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ABSTRACT

A numerical method is outlined for solving the equation which de-

scribes the solar modulation of cosmic rays in models where interplane-

tary conditions can vary with heliocentric latitude. As an illustration

of the use of this method, it is shown how variations in the modulation

with latitude could produce the small radial gradients in the intensity

that have been observed from. the Pioneers 10 and 11 spacecraft.
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INTRODUCTION

In Fisk (1971), a numerical method is outlined for solving the

equation which governs the so L.r modulation of galactic cosmic rays in a

spherically-symmetric model for the interplanetary medium. in the last

ffew years this method has been used in numerous studies of the mod-

ulation problem. It is the purpose of the present paper to extend this

method to srlve the modulation equation in models where interplanetary

conditions vary with heliocentric latitude.

The cosmic-ray flux that is observed in the solar equatorial plane

may well depend sensitively on interplanetary conditions at other helio-

centric latitudes. For example, observed cosmic rays may have entered

the inner solar system over the solar poles, and then diffused across

the mean magnetic Field into the equatorial plane. The distance that

must be travelled by particles following field lines from the inter-

stellar medium to the inner solar system is much shorter over the poles.

The magnetic field in this region should lie nearly in the heliocentric

radial direction, wh-reas 'n the equatorial plane it is wound in a tight

spiral. It is also conceivable that cosmic rays may tend to diffuse out

of the region near the equatorial plane into the mid-latitude regions,

above ann below the plane. Solar activity appears to be enhanced in the

mid-latitude regions, and thus the cosmic-ray intensity there ,nay be

depressed.

As an illustration o f the use of the numerical method outlined

here, it is shown how latitude variations in the modulation can affect

the radial gradient in the intensity seen in the equatorial plane. In

particular, it is shown how these variations could produce the small gra-

dients which are measured from Pioneers lU and 11 (Teegarden et al.,

L973; McKibben et al., 1973; Van Allen, 1972 a, b).
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THE METHOD

Consider a model in which interplanetar y conditions vary with

heliocentric radial distance r and polar nngle 9; the latter is measured

relative to the axis of rotation of the sun. In steady-state conditions,

the cosmic-ray omni-directional distribution function f (number of par-

ticles per unit volume of phase space, averaged over particle direction)

behaves in such a model according to the equation (Parker, 1965; rleeson

and Axford, 1967; Jokipii and Parker, 1970; Fisk et al., 1973):

	

-p a (r 2V) af = 11 2. d (r 2K af I 	I	 a (sin 9 K af) _ V of	 (1)
3r Jr	 ap	 rIr	 r ar	 2	 6 a6	 ar

r sin;3 39

The distribution function f is related to the differential intensity j,

per unit interval of kinetic energy I', by j = f/p 2 (Forman, 1970).

The term on the left side of (1) and the third term on the right

site describe the effects of convection and adiabat-c deceleration in

the expanding solar wind. Here p is the magnitude of particle momentum,

and V(r,6) is the solar wind speed. It is assumed that the solar wind

flows only in the radial direction. The first and second terms on the

right side of (1) describe the effects of diffusion in the radial and

polar directions, respectively. The diffusio n coefficient Kr can also

be expressed as

Kr = K„ COS 2 ^ + K  sin 2 ^	 (2)

Here, K„ is the diffusion coefficient for propagation parallel to the

mean magnetic field, which is assumed to lie on cones of constant 6 and

to make an angle ^ with the radial direction. The diffusion coefficient

K  describes the propagation normal to the mean field, along cones of
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constant a. In most cases, 
r
  equals K e , the cross:-field diffusion

'	 coefficient for propagation in the polar direction. Gradient and cur-

1
vature drifts of the particles in the '_arge-scale interplanetary field

are not considered here. However, the effects of such motion could be

included in (1) simply by adding a term 4 • Vf, where v_H is the drift
velocity.

Equation (1) is a parabolic partial differential equation. As

such, it can be readily solved by using the Crank-Nicholson implicit

finite difference technique, which was developed for solving space-time

diffusion equations. Momentum in (1) is the analogue of time in the

simple diffusion equation. In spherically-symmetric models, where the

Isecond term on the right side of (1) is ignored, (1) can be solved by a

straight-forward application of the Crank-Nicholson technique, as is

done in Fisk (1971). In models where latitude variations are included,

the appropriate technique is the alternating - direction modification of

the Crank-Nicholson methoi, which was suggested by Douglas (1962) and

elaborated on b y Douglas and Gunn (1964). A useful discussion of this

method can be found in Carnahan et al. (1969)

In finite-difference schemes a value for f is obtained at a series

of grid point y f (I, J, K). Here e = I • De, r = J • dr + ro , and p = K•Lp

+ Po . The spacings between grid points are A6, Ar, and Ap; o6 = n/M,

where M is the largest value of I. Boundary conditions must be speci-

fied at I = 0 and I = M, corresponding to e = 0 and- R , respectively.

Similarly, bourdary conditions must be specified at r = r o , the smal-

lest radial distance considered, and at R = N • Lr + r 
n

, the largest value
1 

of r. An "initial." condition must be given at p = p o, i.e. f (I, J, 0)

I

must be given at all I and J.

I
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In the simple Crank-Nicholson technique, derivatives with respect

to 8 are replaced with finite difference equations which relate f (I-1,

J, K), f (I, J, K) and f (I + 1, J, K) to f (I-1, J, K + 1), f (I, J,

K + 1) and f (i + 1, J, K + 1). Similarl y , derivatives with respect to

r relate f (I, J-1, K), f (I, J, K) and f (I, J + 1, K) to their counter-

parts at K + 1. Derivatives with respect to p involve f (I, J, K) and 	 .

f (I, J, K + 1). By starting with the known values of f at K = 0, the

value of f at larger K would then have to be determined in this scheme

by solving at each step M • N simultaneousz linear equations. For most

applications this procedure is impractical.

In the alternating-direction modification to the Crank-Nicholson

n
technique, a two-step procedure is folluaed. in the first step the

derivatives with respect to 8 are defined in terms of f (I-1, J, K),

f (I, J, K) and f (I + 1, J, K), and intermediate values of f* (I-1, J, K

+ 1), f* (I, J, K + 1), and f* (I + 1, J, K + 1). The derivatives with

respect to p also relate f (I, J, K) to f* (I, J, K + 1). The derivatives

with respect to r, however, involve only f (I, J-1, K), f (I, J, K) and

f (I, J + 1, K). To determine f*, then, requires the solution of M

simultaneous, linear equations, N times, which is a more tractable procedure.

In the second step, the derivatives with respect to I remain defined in
	 w

u

terms of f. at K, and f*, but now the derivatives with respect to r and n

are defined in terms of f at K and the required values of f at K + 1.

_o determine f at K + 1, N simultaneous, linear equations must be solved

M times. By starting with f at K = 0, this two-step procedure is repeated

at each value of K. A fast algorithm for solving the simultaneous

equations can be found in Diaz (1958).

For the boundary conditions at 8 = 0 and n it is appropriate to

4
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require simply that 3f/30 = 0. Some caution must be exercised in im-

oosinc this condition, however, since (1) contains a term which is

proportional to (1/tanO)df/39. With an application of L'Hospital's F

rule, (1/tan B) 3f/36 = 3 2 f/d9 2 at 6 = 0 and 7r. The maximum radial dis-

tance R is chosen so that at r > R the modulation is negligibly small.

The boundary condition at r = R is then f(I, N, K) = f 0 (p), where f0(p)

is the unmodulatad, intarstellar distribution function. Cosmic rays

k	 are assumed here to impinge on the solar cavity isotropically. For the

bo adiry condition at r = r o , which is assumed to be a value small

corp::ed with 1 AU, it is appropriate to require that 3f/3r = 0.

't should be noted that in Fisk (1971) the boundary condition at r

r was treated with considerable care. The differential number den-
0

sity U was scale, by r l/- or u = r l 2 U, and then u was set equal to

zero at r = 0. In retrospect, this precaution was unnecessar y . The

solution near ea7ch, for example, is relatively insensitive to the boun-

dary condition at r = r 0 . It suffices then simply to choose a condition

which is easy to program, and which is not physically unrealistic.

The initial momentum p
0	 0

is chosen so that at p 1 p the modulation is

small. The initial condition is then f(I, J, 0) = fo (po). The solu-

tion at values of p < p
o 

is determined b y stepping down in momentum,

i.e. Ap is taken to be negative. In this regard it is convenient to

-.hange variables in (1) from p to in p. The spacing between grid points

is now Aln p, which is taken to be a constant. At large values of p,

then, where there is little modulation, the steps in momentum (tipAEnp)

are large. At small p, where f varies rapidly, the step size in p is

automatically reduced.

J^
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1AN ILLUSTRATION EXAMPLE

r	 Measurements from the Pioneer 10 and 11 spacecraft have shown that

the radial gradient of the cosmic-ray intensity is small. Teegarden

et al. (1973) and McKibben et ai. (1973) find that the integral proton

gradient (the gradient of protons with energies above 'L 60 MeV) is only

about 4%/AIJ between 1 and 3 AU. Van Allen (1972 a, b) reports a gra-

dient which is consistent with zero over this distance. McKibben et al.

(1975) find that the integral gradient remains at % 4,,/AU out to at

least 5 AU. McDonald et al. (1975) have argued recently that the cor-

rections for Jovian electrons in their previous analysis, as well as in

the analyses of the other experiments, were inadequate. With these

corrections taken into proper account, McDonald et al. (1975) suggest

that all previous gradient measurements could be reduced.

At the radia. distances sampled by Pioneer the principle contri-

bution to the integral proton intensity (protons above -. 60 MeV in

energy) comes from particles with energies 'L 1 GeV (e.g., McKibben et

al. 1973). Equivalently, the observed integral gradient is a measure of

the gradient of these high energy particles. In spherically-symmetric

models for the interplanetary medium the high energy gradient can, in

turn, be related to the radial diffusion coefficient by the relationship

12Z	 CV	 (3)

jar	 K
r

where C = - Kn f/31n p is the Compton-Getting coefficient (Cleesen and

Axford, 1968 a; Fisk and Axford, 1969, 1970; Fisk et al., 1973).

The radial diffusion coefficient can, in principle, also be de-

termined from the observed properties of the interplanetary magnetic

field. In the last few years there has been contraversy as to exactly

6
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how this calculation should be performed (cf. Fisk et al., 1974). Most of

the disagreement, iiowever, is ccncerned with the behavior of particles

at relati%ely lo ,a energies. For high energy particles, where the particle

gyro-radius r  is greater than, or on the order of the correlation

length a of the field fluctuations, most theuries appear to be in reason-

,	 able agreement (e.g. Jokipii, 1966; Klimas and Sandri, 1971).

In the re^ riew article by Jokipii (1971), for example, thy: parallel

diffusion coeffi=lent is given as

	

2	 2 ( 4 )

	

„- v g	 4Bo 	 for 	X 
8

P (k=0)
xx

Here, P
xx 

(k = 0) is the power density in fluctuations normal to the

;Wean field direction, evaluated at zero wavenumber; v is particle speed;

and Bo is the mean field strength. The perpendicular diffusion coef-

ficient in this limit is

K 1 _ v Pxx (k = 0)	
for r > A	

(5)

g
2 B0

The observed power density at small wavenumbers yields P
X Y. 

(k - 0)

1 - 2 . 10 2 gauss 2cm (See, for example, the power spectra given in

Jokipii and Coleman (1968), or in Fisk and Sari (1973)). The mean field

strength near r = 1 AU is B 0 = 4.5'10-5 gauss. Thus, (4) and (5) yield

respectively

K „ = 2.1021 BR2	 (6)

and	 ^^ = 1.2 . 1021 6	 (7)

where R is particle rigidity in units of GV, and e = v/c, with c the

speed of light. These values for K„ and K , agree closely with the

tP
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results Riven in Jokipii (1971). With a typical correlation length of

X x, 1.5 • 1011 cm (Jokipii and Coleman 1968; Fisk and Sari, 1973), (6) and

(7) should be valid for particles with rigidities R ti 2 GV, or equiva-

lently, for protons with energies T	 1 GeV. The solar wind speed is V

400 km/sec. Thus, by use of (3), (6) and (7) predict a gradient for

1-GeV protons, or equivalently an integral gradient, of - 1.5 7/AU.

Concc, ivabl y , (6) and (7) could be small by a factor of 4. These

expressions are evaluated here at T = 1 GeV, which is at the lower limit

of their range of validity. An observed integral gradient of " 4%/AU,

is then not necessarily inconsistent with theory. However, if the in-

tegral gradient is in fact small compared with 47 /AU, as is indicated in

the observations of Van Allen (1972 a, b) or is implied in the suggestion

of McDonald et al. (1975), then there appears to be a conflict between

the theory which is applied in spherically-symmetric models, and ob-

servation.

One possible solution to this problem is to disgard the assumption

of a spherically-symmetric interplanetary medium. If there are more

particles above and below the solar equatorial plane, and these particles

tend to diffuse into the region of the plane preferentially at small

radial distances, such a process reduces the radial gradient. The

spiral pattern of the interplanetary field is, in fact, less tightly

wound above and below the equatorial plane. Among other results, this

effect increases the term cos 2i, in (2) at higher latitudes, and thus it

may reduce the modulation here, and increase the particle density. The

particles above and below the plane will diffuse onto the plane pre-

f:rentiall.y at small r, provided that K„ increases less rapidly than
U

proportional to r 2 , as can be seen from (1).

8



There is another criterium which must be satisfied for a la

dependent modulation model. to be acceptable. The observed protu

tram has a slope near unity at energies % 80 MeV, i.e. alnj/B!nT

11nf/1.1n p=0 (e.v. Rygg and Farl, 1 971). In this energy range,

the terms on the right of (1) must all sum to nearly zero, or th

all be individually small. For the case considered here, a bala

the terms dOC3 not seem to be possible. Particles are diffusing

the region near the equatorial plane, and thus the second term o

right of (1) is positive. If, after entering the equatorial pla

these particles tend to diffuse outward in radial distaace, the

term in (1) can be negative. However, since particles also diffuse

inward along the equatorial plane from the interstellar medium, this

first term can never cancel the second. Circumstances in which the

first and third terms can to made individually small are discussed in

detail in Fisk et al. (1973). The second term can bE made adequately

small by requirir_g that K  becomes small a` low energies.

Consider then the following model. For particles with r  > a

K„ an3 K,, as are given in (4) and ('), are used. For particles with r 

< A, K„ is taken to be the form given in Jokipii (1971), which is ex-

pressed here as

- v r  2 Bo 2	
312 , for r < a	 (8)

K "	 P (k = 0 r	 K -
xx	 g

It is assumed in (8) that the power spectrum of field fluctuations falls

I

off as k-3/2 for large k. It is also recognized that (8) yields a value for

K„ which is probably too small at low energies, and thus it will tend to

overestimate the radial gradient. For example, with Pxx(k = 0) =

1.5 . 102 Gauss 2 cm, Bo = 4.5 • .10 -5 Gauss, and ; = 1.5 . 10 11cm, (8) predicts

9



that the mean free path For a 10 MeV proton is ),mfp ti 0.015 Ail . Solar

flare observations, however, appear to indicate that XMfp \, 0.1 AU at

these energies (Ma Sung et. al., 1975).

Particles are assumed to diffuse across the m!ar, field direction by

scattering off of flucrudcions which have scale-Pizes comparable to r
k

As can be seen from the formula given in Jokipii (1971), K, is then

-

	

K	 K	

v P 
iC.0 

(k = 0) ^r	 3/2, 
for r 	 kO)

	

^	
=	
_ 

YBo.

This form has the required behavior that K O becomes smaii at low energies.

Cross-field diffusion in which particles follow random-walking

Vild lines across the mean field direction is thus ignored here. This

1 . r.tr proces,, which is discussed by Jokipii and Parker (1969), supposedly

yields a diffusion coefficient that is roughtly equal to (7) at all

enemies. In practice, however, as is indicated by observations of solar

particlr-3 , K, at low energies is nowhere near this large (Krimigis et al.,

1971).

The quantity Y
xx	 o

(k - 0)/B 2 is taken to be a constant equal to

7.4 • 10 10cm, independent of r and e. (Note that near earth Pxx(k=0)

1.5 . 10 2 Gauss 
2
cm and B = 4.5 . 10 Gauss.) The cross-field diffusion0

coefficient given in (5) is then constant, or equivalently K e /r 2 varies

as 1/r 2 . Higher energy particles will thus enter the region of the

equatorial plane preferentially at small r. This behavior for

P xx ^k = 0)/B02 can result provided that the correlation length, and the

amplitude of the fluctuations relative to the mean field are both con-

stants. Thus, A is taken to be 1.5 • 10 11 cm, independent of r and e. The

solar wind speed is taken to be similarly constant at V = 400km/sec.

The mean magnetic field is assumed to execute the Archimedes spiral

pattern appropriate for each latitude: (Parker, 1963). The field is

10
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normalized so that at r	 1 AU, Bo = 4.5'10-5 Gauss, and 4, = 45°. In

t	 the model considered Mere the vari?lion i-.a the field magnitude and

direction with polar angle 9 is solely responsible for the latitude

dependence of the modulation.

The outer edge of the modulating region is placed at R = 25 AU.

The unmodulated in`.erstellar spectrum is taken to be f o a (To
 + c2p2)-1.3;

p, where T
0 
is particle rest energy. With this form, the spectrum for

the differential number density is given Lr s power law, in total energy,

with sr--ctral index -2.6. The unmodulated spectrum is normalized to be

equal to the unmodulated spectrum that was used b y Urch and Gleeson

(1972) in their extensive study of the modulation.

I
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	 With the above parameters and upon assuming that the particles are

protons, (1) has been solved numeri^ally by using the technique outlined

in the previous section. Shown in Figure 1 is the calculated differential

proton intensity near earth. As can be seen here, this spectrum pro-

vides a good fit to tLe proton spectrum that is observed in -972, at the

beginning of the Pioneer 10 mission. The calculated spectrum also

provides a reasonable fit to the spectra observed by McKibben et al.

(1975) at later dates, from Pioneers 10 and 11. Also shown in Figure 1

is the calculated differential radial gradient, determined here between

the distances 1 and 5 AU, i:i the equatorial plane. Rather than yielding

a grad_ent .ti 1.57/AU, (6) and (7) in this latitude-dependent model yield
I

a gradient for 1-GeV protons of < 1%/AU. The integral proton gradient

(protons above 60 MeV in energy) is in .act ti 0.6/'/AU. Clearly,

variations in the modulation with heliocentric latitude could be respon-

sible for the small gradients seen from Pioneers 10 and 11.

There is some additional evidence which supports the explanation

for the small gradients given here. Axf ord et al. (1975) report t ►:.-.:

11
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the azimuthal anisotropy seen from Pioneers 10 and 11 for particles with

energies > 480 MeV/nucleon is smaller than expected. The observed

anisotropy is C = 0.46 + .117, whereas the theory, as it is applied in

spherical ly-svmmetric models, can yield C, > lY. Axford et al. (1975)

suggest that an unusually large ratio of K,/K,, for particles with energies

> 1 GeV/nucleon could be responsible for the reduced anisotropy. An
ti

alternative explanation is that particles diffusing onto the equatorial

plane from higher latitudes, as in the model discussed here, cause an

outward radial streaming which in turn diminishes 5©.

As can be seen in the discussion in Fisk (1974), in steady-state

conditions

-	 tan	
3V	

- c r	(i0)

where 
r 

is the radial anisotro py . It is assumed in (10) that ^ 1K1t<<1.
_

In the model given here, for example, K I /K„ < 10 -2 for pF	 s lbove

1 GeV in energy, at r >^ 3 AU. Also the azimuth?'. and pol 	 1,_.:ients

are assumed to be small; the latter assumption is appropriate since in

the model ;riven here the modulation is symmetric about the equatorial

plane.

In spherically-symmetric models, ^ r - 0 for particles with energies

greater than several hundred MeV/nucleon (Gleeson and Axford, 1968 b;

Fisk and Axford, 1969). At r = 3 AU, for example, tan 0 = 3. With C =

1 and V = 400 km/sec, (10) then yields in such models ^, = 1.4% for 1

GeV protons. In contrast, in the latitude dependent model considered

here ! r is positive, as can be seen in Figure 1. At r = 3 AU in the

equatorial plane, ^r shown here is	 0.3w for 1 GeV protons. With the

same values for ^, C and V, (10) then yields in this case E, = 0.48%.

in good agreement with the observations of Axford et al. (1975).

12



The radial anisotropy predicted here would be difficult to de-

tect from the Pioneer spacecraft. The spin axes of these spacecraft

point in the radial direction. Also, a detailed examination of the

numerical solution obtained here reveals that the radial anisotropy is

less important near 1 AU. Thus, this anisotropy is not expected to in-

fluence the diurnal anisotropy that is seen by neutron monitors.

CONCLUDING REMARKS

In addition to providing an explanation for the small gradients

seen from PioneerF 10 and 11, the example presented here also illustrates

how sensitive the cosmic-ray intensity observed near earth may be to

latitude-variations in the modulation. Recall that the variation in

modulation with latitude in this model is caused solely by the expected

latitude variations in the direction and magnitude of the interplanetary

magnetic field. This effect alone, however, introduces considerable

polar gradients in the cosmic-ray intensity, and as a result, signifi-

cantly alters the flux seen near earth. Shown in_Figure 2 is the cal-

culated intensity at 1 AU, plotted as a function of polar angle 9, for

two different energies. The curves marked K . = 0 are solutions to (1)

with the parameters given in the previous section, but now with polar

diffusion ignored. The variation in the modulation conditions with

latitude in this case causes the low-energy intensity to vary by nearly

three orders of magnitude between the polar end equational regions. The

curves marked K  ¢ 0 are plots of the solution obtained in the

previous section -.4ith polar diffusion included. Note in particular the

15 MeV curve. The polar diffusion cuefficLent is extremely small in

this case (K 0 ti 7 . 10 14 r_m2 sec - 1 ), and yet polar diffusion can alter the

intensit y near earth b y a factor	 5.

1?

I

I
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It is reasonable to expect that the cosmic-ray modulation observed

near earth will be understood only when information is available on

modulating conditions at other heliocentric latitudes.

14
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FIGURE CAPTIONS

Figure 1	 A plot vs. kinetic energy of the differential intensity

i
near earth, the differential radial gradient in the

equatorial plane between 1 and 5 AU, and the differential

radial anisotropy in the equatorial plane at 3 AU.

These curves are obtained from the numerical solution

ro (1) which is .iiscussed in Lhe text. The data

points are the observed proton intensity during

quiet-tires in mid - 1972. These points, which were

obtained from the GSFC experiiaent on DT-5, were

kindly provided b y M. A. Van Hollebeke.	 lso shoun

is the unmodulated interstellar spectrum wnich was

used in the numerical example.

Figure 2.	 A plot vs. polar angle e of the differential intensity

at 1 AU, for two energies: T = 1 GeV and 25 ME:.

The curves marked K  = 0 are solutions to (1),

obtained by using the parameters described its the

text, but with polar diffusion ignored. The curves

marked 
Ke 

# 0 are the corresponding solutions

with polar diffusion included.
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