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ABSTRACT

We calculate the cross-correlation of the intensity fluctuations

between different frequencies and finite bandwidth effects on the

intensity correlations based on the Markov approximation discussed in

Paper 1. Our results may be applied to quite general turbulence spectra

for an extended turbulent medium. Calculations of the cross-correlation

function and of finite bandwidth effects are explicitly carried out

for both Gan Sian and Kolmogorov turbulence spectra. The increases of

the correlation scale of intensity fluctuations are different for these

two spectra and the difference can be used to determine whether the

interstellar turbulent medium has a Gaussian or a Kolmogorov spectrum.
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I. INTRODUCTION

Frequency correlations of pulsar scintillations caused by the

irregularities of interstellar medium have been observed (Scott and

Collins 1968, Komesasoff et al. 1971, Salpeter 1969, Rickett 1969,

Lang 1911, and Sutton 1971) and the effect of finitoreceiver bandwidth

on the observed scintillations has also been detected (Rickett 1969).

A theoretical interpretation of these phenomena requires a knowledge

of the cross-correlation function of intensity fluctuations between

different transverse coordinates and different frequencies, P I (z, K 1 , kl,

Kp, ky).	 (Lee 1974).

Little (1968) and Lovelace (1970) calculated the effects of

finite bandwidth on the observed intensity scintillations based on a

"thin screen" model for a Gaussian irregularity spectrum. The "thin

screen" approximation is not necessarily realistic in interstellar

scintillations since the interstellar irregularities may not be confined

to a small region between source and observer. Shishov (1975) calculated

the frequency correlations for both the "thin screen" model and an

extended medium. However, his results do not include finite bandwidth

effects on the correlation function of intensity fluctuations and

are limited to a turbulent medium with a single-scale power spectrum.

Budden and Uscinski (1970, 1971) also calculated the effects of finite

bandwidth on the scintillations of extended radio sources and found

them to be practically negligible, in contrast to the conclusion

of Little ( 1968).
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In Paper I of this series (Lee and Jokipii 1975a), we developed

a theory of strong scintillations, which was applicable to a number

of pulsar signals. Angular broadening and phase correlation were

discussed in this first paper. In Paper II (Lee and Jokipii 1975b)

we applied this theory to the temporal broadening of pulses. In Paper

III (Lee and Jokipii 1975c), a theory of intensity fluctuations for

monochromatic waves was presented. In the present paper, we apply the

techniques of Paper I to calculate the cross -correlations of intensity

fluctuations between different wave-numbers and different transverse

coordinates P I (z, 4 1 , k l, S2, k 2 ), and finite bandwidth effects on

the intensity correlatic,. functions for an extended medium. The

calculations are carried out for both Gaussian and power - law (Kolmogorov)

spectra of the turbulent medium. We also point out the differences

in finite bandwidth effects between a Gaussian spectrum and a power-

law spectrum. This difference can be used to determine the nature

of the interstellar irregularity spectrum.
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II. GENERAL CONSIDERATIONS

We consider the propagation for a wave E (r, t) whose

Fourier component

Ew (r, t) - mw (r)	
a-iwt	

(1)

obeys the scalar wave equation

2	 2

0	 d (r) + w	 c	 (r', f	 (r) = 0	 (2)W 7 w	 w

Here (w/2n) is the frequency of the Fourier component 4
w 
(r;	 c is

the speed of light, and cw (r) is the refractive index in which the

wave propagates. The refractive index c w (r) is a random function and de-

pends on both the position r and the wave frequency w. As an exam p le, we con-

sider in this paper the propagatiom of the high frequency waves with w»w the
P

plasma frequency of the medium, in the .plasma medium. This applies to the oropa-

gation of the radio waves in the ionosphere, in interplanetary space, or

in the interstellar medium. If Ne is the electron density, then we have

2 2
cw (r) = 1-(w /w )	 (3)

p

and

wp2 = 41r Ne e 2 /m,	 (4)

where a is the charge and m is the mass of an electron (Paper 1).

Now let Ne and c  (r) vary randomly, and let <	 > denote an

average over an ensemble of propagation voliunes. Following Lee (1974),

we define

Ne (^) _ <Ne ( r) > + 6N  (r)

C (r) _
w	

<c
w 	 w

(r)> + de (r)

6(r) _ - 4n e 2 6Ne (r)/mc2

3
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ck(r) - 6c
4
/<cw> - 8(r)/k2

k = w <t >1/2 = w (1 _ 4n<W^,>e2'
c w	 c	 mW2

r = (z, 4)

C _ (x, Y)

and

S = (r,, k),

where k is the wave-number and { is the transverse position.

We also define

OW (r) = u (z, ^, k) eikz
	

(S)

for a plane wave propagating in the z direction. Then we have from

Eq. (2)

2ik au (z, S, k) + (a?2 + a2 + =32 ) u(z,{, k) + 8(r) u(z,r,k) = 0,	 (6)dz	 az	 ax 2	 ay 2	 _	 _

where now 8 ( r.) is a wave- frequency independent random variable with

zero mean.

As in Pavers I, II, and III, we will consider here a situation

in which each Fourier component Ew (r) be a plane wave propagates

freely from the source along the +z direction until it strikes the

turbulent medium at the plane z =0. The observers are situated at the

plane z > 0.

The intensity of the Fourier component with wave-number k and

observed at position (z, r) is I(z,r, k) = Iu(z, ^, k)I 2 . The

normalized cross-correlation function.of intensity fluctuation between

two Fourier components observed respectively at (z, C 1 ) and (z, r2)

4
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can be written as

P I (z, ^ l , k l , G Z ) _ "1 1 i9> _ 1
<I1><I2>

<uI u l • u2 U21>
Zulul. u^^ 2 U2`5 1,

where Ii = I (z, r i , k i ) and u i = u(z, ^ i , k i ) for i = 1,2.

In particular, if we set k l = k 2 , PI becomes the spatial intensity

corrr.iation function, which was discussed in Paper III. If we set 41 =	 ,

P
I 

is the frequency correlation function of intensity fluctuations.

The cross-correlation function P
I 

in Eq. (7) is for detectors with

zero bandwidth. We consider now the case of detectors with a finite

bandwidth. Let f  (k) be the normalized intensity response of the

bandpass, i.e.

if 
K  

(k) dk = 1

Then we have the 

(

observed intensity at (z,)

i(z, {) = J ^u(z, C, k)1 2 f 
K 
(k) dk.

` 

The correlation function of intensity fluctuation measured with

a bandwidth function f (k) is

QI (z, Sl ,f2, K) = J./ <u
l ul`u2u2*>fy{k11fK(k2)dkldk2	

- 1	 (8)
. L^ul u l*> fK (k l ) dk l 1

where the parameter K in Q  (z, { 1, { 2 , K) denotes the characteristics

of the bandwidth function f  to be specified in Section IV. The

scintillation index mz (K) as a function of K is defined as

mz2 (K) = QI (z, 4 1 1 52 = 6 1 , K).	 (9)

S

(7)
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It is the purpose of this paper to calculate P l , Q 1 and mzW,

From F.qs. (7), (8) and (9), it is clear that in order to obtain

these quantities, one has to calculate the fourth order correlation

function r2,2 (z, Si , S2 S 3 , 54 ) _ <u l u ? u3 * u4*>.

A transport equation for r 2,2 with different wave-numbers has been given

in Eq.(42) of Lee (1974). This transport equation is very complicated

and will not be solved here.

However, as was shown in Paper III, the fourth moment r 2 2 of

the complex amplitude u with same wave numbers (monochromatic waves)

is simply related to the second moments i n the strong scintillation

region. It can also be shown that this relationship between the fourth

and second moments of the field u is the same as for the case in which

the complex amplitude a has a joint-normal distribution. Hence it is

reasonable to assume "hat in the strong scintillation, the fourth moment

r
2,2 

of the complex field u with different wave-numbers is also related

to the first and second moments as if the complex u has a joint-normal

distribution. Under this assumption, Eqs. (7) and (8) can be written

respectively as

<u(z, C 1 , kl ) u*(z, C 2 , k2)>2
PI (z, 

S1• 
kl . S 2 , k 2 ) _	

<ulul*> <u2 u 2 *>	 (7')

and

2 (z, C	 C	 K) _	 (ffl <ul u 2 *>I 2 f K(kl)fK(k2)dkldk2

I	 1	 2	 ()<ulul*>fK(kl)dk11 4	 W)

by noting that <u> and <ulu2> are negligibly small in the region of

strong scintillations. Thus instead of solving the transport

equation for the fourth moment r2,21 we will determine r  1 (z, C1' kip

C 2 , k2) 	
<ul 

u 2 *>, which is the correlation between u  and u 2 * at

different transverse coordinates and with different wave-numbers.

6
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III. CROSS -CORRELATION FUNCTION OF INTENSITY FLUCTUATIONS

A transport equation for r l,l (z, { 1 , k l , C 2 , k2) a <u l u2'>

can be obtained from Eq. (6) under the "Quasi-optics" and "Markov random

process" approximations ( Lee, 1974), and one 4as

I'll, = i	 V1'	 2

az	 2 ( k - 
p

k2 ) r l,l - q { (
ki 

+k12 )A h
(0) - 2I1'`z)}rl,l

1 2
(10)

where V12 = V{ 2 , i	 1,2, and
i

1
A(C - { ) 	 <g (z, C l ) a(z" { 2 )> dz	 (11)
9 -1 -2	 2	 _m

The solution of Eq. (9) was discussed in Paper II in relation to

calculations of the temporal broadening of pulses. Following Paper II,

we define k  = k + -ATk , k2 = k - Ak, and assume Ak is small and l4kl «k.

We also normalize the intensity of incoming wave such that u(z = 0, r, k) = 1.

Then for a statistically homogeneous medium, one can write (Paper II)

rl,l (z, C 1 , k l , S 2 , k 2 ) = r0 (z, C, Ak) rR (z, AM	 (12)

where { _ 41 - C2

r	 k)(z, 4 = exp { - 4
k	

A ^(0) zP 	 }	 (12a)

and r0 (z, {, Ak) satisfies the following partial differential

equation

arn (z, C, Ak)	 iAk	 2	 1az	 + = V 	
+ 2k2 (A

S (0) - A^(m r  = 0	 (13)

The initial condition for rp is r  ( z = o) = 1. r  refers to the

"pure refraction" effect because it represents the result of

different transit times of different ray paths due to a varying index

of refraction, r0 refers to the "diffraction effect" arising from

the diffraction term (V	 2L - k2 ) r 1 1 in Eq.(10), or V{2 r  in Eq. (13).
1

7



In order to proceed further, we have to specify the two-paint

correlation of the fluctuating index c k (r) (or d (r)), from which

the function A^ ;C) appearing in Eq. (10) or Eq. j13) can be

obtained through Eq. (11). Since the medium is statistically homogeneous,

the correlation function 
<ek 

(r) c  (r')> depends only on Ir - r'j.

It is convenient here to work with the spatial power spectrum Pc(q)

of the fluctuations, which is related to the correlation through

Pc (q)
	 d3r < ck (x) ck (x + r )> e 1 4 _	 (14)

We consider two types of power spectrum for P c (q): a Gaussian spectrum

and a power-law spectrum. For a Gaussian spectrum, P c (q) is written

as

P c (q) = B  a-q2LG2
	

(Gaussian)
	

(15a)

where LG is the correlation scale of the fluctuations in refractive index.

For a power-law spectrum, P c (q) has the following form,

-q 2k 2
Pc (q) = BP e	 P

(1 + q2L
P 
2 ) o/	 (Power-law)	 (15b)

where L  is the correlation scale of index fluctuations and 4. P is

termed the cut-off (or inner) scale. Usually R p<<LP , and equation (15b)

for a = 31 is the Kolmogorov turbulence spectrum. Note that in each

case B may be related to the local mean-square electron density fluctuations.

We have

B  = 128 n 7/2 r e 2 k-4 L G 3 <g Ne2>	 (16a)

Bp = 128 n 7/2 r e 2 k-4 Lp3 <6Ne2> r(Z)/r(' - 
-7

)	 (16b)

e2where re = mc2 is the classical electron radius and <6N e 2> is the r.m.s

fluctuating electron density.

8
z
z
b
}
d



"or the Gaussian spectrumi )f Eq. ( 15a), we have from Cqs. (11), (14)

A ({) - gG 0	 a-( {2 )
a	 _8v L ^	 4LG2

8Gk4	 2
' BvLGZ (1	 q,R ) ({«LG ).	 (17)

Next we consider the power -law spectrum of Eq. ( 15b). For 0 >> ' , we
p

neglect the effect of the cutoff at q > Bp 1 and obtain from Eqs. (11),

(14) and (15b)

A({) Bnk4 (r/L " K,( L- i
S	 Lp2 22+M n	 r(u + 1)	 (18)

whe:n U Z - 1, 2u + 2 > 0, and K u denotes a modified vessel function

of the second kind. One can further show that for L >> { .
P

A^({) - 
Snka- Lp2	 I 1 - r_(n3) (2 

P 
) a'2 1	 (13a)

r(Z)

From Eq. ( 17) or (18a), we may write

So { v ,	 (19)

and thus Eq. (13) becomes

ar 2	 v

2z° + 2kZ v5 r° + 2 2; r° - °	
(20)

k

For the Gaussian spectrum, v = 2 and

S = BG k4
0 32 ^	 (21a)

	For power-law spectrum with 2 < a < 4,	 v = a - 2 and

Bp k4 C (2_a )
	 (21b)

_
0 4n(a-2)2(x=2 r(Z) LP

9
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Eq. (20) can be solved numerically (see Appendix, Paper , II).

The numerical reuulta for I' 0 , together with the values of r  in Eq. (12a),

give us the values of 
rl,l, 

which are then inserted into Eqs. (B') and (9')

to obtain the cross-correlation function P I (z, { l , k l , { 2 , k 2) and the

intensity correlation of finite bandwidtb,Q I (z, 4 1 , { 2 , K).

Before presenting the numerical results, let us consider the "pure

refraction" effect, fR (z,AK). This effect can be neglected if

1 662 AS(o)zl « 1	 (22)

For a Gaussian spectrum, the condition in Eq. (22) is easily satisfied

in interstellar scintillations and the pure refraction effect car, be

neglected. For a Kol-.::,nrov spectrum (a	 11) in interstellar scintillations,
3

Eq. (22) is not sa!,afied and the "pure refraction" effect r R is important.

However, as discussed in Paper II, the "pure refraction" effect is caused

by variation of the optical path along the line of sight and will not

be observed at a position essentially stationary with respect to the scattering

medium. In observations carried out over a period of hours or days, therefore,

an Earth-bound observer could hope to detect only the diffraction effect rThus

we will neglect the "pure refraction" effect in the following presentation.

In any case, this effect could easily be incorporated int,) the calculation

of P I or Q  because of its simple analytic form in Eq. (12a).

The numerical results for PI (z, {11 k l , [ 2 , k2 ) are plotted in Figures

(1), (2) and (3). Figure (1) shows the frequency correlation of intensity

fluctuations,

P (A f) = P (z, {_1 , k1 
{ 2,	 , k2 - 

g	 2nA f
I	 I	 - - ^1	 1 - 	 G	 (23)

10
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as a function of the normalized frequency separation F w (Af/f ) between
n

two detectors with frequency f l and f 2 (. f I - Af) respectively. Curve (1)

in figure ( 1) is for a turbulent medium with a Kolmogorov spectrum and

curve (2) for a Gaussian spectrum. f  is the "decorrelation frequency,"

which is defined as the frequency difference of two observing channels

beyond which the intensities measured at these two channels are essentially

uncorrelated. For an observer at z, we have the decorrelation frequency

fD - 2vc 00-2/v k 2(V + 2 )/v /z\- (V + 2)/V	 (24)
z

For a Gaussian spectrum v - 2, f  a s-4 and Bo is given by Eq. (21a), while

for a Kolmogorov spectrum, v . 3, fDal'4 . 4 and Bo is given by Eq. (21b).

Note that the decorrelation frequency f  is related to the characteristic

ti-c- tD for pulse broadening (Paper II) and the characteristic scattering

angle 0  
(Paper I) respectively by

2n f  t  - 1	 (25a)

and

c
fD = nz^	 (25b)

for both the Gaussian and Kolmogorov spectra.

Figure- ( 2) and ( ii show, respectively for the Gaussian and Kolmogorov

spectra, the cross-correlation function P I ({, F) - PI (z, { 1 , k l , {2 k2)

as a function of { = { 1 - 
5
2 1 for various values o:	 . normalized frequency

separation F = Af/fD The characteristic intensity correlation ;tale

{c shown in the figures is related to the decorrelation frequency f  by

1	 (26)
c	 k Oc

and Eq. (25b). {c can then be written in terms of the characteristic parameters

in the interstellar medium by Eq. (24) We only note that {
c 

a a-1 z-0.5

11
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1

c. 
0.S CN e 2>-0.5 for the Gaussian spectrum and S c a 1

-1.2 z-0.6 11f 0.4

<6Ne2 `
-0.6 for a Kolmogorov spectrum. As shown in Figures (2) and (3),

the spatial cross-correlation P I becomes broader as the frequency separation

F is increases' The broadening of P I is caused by the preferential removal

of the high-frequency components of its Fourier spectrum, a result of the

incoherence between waves of different frequencies generated by the

2
term Ak VC fp in Eq. (13).

12
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IV. BANDWIDTH EFFECTS

In order to calculate the intensity-correlation function Q 

for a detector with finite bandwidth, it is necessary to specify

the bandwidth function i X (k). As an example, we consider a rectangular

bandpass of frequency width Af o (or Ako . 2nAfo/c)o fK (k) =Ak for
0

ko - Â--_k< ko + Ate, and zero otherwise. Let K '- Afo/fD be the

normalized bandwidth. The correlation function QI can be obtained by

inserting the numerical results of 
rl l 

into Eq. (8) and integrating

over wavenumbers. Figures (4) - (6) show the results. The scintillation

index m  as a function of the parameter K is plotted in Figure (4).

Cu.: (1) is for a Kolmogorov spectrum rind curve ( 2) for Gaussian spectrum.

fhe acintiilation index m  is the unity for small bandwidths and falls to a

value of 0.5 for K = 5.

Figures (5) and (6) show the renormalized intensity correlation function
QN (S,K) = Q I (C, K)/QI ({,K = 0) as a function ofG = I;l - ^ 2 I and the

bandwidth K for the Gaussian and the Kolmogorov

spectra respectively. Note that the intensity correlation scale

increases as the bandwidth K increases. (See also Little 1968). As in

the case of the broadening of P I , this effect is due to the preferential

removal of high-frequency components arising from diffraction-gener+

incoherence.

Let us define Ch (K) be the half-width of the function O N ({,

Figure (7) shows the percentage increase of 
C  

(K) relative to C 

a function of the bandwidth K. As shown in the Figure, the percent.

of Ch ( K) for a Kolmogorov spectrum is almost twice as large as tha

for a Gaussian spectrum. At K = 10, the increase of ^h for a Kolmo,

13
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spectrum is ro 609 while for a Gaussian spectrum, .e increase is

ti 309. The interpretation for this difference can be found from

the power spectra of index fluctuations shown in Figure (8).

Curves (1) and (2) show respectively the Kolmogorov and the

Gaussian spectra. The observed wave intensity fluctuations are

.used mostly by the power inside the rectangle abed in Figure (8),

where the spatial frequency q is close to (kz) -1/2 , the inverse

of the Fresnel scale.	 The components of higher spatial frequency

in the intensity power spectrum, which are removed preferently

because of the incoherence between different frequencies for a

detector with finite bandwidth, arise largely from that portion of

the power spectrum contained ir: the area cefg in Figure (8). Inside

the shaded area, there is more power to be removed from a Kolmogorov

spectrum than from a Gaussian spectrum. Hence the higher frequency

power in intensity fluctuations is reduced more severely and the

intensity correlation function Q  becomes broader for a Kolmogorov

spectrum than for a Gaussian spectrum. Thus the differ=nce between

a power-law spectrum and a Gaussian spectrum are amplified here by

the finite bandwidth of a detector. The broadening of the half-width

of Q I can be used to determine whether the electron density fluctuations

in the interstellar medium have a Gaussian or a power-law spectrum.

Finally we remark that an analysis of the increase of the

intensity correlation scale has not yet been carried out for

interstellar scintillations. The published data on interstellar

scintillations are not sufficiently accurate to determine whether the

14
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interstellar turbulent medium has a Gaussian or a Kolmogorov spectrum

(Lee and Jokipii 1975 d), because most observed quantities are not

very sensitive to the for' of the power spectrum. However, the

increase of the correlation scale due to finite bandwidth of a

detector is relatively sensitive to the form of the interstellar

power spectrum. Therefore, we suggest here measurement of the increase

of intensity-correlation scale as a method to determine whether

the power spectrum in the interstellar meditna is Gaussian or

Kolmogorov.



FIGURE CAPTIONS

Figure (1)	 This figure shows the frequency correlation of

intensity fluctuations P I (F) as a function of

the normalized frequency separation F - Af/f O.

f0 is the dtacorrelation frequency. Curve (1)

is the for Kolmogorov spectrum and curve (2)

for the Gaussian spectrum.

Figure (2)	 The cross-correlation function P I fC,F) as a function

Of ; . 1^ 1 - S 2 1 for various values of the normalized

frequency separation F-Af/f0. C  is the characteristic

correlation scale. This figure is for a

Gaussian turbulent spectrum.

Figure (2)	 As in Figure (2) for the medi ,im with a Kolmogorov

spectrum.

Figure (4)	 The scintillation index m  (K) is plotted as a

function of the parameter K (normalized bandwidth).

eirves (1) and (2) are respectively for a Kolmogorov

and a Gaussian spectrum.

Figure (5)
	

This figure shows the renormalized intensity correlation

function Q  ({,K) as a function of C = 1^ 1 - { 2 I for

various values of the normalized bandwidth K for

a medium with a Gaussian spectrum.

N

igure (6)	 As in Figure (5) for the medium with a Kolmogorov	 "d

spectrum.

16
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Figure (7)	 This figure show,z the percentage increases of

the half-width C h (K) of intensity corrfelation

relative to 
C  

(K - 0) as a function of the

bandwidth K for both Gaussian and Kolmogorov

spectra.

Figure (8)	 This figure shows the power spectrum of the

refractive index, P E (q). Curve (1) is a

Kolmogorov spectrum and curve (2) is a Gaussian

spectrum. The intensity fluctuations of radio

waves are caused mostly by the power inside

the rectangle abed. The components of highest

spatial frequency in the intensity power spectrum

are mostly duo! to the power in the shaded area

cefg. This figure is plotted in a log-log scale.

17
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