSN).
60 70 23
INOXE ({INOX) =INOX®L _ _

INOXWIINDOX) =INOX~-1
HE=RHOE(J#1) - RNO___

HW=R!'0 - RHOE(J-1)

INOXE CINDX) =@

INOXH (INDX) =INOX-2 ___
HE=0.

HW=RHO - RHOZ(J-1) _
BETA=BETAF{(RHC,2)

GO T0O 2%

et — e e ar i dera e mm—m A e = ———————

CALL MIDOLE (RHO.HN,HS, ue.uu}cu,cs.ce.cu,c V)

CALL PRINT _
GO TO 26

CALL RIGHT{(RHO)HN HS HE sHH,BETA,CN,CS,CE,CH,C,V)_ -

CALL PRINT

SOUTH + SOUTHEAST REGION

IF(IFIRST.EQ.0) WRITE(M,555)

FORMAT(//77/25H SOUTH + SOUTHEAST REGION//7)

00 &1 Y=1,NRONSS . e
IF(IFIRST.EQ.0) WRITE(IM,334) I
DC &1 J=1,JJS . -
INDA=J+(I=-13"JUS+NCOLSE+NRONWSN*JJIN
RHO=RSTJ)

Z=25(

160=2
JG60=2
IF(I.EC. 1) 1IGO=% B
IFLI.£Q,.NROWSS) IGO=3
IF(J.EQ. 1) JGO=1

IF(J.EQ. JIS) JGO=3
G2 TC (28,29,30), IGO

FIRST LINE

INDXNCINOX) =INDX~JJS

IF(J.LE.NCOLSS) INDXNCINOX)=Q0
1F(J.LE . NCOLSS) JSAT=NOISK#1-J
INDXS (INDYX) =INDX+JJS

HN=-2 B

HS=Z = 2S(I#1)

GO TO 31

MIODLE LINES

INOXNC(INOX) =INOX-JJS
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c
c
C

OOHO

INOXS(INOX)=INDX#+JJS
HN=ZS{I-1}) - 2
HS=Z = ZS(I+1)
G0 TO 31 ’

UAST LINE

30 INODXNUINOX)=INOX-JJS
INOXSU(INOX) =0
HN=ZStI-1) - 2
HS=0.

o e = e e mamr® % e e ——— e — oo

ALPHAZ-ALPHAF (RHO; Z)
31 GO TO (34,35,36), JGO

FIRST POINY

3% INDXE (INDX)=INOX+1

"INDXWCINDX)=0
HE=RST{J+1)-RHD

HH=8.
IF(IG0.EQ.3) GO TO 33

CALL LEFT (RHO, HN' HS ‘HE' HHQCN. CS'CE’CH’ CDV'
GO TO &0

c
c

MIDDLE POINTS

35 INDXE (INODX)=INOXe1
INDXWUINOX)=INDX-4~ ~—~ —~ ~—~ ~— T
HE=RST(J+1) -RHO

HW=RHO-RST(J-1)
IFtIGO0.EQ.3) GO TO 33

CALL MIODLE(RHO,HNyHSsHE,HN4yCNy,CSyCESCH,CyV)
GG TO 4o

LAST POINT

‘_~c—_ . ——

e - ——e

c
C

35 INOXEC(INDX)=0

INDXW CINDX) =INOX-§ ~77 7777 7T T USRS SR OR THE
T i3 TQ DO‘..R__-«—.-—-U

HE=0.

HW=RHO-RST(J-1) "~ - s

BETA=BETAF(RHO,2)

T IF (IGD.EQ.3) GO TO 33
CALL RIGHT{RHO,HN, HS,HF,HHoBETﬂ CN, CS’CE'CHQC’V’
GO TO &0

33 GG Y0 (37,38,39),J4G0

LAST LINE, FIRST POINT

37 CN=0- 125'"5“ZIHN
€s=0.
CE=HN/&,
CcH=0, T ’
C=0.125%HE* (HE/HN 4+ 2,*HN/HE -~ ALPHA®*HE)

T USHN®HE®®2/46 T T T - e
GO fO 4o

LAST LINE, MIDOLE POINTS
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c L B ~

38 CN=0.S"THE*HN) Z7HN® (RHO® 'H:-HH) /4&,)

e ... CS=0... . . e e e . . —
CE=0.5*HN/HE®(RHOYHEZ2.)

_GCW=0.5"HN/HN* (RHO-HN/2,)
C=CS®HN® (HE¢HH) ® (RHO/HE/HH + (1.-ALPHA®HN)®*(RHO#+(HE-HA)/b.)/HN®*

12) R e e e e
V=5, 250 *HN®* (HE+HH) *(RHO ¢ (ME-HN)/%,)
GA YO &8 _ . : e

c
_C LAST_LINE,_LASY POINT
. -
39 CN=0.5"HN/HN®" (RHO-HN/4.)
€S=0.
CE=0. ) i o Lo . -——
CW=0.5*HNZAN® IRHO-HK/2.)
~C=US®ULLHH/HN+HN/ HH-ALPHA®HH) * (RHO~HH/ 4 .) - HN*(3ETA?RHQ_*+_0.25))__
V=0,25*HN*HN* (RHO-HH/4 . )
0 CALL PRINY _ e
L: CCNTINJE
IF(IFIRST.GT.0) CALL SEIDEL
EMO
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SUBROUTINE LEF TIRHO3HNyHS yHEyHW;sCNyCSyCE8HCy V)
CN=0,125%HE®*2/HN ~ ~ S T
CS=CN*HN/NS -
CE=0.25%(HN#HS) ~—~ ~ ~ — — 7 TorTT oo o mommem e rmem e e s
CH=0. : ’
C=C+25% (HN*HS) * {1 40 . S*HE** 2/7HNZHS)
V=HE®**2% (HN+HS) /16,

RETURN T T T T T T e e
END

-

SUBROUTINE MIDOLE (RHO,HN,HS,HEsHR3CNsCS+C+CHsCHV)
CN=0.5% (HE+HH) 7JHN* (IRHO+ LHE-HH) 74 .)

CS=CN¥HN/HS el e
CE=0.5% tHN+HS) ZJHE* IRHO+HT 2 45

_CH=3.5* (HN+HS) /HH* {RHO-HN/2.5 _ _ __ _—
C=0.5%(HN+HS) ®* (HE +HNW) * (RHO/ HE/HHW + (RHO+ (HE~HW) /&4 . ) /HN/HS)
V=0,25* (HN+HS) *(HE+HNW) * (RHO+ (HE~HW) _/&4.).
RETURN

END __

——— v
[ ™ f

SUBROUTINE RIGHT (RHOsHN,HSyHE ;HH3ETACNsCS+sCESCHHC, V)
CN=0,5*HK/HN* (RHO~HW/&4.)

CS=CN*HN/HS

ce=g.

CH=0,5F (HN+HS) /JHH® (RHO-HH/2.)

T C=2.5%(HN+HS) * (HW/HN/HS* {RHO-HW/&,.) + (RHO-HW/ 2. ) ZHW - BETA®RHO)

V=0,25F (HN+HS) *HH* (RHO~HN/4L,)
RETURN
ENO
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SUBROUTINE PRINTY R S — e

COMNMON JJNgIINoJJS.IIS NTOT.RPT(SO),ZNT(SO)gRST(SJ).ZST(SO),

1 RZU 500G, 2) yPHINCE2826) ,PHIS(2C,20) ,RHANDLt S33),IFIRST\M .

COMMON/FLD/NCOLSN,HCOLSZ, NCOLSS, NROHSN.X(SJO)'NQOHSagD:BYE'DCBYEZ,
. 1 RHON1(53),RHOE(50) ,RHOSL1(50),2ZN(53),_  2ZS(53),PHI(51) 4NGAP,NIISK .

COMMON/A#CN,LCS+CE,CH,C,V, INGX,JSAT, RHO,Z INOXNG 503)4INDXSE 503)

L2 INOXE( S500),INOXUHL 500),CONSTI 503,6)

cP=0.

CONST(INDX,1)= CN

— e - ¢ e ———————— 1 n -

IF CCINOXN(INOX) EQe0 ) .AND. (CN.NE.0.)) CP=CN
_CONST(INDX,2)= CS e
IF ({INDXS (INDX).EQ.0 ) .AND. (CS.NE.3.)) CP=CS
CONSTU(INDX,3)= CE _
CON_TUINDX,4)= CH
IF ( CINDXHW (INDX) sEQ.0 ).AND. (CH.NE.0.)) CP=CH
C wewsrsv¥ss TEMPORARY --- HELMHOL1Z EQUATION
_ IFIDEBYE2.GT.0,) C=C¢ V/{DEBYE2*%2)
C #vsvevssss TEMPORARY --- HELMHOLTZ EQUATION
CONSTUINDX,5)= C __
CONST(INDX,6)= ¥
IF (CP.GT.0..AND.DEBYE.EQ.C.) RHANDIINDX)= CP*PHI (JSAT) ,
IF (CP.GT+0..AND.DEBYE.GT." .) RHAND(INDX) = RnAND(INDX)®V/DEBYE¥*2
1+ CPUPHIWSAT S
If (CP.EQ.3..AND.DEBYE.GT.0.) RHANDCINOX) = RHAND (INOX)*V/DESYE**2
IF (IFIRST.GT.0) GO TO 3 _ L R |
WRITE(Mg1)  INDX, INDXMCINDX), CONST(INDX,1), INDXWCINOX), CONSTU
1INDX,4), INDX,CONSTCINDX»5) y INOXECINDX), CONST(INDX,3), INOXS(IN.
20X), CONST(INDX,2), CONST(INDX,6)

1 FORMAT( / 6H POINT,T&y,  3H/CUsI&y2H)=y1PE10.4,3H/CE,TL,2H4)=,.
161238y 3H/C0,T4,2HY=,E10.4y SHIC(,I45,2H)=3E10.le, 3H/CU,IlLy2H) =y
2E12.6, SH/VOL=,E10.4}

IF  (CP.NE.G.) WRITE (M,2) J°AT, CP
2 FORMAT(31H COEFFICIENT OF POTENTIAL NO. (,I3, &H) IS,F10.5)
3 RZUINDX, 1}=RHO
_ RZUINDXy2)=2 _
RE TURN
END
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SUBROUTINE SEIDEL -
COMMON JJN,IINgJJISIISyNTOT JRNT(S0)4ZNT(53) 4RSTI50),2ST(50),
1 RZ2( SG0,2) oPHIN(2C:20) yPHIS(20,526),RHANDL SGSY, IFIRST,N
COMMON/FLD/NCOLSN ¢ NCLSEsNCOLSSyNRONSN X (550) y NROWSS,D=8Y<,0=3YE2,
1 RHOMI(SO),RHOECSE) ,"N0CS1450) 4ZNISI), 2S(53) 4PHI(5.),NGAP,NDISK
COMMON/AZCNGCS4CE»Cli5CyVy INDXyJSAT,RHO,ZoINDXNC SU5),INOXSC 503)
1, INDXEC S33),INOXW{ S3G),CONST( SG9,6) i
COMMON/DENL/IT KAME ,NEHPHI, ISAVE sNGR,NGROUP{ SCJ) ,0SAVE( S00)
syssvvvres® MODIFICATION FOR FINITE DISK THICKNESS
1 » ZFRONT i
RADIUS=RHON1(NCOLSN)
"OMEGA=1.9 i
EPS= 0.00001
ITMAX=2000 Tt oo T mmm e
ITCOUN =0
IPROLD=0
160=1 X
T IFINEWPHI.GT.0.AND.DEBYF.GT c0.) WRITE(M,109)
100 FORMAT(/1X,44HMODIFIED POISSON PROSLEM TO INCLUDE EXP(PHI))
IF(IT.GT.0.AND.IFIRST.GT.0» GO TO 2 ’ ' o
DO 1 K =1,NTOT
1 X{X)=0.
2 ZTCOUN =TITCOUN #1
T T DELTAM=0,
DO 3 K=1,NTOT
X1=X{K) COTTTToTT T T TT e Tm e e
SN=CONST(K,1) /CONST(K,5)
SS=CONST(K4,2) /CONST(K,5)  ~—~ T T
SE=CONST(K,3)7/CONST (K ,5)
T SH=CONST(K,4) /CONST(K,5) h

SR=RHAMD {K) /CONST (K,5) ’ - -
INDXNK=INDXN(K) C e e i e REPRODUCIBILITY OFR THE——— - - -

INDXSK=TNDXS(X) CRIGINAL PAGE IS POOR
INDXEK=INOXE(K) T T rme e e
INDXWK=INOXH{K)

T TTUAA=SR T T T T
IF CINDXNK«GTo3) AA=AA+SN*X(I4DXNK)
IF CINDXSK.GT.0) AA=AA#SS*X(INOXSK) ~~—~ =~~~ ————
IF(INDXEK.GT,0) AA=AA+SE*X(INDXEK)
IFCINDXWKGT40) AA=AA+SH*X( INDXHWK) Co T T e
IF(NEWPHI .EQ. 0. OR.DEBYE.EQ.G+) GO TO 30

7°C MODIFICATION TO INCLUDE EXP(PHI) IM POISSON PROBLEM
BB=CONST(K,6) /CONST(K,5)/DEBYE**2
CAlL R00T(AA,BB,XX) o
XKy =XX
GO TO0 35 =~ °

39 X(K)=AA
"7 35 ° CONTINUE - -

(1]

c _
6 SET PHI=0 AT ZN BOUNDARY
TF (KoLE+JIN.AND, (IFIRST.GT. 0. ORNEWPHI.GT.3)) X(K) =0,
ssvssssass MODIFICATION FOR FINITE DISK THICKNESS
C SET PhI TO BODY POTENTIAL AT ADDITIONAL 30DY POINTS IF ANV, ™
IF(RZ(Ky1) oLE.RADIUS.AND.RZ (K 42D 4G4 ZFRONT . ANDLRZ (Ky2) oLT4i0)
1 X{K)=PHI(1)
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X(K)=OMEGA®X(K)+(1.-OMEGAI® XY . . . ... _.__. — e
DELTA=ASS (X (K) =X1)
IF(X1.NE.9.) OELVA=ABSCCX(KI=X1D/XLD _ _ _
IF(DELTA.GTOELTAM) DELTAM=DZLTA
3 CONTINVE __ _ . __
IFCITCOUN.GT.ITMAX) WRITE(M,11) ITMAX
IF (LITCOUN.GT.ITMAX) GO TO 9 e
11 FORMAT{(////40R MORE THAN, I4,10HITERATIONS)
IPR=ITCOUN/S09 _ .
IF(IPR.,LE.IPROLD) GO TO 15
IP20LD=IPR
GO TO 10
15 IF (DELTAM.GI.EPS) 6O TO 2 _ , e

ITERATION FINISHED

9 IG0=2__
10 NFPP=(NTOT/300) + 1
D0 S1 IP=i,NFPP _ o e
HRTITZ (M522) ITCOUNLEPS,DELTAM,O0MNEGA
DO S1 I=1,60
K1=I + 300*(IP-1)
K2=K1 +_ 60 ] -
K3=K2 + 560 -
K4=K3 + 60
K5=K&4 + 60
IFIKSLE NTOTIHRITE(M,3333) K1 XK1Y yK2 3 X{K2) K3 9X (K3 oK& 9 X (KG) 5 _
1K5, X{KS)
_IF(KS5.LE.NTOT) GO TO Si
IFIKL LE.NTOTINRITE(M3333) KLy XTKLD ¢K2 5 X(K2) 9 K39 X (K3 3Ky X {KL)
IF (KWL LE.NTOT) GO TO 51 )
IF(K3.LELNTOT)HRITEIM,3333) K14 XUKL) 4K2 4 X (K2} 4K3y X (K3I)
IF(K3I.LE.NTOT) GO TO 51 )
IFIK2, L NTOTIHRITE(M,2333) KL, X (K1) K2, X(K2)
- IFUK2.LEL.NTOT) GO TO 51
IF(KL1LE.NTOT)WRITE(M,3333)K1,X1K1)
51 CONTINUE
3333 FOCRMAT(5(I8,F16.8))
GO TO (15,6),1G0 _
22 FORMAT(ISHISOLUTION AFTER.I6,2X,25HITERATIONS WITH TOLZRANCE,F12.8
~ 1,8X418HMAXIMUN DIFFERENCE,F12.8,8Xy6HOMEGA=,F8.5)
4 RETURN
END
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OVERLAY (DISKUS,2,0)
PROGRAM DENSTY
COMMON JJUNyIIN,JJUS,TISsND,RN(53) ,2ZNI(5C) +RS(53) 52S(53),RSVL 540,

1 ZSVt S00),PHIN(2G,+23),PHIS(20,23),COSV( 530) IFIRST M

- COMMON/DZN/NPRINT s MDoMC oy MAs M3, MESTEPSRSAVI o ZSAVE JALPHABETALEE,

1 XMSAVE,RADIUS
COMMON/DENL/IT,MANE sNEWPHI, ISAVEsNGRyNGROUP{ SG0J) ,DSAVE( S540) ...

¥I¥Ss3v¥¥s MODIFICATION FOGR FINITE DISK THICKNESS
®

5

6
59

.._NTOT=ND

1 » ZFRONT . s
COMNMON/P/INTsIGN9e JGN» IGS,»JGS

_..COMMON/T/X3Y9Z,RyXDOT,YDOT, ZDOTs PHIyPHIR,PHIZ,ERGO,DERGyCL 02, E

OIMENSION A(2) ,DNORTH(20,2(),0S0UTH12C,42])

DIMENSION PARTCL(2),PART1(2),PART2(2),FATE(2),ENDL1(2),END2(2) _
DATA PART1/7€H ION ,6H /7+sPART2/6H ELECT,6HRON /

DATA EHD1/6H ABSOR,6HBED /+END2/76H ESCAP,GHES _ _ /7. __ ___ __ __
PI = 3.1615926536

Al1)=-1./SQRT (3,)
AC(2)=-A(1)
MSTEP=10000_.
MSTEP=20000
IPRINT=1 ce e
IF(MC.GT,0.0R.NGRGT.1

) IPRINT=0

NPTS=NOD

TINM=IIN-Y _
IISM=1IIS-1

N1=ITINM*JUN

N2=NTOT-TISN*JJS

.00 5 1=1,TIN — REPRODUCIBILITY OF THE

00 S J=1,JJN ORIGINAL PAGE IS POOR
DNORTH(I,J)=0._

00 & I=1,IIS

D0 6 J=1,JJS
DSOUTH(I ,J)=0,
CONTINUE

" 'C DO ONE CHARGE DENSITY OR CURRENT DENSITY, OR DO ALL

56€
667

IF (MD.EQ.0) NPTS=1

1F(MD.EQ.C) RSV(1)=RSAVE
TF(MD.EQ.0) ZSV’1)=ZSAVE o
IF(NC.EQ.0) WRITE(M,666) IT,NGR
IF(MC.GT.0) WRITE(M,6€7) IV

1 ALPHA,BETALEE,XMSAVE
FOOMAT(1h1/10HCDENSTITIES,SX o4 HIT =,13,3X45HNGR =,13)
FORMATILHI/JHOCURREN I 345X LHIT =,1I3)

664 FORMAT( X ,22HNPRINT,MD,MC,MA,MB8,ME=,bI4/

1 1X,37HSTEP,RSAVE yZSAVF yALPHA,PET? JEE o XNACH=7F10.5/) o
IF (NPRINT.EQ.0) WRITEIM,E6C) NPRINT
IF (MPRINT.EQe1) WRITE(M,661) NPRINT
IF(NPRINT.EQ.2) "RI1E(M,652) NPRINT
IF INPRINT.EG. 3) WRITE(M,663) NPRINT

66C FORMAT(1X,8HNPRINT =,12,38H4 EANS NO TYRAJZCTORY PRINTING )
661 FORMAT(L1X3HNPRINT =,12,38H INDICES 0. =SCAPING TRAJEIC JRIES ONLY)
662 FORMATILX,EHNTRINT =,12,28H=FIRST + LAS) “7EPS OF Z4ACH TRAJECTORY)D
663 FOOMAT UL ,8HNPRINTY =,Iz,30H EVERY STEP OF ALL TRAJCCIIRI. 5 )
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MOSTPS=0

C D0 95 LOOP ENDS AT END OF PROGRAM ~~~~~ 7~~~ 7777777
IF(MD.GT.C.AND.MC.EQ.0) NPTS=ND¢g

60 DO 95 N=1,NPTS T
RSAVE=RSV (N)

2SAVE=ZSV IN)
IF(N.LE.N1) GO TO ?7 o
IFIN.GT.N2) GQ TO 8 ~ =~~~ == ~———== - —_

7 DO 1 I=1,IIN N o e
IF(ZSAVELEQWZNII)) IN=I = ~ ~ 77T TS
1 CONTINUE

T DO 2 J=13UIN
IF (IRSAVE. EQeRN(J) ) JIN=J

2 CONTINUE e e A
IF (N.LE.N1) GO TO 9
8 DO 3 T=1,IIS =~ =77 T mTmmemeeeeos e oo
IF (ZSAVE.EQ.ZS(I)) IS=I :
TT37 T CONTINVE — -

00 & J=1,JJS )
IF (RSAVE.EQ.RS(JI3 ) JS=J ~ T

[ CONTINUE o

9 CONTINUE ~~~~ ~ 7~ 770 °  ormmmmmomm T e s e e
IF(NeLE« N2, AND.IN.GT. G AND. JN.GT.0) ONORTH(IN,JN) =DSAVE (N)

" TFUINGToN1.AND.IS.GTo0.AND.JS.GT,G) DSOUTHIIS,JS)=DSAVE(N)
IF(NGR.EQ.0) GO TO 15
TF(ITeGTo0.ANDN.LT.NPTS.AND.NGROUP (N) «NE ,NGR) COSV(N)=DSAVE(N)
IF(IT.GT,0.AND.N.LT.NPTS.AND.NGROUP(N) .NE,NGR) GO TO 95

is CONTINUE o T

»¥rvsvs33s MODIFICATION FOR FINITE DISK THICKNESS B
T IF(RSAVE.LE.RADIUS AND.ZSAVE.GE,ZFRONT « AND.2SAVE.LT.Jd.) COSVINI=0.
IF (RSAVE.LE.RADIUS.AND.ZSAVE.GE+ ZFRONT . AND,ZSAVE. LT.3.) GO TO 95
IF(NC.EQ.C. AND ISAVE.EQ.G) DSAVE{IN}=0, =~~~ ~~ ~—~—~ -7 T oTT T
MASAVE=NMA
MBSAVE=MB =~ =~ T T e Tt T T e s e
MESAVE=NE
—T T STEPSV=STEP
INCREA=0
IFI{MC.GT.G.0OR.MAME.EQ.C) GO TO 20~  ~—— 7~ T
»¥¥¥¥ INCREASE ACCURACY NEAR AXIS
IF(RSAVE,LE.RN(2) ,AND.ZSAVE:GT.0,) MA=ME=1s ~—~~— ~—~~——— ~ 7
IF (RSAVE.LE.RN(2) . AND.ZSAVE «GT.0.) STEP=,0%
R IF (RSAVE4LERN(2) sAND.ZSAVE.GT.0,) INCREA=L
20 CONTINUE
C FIRST WZ DO THE IONS ~~— ~° oo e T T
SCALe=10
PARTCL(1) =PART1(1) T T
PARTCL(2)=PART1(2)
" C RETURN FROM END OF MAIN FOR ELECTRONS -
237 IF(SCALE.GT e0eAND.N.EQ«1.AND.IPRINT.EQ.1) WRITE(M,3060)
1 (RN(J) yJ=14JJN)
3000 FORMAT(///y1X92%H POTENTIAL ARRAY = NORTH//1X,2HR=,16F8.4/
1 (/3X,16F8.4))

c
T IF(SCALE.GT«0+) XMACH=XMSAVE ——— — ~°~ T
IF(SCALE.LT.0.,) XMACH=0.
PHIMAX = 0,
D0 11 I=1,IIN
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RO 10 J=1,JUN e e e
10 PHIN(I,J)‘SCALE‘PHIN(I:J)
IF (PHIMAXLT.PHIN(I,1)) PHIMAX = PHINII,&) _ . _ . . .
IF(SCALEOEQO"’..oOR.NQGTQIQORQIPRINTOEQQO) GO TO 11
eew HRITEM333) 12ZNUI) 9 (PHINUZ.J) 9Jd=15JIN)

11 CONTINUE
333  FORMATI/SH LINEI&ySX92HZ=¢F3e4/(/7F16,8))_ e
c

IF(SCALE«GT «0¢ «AND.N+EQe1 .ANDIPRINT.EQ.1) WRITE(M,4000) __ . . _
1 (RSUJ) 9 J=14J49)
_ 090 _FORMAT(//7/724H POTENTIAL ARRAI__,SOUTﬂlllxoZHR—s16F8.Al

1 (/3X,16F8.4))
D0 13 I=1,I11S
D0 12 J=1,JJ8 S
12 PHIS(I,J)=SCALE*PHIS(I,J) ~
. IF(SCALE.EQ.-1..OR.N.GT.1.0R.IPRINT.£Q+0)_GO_TO 13

HRITE{M,333) I, ZS(I‘:(PHIS(I,J)oJ 1+4JJS)
13 CONTINUE

c
C SET UP SUMS OVER TRAJECTORIES
c

IF (MA.EQ.0) GO YO 32

JAMAX=2
J9MAX=2
KAMAY=MA
K8MAX=MB -
NUMBER=MA¥NB*)
__C_DC ONLY ONE BETA ON AXIS (SYMMETRY)
IF(RSAVE.EQ.0.) KBMAX=1
IF (RSAVE.EQ.N,) NUMBER=MA®*2
IF (RSAVE.EN.0.) JBMAX=1
TF (SCALE .Gl .0. . AND.N.EQ.1) WRITE(H.56€) MA,MB,NUMBER
668 FORMATU/1X,I6416H ALPHA-INTERVALS,1XyI6, 15H BETA~INTERVALS,1X,I€
1 _24H TRAJECTORIZS PER ENERGY)

IF (ME.EQ.0) GO TO 21
JEMAY=2
KE MAX=HME _
IF (SCALE.GT.04 AN, .N.S7.1) WRITE(M,670) ME

570 FORMATA1X,16,47H EF SRGY TNTERVALS, WITH 2 ENERGIES ¥C® INTERVAL//)

GO TO 33
SINGLE EHERGY

L 31 _EMAX=1 e B e
’ KEMAX=1
IF(SCALE.GT.C, AND,.N.EQel) WRITE(M,573) CE

673 FORMAT(LX,31H MINOENERGETIC CASE WITH ENFRGY,F10.5//%

50 19 33

SINGLT TRAJECTORY O4LY

QOO0 (¢

32 JAMAX=1
JBMNAX=1
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———— e s

JENAX=1 o
KAMAX=f =~~~ T Tt e e

KBHAX=1 o
KEMAX=L =~ — T oo e em e e e

NUMBER=1

"HRITE (M,669) ALPHA, BETA,EE . - T

669 FORMAT( 18H SINGLE TRAJECTORY/ 7H ALPHA=,F20.18, 8H DEGREES/

T WRITE( M,665) ALPHALBETA

1 6F BETA=,F20. 18: 8H DEGREES/ 8H ENERGY=»F10.6)

ALPHA=ALPHA'PII£60;—" oty T T e e
BETA=BETA*PI/180.

665 FORMAT( 1X, 3HOR,/ 1X, 6HALPHA=,F11.8, 8H RADIANS/ 1X, SHBETA=,F1§

1.8, 8H RADIANS)

c
SINA=SINCALPHAY 7 —~— 7 e T T s e e
COSA COS(ALPHA)
S -
C SUM OVER ALPHA, BETA, AND ENERGY
¢ , "HA, BETA, AND ENERGY =~~~ e .
33 0ENST=0. CTTTh T T T e mm e - T
DO 1061 KE=1,KEMAX
D0 1001 JE=41,JEMAX
DENS=0.
NOESC=0 ~ -~ — T v T mm Tmm T e o T
NN 1000 KB=1, KBMAX :
DO 1600 JB=1, JBMAX~ —~——~ T 77 T T ey
DO 100C KA=1, KAMAX
T DO 10080 JA=1, JAMAYX -
c L e - RIPRODUCIBILITY OF THE
c
R=RSAVE T T e e "' Tt otrTmeT T/ Tmemm T
2=72SAVE
e YeR .
Y=0- o
INT=0 ot oTmmr T/ T oTT T e e e e e
CALL INTERP
INT=1 e
PHISAV=PHI

T gBRRR

S
111

c

ASSUME BOLTZMANN FACTOR FOR ELECTRONS (OVERRIODE)
IF (ABS(PHI) GT.500.) GO TO 96

IF{MC.EQ.0.ANDJSCALE.LT.0+) ODENST=EXP(-PHI) ST T
IF(™C.5Q.0,ANDOL.SCALE.LT.0.) GO TO 96 -
IF(MC.EQ.0.,AND,ISAVE.GT.0) DENST=DSAVE(N) — ~~—~ "~~~ 777

IF(HL ‘Q g. AND ISAVE.oT.U) GO TO 96

IF(STEP.LE.C.) WRITE(M,111)
FORAATC//7//71X44THSTOP DUE TO STEP LE. ZERQ #% %33 3I¥333 333%3¥)
IF{STEP.LE.0.) STOP

c INITIAL VELOCITY

" C

SPEED=0,
IF{MEJNE.8) GO TO 4%
E=fEE
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39

. YOOT=SPEED*SINA*SIN(BETA) _

 ERGO=0. _

IFCE.LToPHI) WNRITE(M,674) KEyJE)KBoJBy KAy JABETAL JALPHAL,E ,PHISAY
IF(E.LT.PNHI) GO TO 1002

GO TO %0

CE=(ACJE) ¢ FLOAT(2%KE-1-ME))/FLOAT(ME)

E= (1.¢CE)/1.~CE) ¢ AMAX1(PHI oCod. . e
IFIXMACH.GTele) E=XMACH¥*2% (1,+CE) /(10 ~CE) + AHAXI(PHI J.)
IF(E.LTe00 ) WRITE(MyETU) KTyJEsKByJS9KAyJASBETALALPHALLEPHISAY
IF{E.LT.0, ) STOP

SPEED=SQRT(E = PHI)
IF({MA.EQ.C) GO TO 39 - —

GA =(ACJA) ¢ FLOAT{2%KA - § - NA))IFLOAT(HA)

IF(MC.EQ.D0) COSA=CA e
POWER=XMACH

IF(MC.EQ.0.AND,POHER.GT¢1,) COSA=-1,42,*((1.+CA) /2, " ¥PONER = _ .
IF(MC.EQ.C) SINA=SQRT(1. - COSA®**2)
IFIMC.GT.0) SINA=SQRT(.5%(1. ¢ CA))

IF(MC.GT.0) COSA=SQRT(1, - SINA®**2)
CBETA=(A(JB)+ FLOAT(2*KB - 1 - MB))/FLOAT(MB) e e en
BETA=PI*(1.+ CBETA) /2,

XDOT=SPEED*SINA*COS (BETA)

ZOOT=SPEED®COSA
C1=STEP*E
C2=SQRT(C1)
KSTEP=0
ERGMAX=0,

DERGMX=0,
DERG=0.
ALPHAL = ACOS(COSA)*180./P1
BETAL = BETA*180./PI

ALPHA =ALPHAL
BETA=BETAL
70L0=2

IF (NPRINTNE. 2 .AND.NPRINT.NE,3) GO TO 34

C PRINT INITIAL CONDITIONS OF TRAJECTORY

WRITE (M, 674) KE,JEKB,JB,KALJA,BETAL,ALPHAL,E,PHISAV

674 FOPMATILX,3(I3,12)4F17.6,F14,8,2X91P2E11.3,2X,46H =KE4JE, KB, JB,

1 KAsJA, BETA1,ALPHAL, E,PHI)

.
HRITE(M,659)
659 FORMATI13X,115HSTEPS X Y z X007
1 YDOT 7007 ERGMA X DERGMX )
C
WRITE(My888) KSTEP,X,Y,Z4X00T,YDOT,200T e
888 FORMAT(13X,I5,1P6E11,3)
c
C TAKE A STEP
C
c
34 CALL TRACK

KSTEP=KSTEP+1

IF (NPRINTEQe3INRITE(M,888) KSTEP.X,Y,Z4X00T,YD0V,200T7
IFLABSUERGMLX) (LT ,ABS(ERGU) )ERGMAX=ERCO

IF(ABS (DY RGMX) «LT.ABS(DERG)) DERGMX=DERG
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IF(KSTEP,LT.MSTEP) GO TO 35
WRITE (M,999) MSTEP
WRITE(My97) KSTEP4NsKEsJE KB, g,KA, JA
999 FOARMAT(10H MORE THAN, I1d,5HSTgps)
sTop .
35 R=SQRT(X*XeYRY) 77 - T TTTTTm o
IF (R.LT.RADIUS.ANDSIGNIL,,42Z) NE,ZIGNTL.,20LD)) GO TO 36
*3syve3rv3 MODIFICATION FOR FINITE prgx THICKNESS
IF{R.LT,RADIUS.AND4ZoGT . ZFRONT ,AND., Z-LT<0,4) GO TO 36 _
IF(RGT.RN(JIN) eOReZeGT4ZNt1) ,0R,Z.LT+2ZSIIIS)) GO TO 37

Z01L0=2Z
T 7T T CALL INTERP . T
GO T0 34 :
c ‘ e S
C PARTICLE IS A8SORBED
o e e
36 CONTINUE
T T IF(NPRINTWNEJ2.ANDJNPRINTL.NE.3) GO TO 1002 o -
FATE(1)=£ND1(])
FATE(2)=ENOL1(2) o T )
GO TO 374
c B U, -
C PARTICLE ESCAPES
g - .. -

37 IF(NPRINT.EQ.1) GO TO 372
IF INPRINT.NE.2.AND.NPRINT.NE.3) G2 TO 373 ~~  ~
FATE(1)=END211)

CATE(2Y=END2.2) ~
GO TO 373

Lol T WRITE(My674) KE9yJE KB3JBsKAJA,BETAL,ALPHAL,E,PHISAY

373 NOESC=NOESC+L
IFIME.EQ.") GO TO 374 ~— —~

CSANGL=2Z00T/SQRT{XDOT*¥2 + YOOT*®*2 + 2Z2D0T**2)
XPON==2, *XMACH*SQRT :E£) *CSANGL - £ - XMACH®**2
T T IFIMC.EQ.L) COEFF1=SPETZD/FLOATI(NUMBER) ~
IF(MC.EQ.0,AND.POWER.GT.1,)
1 COSFFL=COEFFL*PONER*((1,+CA)/2.) **(POHER~L,)
IF(ABS{XPON).GT.S5GC,) GN TO 374
IFIMC.GT.0) COEFF1=SPEED**2/FLCAT(NUMBER) ~—— =~~~ "~ 77~
DADO=COEFFL*EXP(XPON)
T DEMNS=DENS ¢+ DADD — T

374 TF(NPRINT .NE.2.AND.NPRINT.NE.3) 50 TO 10C2
WRITE(M,889) FATE,KSTEPX,YZsX03T,Y0R0T,Z00T,ERGMAX,DERGHX
889 FOQMAT(1X,2A6,15,1PBE11.3)
T 4002 CONFINUE ————— 7T T T
IF(MOSTPS.GE.KSTEP) GC TO 1030
KES=KE '
JES=JE
KB8S=KB
JBS=UB
KAS=KA ~ T
JAS=JA
NS AVE=N
MOSTPS=KSTEP
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f\_/’ 1000 CONTINUE __ . . . e ‘ -

c
o
\/ ¢

c

C ENO OF ANGLE SUM __

FRACT=FLOAT INOESC) /FLOAT (NUMBER)

IF(NPRINT.6T.0.0R« (NMD.EQ.0.AND.MC.GT.0)) . ——
1 HRITE(H.671)NOcSO'NUHBER9FRAGT’~'0’NS

671 FORMAT(18H0 RATIO ESCAPING =, IS5, 3H OQUT OF IS, . ... _ __ R

1 15H OR A FRACTION ,F 3.8, 13H AT ENERGY E-’FIS.G,AX.

.2 OGNIDENS=,1PE13.451H)) —

C

675
676

c

5555 IF(ME.EQ.0) GO TO 1301

c

1001 CONTINVE ==

c

. IF(ME.EQ.C.AND.MC.EQ.C)? DENST=SPEED*FRACT __

96

_IF(MC.GT.0) COEFF2=2.7(1. - CE)*¥2/FLOAT(NE)

IF(NPRINT.EQ.8) GO TO 5555 e e e s e -
IF(ME.NE.O.AND.MC.EQ.C) HRITE(H;B?S)
IF(* .NE.G.AND.MC.GT.0) MRITE(M,676)

FOR® AT(1X, 66HDENS IS THE SUM OF DADD=SPEZO*EXP(XPON) /NUMBER OVER
_1ALL TLiRECTIONS//) _
FORNAT(1X, 67HDENS IS THE SUM OF DADO=SPEED®*2*EXP(XPON)/NUM3ER OV-
1ER A t:“MISPH REZZ)Y _ _

IF (MC.EQ.0) COEFF2:=4./SQRTIPIN/ (1. - CE)**2/FLOAT (ME)

IF(XMACH.GV.1.) COEFF2=COEFF2*XMACH®*2
DENST=0ENST + COEFF2®DENS

IF(ME.EQ.C.AND.MC.GT.0) DENST=SPEZO0**2*FRACT
IF(MC.,GT.0) WRITE(M,677) RSAVE,ZSAVE,PHISAV,PARTCL,0ENST _ e

677 FORMAT(/6H AT R=,F13.8. 7H AND Z=,F13.8, 15H, THE POTENTIAL 1S=,

C RETURN TO BEGINNING OF TRAJECTORIES FOR ELECTRONS

6

1F13.8/1X,20H AND THE NORMALIZED ,246,2CH CURRENT DINSITY IS=,1PEL3
2.0477)

IF(SCALE.LT.1.,.AND.MC.EQ.0) GO TO 91
IFISCALE.LT.1..,AND.MC.GT.0) GO TO 30
SCALE=-1,
PARTCL{1)=PART2(1)_
PARTCL{2) =PART2(2)
DENSA=DENST
IF(MC.EQ.0.AND.ISAVE.EQ.0) OSAVE{N)=DENSA
IFINLEJN2.ANDINeGToGAND¢JN.GT+3) ONORTH(IN,JN) =DENSA
IF(N.GT N1, ANO IS.GT,(.AND,JS.GT.C) DSOUTHIIS,JS)=0DENSA
IF(MD.GT.0.AND.MC.EQ. 0. AND N.EQ.NPTS) ONORTH(IIN,1)=DENSA
G0 70 237

C CONTINUE IF IONS AND ELECTRONS COMPLETED
91 CD=DENSA-DENST

CDSVI(N)=CD
IF(MC.EQ.0.AND.NEHPHI .EQ.0) OSAVE(N)=CD

_ G SAVE ION DENSITY ONLY IF EXP(PHI) IS TO BE INCLUDED IN_POISSON_ SOLUTION

672

IF(MC.EQ.CoeANDNCHPHI.GT,.0) COSV(N)=DENSA

PHISAV==PHISAV

IF(MC.EQ.G) WRITE(M,672) N,RSAVE,ZSAVE ,PHISAV,DENSA,DENST,CD
FORMATILX, SHAT N=yl4y9H RyZ,PHI=y1P2E1J,2+E12,.4,
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1 &3H, THE ION/ELECTRON/CHARGE DENSITIES ARZ=, 313, h)
IF(INCREA.GT.0) NRITEIMN,6721) N,MA,MB,NE,STEP
6721 FORMNAT(1X,12HFOR POINT N=, I3,bLX,
1 3IHMA,MB,ME, ANO STEP ARE CHANGED TO0,3IS5,4H ANOoF1J.5,
2 234 FOR INCREASED ACCURACY/)
c = 3 g
3¢ 00 92 I=1,IIN
00 92 J=1,JJN
92 PHIN(I,J)=SCALE®PHIN(T,J}
D0 93 I=1,IIS
00 93 J=1,JJS
T 93 PHISII J)=SCALE®*(PHIS(IJ))
#3332 RESTORS MA,MB,ME,STEP
MA=MASAVE
MB8=NBSAVE
ME=MESAVE
STEP=STEPSV
95 CONTINUE
IFI{MD.GT.0) WRITEIM,666) IT,NGR 7
IF(MD.GT,0) WRITEC(M,94) (NyFSVIN) 4ZSVIN) ,COSVIN)y N=1,N°TS)
94 FORMATI/4X91HN 38X 3 1HR 912X 31 HZ 312X s 4HD/CD/7(1X 414y 3F13.5)) o
C TRAJECTORY WITH MOST STEPS. PRINT INDIGESIN,AND K ANO J INDICES)
NRITE (M,97) MOSTPS,NSAVE,KZS,JESsKBS,JBSKAS,JAS
‘97 FORMAT(1X 15,14y 3UI3,12),34H =MOSTSTEPS,N, KE»JE» KBsJ3, KA,JA )
IF (IPRINT.EQ.0) GO TO 99 . ) o
WRITE(M,2001) ~—~ ~ T T mTTTeT T T e Tt
A IF(ISAVE.GT.0) WRITE(M,2003)
2001 FORMAT(1H1/1X,21HDENSITY ARRAY < NORTH )
WRITE(M,2006) (RNCJ),J=1,JJN)
20067 FORMATU/AX,ZHR=416F 8,4/ (/3X+16F8.6))
2003 FORMAT{1X,40HOENSITIES READ IN RATHER THAN CALCULATED 7
D0 100 I=1,IIN
WRITE (My333) I,ZNCI), (ONORTH(I,J) 3J=1y JIN) .
100 CONTINUE o TrTTrThTTT T o
WRITE(M,2002)
TTT20802 FORMAT(//7771%X,21HDENSITY ARRAY ="SOUTHZ7)
WRITE (M,2004) (RS{J)»J=1,JJS) A
00 101 XI=1,IIS T T T T T T T T
WRITE (My333) I4ZS(I)y (DSOUTHII,J) ¢J=1,JJS)
104 CONTINUE . _ -t T
99 CONTINUE
T END T -

S T L L TR

REPRODUCGIBILITY OF THE
ORIiGINAL PAGE IS POOR
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SUBROUTINE INTERP

COMNON JJUNSIIN,JUS,TIS,NDRNISC)$ZN(S0) ,RS(57),2Z5153),RSVL S42),
1 ZSVU S09),PHIN(20,20),PHIS(20,20),C0SVH 530’:1FIRST:H‘__
COMMON/P/INTL,IGN, UGN, IGS,JGS

COHHONITIX'Yg7.R.XDOTQYDOTQZDOT PHI'PHIR'P"IZ'ERJO 0FRG;C$:C2'E .
IGN=JGN=1IGS=JGS=1

NCH=0

1602 = §
IF(INT.NE.O) IGO2 = IGO
160=2 - h
IF (Z.GE.0,) IGO=1
"IF{IGO.NE.IGO2) INT = 0
60 TO (1,2),1IGO0

c e e e e e e
c NORTH 2 _
c BRI I I
c ASSUMING ZN(IIN) LESS THAN OR EQUAL TO Z LESS THAN OR EQUAL TO ZERC
— - U ST LTSS THAN OR EQUAL TO Z LESS ThAN
1 IF(Z.EQ.ZN(1)) IG=2 : o
IF(Z.EQ.ZN(1)) GO TO 103 "~ 7~ -
IF(INT.NE.0) GO TO 100 e
0O 16 I=2,IIN =~~~ — 7 T TTTm e
IG=IIN-I+2 :
T TIF(ZLLTLZNGIGS1)) 60 TO 103
10 CONTIMUE |
c e e o e
c ACCEPT IF ZNUIG) LESS THAN OR EQUAL TO Z LESS THAN ZNUIG-1),
100 IF(Z.GE.ZNIIG-1)) GO TO 102
T T IF{Z.GE.ZN(IG)) GO TO 104
101 I6=IG+1 L
IF(Z.LT.ZNUIG)) GO TO 104
GO TO 103 )
8 (e (T T
IF(Z.GE. ZN(16-1)) GO TO 102 .
103 NCH=1 —~
104 CONTINUE _
c O
c NORTH R
c e U U
c ASSUMING RN(1) LESS THAN OR EQUAL TO R LESS THAN OR EQUAL TO INCJJ)
ot T2 ZERD TN PR B YO R Leed ThAR bk
IF (R.EQ.RN(JINI ) JG=JIN-1 )
IF(R.EQ.RN(JINIIGO TO 153 T
IF(INT.NE.0) GO TO 150
D0 15 J=2,JIN ' o T
JG=J-1 .
ST T IF(RGLTLRNE) 360 TO 153 "
15 CONTINUE
c ) B U
c ACCEPT IF RN(JG) LESS THAN OR EQUAL TO R LESS THAN RN(JG#1),
c

159 IF (R.GE.RNUJG#1)) GO TO 152
) IF(R.GE.RNUJG)) GO TO 154 — "~ 777 77 . Tt oo
151 JG=J6-1

IF(R.LT,RN(JG)IIGO TO 151

GO TO 153
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- 153 NCH=1

o000

OO0

c

I

c

152 JG=JG+}
- IFI{R.GE.RN{JG#1))GO TO 152

154 GCONTINUE

SET UP FRACTIONS

DELZ=ZN{IG-1)-2ZN(IG)
DELR=RN(JG+1) -RN(JG) _

F2Z={Z-ZN(IG))/DELZ
_FR={R-RN{JG)) Z7DELR
P22=PHIN(]IG-1,JG%1)
P21=PHIN(IG-1,JG )
P12=PHINIIG ,JG+1)
P11=PHINIIG 4JG )
IGN=IG
JGN=J6
GO TO 500

SOUTH Z

ASSUMING ZS(IIS) LESS THAN OR EQUAL TO Z LESS THAN ZZRO.

ACCEPT IF ZS(IG) LESS THAN OR EQUAL TO Z LZSS THAN ZS(IG-1).

2 IFUINT.NE.D) GO TO 200
00 20 I=2,IIS _
IG=TIS-I+2
IF(Z.LT.2S(1I6-1)) GO 7O 203

20 CONTINUE

IF(Z.GE.ZS(IG)) GO TO 20%
201 IG=IG+1 o o
20C IF(Z.GE.ZS(IG=1))GO TO 202
CIF(Z.LT.ZS(IG))GO TO 201
G0 TO 203
202 I1G6=16-1 S

IF(Z.GE.ZS(IG-1))GO TO 202
203 NCH=1
204 CONTINUE

. e — - —— - — e — i o e —————————— e L e

~ SOUTH R

ASSUMING RS(1} LESS THAN OR EQUAL TO R LESS THAN OR EQUAL TO RS(JJ
IF(R.EQ.RS{JJS)Y} JUG=JJS-1
IF(R.EQ.RS(JJS)) GO TO 253
IF(INT.NE.Q) GO TO 250
00 25 J=24JJS
J6=J-1
IF(R.LT.RS(J)) GO TO 253
25 CONTINUE

ACCEPT IF RS{JG) LESS THAN OR EQUAL TO R LESS THAN RS(JG*1).

250 IF(R.GE.RS(JG#1)) GO TO 252
IFR.GZ.RS(JGIIGO TO 25&
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251 JG=JG-1
IF(R.LT.RS(JG)IGO TO 251
GO TO 253

“252 JG=JG+1

IF(R.GE,RSLJG*1))GO TO 252
T 7 253 NCH=1 T :
254 CONTINVE .

SET UP FRACTIONS

QOO0

DELZ=ZS(IG6~1)-ZS(IG)

OELR=RStJG*1) -RS(JG)
FZ=(Z-ZS(IG))/DELZ
FR=(R-RSUJG))I/DELR
P22=PHIS(IG-1,J6¢+1)
P21=PHIS{IG-1,J6)
P12=PHIS(IG4JG+1)

T T T T PLL=PHIS(IG,JG)
IGS=IG
JGS=J6 T

INTERPOLATE

OO0

77 7500 IFINCH.EQ.0) GO TO 501

SKIP IF NO CHANGE IMN PHI-BOX

OO0

D1=(P22-P12) /DELZ
D2=(P21-P11) /DELZ

T D3=(P22-P21) /DELR

D4=(P12-P11) /DELR
501 PHIZ=0D02 #+ FR*(D1-D2)
PHIR=0L & FZ*{03-04)

PHI=P11 % FR®*(P12~P11) + FZ*(P21-P11) + FR¥FZ¥(P22-P21-P12+P11)

RETURN

= “END - —
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' C
c
1
C THE

ZDOT=ZCOT-,5*¥DT*PHIZ

SUSROUTINE TRAGK

COMMON/T/XsYsZ 3Ry X0OT ,YDOT 5 ZOOT 4 PHI ,PHIR,PHIZL,ER50,0ERG,C1,C2,E

DERG= (PHI 4 XDOT®*2 + YOOT**2 + ZDOT*#2)/E-1. - ERGO

ERGO=ERGO + DERG
VMAX=ABS (X0OT) + ABS(YDOT) 0 ABS(2007)

C STEP CONTROL

IF(R.EQ.0,) PHIX=0,
IFIR.EQ.Q,) PHIY=0.
IFIR.EQ.0,.,) GO TO 1

PHTX=PHIR®*X/R

PHIY=PHIR*Y/R

SS=AMIM1(C2, C1/VMAX)

OT=SS/(ABS(PHIX) + ABS(PHIY) # ABSIPHIZ) ¢ 1.£-6)
DT=AMAX1(OT, .01/VMAX) ‘

FOLLOWING CARD IS FOR ZERO-POTENTIAL TESTS

IF(?HIQCEQ.O.-ANDQPHIZ-Eatfc) DT=C1IE’VHAX
X=X+0T*(XCOT-,25*0T*PHIX)
Y=Y+DT*{YCOT-,25%0T*PHIY)
2=2+DT*(ZDOT-,25*0T*PHIZ)
X00T=XBOT-,5*0T*PHIX
Y0OT=YDOT~-,S*DT*PHIY

RETURN
END o
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