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RADIOHALOS, TEKTITES AND UMAR RADIOACTIVE CHRONOIAOY

The rationale for the lunar halo search is that halos in terrestrial minerals

serve as pointers to localized radioactAvity r..nd thereby make possible analytical
9

studies that bear importantly on the general problems of isotopic dating and mode

of crystallization of the host mineral. For example, several minerals such as

mica, fluorite and cordierite often contain unusual halos originating with fairly

short half-life alpha radioactivity, e.g., 
218 

P0(tl/2 = 3 min), and it is not clear

how the presence of these halos can be reconciled with a hydrothermal, magmatic, or

metamorphic origin of the host minerals (1). Therefore, a further aim was to pursue

such ancillary studies on terrestrial halos and on certain samples of special origin

(e.g., tektites, meteorites).

With respect to the first aim, the MSC thin section collection from the

Apollo 11-15 suite of rocks has been personally scanned for halos on several occa-

sions with completely negative results. It is difficult to estimate the probability

that this means a real absence of halos because the only basis for such an estimate,

their terrestrial occurrence, is exceedingly spotty. Further, terrestrial halos are

most numerous in rock types that are generally conspicuously absent from the lunar

samples thus far available for study. The absence of halo,, is not due to a lack of

radioactive inclusions in lunar sample, since such have been well identified in

rocks such as 12013. Perhaps the high radiation environment indigenous to the lunar

surface effectively anneals the halos as they are being formed.

In parallel with the search for halos in lunar material, certain types of

terrestrial halos have been examined for information on the general field of radio-

active chronology. In particular, we have used the ion-microprobe mass spectromete^

to determine lead isotope ratios in the microscopic inclusions within certain ter-

restrial radiohalos that were expected to possess unusual Pb isotope abundances M.
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Specifically, one inclusion showed Pb/U and Pb /Th ratios > 5000 with 206 //204Fb

> 1000, i.e., no U, Th or 
2o4 Pbdetected. In another case, the 

2o6Pb/207 Pb ratio

was p 60, an impossibly high value if the Pb isotopes had been derived from uranium

decay. Clearly, any attempt to date this sapple in the usual way would be impos-

sible, and it appears desirable to establish the extent of such anomalies in lunar

and other terrestrial samples.

While their exact origin and history is uncertain, iron meteorites are

important in radioactive chronology as reference material for defining primordial

Pb isotope ratios. Over the last decade, several analyses have shown modern radio-

genic lead	 addition to the primordial mixture in the troilite phase of a number

of iron meteorites ( 2). These anomalous results have usually been attributed to

terrestrial contamination (3), but in order to settle the question unambiguously,

we have initiated ion-probe Pb isotope studies of this class of samples. To evaluate

the potential of the ion -probe to perform accurate Pb isotope ratios on the meteor-

ites, NBS common lead was utilized as a standard in test runs. A comparison of ion-

probe ( IP) runs at Oak Ridge with the NBS reference data for their sample yielded

the following results (4); 
2o4 

Ph/ 2o6Fb = 0 . 0591 t 0 . 0074 ( IP), 0.059042 t 0.000037

(NBS); 
207pb/206pb = 0.909 t 0 . 025 (IP), 0.91464 t 0.00033 (NBS); 208Fb/2o6Pb

2.174 t 0.035 (IP), 2.1681 t 0.0008 (NBs).

Another part of the study was to have been a comparison of lunar and terres-

trial U and Th halo sizes in relation to the fundamental question treated more than

30 years ago by Dirac ( 5) and more recently by Hoyle and Narlikar (6), i.e., that

of the possible lime variation of the fundamental physical constants and in particu-

lar of the radioactive transformation rate over geological time. Due to the absence

of lunar specimens comparative studies were not possible, yet terrestrial halo

investigations have yielded some data that may bear considerably on lunar radioactive

chrcnology. As background information I note that in the context of the Dirac

hypothesis, Oerling and Ovchinnokova ( 7) have recently reported differences in rock

ages as measured by various age-dating techniques, a situa`.ion which they attribute

i



to a variation in the alpha-beta branching ratio in the Precambrian era. A few

years ago Gamow (8) proposed using the r a ng structure of uranium halos to check

branching ratios in the Precambrian, not realizing that Wilkinson (9) had earlier

interpreted the same data (somewhat erroneously) in favor of confirming presently
9

accepted values. Interestingly, the same data which for decades have been utilized

to establish decay rote invariance and branching ratio constancy are now being

interpreted to imply a variation in the radioactive decay rate (10). Clearly the

same data cannot support both conclusions!

From decay theory it has been argued previously that the near agreement be-

tween uranium and thorium halo ring radii and compu.ed alpha ranges in the same

material was proof of an invariant decay rate (11). To see this is not exactly

true wei use the a-decay theory notation given in (12) to compute the fractional

change in the decay constant (X) arising from the fractional change in ring radius

(r). In this case In T r--
 3Z1/2R1/2 - 4ZE 1/2 ; X = vT where T is the tra__..mission

probability, E the energy of the emitted a-particle, Z the atomic number of the

daughter nucleus, v is the frequency with which the a particle strikes the barrier,

and R is the nuclear radius. It then follows that in the appropriate units dX/X

1(3/2)Z1/2R1/2 - 
11 (dR,/R) + (1/2 + 2Z/El/2 ]X (dE/E). A particle of mass ml and

charge z  has a range r (halo radius) given approximately by the expression r =

const. E2/Z12ml . Subsequent calculations lead to the expression dX/X ^ :6 43(dR/R)

+ 46(dr/r). Since the minimum uncertainty in measuring halo radii is about Ar

=,O.1 µm, then the resulting fractional uncertainty in X for 238U (halo radius 12.5 µm)

is dX/Xs4 46(0.2/12.5) 9:; 1/2 assuming dR = 0. since some uncertainties are involved

in the conversion of air to mineral ranges, Van de Graaff He ++ ion beams of varying

energy were utilized to induce coloration bands in the mineral containing the halos.

In examining scores of U and Th halos and in attempting to match their ring radii

with the corresponding ranges obtained from the experimentally determined range-

energy curve, I have found occasional rather than systematic differences in certain

F,
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halo ring radii. Since the Van de Graaff induced ranges correlated closely with

halo radii at 4.2 Mev (13 '- 0.5 µm V.d.G. vs 12.7 t 0.2 um for halo radii) and

5.3 Mev (19 t 0.5 µm V.d.G vs 18.9 t 0.2 pm for halo radii), at present I do not

attribute such differences tr an actual change in Ea.
e

An unanswered question is whether X variations might occur without changes in

halo radius (dE = 0). Wilkinson (9) has suggested that the physical constants

might vary in some unknown fashion without affecting X. The contra-positive of

this suggestion would imply the correlation of measured a-ranges and halo radii is

not a test of X invariance. Variations in ?. might then be detected by noting age

differences in samples determined by radiometric, geologic, or archeologic methods.

As a case in point, there is a wide discrepancy between the radiometric (13, 14)

ages (0.7 my and 4 my) and the geologic and stratigraphic (15, 16) age (several

thousand years) of " = australites. That two cosmic events separated by several

million years would result in similar strerm-field tektite patterns is in itself

most unusual irrespective of whether the tektites are of lunar or terrestrial

origin (17). Rviden-e suggesting a common link between the 11/Na (4 my) australites

and the general australite population comes from recent Th/U determinations at

ORNL (18), i.e., Th/U = 5.9 (AN-87) and 8.3 (P-192) in the H/Na group compared to

Th/U values of 4.8 - 8.5 previously reported for the general group (19).

It has been remarked that the fission track age of the new H/Na group of

australites may be high for some reason (17). This is quite significant in that

it is universally agreed that fission tracks can form only after the tektites

have cooled. Unless the australite fossil fission tracks originated with a spon-

taneous fissioning nuclide besides 238U, the only remaining possibility for a "high"

fission track age is a hiatus in the decay rate due! to causes presently unknown.

While this explanation is unusual, I do not think it can be aefinitely ruled out by

simply appealing to the regularity of radiohalo data.

Acceptance of this hypothesis would not necessarily have implied significant

changes in the other fundamental constants but would affect age dating.
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