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FOREWORD 

This volume is a tribute to a very remarkable man. It has 
been my great pleasure to have been associated with him for the 
past six years and, since I came late to the business of aero- 
nautics, I had never had the pleasure of meeting Dr. Robert T. 
Jones before. 
to work with him I have developed an enormous respect for his 
technical abilities and also for his character as a man. His 
grasp of the physical sciences is as broad as that of anyone I 
know. It ranges from practical aeronautical engineering to the 
most advanced and abstruse statistical mechanics. What is more 
remarkable is that R. T.'s understanding is not superficial. 
In an amazingly short time R. T. can master a field to the point 
where he can make original contributions. R. T. is also an 
excellent teacher. He has a profound influence on those around 
him. In addition, his critical faculties are also exceedingly 
sharp. The Ames Research Center is indeed fortunate to count 
R. T. as one of us. He is unique and his work has added 
greatly to the Center's scientific and technical reputation. 
It is a genuine pleasure as well as an honor to have him here. 

During the period that I have had the opportunity 

Hans Mark 
Director 

Ames Research Center 
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INTRODUCTION 

The publ ica t ion  of t h i s  remarkable co l l ec t ion  commemorates the  65th 
birthday of a very remarkable man, D r .  Robert Thomas Jones, Aeronautical Engi- 
neer,  who f i r s t  went t o  work f o r  NACA 41 years ago. During t h i s  long C i v i l  
Service career ,  he  has become one of t h e  world's leading aerodynamicists, made 
d iscover ies  t h a t  have changed the  h i s t o r y  of aeronautics,  and received impor- 
t a n t  honors. 
whose cont r ibu t ions  have been so  many and so important? 

What s o r t  of man is t h i s ,  whose career has been so long and 

This question is, of course, a loaded one - as many w i l l  r e a l i z e  who know 
him - f o r  nothing about Bob Jones is  commonplace! 

F i r s t ,  consider how he got i n t o  aeronautics.  A f a sc ina t ion  wi th  a v i a t i o n  
i n  the  1920's w a s ,  t o  be sure ,  commonplace among us who w e r e  schoolboys then. 
I n  Macon, Missouri, where he l i ved ,  young Bob read A e r o  D i g e s t ,  treasured i t s  
cover p i c tu re s  of t h e  a i rp l anes  of t h e  day, and pored over i t s  technica l  art i-  
c l e s  on performance estimation, s t a b i l i t y  and cont ro l ,  and stress ana lys is .  
Assembling these  and NACA Reports, he  began the  design and construction of a 
s m a l l ,  motorcycle-engined a i rp l ane ,  u p s t a i r s  i n  h i s  house. An upusual high- 
school mathematics teacher,  Iva Z. But le r ,  helped him t o  understand stress and 
s t r a i n ,  bu t  high-school graduation intervened, t h e  a i r p l a n e  remained unfin- 
ished, and Bob went o f f  t o  t h e  University of Missouri i n  1927. 

But t he  av ia t ion  bug had b i t t e n  him badly. H e  discovered Walter Diehl 's  
famous E n g i n e e r i n g  Aerodynamics and found it  more exc i t i ng  than t h e  required 
courses of h i s  freshman year. 
and entered the  av ia t ion  indus t ry  - by working f o r  Charles Fower's f l y i n g  cir- 
cus, which flew Standard J-1 biplanes;  Bob ca r r i ed  gasoline cans, patched wing 
t i p s ,  and w a s  paid i n  f l y i n g  lessons! 

H e  l e f t  t h e  univers i ty  a f t e r  t h a t  f i r s t  year 

I n  about 1929, t he re  w a s  considerable a c t i v i t y  i n  av ia t ion  i n  t h e  United 
States, including t h e  Middle West. There w e r e  names l i k e  Alexander-Eaglerock, 
Beech, Cessna, Travel-Air, and Wac0 - some st i l l  around i n  1975 and o the r s  
near ly  forgotten.  
expected. I n  Marshall, Missouri, t h e  Nicholas-Beazley Company began manufac- 
t u r e  of t h e  Barling NB 3, a sporty,  three-place, low-wing, can t i l eve r  mono- 
plane. 
c i r cus  and a good recommendation from Charles Fower, landed a job there.  It 
w a s  not,  a t  f i r s t ,  an engineering job, bu t  young Jones made it  c l e a r  t h a t  t h e  
engineering o f f i c e  w a s  where he wanted t o  be  - and when a vacancy suddenly 
occurred, t he re  he  w a s !  Together with t h e  company's chief engineer, Thomas 
Kirkup, Bob applied Diehl 's  aerodynamics, ca r r i ed  out  stress analyses,  and 
performed ( l a t e  i n t o  t h e  n ight )  s ta t ic  tests t o  f a i l u r e .  But Nicholas-Beazley, 
with many o the r s ,  w a s  wiped out  i n  1930 by t h e  business collapse.  

A g rea t  demand f o r  a "family f l i v v e r  of t h e  air" w a s  

Bob, with h i s  highly p r a c t i c a l  ( i f  b r i e f )  background i n  t h e  f l y i n g  

The av ia t ion  indus t ry  recovered later i n  t h e  ' ~ O ' S ,  and su re ly  Bob's 
f i r s t  jobs  had prepared him admirably - even t y p i c a l l y  - t o  become an a i r c r a f t  
manufacturer o r  chief engineer - another Glenn Martin, Donald Douglas, o r  
John K. Northrop. 
engineers, with o r  without co l lege  degrees, had o ther  plans f o r  Robert Jones. 

But whatever f a t e s  con t ro l  t h e  d e s t i n i e s  of aeronaut ica l  
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When Nicholas-Beazley folded, he returned home to study Glauert's AerofoiZ and 
Airscrew Theory and $funk's FundamentaZs of FZuid D y d e s  for Aircraft  
Designers. 
this helped young Bob get a job running an elevator in the House Office Build- 
ing in Washington, D.C. Surely the above-mentioned fates had a hand in this, 
for the building was across the street from the Library of Congress. Bob paid 
visits to Dr. Albert I?. Zahm, the Library's Director and once a member of the 
NACA. They must have talked about mathematics, for Bob decided to study that 
field. He began with Hamilton's quaternions! And when a Congressman, Honor- 
able David J. Lewis, went to Dr. Zahm to request instruction in mathematics 
and physics - the Congressman was 65 and had finished with law and government - 
Dr. Zahm sent him to the bright elevator boy across the street. Bob taught 
the Congressman algebra and calculus. 

His father was chairman of the local Democratic committee, and 

At about this time, Bob made another friend whose influence on his career 
was tremendous: Dr. Max M. Munk, who had left the NACA, set up an office in 
Washington as consultant and patent attorney, and was giving evening courses 
at Catholic University. (He had also studied law, passed the bar exams, and 
learned Russian.) 
book, he suggested that he take his evening course - a graduate course. When 
Bob said that he might not be prepared for it (a suggestion that'was certainly 
not characteristic of young Bob!), Dr. Munk gave him a little oral exam and 
enrolled him. 
analysis, airfoil theory, and relativity theory - and drew upon this sound 
early teaching throughout his career. Thus Bob is truly one of the "Prandtl 
grandchildren" and an heir to that great tradition, with its deep, intuitive 
appreciation of the power of applied mathematics, without attraction to 
mathematics or mathematical elegance for its own sake. 

When he discovered that the elevator boy had studied his 

Bob took Munk's evening courses for about three years - vector 

The election of Franklin D. Roosevelt (1932) brought the Public Works 
Administration, and PWA opened up emergency jobs at Langley Memorial Aeronau- 
tical Laboratory. Dr. Zahm and Congressman Lewis saw Dr. George W. Lewis, 
NACA Head, and recommended Robert Jones for one of these jobs; Bob went to 
Langley, reporting to Carl J. Wenzinger, Charles Zimmerman, and Fred Weick, on 
a nine-month assignment as Scientific Aid. 
required a sequence of unlikely events and remarkable people, but Robert T. 
Jones was embarked on a career in research in the NACA and under the supervi- 
sion of some unusually capable bosses. 

The fates had their way: It 

Not surprisingly, ordinary linear differential equations was a subject 
missing from Bob's informal educational background - although he did know the 
quaternions and had read Grassmann's AusdehnwzgsZehre and similar classics in 
the original - so with Weick's and Zimmerman's guidance, he "learned by doing" 
differential equations. He published some of the earliest results of step-by- 
step solutions of the equations of airplane motion (obtained on desk calculat- 
ing machines), such as the transient motions following abrupt, unit-step 
control deflections and gusts. 
authority on linearity after once calculating the transient motion following a 
two-unit step input, and comparing the results with unit-step results! He was 
also one of the first to apply Heaviside's operators to problems of airplane 
dynamics. 

He recalls that he became a sort of local 
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But t h e  nine-month temporary appointment w a s  about t o  expire. Bob's 
bosses, Fred Weick, and Henry Reid, Director of t h e  Langley Laboratory, t r i e d  
t o  arrange f o r  him t o  take  a C i v i l  Service exam so they could h i r e  him perma- 
nently,  bu t  the C i v i l  Service r u l e s  spec i f i ed  a Bachelor's degree. Weick and 
Reid then thought t o  i s s u e  a s p e c i a l  C i v i l  Service e x a m  t h a t  would r equ i r e  
everything t h a t  Bob knew. 
w a s  issued with questions on Hamilton's quaternions, opera t iona l  ca lcu lus ,  air- 
c r a f t  s t a b i l i t y  and cont ro l ,  wing theory, and a few o the r  subjec ts .  To t h e  
s u r p r i s e  of those a t  Langley, a fellow showed up who of fered  t h i s  exo t i c  com- 
b ina t ion  and a Bachelor's degree as w e l l .  Weick assigned him t o  Bob Jones, 
who put him t o  work. Bob f i n a l l y  got a permanent appointment on a subprofes- 
s iona l  grade. Some years  later, when he approached t h e  f i r s t  p rofess iona l  
grade P-1, he again encountered t h e  requirement f o r  t h e  Bachelor's degree. 
This t i m e  t h e  NACA w a s  more ingenious - t h e  s t a t e d  requirements f o r  grade P-2 
d id  not mention any degree, so NACA promoted him d i r e c t l y  t o  t h a t  grade! 

I n  due course a s p e c i a l  Civil  Service examination 

By t h e  t i m e  World War I1 began, Bob had published important papers, 
including a most ingenious way t o  f i n d  the  t r a n s i e n t  l i f t  on f in i te -span  wings 
(page 193). 
expecially as an expert  i n  s t a b i l i t y  and control.  
w e r e  s t ruggl ing  with t h e  problems of t he  all-wing a i rp l anes  - XB 35, YB 49, 
etc. - and every t r i p  t o  Langley F ie ld ,  f o r  wind-tunnel tests o r  o ther  busi- 
ness,  included a v i s i t  t o  Bob t o  d iscuss  s t a b i l i t y  and cont ro l ,  and e spec ia l ly  
t h e  proper t ies  of sweptback wings. When t h e  f i r s t  guided missiles w e r e  devel- 
oped, Bob worked c lose ly  with the  Army Special  Weapons un i t .  I n  those days 
t h e  missiles w e r e  a c t u a l l y  p i l o t l e s s  a i rp lanes ,  and one of them w a s  a Northrop 
all-wing design with tu rbo je t  power ( a  r e b u i l t  turbo-supercharger). The auto- 
p i l o t  w a s  made by t h e  Hammond Organ Company. 
by proposing one black box i n  t h e  r i g h t  wing with a p i t c h  gyro, and another i n  
t h e  l e f t  wing with a t i l t e d  gyro f o r  lateral control.  
t r o l l e d  only its own "elevon" (combined e leva tor  and a i l e r o n ) ;  t he re  w a s  no 
connection between t h e  two a u t o p i l o t s  and no connection between t h e  two ele- 
vons. 
with f a u l t l e s s  s t a b i l i t y  and cont ro l ;  there  w a s ,  a f t e r  a l l ,  aerodynamic cou- 
p l ing  between i t s  l e f t  and r i g h t  s ides ,  although t h e  dynamics of t he  system 
could c e r t a i n l y  not be divided i n t o  lateral  and longi tudina l  motions. 
impressed with t h e  unimportance of b i l a t e r a l  symmetry! 

H e  had become deservedly well-known i n  aeronaut ica l  circles, 
A t  Northrop Aj rc ra f t  w e  

M r .  Laurens Hammond s t a r t l e d  us 

Each of t hese  con- 

Even Bob Jones w a s  h o r r i f i e d  by the  idea,  but t h e  l i t t l e  a i r c r a f t  flew 

Bob w a s  

H e  f i r s t  worked out  h i s  famous theory of low-aspect-ratio wings i n  1944 
(page 369). 
because he  thought i t  w a s  an obvious extension of D r .  Munk's classical and 
well-known work. The rest of us have never found t h a t  t h e  extension, involv- 
ing  as it  does t h e  recognition and treatment of t h e  t r a i l i n g  v o r t i c e s  t h a t  l i e  
behind a l l  t r a i l i n g  edges, is  a t  a l l  "obvious". 
a t  f i r s t ,  but later r ea l i zed  t h a t  i t  applied t o  high-speed flow, including 
supersonic, as w e l l  as t o  low-speed, because the  flow near t h e  a x i s  of t h e  
Mach cone i s  s i m i l a r  t o  incompressible flow. 

H e  w a s  embarrassed when i t  w a s  r e f e r r ed  t o  under h i s  name, 

Bob d id  not even publish i t  

A t  about t h e  same t i m e ,  he remembered from an o ld  NACA Technical Note of 

The two-dimensional 
Munk's - T.N. 177  (1924) - t h a t  you can c a l c u l a t e  t h e  e f f e c t s  of sweepback and 
d ihedra l  angle i n  a wing by an "independence principle": 
flow around t h e  wing due t o  t h e  stream component perpendicular t o  t h e  wing 
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a x i s  i s  independent of t he  flow due t o  t h e  stream component along t h i s  ax is .  
Bob r ea l i zed  t h a t  t h i s  independence p r inc ip l e  d id  not depend upon incompressi- 
b i l i t y ,  and thus he  discovered t h e  "theory of simple sweepback" (page 377), 
which is  c e r t a i n l y  one of t h e  most important d i scover ies  i n  t h e  h i s t o r y  of 
aerodynamics. A t  f i r s t  he made t h e  mistake of pu t t i ng  t h e  low-aspect-ratio 
and t h e  sweep theo r i e s  i n  t h e  same paper, but t h e  NACA e d i t o r i a l  committee, 
which had t o  approve t h e  paper, believed t h e  former and not t h e  latter. As  
Bob says, "It has t o  be  remembered t h a t  a t  t h a t  t i m e  t h e r e  w a s  thought t o  b e  a 
very g rea t  d i f f e rence  between subsonic and supersonic flow," so  t h a t  i t  seemed, 
t o  some skept ics ,  impossible t o  render a supersonic flow e s s e n t i a l l y  subsonic 
by such a simple device as sweepback. 

While t h e  argument with t h e  e d i t o r i a l  committee w a s  s t i l l  i n  progress, 
Bob's colleague, Robert H e s s ,  read Adolph Busemann's 1935 paper concerning 
supersonic flow, and they r e a l i z e d  t h a t  Busemann's argument would lead t o  t h e  
s a m e  r e s u l t  as Jones's ,  i f  t h e  wing w a s  swept behind t h e  'Mach cone. 
Busemann had not discussed t h i s  case i n  h i s  paper, so t h e  e d i t o r i a l  c o m i t t e e  
remained unconvinced. 
low-aspect-ratio p a r t  w a s  published. 
confirm t h e  s t a r t l i n g  conclusions of t h e  simple-sweep theory. Before the  
experiments w e r e  completed, V. E. Day occurred, Al l ied  engineers went i n t o  
Germany, and t h e  news came back t h a t  t h e  Germans knew about t h e  e f f e c t  of 
sweep and were using i t  on a l l  of t h e i r  new designs. 

But 

Bob divided t h e  troublesome paper i n  two p a r t s ,  and t h e  
NACA began experiments i n  an e f f o r t  t o  

For h i s  discovery of t h e  sweep e f f e c t  and o ther  cont r ibu t ions ,  Bob w a s  
given t h e  Sylvanus Albert  Reed Award by t h e  I n s t i t u t e  of t he  Aeronautical 
Sciences i n  1946. It w a s  a l s o  i n  1946 t h a t  he  l e f t  t h e  Langley Laboratory and 
moved t o  Ames. 

About t h e  t i m e  he  moved t o  t h e  West Coast, Bob acquired a new i n t e r e s t :  
I n  c h a r a c t e r i s t i c  fashion, t h i s  l e d  him t o  a deep study of geo- 

H e  learned t h e  a r t  of grinding sphe r i ca l  mirrors and set up 
telescopes.  
metrical op t i c s .  
an impressive o p t i c a l  shop i n  t h e  garage of h i s  Palo Alto home. Also typi- 
c a l l y ,  he made inventions and o r i g i n a l  d i scover ies  (which he calls "minor") i n  
t h i s  f i e l d .  The l e n s  described s t a r t i n g  on page 917 had a speed of f/0.66 and 
w a s  "a s o r t  of conjugate of t h e  Schmidt telescope." 

When t h e  Space Age began i n  1957, Bob and h i s  wife expected telescopes t o  
be much i n  demand. 
production on a six-inch telescope of t h e  type described s t a r t i n g  on page 895, 
s e l l i n g  f o r  about $800. They so ld  about t e n  of these  and went on t o  a more 
elegant instrument: a six-inch Newtonian-Maksutov, s e l l i n g  f o r  $1700. The 
idea  w a s  t o  make fewer telescopes and more money. 
f o r  t h e  Vega Instrument Company, as did a machinist and an opt ic ian .  
t h i r t y  of t h e  Maksutovs w e r e  made, t h e  company's p r o f i t s  hovered near zero. 

They formed t h e  Vega Instrument Company, and went i n t o  

Bob's son, Edward, worked 
Although 

Of course, Bob's i n t e r e s t  and knowledge i n  astronomy w a s  very timely: 
NACA became NASA, t h e  "space agency," and Bob w a s  one of t h e  few aeronaut ica l  
engineers who knew h i s  way around t h e  sky. 
Astronomy Subcommittee. 
taking Munk's n igh t  courses i n  Washington. 

H e  served f o r  several years on the  
H e  had been fasc ina ted  by r e l a t i v i t y  theory s ince  

Now t h a t  space travel a t  grea t  
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speeds w a s  a real p o s s i b i l i t y ,  he  followed up a number of o r i g i n a l  ideas  i n  
t h i s  f i e l d  (pages 927-956). 

But he a l s o  continued t o  make profound d iscover ies  i n  aerodynamics. 
w a s  t he  "supersonic area rule" which co r rec t ly  c a r r i e s  i n t o  t h e  supersonic 
regime t h e  concept of equivalent body of revolution, which had been found so 
usefu l  i n  t h e  t ransonic  regime (page 609). 
sweepback on boundary-layer behavior (page 473) and discovered an "independ- 
ence principle" here,  as w e l l .  (Professor Prandtl ,  V. V. Struminskii, and t h e  
present w r i t e r  a l l  came independently t o  t h i s  r e s u l t  a t  t h e  s a m e  t i m e !  
D r .  Munk w a s  somewhat s k e p t i c a l  but t o l d  me,  "Bob Jones says t h e  s a m e  thing, 
so  i t  must be right.")  Another discovery w a s  t h e  ex is tence  of a new kind of 
leading-edge s i n g u l a r i t y  i n  thin-wing theory (page 533). 
are typ ica l  examples of Bob's i n s i g h t  and h i s  d i r e c t ,  i n t u i t i v e  s t y l e  of 
writ ing.  
l i t e r a t u r e  of t h e  f i e l d  includes papers i n  which authors re-do Bob's work, 
providing longer proofs, and discover again Bob's r e s u l t s .  

One 

H e  thought about t h e  e f f e c t s  of 

A l l  of these  papers 

Lesser aerodynamicists o f t e n  f ind  h i s  arguments too concise, and t h e  

I n  1956 Bob and Doris Cohen w e r e  asked t o  w r i t e  an important s ec t ion  of 
t he  Princeton Series, High Speed A e r o d y d c s  and Jet  Propulsion. 
ora t ion  produced t h e  sec t ion  e n t i t l e d  "Aerodynamics of Wings a t  High Speeds." 
One of t h e  f ea tu res  of t h i s  s ec t ion  i s  t h e  ana lys i s  of t h e  drag of e l l i p t i c a l  
wings, including those t h a t  f l y  a t  an  angle of yaw. Thus Bob returned t o  t h e  
consideration of sweepback e f f e c t s  and asymmetrical configurations.  

This collab- 

The ana lys i s  showed Bob t h a t  e l l i p t i c  wings are i d e a l  and t h a t ,  a t  high 
speeds, they should be yawed. H e  rememberedtheunimportance of b i l a t e r a l  sym- 
metry. 
t ive proper t ies  - both aerodynamical and s t r u c t u r a l  - of yawed (oblique) wings 
f o r  supersonic a i r c r a f t .  
r i g h t  across;  it i s  not  put i n t o  t h e  variable-sweep mechanism. Bob and h i s  
NASA colleagues are pursuing t h i s  idea  vigorously. 
s t i l l  s e e m s  h e s i t a n t  t o  accept configurations without symmetry. Nevertheless, 
I, f o r  one, f u l l y  expect t o  see f u t u r e  t ranspor t  a i rp l anes  with "Jones oblique 
wings. 

I n  a series of papers (pages 657-883), he  has pointed out  t h e  a t t r a c -  

The spars  of such wings ca r ry  t h e  bending moment 

The aeronaut ica l  world 

H e r e  again are examples of Bob's i n s i g h t  i n t o  engineering problems: The 
a e r o e l a s t i c  proper t ies  of t h e  oblique wing have f r igh tened  a number of engi- 
neers,  f o r  t he  upstream panel su re ly  wants t o  d e f l e c t  a e r o e l a s t i c a l l y  upward 
and the  downstream panel downward. To Bob i t  seems obvious t h a t  these  e f f e c t s  
simply do not occur i n  f l i g h t .  A study of t he  equilibrium of r o l l i n g  moments 
w i l l  confirm t h a t  he is  r i g h t .  The d e t a i l s  are l e f t  t o  t h e  reader;  it must be 
s a i d  t h a t  t h e  conclusion is not  q u i t e  "obvious," even t o  most aeronaut ica l  
engineers! 

Pages 957-1017 represent s t i l l  another f a c e t  of R. T. Jones 's  career: 
s tud ie s  of t h e  bio-mechanics of blood flow. 
out a t  t h e  Avco Everett Research Laboratories. 

These w e r e  i nves t iga t ions  c a r r i e d  

But t he re  is s t i l l  another, most important s i d e  of Bob Jones, and one 
t h a t  t h i s  all-too-brief biographical sketch has ignored t o  t h i s  point.  
t h e  f a the r  of s i x  ch i ldren  (two adopted), of whom t h e  e l d e s t ,  Eddy, is  now a 

H e  is 
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man of 41  years. Bob's r e l a t ionsh ip  t o  them has been exceptionally warm and 
rewarding. A t y p i c a l  example comes t o  mind: Daughter Pa t ty  is a v i o l i n i s t ,  
and by about 1956 had progressed so  w e l l  t h a t  she needed a good v i o l i n .  H e r  
remarkable f a t h e r  agreed, and decided t h a t  he  would study t h e  acous t ics  of 
good v i o l i n s  and make one f o r  Patty! Here, i n  h i s  own words, is t h e  s tory :  

"Milton Van Dyke gave m e  some r e p r i n t s  of s c i e n t i f i c  articles 
on t h e  v i o l i n  by h i s  o l d  physics professor,  W. A. Saunders of 
Harvard. Saunders had made electronic-acoustic tests of many 
v i o l i n s ,  including some valuable o ld  I t a l i a n  ones, and had e l i c i t e d  
t h e  he lp  of Jascha Heifetz.  By following Saunders' frequency- 
response curves, I should be a b l e  t o  make Pa t ty  a super-violin! So 
I set up t h e  e l ec t ron ic  t e s t i n g ,  bought t he  wood, and a f t e r  some 
months of spare-time work turned out a very good-looking v i o l i n .  
Unfortunately i ts  tone seems t o  have de te r io ra t ed  with t i m e ,  o r  per- 
haps i t  wasn't as good as w e  thought a t  t h e  t i m e ,  and so I had t o  
make her a second one ( see  page 1019). 
r e a l l y  good, and Pa t ty  plays i t  a t  recitals and i n  t h e  LaJolla Civic 
Symphony. I a m  now (1975) f i n i s h i n g  number 6, but No.  2 has been 
t h e  b e s t  u n t i l  now. Am experimenting with 1500-Hz vibratifon dampers 
( t h i s  i s  the  "nasal" range) and have made an e l ec t ron ic  v i o l i n  which 
my f r i e n d  Irwin Hahn of t h e  Berkeley Physics Department, and a 
v i o l i n i s t ,  th inks  is very good." 

The second one s e e m s  t o  be 

I n  1971, Bob w a s  awarded t h e  degree of Doctor of Science, 
honoris causa, by t h e  University of Colorado, "in acknowledgement 
of h i s  s c i e n t i f i c  eminence and h i s  service t o  society." 
he w a s  e l ec t ed  t o  t h e  National Academy of Engineering. 

I n  1973 

Aeronautical engineer, applied mathematician, astronomer, designer of 
telescopes,  bio-mechanicist, maker of v i o l i n s ,  inventor,  author,  discoverer of 
profound p r inc ip l e s ,  c i v i l  se rvant ,  devoted f a the r  - our f r i end  Bob is  a l l  of 
these. H e  is a l s o  a man of exemplary charac te r  and a most d e l i g h t f u l  compan- 
ion on any occasion, whose i n t e l l i g e n c e  and i n t e l l e c t u a l  honesty sh ine  b r igh t ly  
from those  clear, b ig ,  b lue  eyes. No one r e a l l y  be l ieves  he has reached 65 
years, f o r  he i s  obviously age less !  
t i m e .  W e  can be c e r t a i n  t h a t  a i rp lanes ,  f l u i d  flow, v i o l i n s ,  t he  stars, and 
perhaps many o ther  th ings  w i l l  continue t o  f a sc ina t e  him and lead him t o  new 
t r u t h s  i n  t h e  fu tu re !  

H e  has RO i n t en t ion  of r e t i r i n g  f o r  some 

W i l l i a m  R. Sears 
University of Arizona 
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WING ANALYSIS : POBJOY RACEPLANE* 

R. T. Jones 

The Pobjoy Raceplane i s  a l i g h t ,  low winged monoplane designed f o r  high 

speed, maneuverability, and general  high performance. The estimated charac- 

t e r i s t i c s  a r e  : 

Gross Weight, 5 76# 

Net Weight, 511# 

Wing Span, 21.75' 

Wing Area, 60' 

The wing designed f o r  t h i s  plane i s  of  a new type being patented by 

M r .  H. G.  Landis, and possesses many novel and unconventional f e a t y e s .  

general arrangement o f  the  s t r u c t u r e  w i l l  be seen i n  f igures  (1) and (2).  

Since i t  i s  of the multispar type and not  subjec t  t o  a rigorous ana lys i s  

r e s o r t  was made t o  an approximate ca lcu la t ion  supplemented by a s t a t i c  t e s t  

on a sec t ion  of the  wing (see "TEST ON A METAL WING"). 

The 

The approximate method was completely v e r i f i e d  and s u f f i c i e n t  da ta  

obtained t o  design a wing f o r  the  racer .  

follows: The shear  bracing was changed from a Pra t t  t russ ing  with tension 

Several minor changes were made as 

s t r i p s  t o  Warren t r u s s  of channel members, the  t r u s s  members were centered 

on the  outs ide of the  beam flanges instead of on i t s  n e u t r a l  ax is  as  before,  

the gauge of the  mater ia l  was increased and the  s i z e  of the  members decreased. 

These changes were thought des i rab le  from the  r e s u l t s  of  the  tes t  and serve 

t o  strengthen the  s t r u c t u r e  by reducing the  p o s s i b i l i t y  of  loca l  f a i l u r e  and 

increasing the  allowable stress i n  t h e  mater ia l .  

*Engineering Report: Nicholas-Beasley Airplane Co., Marshall, Mo., Dec. 1929- 
Jan. 1930, 
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The wing is constructed of  aluminum a l l o y  (25 ST) having the  following 

proper t ies :  Yield Point,  30,000#/"; Tensile Strength,  55,000#/tr. The gauge 

used is  .040". 

Since t h e  method of ana lys i s  used does not  take i n t o  account t h e  t r a v e l  

of the  center  of  pressure,  only the  high angle of a t tack  condition w i l l  be 

invest igated.  

test .  

by twis t ing  s ince  t h e  moments of i n e r t i a  of  the  spars  decrease progressively 

from the  centroid as  shown i n  Fig. ( 2 ) .  In  the  analysis  the moments c a r r i e d  

The v a l i d i t y  of t h i s  assumption was a l s o  demonstrated by t h e  

The ul t imate  load sustained by t h e  s t r u c t u r e  is not  appreciably a f fec ted  

the spars  being of the same cross  sec t ion ,  

be determined i n  terms of  the  t o t a l  moment 

the end load c a r r i e d  by each can 

across the  sec t ion  of wing. (See 

by t h e  individual  spars  a r e  proportional t o  t h e i r  moments of i n e r t i a .  A l l  of  

Fig. 1 . )  

M 
M 
O I t  

1 
It = ay2 

8 

a = c  

and 

Mo = 

a 2 . 2  
8 

.. 

M t Y i  

Y2 

= -  

8 

MO 
Po = - 

YO 

= cay: + ay; + ay: + ... ayi)  

1 

I t  = a C , y 2  
8 

Yo 
; Po=------ M t  

Y2 
8 
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y: = 1-05, 1.103 P, = ,0465 Mt M, = .0487 Mt 

yg = 1.75, 3.06 P, = .0775 M t  M2 = .135 M t  

y: = 1.95, 3.80 P, = .0860 M t  M, = .168 M t  

y t  = 1.80, 3.24 Pq = .0795 M t  Mq = .143 M t  

y$ = 2.00, 4.00 P5 = ,0884 M t  M5 .177 M t  

yg = 1.75, 3.06 P6 = .0775 M t  M6 = .135 M t  

yq = 1.50, 2.25 P7 = .0663 Mt M7 = .0995 Mt 

y$ = 1.4S2 2.10 P8 = .0640 M t  Mg = .0930 M t  
1 

y2 = 22.6 
8 f 

Knowing t h e  proport ional  moment c a r r i e d  by each spar  it is only necessary 

t o  determine t h e  t o t a l  moment a t  t h e  sec t ion  and, i n  t h e  bay, t h e  end load 

produced by t h e  p u l l  o f  the  l i f t  wires. The two stresses are then added and 

t h e  margin of  s a f e t y  of the  cri t ical  spar  determined. 

An e l l i p t i c a l  l i f t  d i s t r i b u t i o n  is  assumed f o r  t h e  t i p ,  which i s  e l l i p t i c a l  

i n  plan view. (See Fig. 2.)  

LOADING PER INCH SPAN 

- 1  t i p  length: 45" e l l i p t i c a l  t i p  load: - + - - 

uniform load i n  bay length of bay = 76.5" 

x2 w2 
452 w; 

gross weight = 576# n e t  weight = 511# 

45aW1 
+ 76.5 W, = 255.5# 4 

Load Factor = 10 .'- W, = 22.75#/" span -- 
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MOMENT AT BRACE WIRES (4) 
45.irWl 

f (centroid of  t i p  load) = 19.3", load on t i p  = -- = 803# 4 

Mb 803# X 19.3" = 15500"# 

In determining the  end loads i n  t h e  spars  and brace wires t h e  shears  a t  

the  fuselage and wire f i t t i n g s  w i l l  first be found by taking t h e  moments of 

t h e  e l l i p t i c a l  t i p  load and t h e  rectangular  load i n  t h e  bay separa te ly  and 

equating t o  equilibrium a t  the  two points .  

resolut ions and checked graphical ly .  

The t r u s s  w i l l  then be solved by 

The bracing wires a t t a c h  t o  t h e  landing gear and make an angle of  approxi- 

mately 19 degrees with t h e  wing spars .  (See Figs.  2 and 3.) 

e-b (end load i n  spars)  = R, c o t  19O = 1885# x 2.9042 =' 5450# 

5750# e-a (end load i n  wires) = R1 csc 19O = 1885# x ~ - .32557 - 
1 

which agrees within the  e r r o r  o f  t h e  graphical construction. 

The bending moments i n  t h e  bay produced by t h e  combined s i d e  and end load 

w i l l  next be found. 

necessary t o  first determine t h e  f i x i n g  moment a t  t h a t  point .  

equations w i l l  be used together  with a graphical so lu t ion .  

The wing is continued through t h e  fuselage,  making it 

The Berry 

Solve f o r  Ma: 

% = 15500"# 

w, = 22.75#/" span 
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L, = 76.5" 

L, = 18" 

E (duralumin) = 10,000,000 

1 
I = a y2 = 1.57111 x .040" x 22.6112 = 1.4114 

8 

P = e-b = 5450# 

u1 = x 38.25 = .0197 x 38.25 = .755 = 43O 

0 

344 

3(1 - 2a1 Cot 2a1) 
$(all = = 1.1918 

(2a1I2 

3(tan cy1 - a l )  

"1 

= 1.2918 31b11 = 3 

f ( a 2 )  = 1.0144 

 CY,) = 1.0082 

$(a2) = 1.0123 

-25 x 22.75 x 76.S3 x 1.2918 - 15500 x 76.5 x 1.344 
1 8  x 1.0144 + 2 x 76.5 x 1.1918 + 2 x 18 x 1.0082 Ma = 

log .25 = 9.39790 - 10 

log  22.75 = 1.35698 

3- log  76.5 = 5.65098 

log  1.2918 = 0.11126 

a n t i l o g  (16.51712 - 10) = 3289000 
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log 15500 = 4.19033 

log 76.5 = 1.88366 

1% 1.344 = 0.12840 

a n t i l o g  6.20239 = 1593500 

3289000 - 1593500 = 1695500 

18 x 1.0144 = 18.28 

2 x 76.5 x 1.1918 = 182 

2 x 18 x 1.0082 = 36.30 

18.20 + 182 + 36.30 = 236.58 

The r e s t r a i n i n g  moments Ma and Mb, and the  loading, W 1  determine t h e  

bending moments i n  the  bay. 

This method has n o t  ye t  been published and was discovered i n  England. 

present use is  due t o  M r .  T. A. Kirkup, who i s  c h i e f  engineer f o r  the Nicholas- 

Beasley Airplane Company. As shown i n  Fig. 4 t h i s  method cons is t s  i n  laying 

measuring toward the  center  a of f  a segment, 201, of  a c i r c l e  of radius  - P/EI ’ 
distance Ma on one s i d e  and Mb on the  other .  A circle passing through t h e  

or ig in  (center) ,  Ma, and Mb is  then drawn. The dis tances  between t h e  arc 

201 and the circle defined by t h e  three  poin ts ,  along normals i n  t h e  arc, 

determine t h e  moment curve f o r  the  beam. 

These w i l l  be found by a simple graphical method. 

The 

W 1  

The bending of  the  t i p  beyond the brace wire attachment i s  neglected 

inasmuch as t h e  gauge material and s i z e  of spars  i s  continued t h e  whole length . 

and the  bending moments necessar i ly  decrease faster than t h e  s t rength  of the  

spars .  
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These reac t ions  neglec t  t h e  effect of t h e  f ixing moment, Ma, at the  

fuselage.  

tending t o  reduce R 1 .  

This f i x i n g  moment produces an addi t iona l  shear  a t  the  wire f i t t i n g s  

Total  shear  a t  a-b- R 1  - Sf 

Sf shear  due t o  f i x i n g  

The Ma determined from the  uncorrected R 1  is 7170#/" and is  applied 

a t  a d is tance  of 76.5" from the  point  a-b. Its effect is  t o  reduce R 1  by 

approximately 94#. In reducing R 1 ,  t h e  end load, P, and t h e  f i x i n g  moment 

i t se l f  are a l s o  reduced. The e f f e c t ,  however, i s  obviously small and is  n o t  

considered i n  t h e  ca lcu la t ion .  

From Fig. 4 the  bending moment i n  the  bay is  approximately 6000"#, Ma 

is  7170"#, and Mb 15500"#. Immediately t o  the  l e f t  of  t h e  wire attachment 

t h e  end load is being added t o  t h e  end load produced by This w i l l  then 

be the por t ion  of  the wing receiving t h e  g r e a t e s t  stress. For t h i s  reason a 

reinforcement w i l l  be added t o  t h e  spars  a t  t h i s  po in t  extending i n  the  bay 

t o  where t h e  moment becomes of  t h e  order  of Ma, approximately 10 inches. 

This reinforcement a l s o  serves  t o  s t rengthen the  wire attachment which i s  a 

tubular  beam extending through t h e  webs of  t h e  spars .  

Mb. 

(See Fig. 5 . )  

The margins of s a f e t y  of the  c r i t i ca l  spars  w i l l  be determined a t  four  

points :  t o  t h e  r i g h t  and le f t  of  the  wire attachment, a t  t h e  maximum i n  t h e  

bay, and a t  the  fuselage attachment. The p u l l  of t h e  wires i s  assumed t o  be 

equally d i s t r i b u t e d  among t h e  spars ,  t h e  tubular  wire attachment being s u f f i -  

c i e n t l y  r i g i d  t o  d i s t r i b u t e  t h e  19ad. 

From Fig. 1 it w i l l  be seen t h a t  spar  No. 5 is  c r i t i c a l  f o r  the  r e s t r a i n -  

i n g  moments while spar  No. 4 is so  f o r  the  maximum i n  the  bay. 
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A t  Ma 

Spar No. 5 

P, = .0884 Mt = .0884 x 7170 = 633# 

633# + 681# = 1314# 5450# 
8 P t ,  = 633# + - = 

30000 
21000 M.S. = - - 1 = .43 

M.S. = - 30000 - 1 = -63 18400 

To l e f t  o f  Mb 

Spar No. 5 

Pg = .0884 M t  = .0884 x 15500"# = 1370# 

Pt5 = 1370# + 681# = 2051# 

f b  + fc = -- 2051 - 1600#/ft2 (.0628 sq: in .  reinforcement) .1256 

30000 
16000 M.S. = - - 1 = .875 

To r i g h t  o f  Mb 

Spar No. 5 

P, = .0884 Mt = 1370# (end load not  added) 

fb=-- 1370 16000#/1f2 (.0217 sq. i n .  reinforcement) .0845 - 

30000 
16000 M.S. = - - 1 = .875 
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The margins of  s a f e t y  of  t h e  spar  f langes may seem unnecessarily high. 

Since l i t t l e  t i m e  was ava i lab le  f o r  experimentation and the  requirements of  

t h e  p a r t i c u l a r  case necess i ta ted  t h e  utmost caution as regards s t rength  of  

s t ruc ture ,  it was not  thought des i rab le  t o  go below these f igures .  

The shearing forces  i n  t h e  wing w i l l  be considered next .  A plan view 

o f  the  shear  webs together  with a diagram showing t h e  loca t ion  of  t h e  s t r u t s  

with respect  t o  t h e  v e r t i c a l  shear  load is given i n  Fig, 5. 

loads i n  these s t r u t s  t h e  shear  across  a sec t ion  is divided among the  webs of 

t h e  spars  i n  proportion t o  t h e  bending moment c a r r i e d  by t h e  spars .  

load w i l l  occur i n  one p a r t i c u l a r  s t r u t ,  located a t  the  sec t ion  of  maximum 

shear  and i n  t h e  web o f  t h e  deepest spar .  

and makes an angle of  approximately 25 with t h e  chord l i n e .  

together  with t h e  angle (45) i n  t h e  plane of  the  web, serves  t o  determine the 

i n c l i n a t i o n  of  t h e  s t r u t  with respect  t o  t h e  v e r t i c a l  shear  load as shown i n  

Fig. 5. The maximum shear  1 load occurs a t  the  wire attachment and is 1885# 

(see Fig. 3) .  

In  f inding t h e  

A maximum 

This web connects spars  No. 4 and 5 

This angle,  

TEST OF SHEAR BRACING 

The purpose of  t h i s  test  was t o  determine t h e  margin of s a f e t y  of t h e  

shear  t r u s s e s  i n  t h e  mult ispar  wing designed f o r  t h e  Pobjoy Raceplane. 

wing (see Wing Analysis) cons is t s  of  arc flanges o r  spars  connected by 

inc l ined  Warren t r u s s e s  of channel sec t ion  members, t h e  whole being blanked 

and formed from a s i n g l e  sheet  of aluminum al loy.  

members it was necessary t o  leave a considerable a rea  of unst i f fened mater ia l  

a t  the  panel points .  These members are centered on t h e  outs ide of the flange 

i n  order  t o  prevent l o c a l  f a i l u r e  of  t h e  free edges by re l iev ing  t h e  s t r e s s  

i n  them. Because of t h i s  in ten t iona l  e c c e n t r i c i t y  and the  f i x i t y  of 

the  s t r u t  ends it was thought advisable t o  determine t h e  s t rength  of  the  

channels by ac tua l  tes t .  

This 

I n  forming the  channel 
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The tes t  was c a r r i e d  out  i n  the  following manner: A sample frame of  t h e  

shear  bracing was made up, using t h e  same mater ia l  (.040-25 ST) and d i e s  used 

f o r  the  ac tua l  wing. 

t h e  load appl ied a t  t h e  apex of  t h e  frame as shown i n  Fig. 6 .  This appl ica t ion  

of  t h e  load simulates t h e  conditions e x i s t i n g  i n  the  wing, corresponding t o  t h e  

transmission of  end load i n t o  the  flanges and producing the  same effects a t  

the  j o i n t s .  The P/A stress i n  t h e  s t r u t s  is r e l a t i v e l y  small (see Wing 

Analysis) and l i t t l e  doubt was f e l t  as t o  t h e  a b i l i t y  o f  the  channel t o  take  

the  load, t h e  main purpose of t h e  test being t o  determine t h e  effects of t h e  

secondary stress. 

This frame was bol ted t o  a steel  angle a t  two poin ts  and 

The load consis ted of  i ron  weights and was suspended from the frame by 

The ' location of means of two steel s t r a p s  pinned through with a 3/16 b o l t .  

the  b o l t  and t h e  appl ica t ion  of t h e  load a r e  shown i n  Fig. 6. 

weights ava i lab le ,  a load of 320# was appl ied t o  t h e  s t r u c t u r e  and produced no 

v i s i b l e  deformation. Since t h i s  was i n  excess of t h e  requirements of t h e  wing 

and it was not  thought des i rab le  t o  reduce t h e  s ize  of  the  members f o r  s t ruc-  

t u r a l  reasons, t h e  tes t  was not  car r ied  f u r t h e r .  The load car r ied  by each 

s t r u t  was approximately 227# and t h e  P/A stress developed, 9080#/" .  

Using a l l  t h e  

The mater ia l  was t h e  Aluminum Company of America's 25 ST a l l o y  and has 

the  following proper t ies :  Min. Yield Point,  30,000#/", Min. Tensi le  Strength,  

55,000#/". 

obtain a comparison but it is  believed t h a t  with the  slenderness r a t i o  used 

t h e  r e s u l t s  are s a t i s f a c t o r y .  

Due t o  lack of  da ta  on open dural  sec t ions  it is d i f f i c u l t  t o  
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SUMMARY 

HE paper illustrates the application of matheniati- T cal advances made in electricity and other branches 
to problems of airplane dynamics. The Heaviside- 
Uromwich methods of solution of linear differential 
equations are described and it is shown how these 
niethods avoid the consideration of boundary conditions 
and of particular or complementary integrals. It is 
pointed out that if the solution of the differential equa- 
tion is obtained for the case of a unit disturbance, the 
effect of varying disturbances may be found therefrom 
by Carson’s Theorem. A graphical solution of Carson’s 
Integral for irregular disturbances is given. 

The procedure of ohtaining unit solutions of the 
equations is then taken up and the analogy between 
Heaviside’s symbolic series solution and a physical pro- 
cedure of approximation is shown. It is suggested 
that a fictitious impulsive disturbance be used in the 
treatment of initial motions. Bromwich’s interpretation 
of the operational method is briefly described and the 
expression of the irregular disturbance functions by 
definite integrals is shown. 

DEFINITIONS 

U,,-Equilibrium flight velocity. 
w-Linear velocity in plane of symmetry of air- 

p-Rolling angular velocity of airplane. (About 
plane and normal to UO. 

Uo as axis). 

q-Pitching angular velocity of airplane. (About 

L-Rolling nioinent per unit moment of inertia of 

2-Force per unit mass of airplane. 

axis normaJ to Uo and to the plane of symmetry). 

airplane. 
(Along w ) .  

dL dZ 
dw dw 

Lp, Z,, . . etc., = -, -, etc. 

The use of some mathematical discipline in the study 
of disturbed motions of airplanes seems essential if a 
consistent advance in the improvement of airplane 
flying and handling qualities is to be made. The study 
of stability alone has thus’far not been of very great 
usefulness in this respect partly because it has been 
difficult to establish the interpretation of the niathe- 
matical definition of stability in terms of control and 
flying qualities. 

A study of the specific effects of disturbances and 
control manipulations is in many respects more instruc- 
tive than the study of stability alone. A calculation ol 
the motion of the airplane gives a comprehensible 
result ; in terms of velocities, accelerations, etc., while 
the stability calculation must be considered incomplete 
as it yields only an indication of the character of the 
free motion. Thus if appears that the study of airplane 
dynaniics may be more profitable if the question of 
stability is subordinated to specific questions involving 
the effects of gusts and control manipulations. 

It has been considered that the representation of the 
motions of an airplane under the influence of irregular 
disturbances would require a prohibitive labor of cal- 
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culation. Such differential equations as occur in air- 
plane dynamics are, however, of the same form as those 
used in certain problems of electricity and in other 
branches and many of the advances made there can be 
adapted to aeronautical problems. It will be seen that 
these advances result in very practical simplifications 
of the mathematical procedure. 

The question of the solution of differential equatiolls 
arises in the study of airplane dynamics because it is 
easier to write expressions for the detailed component 
accelerations of an airplane in motion than it is to write 
expressions giving the movements directly. The analy- 
sis of the problem, the expression of equations for the 
component accelerations, consists simply in attributing 
a component of reaction in each degree of freedom of 
tlie airplane to each component of motion or displace- 
ment. The analysis need not be restricted to the air- 
plane as a rigid body, for component deformations of 
the machine may often be treated as additional degrees 
of freedom. 

According to Bryan’s theory of airplane stability the 
component reactions are considered to be directly pro- 
portional to the displacements or motions. Originally 
this assumption was used in application to vanishingly 
small motions since the consideration of such motions 
was sufficient to etablish the stability of steady flight. 
The latter advance of aerodynamics has shown that the 
simple linear laws of variation of aerodynamic reac- 
tions with the motions should give good approximation 
for movements of the airplane such as are encountered 
in ordinary maneuvering. Hence the theory was 
extended to the caluculation of unsteady motions of air- 
craft in general. 

The assumption of linear laws of aerodynamic reac- 
tion (together with other commonly used simplifying 
assumptions) leads to the representation of the accelera- 
tions of a disturbed airplane by linear differential equa- 
tions. It is usually necessary to consider several com. 
ponent motions simultaneously, since a movement of the 
airplane in one degree of freedom generally reacts on 
and modifies the movements in other degrees. Thus one 
is led to a set of simultaneous equations. The para- 
meters of these equations, expressing the proportions 
between motions and air forces or moments, are termed 
“stability derivatives.” 

The set of equations containing only the reactions 
that the airplane naturally receives when displaced from 
equilibrium flight are the so-called “complementary 
equations” and are those used in the study of stability. 
This set of equations has a whole family of possible 
solutions. The possible solutions of a set of comple- 
mentary equations do have one unique characteristic 
however, and that is the indication as to whether or not 
the natural free oscillations of the airplane tend to 
diminish with time. 

If it is desired to calculate the motion of an airplane 
due to some disturbing influence, such as a gust or a 

FIG. 1. The superposition of disturbed motions. 

manipulation of the control, it is necessary to include 
terms in the equations that express the component 
accelerations attributed to the disturbance. Thus in 
the case of a deflected control the known moment 
exerted (per unit moment of inertia of the airplane) is 
added to the other terms in the appropriate equation. 
Such disturbing reactions must be given in terms of the 
time before the equations can be solved. The equation 
expressing the acceleration in free pitching motion is : 

&- wM, - qMa = 0 dt 

If, however, a distu:bing pitching moment due to the 
elevator, say, is acting, the equation is written : 

wM, - qMa = M(1) 

and it is implied that the right hand side is a function 
of 1.  

Although the component motions of the airplane 
mutually interfere and must be calculated simultaneously 
(that is, by simultaneous differential equations), the 
effects of component disturbances may be calculated 
separately and later added in any desired proportion. 
Thus if a given impressed rolling moment, acting alone, 
causes a 20” bank of the airplane in one second and n 
given yawing moment, also acting alone, produces 5” of 
bank in the same time the combined effect of bath acting 
simultaneously will be a 25” bank. 

A somewhat similar statement may be made with 
regard to the effects of disturbances that are not applied 
simultaneously, viz. ; that if a given disturbance which 
arises at the time t = 0 is later augmented in some 
amount the effect of the increment of disturbance will 

24 



C A L C U L A T I O N  O F  T H E  M O T I O N  O F  A N  A E R O P L A N E  

FIG. 2. Simple types of disturbances. 

run its course independently of the effect of the original 
disturbance. Thus in a problem involving the correc- 
tion of a gust disturbance by a manipulation of the con- 
trol a history of the motion due to the uncorrected gust 
nlay be calculated and an entirely independent motion, 
due to the assumed corrective control manipulation, 
added later at any desired point. Fig. 1 illustrates 
this principle. 

These important characteristics of the dynamical sys- 
tem regarding the superposition of effects of disturb- 
ances lead to the consideration of the effect of a simple 
“unit disturbance.” The concept of a disturbing accele- 
ration of unit magnitude applied instantly at the time 
t = O  to a dynamical system otherwise at rest is 
attributed to Heaviside, who employed it in the develop- 
ment of his Operational Calculus. Carson* utilized this 
concept to calculate the effect of a varying disturbance 
of arbitrary form. 

The unit disturbance, otherwise known as the “unit 
function,” is defined by : 

l ( t )  = 0 when t < 0 

l(t) = 1 when t > 0 (1) 

(see Fig. 2). 
In Elettricity this symbol is used to denote a unit 

e.ii1.f. instantly applied at t = 0. The corresponding 
use in Aeronautics would be to denote a unit impulsive 
linear or angular acceleration. 

As an example of the apcplicatjon of this concept sup- 
pose that it is required to find the combined pitching 
motion (4) and the vertical translation (w) of an air- 
plane due to the sharp edged vertical gust of (con- 
stant) velocity m. The simultaneous equations for 
these motions are: 

-_ dw w z w  - q(Z, + U,) = W J a  = Z” dt 
(2) 

-_ dq wM,  - qM, = woMv = Me dt 
The procedure is to perform the calculation with a 
unit disturbance substituted into the first equatiotl, thus 

dw 
& 

4 -- w M ~  - qM,  = 0 
dt 

-_ WZ, - q(Z* + VO) = 1 (1) 
(3) 

J .  R. Carson, Electric Cirrlrit Theory avd Operational 
Calculus, McGraw-Hill Book Company, 19%. 

1 :  

FIG. 3. Carson’s integral. 

If the motions thus calculated are 
WIZ (t) and P ~ Z  (0 

and the motions calculated for a unit disturbance sub- 
stituted into the second equation are 

WIM ( t )  and q1M 01, 
then the motions due to the gust wo may be found from: 

w(t) = ZOW,(t) + Mow1dt )  
(4 )  

d t )  = Zoqlz(t) + M o q i d t )  
Carson’s Theorem’, which enables the calculation o i 

motion due to any irreguiar variation of disturbance, 
is simply a statement of the generalized superposition 
theorem in terms of a definite integral. Let w , ( t )  be 
the motion calculated for a unit disturbance l ( t ) ,  and 
suppose that it is desired to find the motion w( t )  due 
to some varying disturbance, say Z(t). According to 
Cai-son’s Theorem 

w(t*) = W l ( t 0 )  Z ( 0 )  +fW& - t )  ZYt)  4 (5)  

where w, ( t A )  is the motion at the time ( t d )  after 
the impression of the unit disturbance. (See Fig. 3.) 

In the most general case the impressed disturbance 
will be given as a function of the time simply by a 
curve, as in Fig. 4 (curve B). If the “indicia1 motion,” 
or motion of the system due to a unit disturbance, is 
also given by a curve (curve A )  the two may be com- 
bined by a simple artifice and the general solution 
obtained by a graphical integration.? For this purpose 

A This novel graphical construction is due to the author’s asso- 
ciate, Mr. A. I. Nerken. 
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FIG. 1. Diagram illustrating calculation of motion by 
Carson’s theorem. 

the integral of Eq. ( 5 )  is expressed in the alternative 
form ; 

The procedure of finding the motion at several instants 
consists in plotting curves of 

Wl(to - t )  = f[Z(t)l (7) 

for various values of the parameter to. The area under 
any one of these curves is obviously w(ta). (See Fig. 

Points of the curves of Eq. (7) may be readily 
located if the two diagrams m ( t )  and Z ( t )  have 
equal time scales and are placed with these scales at 
WO”, as in Fig. 4. Lines from the ordinates of the Z ( t )  
curve corresponding to various values of t are projected 
upward from this diagram and similar lines correspond- 
ing to equal time intervals on the ~ ( t )  curve are pro- 
jected across, intersecting the former lines at right 
angles. Lines of bath sets are’identified by the time 
instants to which they correspond. A series of inter- 
sections such that the time instants smi  to fo can then 
lie located and they define the curve m( to - t )  z s .  Z( f). 
Fig. 4 shows such curves for to = 2% and 4. 

It is evident from the foregoing considerations that 
solutions of the differential equations of airplane motion 
need be obtained only for the case of a unit disturbance. 
The motion caused by any arbitrary or irregular dis- 
turbance then follows by simple principles. 

For an illustration of this solution of the equations 
let u s  take the simple case of an airplane free to move 
only in rolling. The rolling motion p following the 

4.) 

application of a unit disturbance must satisfy the fol- 
lowing differential equation : 

where Lp is the damping derivative in rolling. Obvi- 
ously the motion will start with the angular accelera- 
tion 1 and, as a definite rate of rolling is acquired, will 
be decelerated in an amount proportional to the rate at 
each instant. The solution of this equation may be 
demonstrated by a process of successive approximations. 
Suppose that for the first approximation we calculate 
the rolling by neglecting the damping factor entirely; 
the value thus found will be 

p = s.’ 1 (f) at 

or, simply, p = t .  As a second approximation we use 
the value of p thus found to calculate a damping 
deceleration, viz : pLp. The integral of this decelera- 
tion gives a decrement of p which may then be applied 
to the first approximation. The new approximation 
again requires correction because the value of p assumed 
in calculating the damping was tdo high. The suc- 
cessive steps may be represented by the following series : 

The result of the integrations is obvious since L p  is a 
constant. 

L,P ~ ~ 2 1 3  
p = t + -  2! +w+ ..... +,etc. 

The similarity between this series and the series for 
e L p f  is recognized. A factor L.p is needed and 8 term 1. 
hence 

LP* e -1 
p=- (12) 4 

Heaviside’s power series soultion may be consideretl 
as a shorthand method of arriving at the foregoing 
result. In order to apply this method to more complex 
equations it is found convenient to introduce an abbre- 
viated notation for differentiation and integration with 
respect to time, viz : 

It is to be noted that the operation indicated by this 
symbol obeys the formal laws of algebra so long as the 
tlerivative of a square or product is not required. The 
latter possibility is avoided in our equations since they 
are linear. 

With this preparation Eq. (8) may be written as 

or 
DP - I,P = l(t) 
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The fraction ( D - L - ’  is then expanded by the binomial 
theorem : 

(15) 
This result is obviously t te  same series of operations 
that were led to in obtaining successive approximations 
to tlie solution (Eq. (IO)).  Either result may be sum- 
marized by the formula 

( D  - LJ’ = D’’ + Lp D-* +L,?D-‘ + , etc . 

A number of other symbolic formulas, each of which 
bears a relation to the solution of some linear differ- 
cntial equation, may be devised by similar algebraic 
procedure. 

Tlie recovery of an airplane from a given initial 
motion or displacement iiiay be treated very simply by 
thc consideration of another special type of disturbance. 
Consider the fictitious disturbance that would result in 
the airplane suddenly acquiring a unit velocity or dis- 
placement at the time t = 0 : 

D 1 ( t )  = 0 \vlien t < 0 

D I(t) = K when t = 0 (17) 
D ‘ ( t )  = 0 when t > 0 

This function may be ternled tlie “unit impulse’’ and 
may be used to represent a quantity of very large 
magnitude but of such short duration that its time 
integral is finite. Obviousiy the time integral of the 
unit impulse is the unit function l ( t ) .  

The solution of Eq. (8) for the condition of a unit 
initial angular velocity in rolling may he obtained by 
a method analogous to that previously given. Here 
onc can write 

.4lgebraic expansion of the right hand side gives simply : 
p = l(t) e W  (19) 

Tlie solution of complex systems of equations such 
as are frequently met in airplane dynamics is based on 
an extension of tlie algebraic manipulation of the 
“operator” D . . For simplicity the solution of Eqs. 
(3) can be illustrated : the extension of the procedure 
to equations of greater complexity will be obvious. 

Rewriting the equations in the new terminology, 

( D  - Z,) w - (2, + U0)q = l(t) 
(20) - M,w + ( D  - Mqjg = 0 

The algebraic resolution of the equations for w is: 

which is of the form 

The fraction cfo) may be expanded algebraically 

into a series of simpler operations just as the fraction 
W )  

1 - was. 
I1 - IdP 
partial fractions. 
theorem (a theoreni of algebra) : 

A simple procedure is to resolve it intu 

According to the partial fractions 

f ( N  /”-c P ( z )  - P‘(-X) (x-A) 

where the h‘s are the roots of the polynoniial equation 
F ( x )  = 0. Tlie restrictions on this theorem are ( 1 )  
that tlie roots h be distinct and (2) that the polynomial 
I; (x)  be of higher degree in x than f(x). Applying 

this theorem to our fraction .fo, we obtain : 
F ( D )  

The part 1 ( t )  1 ( D  - A) has already been evaluated 
by tlie 1)inomial expansion, Eq. (16), and the substitu- 
tion of that result gives 

It is only necessary to note that the second term on 
thc right is 

Then 

This general formula is known as the “Heaviside Ex- 
pansion Theorem” and is subject to the same restric- 
tions that apply to the algebraic theorem for expansioli 
into partial fractions. 

The methods of solution thus demonstrated avoid the 
complication of adjustment to boundary conditions as 
well as the consideration of particular and complenien- 
tary integrals. They depend on the consideration of 
discontinuous or irregular functions of the time. That 
these n~ethocls have a counterpart expressible in con- 
ventional mathematical language was shown by Brom- 
wich3, who gave a rigorous fcrm for the older Opera- 
tional Calculus of Heaviside. The principle of Brom- 
wicli’s method is the expression of the solution of th’c 
linear differential equation as a definite integral in which 
the independent variable ( t )  appears under the integral 
sign as a parameter. 

For an elementary illustration of this method sup- 
pose that it is desired to find a solution w ( t )  of Eqs. 
(2) with an impressed vertical acceleration 2 ( t )  . Tlie 
equations are written 

(27) 
DW - Z,W - (Zq + Uo)q = Z(t) 

Dq - M ~ w  - Mqq = 0 

T. A. I’J. Bromwich, Normal Cooriiiitates in D y m t i c a i  
Sysfems, Proc. Lond. Math. SOC. (2) 15. 401408, 1916. 
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Solving the second equation for zv and substituting in 
the first equation results in: 

It happens to be fairly easy to devise an expression for 
w that will satisfy this equation if the definite integral 
of an auxiliary variable, h = x + iy, is introduced. 
Such an integral, viz: 

F(X) 
(cloaed contour) 

is seen to be a particular solution if 

F(X) = X' + aX + b (See Eq. (29)) (31) 
and if 

j f ( X )  ex! dX = +(t) (32) 

for the successive differentiations (see Eq. (29)) of 
Eq. (30) reproduce F ( h )  in the numerator. 

The essential step of the method is then the expres- 
sion of the irregular disturbance function +( t )  = 1 ( t )  
in the forin of such a definite integral. The required 
integral may be shown to be 

fcloaed contour) 

(33) 

giving the value zero for negative t and the value 1 for 
positive t. Here the limit, or path, of integration 
extends along the imaginary axis and to the right of the 
singular point at the origin. With the limit of the inte- 
gral thus specified it is permissible to integrate in addi- 
tion along any other path provided it is shown that the 
additional path does not change the value of the integral 
as defined. Then it is easy to prove that a closure of 
the path along a semicircle to the left of the imaginary 
axis does not contribute to the integral if t is positive. 
The path then encloses one singular point, 0, and the 
value of the integral is, by the residue theorem4 

1 ex* 2x j m a  = eo '=  1 (34) 
(closed contour) 

For f negative, however, the closure of the path to the 
left avoids the definition; but it is seen that the path can 
then be closed to the right of the imaginary axis with- 
out altering the value of the integral as defined. (See 
Fig. 5.) This contour now encloses no singular point, 
and, the integrand being analytic, the integral is zero. 

The integrand of the expression for 1 ( t )  thus has 
a singular point at h = 0. By modifying the integrand 
so that the singularity occurs at another point, say n, 
the expression for another irregular disturbance is 
obtained, namely : 

(35) 

'E. R. Hedrick and Otto Dunkel, Goursat's Mathematical 
Analysis, Vol. 11, Part I, Ginn & Co., 1916. 

FIG. 5. Evaluation of definite integral giving the unit 
function. 

The result is multiplied by 1 ( t )  to indicate that it is 
zero when t is negative. Writing (in) for I I  gives a 
disturbance of the form 

l ( t )  (cos nt + i sin nt) 

The real part of a solution is then thc solution for 
1 ( t )  cos ~ z t ,  and the coefficient of the imaginary is the 
solution for 1 ( t )  sin nt, (see Fig. 2). 

It has been pointed out in previous paragraphs that 
the solution of the equations of motion need only be 
obtained for the elementary unit disturbance. The 
effect of any other disturbance, whether given by a 
mathematical expression or not, may then be obtained 
by Carson's Theorem. The procedure of finding the 
"unit solution" by Bromwich's method may now be 
made more definite. Suppose 2 ( t )  is replaced by 1 ( t )  
in Eq. (28). The right hand side of this equation 
becomes (D -&.I,) ( 1 t )  whence (see Eq. (32) ), 

(37) 

1 + - ' A -  M S/(X) ehf  = - j - * ~ " l d x =  (D-A!,) l ( t )  (36) 
(c ion,a m,atortj  

The solution for w is simply 

-=' 

- *  X - M ,  eAf 

where 

F(X) = X2 - (Ztc + Mu) X - ( M w  2, - Mg Z w  + M w  Uo) (38) 

as before. 
For the evaluation of the integral of Eq. (37) by 

the residue theorem the singular points of the integrand 
are needed. These points are values of h that make 
the denominator equal to zero. The denominator is 
usually termed the "stability polynomial", hence these 
points are simply the roots of the stability equation (in 
addition to the point h = 0). Rewriting the polynomial 
in terms of theat: roots I,,.).>, one obtains 
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result may be expressed somewhat differently, viz ; 

(41) f (N f (0) 
(39) 

The value of the integral is the sum of the residues: 

i (X-Mq) ext 

(X - Xi) (X - A,) (A - 0) 
W'(X)$'fF@jj , 

An 

which is the Heaviside Expansion theorem. The resi- 
due theorem is not subject to the restrictions that apply 
to the partial fractions theorem, however, and the resi- 
dues corresponding to multiple roots may be readly 
found. Thus motions due to periodic disturbances that 
are synchronous with the natural oscillations of the 
airplane may be calculated. 

XI - Mq X z - - M q  ex,'+ 
= (Xi - X,) XI "' + (X, - AI) X2 

(0 - L) (O - A,) 8' 
0 - M e  

(40) 

Since (AI - A?) = F'(Xi), and (A? - Xi) = F'(Xe) etc., this 
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REPORT No. 560 

A SIMPLIFIED APPLICATION OF THE METHOD OF OPERATORS TO THE 
CALCULATION OF DISTURBED MOTIONS OF AN AIRPLANE 

By ROBEBT T. JONES 

SUMMARY 

A simpliified treatment of the application of HeaWiside’s 
operational methods to problems of airplane dynamics is 
given. Certain graphical methods and logarithmic for- 
mulas that lessen the amount of cornputation involved are 
explained. 
The problem of representing a gust disturbance or 

control manipulation is taken up and it is pointed out 
thud in certain cases arbitrary control manipulations may 
be dealt with as though they imposed spe&ic constraints 
on the airplane, thus avoiding the necessity of any inte- 
gration whatever. 

The application of the calculations described in the text 
is illustrated by several examples chosen to show the use 
of the methods and the practicability of the graphical and 
lagarithmic computations described. 

INTRODUCTION 

The theory of airplane dynamics in its present form 
is due mainly to the original researches of Lanchester 
and Bryan on the stability of airplanes. Later inves- 
tigators, notably Bairstow and Wilson (reference l), 
applied and extended the original conceptions of the 
theory. Bryant and Williams (reference 2) have re- 
cently shown how the operational mathematics of 
Heaviside may be used in applying the theory to prob- 
lems of the disturbed motions of airplanes. 

Although the calculation of disturbed motions of 
aircraft is important in problems of flight safety, little 
experience has been gained in the practical application 
of the theory owing to its mathematical complexity. 
The present paper gives the results of researches in the 
mathematical application of the theory. It has been 
found, as suggested by Bryant and Williams, that the 
Heaviside method affords the simplest and most direct 
solution of these problems. In  order to bring out the 
advantages of this method, a treatment of its applica- 
tion is given and certain formulas and graphical con- 
structions are explained that make the calculations 
easier. 

In  their usual form, problems of airplane dynamics 
depend for solution on the integration of simultaneous 
h e a r  differential equations. Methods for the integra- 

tion of such equations are given by Wilson and Routh 
(references 1 and 3) and in mathematical textbooks. 
The problems met in airplane dynamics are often more 
complex than the examples treated in textbooks and, 
when an attempt is made to apply the given methods 
to their solution, difliculties of computation arise. 

In  view of the importance of investigating these 
problems and since their solutions involve lengthy cal- 
culations, it is desirable that as many mathematical 
simplifications as possible be employed. Heaviside’s 
method gives such a simplification, the solution of the 
differential equations being accomplished symbolically 
by a single “expansion theorem.” 

THE DIFFERENTIAL EQUATIONS FOR THE DISTURBED 
MOTIONS 

An airplane in uniform flight may be thought of as a 
free rigid body in equilibrium. Deviations of the air- 
plane from this equilibrium condition may be caused 
by reactions due to control movement, gustiness in the 
air, or by some inAuence such as the stopping of an 
engine. The motions of the airplane following such a 
disturbance may be calculated if the momentary 
accelerations or forces are known. It is obvious that 
this computation may be performed by taking small 
intervals of the time and caculating the velocities and 
displacements generated by the known acce%rations 
step by step, assuming the accelerations momentarily 
constant. 

The component linear and angular motions of the 
airplane in its deviations from equilibrium are given 
exact definition by constructing a set of axes rigidly 
fixed in the machine and considering its motions as 
being those of the axes themselves. The motions 
spoken of are then velocities and displacements of the 
airplane axes relative to the earth or the air. When 
the airplane is in steady flight, it maintains a certain 
equilibrium attitude with respect to the air and to 
the earth. Thus for climbing %ht a t  a given enginc 
speed a definite angle of attack and a definite angle of 
pitch must be preserved. Deviations from equilibrium 
in either sense will introduce reactions; hence motions 
of the airplane axes relative to both air and earth 
must be considered. 
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The aerodynamic reactions to the motions arise 
from changed relative air velocities ,over the d i e r e n t  
parts of the airplane. The calculation or measure- 
ment of these component aerodynamic reactions leads 
to quantities known as “resistance derivatives” or 
“stability derivatives,” which are taken as constant 
factors of proportionality between the reactions and 
the velocities or displacements of the motions. For a 
more detailed exposition of the concept of stability 
derivatives, the reader is referred to standard text- 
books on aeronautics. 

On account of the bilateral symmetry of the airplane 
i t  is customary to divide the motions into two inde 
pendent groups, the lateral and the longitudinal, each 
consisting of three degrees of freedom: 

Rolling. 
(A) Lateral motions _ _ _ _ _ _ _ _ _  Yawing. 

Sideslipping. 
Pitching. 

(B) Longitudinal motions- - - - Vertical translation. 1 Forward translation. 
Presumably the reactions to small increments of 
longitudinal speed or displacement do not sensibly 
influence the lateral motions and the two groups may 
be independently treated. In  order to illustrate the 
calculation of the history of a motion due to a given 
disturbance, examples of lateral motions are chosen 
although the methods used are equally applicable to 
any set of degrees of freedom of the airplane. The 
quantities that arise in the consideration of the lateral 
motions are defined in the follou-ing table: 

I 

Velocities and displacements of airplane axes: 
U,, equilibrium flight velocity along X axis. 

r,  component of flight velocity along Y axis 

p ,  component of angular velocity about X axis 

r,  component of angular velocity about 7; axis 

‘p, angle of bank (relative to gravity). 

Y, component of force along Y axis. 
L, component of moment about X axis (rolling 

N ,  component of  moment about Z axis (yawing 

(sideslipping). 

(rolling). 

(yawing). 

Forces and moments resolved along airplane axes: 

moment). 

moment). 
Accelerations of airplane: 

Yo=Y/m (force per unit mass). 
L,,=L/mkxZ (moment per unit moment of inertia) 
No=N/mkz2 (moment per unit moment of inertia) 

I+,, component of gust velocity directed along P 

ro, component of angular velocity of gust about 7 

yo, component of angular velocity of gust about X 

Gust yelocities resolved along airplane axes: 

axis. 

axis. 

axis. 

N p = g / m k z z  3P 

NoTE.-The signs of the gust velocities are so 
:hosen that a positive gust produces the same aero- 
lynamic reaction on the airplane as a positive velocity 
,E the airplane in still air. The resolution of gust 
relocities along the moving axes is exact only to the 
irst order of the small quantities involved. 

Airplane characteristics used as parameters: 

Stability derivatives in terms of accelera- 
Y, tions of airplane, thus: 
y‘ I 

N,  I 
With the definition of the component motions that 

Ire to be considered, the stability derivatives will be 
if the form: 

where L, h7, Y,  respectively, are the rolling moment, 
the yawing moment, and the sidewise force, as they are 
xstomarily defined. 

I t  has been found convenient to transform all 
itability derivatives and disturbing effects into terms 
If accelerations of the airplane rather than retaining 
them as moments and forces. This transformation 
s accomplished by dividing out the appropriate 
noments of inertia and the mass of the machine. 

For example, - mkxZ may be written simply as Lp;  ”i aP 
and - m = Y,. ”’I dr 

If the fliglit path is assumed to be horizontal (or 
iearly so) and the main forward velocity lJo to be 
mbstantially constant, the equations of motion in a 
ateral disturbance may be written: 

dv (In sideslipping) - dt- -gq -r Uo +v Y,+ r Y,S Yo 

(In rolling) 

(In yawing) $=vNu+pNp+rNr+Na 

* dt = v ~ ,  + pLP + rL,+Lo 

In these equations the terms Yo, Lo, and No represent 
known disturbing or controlliig accelerations, assumed 
to be given as functions of the time t .  In  the first 
equation the terms gq and -rU, are, respectively, the 
wcelerations due to gravity and to the rotation of the 
moving axes. Since the axes chosen will ordinarily lie 
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near the axes of the principal moments of inertia of 
the airplane, terms involving the products of inertia 
have been neglected. 

INTEGRATION OF EQUATIONS FOR VELOCITIES AND 
DISPLACEMENTS 

As previously mentioned, equations (1) may be inte- 
grated by taking small intervals of the time and calcu- 
lating the velocities, and finally the displacements, by 

assuming the accelerations -1 etc., to be momen- 

t a d y  constant. Although this method is sometimes 
useful, it naturally leads to extensive numerical work. 
The operational mathematics of Heaviside appear to 
offer the most promising means of performing these 
integrations. 

The first step in integrating the equations of motion 
by the operational method is to replace the symbol 
d by the so-called “differential operator” D, which is 

to be treated as though it were an ordinary algebraic 
quantity; the equations are then rearranged with the 
known disturbance effects on the right-hand side: 

(D-Yv)v - -g~+ (Uo- Y J r =  Yo 

- Lvv+ ( D -  L p ) p  - L,r = Lo 

dv 
db 

(2) 

- Nvv- N p p  + (D-  N,)r= No 
Since Dp=p,  the first equation may be operated on 
throughout by D ,  reducing all to the same variables 
(v, Pl TI:  

D(D-  Y J v - g p  + D ( Uo - Y,)r = D Yo 

- L,v+ (D-  L p ) p -  Lrr= Lo 

- N,v- N p p  + ( D  - N,)r = No 

( 2 4  

With the equations in this form, they may be solvec 
for v, p ,  or r by ordinary algebraic means; thus, 

V =  (3) 

The expansion of the determinant of the numeratoi 
in terms of minors results in: 

I n  the calculation of any of the velocity components 
,he same denominator appears; if this determinant is 
ienoted by F ( D ) ,  the forms of these components are: 

ztc. 
Thus far the solution of the equations of motion has 

xogressed simply on algebraic grounds, the required 
pantities (v, p ,  etc.) having been found explicitly in 
, ems  of the symbol D. The symbol D was defined as 
h e  operation of derivation with respect to the time t ,  
:xpressed by writing 

D‘a d 

The terms of the solutionf(D)/F(D) indicate that the 
brmal operations are to be performed on whatever 
!unctions follow them as factors. Since they contain 
Lhe symbol D in their denominators, it becomes neces- 
sary to define the operation indicated by 1ID or D-I. 
As D is an operation and not a number,;its reciprocal is 
lefined as the inverse of the operation of differentiation, 
rather than as the derivative itself divided into 1. 
The inverse of differentiation is integration: thus, 

The operations indicated by the ratios of polynomials 
in D that occur in the terms of our solution then consist 
D f  a succession of differentiations, [ f ( D ) ] ,  and a succes- 
sion of integrations, [F(D)]-*.  It is clear that the 
nature of the problems a t  hand requires that the result- 
ant of these operations be an integration, which is 
shown by the fact ,that the polynomial F ( D )  is invar- 
iably of higher degree in D than any of the polynomials 

D-’=J’ .  . . dt 

f(D)‘ THE EXPANSION EQUATION 

By treating the disttrbances (such as Yo, No, Lo) as 
discontinuous functions of the time, Heaviside obtained 
solutions of equations similar to the foregoing by a 
simple theorem. The substitution of Yo into Heavi- 
side’s theorem results in 

r- -l 

J 

where the X’s are the roots of the polynomial equation 
F(D)=O. This polynomial, F(D)=O, is used in the 
study of the stability of motion, being called the 
“stability equation.” Its roots, h1 hz . . . A,, give an 
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indication of the natural tendencies of an airplane’s 
motion and are used in the definition of stability. 

In  order to apply the foregoing theorem to the 
integration of equations of airplane motion it is neces- 
sary to assume that the disturbance terms (Yo, No, 
etc.) due to the control or gust in question are instantly 
applied a t  the assumed origin of the time scale (t=O) 
and remain constant thereafter. In the general case 
the disturbance terms in the equations of motion cannot 
be thus represented as remaining constant although in 
practical problems they may almost invariably be 
represented by means of functions of the form Yo ent. 
The interpretation of Heaviside’s theorem equation (6) 
when this form of function is used is (see reference 2): 

L 

m e n  dealing with variable disturbance terms, it is 
important to note that a discontinuity of the function 
representing the disturbance a t  t = O  is implied as in 
equation (6). 

By the substitution of (in) for n in equation (7), 
expressions that can be used when the disturbances 

l i  

1 

FIQUUE I.-Map of polynomial. F(D)=Dd+aDa+bDl+cD+d near zero. 
F(D)-+F@)=O when D-ukib .  

are represented by forms involving sin nt or cos nt arc 
obtained 

A 

f (in) - 
Fbn) 

If 7 - A + i B ,  then the expressions for the sine and 

cosine forms separately become 

( fD)  yo sin nt 

f ( D )  Yo cos nt 

Fm 
A sin nt+B cos nt+y(&z)F%eAt] (8) 

Fo 
cos nt-E sin nt+ 

x 

These latter forms are particularly useful because 
tlmost any arbitrary variation of gust or control may 
>y expressed a‘s a sum of sine or cosine terms. Thus if 

Yo=& s i n n l t + K 2 s i n ~ t +  . . + etc. 

Zach of these terms may be evaluated by equat.ion (8). 

SOLUTION OF OPERATIONAL EQUATIONS 
FINDING THE ROOTS OF THE EQUATION F(D)=O 

The expansion equations given for the forms 
‘(D)/F(D) require the roots of the complementary 
5quations F(D)=O for their solution. In  cases of 
l i l a n e  motions this equation is normally of the fourth 
legree in D ;  hence it is not practicable to find the roots 
Grectly. Although a number of methods for approxi- 
nating the roots of such equations have been devised, 
,he most direct way is to draw a curve of the function 
F(D) against D, locating the real roots as the points 
:rossing the D axis. Usually in equations of this 
;ype qear roots may be isolated by separating the 
:quation into two parts. Thus, if 

F(D) =D4+aD3+bD2+cD+d=0 (1 1) 

there will usually be a large real root near IT= -aD3, 
d ir D=-a, and a small one near D=-- .  This 
C 

livision follows from the consideration that large roots 
tre more dependent on the coefficients of the higher 
powers of D and small roots, on the lower powers. 

If the natural motion of the airplane contains oscilla- 
tory components, as it usually does, there will be pairs 
3f conjugate complex roots of the polynomial F(D)=O 
in addition to the real roots. The determination of 
these roots is naturally more difficult, although if real 
roots have been previously found they may be used 
to reduce the degree‘of the equation by synthetic divi- 
Gon and the determination of further roots will be- 
come progressively easier. Complex roots of such an 
equation may be directly found by plotting a map of 
the polynomial F(D) for various values of D using the 
coordinates D=x+iy and finding the zero point, or 
root, by interpolation, as is shown in figure 1. If a 
very accurate value of the root is required it may be 
convenient to plot the region of F(D) near the origin 
to a magnified scale. Since the polynomial is what 
is known as an “analytic function” (reference 4), 

and the map in its smallest parts will consist of squares. 
In this way a more accurate interpolation may be 
made or a process analogous to Newton’s method may 
be applied. 

It will be found most convenient to calculate the 
various values of F(D) by means of a vector diagram 
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as shown in figure 2. If trial values of D are expressed 
in the form R (cos e+i sin e) or Rei0, vectors repre- 
senting each of the terms of the polynomial may be 
simply calculated. The problem is to ma.ke all terms 
of the poIynomiaI balance each other and it is readily 
seen how this may be accomplished by varying e to 
change the relative inclinations of the vectors and by 
varying R to change their relative lengths. The 
advantage of this method is that it enables a close 
approximation of the value of a root with a minimum 
number of trials, the diagram making apparent how 
nearly all the vectors cancel each other. 

SOLUTION OF EXPANSION EQUATIONS 

The numerical operations indicated in the expansion 
equations (6) to (9) call for mlculations with complex 
numbers ti. e., roots of F(D)=O). A great deal of the 
labor involved in these computations may be saved by 
the use of graphical and logarithmic methods. 

Thus, if it is desired to calculate values of the com- 
plex terms occurring in equation (6), the logarithmic 
formula 

log7ei*"=Xlt+log f ( h )  f(Xl)-log X1-log F'(Xl) (13) Lip ( X i )  

is used. For the purpose of calculating these loga- 
rithms, it is convenient to express the complex numbers 
(A1, f(X,), etc.) as vectors of radius R and angle e, 
writing, for example, 

X1=a+ib=Bl(cos #,Si sin 81)=Rleze1 (14) 

A complex term of equation (6) may then be written, 
by De Moivre's formula. 

RZ -- -BlR~'''+i(e2- el - e3) 

and the resultant logarithm may be plotted as a straight 
line Xlb+constant, which is then divided or extended to 
represent any division or extension of the time d over 
which the calculation is made. (See fig. 3.) The final 
vectors will represent the complex values of 

and i t  is seen that the ordinates of the points of the line 
Xlt+constant are the angles of these find vectors while 
the abscissas are the Iogarithms of their radii. 

c 

By a separation of the two components of the imagi- 
nary root h=a+ib, the logarithmic formula may be 
reduced to 

= Oog RoSat) +i@o+br) (17) 
The final formula, where X1=a+ib, then becomes 

or, by De Moivre's theorem, 

~,!&eXt=Roeu"[cos (bt+eo)+i sin ( b t t e o ) ]  (19) 

The points thus plotted will lie on a logarithmic 
spiral (fig. 3); the deviation of this spiral from a circle 

FIGUBE 2.-Qraphical method of locating values of F(D) near zero, where 
F(D) = D ~ + u D ~ + ~ D ~ + c D + ~ .  D,=z,+i~l=Rlc~~,=Rl(eas Oifi sin 01) 

shows the influence of damping on the natural motion 
of the airplane. 

The summation indicated in equation (6) calls for 
the plotting of such a logarithmic spiral for each of the 
complex roots. Since these roots always occur in con- 
jugate pairs, the calculation may be carried out for one 
of such a pair and a spifal calculated for the second 
would be exactly conjugate to the first. Thus, it is only 
necessary to perform the foregoing calculations for one 
root of each pair, the summations indicated in the 
equations being carried out in effect by merely doubling 
the abscissas of the points of one of the conjugate 
spirals. If X1=a+ib and Az=a-ib, this summation 
may be written: 

The formulas for the integration of terms containing 
sin nt and cos nt may be put into a more convenient 
form for the graphical or logarithmic calculations, i. e., 
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In  these forms the graphical construction of the terms 

’(?)einr proceeds along the same lines as that of the 

terms involving complex roots A. Here the re- 
sulting diagrams will be circles, divided into equal 
angles as nt may be divided. In  case A is complex the 
plot of an exr term will be a logarithmic spiral as before 
and it is important to remember that the summation 

F K )  

For the velocities of an assumed gust, forms involv- 
ing ent are useful. Thus, i f  the gust is considered a 
“transient” one, disappearing rapidly from an arbi- 
trary initial value, the form (A) (fig. 4 )  

vO=vpPf (24) 
may be used. Here v1 is the initial value and -n is 
chosen to make the gust diminish in any required way. 

/ O q R o X  

i 

t = t ,  

1 
- i  

FIGURE 3.--Graphical construction ofE&eAl where X=artib. Log /@I- log A-log F(x) = log Ro+tBa 
aL 

over each of a pair of conjugate roots is accomplished 
by doubling the abscissas of the spiral obtained for one. 

WAYS OF REPRESENTING GUSTS AND CONTROL 
MANIPULATIONS 

GUST DISTURBANCES 

If the disturbances to be considered are due to gusts, 
the terms Yo, Lo, etc. of equations (1) will be of the form 

(23) 

where vo, pol and ro are the component velocities of the 
gust, which may vary with the time. As given, the ref- 
erence system for specifying these gusts has been chosen 
so that a positive gust velocity may be considered as 
producing the same aerodynamic reaction on the air- 
plane as a positive airplane velocity in still air. All 
such gusts must be assumed to be moderate so that 
second-order effects may be neglected. (See refer- 
ence 1.) 

If the gust is to be made to start from an initial value 
of zero and to persidt with the time, the form (B) 

vo=vl(l ---e+‘) (25) 

may be used. 
For the purpose of representing gusts that arise with 

any degree of sharpness from zero velocity to a given 
peak value and then diminish, the form (C) may be 
used: 

vO=Kcnt((1 -e -mf)  (26) 
The sharpness of the rise of this gust is governed by 
-m and the decrease by -n, since its curve approaches 
that of (&eumt) near the origin and finally becomes 
asymptotic to e-nr. 

In  the case of a rotating gust it is probably more 
logical to use the transient forms that represent the 
gust as disappearing in time instead of being persistent. 

When considering controlled motions, it is often just 
as reasonable to assume that the airplane is under a 

(See reference 1 .) 

CONTROLLED MOTIONS 
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kinematic constraint, or prescribed acceleration, im 
posed by the control as to assume that the pilot use 
the control in an arbitrary way. This assumptioi 
leads to the inversion of the integration problems here 
tofore considered, because the motion of the airplan, 
is itself predetermined and the forces and moments (or 
more properly, accelerations) required to be suppliec 
by the controls are calculated by differentiation. Thi 
ability of various control devices, to produce a givei 
maneuver of the airplane may thus be compared an( 
the degree of coordination required of the other con 
trols may be studied. 

The foregoing procedure is a particularly useful wa; 
of studying the lateral-control effectiveness in turns 
Turn maneuvers, which usually begin and end in leve 

t 
(A) vo = 

Y 

n 
t 

(c) v0 = Ke-“‘(l-  e-“‘) 
FIGURE I.-Curves of different formulas for repreSenting gusts. 

flight, may be described by means of a few sine o 
cosine terms. For example, the angle of bank p ma. 
be given by 

(27 
(See fig. 5.) The rate of rolling a t  every instan 

p=constant+Al cos nt+Az cos 2ntSetc. 

63689- - 3 8 - 2  

naturally follows by differentiating this equation. If 
the turn i s  to be “perfect,” that  is, with no sideslipping, 
the rate of yawing throughout must bear a definite 
relation to the angle of bank, namely, 

(28) 9 .  r=- sin p ua 

r=-p if cp is under 30’ 

Differentiating the expressions for p and r gives the 
accelerations in rolling and yawing and hence the 

or, simply, 
9 
ua 

FIGURE 5.--Specifieations for a turn maneuver in which the wnstraints are given by 

~ = I $ $ A A I + A I ~ ~ ~ I ~ ~ + W A ~  wsht: P-2; r-&p. 

moments, which will arise from two sources: the 
reactions due to natural stability and the reactions 
produced by the displaced controls. The reactions 
arising from the motions are found by combining the 
known stability derivatives with the angular velocities 
p and T ,  obtained from the specification equations (27) 
and (28). The parts of the moments necessarily 
supplied by the controls are then obtained by deduct- 
ing these from the total moments. In  the case of the 
aileron control, secondary moments in yaw result from 
the application of rolling moment, which modify the 
amount of rudder control displacement necessary. 

CONTROL AGAINST GUSTS OR ENGINE FIULURE 

In order to deal with attempted control of a given 
disturbance it is important to consider that there is 
invariably a lag in the pilot’s reaction in countering 
the motion. I n  these cases it is possible to assume 
that the disturbance arises instantly, or nearly so 
(whether persistent or not), and that the pilot’s dis- 
placement of the corrective control takes place accord- 
ing to the law 

&=&,(I -e-nf) (29) 

(see fig. 4(B)) where is the assumed maximum con- 
trol deflection, which occurs more or less quickly as 
-n is made large or small. 
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uo 
(ft,lSec.) 

150 
88.5 
66- 

EXAMPLES SHOWING APPLICATION OF OPERATIONAL 
METHODS TO PROBLEMS OF AIRPLANE MOTION 

The following examples illustrate the application of 
the various+methods to specific problems of airplane 
motion. The airplane assumed in these calculations 
is a typical 2-passenger machine having the following 
characteris tics : 

CHARACTERISTICS OF TYPICAL AIRPLANE 

Type: Monoplane; aspect ratio 6 ;  rectangular, rounded 
tip, Clark Y wing; dihedral angle, l o .  

Dimensions: 
Gross weight 1,600 Ib. 
Wing span _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  32 f t .  
Wing area _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  171 sq. f t .  
mkx2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  1,216 slug-ft.2 
mkz2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  1,700 slug-ft.2 

Stability derivatives: 

CL LP Lr UoL. NP N r  UoN. 
---__-________ ~ 

0.35 -5.44 1.11 -2.16 -0.m -0.913 5.52 
1.0 -3.73 --.301 --.663 2 0 4  

61.8 -2.46 ;% I?:k -.310 -.977 1.46 

f2(D)=LTD2- UOLVD 
F(D) =D4- (LD+N,)D+ (LpN,-L,ND+ UoNv)D2 
+ U ~ ( l ; . N D - L p N V ~ ~ L , ) D + g ( L ~ N ~ - L , N v )  

b Flaps down. 

The calculated principal lateral-stability derivatives 
of this machine given with the other characteristics 
refer to motions of a set of axes fixed in the airplane 
but so inclined that the X axis points in the direction 
of the relative wind in straight flight a t  the lift coeffi- 
cient specified. The axes, nevertheless, move with the 
machine during the small oscillations considered and 
hence depart slightly from instantaneous reference axes 
fixed in the wind direction. 

ILLUSTRATION OF SOLUTION WITH CONSTANT DISTURBANCE 
TERM 

Example I, Rolling motion produced by deflecting 
ailerons a t  low speed: 

(a) Assume the machine to be in level steady flight 
a t  a speed of 88.5 feet per second (CL=l.O) and that 
a rolling moment corresponding to Cz=0.04, with an 
adverse yawing moment Cn= -0.01, is applied sud- 
denly a t  the time t=O. This condition corresponds 
approximately to a full deflection of ordinary ailerons 
a t  this speed. 

(b) The equations of the motion in the three degrees 
of lateral freedom may be set up without including the 
expressions for the lateral air force, since this force is 
small and may be neglected in this case. The equa- 
tions are: 

’ (35) 

The terms Lo and No represent the accelerations due 
to the constant cdntrol moments suddenly applied at 
f=O. They are 

&=- C,¶Sb 
mkx2 

N , = y  CnqSb 
mkz 

The substitution of I? for dldt, and the rearrange- 
ment of the equations result in 

D2v-gp + DUor = 0 

- N#v- Npp + (0- NJr= No 
- Lvv+ (0- Lp)p- L,r=L, 1 (32) 

Since the rolling motion is desired, the equations will 
be solved for p.  The algebraic solution is: 

P =  (33)  

which is then reduced to the form required for expan- 
sion in equation (6 ) ,  

(34) 

Lo= 1.68 
No= -0.301 

Using these numerical values, combined with those 
given for the stability derivatives, the polynomials in 
D become 

( 3 5 4  I f~(D)=D3+0.663D2+2.04D 
f2(D)=1.88D2+l.llD 
F(D) =04+3.89D3+4.75D2+ 10.33D- 1.13 

In  order to perform the expansion of ;$) ~ by Heavi- 

side’s theorem it is necessary to determine the roots of 
the complementary equation F(D)=O. When the 
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polynomial F(D) is plotted as a function of a real vari- 
able (D), two real roots of this equation are found: 

(37) 

By the use of vector diagrams (see fig. 2) and the plot- 
ting of a map of the polynomial considered as a func- 
tion of a complex variable (D=zfiy), the following 
root was found by interpolation: 

(38) 
A n  additional complex root that is the conjugate of X3 
is known to exist and completes the four roots of the 
fourth-degree equation, 

(39) 
The next step is to set up the integration equation 

and perform the indicated operations. Since the 
applied control moments Lo and No are constants, form 
(6) wil l  be used 

I XI = - 3.4 I 
0.104 

X3=1.7+ (cos 1.73+i sin 1.73) 

&=1.78 (cos 1 . 7 3 4  sin 1.73) 

The logarithm of the result naturally occurs in the form 
z+iy. Plotting this point on the paper and construct- 
h.g from it a line parallel to X3, we obtain the locus of 

for various values of t (see fig. 3). The angles of 
the final points are given by the ordinates of these 
logarithms and the absolute lengths by the antiloga- 
rithms of the abscissas. The final points are found to 
lie on a logarithmic spiral whose radius decreases with 
the time (time measured as angle) showing the damping 
of this component of the motion. The summation 
over the two conjugate roots X3 and ha is accomplished 
without any further calculation by merely doubling 
the abscissas of the points plotted above, as has been 
pointed out. The values thus obtained are listed in 
the following table: 

The various terms to be substituted in this formula 
are found to be: 

fi(X)L,+fi(X)No=l.68X3f0.54X2+3.09X 

XF’(k)=4X4+ 11.67h3+!l.49h2+ 10.33X 
These terms are to be calculated for the four (real and 
complex) values of the roots. In  the case of the real 
roots the cblculation is made without resorting to 
graphical methods. For X1=-3.41, the value 

and for X2=0.104 

(43) 

It will be convenient to perform graphical calcula- 
tions to determine the other parts of the solution, 
corresponding to the complex terms. This result is 
accomplished by calculating the square, cube, and 
fourth power of the absolute length of X3 and by mul- 
tiplying each of these values by the proper coefficients 
in the polynomialsf(D) and F(D). By vector addition 
the value of the first polynomial was determined as 

and the second 
X3Fr(h,>=40.6 (cos 5 . 6 0 f i  sin 5.60). (45) 

Since the quotient of these values is to be multiplied 
into eA31 for a series of values of t it will be convenient 
to use the logarithm of this quotient, simply adding t c  
it the various values of X3t for which the calculation is 
to be made. This logarithm is 

fi(X3)L+fz(X,)N,=3.99 (COS 5.23-J-i Sin 5.23) (44) 

Table of values obtained from graphical codstruetion 

(For XI and A d  

.130 
,082 

1.0 -. 030 
1.5 -. 080 
2.0 -. 110 

At the time t=O, exr will be unity so that the initial 
:ondition of zero rate of rolling should be given by the 
sum of its coefficients. The summation 

-0.484+0.277+0.184= -0.023 

shows how nearly this condition is attained. Figure 6 
rhows the resultant rate of rolling and the coniponents 
)f the solution corresponding to each of the four roots, 
in. In addition to the rolling curve obtained by the 
’oregoing methods, other curves obtained by step-by- 
step integrations of the same equations of motion are 
+.en. In the calculation of these curves, steps of one- 
tenth and one-twentieth second were taken, which 
resulted in the differences shown. 

ILLUSTRATION OF SOLUTION WITH VARIABLE DISTURBANCE 
TERMS 

Example 11, Sideslipping during 2-control turn 
maneuver: 

(a) Assume the airplane to perform a specified bank- 
ing maneuver by application of a variable rolling mo- 
ment. If no yawing moments (from either rudder or 

log x(X3)L0sf2(X3~=(log X 3 F ’ ( X 3 )  3.99-log 4O.6)+i(5.23-5.60)=-2.32-O0.38 i (46) 
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V L)-+r= Yn 

O "u, 

un 
- U N z+ (D- N,) r=Xn 

ailerons) are applied, the natural stability of the air- 
plane will cause it to turn in a direction appropriate t a  
the direction banked. Such a turn is called a "2-con- 
trol turn," inasmuch as only two (ailerons and elevator) 
of the three available controls are used. Since there 
will not be a very perfect coordination between the 
banking and yawing, some sideslip will result. It is of 
interest to know the approximate amount of thk 

) (51) 

Zme, seconds 

FIGURE L3-Result 01 sample wmputation wmpared with step-by-step integration? 
example I. Rolling motion following sudden deflection olailerons. Typical 1,Mx 
pound airplane. C ~ 1 . 0 ;  C1=0.04; C.=-O.Ol. 

sideslip during such a turn in studying the practica 
bility of 2-control operation. 

(b) The first step in this problemis the determinatioi 
of a suitable expression for the banking part of thc 
maneuver. It was considered that the pilot woulc 
naturally conform his use of the control to the desirec 
motion of the airplane rather than move the control i r  
a predetermined way and accept whatever motion o 
the machine followed. Hence it seems more logica 
to  specify the banking motion itself rather than to tq 
to predetermine a law of application of rolling moment 

The airplane is thus assumed to be constrained iI 
banking by the aileron control so as to follow a well 
executed bank maneuver and recovery. The usua 
procedure in making a turn is to bank the machine ul 
to a definite angle, holding this angle steadily for a shor 
time while in the steady part of the turn, and then tc 
recover to level flight on the completion of the desirec 
angle of turn. A curve representing such a relation o 
bank angle against time may be represented by a serier 
of only two cosine terms with a constant defining thc 

initial and terminal conditions of level flight, or zero 
bank angle. (See fig. 7 . )  For a fairly sharp turn with 
this small airplane the time required will be about 6 
seconds if the maximum angle of bank is 30'. The 
specification decided on is: 

Bank angle, p=O.327-0.262 [cos t+% cos 2t] (47j 

which reaches a steady value of 30°, and gives level 
Aight a t  t = O  and t = 2 s  seconds. The rate of rolling 
is the rate of change of this angle of bank; or 

& 
d t -  (481 

A constraint of the machine in one of its degrees of 
Ereedom having thus been specified, it is only necessary 
to consider the equations for free motion in the remain- 
ing two degrees. As before, the lateral motion will be 
assumed to be independent of the longitudinal. There 
remain only the sideslipping and yawing motions to 
be considered. Their equations are: 

p=--0.262 sin tS0.131 Sin 2t 

d r  z=vN,+pNp+rN, 
(49) 

Although the equations contain the rate of rolling and 
the angle of bank, these are to be considered as known 
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fi (0) = - 1 

Solving algebraically for VIVO: 

YO 1 I NO (0-NJ 1 
lJ0- 1 -Eav (D-N7) 

(52) 2) _- 
1 

or 

I (53) 

UoNv=2.4O 

Yo=0.111-0.0888 COS t-0.0222 COS 2t 

N0=-0.0846 sin t -0.0423 sin 2t 

3 (54) 

(55) 

and, finally, 

cos t -~0.111-‘------0.0888 - V f (D) 
uo- F(D) 

. - 0 . 0 2 2 d H  cos 2t-0.0846ffl sin t (56) F(D) 

- 0 . 0 4 2 d a  sin 26 

Far the expansion of these terms in the integration 
equations (6), (8), and (9), it  is necessary to know the 
roots of F(D)=O. These are 

X= -0.356 f 1.51i I 
Since both these roots are complex, the operations 

indicated in the integration equations wqre performed 
graphically in the manner previously shown. 

The results of these calculations are shown in figure 7. 
The fact that the error in meeting the zero sideslip 
condition a t  the start of the maneuver was very small 
(even though the graphical construction of several 
terms was required) gives an indication of the accuracy 
of the calculation. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 

LANGLEY FIELD, VA., February 19,1936. 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 
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APPENDIX 

EVALUATION OF ELEMENTARY OPERATORS 

A simple differential equation may be used to illus- 
trate briefly Heaviside’s method of evaluating more 
elementary operational forms. Consider the case of an 
airplane executing pure rolling motion under the 
influence of a suddenly applied rolling moment of 
magnitude mkX2L0, which produces the impulsive accel- 
eration Lo in roll. The equation of motion may be 
writ ten : 

@ = p ~ , + ~ o  dt  (58) 

in which both p and Lo are supposed to have the value 
zero a t  the time t=O. 

The solution of this equation as ordinarily found will 
consist of two parts, one of which is a solution of 

(59) 

the “complementary equation.” In effect, Heaviside 
wrote both equations, (58) and (59), as one by intro- 
ducing a discontinuous function of t into (58). Thus, 
(substituting the usual D )  

Dp- L,p = 1 ( t )  Lo (60) 

where the symbol 1 ( t )  is termed the “unit function,” 
and is supposed to have the value zero until the time 
t=O and to take the value 1 thereafter. The algebraic 
solution of (60) is then written 

(fw 
1 

D- L, p = - 1 ( t )  Lo 

and it is required to evaluate the form 

1 ( t )  
1 

D- L, 
The procedure is to expand the fraction by the bi- 
nomial theorem in ascending powers of L,, thus, 

(D-Lp)-’=D-’+D-2Lp+D-3Lp2+ . . . +etc. (61) 

Since 
D-’1 ( t )  = J 1 (t)dt = 1 ( t )  t 

t2 (62) 
D-21(t)=JJ1 (t)dtdt=l(t)%; etc., 

performing the indicated integrations results in 

If this series is multiplied throughout by L, it becomes 
identically the series for eL$ except for the term 1, 
that is 

[Lp(D-Lp)-’+l] l ( t )=l( t )eL~ (64) 

lr 

(65) 

rhe final solution of the original equation ( I )  follows as 

(66) 

(D-Lp)-’1(t)=-(eLpr-1) 1 ( 6 )  
Lz7 

Lo L 

LP 
p=l( t ) - (e  d - 1 )  

Such forms as the left side of equation (60), involving 
#he symbol D, me termed “operators.” Equations 
,6) to (9) of the text are to be considered as evaluations 
)f the more complex operators f (D)/F(D) along the 
tbove-indicated lines. The evaluation of a number 
)f such forms is given in reference 5. 

Equation (6) of the text is a shorthand method of 
Lrriving a t  the foregoing solution. For the present 
woblem this formula is: 

L 

i d  the various terms are: 

A D )  = 1 

F(D)=D-L, 

f(0) = 1 

F(O)=-L, 

x= L, 

f(’) = 1 

F’(X)=1 

The substitution of these terms in (67) results in 

i s  before. 
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REPORT No. 570 

THE EFFECT OF LATERAL CONTROLS IN PRODUCING MOTION OF AN AIRPLANE 
AS COMPUTED FROM WIND-TUNNEL DATA 

By FRED E. WEICX and ROBERT T. JONES 
-- 

SUMMARY 

An analytical study of the lateral controllability of an 
airplane has been made in which both the static rolling 
and yawing moments supplied by the controls and the rea+ 
tions due to the inherent stability of the airplane have 
been taken into account. The investigation was under- 
taken partly for the purpose of coordinating the results of 
a long series of wind-tunnel investigatwns with phenom- 
ena obselved injl ight tests; for  this reason a hypothetical 
average airplane, embodging the essential characteristics 
of both the wind-tunnel models and the full-size test air- 
planes, was assumed for the study. 

Stability derivatives fo r  the average airplane and for  
several of the actual jlight-test airplanes were computed, 
and computations were made in a n  attempt to reproduce 
by the theory the conditions of several actual jlight tests. 
Computations made of forced rolling and yawing motions 
of an F-22 airplane caused by a sudden dejlection of the 
ailerons were found to agree well with actual measure- 
ments of these motions. 

The conditions following instantaneous ful l  deJlections 
of the lateral control have been studied, and some attention 
has been devoted to the controlling of complete turn maneu- 
vers. A portwn of the work was devoted to a study of con- 
trollability at stalling angles, and the results of this appli- 
cation of theory were found to agree qualitatively withjlight- 
testing experience. 

The angle of bank produced in 1 second, p,, by a dejkc- 
tion of the rolling control may  be taken as a relative meas- 
ure of the control effectiveness. In the analysis of con- 
trollability below the stall, it was found that a simple 
measure of the rolling effectiveness of a control is given by 
the sum of a constant times the rolling moment and a con- 

stant times the yawing moment. !l'hus a relative weight or 
importance is given to the secondary yawing moment pro- 
duced by the rolling control. I t  was concluded that the 
importance of such secondary moments can be minimized 
by alteration of the moments of inertia of the airplane. 
Increasing the yawing moment of inertia reduces the 
effectiveness of a given yawing control in producing either 
yawing or rolling motion. Changes s'f rolling moment 
of inertia have little direct effect on either the rolling or 
yawing motion produced by a given rolling control moment. 

The study of Conditions above the s t d  indicated that 
satisfactory control could not be expected without some 
provision to maintain the damping in rolling and that a 
dangerous type of instability would arise if the damping 
were insuficient. The quantity L, N,-L, N,<O was 
found to give a good measure of this type of instability. 

INTRODUCTION 

For some time the N. A. C. A. has been conducting 
a program of research on lateral control for the specific 
purpose of obtaining information that would lead to 
improvement of control at  the low speeds and high 
angles of attack above, the stall, a region in which 
present conventional ailerons are known to be unsatis- 
factory. Several series of wind-tunnel investigations 
have been completed and an attempt has been made to 
compare a number of widely different lateral-control 
devices on the basis of what has been considered their 
primary function-the provision of rolling moment. 
Some of the secondary characteristics, such as the 
yawing moments given by the controls and their effect 
on the damping in rolling, were considered but only 
by comparing the various values separately. Flight 
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tests were then made with the devices that seemed to 
promise the best lateral control at  the stall. Some of 
them did not perform as had been expected from the 
wind-tunnel tests (see reference I), indicating that the 
first approximation, based largely on the rolling 
moments given by the devices, was an insufficient basis 
for comparison and that the complete interaction of 
the secondary factors must very likely be considered. 

References 2 to 5 describe important work that has 
been done on the lateral control of airplanes in both 
normal and stalled flight. Reference 2 gives a general 
account of the problem of control of the stalled air- 
plane; references 3 and 4 describe investigations of the 
lateral control and stability of Merent biplane types. 

The present report contains the results of a study of 
control effectiveness made by means of computations 
that take into account the secondary factors includmg 
the yawing moments given by the controls, their effect 
on the damping in rolling, the other lateral-stability 
derivatives, and the moments of inertia of the airplane. 

In the first, 
the rolling and yawing motions are computed step by 
step for the conditions following a sudden deflection of 
the lateral control; in the second method a complete 
turn is arbitrarily specified and the co-ntrol moments 
and deflections necessary to  perform the maneuver are 
found. The first method is used to compare the 
effectiveness below the stall of various lateral-control 
devices and to investigate primarily the effects of 
changed stability characteristics above the stall. 

The results of calculations made for normal unstalled 
conditions are compared with measurements made in 
flight using different types of lateral-control devices. 
The effects of certain changes in the lateral-stability 
characteristics below the stall are also studied. The 
method used in the study of complete turn maneuvers 
has proved to be a very practical way of dealing with 
specific control problems. Here all the stability 
characteristics of the airpIane are taken into account 
but the lengthy and tedious integration of the equations 
of motion is avoided by predetermining the actual 
movements of the airplane in the form of some desired 
maneuver and then finding the manipulation of the 
controls that would be necessary to execute the speci- 
fied maneuver. The coordination of the rudder with 
different types of ailerons has been studied in this way. 

Two methods of computation are used. 

MOTION FOLLOWING SUDDEN CONTROL APPLICATION 

The method used for calculating the motion following 
a sudden application of the controls consists of a step- 
by-step integration. In most cases the control mo- 
ments were assumed to be applied constantly through- 
out the motion. 

Assumptions and symbols.-The assumptions usu- 
ally made in the study of airplane stability were used 
here, including: 

1. That the air forces and moments arising from dis- 
placements of the airplane, relative to its steady condi- 
tion of flight, are proportional to the displacements or 
to their rates. 

2. That the components of moment due to the differ- 
ent components of motion are additive (i. e., the rolling 
moment due to the combined rolling and sideslipping 
may be computed as though the rolling and sideslipping 
had occurred separately). 

The axes used in specifying the moments, angular 
velocities, etc., are fixed in the airplane and therefore 
move relatively to the air and to the earth. The X 
axis passes through the center of gravity of the airplane 
in the plane of symmetry and is chosen to point directly 
into the line of the relative wind when the airplane is 
flying steadily. In other respects the axes form a con- 
ventional trihedral system, intersecting at the center of 
gravity of the airplane, the Z axis pointing downward 
in the plane of symmetry and the'Y axis pointing along 
the direction of the right wing. The motions discussed 
are those of the moving axes relative to the undis- 
turbed air with the exception of the angle of bank, 
which is measured relative to the horizontal. 

The symbols used in the various formulas are deked 
as follows: 

U,, velocity along X axis -in steady 
flight. 

w, velocity of sideslip. 
p ,  angular velocity in rolling. 
r, angular velocity in yawing. 
q, angle of bank. 
2) 

@=- J angle of sideslip. 
u0 # 

6,  angle of control setting. 
p, component of force along Y axis. 
L, rolling moment (about X axis). 
N, yawing_moment (about 2 axis). 

aL 

mkx 
b N  

mkz 

_. 

, rolling acceleration due to rolling. 

- 
A$=% , yawing acceleration due to rolling. 

CgSb where C, is the control rolling- 
mkx { moment coefEcient. 
c,,qSb where C,, is the control yawing- 

"6==( moment coacient. 

etc. 

GLa=-----p 
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b, wing span. 
e, wing chord. 
S, wing area. 
I, tail length (distance from c. g. to 

t d  post). 
mkxz, moment of inertia of airplane about 

x axis. 
mkz2, moment of inertia of airplane about 

Z axis. 
r, dihedral angle. 
A, sweepback angle. 

Equations of motion.-The moments acting on the 
airplane during its maneuvers are considered to be 
divided into two main groups: (1) Those due to the 
deflected controls, and (2) those arising from the mo- 
tions of the airplane. The motions are usually supposed 
to be started by the action of the controls alone but, a t  
each succeeding instant, to be conditioned by factors 
that vary directly in magnitude with the motions or 
displacements relative to the air. The effects of the 
motions are described by quantities known as “resis- 
tnnce,” or “stability,” derivatives. The part of a rolling 
moment due to rolling motion i s  calculated by the 

expression p r ;  the partial rolling moment due to 
combined yawing and rolling is given by: 

bL bL 

It will be found convenient to replace the actual 
moments by their corresponding angular accelerations, 
which are proportional to them. Since 

bL 
P 

Pbp+% 

bL - 

the component of rolling acceleration due to rolling 
motion is simply 

PL, 
If the airplanc is moving in a11 its dcgrees of latcral 
lrecdom with deflectcd controls, the tfotA nccclcrntion 
ill rolling is cxpressed by 

@ at =6La + p ~ ~  +rL, + P L ~  (1) 

where &La is the part of the acceleration due to the con- 
trol. Likewise the sum of the components of yawing 
acceleration is 

(2) 

The equation for the angle of sideslip contains both the 
centrifugal effect due to turning and the effect of 

dT 
&=SN6 fpN.u f rNr  + 

gravity, 
(3) 

It is to be noted that, when the angle of sideslip P 
was computed, the component accelerations due to the 

sidewise air forces (i. e., terms containing Y) were 
neglected. The most important term here is Ys; a 
rough estimate shows that its greatest probable effect 
would be negligible for the type of maneuver 
investigated. 

Since the axes changes their orientat.ion in the air- 
plane with different lift coefficients, they wi l l  not be 
directly in line with the axes of the principal moments 
of inertia. The corrections are small, however, and 
have been neglected. 

Integration of equations.-The equations show that 
in order to calculate the acceleration of the motion at 
any time, the velocities p ,  T, and the angle of sideslip B 
must be known. This knowledge is, of course, avail- 
able only when all accelerations before the time in 
question are known; an integration is therefore neces- 
sary. This integration may be conveniently performed 
by dividing the time during which the motion occurs 
into very small steps and by assuming that the velocities 
remain constant over these small intervals. If a 
particular instant is denoted by the subscript n ,  the 
accelerations a t  this instant may be calculated by tlic 
formulas 

If the preceding time instant is denoted by n-1, the 
accelerations at each succeeding instant may be cal- 
culated step by step, using the velocities computed 
from the previous instant. Thus: 

l‘he riglib-liancl sides of bliesc cquatioiis coubaiil o111.y 
quantities known from the precoding instant. At tlic: 

start, n=O, all the velocities and angles arc takcn <as 
zero, and the accelerations are caused by the control 
moments alone, 

($),= 6 La =- %I 

A typical example illustrating the step -.y-step com- 
putation is given in table I. 

Comparison of computed and measured motions.-- 
The results of a number of flight tests of the F-22 
airplane equipped with several widely Werent lateral- 
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control devices have been used as checks of the com- 
putations. These tests were conducted by gliding the 
airplane a t  various steady speeds and suddenly deflect- 
ing the aileron control to its full extent. Instrument 
records of the resulting rolling and yawing angula;r 

F i e ,  seconds 
F~GLIXE 1.-Rolling and yawing motion of F-23 airplane with long narrow silerons. 

Flaps up; CL=I.O 

Zme, seconds 
FIGURE 2.-Rolling and yawing motion of F-23 airplane with long narrow aileronr 

Flaps down: C~=1.75. 

velocities were made as a measure of the effectiveness o 
the various controls. 

The procedure in these experiments simulated vec 
closely the conditions assumed in the computations 
although the flight records showed that about 0.li 
second was actually required to accomplish the ful 
deflection of the control, which was assumed to ba 
instantaneous in the computations. In the corn 
paxisons included, this discrepancy was eliminated b: 
appropriate shifts of the time scales. 

The flight tests were intended to supplement : 
program of tests made in the 7- by 10-foot wind tunne 

(See references 1 and 6.) 

E a series of lateral-control devices (reference 7). The 
ind-tunnel program included experiments to deter- 
line several important lateral-stability characteristics 
s well as the static rolling and yawing moments 
roduced by the control devices; the results of these 

Time, seconds 
QGWEE 3.--Rolling and yawing motion of F-22 airplsne with balanred short wide 

ailerons. Flaps up; C~-l . l0 .  

nine# seconds 
FIGURE 4.-Rolling and yawing motion of F-23 airplane with retractable ailerons. 

Flaps up: CL=I.O. 

experiments furnished the necessary basis for repro- 
ducing the conditions of the flights in the computa- 
tions. The quantities needed in the computations, 
including the resistance derivatives, wese determined 
from the known dimensions of the F-22 airplane by 
the methods given in appendix I. 

When computed motions and flight records were 
fist compared, it was found that in many cases the 
initial accelerations in roll predicted from the rolliig 
moments obtained in the wind tunnel were larger than 
those shown by the motions recorded in flight. Thus, 
the full value of the rolling moment measured on the 
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models was apparently not realized in flight. Exami- 
nation showed this lack of agreement to be especially 
apparent in the cases of devices that would be expected 
to exert the greatest twisting effect on the wings and, 
since appreciable twisting of the actual wings had been 
observed in full-scale wind-tunnel experiments, the 
discrepancy was attributed to this effect. Calculation 
showed that in the most extreme case (that of ordinary 
narrow-chord ailerons) a linearly distributed angle of 
twist reaching 1 . 7 O  at the wing tip would account for 
the observed difference and that the rolling-moment 
coefficient would be reduced from 0.056 to 0.043. In 
this case the a g h t  test was made a t  a dynamic pressure 
of 9 pounds per square foot. With this first correction 
as a basis, a general correction formula was used in 
which the reduction in rolling moment was given as a 
proportion of the dynamic pressure and the change in 
section pitching-moment coefficient produced by de- 
flecting the controIs. 

Figures 1 and 2 show the rolling and yawing motions 
of the F-22 equipped with long, narrow ailerons. This 
particular airplane was also equipped with flaps that re- 
tracted into the wing ahead of the ailerons. (See refer- 
ence 6.) Figure 1 illustrates the effect attributed to 
twisting of the wings. The higher curve was obtained 
when a value of the rolling-moment coefficient based 
on a wind-tunnel test of a solid wooden model was used. 
The yawing angular velocity curves showed remarkably 
good agreement in these two cases, especially as regards 
the period of the oscillation of this motion. 

The comparison of the yawing curves in figures 3 
and 4 is not so favorable as in the former cases. In 
figure 3 it  appears that the yawing-moment coefficient 
as computed from the wind-tunnel data was slightly 
greater than that recorded. In this case the control 
moment coefficients used in the computations were 
obtained from full-scale wind-tunnel tests of the actual 
airplane; hence no correction for wing twist was ap- 
plied. The curves of figure 4 apply to a modified 
F-22 airplane equipped with retractable ailerons. It 
is possible that this control device, which is similar 
to a spoiler, has some effect on the yawing moment due 
to rolling. The disagreement in the yawing curves 
would seem to indicate that too large a negative value 
was assumed in the computations. 

The curves of computed rolling motion show no 
consistent disagreements with the curves plotted from 
the flight measurements, the differences being of oppo- 
site sign in several cases. It seems probable that these 
comparisons represent the general accuracy obtainable 
either in the experiments or in the calculations. 
COMPUTATIONS FOR AVERAGE AIRPLANE IN IJNSTAJAED FLIGHT 

The results of the flight experiments with the F-22 
airplane were not suitable for direct comparisons of the 
effectiveness of the various controls used because the 
airplane was modified considerably during the progress 
of the experiments (see references 1 and 6) so that 

~ 

Weight. ___...._.________._..----.--.-.......- pounds.. 
Wingspan _.._._____.....______----...... -......- feet.. 
Wingarea _._._......________........... .. squarefeet.. 
Area of fin and rudder .........___.___.._..-.-.-.- do ...- 
Tail length _...___...._..._____--.........--- ....- feet-. 
mk 1 ....______ ~ ....._________..._._.-.---.......-...... 

I 

2ODUCING MOTION OF A N  AIRPLANE 

different sets of stability derivatives and moments of 
inertia had t o  be used in the computations to represent 
the different individual tests. In order to secure data 
of more general significance and to make a more system- 
atic investigation of control effectiveness than was 
possible in the flight experiments, it was thought 
desirable to make a series of computations based on a 
standard set of airplane characteristics, including 
standard resistance derivatives and moments of inertia. 
At the same time it was desired to retain the basic 
dimensions of the F-22 machine so that there would 
be a t  least a partial check with the flight-test work a t  
all times. 

Specifications of average airplane.-With these 
considerations in mind the specifications of an arbitrary 
standard airplane were devised. The weight and the 
wing area and span of the F-22 airplane were retained 
but, since other dimensions were obtained from statis- 
tical averages, the machine was called an “average 
airplane.” These statistical averages were obtained 
by studying the specifications of a number of conven- 
tional airplanes of different sizes, weights, and types. 
Data from 20 to 40 airplanes were used for the deter- 
mination of average values of the folIowing charac- 
teristics: 

1. The ratio of the total fin and rudder area to 
the wing area. 

2. The ratio of the tail length (i. e., distance 
from c. g. of airplane to the tail post) to the 

3. The ratios of the radii of gyration in rolling 
and yawing to the wing span. 

The moments of inertia were obtained from data listed 
in reference 8. That the characteristics thus obtained 
did not differ appreciably from those of the F-22 is 
shown by the following table: 

wing span. 

1 . ~ 1 , f f i O  

161- 17’2 

6961,554 

30- 32.8 

10.1 
14.6 

Rangepf. 
eharacterr4Ia 

of F-22 air- 
plane used in 

Eight tests 

Charae 
teristies of 
Sverage 
airplane 

1,6m 
32 
171 
10.8 
14.6 

1.216 

1.700 

Computations based on a purely dimensionless aver- 
age airplane were considered, but it was thought that 
the results would have a more concrete meaning if they 
were presented in terms of an airplane of particular 
size, especially since they could then be directrly com- 
pared with the fkght results. 

Unstalled-flight computations.-Most of the lateral- 
control devices tested in the wind tunnel did not cause 
any change in the stability derivatives of the wings 
(spoiler devices are a notable exception). In such cases 
the sole effect of the control in producing motions can 
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Time, second 
(a) (b) C1=0.04 C.=O (e) (d) CFO Cn=O.Ol 

FIGUEE 5 (a, b, c, d).-Computed rolling and yawing motions of average airplane. 
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1 11 

188 

2 51 

1.- I I 

be attributed to the static rolling and yawing moments 
produced; consequently, a large class of devices could 
be investigated, in effect, by extending computations 
over a suitable range of combinations of static rolling 
and yawing moments. 

On account of the linearity of the equations of motion 
it was possible to calculate t.he effects of yawing moments 
and rolling moments separately and later to add them 
in any desired proportion. Thus, a t  each of the three 
lift coefficients two computations were made, one to 
determine the motion due to a yawing moment and the 
other to determine the motion due to a rolling moment. 
The following table lists the values of the coefficients 
that were used: 

CL : 0.35; 1.0; and 1.8 (20 percent c split flaps, f d  
span). 

C,, : 0.01 and 0. 
GI : 0 and 0.04. 

In these cases the dihedral angle assumed for the aver- 
age airplane was 1 O. Several additional computations 
were made to investigate the effect of variation of this 
factor, assuming angles of 5' and 9'. 

Stability derivatives of average airplane.-The sta- 
bility derivatives used in these computations were 
obtained by methods described in appendix I and are 
given in the following table; in the calculation the aver- 
age airplane was assumed to have rounded-tip wings 
with lo dihedral. 

-2 16 -0 207 -0 913 5.52 

-1.11 - 301 -.663 2.04 

-1 66 - 310 -.977 1.46 

Cruising speed ...____...____ 
C~=0.35 ....__..__.____._..- 
U ~ 1 5 0  feet per second ..... 
CI7l.O ...___..._.__.....--- 
Gliding speed .... ---.... ___. 
TJ0=88.5 feet per seconC ..... 
Low speed ( 5 8 ~ s )  _.__..____. 
c'=1.8 _..__....__.____-.--- 

U0=66 feet per second ...... 

-5.44 

-3.23 

-2.46 

1 
1 
1 

(7) 

where *, *, etc., are param6ters that depend on 

the speed of flight and the stability characteristics of 
the airplane. These parameters are shown plotted 
against lift coefficient (as a measure of the %ght speed) 
in figures 7 and 8 and represent the principal results 
of the series of computations for unstalled flight. 

Discussion of below-stall computations.-The factors 
shown in figures 7 and 8 may be used to compare the 
effectiveness of various lateral-control devices on the 
basis of the motions and displacements they would 
produce on a 1,600-pound airplane of average stability 
characteristics. By showing the effect of secondary 
control moments in producing motion of the airplane, 
they give a measure of the relative $eight to be as- 
signed such secondary moments in comparing different 
devices. These factors will, of course, be somewhat 
different for airplanes of different stability character- 
istics and the relative effects of secondary control mo- 
ments will be expected to be somewhat different also. 
The average airplane is simply a convenient yardstick 
in this respect. 

If the factors given in figures 7 and 8 are used as 
absolute measures of the amount of motion produced 
in 1 second (aside from their use simpIy in comparing 
various control devices), a greater error will be com- 
mitted in applying them to airplanes of different size 
than in applying them to airplanes of somewhat differ- 
ent stability characteristics. Reference 9 gives the 
necessary rules for correctly applying the present data 
to airplanes of any size or weight in which certain 
definite aspects of similarity are preserved. The theory 
requires that the airplanes be geometrically similar 
although they may have different densities. Practi- 
cally, this requirement necessitates that the outward 
forms of the airplanes be similar and that the ratios 
of the radii of gyration about each axis to the Wing 
span be the same. The motions of the different sized 
airplanes are compared a t  equal values of the lift co- 
efficient. With equal values of the wing loading the 
angular velocities are inversely proportional to the 
spans: Thus, 

ac,, act 

76740-37-2 
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and 
"="I 2uo 2Uo 

With similar airplanes of different wing loadings the 
state of motion existing a t  a given time for one wil l  
generally pertain to a different instant for another, 
which is also true of an airplane of the same size and 
loading but flying in air of different density. Given 
the motion of the average airplane a t  1 second, the 
instant to which this state of motion (as indicated by 

FIOURE 7.-Parameters for computing displacement of average airplane at end of 1 
second with various combinations of rolling and yawing moments. 

the value of pb/2 U,) pertains on a similar airplane may 
be found from: 

P UO s- - 2 m  t'= 1 x- 
2 rn' 

S'L v,l 
(9) 

Plots representing the motion of an airplane in non- 
dimensional terms have as abscissa 

spo 
- X t  m 

tad as ordinate 
pb 
2 Uo 

Sgb 
'P2m 

)r 

3tc. 

In the case of the average airplane the influence of 
rnoderate dihedral on the lateral controllability below 

FIOURE 8.-Parameters for computing motion of average airplane at end 01 1 second 
with various wmbinations of rolling and yawing moments. 

the stall was small, as is shown in figure 9. If, however, 
a large dihedral effect is combined with considerable 
adverse yawing tendency from the ailerons, the lateral 
control may become ineffective. This condition is 
most likely to occur a t  low speeds with flaps deflected 
because under these conditions the wings show their 
greatest tendency to roll when yawed (dihedral effect) 
and because the aileron yawing moment is usually 
greatest a t  hgh  lift  coefficient. Figure 9 shows that 
with a dihedral angle of 9 O  and an adverse yawing 
moment of one-fourth of the rolling moment, the aver- 
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</=* _-- p 

age airplane actually reversed its normal roll, rolling 
against the ailerons less than 2 seconds after they were 
applied. The magnitude of the tendency for a given 
adverse yawing moment to render the lateral control 
keffective depends to some extent on all the stability 
characteristics of the airplane, but principally on the 
ratio of rolling to yawing moments in sideslip, i. e., on 
dcgida For the various cases depicted in figure 9 

these ratios were: 
dC,ldp- 

I I 

L __- 

1-1- I 

L i 

Large values of this ratio decrease the aileron control 
effectiveness i f  the secondary yawing moments are ad- 

periments made by the N. A. 6. A. in which the test 
pilots were unable to detect with certainty the effects 
of changes in rolling moment of inertia of as high as 50 
percent. (See also reference 10.) 

The yawing-motion curves indicate a different 
phenomenon. Here the damping is relatively small 
and the effects of moment of inertia in yaw are fairly 
large. Thus it appears that the magnitude of the 
rudder moments should be accommodated to the air- 
plane moment of inertia, while the principal considera- 
tion determining the rolling-control moments should 
be the air-damping factor. 

Since the amount of yawing motion produced by a 
given yawing moment is primarily governed by the 
moment of inertia in this motion, it appears that the 
unfavorable influence of secondary aileron yawing 
moments could be effectively reduced by increasing 
this moment of inertia. Furthermore, since the direct 
effect of roll moment of inertia on the rolling motion is 
apparently slight, it is possible that increasing mkz2 by 

Tme, sernnd 
FIGURE lO.--Diagram illustrating effect of change of moments of inertia on rolling 

and yawing control 

distributing weight along 'the wing span would actually 
increase the aileron effectiveness if considerable adverse 
yawing moment were present. 

COMPUTATIONS FOB STALLED FLIGHT 

Experiments with lateral control at angles of attack 
above the stall having been made both in the flight and 
the wind-tunnel research projects, it was desired to 
extend the present investigation to cover this condi- 
tion also. Accordingly, a study of the results of both 
series of tests was made with the object of determining 
whether the conditions encountered in practice could 
be reproduced in theory. 

Unfortunately, the wind-tunnel experiments showed 
that no certain determination of the factors (resistance 
derivatives) involved in the motion of a stalled airplane 
was possible. On the other hand, the flight experiments 
indicated that these factors apparently had no definite 
values (according to their usual definition), inasmuch 
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as the action of the airplane could not be foretold 
from one experiment to the next. For example, the 
outcome of a simple aileron movement might in one 
instance be a roll in the direction urged by the control; 
whereas a t  another time, under practically the same 
conditions, the foil would be the reverse of that in- 
tended. 

Stability derivatives above stalling angles.-The 
reasons for the apparently contradictory results of the 
flight tests may be found in the wind-tunnel measure- 

PloURE ll.-Coe5cients of rolling moment due to rolling and sideslip at various 
angles of attack. Rectangular Clark Y monoplane; data from tests in the 7- by 
10-foot wind tunnel. 

ments of the stability characteristics made a t  these 
high angles; these measurements show that motions 
of the wings may develop unstable moments, which 
could quickly overpower static rolling or yawing mo- 
ments given by the controls. Figure 11 shows typical 
measurements of coefficients by which these quantities 
are determined. These curves show that the rolling 
moment due to sideslip of a straight wing increases 
enormously as the stall is approached, reaching values 
7 or 8 times as great as those at  medium angles below 
stalling. Under the same conditions the damping 

moment in rollkg changes sign and becomes nil 
%ding” (autorotational) moment. 

Obviously many of the assumptions of the method as 
used in investigating unstalled-flight phenomena are 
not true in the case of stalled flight. In  particular, the 
assumed independence of small longitudinal and lateral 
motions, which is supported by both experience and 
reason for the ordinary-flight range, cannot be said to 
hold under these new conditions because t5e values of 
the derivatives change very rapidly with small changes 
of Iongitudinal attitude (angle of attack). The assump- 
tion that the components of a moment arising from 
different sources may be added together as though their 
causes occurred separately is apparently borne out only 
in the abstract sense of representing the average 
condition. 

In spite of these limitations of the method, it was 
considered feasible to extend the computations to the 
condition of stalled flight in the sdudy of the general 
conditions encountered in controlling such flight, 
although the results of the computations made for 
these conditions do not have the same significance as 
those made for conditions below the stall. The former 
results gave quantitative estimatgs of the amount of 
motion produced by given control moments; the exten- 
sion of the computations to stalled flight will only 
illustrate the various phenomena that may result from 
the conditions predicted by the Wind-tunnel experi- 
ments. 

Experience in attempting controlled flight above the 
stall has shown that the possibility of controlling such 
flight depends as much on the natural stability char- 
acteristics of the airplane as on the possibility of 
securing adequate controlling moments. Because of 
this fact the present,computations were made primarily 
to investigate the effects of changed stability character- 
istics (derivatives). Another important reason for 
choosing various combinations of stability derivatives 
is the fact that no very definite values can be assigned 
to them for a particular lift coefficient, as was possible 
in the unstalled-fight range. 

For these reasons the investigation of controllability 
above the stall is necessarily preseated in a manner 
different from that used in the cases of ordinary flight. 
The wind-tunnel measurements were studied to find the 
approximate variation of the resistance derivatives over 
a range of angles of attack definitely above the stall, 
chosen to include the region of most violent instability. 
The particular lift coefficient assumed was necessdy 
somewhat loosely defined (CL=1.2); it was so taken 
to represent extreme stalling as well as intermediate 
conditions. The calculation of the stability derivatives 
a t  these angles is given in appendix I. 

In the variation of the stability characteristics to 
take account of the range of possible condit:ons, the 
effects of the parts of the airplane other than the wings 
were not considered. The wing characteris’tics which. 
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siiow thc greatest variation in this region and which 
apparently have the greatest effect on the stability are: 

1. The damping in rolling, L,. 
2. The rolling reaction due to sideslip, LB. 
3. The yawing reaction due to rolling, N,. 

Accordingly, three values for each of these were chosen, 
covering the range shown by the wind-tunnel data and 
representing two extremes and pne mean condition. 
These values were designated a, b, and c and are listed 
in table 11. 
TABLE 11.-VALUES OF STABILITY DERIVATIVES 

USED ABOVE STALL 

L8 NP 
~~~~ 

3 . 7 5  -7.4 -0.20 
-11.4 .53 

3.50 -14.4 1.06 

In each case it will be noted that letter c denotes the 
most extreme condition likely to be encountered. 
Condition a may be fairly assumed to apply only to 
cases where some provision is made to prevent the 
wing tips from stalling, which may be accomplished by 
washout or twist or by means of some such device as 
tip slots. (See appendix I for determination of these 
derivatives.) 

The computations were made to cover more than a 
dozen different combinations of these values of the 
derivatives in conjunction with a given fixed pair of 
control rolling and yawing moments. These arbitrary 
controlling moments were chosen to represent rolling- 
and yawing-moment coefficients somewhat greater than 
those obtained with ordinary ailerons but which might 
be attained in practice with rather large ailerons, espe- 
cially those of the short, wide type described in refer- 
ence 7, I. As in the previous computations (below 
stall), the sign of the standard yawing-moment coeffi- 
cient was alternated, giving the effect of favorable and 
adverse, as well as zero, secondary yawing moment. 

Range of investigation of stalled flight.-Since in 
t.liesc computations the plan was to study the possi- 
bility of control rather than to obtain any numerical 
measure of control effectiveness, the procedure of the 
computations was sometimes varied in such a way as to 
represent attempts of the control to check motions of 
the airplane as well as to start them. In some cases 
the motion was assumed to be due to some external 
cause and to exist a t  the start of the computations, 
while in other cases the initial setting of the control 
was reversed after a short interval in an attempt to  
check the motionit had already produced. The effects 01 
both favorable and adverse yaw were tried in these cases 

Results of computations.-Figure 12 shows rolling 
motions resulting from suddenly applied and continu- 
ously maintained aileron deflections giving a rolling- 
moment coefficient of 0.04 and an adverse yawing- 

noment coefficient of -0.02. The different angulat- 
velocity curves are the results of assuming different 
:ombinations of the stability derivatives listed in 
table 11. In accordance with the plan of table 11, the 
irst letter in each symbol designation attached to the 
mves indicates the value of the damping factor L, 
ised; the second, the value of &; and the last, N,. 

These curves appear to represent the same erratic 
phenomena as were observed in the flight experiments. 
[t will be noted that in some instances the direction of 
motion of the airplane after a short interval was the 
reverse of that urged by the rolling control, while in 
)ther instances it rolled with increasing acceleration 
tn the direction urged. Either of these phenomena 

FIGURE 12 -Rolling motions resulting from application of adverse-yaw aileron L O I I -  
trol in stalled flight with different coinbinations of stability derivativcs, CAI 01; 
c.=-0.02 

occurred within the predictable range of tlie stability 
derivatives. 

The effects of smaller control rolling and yawing 
moments may be visualized simply by reducing the 
scales of the motions. Thus in figure 12 the motions 
calculated for Cc=0.02 and Cn=-O.Ol would be just 
half those plotted. 

Figure 13 shows the results of attempts to check an 
initial disturbance in rolling with both favorable- and 
adverse-yaw ailerons. The failure of the adverse-yaw 
ailerons is due mainly to the yawed attitude they pro- 
duce, although the actual yawing motion accounts for 
an appreciable effect. Figure 14 differs from figure 13 
in that it includes also conditions-in which the initial 
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motion countered by the ailerons was assumed to be 
due to the action of the control rather than to an exter- 
nal disturbance in rolling. Here the ailerons were 
called upon to check whatever yawing motion they had 
previously produced. In this case it wi l l  be noted that 
the favorable-yaw ailerons encountered difJiculty be- 
cause it was hard to recover from the initial motion 
they had produced. 

Figure 15 shows the effect of a delay in attempting to 
recover from rolling and yawing motion. Because of 
the instability of the airplane, the motion could not be 
checked even though the yawing moment of the ailerons 
WW favorable. Thus, for the particular case illustrated, 
n delay of 0.1 second in reversing the control changed 
the action from one in which the airplane followed the 

FIGURE 13.-Rate-of-rolling curves illustrating attempts to wntrol initial motioz 
in pure rolling Stalled flight, C,=-O.O4; C.=iO 02. 

control to one in which it continued to roll against it 
Discussion in terms of stability derivatives.-The 

motion of the average airplane in stalled flight iz 
apparently governed more by its natural tendencies 
than by the applied control moments, a conditior 
illustrated by the curves previously described whicl- 
showed that the airplane developed tendencies that 
were uncontrollable in some instances. When using tht 
step-by-step method, it was found convenient t c  
tabulate each separate component of the rolling anc 
yawing accelerations due to the stability factors ai 
well as the components of motion. (See table I.) II 
this way a complete history of the contribution of eacl. 
factor was obtained, thus enabling a study of the con 
trollability in terms of the stability derivatives. 

Undoubtedly the most important single factor con 
tributing to tlic rincontrollable instability above thc 

;tall is the loss of the damping in rolling. Below the 
;tall this damping is the most powerful constraint of the 
Lirplane, and the effects produced by its sudden drop 
.o zero or to a negative value exert a great influence on 
b e  behavior of the machine. Apparently no airplane 
:an be considered safely controllable above the stall 
f the autorotational tendencies observed in wind- 
tunnel tests of plain wings are retained. 

During a roll maneuver in stalled flight there may be, 
In addition to the control moment, certain other factors 
that tend to accelerate the rolling. These factors arise 
because the rolIing motion by itself usually tends to 

FIGURE 14.-Rate-of-rolling curves showing effect of favorable and adverse aileron 
yawing moments in attempting to control initial motion in pure rolling and IU 
reversing initial control position. Case bhc; Ci=O 01; C*=M 02. 

induce a favorable yawing action above the stall. 
Thus when the right wing is dropping, its added drag 
causes a yaw to the right, retarding the wing tip and 
causing a loss of lift due to decreased speed and tending 
to aggravate the dropping of the wing. The factors 
that directly oppose these rolling and yawing motion, 
by damping tend to check this sequence if they are 
present. The first two effects, which aid the angular 
motion indirectly, relate to L, and N,, proportional, 
respectively, to the rolling moment due to yawing and 
the yawing moment due to rolling. Evidently if these 
moments overcome the direct damping tendencies, 
the angular motion will tend to accelerate of its own 
accord or will diverge. Suppose for the moment that 
these opposing tendencies just balance each other, 
that is, 
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Inasmuch as p and T are simultaneous, there wiK 
exist a relation between the derivatives that is inde- 
pendent of p and r; i. e., 

LpN,-LrN,,=-O (11) 

If this sum is zero, L, and N,, are sufficiently large ta 
equilibrate the stabilizing damping terms; and, if it I 
negative, any combined rolling and yawing motion will 
tend to diverge with increasing acceleration even though 
the direct dampings are present. The relation between 
this criterion and the behavior of the airplane in lateral 
motions above the stall is shown in table 111, which 
gives values for the cases shown in figures 12 to 16. 

FIQURE 15.-Effect oIdelay in attempting to recover from motion started by ailerons 
with faTorah18 yaw. Stalled flight. Case bbc; CI-0 04, C.=O.o2. 

It wiU be noted that the curves of figure 12 which 
indicate the greatest tendency toward continued rolling 
in the direction started correspond to the greatest 
negative values of L,,N,--L,N,,. In the curves shown, 
the rolling control was assumed to give an adverse 
yawing moment that served to oppose the tendency 
toward divergence indicated by negative values of this 
criterion. If a rolling moment with no secondary 
yawing moment had been assumed in these cases, each 
curve would have shown an increasing acceleration in 
rolling greater than that given by the control and ac- 

cording to the magnitude of the tendency exhibited by 
the value of the criterion, as shown in figure 16. After 
a definite interval this tendoncy would have exceeded 
the power of the controls, and recovery would have been 
impossible. 

Below the stall this criterion appears to be in every 
case positive, indicating stability. Relatively large 
positive values indicate relatively great damping of 
combined rolling and yawing motion. 

The foregoing considerations do not take account of 
any sideslipping effects. These considerations, when 
combined with the factors determining the sideslipping 
tendency, give a more complete idea of the controlla- 
bility characteristics of the airplane at  high angles of 
attack and in stalled flight. 

9 

FIGURE l6.-Rolling and yawing motions resulting from application of rolling 
moment without secondary yawing moment showing effect of different degrees 
of damping; L,N,-LrNs; Ct=O.o4, C,=O 

It may be shown that the question of whether the 
airplane tends to sideslip inward or outward at  the 
beginning of a rolllng motion depends on the magi -  
tude of N ,  compared with g/ U0. As rolling commences 
from level @ght the yawing tendency due to the rolling 
(which is usually positive above the stall) causes the 
downgoing wing to be dragged back, creating an out- 
ward sideslipping tendency. This tendency is opposed 
by the action of gravity when the plane is banked, 
tending to produce inward sideslip. The condition 
that the outward and inward accelerations cancel is 
that 

rUo=gp (12) 
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nssiiiiling sin cp cqual to cp. 

pawing requisite to this condition is 
The angular acceleration in 

d r d L  
d t  Uop 

In a rolling disturbance the yawing angular accelera- 
tion will be due only to N,, or: 

Hence the condition that a rolling disturbance from 
level flight result in neither outward nor inward side- 
slippingticthat 

(15) 9 N,= 

and the relative magnitudes of these quantities may be 
taken as an indication of the resultant tendency. 

The airplane may diverge in the combined rolling 
and yawing motion previously discussed without side- 
slipping although such will not generally be the case. 
Near stalling angles the magnitude of the dihedral 
effect of the wings increases enormously (especially if 
the actual dihedral angle is small) and, if the tendency 
of the airplane is to sideslip outward while rolling and 
turning, any divergence in the rolling and yawing mo- 
tion (indicated by negative L,N,- L,N,) will be greatly 
aggravated. The question of whether the dihedral 
effect will increase the instability is determined by the 
sign of tlie quantity (N,-g/Uo). The magnitude of 
the effect of the sideslipping tendency thus determined 
obviously depends on the stability derivatives in side- 
slip Lo and No or, more conveniently, on Lo/Nb. The 
values of N ,  computed for the stalled-flight conditions 
b and c were considerably larger than g/Lr0, indicating 
that the natural tendency would be toward outward 
sideslip during a lateral maneuver. In such cases No 
would excrt a stabilizing influence, tending to straighten 
niit, tlic skid. Tlio values of thesc sidcslipping critcrionq 
l'nr thc cases sliown in figures 12 to 16 arc given in 
h b l e  TIT. 

~ A U L X  TlT - CON'I'ILOI,I,AUII,ITY CIII'L'EKIONS 1?01< 
CAR15S S H O W N  I N  FIGURER 12 1'0 16 

aaa 
aab 
acb 
hna 
hab 
bba 
hcb 
ma 
bbr 

(1) 
- 1.76 
-1 75 
-1.75 

0 
0 
0 
3.50 
0 

Sideslip 
Sideslip n lability dyKg indication Letor 

-E,N~ I N,-clUo I N @  -2 

1 Positive values indicate ir.stability 
2 Negative value5 indicate Instability. 
3 Positive values indicate outward sideslipping tendency. 

Possible modifications of characteristics to improve 
stability above the stall.-Of the factors influencing 

the lateral controllability, the stability characteristics 
that depend on the moments developed by the wings 
appear to be most important, since it is to be expected 
that they will be changed most by stalling. In  addi- 
tion to the damping in rolling, the wing moment 
characteristics that show marked change a t  the stalling 
point and contribute to the instability are L,, Lo, and 
N,. The factor L,, proportional to the rolling moment 
due to yawing, depends on the lift coefficient and on 
the spanwise distribution of lift. Obviously, the 
greater the lever arm of the supporting lift, the greater 
L, will be and, since it is desired to make L, smaller, 
tapering the wings or shortening their span should 
help. The factor Lo at normal angles of attack depends 
also on this spanwise lever arm of the lift and on the 
dihedral angle. At stalling angles different tip shapes 
have considerable effect and the relation between the 
dihedrd angle and the rolling moment reverses, the 
greatest moment being shown by the straight wing 
with square or upturned tips. (See fig. 11.) Here 
also, shortening the span and tapering the wing should 
improve conditions. The use of ,a moderate dihedral 
angle appears desirable in the stalled condition. Tlic 
other Wing characteristic, N,, would be favorably 
affected by shortening the span of the wings. Here 
its magnitude depends mainly on the rate of increase 
of the profile drag of the wings and on the effective 
arm of the increase. If no damping in rolling (L,) 
is present, there will be no induced N,  but in this case 
the slope of the wing profile-drag curve is almost cer- 
tain to be very great, more than accounting for the 
induced effect. (See appendix I.) Taper or washout 
of the wings should help this situation. The provision 
of damping in rolling calls for keeping the wing tips 
from stalling; this requirement is compatible with all 
the others mentioned except that for small L,. The 
desirability of maintaining the damping, however, far 
outweighs this consideration. 

In the ronsidcrn tion of modifications of wing c l ( ~ s i ~ n  
to improve tho contrnllnbilitjy n t high angles, it) ir, 

inipnrtniit to tnlte nrcnunt of tlic premature tip-shlliiig 
l~l~eiioiiinin csliihitctl by tapered wings. As WIIS 

pointed nut in tlic previous discussion, reducing I d  14. 

lift and the slopc of the drag curvc near the tips woiilcl 
lead to improved conditions. If this improvement is 
effected simply by tapering the wings, however, thc 
net result may be detrimental to controllability on 
account of the premature loss of roll damping dile to 
the stalling of the tips. In the case of any Wing with 
an extreme reduction of chord, the downwash distrib- 
utes itself in such a manner as to tend to maintain a 
more uniform distribution of the actual lift, so that the 
lift coefficient, and hence the effective angle of attack, 
of the reduced-chord sections is greater than at  other 
sections. Pressure-distribution tests show that the 
tip portions of a 5 :  1 tapered wing reach their maximum 
lift coefficients at angles as much as 5' below the 
stalling angle of the center portions of the Wing. Thus, 
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tapering the wings cannot be expected to improve the 
controllability a t  low speeds unless the taper is ac- 
companied by some washout, or unless other provision 
is made to prevent the tips from stalling. 

It may be inferred from the foregoing discussions 
that the effects of high aspect ratio will be detrimental 
to controllability and stability above the stall. It is 
easily seen how the unstable tendencies of the wings 
would be more unfavorable to controllability if the 
wings were of large span. If the span is large in pro- 
portion to the lever arm of the rudder control, the wings 
may easily develop yawing tendencies that will coin- 
pletely overpower the rudder moments. Furthermore, 
since rapid yawing motion induces a rolling moment 
through L,, it is important to provide a large damping 
in yawing as an indirect check on the rolling as well as 
on the yawing motions. Thus it appears that consid- 
erable tail length and fin area are desirable to increase 
both N, and NB. Inasmuch as there ordinarily exists 
a great disproportion between the dampings in rolling 
and yawing below the stall, it  is probable that fairly 
large increases in hT, would be permissible without 
causing undesirable stiffness of the rudder control a t  
high speeds. Increasing NB by using larger vertical 
tail surfaces is especially desirable because in that way 
the available rudder control is increased. Data on 
conventional airplanes show that the rudders used 
produce the weakest of the three controlling moments; 
their maximum moment is often smaller than the sec- 
ondary yawing moment of the ailerons, yet the rudder 
deals with the largest moment of inertia of the airplane 
and should be the most effective control in checking 
the unstable yawing tendencies of the wings (as, for 
instance, in spinning). It appears that considerable 
improvement in these characteristics could be effected 
by enlarging the fin surface of conventional machines. 
If the increased rudder control is found to be undesir- 
nble at  high speed because of too great sensitiveness, a 
correspondq increase in N,, the damping in yawing, 
should remedy this trouble and still further improve 
t . 1 1 ~  Controllability a t  high angles. Thus if the tail is 
inadc longer as the vertical surface is increased, the 
control characteristics at high speed should not be 
iiniavorably affected. i t  appears unlikely, however, 
that such improvements could result in the retention of 
satisfactory control above the stall if the autorotational 
tendencies shown by ordinary wings in wind-tunnel 
experiments are developed. 

TURN MANEUVERS 

The foregokg computations were designed to repre- 
sent the procedure employed in a particular type of 
fight test to compare the efficiency of various control 
devices purely on the basis of their independent action 
in producing roll. Another type of flight test, qualita- 
tive in nature, consisted of performing normal turn 

maneuvers with the airplane, using the device in con- 
junction with the other controls and observing the 
amount of coordination that was required. 

The first type of computation together with the fight 
tests showed that the roll-producing effectiveness of 
some devices would be influenced by the occurrence of 
considerable incidental sideslipping, much of the appar- 
ent improvement due to favorable secondary yaw 
being obtained by the production of outward side- 

Since it was not known in any quantitative way how 
the presence of this sideslipping tendency due to the 
secondary aileron moments would affect the controlla- 
bility in making actual turn maneuvers, it was decided 
to make an analysis of these conditions, representing 
analytically as nearly as possible the second stage of the 
fight tests. 

slipping. 

EXPLANATION OF METHOD OF COMPUTATIONS 

In certain instances in the former computations a 
simple sort of controlled maneuver was used in which 
an initial deflection of the ailerons was reversed, repre- 
senting an attempt to check a motion previously 
produced by them. (See fig. 13.) It was realized that 
an extension of this procedure could be applied to the 
present problem by means of step-by-step integrations 
of the motion due to any arbitrarily specified way of 
applying the controls. This adaptation of the former 
method would have required a knowledge of the control 
manipulations necessary to perform a normal turn, as 
well as lengthy step-by-step calculations. For these 
reasons it was considered more feasible to predetermine 
the actual motion of the airplane than to fix on an 
arbitrary way of applying the controls. Furthermore 
it seemed reasonable to presume that the pilot of an 
airplane would conform his use of the controls to suit 
a desired maneuver, rather than to prescribe before- 
hand his use of the control and accept whatever motion 
of the airplane followed.# He would then judge tho 
effectiveness of the control by the way it had to be uscd 
to obtain a desired result. 

As the outcome of these considerations, tho pro1)hii 
of investigating turn maneuvers presented itself in II 

way inverse to the previous problems. Here the motioi~ 
of the airplane was given and the requisite use of thc 
controls was sought. Previously the airplane motions 
had been determined from the controlling accelerations 
by integration, whereas here the accelerations incident 
to a given motion were to be determined; thus the 
process would simply be a differentiation. 

Periodic or trigonometric functions of the time 
naturally suggested themselves for the representation 
of the angular velocities and displacements during a 
turn maneuver. By the use of trigonometric functions 
of the time, any conceivable maneuver of the airplane 
that begins and ends in level flight may be specified; 
that is, any given manner of varying the attitude or 
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angular velocity of the airplane during a given kterval 
may be described by a formula such as 

p ,  or p, or . . . etc. 
(16) 

By a suitable choice of n the maneuver may be made to 
extend over as long or as short a time as desired. 

In the present case it was intended that the airplane 
roll up to a moderate angle of bank, starting with the 
wings level, and check its rate of rolling so as to main- 
tain this bank angle steadily, then roll back to the 
level condition after a definite time interval. Through- 
out this interval the airplane was to be yawing appro- 
priately while banking and in the correct amount to 
prevent sideslipping during every part of the maneu- 
ver. Thus the turn was to be “perfect” in that no 
sideslip was permitted and the coordination of the 
lateral controls (ailerons and rudder) necessary to 
accomplish such a maneuver was to be studied. 

A few trials in plotting cosine curves against time 
showed that the expression 

=A, sin nt+A, sin 2nt+AP sin 3nt+etc. 

p=-Al cos nt-% Al cos 2nt+constant (17) 

would represent a bank that assumed a steady angle at  
the midpoint of the maneuver, starting with zero at  
the time t = O  and becoining zero again at  t=T/n. 
Arranging for the bank to become steady at  the mid- 
point of the maneuver and choasing nt so as not to 
coincide with the natural period of the free motions of 
the airplane obviated the possibility of any reinforced 
oscillation phenomena during the maneuver. The 
form of the curve of bank angle against time plotted to 
this formula is shown in figure 17. 

In order to attain the specified bank a t  every instant, 
a definite rate of rolling is required at  all times, which 
is obviously found by differentiat.ing the bank equation; 
thus 

p = z = n A 1  sin n t+TA,  sin 2nt (18) 
d 2n 

In order for the airplane to turn without sideslipping, 
there must be a coordination between the banlring and 
yawing at all times. The outward and inward accelera- 
tions must cancel, that is: 

rUO=g sin p (19) 

(See equation (12).) 
This equation enables the calculation of r from p 
assuming the condition that 

is satisfied. The curve of yawing angular velocity 
plotted against time is thus very similar in shape to thc: 
bad<-angle curve, reaching n steady value a t  its mid- 
point. 

The specification of the angular velocities and angles 
3f the airplane in the foregoing manner is analogous to 
the specification of constraints of the motion. The 
total accelerations necessary to constrain the airplane 
to the specified motions are calculated by differentiating 
the expressions for the angular velocities, p and r. 
(See equat.ions (17) and (18).) 

dP-d%- 4n2 z-z2-n8A,  cos nt+-Al cos 2nt (21) 4 
md 

These accelerations are not furnished altogether by 
the controls but have components due to the air reac- 
tions on the moving airplane. The air reactions are 
calculated from the resistance derivatives and, when 
deducted from the total accelerations, give the com- 
ponents necessarily supplied by the deflected controls. 
Thus the acceleration supplied by the rolling control 
will be 

(23) 

If the application of rolling control is accompanied by a 
secondary (adverse or favorable) yawing moment, the 
rudder control wil l  have to accommodate this moment 
as well as the residual acceleration of the yawing 
motion. This secondary yawmg moment may be 
considered to be a function of the rolling moment and 
its acceleration written as f @La) ; then 

&=-& dP --pL,-rL, 

sN6=z-pNp-rNr-f dr @La) 

Equation (24) gives the amount of rudder coordination 
necessary with a given aileron-control device. The 
rolling- and yawing-moment coefficients corresponding 
to these acceleratibns may be calculated by known 
means from the speed of fight and the airplane dimen- 
sions. 

In the derivation of the equations for the turn 
maneuvers no account was takeo of the pitching motion 
involved. Obviously if a banked airplane is turning 
without loss of altitude there wil l  be a component of 
pitching involved in the motion. As was errpltkned in 
the description of the step-by-step method of computa- 
tion the pitching motion may be considered separately 
and independently of the lateral motions since the air- 
plane is symmetrical about the plane in which pitching 
occurs. Presumably, the only ways in which pitching 
motions can influence the lateral motions are by a 
change of speed or attitude introducing changes in the 
lateral-stnbility derivatives or by gyroscopic couples. 
In the case of a prescribed turn maneuver the maximum 
gyroscopic couple may be estimated in advance and the 
relative importance of its effect may be foreseen. The 
other secondary influence may bc partly accounted for 
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by assuming a certain increased speed throughout the 
turn. Either the air speed or the attitude will, in 
general, vary continuously throughout the turn if no 
altitude is lost or gained. For turns up to 30" angle 
of bank the change in stability derivatives thus pro- 
duced will be sliiht and may be satisfactorily campen- 

1 2 3 4 5 6 -.4 
0 

Jme ,  seconds 
PICURE 17.--Bngle of bank and rate of rolling during speciiied turn maneuver. 

q=-O.262[cos t+W cos %]+0.327; p-dqldt. 

CL 

IGURE lg.-Maximum control-moment coefficients required in periorming a turr 
maneuver at various lift wefficients; average airplane (lor YJO bank turn wmpleter 
in 6.28 seconds). 

sated by assuming an average value of the speed.7, 
somewhat greater than that for level flight. TBir 
speed may be calculated from the relation: 

(25; 

rhere Po is the dynamic pressure a t  steady-flight speed 
,nd p is the angle of bank a t  which the airplane is 
ssumed to lose or gain no altitude. 

RESULTS AND DISCUSSION 

The foregoing procedure was applied to the c s e  of 
he average airplane performing 30° banked turns a t  
T ~ ~ O U S  speeds. The time taken to complete the speci- 
ied maneuver was chosen as approximately 6.28 (27r) 
ieconds, since a t  the lowest speeds under consideration 
:omparatively large rolling and yawing moments were 
.equired to execute the maneuver with this rapidity. 
aasmuch as the angle-of-bank relation was held the 

same for all speeds, the rate of yawing was necessady 
diiferent and hence the actual angle of turn, or the 
changed heading of the airplane, was Werent for the 
different speeds. As in the previous computations, 
lift coefficients of 0.35, 1.0, and 1.8 were assumed, 
although the corresponding speeds were increased some 
what over those in the previous computations to 
account for the additional lift while turning, as pre- 
viously explained. With the assumption of no loss of 
altitude at  30° bank, the speeds were increased by the 
factor 

I .  4k6= 1.074 
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The values of L,, L,, N,, N,, corresponding to the 
given Lift coefficients, were also multiplied by this 
factor. (See appendix I.) 

The curves of rolling motion and angle of bank calcu- 
lated for these maneuvers are those shown in figure 17. 
The formula for the bank angle was 

rp= -0.262 (cos t+ 1/4 cos 2t) +0.327 (26) 

reaching 5 maximum of 30’ a t  T seconds. This formula 
determined the angular velocities and accelerations by 
the principles already demonstrated. Inasmuch as the 
turn reaches a steady rate at its midpoint, the whole 

1 

maneuver may be presumed to be of any time extent by 
assuming a continuation of this steady point, which 
occurs a t  T seconds. 

The results of a series of these computations showed 
principally the effect of flight speed on the degree of 
control deflection necessary to perform a given maneu- 
ver and the effect of favorable-yaw and of adverse-yaw 
ailerons on the amount of rudder control required. 
Figure 18 shows the rolling- and yawing-moment coeffi- 
cients necessary to accomplish the maneuver a t  speeds 
corresponding to the three different lift coefficients. 
For the average airplane these were: 

161 feet per sewnd. 
95 feet per senrnd 
71 feet persewnd (napsdenectcd). 

In this case no secondary aileron yawing moments 
Mere included and such moment coefficients would 
lave to be added to or deducted from the yawing- 
noment curves. These computations showed that the 
naximum yawing moment necessary at the lowest 
speed was 10 times as great as that a t  high speed, while 
,he maximum rolling-moment coefficient increased only 
L times under the same circumstances. Figure 19 
llustrates this increase of coefficient necessary to per- 
‘om the specified maneuver in the same time at the 
ower speeds. 

Figure 20 shows the effects of favorable and adverse 
;econdary aileron yawing moments on the rudder con- 
,rol necessary throughout the turn. Positive yawing 
noments indicate a setting of the rudder in a direction 
,o aid the turning. It will be noted that the existence 
If any secondary aileron moment calls for a counteract- 
ng movement of the rudder applied simultaneously 
Mith the ailerons a t  the beginning of the turn. With 
io secondary aileron moments the curves show that the 
;imultaneous initial deflection of both ailerons and 
.udder is not required, the turn being initiated by the 
tilerons alone with the rudder being. applied after the 
;tart. In the case of favorable secondary yawing mo- 
nents an initial setting of the rudder opposite to the 
iirection of the turn is required, while on beginning 
h e  recovery the rudder has to be moved slightly in a 
lirection that would normally tend to continue the 
turning. It appears that ailerons giving no secondary 
yawing moments of either sign would .require the least 
rudder coordination in making turns without side- 
dipping. 

CONCLUSIONS 

1. The agreement of the computations with Idic 
results of flight tests verifies the usefulness of thc 
method utilizing stability derivatives for the study of 
controllability both above and below the stall. 

2.  The angle of bank produced in 1 second, PI, by n 
full deflection of the lateral control may be taken ns a 
relative measure of the control effectiveness. In the 
case of a conventional airplane this measure is given 
by a simple formula involving the static rolling and 
yawing moments produced by the control, namely: 

rpl =constantX Cz+constant X C,, 

3. The effect of secondary adverse yawing moments 
on the aileron control may be moderated by increasing 
the moment of inertia about the yaw axis, although 
it is to be expected that the power of the rudder will be 
corrtxpondingly reduced. Increasing the moment of 
inertia about the roll axis should have little direct 
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influence on the lateral-control effectiveness with a 
given rolling-control moment. 

4. The tendency for a given adverse yawing moment 
to render the laterd control ineffective becomes greater 
with increasing dihedral. In no case should the ratio 
of the control adverse yawing moment to the rolling 
moment be dowed to exceed (in absolute magnitude) 
either: 

(a) The ratio of yawing to rolling moment acting on 
the airplane in sideslip; or 

(b) The ratio of yawing to rolling moment acting on 
the airplane in yawing. 

5. It appears that ailerons giving nearly zero yawing 
moment would require the least coordination of the 
rudder control in executing turn maneuvers without 
sideslip. 

6. The study of conditions above the stall indicates 
that satisfactory control cannot be expected unless 

6L6+2Li ( a h =  1.68 
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some provision is made to maintain the damping in 
rolling a t  these angles. 

7. For control a t  high angles of attack it is important 
that the damping in both rolling and yawing be main- 
tained above a definite minimum to avoid an uncon- 
trollable form of instability arising from the interaction 
of these motions. The minimum damping is given by 
the condition that 

L&r>LNp 

This condition appears to be next in importance tlj 

direct damping in rolling. 
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APPENDIX I 

Jn the case of conventional airplanes, the derivatives 
that depend almost wholly on the wings are 

L,, L,, LB, and N, 
The other two factors considered in the report, N ,  and 
NB, depend primarily on the disposition and area of the 
vertical tail and on the fuselage. 

ROLLING ACCELERATION DUE TO ROLLING, Lr 

The factor LD niay be determined from the results 
of tests of the damping in rolling of wings, such as the 
tests that have been made in the 7- by lo-foot wind 
tunnel. The test results we given in the form of the 

man ofthelaborstorystsffin tbepreparationof tbissection. 
1 The authors desire to acknowledge valuable aid received from Mr. C. H. Zimmer- 

CALCULATION OF STABILITY DERIVATIVES 1 

has an area 15 percent of that of the wing and a span 
of 25 percent 6 ,  its contribution will be less than 

0.15X (0.25)*=0.019, or 2 percent 

of that d,le to the wing. 
The rolling moment due to rolling of a biplane may 

be estimated by using its equivalent monoplane aspect 
ratio in *e 22. 

For the damp@ of r o k g  above s t a g  angles, 
wind-tunnel tests show that there is no consistent 
linear relation between the damping moment and the 
rate of rolling even at very slow rates; hence there 
actually exists no definite L, in the sense previously 
defined. Arbitrary values may be assumed to repre- 

In the report all moments and angular velocities are 
ineasured from axes fixed in the airplane along the 
directions perpendicular and parallel to the relative 
wind in the steady ilight just previous to the maneuver 
computed. 

In the computations of the stability derivatives as 
well as in the consideration of their modification by 
alteration of the design of an airplane, it is convenient 
to  separate those governed by the wing characteristics 
from those depending mainly on the body and the tail. 

dCr 

av, 
coefficient d( p b  ) and arc summarized in figure 21, 

which shows values of the coefficient measured on 
rectangular Clark Y wings of aspect ratio 6. The 
effects of deflected split flaps and tip rounding are also 
shown. Correction factors to convert these values 
to those for tapered wings and wings of different 
aspect ratio are given in figure 22. These correction 
factors are based on theoretical calculations of the load 
distribution on Wings having a uniform twist which, 
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sent roughly certain conditions, as was done in the 
described stalled-flight computations. In the case of 
wings with devices to prevent stalling at  the tips, 
recourse must be had to wind-tunnel tests. 

ROLLING ACCELERATION DUE TO YAWING, L. 

The rolling moment developed by a wing in ckcling 
flight may be easily calculated from the consideration 
that this motion brings about a difference in velocity 
along the span. If the yawing velocity is r and the 
spanwise distance from the reference origin (center of 
gravity) is y, this additional velocity wiU be ~ y .  The 
lift on an element of the wing is proportional to the 
square of the whole velocity, or: 

(U0fqd2= Uo2f2nJUo+ (&J2 (29) 
The rolling moment produced by the change in lift on 
either side of the wing is directly proportional to r. A 

Aspect ratio 

FIGURE %l.--Paotors lor wrrectmg wind-tunnel values of dCJd (.& for aspect 
ratio and taper. 

simple integration shows the moment for a straight 
wing to be: 

b2 
L=T-SP 6 2  uoc, (30) 

if the lift is distributed uniformly along the span. Such 
a distribution is approximated in the case of a rectan- 
gular wing at stalling angles, hence the foregoing for- 
mula was used in the stalled-flight computations. 
Below the stall the actual distribution of lift on the 
Wings in circling flight should be taken into account. 
This distribution is modified somewhat by the fact 
that the induction of the circular trail of vortices differs 
from the induction in straight flight. These phenomena 

have been treated by Glauert and Wieselsberger for 
the cases of rectangular and elliptical wings in circling 
flight and curves derived from their calculations are 
shown in *e 23. (See reference 12.) The derivative 
L, is obtained from the coefficient by the formula 

It appears that the value of %FI previously calculated 
from simple integration as one-sixth should be more 
nearly one-eighth for aspect ratio 6, as indicated by the 
chart. Although no calculations have been made for 
tapered Wings, it may be presumed that the interpolated 
curves given in figure 23 wiU apply with good approxi- 
mation. The part of L, due to the body and tail will be 
treated in a later paragraph. 

ROLLING ACCELERATION DUE TO 9IDESLW. Lp 

Measurements of the rolling moment due to sideslip 
have been made on a large number of wing models in 
the 7- by 10-foot wind tunnel. The results of these 

, 
Aspect ratio 

FIGURE 23.--Faotors for dc&ting rolling moment in circling flight. 

dCJd(&) =nCc 

tests are summarized in figure 24, which shows the 
influence of tip rounding and deflected split flaps on 
the dihedral effect of Clark Y wings without actual 
dihedral angle. Further tests made on wings with 
varying degrees of dihedral showed that the additional 
effect due to this angle was the same regardless of the 
tip shape or tbe lift coefficient of the wing (below the 
stall). Sweepback of the wings is known to have an 
effect similar to dihedral, although comparatively few 
tests have been made. Unlike the rolling moment due 
to dihedral angle, however, the rolling effect of sweep- 
back appears to be approximately proportional to the 
lift coefficient, disappearing at  zero lift as would be 
expected. Presumably, its effect may be added to the 
others as in the case of the dihedral. These considera- 
tions result in the following formula for the totd rolling 
moment in sideslip 
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where I' is dihedral angle and A is angle of sweepback. 
An analysis of the available data indicates the 

following values for the parameters: 

-_ ar 
(see reference 13), . 
and 

a 
(33) 

FIGURE %.-Rolling moment due to sideslip. Untapered wings without dihedral; 
aspect ratio, 6; 7- by 10-foot wind-tunnel measurements. 

where dCz/d@ is in terms of radians and r and h are 
measured in degrees. The derivative Lo follows from 
the formula: 

dC b 
dp mkxa Lo=-lSq- 04)  

Inasmuch as the wind-tunnel tests were of rec- 
tangular wings of aspect ratio 6, the formula (33) 
applies directly to them. Correction factors for cal- 
culating the rolling moment due to the dihedral oj 
yawed wings of different aspect ratios and taper ratios 
are given in figure 25. These corrections were deduced 
from theoretical calculations made at the Laboratory 
(reference 11) on the span load distribution of wings 
having their right and left semispan portions set at 
different angles of attack and are somewhat differeni 
from those deduced previously for the damping in 
rolling. 

Above stalling angles none of the given formulas 01 

correction factors apply. In this region a straighi 

ving shows a far greater rolling tendency when yawec, 
,han wings with either sweepback or dihedral. Add- 
ng either sweepback or dihedral tends to reduce this 
,endency and may on this account be desirable to a 
:ertain degree. Tests of wings with very large sweep- 
jack, such as are used on tailless airplanes, have been 
nade in which the rolling mom*ent due to yaw actually 
Veversed its sign when the stall was reached. 

YAWING ACCELERATION DUE TO EOLLING, NO 

It is mwned that the ef€ect of a rolling motion of 
,he wing can be replaced by a relative rolling motion 

Aspect raiio 

FIGUEF 25 -Factors for correcting wind-tunnel value of a ($)/ar for aspect ratio 
and taper. 

of the air about the X axis of the airplane. Thus in 
positive rolling the relative air stream is rising toward 
the right wing tip and descending on the left. The lift 
vectors, being perpendicular to the relative wind at  
each point of the span, are inclined forward with 
respect to the 2 axis on the right and backward on the 
left, resulting in a negative yawing moment for positive 
rolling of the wing. (This varying resolution of the lift 
vectors along the span is unimportant in computing 
the rolling moment due to rolling since the angle 

In addition to the changed resolution of the lift 
vectors along the span, there is an increased drag on 
the downgoing wing that tends to reduce the negative 
yawing tendency. It should be noted that an asym- 
metrical change in the lift distribution, such as that 
caused by rolling, results in greater changes in the 
induced drag at various sections of the wing than 
would be produced by symmetrical lift changes. (See 

pb/2Uoki mall.) 
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reference 14.) Hence the uncorrected results of 
measurements made on the wing in direct lifting 
cannot be used in computing the rolling or yawing 
moments of a rolling wing. 

Figure 26 shows the resolution of the lift at a point 
of the span y on the downgoing side of the wing. The 
air  stream initially rising toward the section a t  the 
inclination py/lJu is deflected somewhat by the resulting 
increased lift a t  that point so that the air meets the 
wing at  the additional effective angle of attack, 
A%=~--AE.  This additional angle of attack may uo uo 
be found a t  each point of the span if the corresponding 
lift increment is known, since 

(35) 

wlicrc (2) is the slope of the lift curve for infinite 

aspect ratio. The lift vector on the wing in straight 
flight CL is increased by the amount AC, and inclined 
forward through the angle Aao. If the usual assump- 
tions regarding small angles are made, the total effect 
may be integrated along the span as 

0 

2\i= - 2P lJo2 C,XAa,,XcXyXdy (36) 

It will be noted that it is unnecessary to consider the 
resolution of the lift increments ACL by the angles Aa0 
since they are sensibly equal and opposite on either 
side of the wing and their yawing effects cancel, re- 
sulting simply in a bending moment about the mid- 

point. Replacing Aau by ~ '" and calculating the 

coefficient 

exImssioii of this formula is 

This approximation is based on the assumption of 
constant lift coefficient across the span and hence 
corresponds to an elliptical wing. The resolution of 
this yawing moment along the general wind direction 
results in: 

Reference 11 gives the lift and lifbincrement distribu- 
Lions for both rectangular and tapered wings and these 
nay be used in conjunction with the foregoing formulas 
f a more accurate theoretical value of N, is desired. 

A component of N, due to the profile-drag effect 
may be estimated by a simple integration, assuming 
the slope of profile-drag coefficient with effective angle 
of attack to be constant across the span. Thus, if (z)o is the slope of the drag cume for infinite as- 

pect ratio at the lift coefficient in question 

or, mnlbg  the same substitutions as before, the 
coefficient giving the effect of profile drag is 

Relafive a i r  velocify af distance y from midspan 

F~GURE 26.--Resolutiou of sir velocity and lift ut section 01 rolling wing 

where CDo is the profile-drag coefficient of the airfoil 
section. The final formula for N, is 

(42) 

dun wllcrc 

equations (39) and (41). 
Above stalling angles the slope of the profile-drag 

coefficient with angle of attack reaches large values, 
and it is to be expected that N, will change its sign. 
The foregoing theoretical formulas cannot be used a t  
these angles, because the lift is no longer proportional 

is the siini of the porlioiis givcii by 

d(&) 

.^ 
dun to the angle of attack. A tentative formula for - 

in the stalled condition is 
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or simply 

for rectangular wings. 
In the case of an airplane with a long fuselage, a 

certain increment of N p  a t  high angles of attack due 
to the effect of the body and fin must be considered, 
as will be explained later. 

YAWING ACCELERATION DUE T O  YAWING, N, 

Unlike the damping in rolling, the damping in 
yawing N,, cannot be ihttributed to any single pre- 
dominant factor. It is convenient, however, to con- 
sider it as primarily effected by the disposition and 
area of the vertical tail surtace. Since only a few 
isolated experiments have been made for the deter- 
mination of this derivative and since it is not known 

Aspect ra fio 
FIQURE 27.-Factors lor calculating the yawing moment due to the induced-drag 

distribution in circling flight. 

dC.,/d($-) =-FnCo, 

to what extent certain incalculable factors influence 
it, only a rough estimate of its valye in any given 
case is possible. 

The part of the damping of yawing due to the wings 
may be calculated from considerations similar to those 
employedin the determination of L,. Here the changed 
drag distribution along the span in circling flight is to 
be considered and the resulting yawing moment found. 
The theoretical calculations of Glauert and Wiesels- 
berger that were employed in the determination of L, 
may be applied in this case as well. Here, however, it  
dl be necessary to include the effect of profile drag of 
the wings and their attachments, since it is the actual 
magnitude of the drag that counts in determining ATr 
and not its rate of increase with angle of attack. On 
the assumption that the profiledrag coefficient is nor- 

mally the same a t  all sections of the span, a siniple 
integration (see L,) gives the formula 

for the part due to the profile drag of a, rectangular 
wing. Figure 27 shows the results of the previously 
mentioned calculations, which were extended to the 
determination of the distribution of induced drag while 
circling. With the factor shown in the figure included, 
the formula for the total wing effect becomes 

where CD, is the induced-drag coefficient, i. e., 

(47) 

The part of N, due to the vertical tail surfaces may 
be very simply calculated. The yawing angular veloc- 
ity r about an axis through the center of gravity pro- 
duces an effective sidewise velocity of the vertical tail 
equal to rl. Its change in angle of attack relative to 
the air stream is then rZ/Uo. The yawing moment due 
to this effect is 

where (dC,ldp), is the slope of the normal-force coeffi- 
cient of the fin against the sidewise angle of attack p 
and Sf is the area of the fin. An average value for 
dCv/dB is -2.2. Combining these factors and writing 
the expression in a form involving the span as the 
fundamental length results in 

Expressing the various factors thus calculated in the 
form of a single dimensionless coefficient, the formula 
for the total damping derivative in yawing becomes 

. -  

in which may be determined from an aero- 

dynamic test of a complete model or may be estimated 
from the sum of several contributing factors. 

It is not known how the body of the airplane in- 
fluences its damping in yawing, although it is unlikely 
that its effect is as powerful as that of the vertical fin. 
In the case of the average airplane treated in this 

d ( a )  
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report, an allowance equal to 60 percent of the fin 
effect was made for the fuselage and parts of the air- 
plane other than the wings. 

YAWING ACCELERATION DUE TO SIDESLIP, N# 

Measurements of the yawing moments in sideslip 
have been made on a large number of complete models 
in the course of routine wind-tunnel testing of military 
airplanes. A study of the results of these tests 
indicated that at low angles of attack the yawing 
moment may be estimated from the area and disposi- 
tion of the vertical fin with a suitable allowance for 
the fuselage effect. Although airplane bodies when 
tested alone almost invariably show an unstable yawing 
tendency about the center of gravity, when tests of a 
complete model are made the results may show an 
additional stabilizing influence of the fuselage, possibly 
due to interference effects. At high lift coefficients the 
wings may exert considerable influence. The effect of 
the fuselage depends, of course, on its disposition with 
respect to the center of gravity and also on the nose 
shape. Models, especially those with uncowled radial 
engines, often show only 40 or 50 percent of the righting 
moment calculated for the fin and rudder alone. 

The part of the yawing moment in yaw due to the 
vertical fin surface may be estimated by means of the 
data previously used for the calculation of N,, 

In cases of airplanes having wings set at  a dihedral 
angle some provision must be made for an additional 
yawing moment in yaw that arises as a consequence of 
the setting of the wings. In straight flight, lift vectors 
drawn on each wing half, being inclined inward by the 
angle of dihedral, would intersect on the Z axis verti- 
cally above the center of gravity. These lift vectors 
remaining at  the same time petpendicular to the 
leading-edge lines and to the relative wind direction 
do not intersect when the wing is yawed, giving rise 
to a couple. A simpIe approximation results in 

1 Cn= ---r 5 BC, 

Since this component of yawing moment is attributed 
to dihedral setting, it may be represented by 

(53) 
for calculation. 

In addition to the simple dihedral effect, an induced 
yawing moment on the yawed wing must be considered 
as a secondary effect of the rolling moment. An 
approximate formula for this yawing moment derived 
from data given in reference 13 is 

or I 1 a- --;iC& 
1541 

l'hese formulas agree with the results of tests made in 
,he 7- by 10-foot wind tunnel except near the region of 
Iero lift. A formula for the total yawing-moment 
:oefficient of the wings is 

where r is given in degrees. 

CERTAIN CORRECTING TERMS AT EIGH ANGLES OF ATTACK 

At high angles of attack the body of the airplane 
d l  be inclined appreciably to the reference axis about 
which the rolling moments are measured. The formulas 
gven for the effects of the fin (and body) on the damp- 
mg in yawing and yawing moment in yaw should for 
3xactness have included the factor cos a, since the lever 
tlrm of the moment-producing effects will actually be 
shortened somewhat by the inclination. This correc- 
tion is of no importance, however, and need not be 
:onsidered. The same is true of the logical correction 
that should be applied to the wind-tunnel measurements 
af rolling moment in yaw, which were actually made 
about an axis pointing directly upstream and hence 
not quite in line with the axes considered ip the report. 
The only correcting terms that are of sufficient magni- 
tude to be considered here are those affecting L,, Lo, 
tlnd N, and arising from the fact that the fin and body 
surfaces are disposed below the rolling axes. These 
terms are 

Only the components of N, and No attributed to the 
fuselage and vertical fin of the airplane should be used 
here. 
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REPORT No. 579 

A STUDY OF THE TWO-CONTROL OPERATION OF AN AIRPLANE 
By ROBERT T. JONES 

SUMMARY 

The two-control operation of a conventional airplane 
is treated by means of the theory of disturbed motions. 
The consequences of this method of control are studied with 
regard to the stability of the airplane in its unconstrained 
components of motion and the movements set up during 
turn maneuvers. 

It is found that the motion of a conventional airplane 
is more stable when an arbitrary kinematic constraint i s  
imposed in banking than when such constraint is imposed 
in yawing. Several hypothetical assumptions of piloting 
procedure, each of which is considered to represent a 
component of the actual procedure, are studied. Di#erent 
means of two-control operation are also discussed and it is 
concluded that a reliable rolling-moment control that does 
not give the usual adverse secondary yawing moment 
should be most satisfactory. Several special modijications 
intended to make the airplane more suitable for two-control 
operation are also discussed, and it is found that relatively 
great weathercock stability (Ne) would be desirable. 

INTRODUCTION 

A number of flights have been made with airplanes 
utilizing both the aileron-elevator and the elevator- 
rudder combinations for two-control operation. Some 
question exists as to whicli of these modes of operation 
is likely to prove the better and also whether either of 
them is capable of affording the controllability requisite 
to safety in fLight. Such questions must, of course, be 
eventually decided by experience, no mathematical 
analysis being sufficiently broad to deal with all aspects 
of the problem. It is believed, nevertheless, that cer- 
tain conceptions gained from an analysis of the problem 
may be useful in furthering development along these 
lines. 

One of the purposes of the present work was to 
ascertain on theoretical grounds which of the two 
possible modes of operation was more likely to prove 
satisfactory. It was also desired to find what changes 
might be effected in a conventional airplane to make it 
more suitable for two-control operation. 

The analysis of the various dynamical problems that 
arise makes use of many concepts that are discussed 
at length in reference 1. The treatment of airplane 
motion as a problem of dynamics is based primarily on 

the assumptions of the theory of airplane stability as 
developed by Bryan and others; for the elucidation of 
this theory the reader is referred to text books on 
aeronautics. 

MATHEMATICAL TREATMENT OF CONTROLLED 
MOTION 

The motion of an airplane with adequate control 
about its three axes may, in one sense, be regarded as a 
purely constrained motion. From this point of view, 
the act of piloting the airplane must be'considered to be 
the use of the available control means for overcoming 
the inherent aerodynamic and inertial reactions of the 
airplane, causing it to follow a more or less definitely 
constrained motion induced by the controls. The 
natural oscillation and damping of the free motion of 
the airplane do not appear, then, in the controlled 
motion because the pilot has accommodated his use 
of the available control to the governing of these 
inherent tendencies. Accordingly the stability or insta- 
bility of the airplane will be apparent only in the requi- 
site use of the controls to perform a given maneuver. 

It has been found by experience that the lateral- 
stability characteristics of an ordinary airplane are 
such that it is feasible to abandon one of the direct 
constraints of the later81 motion in ordinary flight 
maneuvers. All lateral maneuvers that are to be 
performed with a minimum of sideslipping or sidewise 
acceleration require a definite coordination between 
the banking and yawing motions; it appears that a 
conventional airplane will naturally tend to fulfill this 
requisite relation in greater or less degree, on account 
of the inherent stability, even when one of the lateral 
controls is abandoned. 

Under the conditions of two-control operation the 
motion of the airplane cannot be considered as an en- 
tireJ.y constrained motion. The pilot of such a machine 
can exercise direct constraint in only one of the three 
components of lateral movement and must depend on 
the natural tendencies of the airplane for the requisite 
coordination of the other motions. In order to show 
this coordination the airplane need not be entirely 
stable with all controls released, but it is imperative 
that there be satisfactory stability in those components 
in which the machine is unconstrained. Thus, if an 
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airplane is to be controlled by the ailerons and elevator 
alone, it must be satisfactorily stable in combined 
yawing and sideslipping, in which it is free; if control 
is by rudder and elevator, corresponding stability in 
combined banking and sideslipping is necessary. 

If the controls are considered to impress constraints 
in those components of motion in which they operate 
directly, the movements of a two-control airplane may 
be studied by the method of forced oscillations. Thus, 
if the airplane controlled by ailerons is caused to follow 
a definite course in banking, in which it is considered 
to be constrained, this motion will impress disturbing 
forces and couples leading indirectly to yawing and 
sideslipping motions. The yawing and sideslipping 
motions must, however, be considered to be uncon- 
strained and to be conditioned by the natural stability 
of the machine as well as by the impressed disturbances. 

The disturbing forces or couples impressed in those 
components in which the airplane is unconstrained 
are caused by the constrained movements and are 
considered proportional to them. The factors of 
proportionality are simply the appropriate stability 
derivatives of the airplane. Thus, if the machine is 
constrained to follow a definite sequence of rolling 
motions by the application of a suitable contxol moment, 
a disturbing acceleration in yawing that is propor- 
tional to the given rate of rolling at each instant will 
be impressed, namely: 

dr impressed -=pxN,, dt 
In order to express the foregoing ideas defkitely it 

wil l  be necessary to resort to mathematical treatment 
of the motions. It is convenient for this purpose to 
choose a set of axes rigidly h e d  in the airplane a t  its 
center of gravity and inclined a t  the angle of attack a, 
so that the X axis points into the direction of the 
relative wind in steady flight at  the specified lift co- 
e5cient. The following notation and diagram define 
the quantities used in the subsequent equations. 

Z 

U,, forward (X-wise) velocity in steady 

p ,  rolling component of angular veloc- 
flight. 

ity. 

r, yawing component of angular veloc- 

v, component of 3ight velocity along Y 

(p, angle of bank (relative to gravity). 
8, angle of sideslip vlUo, approximately. 
6, angle of rudder or aileron deflection. 
Y, force component along the direction 

L, rolling-moment component. 
N, yawing-moment component. 

6La=Llmkx2, Control moments per unit moment of 
&Na=N/mkzz, 1 inertia of airplane. 

y e  Stability derivatives in terms of unit 
L, 1 mass or moment of inertia of air- 

ity. 

axis (sideslip). 

of the Y axis. 

A number of secondary considerations will be neg- 
lected in the mathematical analysis of the problems 
to make the mathematical expressions as simple 8s 
possible and because it is not considered important to 
secure exact numerical results for studying the general 
problem. For these approximate calculations the 
lateral and longitudinal motions of the airplane will be 
considered separable during turning flight. A check 
of the maximum gyroscopic couples encountered shows 
that they are negligible for the present study, although 
it is probable that the longitudinal and lateral oscilla- 
tions in turning flight can be separated for only a 
relatively short time after the passing of a disturbance. 
Another assumption- made is that the effect of a com- 
ponent torque applied to the airplane is an angular 
acceleration about the axis of the torque. In general, 
the angular acceleration does not have the same axis 
as the applied torque but in the present case the refer- 
ence axes chosen lie near the assumed principal axes of 
inertia, and the difference of moments of inertia. taken 
about various axes i4 not great. In addition, the 
flight of the airplane is assumed to be horizontal and 
the speed not to vary appreciably from the average 
(U,) in a given case. 

According to the previously outlined treatment, the 
movement of the airplane in at least one of the lateral 
coordinates will be m o a e d  by a constraint. The 
complete set of three degrees of freedom is not in this 
case expressed in the usual three simultaneous equa- 
tions of motion, for this procedure would imply that 
each component of the motion was affected by the 
other two, whereas the present problem calls for an 
independent expression of one of them. Thus, it is 
assumed that the available control is SuSSciently 
powerful to force any desired motion in the controlled 
component. When setting up the equations, this 
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motion will be considered to be given as a function of 
the time. 

It is important to emphasize in the interpretation 
of the mathematical analysis the practical significance 
of the assumptions used. The solution of the equa- 
tions requires that the complete history of the variation 
of one of the components of the motion (or the contral 
setting) be known beforehand. This variation is not 
subsequently altered to accommodate the variation of 
the other motions as would be the case if an intelligent 
pilot were a t  the controls. It may be imagined that 
the pilot has only one degree of attention. Having fixed 
on a procedure of rolliig the airplane, he concentrates on 
the execution of this alone, paying no attention to the 
consequences in yawing or sideslipping. It would be 
feasible to assume that the pilot concentrated his 
attention on carrying out a predetermined manipu- 
lation of the controls, without regard to any of the 
motions set up. This assumption is, however, con- 
sidered to be too far removed from actuality to be of 
much use in analyzing the problem. It would be of 
more practical interest to assume that the pilot had 
sufficient skill to enforce a desired motion in every 
respect, taking no account of the control manipulations. 
The control manipulations required could then be 
calculated and an idea of the degree of skill necessary 
to attain a perfect result could be derived therefrom. 

With two-control operation a perfect coordination 
of the motions is, of course, not possible. If the pilot 
enforces complete control over one component of the 
airplane’s motion, h‘e must do so a t  the expense of 
control in some other component. The residual com- 
ponent is then considered to be free. In practice the 
pilot can exercise an indirect influence on all lateral 
motioas with only a single lateral control. Hence, it 
is possible to assume that a skilled pilot could enforce 
complete control over the yawing motion even though 
his available control exerted only rolling moments 
directly. Then the rolling motion must be considered 
free and not subject to the pilot’s attention although 
his available control operates directly on this motion. 
Such an assumption obviously cannot give an accurate 
description of anything occurring in practice. The 
same is true in some degree of any other assumed pro- 
cedure that can be mathematically treated. The actual 
procedure of a pilot is undoubtedly an indeterminate 
and variable synthesis of such elementary procedures. 
The study of a single assumption of this nature is 
therefore incomplete, constituting simply a part in the 
analysis of the problem. 

In order to illustrate the variety of assumptions 
that may be treated, four equations, containing 
movements both of the airplane and of the control 
surface, wil l  be set down: 

- -0 ~ - g ‘ p + ~ U 0 - v Y v  dv 

* - - - ~ L ~ - ~ L , - ~ L . - - G L ~  =O dt 

@-pNp-rNr-vN,-6N6=0 dt 

=O da 
a - p  

These equations are to be satisfied simultaneously and, 
since there are more variables than equations, one of 
the variables must be given in terms of the time to 
effect a solution. Any assumption of the kind con- 
sidered may be applied by setting one of the variables 
equal to a function of t .  Thus the equations of motion 
with an arbitrarily prescribed course in rolling are: 

dr ---rN,-vN,,-6Na= Npp(t) dt 
Similarly, if the pilot uses the control to enforce 

some given motion in yawing, the equations are: 

dv --gp-VY, = - Uor(t) 

--pLp- dP vLv- 6La= Lrr(t) 

k p , 0  

dt 

dt  
-pN,-vN,--GNa= N A t )  -z(t) d 

d t  
Solutions of the foregoing differential equations have 

v,p16, or r=(CleAgf+C2eAz1+ . . CneXnt)+{(t) (4)  
This type of solution has two significant components; 
the part enclosed by parentheses represents the oc- 
currence of the natural oscillations and damping in the 
resultant motion. If the natural modes of motion are 
stable, this component will disappear with time and 
the solution will be represented by { ( t ] .  If the im- 
pressed disturbance is periodic, the motion will a t  first 
be conditioned by the natural period but, if this is 
damped, will later follow the impressed period in ac- 
cordance with Herschel’s theorem. In these cases 
the term ( ( t )  may be called the “steady-state solution.” 

Under the assumed conditions of two-control opera- 
tion the pilot enforces one component of the motion 
and relies on the reaction of this motion on the un- 
controlled component to induce an appropriate 

the general form 
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CI. L, L 

0.36 -5.44 1.11 
1.0 -3.1 L88 

a 1.8 -246 251 

aL. Np N, N .  Y. 
__----__~__ 

-0.0544 -0.207 -0.913 0.0368 -0.172 
-.0415 -.301 -.663 .0231 -.145 -.mi --.no -.m7 .WI -.m 

e 5O dihedral. 
a Flap down. 

STABILITY WHEN CONSTRAINED IN ROLLING 

The stability of the motion of the airplane (or of the 
movement of the control, 6) when the rolling compo- 
nent is arbitrarily constrained may be calculated from 
the complementary equations of (2): 

The complementary equations express only a part o 
the complete motion. They show the influence of sta. 

dity on the manipulations of the control required 
,o enforce the desired constraint in bank as well as the 
itability of the free yawing and sideslipping oscilla- 
ions. Whatever rolling motion is assumed, a solution 
If the complementary equations wil l  appear as a com- 
ionent of the final solution. 

The third equation of (5) may be solved for v and the 
eesulting expression substituted into the first equation, 
3 t c .  The same procedure may be carried out for r or 6; 
n either case the so-called “ a d a r y ”  equation is: 

La[X2-(Nr+ Yo)h+NrYn+ UdVul 

+Na[Lrk- LrYn- U&]=O 
(6) 

The equation is conveniently divided into two parts 
bo show the effects of control rolling and yawing mo- 
ments. If the rolling motion is constrained by a direct 
rolling-moment control, the second part of the equation 
(containing Na) is eliminated. Since the first poly- 
nomial is a quadratic, its roots are: 

If the airplane shows an average degree of weathercock 
stability (Nn>O), the roots will be conjugate complex 
numbers and the terms 

C&‘+ C&d 

of equation (4) will represent a damped oscillation. 
If X,=a+ib and kz=a-ib, the periodof thisoscillation 
is 

(8) 
2 r  T ,=T 

and the time to damp to one-half amplitude: 

logO.5 0.7 _- a T”---z-- (9) 

provided t h h  a is negative. 
Neglecting the first part of equation (6) (contai@ng 

La) amounts to the assumption that the banking 
motion is constrained by the application of a rudder 
control. The solution of this part of the equation 
alone is: 

UJ, X=Y,+- L r  
The auxiliary equation thus has only one real root and 
it is negative, indicating stability. The assumption 
is that a sidewise disturbance (v) causes the pilot to give 
the airplane a rate of yawing such that 

(10) 

rLr= -vL, (11) 
As L, is positive, this yawing reduces the sideslip and 
must then itself be reduced in proportion to prevent 
rolling, thus resulting in a convergence. This control 
procedure, although stable and nonoscillatory, rep- 
resents a more artificial assumption than the control of 
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0.36 
LO 
1.8 
1.0 
1.0 

the rolling motion by direct rolling moments, for here 
the pilot in order to check a sudden disturbance must 
move the airplane as a whole with equal suddenness 
while with direct control he is only called upon to de- 
flect the control surface suddenly. 

Although the motion that occurs when the rolling 
is controlled-either directly by a variable rolling 
moment alone or indirectly by a yawing m o m e n t  
is stable, a control device that gives both rolling and 
yawing moments in combination may cause instability. 
Inasmuch as conventional ailerons do give secondary 
yawing moments, this case is of considerable interest. 
Denoting the ratio: 

Nx _- 
La - K  

where each 6 denotes aileron deflection, the following 
resolution of equation (6) is obtained 

&& && 
-O.&M.Wi 2.61 1.18 
--.435&1.6li rL18 1.60 
- - . W M l . 2 3 i  5.10 1.08 
-.233f1.31i 4.80 2.6 
- .b8Ml67i  3.76 1.2 

The solution of this equation differs from that of the 
first component of equation (6) in that the quantities 
No and Nr are replaced by (N,-KL,) and (N,-KL,), 
respectively. Thus it is concluded that an effect of a 
secondary adverse yawing moment in an attempted 
rolling maneuver will be an apparent reduction of both 
the weathercock stability (No) and the damping in 
y a h g  W r ) .  

Calculation shows that the motion becomes unstable 
when 

(13) Nr+ Yo 

YQN+ UQNV 

“>L, 

K> yoLr+ ~ o ~ o  

or when 

in negative magnitude. Such instability would indi- 
cate that an arbitrary constraint in rolling (such as 
attempted level flight) could not be maintained by the 
ailerons alone. 

Conventional ailerons give rise to adverse yawing 
moments in an amount approximately independent of 
the speed of flight while the rolling moments and 
stabilizing factors are much reduced at the lower speeds. 
The result is that the ratio K approaches the foregoing 
undesirable magnitude at the highest lift coefficients. 
It is therefore considered that ordinary ailerons work- 
ing on a part of the wing surface that sustains a high 
lift would not be desirable for two-control operation. 

Table I1 lists the results of calculations of the stabil- 
ity indexes of the average airplane in free yawing and 
sideslipping modons at several lift coefficients. Since 
these calculations were to be used later in investigating 
the motions set up during turning maneuvers, a certain 
increase in the steady-flight speed at a given lift coeffi- 
cient was assumed. The increase amounted to 7% 

percent and the stability derivatives at each lift coeffi- 
cient were multiplied by this factor. 

TABLE I1 

INDEXES OF STABILITY OF MOTION WITH CON- 
STRAINT IN ROLLING 

-I I- 

K=R 

Adverse yaw r=-0.15 _ _ _ _ _ _ _ _ _ _ _  
Favorable yaw x=0.15 _ _ _ _ _ _ _ _ _ _ _  

The combined yawing and sideslipping motion under 
consideration is, in general, very stable. Further 
calculations have shown that the stability of the 
motion when free only in yawing and sideslipping is 
much greater than the stability of the completely free 
motion, the oscdlations having a shorter period and 
greater damping. 

STABILITY WHEN CONSTRAINED IN TAWING 

Calculation of the stability of the rolling and side- 
slipping motions when the airplane is constrained in 
yawing is similar to that given for constraint in banking. 
Here the complementary equations of (3) are used. 
The corresponding auxiliitry equation is 

(15) Nab3- (Lp+ Yv)X2+ LpYJ-gL01 
+La[ -NpX2+NpY0X-gN.] =o 

The complementary part of the general solution (4) 
will be of the form 

p ,  v, or 6=CleA1t+C2e~+C3eA@ (16) 
since there are now three roots. In case the yawing 
motion is constrained directly by the application of 
control yawing moments, only the first part of the 
equation will be in force. Calculation shows that two 
of the roots will then be of the conjugate complex type 
previously discussed and that the third root will be very 
nearly equal to L,. Table I11 gives these roots m 
calculated for the average airplane under conditions 
similar to those assumed in table 11. 

TABLE I11 
STABILITY OF MOTION OF AVERAGE AIRPLANE 

WITH CONSTRAINT IN YAWING 

-3.68 
-2.07 

Complex rmts 

-0. WM. 662 i -. Ol9f . e36 i -. 015* . a 6  i 
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The fact that the auxiliary equation for the case of 
free rolling and sideslipping motion with yawing control 
has roots of such widely different magnitude is an 
indication that the motion may be separated into 
distinct modes. The large real root (nearly equal to 
Lp) indicates the sharp damping of an initial rolling 
motion and is of such magnitude that the wings may 
be considered to be in a measure constrained against 
roUing relatively to the air. A possible rolling motion, 
however, that will not be appreciably damped consists 
in rolling about an instantaneous center some distance 
above the center of gravity of the airplane. For 
rotation of the airplane as a rigid body about this 
point the rolling m m e n t  due to sideslip will balance 
the damping of the rolling.' The height, Y L ,  of the 
instantaneous center above the center of gravity is 
found from: 

where 

whence 

vLo= -pL, 

v= -pz 

- LP 
Z L = z  (17) 

The mode of motion represented by the small complex 
roots (table 111) thus consists in a swinging oscillation 
of the airplane about the metacenter 5 as a pendulum 
suspended from that point. The characteristic roots 
for the pendulum motion would be 

,-- 

(1 8) 

which are seen to be approximate roots of equation 

From these considerations it appears that the two- 
control airplane constrained in yawing with the rudder 
would be subject to swinging oscillations of long period 
and slight damping. If the airplane is given an initial 
angle of sideslip, it will be restrained against banking 
directly by the relatively greaf damping in rolling L, 
and the banking that occurs will conform nearly to a 
rotation of the airplane about the metacenter &. I1 
will be of interest to calculate this height, using thc 
stability derivatives given in table I: 

(15) (La=O). 

0.35 
1.0 92.5 
1.8 

Physical considerations indicate that the damping o 
this mode of motion is almost entirely dependent 01 

Yo; hence, for two-control operation with the rudder, ii 
should be desirable to have a large value of thi 
derivative. 

It is possible for the pilot to apply a yawing momen 
either through the secondary influence of an aileror 

1 This made of oscillation has been discussed by Lunchester. 

:ontrol or indirectly by rolling the airplane as a whole. 
[f the latter effect were used to constrain the yawing, 
the resulting motion would be excessively unstable. 
rhus, in order to prevent a sidewise disturbance from 
yawing the airplane (r=O), the pilot must execute a roll 
3uch that the forward wing is depressed (pNp= -vNo). 
This roll provides the occasion for an increase of side- 
3lip due to the bank and requires, in turn, more rapid 
rolling so that the motion diverges quickly. Secondary 
aileron yawing moments of either sign moderate this 
instability and the motion may become stable if the 
yawing moment is favorable. 

These considerations indicate that the pilot could 
not maintain an exact yawing constraint by the use of 
ailerons alone. On the other hand, this inability is 
probably not of great importance since the assumption 
of piloting procedure is obviously artificial and since 
the former calculations (stability with constraint in 
rolling) indicated that, if the ailerons were used to 
hold the wings level, the free yawing oscillations would 
be short and quickly damped. (See table 11.) Thus 
it appears that, in order to prevent any yawing whatever 
during a disturbance, the pilot weuld have to execute a 
divergent bank whereas if he merely held the wings 
level the yawing motion might be unnoticeable. The 
divergent bank consists in a rotation of the airplane 
about the metacenter 

which is now situated below the airplane. The motion 
is like that of a pendulum placed at  this height above 
its point of support. 

TWO-CONTROL OPERATION IN STEADY TURNS 

The two-control average airplane, showing stability 
both in combined yawing and sideslipping (rolling 
control) and in combined rolling and sideslipping 
(yawing control), should reach a definite condition of 
equilibrium with some k e d  setting of the lateral con- 
trol. I n  general, the equilibrium condition corre- 
sponding to a definite rudder or aileron setting will be 
a steady turn a t  a definite angle of bank. If the 
components of rolling and yawing angular acceleration 
produced by the deflected controls are 6La and 6N8, 
as before, the equations of lateral equilibrium a t  a 
k e d  angle of bank may be written: 

gp-rUo+vY, = O  } 
In  case control is by ailerons giving secondary (adverse 
or favorable) yawing moments, the term Na is re- 
placed by La; and, in case control is by rudder alone, 
La is dropped from the equations. In  any case it has 

rL,+v L + 6 La = 0 

rN,+vN,+GNa=O 
(20) 
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to be assumed that the longitudinal control is properly 
manipulated for maintaining altitude and speed while 
turning. 

Two special conditions of equilibrium are of interest. 
Solving the equations for the angle of bank 

(y~,+Lvuo)GNa-(Y&r+N,uo)GL~ (21) 
g(LrNw-L&r) P= 

The necessary condition for the bank angle to be zero 
with deflected controls is: 

(See equation (14).) 
In case the applied control rolling and yawing 

moments are in this ratio, the steady state of motion 
of the airplane will be a flat turn without bank. This 
limiting ratio may be compared with the ratio of the 
secondary aileron yawing moments to the rolling 
moments. If the secondary moment is adverse and 
exceeds a certain proportion of the rolling moment, 
an equilibrium condition in which the ailerons do not 
produce a bank of the airplane becomes possible. In 
this condition a gradual deflection of the ailerons would 
merely eause the airplane to assume a yawed attitude, 
turning slowly under the influence of the side pressure 
vY,. Such a condition should be especially avoided 
in a two-control airplane utilizing aileron operation. 

Another simpler condition of equilibrium that is also 
of interest is the condition for zero rate of yawing 
with deflected controls. The resolution of the equa- 
tions in this case is: 

This is the condition for an ordinary sideslip and the 
ratio of yawing to rolling moment requisite to this 
condition is simply 

(24) 

Obviously it should be considered undesirable to allow 
the secondary adverse yawing moment of the ailerons 
to approach this proportion of the rolling moment. 

By a similar resolution of the equations another 
condition, namely, 

i s  obtained for the case of steady turning without side- 
slipping. This equilibrium is possible with aileron 
control alone in the case of secondary adverse yawing 
moments and furnishes another criterion for the mag- 
nitude of these secondary moments. In this case i t  
would be expected that a gradual application of the 
rolling control would lead to turning a t  a progressiveIg 

102277-37-2 

Feater rate with the angle of bank opposite in sense to 
,he applied rolling moment. 

The main point of interest in the condition of steady 
,Urning with fwo-control operation is the angle of side 
;lip incident to the turn at v ~ o m  angles of bank. 
f i e  resolution of the equations for er resultw in: 

In the case of rudder control, where La=O the 
>xpression for v reduces to: 

while in the case of pure rolling-moment control 
(ailerons giving no secondary yawing moments) 

-g(P V= 
(Ys+ uo2) 

Thus the sideslip incident to turning +ith only rudder 
control is mainly dependent on the ratio of LJLr while 
with rolling-moment control the important factor is 

X 

Y 

A 
FIGURE l.-Diagram illustrating combined yawing and sideslipping motion driring a 

steady twoeontrol tnm. Metacenter for yawing moment;, --9 2. mat&?ell* for 
rolling  moment;,-^. 

NUIN,. In both cases the sideslip will ordinarily be 
positive (toward the center of the turn) although the 
airplane does not, necessarily lose altitude on this 
account. 

Figure 1 illustrates the combined sideslipping and 
yawing of a two-control airplane during a steady turn. 
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I I 

In the case of rudder control the inward sideslip must 
be such that vL,=-rL, to prevent rolling. This 
combined sideslipping and yawing motion may be 
ascribed to a rotation of the airplane about some point 
aft of the center of gravity. If the distance of this 
point behind the center of gravity is denoted by Z L  

r%Jo=-rL, 

for the case of rudder-controlled turns. For rotation 
of the airplane about this point the rolling moment 
vanishes, hence the point is a metacenter for the rolling 
moment. The X axis wil l  be tangent to the flight 
path a t  this point in rounding a turn, as shown in 
figure 1. 

Similar considerations apply in the case of operation 
with a rolling-moment control with fixed rudder. 
Here the metacenter is for a vanishing yawing moment, 
the amount of sideslip being that necessary for 
vN,=-rN,. The distance of the metacenter aft of 
the center of gravity is found from 

or 

An interesting point arises in connection with the 
relation of the two metacenters (5L and % N ) .  For 
positive rotation of the airplane about a point nearer 
the center of gravity than %N the residual yawing 
moment will be negative; hence if the metacenter 
zL is nearer the center of gravity than &, steady 
turning with rudder operation will require a positive 
setting of the rudder, i. e., in a direction to aid the turn. 
Conversely, if control is by rolling moments, the steady 
motion will be a rotation about %N and, if the residual 
rolling moment for rotation about this point is negative 
(ZL<%N),  the rolling control setting will be positive, 
also in a sense aiding the turn. Obviously, the con- 
dition %N<ZL corresponds to instability since in this 
case with either mode of two-control operation the 
control setting during a steady turn would be one 
appropriate to recovery from the turn. This condition 
is analogous to the spiral instability discussed by Lan- 
Chester. The following table gives the metacenters 
%L and zN for the average airplane a t  various lift 
coefficients: 

At the lowest speeds (CL=l.O and 1.8) %M is less 
than &, indicating that negative rudder and aileron 
settings will be required during steady positive turns. 
Figure 2 shows results of calculations of the control- 
moment coefficients for equilibrium in turning at 

FIGUEE 3.--4ngles ofsideslip during steady turns at varions angles of bank with dijier- 
ent modes of two-eontrol operation. 

The only possibiity of outward or negative sideslip 
during the steady turn occurs when rolling and yawing 
moments are applied in combination. Such an occur- 
rence is illustrated in figure 4, which shows the effect 
of secondary aileron yawing moments on the equilibrium 
during 30° bank turns. At CL= 1.0 the sideslip becomes 
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negative, or outward, when the ratio Na/Ls exceeds 
negat,ively Nr/Lr, i. e.: 

(See equation (25) .) 
Whether or not a given secondary aileron yawing 

moment will reduce or increase the equilibrium side- 
slip angle during a steady turn depends on the spiral 
stability of the airplane, for this characteristic deter- 
mines the sign of the equilibrium control setting. 

cn /e2 
FIQUEB 4.-The effect of secondsry yawing moments on sideslip during a 30’ bang 

steady tarn; twocontrol operation with ailerons. 

Thus, in the case of a spirally unstable machine the 
aileron setting will be appropriate to recovery from 
the bank and an adverse yawing moment will act in a 
positire direction, aiding the turn. In any event, 
spiral stability, if present, must be considered as a 
small effect (with conventional airplanes) ; and the 
control setting during steady turns is, if positive, 
almost certain to be small so that secondary moments 
will have little effect. (See fig. 4, CL=0.35.) 

TWO-CONTROL OPERATION IN UNSTEADY TURNS 

The consideration of the equilibrium state is suffi- 
cient for the study of conditions during slowly executed 
maneuvers of sufficient duration for the natural free 
oscillations of the airplane to die out. In the case of 
rapid maneuvers performed by more or less quick 
movements of the control the equilibrium conditions 
are of secondary importance and the prim- con- 
sideration is the oscillation and damping of the free 
motion. 

According to the previously outlined treatment, the 
motions of the two-control airplane set up during un- 
steady turns will be studied by considering a constraint 
impressed on the motion in the particular coordinate 
in which the available control operates. Thus in one 
case of rudder control a dehi te  sequence of yawing 
motions appropriate to the turn maneuver under con- 
sideration will be assumed. The free rolling motion 
that the airplane takes up during the manewer wilf 
then be studied and compared with the rolling motion 
that would be considered appropriate for the execu- 
tion of the maneuver. 

The investigation of unsteady conditions during 
various maneuvers required that the equations of mo- 
tion (equations (1) to (3)) be solved for different types 
and variations of the impressed disturbances. The first 
step in the procedure consisted in obtahimg solutions 
of the equations for (‘unit disturbances” substituted 
into each coordinate of freedom. 

The unit disturbance is defined by 

1 1 ( t )  =O when t<O 

1 (t) = 1 when t>O 

(see reference 3)  and is taken to represent a disturbing 
acceleration of unit magnitude applied instantly a t  
t=O. 

The solutions of the equations of motion for this 
type of disturbance were found by methods described 
in reference 4. The result thus obtained is analogous 
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to the so-called "indicial admittance" of the electric- 
circuit theory and was combined with Carson's gener- 
alized expansion theorem (see reference 5) to obtain 
the motion due to the varying forms of disturbance. 
If q ( t )  is the motion calculated for a unit disturbance 

ance, say p(t) (see equation ( Z ) ) ,  then Carson's theorem 
may be written 

v ( u = v ~ ( ~ ~ ) . p ( o ) + ~ v , ( t ~ - t )  at (33) 

It was found convenient to evaluate this integral 
graphically. 

Figures 5 and 6 show the motions of the two-control 
airplane constrained in rolling (aileron operation) due 
to unit disturbances acting in each of the two remaining 

As the curves show, the actual yawing is delayed for 
an instant but in each case oscillates about the mean 
value given by (35). The most favorable condition is 
that at  high speed (CS=0.35) since the appropriate 
yawing motion occurs with the least delay and the os- 

As stated previously, the unit motions, or motions 
due to unit disturbances, were utilized in calculating 
the effects of varying disturbances assumed during turn 
maneuvers. Thus the curves given in figure 5 were 
used to End the motions due to a varying angle of bank 
by means of Carson's integral (33). Actually, in con- 
straining the airplane to a definite bank angle as was 
assumed, a varying aileron rolling moment has to be 
applied and, if this moment is accompanied by a 

FIGWE 7.-RoUng motion due to unit side disturbance; two-control airplane constrained in yawing (rudder operation). 

degrees of freedom. Figure 5 shows the yawing mo- 
tions resulting from a suddenly impressed sidewise 
acceleration of 1 foot per second per second. The con- 
ditions here may be assumed to represent the effect of 
an initial and constantly maintained angle of bank of 
approximately 

(34) 
1 pz- 
9 

In order to maintain this bank angle without sideslip- 
ping, the airplane should immediately acquire a uni- 
form rate of yawing of approximately 

secondary yawing moment, additional disturbances in 
yawing will be introduced. The rolling motion will also 
introduce a secondary disturbance in yawing equal to 
N,xp( t ) .  Figure 6 shows the yawing motion produced 
by a unit disturbance in yawing that was used in calcu- 
lating the effects of such impressed yawing disturbances. 
This curve may be considered to represent the yawing 
motion following the sudden application of a control 
yawing moment. The final effect of this disturbance is 
to cause the machine to assume a yawed attitude, turn- 
ing slowly under the influence of the side force vY,. 

Figures 7 and 8 show the corresponding solutions of 
the equations of motion (3) for the case of the airplane 
constrained in yawing by a rudder control. Figure 7 
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may be taken to represent the rolling motion following 
an initial bank angle. Presumably the ideal condition 
would be a rapid diminishing of this bank angle to 
zero. The integrated areas under the curves shown 
would then approach a definite value after a few oscilla- 
tions, which area should be equal to the initial bank 
angle, namely approximately 

1 q=- 
9 

(36) 

Instead, the airplane continues to roll one way and 
then the other, executing the pendulum-like oscillations 

described in the discussion of the stability of this mo- 
tion. The damping of these oscillations is slight and is 
most apparent at  the lowest lift coefficient, CL=0.35. 

Figure 8 is similar to figure 7 except that here the 
rolling motion is due to a suddenly impressed angular 
acceleration in rolling. These curves were used in 
calculating the effect of varying rolling moments im- 
pressed indirectly by yawing motion L,xr( t ) .  (See 
equation (3).) Figure 8 is of interest in illustrating the 
two more or lcss distinct modes of motion in free rolling 
and sideslipping. It will be noted that the rolling 
starts very rapidly (with an initial angular accelera- 
tion of one radian per second per second) but soon 
takes up the slow swinging oscillation. As in the pre- 
vious case of rolling motion, the steady state finally 
approached is a definite angle of bank. 

The foregoing calculations are of interest in indicat- 
ing how the different types of two-control airplanes 
may be expected to respond to attempted maneuvers. 
The first step in the calculation of an actual complete 
maneuver is to arrive at  a specification for that part of 
the motion which is assumed to be constrained. It 
will be of interest to compare the motions executed by 
the two-control airplane with the most perfect possible 
coordination of the motions that might be obtained 
with three-control operation. Obviously, it will be 
necessary to specify a maneuver that is within the powei 
of the control to produce and it-'urill be desirable tc 
conform the specification to a type of turn likely to bc 

followed in practice. In other respects, it was thought 
that any smooth curve representing the banking or 
yawing of the machine up to a definite angle or rate 
maintained steadily for a short time and followed by a 
smooth recovery to straight flight would serve the pur- 
pose. Figure 9 shows the time history of the ideal 
three-control turn that was assumed in the subsequent 
investigation. In  most cases the manuever was as- 
sumed to be completed in 6.28 seconds and this time is 
taken to represent about the maximum rapidity with 
which the maneuver could be performed a t  the lowest 
speed using conventional-type controls. Figure 10 

;hows the control-moment coefficients necessary to 
:onstrain the rolling and yawing motions to the speci- 
ied maneuver with perfect three-control operation. 
Under the conditions of two-control operation the turns 

- Time, seconds 

FIGURE 9.-Angle of bank and rates of rolling and yawing specified for 30* bank two- 
control turn maneuvers. 

will not be perfect owing to the sideslipping and it is 
to be expected that this sideslipping will in SOT 

degree modify the control settings. 
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In the calculations illustrated in figure 11 the banking 
motion was assumed to be forced to follow the ideal 
bank by means of a rolling control and the resultant 
free yawing motions were computed. The reaction of 
the machine was evidently favorable in this case. 
This result could have been anticipated from the calcu- 

~ Time, seconds 
FIGURE lO.-Control-moment coefficients necessary to produce specified manuever 

with zero sideslip. 

lations of stability, which showed that the free yawing 
motion was of short period and strongly damped. 

The curves of figure 11, although indicating the 
advantage of rolling-moment control, also bring out an 
imperfection in the word'nation of the yawing motion. 
The rolling motion itself tends to induce an unfavorable 
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FIQWE 11.-Free yawing motion during 30" hank maneuvers performed with rolling 
wntrol. 

yawing motion at  the start of the maneuver due to the 
adverse sign of N,. This effect becomes more pro- 
nounced at  the higher lift coefficients and, in the worst 
case (C,=1.8), produces an adverse change in the 
heading of the machine of 2.0°. The total change in 
heading produced by the maneuver at  this speed is  
approximately 50°. 

From the foregoing considerations, it appeared that 
certain amount of favorable secondary aileron yawhg 

noment might be desirable to overcome the adverse 
'aw caused by the rolling motion a t  the start of the 

FIQURE 12.-The effect of secondary yawing moments on yawing motions during 
30" hank maneuver perf~med with rolling control; C~=1.0. CD=* 0.21C1, 
(K=& 0.16). 

turn. The effects of secondary yawing moments of 
both favorable and adverse sign applied in proportion 
to the control rolling moment are illustrated in figures 
12, 13, and 14. 

Time, seconds 

maneuver performed with rolling control; C1,=1.0. C,==tO.PlCc (~=M.16). 
FIGWE 13.-The effect of secondw yawing momeuts on sideslip during 30- hank 

The curves shown were calculated by equation (2) 
and take account of the increments of control displace- 
ment necessary to accommodate the rolling moments 
introduced by the yawing and sideslipping oscillations. 
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The effect of these increments of control displacement 
is to modify the stability of the yawing and sideslipping 
motions, an adverse yawing moment reducing the 
damping and lengthening the period. The results in- 
dicate especially the disadvantage of adverse yaw and 
show that some improvement may be had from a 
favorable yawing moment. 

TNne, seconds 
FIQUEE 14.-The effect of favorable seeondary yawing moment on yawing motion 

during 30° bank m e n v e r  performed with rolhng control; C ~ 1 . 6 .  6.=0.21C1 
(%-0.15). 

In  order to study more closely the possible beneficial 
effects of a favorable aileron yawing moment, it is of 
some interest to analyze further the control application 
into several components. The component that results 
in modification of the stability through the action of the 
secondary yawing moment may be considered to be 
directly favorable to improved coordination of the 

Time, seconds 
FIQUFZ 15.-The eEect of incrmd N. on yawing motion during 30° bank maneuver; 

damn operation (no seoondary yawing moment); Cc=l.O. 

yawing motion because it shortens the natural oscilla- 
tion period and increases the damping. With a given 
proportion of favorable yawing moment, increasing the 
dihedral angle should result in further improvement in 
this respect since the apparent weathercock stability 
(N,-KL,) is increased in that way. Another wmpo- 
nent of the applied rolling wntrol is directed to over- 
coming the damping of the rolling incident to the 
maneuver. The secondary yawing disturbance thus 

introduced is of the same form as pNp and may be 
calculated as 

Np'= (NP-.Lp) (37) 

The condition for perfect coordination of banking 
and yawing motion during the turn requires that the 
acceleration in yawing be very nearly proportional to 
the rate of roiling; namely, 

&_Axp  at u, (38) 

The component of rolling control directed toward 
opposing the damping in rolliig is applied in this way 
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Time, seconds . 
FIOUBE 16 -The effect of increased N. on sideslip duririg twocontrol 30° bank 

maneuver; aileronoperation (no secondary yawing moment); Ci,=l.O. 

and it is seen that this component of the secondary 
favorable yawing moment is properly directed toward 
improved coordination of the yawing motion. The 
component of control application necessary to acceler- 
ate the rolling motion does not, however, lead to a 
desirable secondary yawing acceleration since this 
acceleration is not proportioned to the rolling velocity. 

This component results in the primary disadvantage 
associated with favorable-yaw ailerons. Quick or 
irregular movements of the control may lead to pro- 
nounced yawing oscillations if the secondary moment 
is very great. 

It appears that a decisive method of improving the 
aileron-operated two-control airplane would be to 
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Ratio of 
N .  to that 
of average 
airplane 
~ _ _  

1 
2 
4 

increase the weathercock-stability factor N,. This 
method would serve directly to reduce the sideslipping 
to a minimum both in steady turning and in rapidly 
executed turn maneuvers. Figure 15 shows the effect 
of doubling N ,  on the yawing motion during the maneu- 
ver performed at  C,=l.O. This modification of the 
airplane shortened the natural period of the oscillation 
and resulted in the yawing action taking place more 
quickly. The effect on sideslip is shown in figure 16. 
Although the maneuver ends with about 5' of outward 
sideslip, this value will be quickly reduced to zero on 
account of the natural stability of the motion. With 
different timing of the maneuver it may, of course, be 
brought to an end with no residual sideslip. The 
following table shows the effect of arbitrarily increasing 
N, on the natural period of the yawing oscillations: 

Period 

Second8 
4 1G 
2.92 
2 05 , 

It is to be noted that an increase in vertical-fin area 
will increase the derivative N,  as well as No and will 
thus result in greater damping of the motion. 

P Time, seconds 

Ndder operation; C~=1.0. 
FIGURE 18.-Yawing motion necessary to enforce assumed 30' bank maneuver with 

A certain disadvantage associated with increased N, 
is the relatively greater tendency for spiral instability 
and the consequent necessity for holding the control 
against the steady turn. It may be expected, however, 
that this undesirable tendency could be overcome by 
properly proportioning the dihedral of the wings. The 
greatest possible effect of increase of vertical-fin area 
would be to cause the metacenter for yawing moments 
GN (see discussion of stability) to approach coincidence 
with the fin; it would then appear necessary to arrange 
the metacenter for rolling moments ahead of this point 
in order to accommodate any desired increase of vertical- 
En area and secure spiral stability. 

Further improvement in the operation of the aileron- 
:ontrolled machine could be had by decreasing the 
yawing derivative in rolling N,. Alteration of this 
lerivative apparently would require fundamental 
Zhanges in wing design, improvement being in the direc- 
tion of lower aspect ratio, which might, of course, con- 
Eict with other requirements. 

As pointed out, the maneuvers assumed in these cal- 
culations are considered to be more rapid than usual in 

- Time, seconds 
FIGURE 19.-Free angles of bank during turn maneuvers performed with Ndder 

compared with ideal bank curve; yawing constraints for 30' bank maneuver. 

normal flight, since they represent the use of a large 
proportion of the control power ordinarily available at  
the lower speeds. With slower maneuvers the coordina- 
tion of the motions of the two-control airplane would 
be expected to be much better, especially when the 
duration of the maneuver becomes large relative to the 
natural period of oscillation of the airplane. Figure 17 
shows the result of a calculation in which the duration 
of the 6.28-second maneuver was doubled. 

It is worth noting that the actual deflection of the 
flight path of an airplane relative to the earth is accom- 
plished much more directly by banking than by steering. 
Regardless of tbe sideslipping and coordination of angu- 
lar motions, any decided acceleration of the path must 
be brought about by inclination of the lift and is not 
directly affected to any great extent by rotating the 
airplane in yaw. Such deflection of the path would be 
the principal objective in turning to avoid an obstacle. 
Thus the airplane with rolling-moment control should 
be capable of avoiding obstacles equally as quickly 8s a 
conventional three-control airplane. As is the case 
with three-control operation, the tendency of a two- 
control airplane to accelerate downward when banked 
must be counteracted by a movement of the elevator. 

If the airplane is assumed to execute a sharp turn to 
avoid an obstacle, the primary consideration will thus 
be the ability to produce a specified bank. Under such 
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conditions the pilot of the rudder-operated airplane 
would be expected to make an effort at  indirect control 
of the bank without regard to the coordination of the 
yawing motion. The question then arises as to what 
yawing motion would have to be prescribed in the case 
of the rudder-controlled machine to enforce the desired 
motion in banking. 

Figure 18 shows the yawing motion that results in a 
bank curve similar to that given in figure 9. It appears 
that, in order to attain the bank angle as shown, a 
relatively powerful rudder control would have to be 
applied about one-half second in advance of the usual 
start of the turn. Further calculations showed that the 
prescribed yawing motion could be attained throughout 
if a rather large amount of rudder control were avail- 

Time, seconds 
FIGURE 20.--Free rolling motion during turn maneuvers performed with rudder; 

yawing constraints for 30° bank maneuver. 

able. That such an attempt to follow a definite course 
in banking would require a vigorous use of the rudder 
is evident from the oscillation of the yawing curve. 

In the case of two-control operation with a constraint 
in yawing by means of the rudder, the yawing motions 
shown in figure 9 were assumed and the resulting 
free rolling motions were calculated. Figures 19 and 
20 show the results of such calculations made a t  dif- 
ferent lift coefficients. The angles of bank and rates of 
rolling attained are compared with those that would 
be appropriate to the constrained yawing motion. 
It is apparent from these and the preceding figures 
that the two-control airplane operated with the rudder 
cannot be expected to perform rapid maneuvers of the 
type considered. The natural reaction of the rolling 

otion is too slow and the damping is too slight to 
table even an approximate coordination of the mo- 
ms Within the short time of duration of the maneuver. 
Figure 21 shows the angles of sideslip attained with 
te various modes of operation considered, summarizing 
te results of the calculations. 
The reasons for the inability of the rudder-controlled 
rplane to execute rapid turns are: First, that the 
rcondary rolling reaction due to yawing motion is 
sufficient to overcome the relatively great damping 
' direct rolling motion; second, that for a rapid turn 
le rate of rolling required on entry and recovery 
-eatly exceeds the maximum rate of yawing; and third, 
iat the free rolling and sideslipping oscillations set up 
*e not very well damped. The greatest possibility for 

Time, seconds 
IGURE 21.-Angles of sldeslip during two-control turn maneuvws with different 

modes oi operatidn; 30" bank turn maneuver. 

nprovement would appear to be in increasing the 
erivatives L, and Y,. The fist (Lo) would call for 
icreased dihedral angle and would serve to shorten 
he natural period of the rolling and sideslipping motion, 
rhile the second (Yv) would call for +creased area of 
he side projection of the airplane and should improve 
he damping of the oscillations. The following table 
hows the effects of changing these derivatives on the 
atural period and damping of the oscillations at 
!,=l.O. 

Ratio of derivative to that of average 
auplane 

I L. I y. 

Time to damp )f, seconds ____.._.__ 
Per;od,seconds.-l__________________ I 15.3 I 'g:; I 7.; I '::; I 12.4 

89 



REPORT NATIONAL ADVISOPY COMMI'ITEE FOR AERONAUTIC3 

CONCLUSION 

The lateral motion of a conventional airplane is more 
stable when constrained in rolling than when con- 
strained in yawing. The stability of the free yawing 
m d  sideslipping motion is greater than that of the 
entirely free motion; the stability of the free rolling 
and sideslipping is less than that of the entirely free 
motion. 

If a rolling-moment control is used to enforce an 
arbitrary constraint in banking, the free yawing that 
results will be approximately coordinated to the bank 
if the airplane has the average degree of weathercock 
stability (N.). The yawing in this case is also ap- 
proximately adjusted to the speed of flight so that 
with a given bank maneuver a more rapid rate of 
yawing is attained a t  low speed than a t  high speed, as 
is desirable. The deviation of the yawing from the 
ideal is greater, however, a t  lower speeds and is also 
greater in quick turns than in more slowly executed 
ones. If the rolling control were designed to give a 
moderate favorable yawing moment, the coordination 
of the motions would be improved. Improvement may 
also be effected by increasing the weathercock sta- 
bility. If, however, the aileron control gives the usual 
proportion of secondary adverse yawing moment, the 
coordination of the yawing with the banking will be 
relatively very poor. The motions may then become 
unstable and uncontrollable in an extreme case a t  high 
l i f t  coefficient. These latter statements are particularly 
applicable to conventional-type ailerons which are 
considered as undesirable on this account for use at  
low flight speed unless compensated by the rudder. 

A rudder control may be used to enforce a constraint 
e'ther directly on the yawing motion or indirectly on 
the rolling motion provided that the maneuver specified 
is not too rapid nor the disturbances encountered too 
severe. In the former case the free banking motion 
occurs as a series of long oscillations that do not be& 
to approximate the desired bank until some time after 
the start of a maneuver or after the passing of a dis- 
turbance. During a rapid yawing maneuver the bank 
that occurs is greater a t  low flight speed than a t  high, 
indicating that the coordination of the centrifugal and 
the gravitational accelerations is not adapted to the 
desired variation with flight speed. 

Although the coordination of the motions with 
aileron control grows worse as the flight speed is re- 

duced, the coordination with rudder control improves 
somewhat a t  the lower speeds. This effect would be 
especially apparent if the rudder were applied in such 
a way as to enforce indirectly a desired banking mo- 
tion. Such indirect control requires, however, that the 
rudder be deflected in advance of the desired effect. 
The yawing that arises when the bank is indirectly 
controlled with the rudder is a very poor approxima- 
tion to the ideal yawing and calls for large and irregular 
control movements. 

The amount of sideslipping during steady turns is 
not greatly different with either mode of operation. In 
either case it appears desirable that the free motion of 
the airplane show spiral stability so that control settings 
opposing the turn will not be required. 

In general, it is concluded that a reliable rolling- 
moment control that does not give a secondary adverse 
yawing moment would afford the most satisfactory 
means for two-control operation. It appears that a 
moderate amount of favorable secondary yaw would 
be desirable although certain disadvantages appear if 
the proportion is too great. 

The disadvantage in two-control operation lies not 
so much in the imperfection of control of the flight path 
of the airplane relative to the earth as in the sideslipping 
and sidewise accelerations that arise through the im- 
perfect coordination of the yawing and banking 
motions. It appears possible that this tendency may 
be so reduced by the use of suitable control organs 
and properly modified stability characteristics as to 
be unobjectionable. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., August 18,1936. 
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 586 

THE REDUCTION OF AILERON OPERATING FORCE 

BY DIFFERENTIAL LINKAGE 

By Robert T. Jones and Albert I. Nerken 

SUMMARY 

It is shown t h a t  t h e  con t ro l  fo rce  of ordinary ailer- 
ons may be reduced t o  zero over a range of de f l ec t ions  and 
a t  a given f l i g h t  condition by t h e  use of an appropr ia te  
d i f f e r e n t i a l  movement. Approximations t o  t h e  i d e a l  motion 
obtainable with a simple l inkage are discussed and a cha r t  
t h a t  enables t h e  s e l e c t i o n  of an appropr ia te  crank arrange- 
ment i s  presented. Various aspec ts  of t h e  p r a c t i c a l  appli- 
ca t ion  of t he  system are discussed and i t  is concluded 
t h a t  a s m a l l  f ixed t ab ,  def lec ted  t o  t r i m  both a i l e rons  
upward, would be advantageous. 

INTRODUCTION 

One of t h e  most exacting requirements of a lateral- 
con t ro l  system i s  t h e  provision of an adequate degree of 
con t ro l  with a s m a l l  expenditure of operating e f f o r t .  It 
appears t h a t  a d i f f e r e n t i a l  l inkage can, when properly de- 
signed, be a very e f f e c t i v e  means of reducing t h e  operat- 
ing fo rce  of ordinary a i l e rons .  Several o ther  advantages 
accrue t o  the  d i f f e r e n t i a l  and such systems are widely 
used. The poss ib le  reduction of con t ro l  fo rce  appears t o  
be of primary importance, however, and it  is therefore  of 
i n t e r e s t  t o  d iscuss  some r u l e s  f o r  t he  design of a l inkage 
t h a t  w i l l  a f ford  t h e  g r e a t e s t  advantage i n  t h i s  respect.  

The reduction of operating fo rce  with a d i f f e r e n t i a l  
l inkage  is  accomplished by taking advantage of t h e  up- 
f l o a t i n g  tendency of t h e  a i l e rons .  
is apparent i n  measurements of a i l e r o n  hinge moments, 
which genera l ly  show an o f f s e t  moment (Ch,) a t  t h e  neu- 
t ra l  s e t t i n g .  (See f i g .  1 . )  This moment varies with an- 
g l e  of a t t a c k  and with a i r f o i l  p ro f i l e .  

This f l o a t i n g  tendency 
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With a d i f f e r e n t i a l  l inkage  t h e  a i l e r o n s  on opposite 
t i p s  of t h e  wing begin t o  move a t  d i f f e r e n t  rates immedi- 
a t e l y  a f t e r  they are def lec ted  from neu t r a l ,  t h e  downgoing 
a i l e r o n  moving more slowly than t h e  upgoing one. Thus 
with t h e  a i l e r o n s  def lec ted  t h e  upward pressure  on t h e  up- 
going a i l e r o n ,  which tends t o  increase  t h e  de f l ec t ion ,  has  
a g rea t e r  mechanical advantage at t h e  con t ro l  st ick than 
does the  upward pressure of t h e  downgoing a i l e ron .  
combination of a reduced upward pressure  and an increased 
mechanical advantage of t h e  upgoing a i l e r o n  tends t o  n u l l i -  
f y  t h e  e f f e c t  of t h e  increased upward pressure  and reduced 
mechanical advantage of t h e  downgoing a i l e r o n  t o  t h e  ex- 
t e n t  t h a t  wi th in  c e r t a i n  limits t h e  operating fo rce  may be  
reduced o r  even reversed. 

The 

I f  t h e  a i l e r o n s  are connected t o  the  con t ro l  s t i c k  
with nond i f f e ren t i a l  gearing, t h e  e f f e c t  of t h e  i n i t 4 a l  
hinge moment a t  t h e  n e u t r a l  s e t t i n g  is not f e l t  i n  t h e  
s t i c k  fo rce  required ‘to d e f l e c t  them. I n  t h i s  case t h e  
mechanical advantage of one a i l e r o n  with respec t  t o  the  
o ther  remains t h e  same, so t h a t  t h e  i n i t i a l  o f f s e t  moment 
(Ch,) 
other.  The only fo rce  experienced a t  t h e  s t i c k  is t h a t  
due t o  the  d i f f e rence  of t h e  aerodynamic hinge moments of 
t h e  two a i l e r o n s  brought about by t h e i r  def lec t ion .  

on one a i l e r o n  is exac t ly  balanced by t h a t  on t h e  

DEFINITIONS OF SYMBOLS 

cw, chord of wing. 

ca, chord of a i l e ron .  

e t ,  chord of tab.  

Ch, a i l e r o n  hinge-moment coe f f i c i en t .  

tho, a i l e r o n  hinge-moment coe f f i c i en t  a t  zero de f l ec t ion  
(normally negative).  

Ch,, r e s u l t a n t  hinge-moment coe f f i c i en t  ac t ing  a t  con t ro l  
s t i c k  (negative when moment opposes de f l ec t ion ) .  

CR,  rolling-moment c o e f f i c i e n t .  

Cn, yawing-moment coe f f i c i en t  . 
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l i f t  coeff ic ient .  

angle of bank 1 second a f t e r  def lect ion of a i le ron  
cont r 01. 

angular s e t t i ng  of a i le ron  crank when neutral .  

angular s e t t i n g  of control-st ick crank when neutral .  

angular movement of control-st ick crank. 

upward def lec t ion  of a i l e ron  1 
Taken as pos i t ive  

numbers. t downward def lect ion of a i le ron  

upfloating angle of a i le ron  

downward def lect ion of tab I r 

CALCULATION OF CONTROL FORCE AND WORK OF DEFLECTION 

A calculat ion of the  e f f ec t ive  moment coef f ic ien t  
act ing a t  the  control  s t i c k  w i l l  show how the  characteris-  
t i c s  of t he  d i f f e r e n t i a l  linkage a f f ec t  the  operating 
force.  The hinge-moment coeff ic ient  of an ordinary ailer- 
on may be calculated with su f f i c i en t  accuracy by the  for- 
mula (neglecting weight of a i le ron) ,  

This formula appl ies  t o  a s ingle  a i leron.  
moment coef f ic ien t  act ing at  the  control  s t i c k  o r  wheel 
due t o  the  up a i l e ron  is  

The e f f ec t ive  

and t h a t  due t o  the  down a i le ron  

The rates of change of t he  up and t h e  down a i l e ron  
angles throughout the range of t h e  s t i c k  def lect ion are 
determined by the  cha rac t e r i s t i c s  of the  par t icu lar  d i f -  
f e r e n t i a l  linkage used. 
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The va r ious  terms of equations (2) and (3) may be so 
co l lec ted  as t o  represent  two components of t h e  t o t a l  mo- 
ment, one tending t o  r e t u r n  t h e  con t ro l  t o  n e u t r a l  and 
t h e  o the r  tending t o  d i sp l ace  t h e  con t ro l  away from neu- 
tral. Thus, 

chS The term containing ch0 represents  t h e  reduction of 

due t o  t h e  d i f f e rence  of mechanical advantages. 

With regard t o  t h e  reduction of operating fo rce ,  it 
is  seen t h a t  t h e  problem is  t o  secure t h e  proper r e l a t ion -  
sh ip  between t h e  two components of equation ( 4 ) .  A l a r g e  
upf loa t ing  angle (indicated by l a r g e  ChP) and a r ap id ly  
increasing d i f f e rence  between t h e  mechanical advantages of 
t h e  two a i l e r o n s  make f o r  t he  d isp lac ing  tendency, whereas 
a l a r g e  s lope  of t h e  hinge-moment curve and a l a r g e  aver- 
age mechanical advantage of both a i l e r o n s  ( l a rge  d6/d9) 
m a k e  f o r  a l a r g e  r e s t o r i n g  force.  
t o  tend t o  r e t u r n  t o  n e u t r a l  when displaced, 
a t  least s l i g h t l y  negative. 

I f  t h e  con t ro l  s t i c k  i s  
chs must be 

An examination of t h e  hinge-moment curve ( f ig .  1) 
w i l l  show that t h e  balancing e f f e c t  of t h e  d i f f e r e n t i a l  
can be  simply described i n  terms of t h e  work of d e f l e c t i n g  
t h e  a i l e rons .  Work is gained by allowing t h e  a i l e r o n  t o  
rise. The r e s u l t a n t  work i s  found by deducting t h a t  ex- 
e r t ed  on t h e  down s i d e  from t h a t  gained on t h e  up s ide .  
The two components are represented by t h e  areas under t h e  
hinge-moment curve on e i t h e r  s i d e  of neu t r a l .  The formula 
f o r  t h e  r e s u l t a n t  work is 

dCh 6d2 dCh 6u2 ch0 6d + - - - ch0 6, + - - d6 2 d6 2 (5) 

I f  t h e  work of d e f l e c t i o n  is  made zero a t  every poin t ,  t h e  
s t i c k  f o r c e  (which may be calculated as t h e  s lope  of t h e  
curve of work aga ins t  de f l ec t ion )  w i l l  a l s o  be zero a t  ev- 
e ry  point.  Hence an  idea l ized  d i f f e r e n t i a l  motion of t h e  
a i l e r o n s  t h a t  g ives  complete balance may be  ca lcu la ted  by 
means of t h i s  expression f o r  t h e  work of def lec t ion .  By 
equating t h e  work t o  zero and rearranging 
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I f  ch0 and dCh/d6 are known, t h i s  formula may be used 

t o  ca l cu la t e  t h e  simultaneous upward and downward posi- 
t i o n s  of t h e  a i l e rons  f o r  which t h e  work of de f l ec t ion  is  
zero. A d i f f e r e n t i a l  l inkage arranged t o  g ive  these  si- 
multaneous pos i t i ons  of t h e  a i l e rons  would thus  r equ i r e  
no operating e f f o r t .  

A decidedly simpler formula than (6) r e s u l t s  i f  t he  
a i l e r o n  c h a r a c t e r i s t i c s  ch0 and dCh/d6 are expressed 

i n  terms of t h e  upf loa t ing  angle 

(See f i g .  1.) The r e s u l t a n t  formula i s  

The r a t i o  of t he  rates of t r a v e l  of t h e  two a i l e rons  is 
simply 

(Note t h a t  6,f, 6,, and 6d are taken as p o s i t i v e  num- 
bers . )  Curves of such idea l ized  d i f f e r e n t i a l  motions f o r  
a i l e rons  having d i f f e r e n t  f l o a t i n g  angles are shown i n  
f i g u r e  2. It i s  probable t h a t  a number of more o r  less 
complicated mechanical l inkages t h a t  would g ive  t h e  ailer- 
ons motions approximating these  curves could be devised. 
The ordinary simple l inkage cons is t ing  of two properly set 
cranks connected by a rod is  of most i n t e r e s t ,  however, 
and t h e  following d iscuss ion  is devoted c h i e f l y  t o  t h e  
problem of approximating t h e  l imi t ing  degree of balance 
with such a simple arrangement. 

METHOD OF APPROXIMATING LIMITING DEGREE OF BALANCE 

The preceding discussion led  t o  t h e  determination of 
curves of a i l e r o n  de f l ec t ion  giving zero s t i c k  fo rce  de- 
rived without reference t o  t h e  l i m i t a t i o n s  of mechanical 
linkages. Although t h e  discussion w a s  confined t o  ailer- 
ons showing a s t r a i g h t - l i n e  hinge-moment v a r i a t i o n ,  t h e  
procedure of der iv ing  a curve s i m i l a r  t o  those of f i g u r e  2 
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f o r  t h e  case of a more i r r e g u l a r  hinge-moment v a r i a t i o n  
w i l l  be obvious. 
f l e c t i o n s  t h a t  r e s u l t  i n  zero operating fo rce  i s  deter- 
mined, i t  becomes necessary t o  devise a geometrical ar- 
rangement of levers t h a t  w i l l  approximate t h i s  motion. 

Once t h e  l i m i t i n g  curve showing t h e  de- 

Although it is not thought des i r ab le  completely t o  
eliminate the  con t ro l  fo rce  at any f l i g h t  condition, i t  
is  use fu l  t o  consider t h i s  condition as a l imi t ing  ad- 
justment of t h e  d i f f e r e n t i a l .  I n  a given case t h e  s t i c k  
fo rce  can be balanced out a t  only one angle of a t t a c k  and, 
s ince  t h e  f l o a t i n g  angle becomes smaller, t h e  e f fec t ive-  
ness of t h e  balancing diminishes as t h e  angle of a t t a c k  is 
reduced. Hence i f  t h e  s t i c k  fo rce  is made t o  become zero 
a t  an angle of a t t a c k  higher than normally encountered i n  
f l i g h t ,  overbalance of t h e  con t ro l  i n  normal f l i g h t  w i l l  
be guarded aga ins t  and, a t  t h e  same time, t h e  g r e a t e s t  
permissible reduction of con t ro l  fo rce  w i l l  be approached. 

The i d e a l  curves given i n  f igu re  2 cannot, of course, 
be exac t ly  reproduced by a simple mechanical linkage. 
Figure 3 i l l u s t r a t e s  t h e  simplest  type of l inkage used i n  
prac t ice .  Movement of t h e  con t ro l  causes t h e  s t i c k  cranks 
t o  move oppositely through equal angles A8 from t h e i r  
n e u t r a l  pos i t ions .  
i n  t h e  dead-center posit ion.  Figure 4 i l l u s t r a t e s  t h e  
computation of t h e  mechanical c h a r a c t e r i s t i c s  of such a 
simple linkage. Here i t  is  assumed t h a t  t h e  lengths  of 
t h e  various l e v e r s  are known. The formula then g ives  6 
i n  t e r m s  of 8. 

The diagram shows t h e  downgoing crank 

Such l inkages can be adjusted t o  g ive  a i l e r o n  move- 
ments s i m i l a r  t o  those shown i n  f i g u r e  2 and can, i n  f a c t ,  
be made t o  s a t i s f y  as many as four  conditions i n  approach- 
ing  such a curve, s ince  four  independent adjustments of 
t h e  l inkage may be made. The reduction of t h e  s t i c k  fo rce  
t o  zero a t  four  po in t s  would, however, e l imina te  a l l  pos- 
s i b l e  l inkages but one and would r equ i r e  a d e f i n i t e  spac- 
ing of t h e  crank cen te r s  and d e f i n i t e  r a d i i  of t h e  cranks, 
as w e l l  as s p e c i f i c  n e u t r a l  s e t t i n g s .  

When t ry ing  t o  approximate t h e  i d e a l  d i f f e r e n t i a l  mo- 
t i o n  by means of a simple mechanical l inkage, i t  is not 
f e a s i b l e  t o  s a t i s f y  a l l  t h e  poss ib le  conditions.  I f  only 
two minimizing conditions are imposed on t h e  s t ick- force  
curve, i t  may be ascer ta ined  t h a t  t h e  d i f f e r e n t i a l  chosen 
i s  reasonably near t h e  l imi t ing  one and, at t h e  s a m e  t i m e ,  
an a r b i t r a r y  choice of two of t h e  geometric parameters of 

98 



N.A.C.A. Technical Note No. 586 

the linkage may be made. 
and the relative radii of the two cranks may therefore be 
left to be dictated by other considerations. 

The spacing of the crank centers 

Figure 5 shows a type of stick-force curve that sat- 
isfies two very simple criterions. First, the slope of 
the curve is zero at the beginning of the deflection; and, 
second, the force is zero at a deflection of the up aileron 
equal to the floating angle. The last criterion is satis- 
fied by arranging for the downgoing aileron to reach dead 
center at this point or, algebraically expressed, 

In order to show how the first of the two criterions 
may be satisfied, it will be necessary to calculate the 
slope of the stick-force coefficient curve at zero def$ec- 
tion (8 = 8N). If there is an infinitesimal displacement 
of the control from neutral, the difference of the mechan- 
ical advantages of the two ailerons will be 

d26 2d e - 
de2 

This difference multiplied by the initial or offset hi'nge 
moment (tho) will give the infinitesimal displacing mo- 
ment at the start of the deflection. The changes of aero- 

dCh and d 6 d r ,  do not con- dCh dynamic hinge moment, d6, 

tribute to this quantity. The restoring or stabilizing 
tendency for infinitesimal deflection is simply 

d6 dch d6 2d €I--- de d6 d0 

Here the infinitesimal changes of mechanical advantages 
play no part. The starting slope of the curve is then 

- dCh Since chO - 6,f this result may be expressed 

e=eN 
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The condition f o r  zero i n i t i a l  slope is  then simply 

(Note t h a t  6uf must now be expressed i n  rad ian  measure.) 

CHARTS FOR SELECTION OF LIMITING DIFFERENTIAL 

It w i l l  be noted t h a t  t h e  only c h a r a c t e r i s t i c  of t he  
a i l e rons  appearing i n  e i t h e r  of t h e  two c r i t e r i o n s  i s  t h e  
f l o a t i n g  angle bUf (neglecting the  implied assumption 
of a s t r a i g h t - l i n e  hinge-moment va r i a t ion ) .  It thus ap- 
pears t h a t  t h e  choice of d i f f e r e n t i a l  as defined by these  
two c r i t e r i o n s  depends only on t h e  f l o a t i n g  angle. With 
t h e  e s s e n t i a l  a i l e r o n  c h a r a c t e r i s t i c s  thus l imi ted ,  i t  
w a s  found f e a s i b l e  t o  make a series of ca l cu la t ions  t h a t  
would show t h e  adjustment of a d i f f e r e n t i a l  necessary t o  
s a t i s f y  both c r i t e r i o n s  f o r  a minimum s t i c k  force.  

Figure 6 shows t h e  r e s u l t s  of such a series of calcu- 
l a t i o n s .  This cha r t  shows d i r e c t l y  t h e  angular s e t t i n g s  
of s t i c k  and a i l e r o n  cranks t o  be used f o r  a given up- 
f l o a t i n g  angle a t  seve ra l  spacings of t h e  crank centers .  
It w a s  assumed t h a t  t he  cranks w e r e  of equal radius.  The 
maximum down-aileron de f l ec t ion  is shown i n  each case and 
i t  is  t o  be noted t h a t ,  i f  t h e  maximum de f l ec t ion  of t he  
upgoing a i l e r o n  exceeds t h e  f l o a t i n g  angle,  t h e  down ai- 
l e ron  w i l l  pa s s  beyond dead center  and r e t u r n  toward neu- 
tral .  Since a d i f f e r e n t i a l  se lec ted  by means of these  
cha r t s  w i l l  give what amounts t o  complete balance a t  t he  
f l i g h t  condition corresponding t o  the  assumed f l o a t i n g  an- 
g l e ,  i t  i s  e s s e n t i a l  t h a t  t h i s  angle be a t  least as l a r g e  
as t h e  maximum encountered i n  f l i g h t ,  which, as might be 
expected, usua l ly  occurs a t  o r  beyond maximum l i f t .  

IMPROVEMENT OF BALANCE AT LOW ANGLES OF ATTACK 

BY MEANS OF A FIXED TAB 

It is evident t h a t  t h e  same degree of balance cannot 
be a t t a ined  a t  a l l  f l i g h t  speeds with any type of d i f f e r -  
e n t i a l ,  inasmuch as the  f l o a t i n g  angle varies. A t  higher 
speeds t h e  degree of balance becomes less and the  con t ro l  
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fo rce  correspondingly g rea t e r .  
however, t h a t  a considerable advantage usua l ly  accures t o  
t h e  d i f f e r e n t i a l  system even at  the  h ighes t  f l i g h t  speeds. 

Calculations have shown, 

Although t h e  p o s s i b i l i t y  of securing complete balance 
at any one f l i g h t  condition does not depend t o  a g rea t  ex- 
t e n t  on t h e  c h a r a c t e r i s t i c s  of t h e  a i l e ron ,  modification 
of these  c h a r a c t e r i s t i c s  can be very e f f e c t i v e  i n  improving 
t h e  balance over a range of f l i g h t  conditions. Thus, an 
a i l e r o n  t h a t  shows only a s m a l l  v a r i a t i o n  of f l o a t i n g  an- 
g l e  over t he  f l i g h t  range w i l l  be nearly i d e a l l y  balanced 
under a l l  conditions. 

Wing-section theory ind ica t e s  t h a t  t he  f l o a t i n g  tend- 
ency of a f l a p  may be characterized by two e f f e c t s ,  namely: 

1 .  A constant f l o a t i n g  tendency due t o  camber of t he  
a i r f o i l  and influenced mainly by t h e  degree of f 

camber near t h e  f l a p  t r a i l i n g  edge. This e f f e c t  
v a r i e s  with t h e  f l a p  chord and i s  measured by the  
f l o a t i n g  angle a t  zero l i f t  of t h e  a i r f o i l .  

2. A f l o a t i n g  tendency varying with angle of a t t a c k  of 
t h e  wing sec t ion .  This e f f e c t  i s  t h e  same f o r  
a l l  a i r f o i l  shapes but v a r i e s  with f l a p  chord. 

It is  t h e  l a t te r  tendency t h a t  i s  s i g n i f i c a n t  i n  causing 
t h e  undesirable increase  i n  s t i c k  force  as the  angle of 
a t t a c k  is  reduced. I n  general ,  t he  v a r i a t i o n  of f l o a t i n g  
angle with angle of a t t a c k  can be reduced by reducing the  
chord of t h e  a i le ron .  This procedure, however, reduces 
t h e  maximum f l o a t i n g  angle i n  proportion so  t h a t  t h e  
change i n  percentage with angle of a t t a c k  remains about 
t h e  same. Wind-tunnel tests show t h a t  a l a rge  constant 
f l o a t i n g  e f f e c t  can be produced by a r e l a t i v e l y  s m a l l  cam- 
ber  of t h e  t r a i l i n g  edge cf t h e  a i l e r o n  (e.g., by a t ab ) .  
The most near ly  i d e a l  arrangement f o r  balance would thus 
incorporate a bent trail ing-edge t ab  with an a i l e r o n  of 
s m a l l  chord. 

Figure 7 shows t h e  v a r i a t i o n  of f l o a t i n g  angle with 
f l a p  chord and angle of a t t ack .  The angles shown w e r e  
computed by finding t h e  moments of t he  pressure  ac t ing  on 
rear por t ions  of Clark Y and N.A.C.A. 23012 wing sec t ions  
(reference 1 and unpublished da ta) .  This procedure gave 
t h e  hinge moments at zero de f l ec t ion  and t h e  f l o a t i n g  an- 
g l e s  w e r e  computed therefrom by using an  e m p i r i c a l  va lue  

of t h e  s lope  of t h e  hinge-moment curve [$ = - 0.0085). 
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Figure 8 shows r e s u l t s  of experiments (reported i n  
reference 2) with a 2.5-percent + 
% a i le ron .  Deflecting t h e  t ab  10' had t h e  e f f e c t  of 
near ly  doubling t h e  maximum f l o a t i n g  angle. The undesira- 
b l e  v a r i a t i o n  of f l o a t i n g  angle with angle of attack, ex- 
pressed i n  terms of percentage of t h e  maximum, decreased 
accordingly. Figure 9 summarizes t h e  r e s u l t s  of some ex- 
periments made with tabs i n  the N.A.C.A. 7- by 10-foot 
wind tunnel. 

t a b  on a 25-percent- 

CALCULATED EXAMPLE 

Some ca l cu la t ions  have been made t o  i l l u s t r a t e  t he  appli-  
ca t ion  of t h e  p r inc ip l e s  discussed. The r e s u l t s  are sum- 
marized i n  f i g u r e  10, which shows t h e  reduction of operat- 
ing  fo rce  t h a t  can be a t t a ined  with a s u i t a b l e  differen- 
t i a l  both with and without a f ixed  tab .  The cha r t  has as 
ord ina te  t h e  r e s u l t a n t  moment c o e f f i c i e n t  ac t ing  a t  t h e  
control-st ick crank divided by t h e  l i f t  c o e f f i c i e n t  
-cch/cL. This quant i ty  is  taken as a measure of t h e  oper- 

a t i n g  force.  Division by the  l i f t  c o e f f i c i e n t  is  made t o  
take  account of t h e  increase  i n  dynamic pressure  corre- 
sponding t o  a reduction i n  angle of a t t a c k  of s teady  
f l i g h t .  The absc issa  represents  a measure of t h e  deflec- 
t i o n  of t h e  con t ro l  and is t h e  computed angle of bank 
t h a t  a s m a l l  average a i rp l ane  (1,600 pounds) would a t t a i n  
i n  1 second a f t e r  t h e  instantaneous p a r t i a l  de f l ec t ions  
of t h e  a i l e r o n s  thus  indicated.  Such a conversion was  
necessary i n  order t o  compare equal up-and-down deflec- 
t i o n s  with var ious  degrees of d i f f e r e n t i a l  movement of t h e  
a i l e r o n s  on an impar t i a l  bas i s .  Such de f l ec t ions  are thus 
measured by t h e  banking e f f e c t  they produce. The compu- 
t a t i o n  of banking e f f e c t  is given i n  re ference  3 by a sim- 
p l e  formula, 

where [?) , etc., are constants 5or a given a i r p l a n e  at  

a given f l i g h t  speed. The curves of a i l e r o n  hinge moment 
given i n  f i g u r e  8 w e r e  used and d a t a  on t h e  ro l l ing-  and 
yawing-moment c o e f f i c i e n t s  w e r e  taken from reference  4. 
A s  no l i m i t  w a s  set on t h e  maximum d e f l e c t i o n  of t h e  con- 
t r o l  and no gearing r a t i o  of t h e  con t ro l  s t i c k  t o  t h e  
s t i c k  crank of t h e  d i f f e r e n t i a l  w a s  assumed, t h e  values 
given are only comparative. The maximum degree of con t ro l  
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usua l ly  shown by a i rp l anes  of this s i z e  corresponds t o  
41 = 20" o r  25" a t  a l i f t  coe f f i c i en t  of 1.0. 

The top p a i r  of curves of f i g u r e  10 w a s  computed f o r  
equal up-and-down a i l e rons  without balance of any kind. 
The middle p a i r  of curves shows t h e  degree of balance t h a t  
can be a t t a ined  by a d i f f e r e n t i a l  l inkage without modifica- 
t i o n  of t h e  a i l e r o n  f l o a t i n g  c h a r a c t e r i s t i c s .  The d i f f e r -  
e n t i a l  l inkage  w a s  s e l ec t ed  with t h e  a i d  of t h e  cha r t  ( f ig .  
6).  A crank spacing of four  t i m e s  t h e  crank rad ius  
1/4) w a s  assumed. The f l o a t i n g  angles of t h e  a i l e r o n  
without t h e  t a b  are indica ted  i n  f i g u r e  8. Since t h e  max- 
imum f l o a t i n g  angle i n  t h i s  condition w a s  only 12", t h e  
downward de f l ec t ion  of the  a i l e r o n s  w a s  l imi ted  t o  s l i g h t -  
l y  under 5". (See f i g .  6.) Thus a r e v e r s a l  of t h e  motion 
of t h e  down a i l e r o n  occurred a t  t h i s  angle. Further de- 
f l e c t i o n  of t h e  system then gave reduced con t ro l  effec- 
t iveness  and r e su l t ed  i n  t h e  sharp upward sloping of t h e ,  
s t ick- force  curve (CL = 1.0) t h a t  is  apparent near $1 = 
22". It appears t h a t ,  i n  general ,  t h e  b e s t  r e s u l t s  w i l l  
be obtained when t h e  maximum de f l ec t ion  permitted does not 
g r e a t l y  exceed t h i s  r eve r sa l  point.  

(R = 

The bottom p a i r  of curves of f i g u r e  10 g ives  an indi-  
ca t ion  of t h e  remarkable e f f e c t  of a s m a l l  f i xed  tab. The 
t a b  and d e f l e c t i o n  assumed (2.5 percent wing chord, down 
10") would g ive  t h e  t r a i l i n g  edge of a 5-foot-chord wing 
a downward displacement of only 1/4 inch. This modifica- 
t i o n  served t o  increase  t h e  maximum f l o a t i n g  angle of t h e  
a i l e r o n s  from 12" t o  ZO", thereby permitt ing t h e  use of a 
d i f f e r e n t i a l  with a g rea t e r  maximum downward def lec t ion .  
It w i l l  be noted, i n  addi t ion ,  t h a t  t h e  s t i c k  fo rce  re- 
quired f o r  con t ro l  a t  high speed 

less, and is  a l s o  more nea r ly  coincident with t h e  fo rce  
required a t  low speed 
t h e  unmodified a i l e rons .  The b e n e f i c i a l  e f f e c t  of a f ixed  
t a b  would be expected t o  be even more apparent i n  t h e  case 
of narrow-chord a i l e rons .  

(% = 0.35) is  much 

(CL = l . O ) ,  than w a s  t h e  case wi th  

Inasmuch as t h e  f l o a t i n g  angles corresponding t o  15" 
angle of a t t a c k  ( f ig .  8) w e r e  used i n  t h e  s e l e c t i o n  of t he  
d i f f e r e n t i a l s ,  t h e  con t ro l  w i l l  begin t o  show overbalance 
a t  t h i s  angle of a t t ack .  The form of t h e  curves of s t i c k  
f o r c e  aga ins t  de f l ec t ion  w i l l  be s i m i l a r  t o  those given 
but t h e  curve w i l l  l i e  more nea r ly  along t h e  ax is .  

One d i f f i c u l t y  t h a t  might arise i n  p r a c t i c e  w a s  
brought ou t  i n  t h e  sample computation given. Here, i n  the  
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case of t h e  a i l e r o n  without t h e  t ab ,  t h e  maximum upfloat-  
ing angle w a s  less than the  maximum angle of de f l ec t ion  
t h a t  might be required f o r  control.  
i n  t h i s  case, reverse  i t s  motion before  t h e  maximum de- 
f l e c t i o n  of t h e  con t ro l  s t i c k  is  reached. It w a s  observed 
i n  t h e  computation t h a t  t h e  st ick-force curve rose  sharply 
a f t e r  t h i s  d e f l e c t i o n  w a s  reached, showing t h a t  f u r t h e r  
de f l ec t ion  of t h e  system w a s  i n e f f i c i e n t .  The d i f fe ren-  
t i a l  se lec ted  on t h e  b a s i s  of t h e  given assumptions w a s  
such as t o  impose a minimizing condition a t  t h i s  def lec t ion .  
It is  evident t h a t  a s l i g h t l y  d i f f e r e n t  l inkage might g ive  
b e t t e r  r e s u l t s  a t  higher de f l ec t ions ;  hence i t  might have 
been b e t t e r  t o  have chosen a d i f f e r e n t  c r i t e r i o n .  I n  such 
a case i t  would be advisable t o  make several tr ial  compu- 
t a t i o n s ,  assuming f i c t i t i o u s  f l o a t i n g  angles higher than 
t h e  a c t u a l  angle. The d e s i r a b i l i t y  of keeping t h e  maximum 
de f l ec t ion  of t h e  s t i c k  cranks low should be e spec ia l ly  em- 
phasized. Since the  maximum angular t r a v e l  of t h e  c h t r o l  
s t i c k  o r  wheel is n a t u r a l l y  l imi ted ,  a l a r g e  de f l ec t ion  of 
t he  s t i c k  crank of t h e  d i f f e r e n t i a l  means t h a t  t h e  p i l o t  
w i l l  have t o  opera te  t h e  system a t  a l a r g e  mechanical d i s -  
advantage. When a d e f l e c t i o n  such t h a t  t h e  down a i l e r o n  
reverses  i t s  motion is  reached, f u r t h e r  de f l ec t ion  does 
not cause t h e  con t ro l  r o l l i n g  moment t o  increase  very rap- 
i d ly ;  hence a r e l a t i v e l y  l a r g e r  maximum de f l ec t ion  w i l l  be 
needed f o r  t h e  r e q q i s i t e  amount of con t ro l  than would be 
t h e  case i f  t h e  r e v e r s a l  d id  not occur. 

The down a i l e r o n  w i l l ,  

Wind-tunnel experiments show t h a t  t h e  f l o a t i n g  angles 
of a i l e rons  are considerably influenced by i n s i g n i f i c a n t  
d e t a i l s  of construction. It is d i f f i c u l t ,  f o r  ins tance ,  
t o  e s t a b l i s h  any d e f i n i t e  r e l a t i o n  between t h e  f l o a t i n g  
angle and t h e  chord of a f l a p  from small-scale wind-tunnel 
observations. The presence of a gap between the  a i l e r o n  
and wing a f f e c t s  t h e  f l o a t i n g  angle and is a l s o  known t o  
be decidedly de t r imenta l  t o  cont ro l .  Furthermore, motions 
of t h e  a i rp l ane  such as r o l l i n g  o r  s ides l ipp ing  a f f e c t  t h e  
pressure on t h e  a i l e r o n s  and thereby change t h e  ac t ion  of 
t h e  d i f f e r e n t i a l  t o  some exten t .  I n  view of these  consid- 
e ra t ions ,  it would s e e m  advisable t o  incorporate i n  d i f f e r -  
e n t i a l  a i l e r o n s  e i t h e r  an ad jus tab le  t ab  o r  a deformable 
t r a i l i n g  edge so  t h a t  unpredictable de fec t s  of t h e  system 
may be remedied during t r ia l .  

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley F ie ld ,  V a . ,  November 13,  1936. 
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Bigure 1.- Plot of aileran hinge-moment coefficient 
showing work of deflection. 
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Figure 5.- Type of curve that satisfies simple criterions 
for minimum stick force. 
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0 .1 .2 .3 .4 
Ca - Flap chord 
cvJ Wing chord 
- -  -_I_ 

Figure 7.- Floating angles of f laps  of different chords 
computed from pressure- distribution measurements. 
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Figure 8.- Hinge-moment coefficients of aileron with tab. 
(raference 2). 
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Figure 9.- Zffect of tabs on aileron floating angles at small 
deflections (6t < 15') ; 7 by 10 foot wind tunnel experiments. 
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Figure 10.- Example showing reduction of stick force 

The e f f ec t  of  a tab deflectec? downward t o  increase the 
f l o a t i n g  angle is &IS3 shown. 

accomplished by su i tab le  d i f f e ren t i a l .  
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RESUME AND ANALYSIS OF N. A. 6. A. LATERAL CONTROL RESEARCH 
By FRED E. WEICK and ROBERT T. JONES 

SUMMARY 

An analysis of the principal results of recent N. A .  C. A. 
lateral control research is  made by utilizing the experience 
and progress gained during the course of the investigation. 
Two things are considered of primary importance in 
judging the effectiveness o f  diferent control devices: The 
(calcuhted) banking and yawing motion o f  a typical small 
airplane caused by a deJlection of the control, and the stick 
force required to produce this dejlection. The  report in- 
cludes a table in which a number of different lateral control 
devices are compared on these bases. 

Experience gained while testing various devices in 
Jlight with a Fairchild 22 airplane indicated that, follow- 
ing a sudden deJlection of the control at low speed, an  
angle o f  bank of 15" in 1 second represented a satisjactory 
minimum degree of effectiveness for  this size of airplane. 
Some devices capable o f  giving this degree of control were, 
however, considered to be not entirely satisfactory on ac- 
count o f  sluggishness in starting the motion. Devices 
located near the trailing edge of the wings had no detectable 
sluggishness. Lateral control forces considered, desirable 
by the test pilots varied f r o m  2 to 8 pounds; 16 pounds was 
considered excessive. 

Test Jlights demonstrated that satisfactory lateral control 
at high angles of attack depends as much on the retention o j  
stability as on aileron effectiveness. 

The  aerodynamic characteristics of plain sealed ailerons 
could be accurately predicted by a modifiation of the 
aerodynamic theory utilizing the results of experiments 
with sealed jlaps. straight narrow-chord sealed ailerons 
covering 60 to 80 percent o f  the semispan represented about 
the most escient arrangement of plain unbalanced ailerons 
from cons&rations of operating force. The stick force of 
plain ailerons can be effectively reduced by the use of a 
dijerential linkage in conjunction with a small $xed tab 
arranged to press the ailerons upward. 

INTRODUCTION 

In 1931 the Committee started a systematic wind- 
tunnel investigation of lateral control with special 
reference to the improvement of control at  low air 
speeds and a t  high angles of attack. Many different 
ailerons and other lateral control devices have been 
subjected to the same systematic investigation in the 
7- by 10-foot wind tunnel. (See reference 1.) The 

devices that seemed most promising were tested hi 
flight (references 2 aud 3). In many cases, however, 
devices that produced what seemed to be satisfactory 
rolling moments and favorable yawing moments did 
not give satisfactory control. 

An analytical study of control effectiveness was 
therefore made (reference 4) taking into account a 
number of secondary factors, including the yawing 
moments produced by the controls, the effect of the 
controls on the damping in rolling, the lateral-stability 
derivatives of the airplane, the moments of inertia, and 
the time required for the control moments to become 
established after the deflection of the surfaces. The 
computations consisted of step-by-step solutions of the 
equations of rolling and yawing motion for the condi- 
tions following a deflection of the controls. The results 
of these computations based on aerodynamic data ob- 
tained from wind-tunnel tests of wings incorporating 
various devices agreed satisfactorily with the results 
measured in flight for widely different forms of control, 
such as ailerons and spoilers. 

The study of conditions above the stall indicated 
that satisfactory control could not be expected without 
some provision to maintain the damping in rolling and 
that a dangerous type of instability would arise if the 
damping were insufficient. Since damping in rolling 
depends on an increase in the lift of the airfoil with 
increasing angle of attack, it follows that, in order to 
obtain satisfactory lateral control, the outer or tip por- 
tions of the wing, which govern the rolling moments, 
must remain unstalled. If damping in rolling is re- 
tained, it is practically insured that control moments 
will be retained as well. 

The progress of the investigation has thus led to a 
more accurate interpretation of the results of the wind- 
tunnel tests. In the present paper the experience 
gained during the c o m e  of the investigation is made 
the basis of a revised method of comparison of lateral 
control devices. Wind-tunnel measurements of control 
and stability factors (reference 1) are utilized in coni- 
putations to show the banking and yawing motions 
that would be produced by the controls acting on a 
small typical airplane. These computations follow the 
method of analysis given in reference 4. In section I of 
the report the new basis of comparison is explained and 
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a number of the devices that were tested in reference 1 
are analyzed and compared. The principal items of 
comparison are collected into a table. Section I1 
presents an analysis of the rolling, yawing, and hinge 
moments of plain flap-type ailerons and deals with the 
application of these data in the design of control 
systems. 

I. COMPARISON OF LATERAL CONTROL 
DEVICES 

REVISED BASIS OF COMPARISON 
AIRPLANE USED IN COMPAEIISON 

The procedure adopted in the lateral control investi- 
gation has comprised a wind-tunnel test program fol- 
lowed by fhght tests of the different devices on the 
Fairchild 22 airplane. Not all of the devices tested 
in reference 1 have been tried in flight, however, and 
the present report may be considered an analytical 
extension of the flight-test procedure that was applied 
to some of the devices. The procedure employed to 
test lateral controls in flight is simulated by means of 
computation. Thus, the comparative criterions used 
herein are based on application of the devices to a hypo- 
thetical Fairchild 22 type of airplane, which is the type 
used in the fhght tests. 

The Fairchild 22 airplane was necessarily somewhat 
modifled for each different flight test and wings of differ- 
ent moment of inertia, plan form, and section were 
used in some cases. The wing of the hypothetical air- 
plane assumed in the computations represents an aver- 
age of the tested wings. Furthermore, since the char- 
acteristic ratios of dimensions (tail length, tail area, 
radii of gyration about various axes, etc.) used agree 
very closely with statistical averages of these quanti- 
ties, the assumed airplane may be considered to embody 
average stability characteristics. The principal charac- 
teristics of the assumed airplane are as follows: 

Weight, W ____._._..._... .. .._.______ 1,600 lb. 
Wing span, b ______________._...______ 32 ft. 
Wing area, S __.___________.__________ 171 sq. ft. 
Wing loading, W/S _.__ - - - - - - - - - - - - - -. - 9.4 Ib. per sq. ft. 
Area of fin and rudder _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  10.8 sq. ft. 
Tail length ___.__.___..._.____________ 14.6 ft. 
I= _ _ _ _ _  - - - - - - - _ _  - -. . -. - -. - _ _  - - - - 1,216 slug-ft.' 
Iz _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  1,700 8lug-ft.a 

ROLLING ACTION 

It is recognized that different types of airplanes re- 
quire different amounts of control. At the start of 
the wind-tunnel investigation of lateral control devices 
(reference 1) a rolling criterion (RC= C,/CL) represent- 
ing a conservative lower liiit of rolling control for all 
types was assumed. The assumed satisfactory value 
of the rolling criterion was 0.075, which corresponds to 
a lateral movement of the center of pressure of 7.5 
percent of the wing span. Recent experience indicates 
that this value is likely to be ample for any condition 
of fllght that might be encountered and is therefore a 

desirable value to attain. Where a compromise must 
be made between the rolling moment and some other 
characteristic of the control system, particularly the 
control force, a decidedly lower valueof the rolling 
criterion may be used. It appears that a value pos- 
dbly as low as half the original one may be found 
reasonably satisfactory for practically all conditions of 
sight with nonacrobatic airplanes. 

The criterion of rolling control used in the present 
analysis is the angle of bank attained in 1 second fol- 
lowing a sudden deflection of the control. This criterion 
shows the actual amount of motion produced and 
depends on both the acceleration at  the start and the 
final rate of roll. It includes the effect of yawing 
moment given by the control as well as the stability 
characteristics and moments of inertia of the airplane. 
The values of the criterion are found by computation 
and as such are applicable only to the particular type 
of airplane (F-22) that has been assumed. 

Experience gained in flight tests of the Fairchild 22 
airplane with various lateral control devices indicated 
a minimum satisfactory amount pf rolling control cor- 
responding to about 15' of bank in 1 second. (See 
fig. 1.) Ailerons capable of giving this amount of bank 

FIGURE l.-Banking of Fairchild 22 airplane after sudden deflection of lateral oon- 
trol devices at low speed. (The narrow plain ailerons and the retractable ailerons 
were considered to give a satisfactory amount of control; the floating-tip ailerons 
were reported as weak.) 

at low speed have been found reasonably satisfactory 
in practice with this type of airplane. Owing to the 
present general use of high-lift flaps on airplane wings, 
the size and deflection of ailerons are usually deter- 
mined by the low-speed condition of flight witb the 
flaps deflected. For comparative computations, in the 
present report, a lift coefficient of CL=1.8 is assumed as 
representative of the low-speed condition of flight with 
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flaps. The sizes or deflections of the lateral controls 
are selected in each case to give an angle of bank of 15’ 
in 1 second a t  CL=1.8. 

In addition to providing a suflicient amount of bank- 
ing motion, two further desirable characteristics of the 
rolling action are: (1) The response of the airplane in 
roll to any movement of the lateral control surface 
should be immediate, any noticeable delay or hesitac 
tion in the action being objectionable; and (2) the 
action should be so graduated that the acceleration and 
maximum rate of roll increase smoothly and regularly 
as the stick deflection is increased. Conventional 
ailerons or similar lateral control devices located near 
the trailing edge of the Wing easily meet these require- 
ments and show, in analyses of motions recorded in 
flight, practically instantaneous response of rolling 
acceleration to control-surface movement. From 0.1 
to 0.2 second is ordinarily required to deflect the 
surfaces and, during this interval, the rolling accelera- 
tion apparently keeps pace, although only a slight 
amount of rolling motion is accumulated by the time 
of full deflection. Comparison shows that good 
synchronization of the calculated motion with the flight 
records was obtained when the assumed full deflection 
was taken a t  the instant the actual deflection reached 
half its ultimate value. This assumption was used 
in the computations for plain ailerons and other 
devices t,hat gave no indication of sluggish rssponse 
characteristics. 

CONTROL FORCE 

During the course of the lateral control investigation 
it became apparent that the force required to move tht 
controls is of extreme importance in obtaining satisfac- 
tory lateral control. As shown by the flight tests oj 
references 2 and 3, an airplane that requires a lighl 
control force is likely to seem more controllable to a 
pilot than one that requires a heavy control force, ever 
though with full deflection the heavier control may bt 
considerably more powerful than the lighter one. 11 
seems desirable to have the control force as light as pos 
sible and yet to maintain the feeling of a definite new 
tral position. This characteristic is especially impor. 
tant in the aileron control since the effort expended ir 
moving the stick sidewise is relatively greater than foi 
other control movements. (See reference 5.) Correla. 
tion of test-flight reports and control-force records indi. 
cates that the forces required to operate the aileron2 
should not exceed about 8 pounds in order to be con. 
sidered desirable. A lower limit of stick force of aboui 
2 pounds a t  full deflection is apparently considerec 
essential so that there may be a noticeably regulatec 
increase of force with deflection. Friction of the con 
trol mechanism plays an increasingly important pari 
as the operating force is reduced and should in no cast 
be great enough to mask the “feel” of the control. I 
is probabIe that with sufficiently little friction a forcc 
not greatly in excess of 2 pounds would be considerec 
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nost desirable. A force of 15 pounds is to be consid- 
red excessive. 

As previously stated, the size or maximum deflection 
I f  the control devices compared in this paper have 
Ieen selected to give an angle of bank of 15’ in 1 sec- 
md following full deflection and, considering the aver- 
tge airplane fitted with a high-lift flap and flying at a 
ift coefficient of 1.8, the ailerons are compared (see 
#able I) on the basis of the stick force required to 
tttain this angle of bank of 15’ in 1 second at  lift 
:oefficients of 0.35, 1.0, and 1.8, which compose the 
isual flight range. The lift coefficient of 0.35 repre- 
ients the conditions of high-speed and cruising flight. 
Fhe lift coefficient of 1.0 is considered to represent two 
:onditions, the first being that of low-speed Gght with- 
)ut a flap, such as is used in an approach to a landing 
Kith an unflapped airplane, and the second being one 
Kith a flap fully deflected, which represents as high a 
;peed as is usually attained in that condition. The 
ralue C,=1.8 can be obtained only with the flap de- 
lected and represents the low-speed flight condition 
Kith the high-lift device in use. Whqn representative 
d u e s  of this nature are used, it is necessary to exam- 
ne the complete original data to show that the critical 
d u e s  are representative of conditions throughout the 
light range. Such an examination has been made for 
;he comparisons of the present report. 

The stick force for a 15’ bank in 1 second is used as 
the basis of comparison at  all flight speeds and lift co- 
3fficients even though the conventional ailerons will 
produce a decidedly greater bank in 1 second at  higher 
3peeds. The 15’ value is taken throughout because it 
is considered to represent the maximum control likely 
to be used in ordinary flight at  any speed and is there- 
[ore of greater interest as a basis for stick forces re- 
pired than the maximum possible deflection, as long 
BS the force at  maximum deflection does not approach 
the strength of the pilot‘ 

The data for some of the ailerons were obtained with 
plain unflapped wings with which a lift coefficient of 1.8 
could not be attained and, in order to have all the 
lateral control devices on a comparable basis whether 
mounted on flapped or unflapped wings, their sizes and 
maximum deflections were selected to give essentially 
the same rolling effect as the others at a lift coefficient 
of 1.0. The analysis showed that conventional ailerons 
which give an angle of bank of 15’ in 1 second on a 
flapped wing a t  a lift coefficient of 1.8 could, when 
fully deflected, give an angle of bank of 22.5’ with the 
flap retracted a t  a l if t  coefficient of 1.0. The ailerons 
on the unflapped wings were therefore selected to be 
capable of giving 22.5’ bank in 1 second at  a lift co- 
efficient of 1.0, but the values of the stick forces required 
were computed for partial deflections giving a 15’ bank 
in 1 second a t  lift coefficients of both 1.0 and 0.35. The 
&st aileron of table I is of the conventional unbalanced 
flap type on a rectangular wing of aspect ratio 6. It 
has a chord 0.25 e ,  and a span 0.40 b12 and has equal 
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up-and-down linkage. It wi l l  be noted that, for an air- 
plane equipped with these ailerons, the stick force com- 
puted for a 15O bank in 1 second at the cruising-flight 
condition is 4.7 pounds with aileron deflections of only 
f3.4O. At a lift coefficient of 1.0, representing the low- 
speed flight condition for the unflapped wing, the same 
amount of control was obtained with a stick force of 
3.6 pounds and aileron deflections of f7.4O. All the 
stick forces are given for an assumed aileron linkage 
such that at the maximum deflection the control stick, 
which has a length of 20 inches on the Fairchild 22 
airplane and is so assumed for the average airplane, is 
deflected 25O from neutral. The maximum aileron 
deflection is 11.2O and is the deflection required to 
produce a bank of 22.5’ in 1 second at CL=l.O. Here 
the ailerons are not being taxed to their fullest extent. 

The maximum amount of control specified in a design 
has a predominating effect on the operating force. 
Figure 2 shows a calculated example of the variation of 

Mffximum anqfe of bonk h I sec, AMs, deg. 
FIGURE 2.-Relation between stick force and maximum amount of control obtained. 

sealed ailerons deflected f20”; aileron chord Fairchild 22 type sirplane; 0.80 
varied. 

operating force with specified control in which it was 
assumed that ailerons with equal up-and-down motion 
and the most efficient length and deflection ( & Z O O )  

were used in each case. The rate of increase of operating 
force with amount of control depends on the manner 

in which the increase of control is obtained, as will be 
more fully developed in a later section. 

YAWING MOTION AND SIDESLIP 

The effect of the yawing moment produced by the 
ailerons is considered in two ways. First, the secondary 
effect of yaw on the rolling motions is inherently in- 
cluded in the computed banking effectiveness. Thus, 
the bank in 1 second is that produced by the ailerons 
without aid from the rudder. If it is assumed that a 
sufficiently powerful rudder were used in such a way 
as to prevent sideslip, a given aileron device would, 
in general, produce a somewhat greater banking effect. 
This assumption is not used here, however, and the 
deflections of the control surfaces given in table I are 
those required to produce the specified angle of bank in 
1 second with the particular combination of rolling and 
yawing moments produced by the aileron in question. 

The second effect considered is the sideslip produced 
by the sudden use of the aileron control for banbing. 
In flight the rudder is used to avoid sideslipping and 
the amount of rudder action necespary for this purpose 
is in direct proportion to the sideslip incurred by the 
ailerons alone. 

The angle of sideslip accompanying a 15O bank in 1 
second following the sudden displacement of the lateral 
controls is also given in table I. The first aileron 
listed, it wil l  be noted, produces a sideslip of 7 O  at CL= 
1.0 and of 3O at CL=0.35 when the rudder is not used 
to correct for this condition. 

LATERAL STABILITY 

In the ordinary unstalled-flight range the effects of 
the lateral-stability factors on the lateral control ob- 
tained are included in the computations of the angle of 
bank reached in unit time. The angle of bank 4, is the 
angle that would be produced by the control operating 
on the average airplane. The effect of a given control 
on an airplane of greatly different lateral-stability 
characteristics might, of course, be considerably different 
than indicated in this case. 

One of the most important factors in the interaction 
of lateral stability and control below the stall is the 
effect of the secondary yawing moment induced by the 
control and an allowance for this effect should be made in 
the proportioning of the airplane for lateral stability. 
Modifications that tend to increase spiral stability in 
free flight (namely, reduced vertical-fin area and in- 
creased dihedral) tend to render the airplane uncon- 
trollable under the action of ailerons giving adverse 
yawing moment. The degree of “weathercock” stability 
should be sufIicient to restore the airplane from a yawed 
attitude when the wings are held level by use of the 
ailerons. For safety in this respect the ratio of adverse 
yawing to rolling moment given by the ailerons should 
not be allowwl to approach the ratio of yawing to roll- 
ing moments that naturally act on the airplane either 
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in pure sideslipping or pure yawing motion. (See 
reference 6.) 

One of the lateral-stability factors, the damping in 
rolling, has been shown by the analysis in reference 4 to 
have a critical effect on the controllability obtained, 
satisfactory lateral control requiring that positive damp- 
ing exist. Since the damping in rolling depends on a 
positive slope of the left curve, the damping exists only 
at  angles of attack of the outer portions of the wing that 
are below the maximum lift coefficient. While some 
semblance to control may be obtained at  angles of 
attack above the stall if controls giving favorable yaw- 
ing moments as well as sufsciently powerful rolling 
moments are used, the instability associated with 
uneven stalling and autorotation is so violent that it is 
necessary for the pilot to use the controls continually to 
keep the airplane near the desired attitude. If s a -  
ciently rapid rolling is once started, either by the controls 
themselves or as the result of gusty air, it cannot be 
stopped. The angle of attack at which the damping in 
rolling becomes zero and above which autorotation takes 
place   CY^,=^) is used herein as an indication of the 
limit of the flight attitude above which satisfactory 
lateral control cannot be obtained. This value was 
given in the reports of reference 1 for both the angle of 
attack at which autorotation was selfstarting and the 
angle of attack at which the damping became zero when 
the wing was rotating at the rate pb/2V=0.05, a value 
representative of the rolling likely to be caused by gusty 
air. The latter value of CY has ordinarily been found to be 
about lo lower than the former value and, being there- 
fore more decisive, is used in the present report. The 
difference between the angle of attack for zero damping 
and the angle of attack for the maximum lift coefficient 
of the entire wing (CYL,=O-LYC,,,~.) has been tabulated 
under Lateral Stability to show whether the maximum 
lift coefficient can be expected to be reached in flight 
before satisfactory lateral control is lost. It wil l  be 
noted that for ailerons 3 and 4 the wing loses its damp- 
ing in roll at an angle of attack lo higher than that at 
which the maximum lift coefficient is reached. Thus, as 
far as the stabilitJT is concerned, lateral control should 
be possible throughout the entire unstalled-flight range, 
including the angle of attack for maximum lift coeffi- 
cient. 

WING PERFORMANCE CHARACTERISTICS 

The same criterions used throughout the reports of 
reference 1 to show the relative performance character- 
istics of the wings are used in the present report and 
are tabulated in the last three columns of table I. 
The maximum lift coefficient CL,., is given as an 
indication of the wing area required for a desired mini- 
mum speed. The ratio CL,JCb,,m is an indication of 
the speed range and, for a given minimum speed, shows 
the relative effects of the wings on the maximum speed 
attainable. The ratio LID taken at a value of the lift  
coefficient CL=0.70 is an indication of relative merit in 

climbing flight. In a series of performance computations 
made for airplanes of different wing loadings and power 
loadings and with both plain and slotted wings, this 
criterion was found to be satisfactory throughout the 
entire range. It should be noted that the comparative 
values used in the present report are baaed on tests made 
in the 7- by 10-foot atmospheric wind tunnel and hence 
do not coincide in absolute value with results of testa 
made at Merent Reynolds Numbers. 

APPLICATION TO AIRPLANES OF DIFFERENT SIZES AND LOADINGS 

Because the ilight experience that led to the specs- 
cation of a satisfactory degree of control was restricted 
to the Fairchild 22 type of airplane, there is some doubt 
about the application of this experience to other types 
and especially to large or very small airplanes. The 
Fairchild 22 type of airplane, of course, serves as well 
as any other when different aileron devices are simply 
compared among themselves. The principles govern- 
ing the extension of the computations of motion to 
geometrically similar airplanes of dserent sizes and 
loadings are well known and can be applied here, but 
this extension of the computations does not definitely 
answer the question as to what constitutes a satisfactory 
degree of control for large (or very small) airplanes. 

According to the principles of dynamical similarity, 
large or small similar airplanes of the same wing loading 
would show the same linear rise and fall of the wing 
tips(%) during a 1-second banking motion. Large 
and small airplanes do actually show a tendency toward 
similarity in important dimensions and size of control 
surfaces, and it seems logical to assume that a given 
value of the vertical distance described by the wing 
tips within 1 second following a sudden control deflec- 
tion that represents a satisfactory amount of control 
for the Fairchild 22 airplane should be satisfactory for 
any size of airplane. 

For similar airplanes the linear distance described 
by the wing tips in banking (q) is independent of 
the size. Figure 3 shows this distance plotted against 
wing loading and gives the separate effects of rolling 
and yawing moments of coefficient 0.01 at different 
lift coefficients. The banking effect of any combination 
of rolling and yawing moment may be found by 
superposition, i. e., 

The ordinates of the figure give directly the circum- 
ferential displacement of the wing tip in feet for a 
unit of 0.01 rolling- or yawing-moment coefficient. 
It is important to note that the banking effects of 
rolling and yawing moments can be separately con- 
sidered and later added in any desired proportion to 
obtain the totaI combined effect. 
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The computations show that, in general, smaller 
values of the control-moment coefficients are required 
to produce a given wing-tip displacement in a unit of 
time for the more heavily loaded airplanes. Another 
point of interest in connection with the secondary 
adverse yawing moments produced by conventional- 

Wing /oadinq, /b.per sq. fl. 
FIQURE 3.-Wing-tip displacement produced in 1 second by suddenly applied rolling 

and yawing moments for difIerent wing loadiis  and flight speads. 
&blb,(l. (&b) +? (&!b) 
2 0.01 2 C+P, 001 2 c.40, 

type controls is that these moments are more effective 
in hindering the control with lightly loaded airplanea 
than with heavily loaded ones. Note that in the usual 
case the banking effect of the yawing moment is to be 
deducted in equation (1) since this moment is usually 
adverse and therefore negative. 

The variation of control force with size and loading 
of the airplane may be determined from general rules 
as in the case of the variation of the amount of rolling 
motion. As shown by figure 3, heavily loaded air- 
planes require smaller control-moment coefficients for 
a comparable amount of control than do lightly loaded 
airplanes. In general, a heavily loaded airplane that 
is othetwise similar to a lightly loaded one will have 
smaller control surfaces. On the other hand, the heav- 
ily loaded airplane will fly a t  a higher speed so that the 
dynamic pressure will be greater. Figure 4 shows a 
calculated example of the variation of stick force with 
wing loading at  a given lift coefficient and for a given 
maximum amount of control. Here, as in figure 2, 
the most efficient combination of size and deflection 

is assumed for each point. Figure 4 shows that the 
stick force required to obtain a given angle of bank in 1 
second is practically the same for all wing loadings up 
to 10 pounds per square foot but that it increases 
somewhat as the wing loading increases further. 

With moderately large airplanes, somewhat higher 
stick forces are apparently tolerated by pilots without 
serious objection. With extremely large airplanes, 
however, the operating force becomes too great to be 
satisfactorily overcome by the pilot and either servo 
controls or auxiliary power is required. With auxil- 
iary power, the pilot might presumably operate a valve 
or easily deflected controller governing a special power 
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FIQURE 4.--Relstion hetween the wing loading and the stick force required for a 
given amount of control ( + 1 ~ , , = 2 2 5 ~ ;  C~=1.0). 

source that deflected the control surfaces. Under such 
conditions the magnitude and variation of the hinge 
moments would be relatively less important and the 
maximum deflection of the control surfaces would 
very likely be determined by the maximum rolling and 
yawing moments they could produce rather than by 
the hinge moments and the resultant deflecting force 
required. Although some indication of the relative 
performance of the various lateral control devices 
compared in this reporti can be obtained from the data 
as given, it would be desirable to reanalyze the original 
data given in references 1, 7, 8, 9, and 10 if a compari- 
son on the basis of ailerons operated by auxiliary power 
were desired. 

COMPARISONS OF VARIOUS DEVICES 
PLAIN AILBRONS 

Effect of aileron and wing plan form.-The tests of 
reference 1, part I, were made with rectangular wings 
having ailerons of three different proportions: 0.25 e ,  
by 0.40 612 (which were taken as the standard for 
comparison throughout the series), 0.15 c, by 0.60 b/2,  
and 0.40 c, by 0.30 b/2.  These sizes were selected to 
give approximately equal rolling moments with the 
same angular deflection. These ailerons are numbered 
2, 3, and 4, respectively, in table I. With equal 
up-and-down deflection, the stick force is much larger 
for the short, wide ailerons than for the long, narrow 
ones and is, in each case, slightly less for the low-speed 
condition than for high speed. If a suitable differential 
linkage is empioyed, the stick forces at the low-speed 
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condition, where the wide ailerons have the advantage 
of a large floating angle, are quite low for all three 
sizes of aileron. At the high-speed condition, however, 
the 0.40 e, by 0.30 b/2 aileron requires a rather high 
stick force, even with the best differential. 

The sideslip incurred by an a q l e  of bank of 15O in 
1 second is not greatly different for the different aileron 
plan forms either with or without differential linkages. 
The values are sIightly lower at  CL=l .O with the differ- 
ential linkages than with the equal up-and-down, and 
with the 0.25 c, by 0.40 b/2 plan form than with either 
of the others. 

It is possible by methods to be described in section 11 
to compute an optimum size of the aileron, i. e., the size 
giving the desired amount of control with the least stick 
force. The effect of varying the aileron span and chord 
is shown in figure 5, the chord for each span value being 

FIGWE 5.-Variation of stick force with aileron span. AiIeron chord proportioned 
to give +I,_=zL50 with maximum deflection of 335'' and 33"; rectangular wing, 
sveragbairplsne; C~=l.0; sealed aiirons. 

the smallest that will give an angle of bank of 15O in 1 
second with the assumed average airplane. From this 
figure it is apparent that with equal up-and-down deflec- 
tion an aileron span of 80 percent of the wing semispan 
will give the lowest stick force, but the variation is small 
for ailerons between 60 percent and 100 percent of the 
wing semispan. Other computations not shown lead 
to the same conclusion for ailerons having differential 
linkages. 

The relations of aileron chord and span, considering 
especially that the hinge moment increases with the 
square of the chord while the rolling moment increases 
only as the square root of the chord, are such that lower 

1822-37-2 

3tick forces are obtained with narrower chords. The 
narrower ailerons require greater deflections and the 
reduction in chord size is limited by the fact that 
deflections greater than about f20°  are inefficient. 
Marked separation of the air flow takes place at  about 
this angle of deflection on all the conventional flap-type 
ailerons tested and, as shown by the typical curves of 
figure 6, the rolling-moment coefficients increase at a 
lower rate beyond 20' deflection. If it is attempted to 

FIGURE B.-Typiesl rolling- and hinge-moment CoeEcient curves ior plain ailerons. 

reduce further the chord of the aileron by extending the 
deflection beyond this bkeak, the stick force will be 
higher because of the loss in mechanical advantage. 
Figure 5 illustrates this point, for when an aileron 
deflection of f25O is assumed, narrower ailerons are 
required but the stick force is larger for all aileron spans 
than with a deflection of f20°. 

Aileron 5 (table I) represents the narrowest sealed 
aileron covering 80 percent of the wing semispan that 
gives the required control with a deflection of f20°. 
The aileron chord in this case is only 5.3 percent of the 
wing chord, and the stick forces are lower than for any 
of the previous ailerons. If a differential motion is 
used, a somewhat wider aileron is required. With 
narrow ailerons the floating angle is very small, and a 
tab is required to make the ailerons float at a sufli- 
ciently high angle that the differential linkage will be 
effective in reducing the stick force. (See reference 11.) 
Aileron 6 of table I is the smallest one covering 80 
percent of the semkpan that will give the required 
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amount of control with a differential motion and with 
suitable aileron tabs. The assumed tab covers the 
entire trailing edge of the ailerons, has a chord 1.5 
percent of the wing chord, and is permanently bent 
downward 14'. For this case the entire aileron chord 
including the tab is 7.8 percent of the wing chord and 
the stick force is only 0.5 pound for the high-speed 
condition and 0.1 for low speed. 

These values of stick force are lower than are con- 
sidered desirable for the Fairchild 22 airplane but are 
interesting in showing the possibility of obtaining a 
satisfactorily low stick force in larger and heavier 
airplanes. For small airplanes, one satisfactory method 
of increasing the stick force to the value desired would 
be to use greater up travel than 20' with differential 
ailerons, thus getting into the range of inefficient stick 
force although obtaining the advantage of slightly 
smaller adverse yawing moments. 

In many practical cases the chord of the aileron varies 
along the span. Inasmuch as the hinge moment varies 
as the square of the chord and the control effectiveness 
only about as the square root of the chord of an aileron 
element, the stick force required to give a certain 
amount of control is inherently greater if the chord of 
the aileron varies appreciably along the span. This 
relation is true in spite of the fact that the portion of 
the aileron nearer the tip of the wing has a greater 
lever arm, which suggests that it might be advantageous 
to increase the chord of the aileron as the wing tip is 
approached. Thus, it is possible to state as a general 
rule that to obtain the lowest stick force, ailerons should 
have an essentially constant chord over their entire 

On wings having rounded tips it is sometimes the 
practice to me ailerons having skewed hinge axes like 
aileron 7 in table I. This aileron corresponds in span, 
area, and gap to the 0.25 co by 0.40 b/2 aileron 2, but 
the stick force is decidedly higher for the skewed ailerons 
on account of the variation of the aileron chord along 
the span. 

Ailerons 8 and 9 of table I are of tapered plan form 
and are mounted on tapered wings. In the computa- 
tions of the rolling effect with the tapered wings the 
reduction in the moments of inertia due to the taper 
are taken into account. For example, for the wing 
with 5: 1 taper, the value of Ix was changed from 1,216 
slug-feet' for the original average airplane to 860, 
and the value of Iz from 1,700 to 1,400 slug-feet2. The 
lateral-stability derivatives were also changed to take 
account of the taper. 

A cornparkon of ailerons 8 and 9 with aileron 1, 
which has the same relative chord size but is attached 
to a rectangular wing, shows that the stick force be- 
comes lower aa the taper of t,he wing is increased. The 
sideslip or adverse yawing cdect is also smaller with 
the tapered wings than with the rectangular. The 

span.' 

(See reference 4.) 

1 The great& taper mth6matticalty compatible with a minimum stick force is 
less than about a perclsnt of the aileron chord. 
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lateral4ability factor, damping in roll, is reduced to 
zero at an angle of attack 3O below the s t d  with the 
5: 1 tapered wing, indicating that the airplane could 
not be safely maintained at. the maximum lift condition 
in flight. 

The ailerons on tapered wings dealt with up to this 
point have had chords that were the same percentage 
of the wing chord at  each position dong the span, the 
ailerons tapering with the wings. It has been stated 
that the lowest stick force would be obtained with 
constant-chord ailerons. Computations have been 
made comparing the straight or constant-chord ailerons 
on a tapered wing with the ailerons that taper with the 
wing, and the results are shown in figure 7. The straight 

~ G W E  7.-Vehtion of aticP force with aileron span and chord for streight and 
tapered silerons on 6 1  tapered wing. dileron chord proportioned to give +%,,== 

22.6O with maXimnm deflwtions of &W; CG-1.0; sealed ailerons. 

or constant-chord ailerons require lower stick forces 
for any given aileron span. It is interesting to note 
that with tapered ailerons the aileron span giving the 
lowest stick force is about half the wing semispan; 
whereas with constant-chord ailerons the best aileron 
span is 80 percent of the wing semispan, as it is in the 
case of rectangular wings. Ailerons 10 and 11 are 
the optimum sizes for the tapered and straight 
ailerons, respectively, on a 511 tapered wing. With 
equal up-and-down deflections, the stick forces for the 
straight ailerons are about half those for the tapered. 
In either case the stick forces could be nearly counter- 
balanced by means of a suitable differential linkage and 
tab, as will be developed more fully in section 11. 

Effect of hinge gap.-Wind-tunnel tests have shown 
tbat even a slight gap between ordinary unbalanced 
ailerons and the wing upon which they are mounted 
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causes a relatively large loss in rolling moment. This 
loss for unbalanced flaps having a gap of one thirty- 
second inch on a wing of 10-inch chord was found to be 
approximately 30 percent. The hinge moment is also 
reduced by the gap but to a much lesser extent and the 
resultant stick force for a given amount of lateral con- 
trol is greater because a larger aileron deflection is 
required, which necessitates a linkage having a poorer 
mechanical advantage. The effect on the stick force 
is shown in table I by a comparison of the values for 
aileron 2, which has a gap, with those for aileron 1, 
which is sealed. 

BAJANCED AILERONS 

Balanced ailerons of the Frise and Handley Page 
types are widely used at $he present time, the particular 
forms of aerodynamic balance incorporated in these 
ailerons giving improved yawing moments as well as 
reduced hinge moments. Good results are obtained 
with proper designs but the exact shape of these ailerons 
has a critical effect on the rolling and hinge moments, 
and each different installation is likely to require con- 
siderable individual development. Figure 8 shows 
typical curves of rolling and hinge-moment coe5cients 
for Frise type ailerons. The rolling-moment coe5cient 
for the example shown increases less rapidly with de- 
flection after an upward angle of 7 O  to loo has been 
reached, which is considerably lower than the 20' 
critical deflection for plain unbalanced ailerons (fig. 6). 
Thus, it is uneconomical with respect to stick force to 
use large up deflections and, owing to the smaller maxi- 
mum deflections, larger ailerons are required for e%- 
ciency than when ailerons of the plain unbalanced 
sealed type are used. The break in the curve of rolling- 
moment coe5cient against deflection is associated in 
the case of the Frise and Handley Page types of aileron 
with the downward projection of the nose of the aileron 
and the resultant breaking away of the flow from the 
under side of the aileron. This effect can be reduced 
or possibly eliminated by using a raised-nose portion. 

The Frise and Handley Page types of aileron have 
gaps between the aileron and the wing, and the effective- 
ness of the ailerons cannot be assumed equal to that of 
smoothly sealed flaps. 

The hingemoment curves as shown in figure 8 have 
very low and even negative slopes at places, and ex- 
treme differential linkage cannot be used because over- 
balance would occur with medium or small deflectiom 
of the up aileron. Because the hinge-moment curves 
are far from straight, it is more di5cult to select suit- 
able differential linkages for ailerons of this type than 
for plain unbalanced ailerons. Satisfactory linkages 
have often been obtained in practice, however, and there 
are many excellent examples in which a nice balance 
of conditions has been obtained with satisfactory con- 
trol and light stick forces. 

Ailerons 12 and 13 are examples of the Frise type 
A comparison of aileron 12 with the same size of plain 

mbalanced but sealed ailerons shows that the stick 
'orces at the low-speed condition are about the same 
'or both types of aileron, both with equal up-and-down 
md with differential motion. At the high-speed con- 
Won the Frise ailerons have somewhat lower stick 
'orces than they have for the same control a t  low speed. 
[t is worthy of note that, although the deflections are 
imall in both cams, the h e  ailerons are apparently 
lot greatly oversized for, in their caw, substantially 
greater deflections would be inefficient. The plain 
bilerons, on the other hand, have maximum deflections 
well under the limiting 20° value and are decidedly 
nersized, considering the amount of control specified. 

Ai/eron deflection. 6, deg. 

FIQUBE S.-Typid rolling- and hingemoment cmlE&nt m e a  for Frise ailerons. 

If a fked tab is used to trim the ailerons upward, 
lower values of stick force can be obtained with the 
plain unbalanced ailerons (reference 11). The tab will 
not give the same improvement with the Frise ailerons 
because of the varying slopes of the hinge-moment 
curves. 

The 0.40 cw by 0.30 b/2 Frise aileron 13 has a different 
sectional form than aileron 12 in that the nose portion 
is raised, and this aileron gives smoother curves of roll- 
ing and hinge-moment coefficients. The Frise aileron 
with the raised nose shows no improvement in yawing 
effect over the plain unbalanced ailerons of the same 
size, but the 0.25 cw by 0.40 b/2 Frise aileron, which has 
the more typical Frise sharp nose, gives a slight im- 
provement in this respect. 

The drag of all commonly used forms of Frise and 
Handley Page ailerons is su5ciently great to be con- 
sidered a serious disadvantage in connection with 
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modern high-performance airplanes. For this reason, 
the development of a type of aerodynamic balance that 
does not add to the drag is desirable. 

FLOATING-TIP AJLEBONS 

Conventional ailerons operating on a lifting portion 
of the wing suffer several fundamental disadvantages. 
First, the production of rolling moment by a lifting 
wing gives rise to the adverse yawing moment; and, 
second, the loss of lift at the stall is accompanied by a 
loss of effectiveness of the ailerons. It has become ap- 
parent during the investigation, however, that the stall 
of the wing or, at any rate, of the outer portions of the 
wing, is accompanied by such a loss of stability that it is 
hardly an advantage to retain aileron rolling moments 
in this condition. 

In the case of floating-tip ailerons, control is secured 
by surfaces that contribute no lift. This arrangement 
avoids both the adverse yawing moment of ordinary 
ailerons and the loss of rolling moment associated with 
stalling of the main wing; but it increases the drag of 
the airplane and adds to the over-all dimensions. If 
the airplane is designed to fulfill certain performance 
specifications, such as landing speed, climb, ceiling, etc., 
the floating-tip ailerons cannot be considered an integral 
part of the main wing as they do not contribute effec- 
tively to the area or span so far as induced drag and 
lift are concerned. 

A number of floating-tip aileron devices were tested 
in the course of the investigatinn of reference 1. Ap- 
parently the most usable of these are the tip ailerons on 
the 5:l tapered wing. Two methods of comparison 
have been followed. In one case (aileron 14) the ail- 
erons were included within the over-all dimensions of 
the 5:l tapered-wing average airplane. The values 
given in the table for this case (short wing) were based 
directly on the results of tests made in the 7- by 10-foot 
wind tunnel (reference 1, part XI). The criterions 
show the effect of reduced area and span of the lifting 
portion of the wing as a reduction of the climb and 
maximum lift. 

In order to take account of the effect of simply 
adding a tip aileron to a normal-size wing, further cal- 
culations were made. In this case (aileron 15) it was 
assumed that the over-all span of the average airplane 
was increased by the additional span of the tip ailerons; 
hence, the aspect ratio of the lifting portion of the wing 
remained the same. The added span of the wing, al- 
though it contributed practically no lift and hardly 
modified other stability characteristics of the airplane, 
considerably increased the damping in rolling. This 
fact was accounted for in the computations, data on 
damping of the tested 5:l tapered wing with floating- 
tip ailerons included in the original plan form being 
extrapolated for this purpose. It would be natural to 
assume that the floating-tip ailerons would be just as 
effective as the main portion of the wing in contributing 

damping. The tests showed, however, that the damp- 
ing of the 5:l tapered wing with floating tips was only 
85 percent of that with the tips rigid. 

The rolling moments produced by floating-tip 
ailerons can be predicted with good accuracy by the 
conventional aileron theory. The induced yawing 
moments correspond to those given by plain ailerons 
with an extreme uprigging or negative droop corre- 
sponding to the neutral floating positions of the tip 
ailerons. Ordinarily, the tip ailerons, on account of 
the local upwash at the end of the rigid wing, float a t  a 
negative angle of attack relative to the mean direction 
of ilight and hence give slight favorable induced yawing 
moments with respect to the wind axes. The yawing 
and hinge momenh used in table I for the long-wing 
airplane (aileron 15) were predicted from the results 
of the wind-tunnel tests on the short 5:l tapered wing. 

The tabulated results of the computations show that 
the stick forces required for satisfactory control are 
reasonably low in the case of the short 5: 1 tapered wing. 
It will be noted that only relatively small deflections of 
these ailerons are required for cbntrol, a fact that can 
be attributed partly to the reduced damping in rolling 
shown by this wing. On the other hand with the long 
wing, when the tip ailerons were added to the regular 
wing span, the damping in rolling and moment of 
inertia were increased and, hence, larger stick forces 
were required to produce the given bank. The same 
hinge-axis location, and hence the same degree of 
balance of the ailerons, were assumed in both cases. 
It wil l  be noted that about the same force was required 
to produce 15O bank at high and low lift coefficients. 

Although the floating-tip ailerons give small favor- 
able yawing moments, it will be noted that their use 
resdts in some inward sideslip during the 15' bank. 
The rolling motion of the wing induces a small adverse 
yawing effect as is indicated by the adverse sign of the 
yawing moment due to rolling. This cause combined 
with the inward acceleration due to gravity is sufficient 
to bring about the inward sideslip in spite of the favor- 
able yawing moment of the floating ailerons. 

It has often been suggested that tip ailerons be 
trimmed by tabs so as to float downward and give 
some lift. Such an arrangement should improve the 
performance characteristics but would void the advan- 
tage of these ailerons in giving favorable yawing 
moments. If the tip ailerons were trimmed so as to 
produce as much lift as the adjacent rigid portion of 
the wing, it is to be expected that they would show the 
same proportion of adverse yawing moment to rolling 
moment as do conventional ailerons. 

At stalling angles of attack for the main wing the 
floating tips remain unstded. Hence, they should be 
expected to aid in preventing the loss of damping in 
rolling a t  or near the stall. The only floating aileron 
device that effectively prevented the loss of damping in 
rolling in the wind-tunnel experiments was the long nar- 
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row aileron attached to a rectangular Wing. (See refer- 
ence 1, part XI.) In this particular case the performance 
characteristics were so poor that the device as tested 
could not be considered practical for application. 

As noted in table I, the lateral-stability character- 
istics of the 5:1 tapered wing with the floating-tip 
ailerons are almost as bad as those on the conventional 
rigid 5: 1 wing and are somewhat worse than those of 
the rigid rectangular wing. Inasmuch as the damping 
in rolling is lost at an angle of attack 2' below the 
angle for maximum lift, the airplane could not be safely 
maintained in flight above this angle even though the 
ailerons continue to give undiminished rolling moments. 
Flight tests of floating-tip ailerons on a tapered wing 
fitted to a Fairchild 22 airplane support this conclusion. 

Wind-tunnel results with floating-tip ailerons showed 
a smaller adverse effect on the performance character- 
istics of the 5: 1 tapered wing than on any of those 
tested. The effect of reducing the span and area of 
the rigid portion of a given wing is shown by the 
comparison of the performance criterions of the short 
5: 1 tapered Wing, having an over-all aspect ratio of 6, 
with those tabulated for the conventional rigid 5:1 
tapered wing, having the same over-all span and area. 
Here the maximum speed of the airplane will be hardly 
affected while the climb and maximum l i f t  will be 
reduced, as indicated. Simply adding the tip portions 
to the normal-size wing will increase the parasite drag 
at  high speed but, as shown by the tabulated criterions 
for this case, will probably sIightly improve the climb. 

SPOILERS 

Spoilers in the form of small flaps or projections 
raised from the upper surface of the wing have pre- 
sented attractive possibilities as lateral control devices 
because they give positive or favorable yawing moments 
and large rolling moments at the high angles of attack 
through the stall. (See fig. 9.) As spoilers giving 
apparently satisfactory rolling and yawing moments 
had been developed in the 7- by 10-foot wind-tunnel 
investigation (reference 1, part V), they were tested 
in flight on a Fairchild 22 airplane (reference 2). When 
the spoilers were first tried in flight, the pilots noticed 
that the airplane apparently did not react until the 
control stick had been given a medium amount of 
deflection, after which the rolling velocity suddenly 
built up to a much higher value than had been experi- 
enced with any previously tested control system. 
This characteristic made it impossible to perform 
smooth maneuvers requiring the coordination of the 
spoilers with the elevator or rudder and led to over- 
controlling when an attempt was made to keep the 
wings level in gusty air. Closer inspection of the 
spoiler action, however, disclosed that for any spoiler 
movement there was actually an appreciable delay 
between the movement of the spoiler itself and the start 
of the desired rotation in roll of the airplane. In 
order to substantiate the pilot's findings, records were 

made of the rotation of the airplane in roll immediately 
following a movement of the stick and a specimen 

t 
Angle of otfock, a, deg. 

FIGWE 9.-Comparison of rolling- and yawing-moment coefficients obtained with 
ailerons and spoilers. 

time history of the motion is shown in figure 10, to- 
gether with similar information for other lateral con- 

trol devices including conventional ailerons. The 
records showed that the delay before rotation started 

129 



REPORT NO. 605-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

in the desired direction was of the order of half a second. 
This lag seems surprisingly short to have much effect 
on the control obtained with spoilers, but apparently 
it is suflicient to prohibit the use of the spoilers close 
to the ground because of the danger of overcontrolling. 

The lag of spoilers was then studied by means of a 
special hinged wing model of 4-fOOt chord mounted 
in the 7- by 10-foot wind tunnel (reference 12). This 
installation reproduced the conditions encountered in 
the flight tests. The tests with spoilers located in 
different positions along the chord of the wing showed 
that the lag was relatively large with the spoilers near 
the leading edge and became less after the spoiler was 
moved to the rear until it was zero for normal trailing- 
edge flap-type ailerons. 

The spoiler located near the rear of the wing was 
found to act with a negligible amount of lag (less than 
one-tenth second could not be detected by the pilots) 
and seemed to give some promise of making a satis- 
factory lateral control device. Flight tests were there- 
fore made of a retractable spoiler located 83 percent 
of the wing chord back of the leading edge which, 
because of its rearward position, was referred to as a 
“retractable” aileron. The aileron was made in the 
form of a plate curved in a circular arc to form a seg- 
ment of a cylinder and was moved in and out through 
a slit in the upper surface of the wing and about an 
axis at the center of the cylinder. This arrangement 
produced no aerodynamic hinge moment and was 
found to operate satisfactorily in flight on a Fairchild 
22 airplane (reference 3). The retractable aileron 
mounted on the assumed average airplane is number 
16 in fable I. The stick-force characteristic (zero 
force) is not the most desirable but could be brought 
up to a desired value either by the addition of a spring 
in the aileron linkage or by an off-center location of 
the hinge axis of the aileron. A large amount of con- 
trol is available from ailerons of this type and the 
yawing characteristics are more satisfactory than those 
of conventional ailerons. 

Combinations of conventional ailerons with spoilers 
located ahead of them and deflected simultaneously 
showed some promise in the wind-tunnel investigation 
(reference 1, part V) and were found to give satis- 
factory control free from lag when tested in flight on 
the Fairchild 22 airplane (reference 2). With the 
spoiler deflected in front of the aileron, the floating 
angle of the aileron is raised and, if properly developed, 
certain combinations seem very promising in regard t o  
both yawing effect and stick force. Estimated char- 
acteristics of one such combination are given in table I, 
aileron 17. 

Another possible combination that has been tested 
and may deserve further development is one in which 
two spoilers are located in tandem and deflected simul- 
taneously. The tests with this arrangement (reference 
12) showed that the lag of the combination was nc 

Feater than that for the rear spoiler alone, whereas the 
inal rolling moment was the same as for the front one 
vhen used without a flap. Later tests indicate that 
ipoilers located on the forward portion of the wing 
nay be rendered ineffective by the action of a split 
lap. One other point has not yet been completely 
ietermined, namely, whether the rolling motion would 
;et under way with sufficient acceleration immediately 
tfter the start. This point will be dealt with further in 
;he next section on slot-lip ailerons. 

SLOT-LIP AILEEONS 

Means for the elimination of the lag of spoilers were 
nvestigated in the 7- by 10-foot tunnel and it was found 
that the lag could be eliminated by providing a slot or 
oassage through the wing back of the spoiler. This 
nvestigation has resulted in the development of what 
lave been termed the “slot-lip” ailerons (references 8 
md 12). The slot-lip aileron is a combination of a 
spoiler-type flap located on the upper surface of the 
k g  and a continuously opened slot, the flap forming 
the upper portion or lip of the slot. The computed 
mntrol performances for two arrmgements of slot-lip 
tilemns in different positions along the chord of the 
wing are listed 18 and 19.h table I. 

The slot-lip ailerons satisfactorily eliminate or reduce 
to a negligible value the actual lag intervening before 
the wing starts moving in the desired direction, and 
they give a very high maximum rate of rolling; but the 
rolling nevertheless increased less rapidly immediately 
after the start of the motion than with conventional 
trailing-edge flap-type ailerons. This condition is 
illustrated in figure 10, which includes curves from 
Eight records of slot-lip ailerons on the Fairchild 22 
airplane and slot-lip ailerons on the W1-A airplane. 
It will be noticed that with the W 1-A the rate of roll 
increases nearly as rapidly as with conventional ailerons 
but with the Fairchild 22 the action was considerably 
more sluggish. The’difTerences in the behavior of these 
two airplanes have been studied (reference 8) and it 
has been concluded that the superior response character- 
istics shown by the W1-A are due in large measure to 
the relatively great dihedral (5O) and to the smaller 
moments of inertia of this airplane. The secondary 
yawing action of the slot-lip ailerons is favorable, hence 
the dihedral effect increases the rolling action. Other 
differences favorable to improved response of the 
W1-A are: (1) The more rearward location of the 
aileron (0.30 cw compared with 0.20 cW tested on the 
Fairchild 22) and (2) the slightly greater size of the 
slot. 

The lateral control with the slot-lip ailerons on the 
W1-A seemed satisfactory to the pilots, but on the 
Fairchild 22 it was found to be too sluggish and to give 
somewhat the same feeling as a slight amount of lag. 
This comparison, aided by several others of a pertinent 
nature, indicates that an additional point must be 
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covered in a specification for a completely satisfactory 
lateral control dealing with the acceleration or rate at  
which the rolling increases during the h t  half second 
or so following the actual start. It may be stated in 
simple quantitative terms, applying to the conditions 
for the assumed average airplane, that the angle of 
bank one-half second after a sudden deflection of the 
controls should be at least one-third the angle of bank 
reached at 1 second. Thus, if a bank of 15' is reached 
in 1 second, a t  least 5 O  of this should be attained in the 
first half second.2 

The sluggishnesa of the slot-lip ailerons is a great 
handicap in the method of comparison of control effec- 
tiveness used in the present report, in which a certain 
angle of bank must be obtained in a time of 1 second. 
Even though these ailerons give a high final rate of roll, 
excessively great deflections are required to attain an 
angle of bank of 15O in 1 second at  a lift coefficient of 
1.8, and the stick forces are excessively high. This 
particular disadvantage might be overcome by the use 
of a suitable aerodynamic balance but, even so, the 
sluggishness of the slot-lip ailerons might prevent them 
from being considered satisfactory if it were of the 
magnitude found on the Fairchild 22 instead of that 
found on the W1-A. 

The sideslip accompanying a 15' bank in 1 second is 
negligible with the 0.55 c, slot-lip ailerons in the usual 
flight range with d a p p e d  wings. With more forward 
locations the yawing moment becomes decidedly posi- 
tive, resulting in outward sideslip. Because of the 
action of the slots at high angles of attack, the damping 
in rolling is retained to an angle of attack beyond that 
for maximum lift  coefficient and, for this reason, it 
should not be difficult to design an airplane incorporat- 
ing these ailerons in such a manner that lateral control 
and stability would be reasonably satisfactory at all 
angles of attack that could be maintained in flight. 
The continuously open slot, however, results in a high 
drag, which reduces the high-speed and climbing per- 
formance to a noticeable extent. The drag is less for 
the rear positions of the slot-lip ailerons and a special 
investigation has been made in the 7- by 10-foot tunnel 
to develop slots with reduced drags. Some success has 
been attained but, considering the best results to date, 
these ailerons do not seem suitable for modern high- 
performance airplanes. 

LATERAL CONTROL WITH HIGH-LIFT FLAPS 

Since the inception of the research program of refer- 
ence 1, Wing flaps have come into very general use and 
have further complicated the problem of lateral control. 
In steady flight ordinary ailerons give rolling moments 
that vary almost inversely with the lift coefficient; 
hence, wings equipped with high-lift devices require 
: As mentioned previously, in order to simplify the computetions and to make 

possible a comparkm with flight reoords, the starting time has been arbitrarily taken 
85 the h b U t  at WhfCh the control SnriaeaS reached half their final d8fleetiOU. 

relatively large control surfaces. The installation of 
an effective flap then becomes more difficult. 

Another problem introduced by the use of high-lift 
devices concern the adverse yawing moment of the 
ailerons. The ratio of induced yawing to rolling 
moment increases (adversely) in direct proportion to 
the lift coefficient. Furthermore, the effect of a given 
yawing moment on the roulng control is usually greater 
with flaps in use on account of the increased dihedral 
effect due to the flap. Thus it appears almost neces- 
sary to use some device that causes large changes of 
profile drag resulting in a favorable component of yaw- 
ing moment or to use wings with washout a t  the tip 
portions (partial-span flaps) so that the induced yawing 
moment is reduced. Many of the devices developed 
in reference 1 for use with full-span flaps show satis- 
factory yawing moments on account of the profile-drag 
increments caused. Comparisons of a number of the 
most promising devices have been made and are listed 
in section B of table I. 

Plain ailerons on wings with partial-span flaps.-On 
account of the general use of partial-span split flaps 
with ordinary ailerons, some tests of t@is arrangement 
were made in the 7- by 10-foot wind tunnel (reference 
7). The tests were made with tapered wings because 
they represent the most efficient application of the ar- 
rangement and are most used in practice. The most 
interesting result of these tests was the small loss of 
maximum l i f t  coefficient entailed by the substitution of 
ailerons for the tip portions of the flap, particularly in 
the case of ailerons 21 and 23 as listed in table I, where 
only 30 percent of the semispan was used for the aileron 
portion. The indicated reduction amounted to less 
than 10 percent of the maximum lift shown by the same 
tapered wings with full-span split flaps. The reduction 
was about the same for the two taper ratios tried. It 
will be noted that the 5:l tapered wing gave more 
efficient control as regards stick forces under all condi- 
tions. In each case the stick force is slightly less for 
the longer ailerons, although of course the wings with 
shorter ailerons showed better performance character- 
istics. Both sizes of ailerons on the 5:l tapered wings 
showed a marked diminution of effectiveness above 
about 10' angle of attack, presumably due to flow 
separation at the tip portions. 

The deflection of the partial-span flap introduces a 
large relative washout of the aileron portions so that a t  
a given over-all lift coefficient the ratio of yawing to 
rolling moments is less with flap down than with flap 
neutral. It wi l l  be noted that the tabulated values of 
sideslip remain about the same at CL=1.8 as a t  CL=l.O. 
The sideslip at C,=l.O would have been appreciably 
less than indicated if a fhp-down condition had been 
assumed here. 

Although the lateral-stability characteristics of the 
highly tapered wing are unfavorable, there are indica- 
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tions that the use of a partial-span flap may not ag- 
gravate the instability in every case. The results of 
the aileron tests, as well as visual observations of the 
flow by means of tufts, show that the effect of the up- 
wash at  the tips introduced by lowering the flap may 
be compensated by a strong spanwise flow, which 
inhibits the stalling of these portions. The indications 
are that the angle of attack for autorotational instability 
would be about the same with the flaps as without for 
the Wings tested, although rolling experiments were not 
tried. 

Plain ailerons with retractable flap.-A plain aileron 
with a split flap retracting ahead of it was developed as 
a means of control with a full-span flap. This device 
has been tested in %ght with a modified Fairchild 22 
airplane and is one of the few lateral control systems 
incorporating full-span flaps that has proved entirely 
satisfactory in flight (reference 3). This device is so 
designed that the retracted flap does not interfere with 
the ailerons in any way and hence the control char- 
acteristics with flap neutral are those of plain ailerons. 
With the flap deflected, however, the characteristics are 
similar to those of the upper-surface ailerons tested in 
the 7- by 10-foot Wind tunnel (reference 1, part XII). 

Although the deflected flap is in such a position as to 
shield the under surface of the ailerons entirely, it was 
observed in the tests that the ailerons in this condition 
were nearly as effective as conventional ailerons with 
unsealed gaps. The effectiveness of downward deflec- 
tion, however, falls off rapidly at an angle of about 8'. 

The rolling-moment characteristics of the plain 
ailerons with retractable flaps are such as to favor a 
differential motion, since the upgoing aileron is more 
effective than the downgoing one at high lift coefficients. 
The hinge-moment characteristics are, however, dis- 
tinctly unfavorable for this mode of operation inas- 
much as the ailerons show a downward floating tend- 
ency with the flap down. Relatively large deflections 
of the ailerons are required to meet the control require- 
ments at low speed on account of the shielding effect of 
the flap, and consequently a relatively high gearing 
ratio of ailerons to control stick is needed. The result 
is that the stick forces required for the specified banking 
control are somewhat higher than those for conventional 
ailerons throughout the flight range. These forces (see 
aileron 24, table I) are well Within the desirable range 
for the Fairchild 22 airplane, although they indicate 
undesirably high values for larger airplanes. 

The yawing action of these ailerons is about the same 
as that of the conventional ailerons with partial-span 
flaps. Although the induced yawing moment ofthe 
ailerons with the full-span flap is greater than that with 
the partial-span flap, the ailerons cause larger com- 
pensating changes of profile drag. 

Several possible means of improving the control-force 
characteristics of these devices suggested themselves. 
The device listed next in table I (aileron 25) shows the 
calculated effects of such improvements. First, the 

span of the aileron was increased to what has previously 
been found the most efficient value and the chord of the 
aileron was reduced as much as seemed practical. 
Second, it was assumed that a trailing-edge tab (0.02 
cw bent down 15') was attached to the aileron so as 
to avoid the downward-floating tendency. It was 
assumed that lowering the flap caused the same change 
in floating angle with the tab as without. Since the 
deflection of the flap caused a large change in the 
floating position of the aileron, it was desirable to 
change the balancing characteristics of the differential 
with flap deflection. Consequently, it was assumed 
that the differential cranks were rotated into new 
positions as the flap was deflected. The resulting stick 
forces tabulated give an indication of the improvement 
that might be effected by such development of the 
device. 

Retractable ailerons (spoilers).---Tests of spoilers 
(reference 12) showed that for locations behind about 
80 percent of the Wing chord the lag in rolling action 
would probably be negligible. Flight tests were subse- 
quently made of a Fairchild 22 airplane equipped with a 
curved-plate spoiler that moved qdgewise into and out 
of the Wing through a narrow slit in the upper surface 
at 83 percent of the airfoil chord. This plate was 
arranged to rotate about a hinge at  the center of curva- 
ture, so that the air pressure (being normal to the plate) 
caused no resultant hinge moment. The test airplane 
incorporated a full-span split flap and, inasmuch as the 
downward motion of the spoiler took place entirely 
within the wing, the flap and spoiler did not interfere. 

The flight tests showed very promising results, al- 
though the feature of zero hinge moment was not 
found especially desirable. Angular-velocity and con- 
trol-position records taken simultaneously in fIight 
showed no definite lag or sluggishness in the response 
to control movements. (See reference 3.) The devices 
as tested (0.15 cw by 0.50 b / 2 )  were somewhat larger 
than necessary to give the assumed satisfactory degree 
of control. As is indicated in the table, a maximum 
deflection causing a 7.4 percent e ,  projection of the 
spoiler should be sufficient for control in the flap-down 
condition. 

An important advantage of the retractable ailerons 
(aside from their advantage in permitting the use of a 
full-span flap) is that they give small favorable yawing 
moments throughout the greater portion of the flight 
range. At high lift  coefficients with the flap in use, 
however, small adverse yawing moments result. (See 
reference 13.) 

Although the deflected spoiler causes quite an increase 
of profile drag, it is not expected that the incidental 
deflections required for control in normal flight would 
appreciably affect the performance. The performance 
criterions listed are, of course, for undeflected controls. 

External-airfoil flap-type ailerons.-The external- 
airfoil (Junkers or Wragg) type flap has been studied 
as R possible means for improving the take-off and 
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ceiling characteristics of airplanes in addition to pro- 
viding the high-lift features of ordinary and split 
flaps. As this device showed promise of improved 
performance, several methods of securing lateral control 
with such a flap have been studied. 

A simple method of providing lateral control with 
full-span external-airfoil flaps is to move the flaps 
themselves independently as ailerons. (See refemnce 
10.) Thus the ailerons are used simultaneously as a 
high-lift device and to provide rolling moments without 
sacrificing a special part of the wing span. In order to 
employ these flaps to their best advantage, it is neces- 
sary to deflect them downward over the entire wing 
span, thereby avoiding excessive induced drag. The 
action of the flaps deflected downward as ailerons is 
similar to the action of ordinary ailerons with droop. 
The external-airfoil flaps show a superiority over ordi- 
nary flaps for this pmpose, however, in that they 
retain their lift-changing effectiveness a t  greater 
downward deflections (in excess of 20'). 

Aileron 27 in the table is an arrangement of these 
flaps whereby the entire span is deflected downward 
20' and the semispan portions are moved differentially 
from this downward position to provide rolling control. 

This arrangement was tested in flight with the 
Fairchild 22 airplane and was found to give unsatis- 
factory yawing characteristics, although the rolling 
moments seemed to be ample. The computations 
made for the average airplane indicated an adverse 
sideslip of loo accompanying a 1 5 O  bank a t  low speed 
with the flaps down. 

A possible way of improving the adverse-yaw char- 
acteristics of these devices is to make use of the effect 
of washout. This method was used in the case of 
aileron 28, where the flap was considered to extend 
unbroken over the middle portion of the wing with the 
parts of the flap used as ailerons covering the outer 50 
percent of the semispan portions. Wind-tunnel tests 
(reference 10) showed that, with the inner portion 
down 30' and the outer, or aileron, portions down only 
IO', the performance criterions were about the same 
as with the whole flap down 20'. This change r e  
duced the yawing effect considerably, as shown by the 
table, although the sideslip is still somewhat worse than 
is the case with most of the other devices. 

When the stick forces and deflections for these two 
arrangements are compared, it will be noted that the 
deflection required with the full  semispan aileron is 
almost as great as that required when only half the 
flap is used for control. This fact is partly accounted 
for by the difference in yawing effects. 

In the low-speed conditions (CL= 1.8) the ailerons 
are lowered 20' in one case and 10' in the other and 
the effective floating angles are thereby increased by 
these amounts. This fact introduces a difficulty into 
the design of a suitable differential linkage. A linkage 
designed to accommodate the floating tendency with 

flaps neutral will overbalance when the flaps are 
deflected. In the computations it was assumed that the 
additional floating tendency was neutralized by a long 
spring that came into action as the flaps were lowered. 

The external-airfoil, flaps permit high lift  coefficients 
to be attained without excessive profile drag. The 
advantage over a split flap begins to be apparent a t  
lift coefficients in excess of 0.7, aiding the take-off and 
the low-speed climb but hardly affecting the maximum 
rate of climb. Hence, in this particular case, the per- 
formance criterions listed in table I do not fully indicate 
the differences to be expected with these devices. 

Ailerons with external-airfoil flaps.-A logical exten- 
sion of the development of the slot-lip aileron has led 
to a device in which the aileron forms the lip of the 
slot between an ordinary external-airfoil-type flap and 
the main Wing. (See aileron 29, table I.) This 
arrangement avoids the excessive drag entailed by 
other forms of slot and, on account of the rearward 
position of the aileron, should give good response 
characteristics (except, possibly, under certain condi- 
tions noted later). 

The device as tested (see reference 6) comprised an 
aileron 0.12 cm wide and b/2 long. The tests showed 
that, in general, the effectiveness of the aileron was 
reduced by the presence of the flap, in accordance with 
the theoretical consideration that any change in slope 
of the wing section ahead of the trailing edge is less 
effective than a corresponding change a t  the trailing 
edge itself. When the flap is lowered, however, an 
upward deflection of the aileron apparently causes 
separation of flow over the flap, thus greatly reducing the 
lift and developing a large rolling moment. With 
the flap down 30' this change occurs at  the beginning 
of the aileron deflection, while a t  intermediate flap 
deflections the change occurs a t  greater up aileron 
angles. This more or less sudden change of conditions, 
in addition to giving a large increase of rolling moment, 
also caused a reduction or a reversal of hinge moment; 
hence, the device may be impracticable for use a t  
intermediate flap settings. 

In the device as shown in table I the downward deflec- 
tion of the aileron is limited by the presence of the flap 
nose to a maximum of about 7', and it is consequently 
necessary to use a dzerential movement. Change of 
setting of the flap has a pronounced effect on the 
floating angle of the aileron. With the flap set at  30' 
a differential giving no more than 7 O  downward deflec- 
tion of the aileron will be overbalanced by this floating 
tendency. In the computation it was assumed that a 
spring tending to turn each aileron downward (with a 
torque of 8.7 foot-pounds acting a t  the aileron hinge) 
was brought into action by lowering the flap. With 
the flap neutral the floating angle of the aileron is too 
small for satisfactory balance, although wind-tunnel 
tests showed that it could be effectively increased by a 
tab. Consequently, the device was assumed to incor- 

(See reference 9.) 
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porate such a tab (0.018 c,,,, down 5') and the spring 
tension was adjusted to accommodate the effect of the 
tab with flap down. 

The resulting stick forces, together with the deflec- 
tions required for control, appear in the table. It will 
be noted that the greatest deflection required is that at 
C,= 1.0. In this condition the aileron does not produce 
the previously discussed change in flow over the flap. 
At CL=1.8 the deflection required is small because a 
small upward movement of the aileron in the flap-down 
condition produces a large rolling moment. The yawing 
effect is adverse but is not excessive. 

The performance characteristics of this Wing (with 
the N. A. C. A. 23012 airfoil flap) are somewhat better 
than those of the two wings previously considered, 
which had flaps of Clark Y section. 

11. ANALYSIS OF CONVENTIONAL FLAP-TYPE 
AILERONS 

The practical advantages of plain ailerons are well 
known, and, since they are universally used in more or 
less modified form, the following section is devoted to 
an analysis of factors involved in their design. 

One of the conclusions of the lateral control investi- 
gation has been that no decisive benefit was to be 
gained from a device that continued to give rolling 
moments when the major outer portions of the wings 
were stalled. If stalling of the aileron portions of the 
wing is prohibited, plain ailerons or other devices 
located near the trailing edge of the wing will retain 
their effectiveness. 

I f  the loss of rolling effect on a stalled wing is dis- 
counted, it appears that the primary disadvantage to 
be associated with plain ailerons is their adverse yawing 
effect. For this reason the yawing action of plain 
ailerons will be rather fully analyzed. 

ROLLING MOMENT 

For the purpose of calculating the coefficients of 
rolling and yawing moment, the effect of a deflected 
aileron may be ascribed to a change of angle of attack 
of the wing sections comprising the aileron portions. 
Thus, the localized effect of the deflected aileron is 
measured by the change in the angle of zero lift. This 
change is proportional to the angle of deflection of the 
aileron for deflections below about &Zoo and the factor 
of proportionality (denoted by ACulA6) depends on the 
chord of the aileron. Thus, the plain flap-type aileron 
is considered merely as a device for changing the angle 
of attack. The section lift'increment is not used to 
characterize the effect of the flap because this increment 
cannot, in general, be specified, being dependent on the 
plan form of the wing The effective change in angle 
of attack per unit change of flap deflection is, however, 
theoretically independent of the aspect ratio and the 
plan form. 

Figure 11 summarizes the results of a number of 
wind-tunnel experiments with plain flaps (references 
14, 15, and 16) and shows the measure of flap effec- 
tiveness (Aa/AS) as a function of the relative flap 
chord. A curve predicted by wing-section theory 
(reference 17) is also shown for comparison. The sur- 
prisingly powerful effect of a narrow flap should be 
noted. Thus, deflecting a 0.20 c,,, flap is about half as 
effective as deflecting the entire wing section. 

Since the effective angle of attack of a wing section 
is a linear function of the camber (reference 17), the 
curve of figure 11 may be used to predict the effect of a 
multiply hinged flap, such as an aileron equipped With 
a balancing tab. The combined effect of a succession 
of bends along the wing section may be found by 
calculating the separate effects of each bend and 
adding them. Thus the effect of a 0.20 e, aileron equipped 
with a 0.05 c,,, tab is (using values from Sg. 11) 

Ac~=0.516,+0.216z (2) 

where 6, is the deflection of the aileron with respect to 
the wing and 6 t  is the deflection of the tab with respect 
to the aileron. This simple dlation should not be 
expected to apply beyond f20' deflection and, in the 
case of very narrow tabs, beyond about f15' 

Deflected ailerons thus cause, in effect, a discon- 
tinuous change of angle of attack across the wing span. 
The lift change caused by the ailerons cannot be dis- 
continuous, however, because of the natural equaliza- 
tion of pressure along the span. Ailerons covering 
only a portion of the span influence the lift at  every 
spanwise point and this effect appears to be satisfac- 
torily predicted by the airfoil theory. Calculations of 
the effects of ailerons based on this theory have been 
made, the most extensive series being reported in 
reference 18. Figure 12 shows the rolling-moment 
coefficient Cz caused by a 1' difference in angle of 
attack of various +ght and left portions of a rectangu- 
lar wing of aspect ratio 6. The abscissa of this dia- 
gram represents a semispan of the wing with the 
midspan point at the origin and the tip at the point 
1.0. The ordinate gives directly the rolling- (or 
yawing-) moment coefficient due to a unit change of 
angle of attack extending from the point indicated on 
the abscissa out to the tip. The rolling effect of two 
ailerons is twice as great as that of a single one and 
hence the difference of the increments of equivalent 
angle of attack, as indicated, should be used. The 
rolling moment is not appreciably changed by differ- 
ential deflection. 

The curves give the values predicted by the theory 
and the points indicate values obtained in various 
experiments as noted on the figure. The wing-section 
characteristic Aa/A6 of the devices tested was deter- 
mined from figure 11. 
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Ai/eron chord/wing chord 

FIGURE 11.-Change of effective angle of attack of a wing section per unit change of 
flap angle. Plain flaps of various chords at small deflections; 6<*20*. 

FIGURE IZ.-Variation of rolling- and yawing-moment coefficients with aileron span 
and a comparison of theoretical and experimental values. Rectangular wings; 
bYS=$ A6-W'. 

The rolling-moment characteristics of the plain 0.25 cw 
by 0.40 b/2 sealed ailerons (aileron 1 of table I) 
were calculated with the aid of figures 11 and 12. 
Reference to figure 11 shows that the equivalent 
change in angle of attack produced by a 0.25 cw sealed 
flap is 57.5 percent of the angle of deflection of the 
0ap. Thus, a deflection of f 7 . 4 O  (see table I) is 
equivalent. to a change in angle of attack of 

0.575X7.4O=4.26' (3) 
or a difference of angle of the right and left aileron 
portions of 8.52'. According to figure 12 the rolling- 
moment coefficient per degree of this difference for a 
0.40 b/2 aileron portion extending to the wing tip is 
0.0039; hence, the coefficient predicted is 

Czz8.52 X0.0039=0.0332 (4) 
Working charts for predicting the rolling moment of 

plain ailerons of any size on monoplane wings of 
various aspect ratios and different degrees of taper are 
given in +re 13. In order to use these charts it is 
necessaxy to ascertain from figure 1+ the section 
characteristic AalAS, which is a function of the relative 
chord of the aileron. The charts may be used for 
differential ailerons merely by taking the difference of 
angle of attack of the right and left aileron portions. 
The theoretical rolling moment is independent of any 
initial washout of the wing sections along the span; 
hence, the rolling-moment curves are applicable to 
wings with partial-span flaps. The charts cannot be 
used with devices that change the slope of the lift 
curve nor for excessive deflections that introduce dis- 
turbed air flow. In this connection it appears that a 
deflection of plain ailerons involving disruption of the 
air flow is inefficient from considerations of stick force. 

It will be noted that two sets of curves are given for 
tapered wings. The solid lines apply to ailerons that 
are not tapered with the wing, i. e., ailerons of constant 
actual chord. For this type the change of equivalent 
angle of attack should be calculated on the basis of the 
wing-tip chord (whether or not the aileron extends to 
the wing tip). The long-dash curves are for the par- 
ticular case in which the aileron chord is a constant 
proportion of the wing chord along the span, in which 
case the change of equivalent angle of attack does not 
vary along the aileron portion. The additive effect of 
an element of aileron covering any spanwise portion of 
the wing may be determined from the increment of the 
c,/Aa curve over that portion. Although the curves of 
figure 13 show increasing rolling-moment coefficients 
with increased aspect ratios of the wings, the control 
requirement (rolling-moment coefficient for a given 
banking effect) also increases with aspect ratio and, on 
account of the damping, in nearly the same way as 
does the coefficient. (See reference 4.) In general, it 
may be said that the relative proportions of the ailerons 
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should not be reduced on account of increased aspect 
ratio. 

YAWING MOMENT 

Yawing moment with equal up-and-down deflec- 
tion.-The results of experiments indicate that the 
primary source of adverse yawing moment given by 
plain ailerons at  small deflections is the theoretical, or 
induced, yawing moment. The production of rolling 
moment results in an induced twisting flow analogous 
to the downwash in direct lift. The yawing moment 
arises from the resultant inclination of the supporting 
lift vectors along the span. If the wing is supporting 
no lift, the production of rolling moment by equal and 
opposite lift increments on the two wing halves will not 
result in a yawing moment because the lift increment 
vectors are all inclined backward by the induction, 
resulting in a drag. Hence, only the interaction of an experimental values of __ CJAa for a rectangular wing of 

cL 

initial lift and a rolling moment give rise to an induced 
yawing moment. 

A more specific treatment of this theory is given in 
reference 18. The formula for yawing moment that 
resuits for equd up-and-dom deflections is 

(5) 
where K is a factor dependent on the aspect ratio and 
the plan form of the wing, and to some extent, on the 
spanwise position of the aileron. It is interesting to 
note that with a given equal up-and-down aileron 
deflection the induced yawing moment is the same 
throughout the speed range, while the rolling moments 
and the stabilizing factors are greatly reduced at  the 
lower speeds. 

Figure 12 gives a comparison of theoretical and 

C,,= KCL X Ci 
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aspect ratio 6. Deviation from the theory is to be 
expected at  excessive deflections of ordinary ailerons 
and with special types of devices, since important 
changes of profile drag may be introduced, If com- 
plete wing section data are available, however, the 
profile-drag part of the yawing moment may be readily 
estimated. 

As in the case of rolling moment, the yawing moment 
of an aileron a t  any spanwise position may be calculated 
by taking the difference of ordinates a t  abscissas cor- 
responding to the ends of the aileron. Unlike the roll- 
ing moment, however, the yawing moment of differ- 
ential ailerons is not the same as that of ailerons with 
equal deflections. In  the general charts given in figure 
13 the ratio of yawing to rolling moments a t  CL= 1.0 is 
given rather than Cn/Aa. In this case the differences 
between two points cannot be used directly to give the 
yawing moment of an aileron extending between these 
two points. The yawing moment caused by an aileron 
ending inboard of the tip may be found, however, by 
taking the difference of the yawing moments given by 
two aileroas, one extending from the inboard end of 
the actual aileron to the wing tip and the other extend- 
ing from the outboard end to the tip. The straight 
and tapered ailerons should give yawing moments in 
practically the same ratio to the rolling moment; 

hence, only a single set of values of K = -c,/c; is given. 

Referring again to the 0.25 em by 0.40 b/2 plain 
aileron (aileron 1) of trtble I, it is found that the ratio of 
yawing- to rolling-moment coefficients for this case is 

CL 

--_ cn 0.216 C, - 

at C, = 1.0. 
rolling-moment coefficient previously found is 

(See fig. 13.) At the deflection given the 

Cl=0.0332 (7) 

(8) 

The values of both yawing- and rolling-moment 
coe$cients for these ailerons having been obtained, it 
is now possible to calculate their rolling effectiveness by 
means of figure 3. The wing loading of the average 
airplane assumed in table I is 9.4 pounds per square 
foot; hence, a t  C,=l.O the banking effect of a rolling 
moment of coefficient 0.01 acting for 1 second is 

Hence, the yawing-moment coefficient at  C, = 1.0 is 

Cn= - 0.216 X 0.0332 z= - 0.0072 

=1.42 feet (9) 

and for a rolling-moment coefficient of 0.0332 

y=1.42X3.32=4.7 feet (10) 

The effect of the yawing moment of coefficient -0.0072 
is calculated in the same way, i. e., 

~= 2 -O0.72XO.65= -0.47 foot (1 1) 

@=4.7-0.47=4.23 2 feet (12) 

The effect of these rolling and yawing moments applied 
simultaneously is 

Thus, deflecting the ailerons suddenly to f7.4O causes 
a 4.23-foot displacement of the wing tips in 1 second. 
The angle of bank for the average airplane (b/2 = 16 
feet) is 

- h b  

(13) 
2 

2 

41~7; X57.3= 15O - 
as appears in the table. 
Yawing moment with differential deflection or 

droop.-The effect of an unequal movement of the 
ailerons may be taken into account by considering an 
equivalent equal up-and-down deflectiqn from a mean 
upward position of the ailerons. Thus, deflections of 
15O up and 5O down may be considered as equivalent 
to loo equal up-and-down from a mean position 5O up. 
Inasmuch as a differential deflection of the ailerons 
changes the mean lift of the wing, figure 13 cannot be 
used without correction to calculate the yawing moment 
due to unequal deflection. As was brought out in the 
preceding discussion, the yawing moment is caused by 
the interaction of the wing lift and the induced flow 
caused by the rolling moment. Hence, the yawing 
moment incident to a given rolling moment depends 
on the distribution of the basic or symmetrical part of 
the lift. The basic lift distribution upon which the 
yawing moment depends is, then, the distribution for 
a wing with both ailerons raised. The adverse yawing 
moment will, in this case, be reduced because of the 
lessened lift over the tip portions. For the conditions 
following sudden aileron deflections the average upward 
movement of both ailerons will entail an actual reduc- 
tion for a short time of the lift of the wing without 
correspondingly increasing either the flight speed or 
the angle of attack. The conditions will, of course, be 
different for steady fight with ailerons held over. For 
practical purposes it is sufficient to calculate an incre- 
ment of CJCt due to the increment of lift produced by 
the symmetrical droop or uprigging of both ailerons. 
This increment would be the yawing moment incident 
to a unit rolling moment when the entire lift of the air- 
foil was due to the droop of the ailerons. The ratio of 
yawing to rolling moment thus found will be a constant 
additive contribution to equation (5) at all lift coeffi- 
cients. 

Figure 14 shows the reduction of the ratio of adverse 
yawing to rolling moment in terms of the reduction of 
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over-all lift coefficient for a rectangular wing of aspect 
ratio 6. The experimental points indicated were de- 
rived by taking the differences of yawing moment 
measured with equal up-and-down deflections and up- 
only deflections and dividing these differences by the 
measured reduction in total lift coefficient caused by 
the up-only deflection. 

If CL is the lift of the wing with ailerons undeflected 
and Acr, is the.equivalent angle of washout of the 

FIQURE 14.-Increment of induced yawing moment due to differential deflection 01 
ailerons; ACr, is the reduction of lift coefficient due to differential deflection. 
~ectangular wing; 61/5=6. 

aileron portions introduced by the unequal aileron d e  
flections, then 

(14) C* 
CC A- = K A ~ ,  

since the reduction of lift is proportional to Aa,. The 
factor K ,  like the factor K, depends on the wing plan 
form and the relative length of the aileron portion. 

Figure 15 shows theoretical values of K for Wings of 
aspect ratio 6 and various plan forms. It should be 
remembered that CL as used in equation (14) is the 
lift coefficient with ailerons undeflecte4. Correction of 
the values given in figure 15 for wings of different aspect 
ratio may be made by considering that K is very nearly 
inversely proportional to the aspect ratio. 

It is evident that the foregoing remarks apply equally 
as well to wings having washout at the tips or to wings 
with partial-span flaps. For wings with partial-span 
flaps Aam is simply the reduction of the effective angle 
of attack at  the tips due to removal of the tip portions 

of the flap. It should be remembered that droop of 
the outer portions (negative dam) increases the adverse 
(negative) yawing moment while washout (positive 
ha,,,) decreases it. 

The increment of yawing moment due to the s u m  of 
two distributions of droop or washout is equal to the 
s u m  of the increments associated with each separate 
distribution. This property may be used to compute 
quite accurately, though not exactly, the yawing 

FIQURE 15.-Ratios for calculating additional induced yawing moments of differen- 
tial ailerons or ailerons on wings with washout; PIS=@ A a m  is in degrees. 

(l+A) 5- --KCL+KA~, 
CI 

moment of difFeren&l ailerons that end inboard of the 
wing tip. 

CONTEOL BOECES 

Hinge moment.-The available experimental data 
indicate that the hinge-moment coefficient Ch of an 
ordinary aileron can be treated with sufscient accuracy 
as a characteristic of the wing section, that is, as a 
characteristic independent of the plan form of the 
aileron or the wing. An average experimental value 
for the slope of the hinge-moment curve against deflec- 
tion is 

s= -0.0085 per degree (15) d8 

for sealed ailerons of chord c. and span b,, where 
hinge moment of aileron element Oh= ac2b, - -  - 

Thus, the actual hinge moment at  a given deflection 
varies as the aileron span and as the square of the aileron 
chord. 
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Strictly speaking, the hinge moment of a deflected 
flap should be calculated in two parts. The primary 
part arises from that component of the distributed 
pressure change which does not contribute to the lift of 
the airfoil section. Since no lift is involved, this com- 
ponent is independent of the aspect ratio. The second 
component of the hinge moment, proportional to the 
lift change, is subject to the ordinary aspect-ratio cor- 
rection. The correction is, however, small except for 
wide flaps. 

Some additional considerations arise in the applica- 
tion of aileron hinge moments to the calculation of 
control force. The angular travel and the length of the 
control stick (or radius of the control wheel) are limited 
in practice. Thus, ailerons requiring large deflections 
must be geared to the control stick or wheel in a high 
ratio. In the case of the average airplane the total cir- 
cumferential movement of the end of the control stick 
was assumed to be 0.73 foot in the case of each of the 
control devices. This value corresponds to a -+25O 
deflection of a 20.inch stick corresponding to that avail- 
able in the FaircJdd 22 airplane. 

If reference is made to the tabulated results for 
aileron 1, it is seen that the total deflection necessary to 
insure the assumed satisfactory degree of control 
22.5O at C,=l.O, in this case) is ~ t 1 1 . 2 ~ .  The work 
of deflecting ailerons of chord c, and span ba is 

dCi 6 11.2x 11.2 
d6 57.3 57.3 - 6 -p,2ba=-0.O085X 

X9 .4X  (0.25X5.3)2X0.4X16 

=1.97 foot-pounds (16) 
The control force is equal to twice the total work di- 
vided by the linear travel of the end of the stick, or 

3 94 Stick force=A=5.4 pounds 0.73 

The stick force at the partial deflection required for 
+*=15O is 

2.31 xm=2.31 615O X-0=3.6 7 4O pounds 
11.2 

These simple relations apply, of course, only to linear 
variation of the hinge moment and to nondifferential 
gearing. 

Differential linkages.-It appears that a differential 
linkage can, when properly designed, be a very effective 
means of reducing the operating force of flap-type 
ailerons (reference 11). The reduction of operating 
force is accomplished by taking advantage of the up- 
floating tendency of the ailerons. With differential 
linkage the ailerons on opposite tips of the Wing begin to 
move at different rates immediately after they are 
deflected from neutral, the downgoing aileron moving 
more slowly than the upgoing one. The upgoing aileron 
thus has the greater mechanical advantage at the con- 
trol-stick connection. It is evident that the reduced 

ipward pressure of the upgoing aileron is partly com- 
)ensated by its increased mechanical advantage and 
,hat the increased upward pressure on the downgoing 
deron is also partly compensated by its reduced 
nechanical advantage. At a certain deflection the 
€owngoing aileron reaches dead center and, regardless 
)f its aerodynamic pressure, cannot contribute to the 
stick force; if the upgoing aileron is then at the floating 
Lngle (i. e., angle of zero hinge moment), the stick force 
d l  be zero. 
Ordinary ailerons show nearly straight-line hinge- 

noment curves (2=-0.0086 and in this case the ) 
balancing effect of a given Uerential linkage depends 
mly on the upfloating angle. A formula for a differ- 
3ntial motion that gives zero operating force over a 
range of deflections may be obtained by writing the 
mpression for the work of deflection of the ailerons and 
squating it to zero at every point. 

where 6, and Bd are the upward and dbwnward deflec- 
tions of the ailerons and 6., is the floating angle meas- 
ured upward from the neutral position. A practical 
b t a t i o n  of this formula is reached when d&/d& 
approaches -1, for then both ailerons begin to move 
in the same direction and at the same rate. 

It should be appreciated that a differential designed 
in accordance with equation (19) will give complete 
balance at the specified floating angle. It is, however, 
considered desirable not to eliminate completely the 
control force at any flight condition, as the pilots’ feel 
of the control would be taken away. This condition 
can be avoided by designing the linkage for a fictitious 
floating angle somewhat higher than the maximum 
actually reached in fight. If A&, is the difference 
between the floating angle at which the differential 
gives complete balance and the actual floating angle 
of the aileron in the given flight condition, the resultant 
stick coefficient cfi8 will be 

where 0 is the “gular deflection of the control stick. 
In any given case the stick force can be balanced out 

at only one angle of attack and, in general, the balancing 
effect diminishes as the angle of attack is reduced. 
Hence, if the stick force is made to become zero at  an 
angle of attack above maximum lift, overbalance of 
the control in normal flight will be avoided. 

A more or less complicated mechanical linkage that 
would give aileron movements approximating equation 
(19) could be devised. The ordinary simple linkage 
consisting of two properly set cranks connected by a rod 
can, however, be arranged to give the desired motion 
With close approximation, and such an arrangement will 
be given primary consideration. 
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Such a simple linkage can be made to satisfy two con- 
ditions'for a minimum stick force. Figure 16 shows a 
type of stick-force curve that satisfies two very simple 
criterions. First, the slope of the curve is zero at the 
beginning of the deflection and, second, the resultant 
stick force is zero at  a stick deflection corresponding to 
the floating angle of the up aileron. As was stated 
earlier, the latter condition is satisfied by arranging for 
the downgoing aileron to reach dead center when the 
upgoing aileron reaches the floating angle. Figure 17 
shows geometrical arrangements of linkages that satisfy 
these two criterions for a minimum stick force. If the 
spacing of the crank centers is known in terms of the 
crank radius, the figure gives directly the neutral set- 
tings of the two cranks. The differential thus chosen 
will give what amounts to complete balance a t  the 
specified floating angle. The maximum downward 

FIGURE lS.-Type of curve that satisEes simple criterions for minimum stick force. 

travel of the aileron is shown in each case and it is to 
be noted that, if the maximum deflection of the upgoing 
aileron exceeds the assumed floating angle, the down- 
going aileron will pass dead center and return toward 
neutral. 

Since the floating tendency of a given aileron has a 
primary influence on the design of the differential 
linkage, it will be necessary to devote some study to 
this aileron characteristic. It appears that the floating 
angle of a plain flap-type aileron can be attributed to 
two effects: (1) a hinge moment proportional to the 
angle of attack of the wing, this moment being greater 
for large flap chords but independent of the shape of 
the Wing section; and (2) a hinge moment attributed to 
the camber of the wing section, which remains constant 
as the angle of attack is changed. This second moment 
is primarily Suenced  by the camber of the aileron por- 
tion itself and is greatly affected by small changes at 
the extreme trailing edge. Thus, a small &xed tab can 
be used to introduce a large constant floating moment. 

Figure 18 shows the variation of floating angle with 
tla.p chord and lift coefficient for the Clark Y wing sec- 
tion. The floating angles shown were indirectly com- 

puted from floating moments that were found by inte- 
gration of pressure-distribution diagrams for a smooth 
Wing (reference 20) and hence correspond to smoothly 
sealed flaps. 

For the comparisons given in table I, idkite linkages 
(R=O in fig. 17) were assumed to simplify the computa- 
tions of control force. In most cases of differential 
ailerons listed, several trial computations of stick force 
were made to ascertain the optimum differential ar- 
rangement. These trial computations included the 

y2) ca,=O; ( L ) ~ d = ~ d m e z = h  

determination of the curve of stick force against deflec- 
tion to insure that no reversals of slope of the stick- 
force curve occurred a t  any point. 

Aileron 1 may be used to illustrate the use of *e 
17 in the selection of a differential. Assuming that the 
greatest possible reduction in stick force is desired, a 
floating angle only slightly higher than the maximum 
shown by figure 18 will be assumed. On the assump- 
tion that it is permissible to allow the control force to 
become zero a t  CL=1.25 (6,,=1l0), the differential 
chosen by means of the chart will have neutral settings 
of 0,=15O and 6,=30°, approximately. As indicated 
by Sgure 17, the maximum downward deflection obtain- 
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able with this arrangement will be about 4)h0 and this 
angle will be reached when the upgoing aileron reaches 
1 1 O  deflection. For greater deflections the downgoing 
aileron will return, reaching neutral when the up aileron 
is at 22O. 

Effect of a fixed tab used in conjunction with a 
differential linkage.-Figure 18 shows that the floating 
angles of plain ailerons are reduced as the lift coefficient 
is reduced. It is on this account that the balancing 
effect of the differential diminishes. The stick forces 
tabulated for the differentially linked aileron 1 show 
this effect as an increase of stick force at  high speed. 
It is possible to introduce a large constant floating mo- 
ment by means of a properly formed fixed tab. The 
effect of such a tab is to increase the floating angle at all 
flight speeds by a constant amount so that the per- 

Lif f  coefficient, C, 

FIGURE 18.-Floating angles of sealed llasps of various chords on a Clark Y wing BS 

computed from pressure-distribution data (reference 20). 

centage variation with flight speed is reduced. This 
effect is especially pronounced in the case of very narrow 
ailerons, which do not show a very great variation of 
floating angle with angle of attack. 

Furthermore, the maximum floating angle shown by 
very narrow ailerons is not great enough to permit the 
use of a differential to the best advantage. Thus, if 
the floating angle is considerably smaller than the 
maximum upward deflection required to produce suffi- 
cient control, the stick force may rise considerably after 
this point is reached on account of the return of the 
downgoing aileron and the consequent extra deflection 
required of the upgoing aileron. Advantageous use of 
a differential in such cases can be accomplished by in- 
corporating a fixed tab (or a small amount of camber) 
arranged to trim both ailerons upward. In order to 
secure satisfactory results with a tab, a reasonably 
smooth inset type with a sealed juncture should be used. 
Attached tabs or tabs set at large angles (6,>&15') 
have been found to cause an adverse increase in the 
slope of the hinge-moment curve. 

Figure 19 shows the summarized results of experi- 
ments with tabs made in the 7- by 10-foot wind tunnel. 

As was stated before, the tab produces an essentially 
constant change in floating angle. The variation of 
Boating angle with angle of attack can be found from 
figure 18. Figure 19 gives the change of aileron floating 
angle with tab deflection. (See references 9 and 21.) 
The experiments indicated that this ratio depended 
primarily on the ratio of tab chord to aileron chord in- 
dependently of the chord of the aileron, although this 
relation can not be expected to apply as the aileron 
chord is indefinitely increased. At the Reynolds Num- 
ber of the tests the tabs began to lose effectiveness when 

deflected past 15'; hence, the ratios given should be 
considered applicable to tab deflections not exceeding 
this angle. Figure 19 may also be used to estimate the 
balancing effect of a movable tab. 

It appears from figure 19 that a very large floating 
angle can be obtained by the use of a relatively small 
inset tab and deflection. Thus, the floating angle can 
very easily be altered to suit a given set of conditions. 
It has been pointed out that it is desirable to have the 
floating angle at  least as large as the maximum upward 
deflection required for control so that the stick-force 
curve will lie reasonably near the minimum throughout 
the range. The smaller the percentage variation of 
floating angle with angle of attack, the smaller will be 
the variation of the actual stick force with fhght speed. 
It would therefore appear desirable to trim the ailerons 
up as far as possible by means of a tab. On the other 
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hand, inasmuch as the deflected tab is made an in- 
herent part of the airfoil camber, the size and deflection 
of the tab cannot be indeSnitely increased without ad- 
versely affecting the pitching-moment and drag char- 
acteristics of the airfoil. 

Reference to figure 19 shows that a 0.10 c, (2% percent 
cw) tab deflected downward 10' will change the floating 
angles of aileron 1 by approximately go, raising the 
maximum floating angle to about 20'. This tab on the 
average airplane would be only 1.6 inches wide and the 
deflection of 10' would displace the trailing edge of the 
wing section by only one-third inch and would conse- 
quently not be expected to make 8 noticeable change in 
the drag or the pitching moment of the Wing as a whole. 
The differential linkage giving complete balance at a= 
15' with tbis floating angle can be found from *e 17. 
The neutral settings of the cranks are 

The maximum downward deflection found on the chart 
is about 8 O ,  but in this case the aileron is not required 
to reach this deflection (20° up and 8' down) to produce 
a sac ien t  bank. Reference to figure 18 shows that 
the reduction in floating angle between cL=1.25 
(maximum) and CL=l.O is 2.5'50 that, with the tab 
assumed, the floating angle at a=lOo (CL=l.O) will be 

20°-2.5'= 17.5' (22) 

Similarly, the new floating angle at a=O' (c~'0.35) 
willbe 

20°-4.80=15.20 (23) 

These values indicate that the balancing effect of the 
differential will not be greatly reduced at the higher 
speeds. Table I gives the actual stick forces as com- 
puted at these lift coefficients and indicates the reduc- 
tion possible with a tab. An even better degree and 
range of balance could be attained with narrower 
ailerons on account of the smaller variation of floating 
angle with angle of attack. 

CONCLUDING REMARKS 

The provision of control rolfing moments at high 
angles of attack or beyond the stall is not sdc ien t  to 
secure control in flight at these angles unless the damp- 
ing in rolling is retained. This requirement necessitates 
that at least the tip portions of the wing remain un- 
stalled; hence, it cannot be considered a decided ad- 
vantage to retain control rolling moments far above the 
stall with conventional wings. 

The flight-testing experience gained throughout the 
course of the lateral control investigation has led to 
more or less definitely quantitative ideas regarding the 
desired effectiveness of the lateral control and the 
desirable variation of the control forces in normal ftight. 

From considerations of operating force required for a 
given amount of control, plain naxrow sealed ailerons 
with deflections limited to 20' seem about the most 
efficient. Very great taper, or change of aileron chord 
along the span, leads to inefficiency whether used with a 
straight or a tapered wbg. A differential linkage can 
be so designed as to reduce considerably the operating 
force of ordinary unbalanced ailerons, especially if a 
small fixed tab is used to increase the floating angle. 

Several devices, notably the plain ailerons with flap 
retracting ahead, and the retractable aileron or spoiler 
located at 0.80 cw have been developed and proved in 
flight to be suitable for use with fd-span flaps. It was 
found, however, that the maximum lift of a tapered 
wing with split flaps was reduced less than 10 percent 
by the removal of the outer 0.30 b[2 portions of the flap, 
so that a conventional aileron could be used over that 
portion of the wing without great loss. 

Aerodynamic theory can be successfdy applied to 
the calculation of rolling and yawing moments of plain 
ailerons provided that experimental section character- 
istics are used in the computation of the local changes in 
angle of attack along the wing span caused by the 
ailerons. Further calculations involving the airplane 
stability characteristics can be applied to the pre- 
diction of the actual resultant motions caused by a given 
deflection of the control, thus giving a measure of ef- 
rectiveness in controlling the movements of the air- 
plane. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY , 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., April, 80,1937. 
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TABLE I (A).-COMPARISON O F  VARIOUS LATERAL CONTROL DEVICES 

Control forces and aileron deflections to produce 
specified hank in 1 second sideslip 

nith Eo 
bankin1 
mend 

(degrees) Criterion 41 = 16O 
~ 

Linkage 
C~=0.35 I C~=1.0 defiection 

(degrees2 
41=22.5 CL= CL= 

\ 
\ 

\ 
\ 

Aileron CL=1.0 0.35 1.0 
angles 

(derrem) 
t 7 4  .__._. fll .? ...-. 3 7 
l.OX4.1.-- 20.0X2.0.-. 3 7 
).OX6.0 _ _ _ _  14.0X7.7.-. 3 7 

_ _ _ _ _ ~ - _ . -  

~ ~ ~ - -  
t9.4 _.__.. f14.5 ___._ 3 8 
1lOX4.8.-. 18.0X5.0.-. 3 7 

k7.9 ._..__ f13.0 _.___ 4 8 
ll.OX4.8.-. zi.OX4.0.. 4 8 

k9.0 ___.__ 514.0 _ _ _ _ _  4 R 
12.0X7.0.-. 18.OX8.0 ... 4 8 

t13.0 _ _ _ _ _  f20.0-.--. 3 7 
_ _ _ _ ~ ~ ~ _ _ _  

______-______ 
12.0X7.4 ... 2OOX8.6 ... 3 7 

Device 

L a t d  
stabflit] 

minUS 
*%=o 

"%,, 
( d m  

-.---_--. _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
I 
I 

_ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _  

!- a 

\ I I- -I- 

I-l- 
3. P l a i n  a i l e r o n s  Equal--- 3,2 

0.15c,X0.60$' l}Diff ..____ 1 2 5 ~- 
4. P l a i n  a i l e r o n s  Equal---- 14,0 

0 . 4 0 c W X 0 . ~  IIDiff --.... I 7.0 

6. Optimum differen- Di ff..... 0 S 
- 

1-1- tial sealed ailer- 
om a O.O78e,X 

-~ tab, down 14O. 
7. S k R o l n d e d  e w e d ailerons. tip11 

wing b 0.25c,x Equal---- 
0.44; 20' skew. I Diff ____.. 5.2 

'-- 

0,25~wX0.41~. ;:! 
8. Tapered ailerons 5 3  

t n p e r e d  wing Equai .... 

sealed ailerons 6:1 
t a p e r e d  wing - 

11. Optimumstraight Equal .... 0.E 
= 

I-I sealed ailerons 5:l 
t a p e r e d  w,ing* 
0 . 1 1 2 ~ ~  (at tip)X 
0 . 8 4  

12. F r i s e  a i l e r o n s  Equal .... 3.2 
0.25cUX0.4& ----I 1.8 

13 F r i s e  a i l e rons  

0 34 .  Diff 

rons 5 1  t ape red  
w1n.X 1 or,c,x 

~- 
14 FIoating-c,p aiie- Equal 2 5 

2.3 
1.4 

- 
32.0 

20.0 

19. Slot-lip ailerons d Unhal- 12 0 
0 . 5 5 ~ ~  l o c a t i o n  11 anoed. 1 
O.IOc, XO 5%. 

a Computed or estimated results. 
b Hinge moments computed or estimated. 

S . 8  ____.. 5.6 
1.5X3.0 .... I 1.8 

k4.2 ..... I 11.0 
1.8X3.5 --. 2.0 
__- 
56.1 -.--.. 1.0 

~- 
1.5X3.6 .... 0.1 

+4.8 ._.___ 9.2 
6.1X3.8 ___. 4.7 

I- 

f.3.0 ____.. 3.7 
3.4X2.6 ..-. I 1.5 

-I- 

_ _ _ ~  
f6.8 ..____ 0.5 

f2.6 ...... 3.8 
2.6X2.S .... 1.1 

~~ 

f.4.2 ...... 8.1 
4.3X4.0. .. 2.3 

4.8 ........ 2.2 
~~ 

~ _ _  
7.4 .-...... 4.9 

f2.0 ...-.. 1.2 
2.4x2.2 .... .2 

______ 
23.0~14.n.. 18.0 

23.0X14.0.. 16 0 

19.ox12.0. 9.3 

19.ox12.0 8 5 

~- 

d Device may not give satisfactory response characteristics. 
Deflection given in percentage of wing chord. 

Perfonnanm 
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TABLE I (B) .-COMPARISON OF VARIOUS LATERAL CONTROL DEVICES 

Device \ 
\ 

\ Criterion 

Link- 
C~=0.35 I Cr.=l.O 

age - Stick 

:E 
-- 

Sideslip 
with 1 5 O  bank 

Control force and aileron deflection to 
produce specified hank in I second l l  +i=15O 

-- 
Aileron 

c $ ~ ~ l ~ )  

f12.0 ...- 
15.0X5.6.. 

f16.0.--- 
26.0X3.5-. 

f11.7---- 
13.0X7.8.. 

fU).O..-. 26.ox10.0 

--__ 

*25.0---- 
28.OX11.0 

35.0X0.6.. 

0.074cwf-- 

13.0X11.0 

--- 
16.0X9.2.- 

___-___ 
140X6.8.. 

cL= cL 
0.35 1.E 

3 7 
3 7 

3 7 
3 6 

3 6 
3 6 

2 2 6 5 

4 8 
4 8 

3 8 

1 4 

3 7 

3 7 

3 6 

I 

Equal.. 
Diff..-- I 

20. Tapered ailerons, 
=led. 5 1  tapered 
wing. Partial-span 
split flap: 

Ailerons 
0.25e.X0.4l& 

4.0 
2.4 

f3.0 ...-. 
3.4X2.6 ... 

-___ 

3.7 
1.5 

f4.3...-. 
5.0X3.6-.. 

-- 

f2.8 ..... 
3.1X2.5 ... 

3 6 
1 1 

2 2 
1 2  

Flap 0.15c.X0.7~. 

22. Tapered ailerons, 
sealed. 5:1 tapered 
wing. Partidepan 
split flap: 0 

Allerons 
0.25e.XO.50~ 

Flap 0.15cWX0.fG$. 

2.3. Tapered ailerons. 
sealed. 31 tapered 
wing. Partial-span 
spht flap: 

Ailerons 
0.25c.XO.34. 

Flap 0.15c,X0.7C& 

0.15c,X0.6C$ 

24. Plain ailerons. Re- 
tractable Bap: 

Ailerons 

Flap 0.15c,X1.00~. 

25. Plain sealed aile- 
rons. R e t r a c t a b l e  
flap: a 

Ailerons 

Flap O.15cwX1.0C$ 

26. Retractable aile- 
rons. Split flap: 

0.116c.XO.8~. 

Ailerons 

Flap O.zOe,Xl.G3& 

0.15c"XO.~. 

27. External-airfoil 
flaps a O.ZOC.XI.OO& 

28. External-airfoil flap 
ailerons 

o.~uxo.@. 

2.1 

j -- 

Equal.. 2.4 
Diff.-.- 1.4 

--- 

Equal-. 2.4 
'Diff--.- 1.5 

-_-- 

Equal.. 6.2 
Diff _ _ _ _  5.7 

tab. 
n i t h  

I 
D i f f  . 1.4 

Up on- 0 
IY. 

~- 
Diff---- 5.5 

Diff--.- 0.9 

-___ 

f4.2 ____. 
4.5X3.L. 

-__. 

t3.8 _ _ _ _ _ _  
4.0X3.5 ... 

___- 
3.4X4.2-- 

2.5 
1.4 

4.7 
3.7 

0.9 

O.025cy'-- 

-- 
3.2X3.0 ... 

-- 
3.7x3.7 ... 

0 

3.1 

0.8 

Performance 

C ~ x l . 8  I 
- 
:1imt 

I.=O.' 

F a t  

__ 

19.5 
19.5 

-_ 

19.5 
19. 5 

- 

18.2 
18.2 

- 

le. 2 
18.2 

- 

18.5 
18.5 

- 
18.5 

- 
18.1 

-- 
18.7 

- 
18.7 

__ 
19.0 

- 

- 
Stick 
force 
Ob.) 
- 

3.5 
.8 

-- 

4.5 
L3 

__ 

1. D 
.1 

- 

2.8 
1.5 

-- 

6.7 
5.4 

__ 
2.7 

- 
0 

- 
0.2 

- 
0 3  

__ 
1.4 

- 

- 
Speed 
range 
& 
c%i, 

125 
125 

-- 

130 
130 

- 
Maxi. 
mum 
lift 

%,> 
__ 

1.88 
1.88 

- 

1.97 
1.97 

- 

:: % 

- 

1.97 
1.97 

- 

2.05 
2.05 

- 
2.06 

- 
2.19 

- 
1.83 

__ 
1.80 

- 
1.92 

- 

Aileron Stick 
angles force 

(dwees) Ob.) 

Aileron 
angles 

(degrees) 

I 

f7.5. _ _ _  
8.4X4.8-. 

f9.6-- _ _  
13.0X5.1. 

< - -  e >top 

*7.4.... 
8.2X6.0.. 

129 
129 

f12 .0  ... 
14.0X18.( 

141 
141 

-. 

143 
143 

- 
143 

f7.0----  
8.7X7.1.. 

8.4X6.6. 

0.062c.'- 149 

_. 

172 

- 
172 

6.0X5.5.. 

7.6X7.3.. 

25.0X6.5 29. Slot-lip ailerons. D i ff . 2.4 
&p: External-a:rfoi l  e. d 1 w3;h 1 Ailerons 

202 

O.lzcwxl.~. 

Flap O.zOewXl.~. 

Computed or estimated results. 
e Cr. slightly below 1.8. 
d Device may not give satisfactory re8pOnSe characteristics. 

e Spring mechanism assumed to avoid overbalance with flap down. 
f Deflection given in percentage of wing chord. 
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THEORXTICAL STABILITY AND CONTROL CHARAC OF WINGS WITH 
VARIOUS AMOUNTS OF TAPER A 

By HENRY A. PEARSON and ROBERT T. JONES 

SUMMARY 

fiYability derivaibes have been computed f o r  twisted 
wings of different plan forms that include variations in 
both the wing taper and the aspect ratio. Taper ratios 
of 1.0, 0.50, and 0.25 are considered for each of three 
aspect ratios: 6, 10, and 16. The specijic derivatives jor  
which results are given are the rolling-moment and the 
y a w i n g - m o w  derivatives with respect to (a)  rolling 
velocity, (b) yarn-ng velocity, and (e) angle of sideslip. 
These results are given in such a f o r m  that the e$ect of 
any initial symmetrical wing twist (stich as may be 
produced by Jlaps) on the derivatives may easily be taken 
into account. 

In addition to the stability derivatives, results are 
included for  determining the theoretical rolling moment 
due to aileron deJEection and a series of injluence lines is 
given by which the loading across the span may be de- 
termined for any angle-of-attack distribution that may 
OCCUT on the wing plan forms considered. The report also 
includes incidental TefeTences to the application of the 
results. 

INTRODUCTION 

Although a formal theory for the dynamics of air- 
plane motions has been available for many years, air- 
plane designers have not been in a position to utilize 
this theory to its fullest advantage on account of lack 
of knowledge of the basic physical quantities involved. 
It is true that the physical quantities, or stability 
derivatives, have been determined by test or calcula- 
tion in a number of instances, but there exists no sys- 
tematic series or correlation of tests sufficient to guide 
the designer in the prediction of these factors. 

As is well known, the calculations involved in aero- 
dynamic wing theory have been developed and refined 
to such an extent that it !s possible to predict quite accur- 
ately the air moments and forces on the isolated wing 
a t  a h e d  speed and incidence. Since several of the 
airplane lateral-stability derivatives depend almost 
entirely on the aerodynamic characteristies of the wing 
and since it would be desirable in any case to know the 
separate effects of variation of wing form on stability, 
it was thought worth while to extend the calculations 
to the determination of the moments developed by the 
wings when the airplane is disturbed from steady flight. 

This report gives theoretical stability derivatives for 
a variety of wing shapes including nine merent  plan 
forms and covering, in most cases, an arbitrary distri- 
bution of twist. 

Past work on the stability characteristics of wings has, 
except in isolated cases, been confined to andysis by the 
“strip method,” wherein the effects of aerodynamic in- 
duction were neglected. The main effects of the induc- 
tion are included in the present computations, although 
the secondary influence of distortion or curvature of the 
wake is neglected. r 

DEFINITIONS 

The axes used in specifying moments, angular veloci- 
ties, etc., are k e d  in the wing and therefore move rela- 
tively to the air and to the earth. The X axis passes 
through the wing aerodynamic center in the plane of 
symmetry and is so chosen as to point directly into the 
line of the relative wind when the wing is moving stead- 
ily. Otherwise the axes form an orthogonal system as 
shown in the back cover of the report. 

The derivatives that may be obtained enable an esti- 
mate to be made of the variation of both rolling moment 
and yawing moment with (1) rolling velocity, (2) yaw- 
ing velocity, and (3) sideslip angle. These factors, des- 
ignated by C,,, e,,, etc., are to.be used in the following 
general formulas to determine the wing rolling and yaw- 
ing moment in combined rolling, yawing, and sideslip- 
ping motion: 

Subscripts p and T are used to designaie the partial 
derivatives of the well-known wing rolling-moment and 
yawing-moment coefficients, Cl and C,,, with respect to 
instantaneous rolIing and yawing angular velocities (ex- 
pressed as helix angles) and @ is used to designate the 
partial derivatives of these coefficients with respect to 
instantaneous sideslip angles. In  this manner the no- 
tation is considerably shortened from the usual more 

cumbersome expressions bCJb e&), bCn/b (g), etc. 

Expressing the rolling and yawing moments as the sums 
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of partial linear factors is considered valid for motions 
that are slow relative to the flight speed V and for small 
displacements, such as occur in ordinary unstalled 
maneuvers and such as are considered in the study of 
stability. 

a, angle between the zero-lift direction of the wing 
section and the air velocity a t  infinity, radians. 

8, parameter defining spanwise position, y= -- cos 8 b 
2 

(when 8=0, y=-2; b 8=a, Y=:). 

Co, Cz, C;, coefficients of cosine series expressing 

C;, rolling-moment coefEcient. 
C., yawing-moment coefficient. 
p ,  angular velocity in roll, radians per sec. 
r, angular velocity in yaw, radians per sec. 

V, flight velocity of wing along X, f .  p. R. 
8, angle of sideslip, radians. 
6,  aileron deflection, radians. 

wing plan form. 

CZ,,, rate of change of rolling-moment coefficient Ci 

e,,, rate of change of yawing-moment coefficient C, 

czr, rate of change of rolling-moment coefficient C1 

c,,, rate of change of yawing-moment coefficient C,, 

c,, rate of change of rolling-moment coefficient Ci 

Cna, rate of change of yawing-moment coefficient C,, 

C,, rate of change of rolling-moment coefficient C, 

Q,,,, rate of change of yawing-moment coefficient C,, 

with the helix angle pb /2V.  

with the helix angle pb/2T7. 

with the helix angle rb/2V. 

with the helix angle rb/PF: 

with sideslip angle 8. 

with sideslip angle p. 

with aileron angle 6. 

with aileron angle 6. 
L, total wing rolling moment, ft.-lb. 
N ,  total wing yawing moment, ft.-lb. 
p, dynamic pressure, Ib. per sq. ft .  
S, wing area, sq. ft .  
c, chord length at  any section, ft. 
e,, chord length a t  plane of symmetry, ft. 

ma, section slope of the lift curve, per radian. 
b, wing span, ft. 

A, wing aspect ratio, b2/S. 
An, B,,, C,, coefficients of Fourier series. (See 

reference 2 . )  
cz, section lift  coefficient, section liftlqcdy. 

CL, wing lift coefficient, wing lift/qS. 
c,,, section profile-drag coefficient. 
cas, section induced-drag coefficient. 

CDo, wing profile-drag coefficient. 
A, taper ratio: i. e., ratio of the fictitious tip chord, 

obtained by extending the wing leading and 
trailing edges to the tip, to the root chord. 

r, dihedral angle, radians. 

CONDITIONS RELATING TO THE COMPUTATIONS 

PLAN EOEMSI 

The particular chord distributions for which the com- 
putations were made are illustrated in figure 1. Table 
I gives the coefficients of the cosine series used to express 
these chord distributions in terms of e. Although the 
quarter-chord line is shown to be straight, it is permis- 
sible to apply the results to wings with similar chord 
distributions but with the different plan forms that 

(a) A=& 
(b) A=10. 
(c) A=l& 

FIQURE 1.LWmg plan forms considered. 

may be obtained by small alterations of the shape of 
the quarter-chord line. The computations were made 
for three aspect ratios, 6, 10, and 16, and for three taper 
ratios, 1.00, 0.50, and 0.25. The wing p h n  forms used 
only approximate those of linearly tapered wings with 
rounded tips. 

LIFT DISTRIBUTIONS 

Rolling, yawing, and sideslipping motions introdme 
varying resolutions of the relative-wind velocity over 
the wing. It  is evident that these variations can, to a 
certain extent, be replaced by a fictitious warp or twist 
of the wing in straight fliht. The procedure followed 
here is to calculate the spanwise lift and drag distribu- 
tions for the fictitious twist (i. e., that replacing the 
effect of motion) in the ordinary way, but to incline the 
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lift and drag components so as to maintain them along 
the perpendicular and the parallel to the actual local 
relative-wind velocity. A further refinement of the 
theory would involve the influence of the curvature of 
the wing wake. Since the helix angles bvdlved in the 
motions are small (pb/2V<0.1 and p.b/2V<O.1) and 
since that region of the wake nearest the wing is of 
predominant infiuence, this correction may be neglected. 

Inasmuch as the various stability derivatives thus 
depend upon a summation of appropriate components 
of the lift and the drag loading along the span, it was 
necessary to determine these distributions for each of 
tho wings with several different angle-of-attack distri- 
butions. For this purpose the Lot2 method of calcula- 
tion (references 1 and 2) was used. In order to keep 
the computations from becoming too lengthy, the chord- 
distribution function that occurs in this method was 
expressed by, at most, three terms of a cosine series (as 
in table I). Although this expression caused the chord 
distributions of the actual wings (fig. 1) to differ slightly 
from those for linearly tapered wings with rounded sips, 
such a procedure was justified because these slight de- 
partures in plan form had only a small effect on the 
characteristics but permitted a large saving in the com- 
putations required. Thus only the terms near the 
diagonal running through equations (19) of reference 2 
entered into the computations. As the various deriva- 
tives for the elliptical wing could be obtained relatively 
easily, they were sometimes computed in order to deter- 
mine the shape of the various derivative curves; it was 
therefore possible to use fewer points in fairing similar 
curves for the tapered wings. 

The wing theory was applied in a special way so as 
to obtain results applicable to any arbitrary twist of 
the wings. The theoretical span loading being a linear 
function of the angle-of-attack distribution, the loading 
due to arbitrary twist can be built up, as will be indi- 
cated later, from certain elementary loadings by super- 
position. The elementary loadings considered were 
those caused by simple unit jumps of angle of attack 
occurring at different points of the span. 

For each of the nine tapered wings, the first 20 
Fourier coefficients determining the load distributions 
were computed (10 odd and 10 even) for the cases of 
unit angles of attack extending inward from the wing 
tip and covering various amounts of the semispan. 
The rest of the wing was in each case assumed to be at  
zero angle of attack. The portions thus covered were 
0.25, 0.50, 0.75, and 1.00 of the semispan. 

In spite of the great number of harmonic terms re- 
tained, the conditions near the points of discontinuity 
in the angle of attack required special treatment. The 
problem of these end conditions has been solved by 
Bet2 and Petersohn (reference 3) and their results were 
utilized in fairing the load curves through this region. 
Figure 2 shows the elementary loadings that were cal- 
culated, including the modified fairing. The results 
pertain specifically to the chord distributions illustrated 

in figure 1 but interpolation might be made for inter- 
mediate plan forms. 

It is evident that any angle-of-attack distribution, 
symmetrical or unsymmetrical, may be built up of 
elemental steps of the type used in deriving figure 2. 
Figure 3 illustrates the procedure of hding the resultant 
load distribution. Thus, the loading contributed by 
element 10 of figure 3 (a) is obtained by deducting the 
load curve due to an increment of angle of attack extend- 
ing between 6 and C from that duo to an increment 
extending between A and C. Although this process 
could be continued until the load distribution was com- 
pletely determined, the same results can be more easily 
obtained from influence lines, which give the load at a 
particular spanwise station due to the effect of unit 
angle-of-attack changes extending inward various 

(a) Angledf-attack distribution. 
(b) Load distribution for elemant (IO). 

FIGURE I.--LOad components for an element. 

amounts from the right wing tip. Such influence lines 
are given in figures 4, 5, and 6 for eight evenly spaced 
points across the wing semispan. Each line was ob- 

tained by cross-plotting the values of - at the inter- 

sections of the loadink curves of figure 2 with vertical 
lines drawn at the particular stations. (For exampIe, 
the points of intersection of line Z-Z, fig. 2 (b), with 
the various curves represent the load induced at the 
0.25-semispan point by uniform angle-of-attack incre- 
ments that extend in varying- amounts from the wing 
tip. These intersections identify the corresponding 
curves of figs. 4 to 6.) 

In order to  illustrate the use of the influence lines in 
determining the lift distribution ag well as to show the 
degree of accuracy with which they may be used, the 
influence lines will be applied to predict the loading for 
a tapered wing (X=0.25, A=6) corresponding to the 
angle-of-attack distribution shown in figure 7 (a). 
The particular angle-of-attack distribution used is 
defined by the equation 

C l d C ,  
Q 

-+-)sin c 3csmn 30 
c 4bsm6 

152 



THEORETICAL STABILITY AND CONTROL CHARACTERISTICS OF WINGS 

FIQUBE 4. 
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load is to he computed. 
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This particular distribution is employed because it is 
possible thereby to compute exactly the corresponding 
theoretical distribution as a check, without the usual 
approximations of a Fourier series. The following pro- 
cedure illustrates the use of the influence lines to deter- 
mine the lift at the 0.75-semispan point due to this dis- 
tribution of twist: (1) The influence curve labeled 
0.75 in k r e  4 (c) is reproduced beneath the angle dis- 

- 
ci , radian ~~~-::. .  tnfegrafed areo(O.75) *c (0) =-550 = 4.35 

-. 3 
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-6 I I I I I I I / M I  I I I I I I I 
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Relotwe disfance f rom wmg ceder 

FIOUEE 'I.-Determination of lift distribution. 

.- 

tribution to the same spanwise scale; (2) a base lint 
with a range from amaZ- to amaZ4. is laid out as in figun 
7 (c) with the origin of the ordinates a t  a equal to zero 
(3) the effect of any length of elemental angle-of-attack 
change, da, in figure 7 (a) is found by projecting tht 
Iength of the element onto figure 7 (b) and plotting tht 
increments (A1) and (A2+A;) a t  the angles of attack 

'or which these elements are drawn, as in sgufe 7 (c). 
Because a negative angle would induce a negative load 
r t  the point in question, AI is plotted aa a negative 
value. This process is continued from amas- to am*+ 
tnd the resulting curve (fig. 7 (c)) is integrated to obtain 
\he total effect a t  0.75, which is then plotted in figure 
7 (d). The load distribution over the entire span is 
Ibtained by repeating the same procedure for a number 
)f points along the span. 

With the lift loading thus determined, the induced- 
hag distribution may be found by a simple operation, 
lamely 

ca*= c , (a - 2) (4) 

Figure 7 (d) gives the comparison of the load- 
distribution curve obtained from the influence lines 
with that oomputed directly by the wing theory using 
squation (3). Although the agreement is not precise, 
it must be remembered that the solid curve represents 
a case where no series approximation was necessary; 
hence it may be concluded that the influence-line 
method of determining the lift distribution is as ac- 
curate as any other for practical purposes. 

Aside from other possible applications, the load dis- 
tribution may be used to determine the stability deriva- 
tives for certain cases not specilkally covered by the cal- 
culations. In the subsequent charts, it is sometimes 
necessary to stipulate either that the initial angle-of- 
attack distribution be symmetrical about the Wing 
center line or that the dihedral angle be constant along 
the span. With a knowledge of the complete load 
distribution, however, values of the derivatives or their 
respective moments might be found for particular cases 
where the charts do not apply. 

STABILITY DERIVATIVES 

Although it is possible, in the general case, to obtain 
the stability derivatives from the lift distribution, such 
a procedure will not usually be necessary because the 
charts to be presented cover all cases likely to be of 
interest. The resuIts are presented in such a form that 
the effect of flaps on the derivatives may easily be 
determined. 

ROLLING MOMENT DUE TO ROLLING 

The first derivative considered is the rolling moment 
due to rolling. In unstalled flight, when the Wing rolls 
about the longitudinal wind axis, a damping or restorhg 
moment is set up. This moment L,ollinp varies directly 
with the angular velocity p and is defined by the 
equation 

(5) 

where the proiuct Cz, Pb 2~ is simply a rolling-moment 

coefficient that varies linearly with the angular velocity. 
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The computed variation of the derivative C,, with 
aspect ratio and taper is given in figure 8. In the usual 
lift range below the stall, this derivative may be con- 
sidered to be independent of either initial wing twist or 
angle of attack and of the wing dihedral. In conven- 
tional cases, practically the entire damping moment for 
the airplane may be attributed to the wings. It can be 
seen that the moment contributed by a tail surface, 
geometrically similar to the wing but with only one- 

Aspect rofi0.A 

FIGURE 8.-Rolling derivative aue to rolling. Ino~;,,,.=C;,$qSb 

fourth the span, would be %s6 of that contributed by 
the Wing, inasmuch as LroElttrg for a given angular ve- 
locity varies as the fourth power of a linear dimension. 

Reducing the aspect ratio or increasing the taper 
tends to reduce the derivative Cl,, as may be seen from 
the curves given in figure 8. Comparison of the pres- 
ent values of C,, with similarly derived values given in 
reference 4 indicates that the effect of rounding the 
wing tips is to reduce the theoretical restoring moment 
by about 6 percent for wings of aspect ratio 6. 

YAWING MOMENT DUE TO ROLLING 

During a rolling motion, the wing experiences a linear 
antisymmetrical change in angle of attack along the 
span and, as a result, antisymmetrical loadings are 
added to those that originally were on the wing. The 
resulting yawing moment is due to components of thc 
lift as well as to the drag along the span, the lift com- 

Ionents being the more important. With the specified 
ystem of axes, positive rolling produces a negative 
rawing moment or, for any case, with positive lift coef- 
icients the falling Wing tends to advance owing to the 
wedominating influence of the lift vectors. 

The yawkg moment due to rolling, unlike the rolling 
noment due to rolling, depends upon both the initial 
ring twist and the angle of attack. For untwisted 
Rings, however, the yawing moment is zero a t  zero lift 
mnd increases linearly with the wing lift coefficient. 
?or a twisted wing, the yawing moment due to rolling, 
tlthough varying linearly with the over-all lift coeffi- 
tient, is not necessarily zero when CL is zero but may 
lave either a small positive or a small negative value 
lepending upon the initial angle-of-attack distribution. 
)wing to this circumstance, it is most convenient to 
:xpress the derivative Cnp as a ratio in terms of unit 
Iartial-span angle-of-at tack changes. 

Figure 9 shows the computed variation of the ratio 
Ynp/a for unit symmetrical angle-of-attack changes that 
?xtend out from the wing center so as to cover various 
tmounts of the Wing span. Thus, if it is desired to 
letermine Cnp for an untwisted rectangular Wing of 
tspect ratio 6 a t  an angle of attack of 0.1 radian, the 
d u e  0.195 (for an angle of attack of 1 radian), read 
'rom the solid line of figure 9 (a) a t  the relative dis- 
,ance of 1.0, is multiplied by 0.1 to give a value of 
7,, equal to 0.0195. If, now, a half-span flap of con- 
itant chord ratio were displaced an amount sufficient 
,o cause an additional change in angle equal to 0.1 
-adian over the portion with flaps, the new value of 
Pnp would be 

(0.1 X0.195)+ (0.1X0.134)=0.0329 

This value of C, is then inserted into the equation 

to determine the yawing moment due to a rolling 
angulm velocity. 

Although the curves given in figure 9 can be directly 
used to determine the effect on Cnp of deflecting partial- 
span flaps of constant fiap-chord ratio, they are also 
readily adapted to the determination of C, for a wing 
with ang initial twist provided that the twist distribu- 
tion is symmetrical about the wing center line. The 
process is illustrated in the fol!owing example where it 
is desired to find the value of Cnp for a rounded-tip 
rectangular Wing of aspect ratio 6 with the symmetrical 
angle-of-attack distribution shown in figure 10 (a). 
The contribution of the element of angle of attack dcu, 
shown at  the point a=0.15 radian, to the total value 
of the wing Cnp is equivalent to that caused by a full- 
span elemental flap minus the contribution of the 
cross-hatched portions. The contribution of this 

element da is denoted by !?!? rla! and may be obtained 
( a >  
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0 .2 .4 .6 .8 
Extent of unit symmetricol anqle of attack 

(a) A=& 
(b) A=10. 
(c) A=16. 

FIGURE 9.-Yswing derivative due to rolling. IVrorz.no=Cn, $qSb 

by projecting the various small flap portions onto the 
appropriate C,/a curve (taken from fig. 9) as in figure 
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0 (b), and adding the increments A, and 4. The 
um of these increments is then plotted in figure 10 (c) 
.t the value of a for which the element is drawn. The 
d u e  of C,,,, for the complete wing is obtained by per- 
~rming the integration 

(7) 

.3 

.2 

B 
h 

.05 . /o ./5 .20 .25 a: radion 
FIQURE lO.-Applicstion of C., Curves to an ExSmPle. 

These curves apply to wings with symmetrical twist 
and it is necessary to consider only half the Wing, the 
factor 2 being included in the curves. The evaluation 
in the case of @ r e  10 (c) yields 0.0391. 
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The curves of figure 9 indicate that, for a given 
angle-of-attack distribution, there is relatively little 
change in the value of C,, with the taper ratios investi- 
gated. Changes in taper ratio did, however, have an 
appreciable effect on the value of C,  (fig. 8) with the 
result that the ratio of the yawing to the rolling moment 
in roll will, in general, increase with increase in taper. 

Inasmuch as the inclination of the lift vectors at the 
outer portions of the span has such a predominating 
effect on the yawing moment, the most effective means 
of reducing C- for a given wing lift coefficient i s  to 
give the wings washout toward the tips. 

The yawing moment due to rolling is, in conventional 
designs, largely due to the wings. The tail surfaces 
contribute very little to this moment both because of 

approximations in deriving the necessary equations for 
the detemination of the yawing derivatives. when 
these approximations are used and the velocity along 
the span is expressed (ts a variable, the new downwd 
equation becomes 

The system of simultaneous equations derived for the 
approximate solution of this integral equation is 

ZC, COS 2ne ZA, s in ~ O + % Z ~ A , ,  sin n~ 4b 

ROLLING MOMENT DUE TO YAWING 

During a yawing motion, increments of velocity are 
added along the forward-moving half of the wing and 
similar increments are deducted along the rearward- 
moving half. The difference in velocity of the t,wo 
halves causes a rolling moment which, for an untwisted 
wing, varies directly with the initial angle of attack as 
well as with the angular velocity. The velocity incre- 
ments vary linearly with the distance from the wing 
center line and are small relative to the flight speed; 
it is therefore permissible to make certain mathematical 

their short span and because of the small angles of 
attack relative to the wing. 

in contrast to the system given by equation (18) of 
reference 2. 

By means of equation (9), Fourier coefficients were 
computed for the nine tapered wings with two different 
initial angle-of-attack distributions: (1) a distribution 
due to a unit angle of attack extending over the whole 
span, and (2) a unit angle of attack at  the wing center 
covering half the span. In order to obtain the correct 
fairing of the final curves of figure 11, similar results 
were computed for elliptical wings with six angleof- 
attack distributions covering 0, x ,  j6, X, g, and all of 
the wing span. 

As was the case with the derivative C?, it is most 
convenient to give the derivative of r o h g  moment 
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due to yawing C;, as a ratio in terms of a partial-span 
unit angle of attack. The values of C,, may be ob- 
tained from figure 11 and are to be inserted into the 
equation 

(101 
rb 

&ninp= CZ,~PSa 

By the process described in the previous section, values 
of C’, may be obtained for wings with any initial twist 
distribution that is symmetrical about the center line. 

(a) A=B. 
@) A-10. 
(c) A=lB. 

FIGWEE 12.-Yawing derivative due to yawing for partiil-spsn flag. 

N,.,cm0=C, $qSb 

The curves of figure 11 fall in the order that would 
be expected for the various taper ratios, i. e., the 
moment for an untwisted tapered wing would be ex- 
pected to be less than that for a rectangular wing of the 
same span and area because the tapered wings have a 
smaller proportion of the wing area at the tip. On 
account of the induced velocities along the span, the 
reduction, for the tapered wings, is not so great as 
would be obtained by an application of the ordinmy 
strip theory. 

The direction of the moment is such that, with the 
system of axes used, a positive rolling moment generally 

results from a positive yawing velocity when the wing 
is giving positive lift. By the use of considerable 
washout, such as is obtained with partial-span flaps, 
it is possible not only to reduce the d u e  of this moment 
but also to make it slightly negative for low wing lift 
CO0ffiCi0IAts. 
Aa waa the case with CrP and C,,,,, the value of Cr, 

for the entire airplane is due almost wholly to the 
wings because the side area of the airplane contributes 
relatively little moment as compared with the wings 
in curvilinear flight. 

Aspect r-afio, A 
FIGURE l3.-Yawing derivative due to yawing for untwisted wing. 

NWW<W= Cm, ,--,@Sa 

YAWING MOMENT DUE TO YAWING 

rb 

A part of the wing yawing moment due to yawing 
results from the change in the induced-drag distribution 
that accompanies the change in the lift distribution 
across the span of a yawing wing. The rest of the 
yawing moment is due to the difference in the distribu- 
tion of profiIe drag resulting from the variation in 
velocity along the span. Both parts, however, pro- 
duce damping moments in the unstalled-flight range. 

The part of the wing yawing moment due to the 
induced drag is defined by the equation 

(11) 

where the derivative Cn, may be obtained from figure 12 
for certain types of angle-of-attack distribution. The 
special distributions for which the derivatives of figure 
12 apply are both uniform and symmetrical about the 

rb 
NyauIfng= e n r  V q S b  
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wing center line. Such distributions occur only when 
partial-span flaps of constant-chord ratio are deflected, 
the rest of the span being at zero angle of attack. This 
limitation in the applicabiIity of these curves as com- 
pared with the previous ones is due to the fact that the 
principle of superposition does not apply in cases where 
the variation is not linear with CY. The computed 
results may, however, be used to determine the varia- 
tion of Cn7 for the most useful case, namely, that of a 
wing without twist. For this purpose, the proper 
values of Cn,/a2 obtained from figure 13, which is a cross 
plot of the end points of figure 12, are multiplied by the 
square of the actual angle of attack. 

The part of the yawing moment due to the profile 
drag can be determined from the easily derived equation 

where cdo and c are functions of the distance y along the 
span. It is possible, by assuming cd,, constant and by 
neglecting terms of the second order, to obtain a coef- 
ficient ACn, that may be used with the equation 

(13) 

to compute the part of the yawing moment due to the 
profile drag. The values of the profile yawing mo- 
ment, as given by equation (13), are sufEciently 
accurate for most wings since ca0 generally varies only 
slightly across the span. The variation of the coef- 
Gcient ACn7/CD, with taper ratio is given in 6gure 14. 

r6 
Wuoco inr=  Acn,  

Taper rofio, h 

FIGURE 14.-Pro1Xedrag yawing derivative. AN8.,m,ng=AC*,&S6 

The total wing yawing moment due to yawing is the 
sum of the moments given by equations (11) and (13). 
At low lift coefficients, the profile drag contributes the 
greater portion of the wing damping moment in yawing. 
At moderate or high lift coefficients, however, the part 

due to the induced drag exceeds that due to the profile 
drag. If it is assumed that a=0.3 and CD,=O.O1, then 
the respective values of Cn7 and AC.,, would be 0.0522 
and 0.0031 for a rectaagdar wing of aspect ratio 6. 

The damping moment contributed by the wings in 
yawing motion is, in most cases, secondary but is not 

plan' view 

Front view 

! 

Resfffthg ar-tqfe-of-of tack dsfribution 
FIQUBE 15.-Eflect of irregular dihedral on sideslip. 

negligible with respect to the damping moment con- 
tributed by the fuselage and the vertical tail surfaces. 
The damping in yawing due to the wings depends upon 
the angle of attack as well as upon the plan form; 
therefore the relative amounts wntributed by the 
wings and tail surfaces may vary considerably. 

Although it was not possible to give a general chart 
for determining the damping in yawing for symmetri- 
cally twisted wings as was done with the previous deriva- 
tives, it can nevertheless be said that the addition of 
load toward the tips, whether by washing or by an 
increase in taper ratio, would increase the wing damping 
moment due to a yawing angular velocity. 

ROLLING MOMENT DUE TO SIDESLIP 

The manner in which the changes in angle of attack 
that cause a rolling moment are brought about during 
a sideslipping motion is shown in figure 15 by a sketch 
of a wing having positive, negative, and zero dihedral 
over various portions of the span. For simplicity, the 
wing i s  assumed to have no initial twist and the dihedral 
angles are assumed constant over each of the portions 
A, 6, and C. For small angles of sideslip 8, the in- 
crease in angle at tip A is, to a h t  approximation, 
equal to r&; whereas, at the opposite tip A', there is 
an equal decrease of the angle of attack. The portions 
6-43', having no dihedral, contribute no change in angle 
of attack when the wing is sideslipping. At the center, 
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however, owing to the negative angle of dihedral rc, 
there is an effective decrease in angle of attack over 
past C equal to r,p and on C' there is a similar increase 
in angle. Figure 15 shows the resulting effective 
angle-of-attack distribution for the particular shape of 
dihedral assumed. 

The effect of this distribution is similar to that caused 
by two pairs of ailerons equally and oppositely deflected 
with the inner pair opposing the rolling action of 
those at  the tip. Positive areas of dihedral on the 
advancing wing tend to add load onto that wing. For 
the system of axes chosen, all areas with positive 
dihedral produce a negative rolling moment with a 
positive angle of sideslip. This moment, like the rolling 
moment due to roll, is independent of the initial wing 
twist as long as no portion of the wing becomes stalled. 

The rolling-moment derivative due to sideslip CJB 
may be determined from figure 16, which gives the 
variation of C,p for various unit antisymmetrical 
angle-of-attack distributions (i. e., symmetrical portions 
with constant dihedral) that extend out from the wing 
center and cover various relative amounts of the wing 
semispan. In  the usual case, where the dihedral 
angle r is constant along each semispan, the value of 
the rolling moment due to a sideslip angle p can be 
obtained from the equation 

where the appropriate values of Cb/r, obtained from 
figure 16 at the relative distance equal to 1.0, are multi- 
plied by the dihedral angle in radians. In  more 
unusual cases as, for example, where only the tips are 
turned up or where the wing is given a gull shape for 
any reason, it is stiU possible to determine a coefficient 
of rolling moment due to sideslip simply by adding the 
effects of the various parts in the way previously de- 
scribed. Thus, for the wing shown in figure 15, let 
A=6, X = l . O ,  ra and r,=o.l radian and assume that 
it is desired to find the proper value of CtB to use in 
equation (14). The part due to the tip portions A-A' 
is A, (from fig. 16 (a)) X ra=0.195 X 0.1=0.0195. 
The part due to the center portions C-C' is As x r,= 
0.065X0.1=0.0065. The resulting value of Cb to 
be used in equation (14) is thus 0.0130. The extension 
of this method to a curvilinear variation of r along 
the span may be easily made by plotting the values of 
r at each point of the span and using the method given 
in a previous section for integrating for the total effect. 

The results of figure 16 indicate that equivalent 
angle-of-attack changes caused by unit lengths of 
dihedral portion near six-tenths of the relative distance 
from the center are, in general, slightly more effective 
in producing rolling moment than unit lengths of di- 
hedral at the tips. Such a result is due partly to the 
fact that the load curves near the tips are rounded and 
partly to the fact that, for the tapered wings, the larger 
areas affected by lengths of dihedral near the 0.6 point 
tend to compensate for the shorter moment arms 
through which the change in loading acts. 

7 
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Although, during a sideslipping motion, positive 
dihedral produces a righting moment, a similar though 
generally smaller effect may also be produced by the 
addition of vertical area above the longitudinal wind 
axis. Also, on account of interference effects, the 
proportion of the airplane rolling moment contributed 
by the wings may vary considerably with the external 
appearance of the airplane. 

It is usually considered, in practice, that a straight 
wing will have some dihedral effect, but tests of Wings 
with well-rounded tips (reference 5) do not support this 
uiew. In  cases of wings with blunt tips or in cases 
where chords of the sectians near the tip do not lie in 
one plane, some dihedral action i s  shown. 

FIGWE I?.-Comparison between experimental and computed values of Ct# (ox. 
perimontal data from referenca 6). 

Figure 17 shows a comparison of experimental and 
computed values of Cl&r. The experimental values 
have been obtained from figure 23 of reference 5 and the 
coefficients given therein have been converted to the 
form used in this report. In the tests reported in 
reference 5, a rounded-tip rectangular wing of aspect 
ratio 6 was given various lengths of dihedral by t&g 
up the outer portions of the wing. Each Wing was then 
tested throughout the rsngle-of-attack range for various 
sideslip and dihedral angles. 

It will have been apparent from the preceding dis- 
cussion that the results of figure 16 may also be applied 
to predict the rolling moment caused by an dlron 
deflection in unyawed flight since ailerons, equally and 
oppositely deflected, cause changes in the angle-of- 
attack distribution that are similar to the changes 
caused by dihedral. Strictly speaking, however, the 
change in angle of attack due to dihedral cannot have 
quite the same effect as a similar change produced by 
ailerons because the ordinary lifting-line theory, when 
applied to yawed or sweptback wings, omits the effect 
of the stagger of the trailing vortices and the inclination 
of the bound vortex. Although the present theory has 
not been modXed to take this effect into account, there 
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FIGURE 18.-Vsriation of k with ratio of flap or ailoron chord to wlng chord. 
flop o r  ai/eron chord/Wng chord 

is ample justification for omitting it in the computa- 
tions as experiments indicate only second-order differ- 
ences (see reference 5) for the usual angles of yaw and 
sweepback. 

For the computation of the rolling moment due to an 
aileron deflection 6, the appropriate value of CI6 to be 
inserted in the equation 

Laireras= C&sb (15) 

may also be found from figure 16. The derivative C1, 
is given as a ratio in terms of k, the theoretical change 
of CY with aileron deflection. Although the value of k 
has been theoretically determined for thin Wings, it is 
better to use values of k determined from an analysis 
of experimental data. For this purpose, figure 18 is 
included, which shows the variation of k for values of 
the ratio of aileron or flap chord to wing diord up to 
0.3. This variation of k has previously been given in 
figure 11 of reference 6 and holds for sealed flaps deflected 
up to approximately 20'. 
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~ for elemenf 8 

(a) Ailerons deflected equelly. 
@) Ailerons deflected dfierentially. 

FIGURE lg.-Addition of e&& of aileron elements. 

I .  Fronf view 
~ G W E  m.-Action of dihedral In produdng Pawing moment in sideslip. 

If the angle-of-attack change caused by deflect& 
the ailerons is antisymmetiical about the wing centei 
line, the proper value of C;, to be used with equatio1 
(15) (for the rolling moment only) can be found by tu 

itegration or summation of the effects of elemental 
ilerons of various lengths and positions along the span 
s indicated in figure 19 (a). The values of C;Jk are 
htained from figure 16 for the wing plan form used. 
E the ailerons are differentially operated, then it may 
e better to divide the ordinates of figure 16 by 2 and 
D determine the value of the moment given by each 
ileron as indicated in figure 19 (b). 

YAWING MOMENT DUE TO SIDESLIP 

The yawing moment of a wing with dihedral in side- 
lipping motion may be conveniently divided into two 
)arts, the first part being due to the unsymmetrical 
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inducedilrag distribution over the span and the second 
part due to a shift of the lift vectors acting so as to pro- 
duce a moment about the vertical axis. Figure 20 illus- 
trates the mmponents of the section lift and drag 
vectors that produce yawing moments. The advanced 
wing having the larger lift will also have a larger induced 
drag and hence a component moment is set up that tends 
to turn the wing so as to reduce the sideslip; at the same 
time, however, the mntrq moment due to the com- 
ponents of the lift acts to advance the forward half of 
the wing still more. As was the case with the yawing 
derivative due to rolling, the moments caused by the lift 
componen~ predominate and, as a result, the net 
theoretical moment is an unstable one; or, in other 
words, with the system of axes chosen, a negative 
yawing moment results when the dihedral and sideslip 
angles are positive. 

The explanations advanced in some textbooks neglect 
the inward slope of the lift vectors and lead to an incor- 
rect sign of the yawing moment. 

The yawing moment in sideslip is given by the eque 
tion 

The derivative Cn6 is given in 21 as a ratio in 
tern of ra because its value depends linearly upon the 
magnitude of the product of these variables. The 
values of Cn6/ra have been computed for unit symmetri- 
cal sngle-of-attack distributions that extend out on 
either side of the center line and cover 0.25, 0.50, 0.75, 
and all of the wing span. These curves may be used to 
deterniine values of CnB for any initial angle-of-attack 
distribution symmetrical about the wing center line, 
provided also that the angle of dihedral is constant 
across the wing span. Although the rolling derivative 
due to sideslip can be obtained (from fig. 16) for a curvi- 
linear variation of dihedral along the span, it is necessaq 
to stipulate that either a or r remain constant if the 
principle of superposition is to be applied in the deter- 
mination of Cno. The combination of variable symmet- 
rical twist and uniform dihedral being more common 
than the converse, the computations were shortened by 
including curves for only the case of uniform dihedral. 

The resultant value of C,, (to be used in equation 
(16)) is found by either an integration or a summation 
of the effects of elements of angle of attack extending 
along the span. The process to be followed where 
graphical evaluation is necessary has been illustrated 
in Sgure 10, with the ordinates of Sgure 10 (a) changed 
to ra. The ordinates and abscissas of the remaining 
psrts are to be changed as required. For untwisted 
Wings with uniform dihedral, the value of Cno/ra is 
obtained by multiplying the value read at  a relative 
distance of 1.0 by the wing angle of attack and, in 
turn, by the dihedral angle. 

The curves of Sgure 21 being generally steeper be- 
yond the 0.5 point, the deduction of increments of 

angle of attack at  the tip, i. e., giving the wing wash- 
out, would be the simplest means of decreaaing the 
unstable yawing moment caused by the wings in a 
sideslipping motion. 

Although the predicted variation of the yawing 
moment with dihedral is confirmed, experiments show 
a residual stable yawing moment a t  zero dihedral that 
is not predicted by the ordinary theory. This residual 
moment is greater for wings with blunt tips and is 
greater at  zero or negative lifts. It will be noted that 
the theoretical yawing moment is itself the small re- 
sultant of two large contrary effects and is thus of the 
same order as a number of possible secondary infiuences. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC8, 

LANGLEY FIELD, VA., April 19, 1958. 
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TABLE 1.-VALUES OF COEFFICIENTS DEFINING WING 
CHORD DISTRIBUTION 

5 sin e=z c,, cos n e  
CO 

0.730 1.000 1.300 1.000 
.700 .956 1.270 1.000 
.677 .952 1.240 1.000 
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REPORT No. 638 

THE INFLUENCE OF LATERAL STABILITY ON DISTURBED MOTIONS OF AN 
AIRPLANE WITH SPECIAL REFERENCE TO THE 

MOTIONS PRODUCED BY GUSTS 
13y ROREI~T T. JONES 

SUMMARY 

Disturbed lateral motions hazje been calculated for a 
hypothetical small airplane with various modijkations of 
fin area and dihedral setting. Special combindims of 
disturlring factors to simulate gusts are considered and 
the influence of lateral stability on the motions is discussed. 

The modifications of the airplane include changes of 
dihedral from 0" to 10" and changes of the weathercock 
stability from zero to Cn,=0.iS7 (the eguivalent of a fit& 

as ,?urge as i O  percent of the wing area). The positions of 
the modijied airplanes on the lateral-stability churts are 
shown. 

Fin area and wing dihedral were found to be of primary 
importance in side gusts. It was found that the roUing 
action of the wing with as much as 5" dihedral was dis- 
t i d y  unfavorable, especially when the weathercock sta- 
bility waa small. I t  is pointed out that the greatest sus- 
ceptibility to lateral disturbances lies in the inherent 
damping and coupling moments developed by the wing. 

INTRODUCTION 

Inherent stability, as defined in mathematical treat- 
ment, must be considered only one of several essential 
flying qualities of an airplane. Other important qual- 
ities belonging in this category are steadmess in rough 
air and responsiveness to control. Although the 
different flying qualities depend largely on the same 
governing factors, they may not call for similar pro- 
portionings of the factors. It is known, for instance, 
that the requirements for stability and control may 
conflict. 

What is ultimately desired, or course, is a definik 
understanding of the individual requirements for sta- 
bility, control, and steadiness in rough air. Most of 
the earlier work has been devoted primarily to the study 
of stability alone. A noteworthy early work on the 
effects of gusts is that of Wilson (reference 1). More 
recently the results of an investigation dealing with the 
effects of different degrees of stability on the motions 
following assumed initial conditions have been pub- 
lished (reference 2 ) .  The purpose of the present work 
is to study the amplitudes of the motions set up by 
gusts or other disturbances, particularly insofar as these 
motions are affected by the lateral-stability character- 
istics. It is hoped that the study will be useful in 

ndicating combinations of stability characteristics 
khat result in good riding qualities. 

The mathematical treatment employed is, in prin- 
.iple, an extension of that used by Wilson nntl other 
mrly writers. The methocls of calculation are, liom ever, 
nore concise and the development is not restricted to 
special types of gust. The operational method of 
resolving the effects of disturbances was used. (See 
Feference 3.) 

According to the theory, the motion caiisetl by any 
"andom variation or sequence of the disturbing factors 
nay be built up by superposing the effects of abrupt 
mit increases of the disturbance, which corresponds, in 
hhe case of gusts, to the effects of elementary sharp-edge 
:ross-currents. Thus the effects of random gusts can be 
argely visualized in the effect of a unit sharp-edge gust. 

STABILITY FACTORS ASSUMED 

The chief differences of lateral stability considered 
were assumed to be brought about by changing the fin 
area and dihedral of a hypothetical small monoplane. 
Differences in other proportions of most airplanes of 
conventional form have only secondary effects (in 
unstalled flight) and, furthermore, are not usually dic- 
tated by considerations of stability. The exact arrange- 
ment of the hypothetical airplane, such as the vertical 
disposition of the wing with respect to the fuselage, 
may be taken as indefinite. Differences of arrange- 
ment can, of course, have large secondary influences on 
the action of the fin or dihedral, which are usually 
attributed to aerodynamic interference. It is reason- 
able to assume that the effects of such interference will 
be similar to the effects of actual changes in the size 
of the h or the amount of dihedral. 

The airplane assumed in the calculations is a small 
1,600-pound monoplane having rectangular wings with 
rounded tips. The other proportions, including the 
radii of gyration about various axes, the tail length, etc., 
are based on average values of these quantities for 21 

number of conventional machines. The stnbility deriv- 
atives and other characteristics of the airplane arc 
essentially the same as those used in reference 4, except 
for the differences of fin area and dihedral, and apply to 
power-off e h t .  The axes and symbols employed 
throughout are given in detail in reference 4. Addi- 
tional symbols that occur in this report are given in the 
following lit: 
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--.464 -. YLO 
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-.410 
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-.410 
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X, l', and Z, axes fixed in the nirglttne so thtit S 
(See points into the relative wind in st,ently flight. 

report cover.) 
ri,, steady-flight velocity. 
O=tan-' VI[',,. 
Derivatives (see report cover for formulation of 

coefficien ts) : 

CYa=-, &CY side force due to sideslip. 

dC 

dC. 
90 

C,g=B'l rolling moment due to sideslip. 

Cna=-, yawing moment due to sideslip. 

dC1 
Pb d- 

217, 

Clp=--] rolling moment due to rolling. 

ac,, C n P = - ~  yawing moment due to rolling. 
I' d- 

21:, 

dC, 
rb d- 2 L'0 

dC, 
rb a- 211, 

1 aL 

Clr= -I rolling moment due to yawing. 

C+=---J yawing moment due to yawirig. 

L =_: --. 
' mks2 dv 

1 d N  
"-mk,' a n  

N - -  -. 
It was found convenient to tlesignnnte the five cases 

of modification by symbols representing the different 
front views of the airplane. Table 1 gives the stability 
Coefficients assumed in each case for flight, a t  three 
different lift coefficients. 

TABLE I.-ASSUMED STABILITY COEFFICIENTS 
(b, 32 ft.: 711. 49 slugs; S. 171 sq. It.: k x .  0 1506; kz, U.l&?b) 
____-- _ _ _ _ _ _ _ ~  

I I 
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0.111 

.Mi 
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. 06 

.Mi 

s I1 

5.0 

5. 0 

0 

10.0 

0.s5 
l . W  
1.Wl  
.35 

1.w 
1.80 
.35 
I. W 
1.m 
.35 

1.00 
1.80 
.35 

1.00 
1.80 

~ _ _ _ _ _  \_- ___I-.- I- 
150.0 -0.475 0.08fi -0.067 -0.W'Z 

mi. 0 -. 442 ,442 -_ I:m -_ 074 
150.0 --.425 . IW, -_ WBi -_ u22 
U. 5 -. 420 ,250 -. 088 --.u55 
6 6  (1 -_ 442 .442 -_ I30 -_ 074 

1.50. 0 -.425 ,0811 - .w7 -_(la 
w. 5 -. 420 ,250 -_ 088 -.a55 
m. 0 -_ 442 .442 - I30 -. mt 
a. 5 - . 4 m  .250 --.055 
MI. 0 -. 442 -. 074 

150. I) -_ 42.5 -_on 
w. 5 -_ 420 -.a55 
66.0 - - . a 2  -_ 074 

w. S -_ 420 .2w -.OM --.ax5 

1.50.0 -_ 425 ,086 0 -.022 

,442 

.442 -_ 2.59 

These coefficients were estimated from the ontward 
characteristics of the airplane by methods described in 
reference 41. The derivatives Gnat C",, and Cy@ (corre- 
sponding to the yawing moments in sideslip and in 
yawing and to the side force in sideslip) were assumed 
to be affected by the changes of fin area. Only the 
derivative CLB (corresponding to the rolling moment in 
sideslip) was assumed to be affected by changes of 
dihedral. The effect of dihedral on the lateral force in 
sideslip was neglected inasmuch as it was found that a 
compensating error was introduced by the absence of 
the side force due to rolling in the equations of motion. 
Another omission is the small adverse effect of clihetlral 
ttngle on the weathercock-stability factor C,,@. This 
effect is small, particiilarly in view of the wide vnria- 
tion of Cng nssumctl. A t  a lift coefficient of 1.8, repre- 
senting low-speed flight, a full-span flap was assunietl. 
Tests show that the effect of such a flap is to incretise 
the weathercock-stability factor somewhat for the wing 
alone. In practice, the flap might interfere with the 

. . . . -. 
-0.076 11 
-.w1 u 
-_ 196 0 
- .Wi . Uri4 
-_I(* . Ulii 
-.%I . 086 

-_ 1411 .lux 
--.%ti . 117 -. wi . on4 -_ 101) .067 -. ZZJ .w -_ 0Y7 .OM -. IW . (r,7 -_ m . 9 6  

-_ l:ffl . i o% 

_ _ _ ~ _ _ _ _  

air flow over the fin so that the increase of C,,@ :issrime.cl 
in this condition would not be realized. 

Figure 1 shows the positions of the modified airplanes 
on the lateral-stability,diagmms. These diagrams are 
essentially similar to those given in reference 5 except 
that a simultaneous increase of Cnr with Cns was assumed 
to show directly the effect of inoreasing the fin area. 

The value recommended by Diehl (reference 6) for 
CCg works out to about 0.03 for the wing loading 
nssumed here. Limits mentiorietl by Milliktin (refer- 
ence 7) correspond to 0.08>C",>0.05. Nearly till 
designers iire fiimiliur with thr liniits of L,/N, for sntis- 
factory latcml stability given by ~orviii-I(rotikovslcy 
(reftwwce 8). Figure 1 (21) shows t l i tw liniits izi ternis 
of C,# aucl P,,#. I t  slionlrl he nientionrtl thnt I<orvin- 
Kroukovsky's forniiilns :ire niore stiited to the rmpiricd- 
stirtistid iinalysis in whirli they wtw eniployrd tliaii 
to the tlt+mninirtion of nbsolute v~ilues of C,,p/C,o for 
this stirbility ellart. In most cases, wid-tunnel tests 
show values of CnP smaller thiin those predicted so that 
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the specified range, if given in wind-tunnel values, 
would probably fall somewhat lower than indicated in 
figure 1. 

The value Cnp=O does not, of course, correspond to 
an airplane with no vertical tail surface. Experience 
has shown that the unstable yawing moment of a large 
wellstreamlined fuselage may entirely offset the stabi- 
lizing action of a fair-size fin. This occurrence is natu- 
rally more probable if the fin area is originally small; 
hence the smallest arca likely to be used in a modern 
design (4 perccnt of the wing area) was chosen to repre- 
sent the condition. 

It is, in general, difficult to predict the values of 
either Cnp or C ,  for a given design. It will be realized 
that the corresponding values of fin area and dihedral, as 
referred to in tliis report, apply only under certain 
idealized conditions and are employed primarily as a 
matter of convenience in fixing ideas on the problem 
Reference 9 gives a summary of test values of Cna, 
including a discussion of pertinent factors and drawings 
of the models tested. The data included in that paper 
should aid the designer in judging the weathercock 
stability. , 

INFLUENCE OF LATERAL STABILITY ON MOTIONS DUE 
TO ARBITRARY DISTURBANCES 

GENERAL DESCRIPTION OF LATERAL MOTIONS 

-0. 1720 
-.I386 

-.495 

-. 5247 -. 680 -. 4797 -. 0075 
-.571 -_ 529 -. 795 -. 423 -. 235 -. 3219 

-. 1794 

-_ 3637 

(a) C~=0.35; U0=150 1. p. s. 
(b) C‘=l.O; Uo=88.5 f. p. s 
(c) C~=1.8; Uo=GG I. p. s. 

FIGURE 1 --Stability chart showing positions of the assumed airplanes. 
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The equations of lateral stability generally sliow two 
real roots together with one conjugate complex pair, 
indicating three “modes” of motion. Different clisturb- 
ances will result in motions compounded of these 
three modes in different proportions. 

Table I1 lists the roots, or stability indices, €or the 
various cases considered. The first mode (corrcspond- 
ing to the root hl), represents primarily the lieavy damp- 
ing of any movement involving rolling of thc wings rch- 
tive to the air. At normal flight speeds, this damping 
is such that the wings are in a large measure con- 
strained against such relative moverncnt normal to 
their chords. 

0.708 

2.45 
1.6i6 
1.54G 

2.013 
1. R3!1 
2 35 

.f(211 
. S m  

3.03 

1.119 
1.415 
2. .55 
I .  8% 
1. li!Ji 

. 

TABLE 11.-STABILITY INDICES, RATES OF DAMPING, AND PERIODS 

2. 22 
1.LI117 
1. . li4 I 
,937 

1.02 
.sin . iRI1 . SFl . f X M  

I. 031 
1. i i n  
.GI(; . Rlill 
.!I?:, 

- 

0.35 -5.477 
1.0 -3.255 
1.8 -2.533 
.35 -5.472 

1.8 -2633 
.35 -5.466 

1.0 -3. m 
.35 -5.369 

1.0 -3.070 
1.8 -2.320 
.35 -5.573 

1.0 -3.4R0 
I. 8 -2.872 

1.0 -3. m 

1.8 -z a n  

-0.4190 
- - . a 7 4  
--.6080 -. 0070 

.WX5 

.06M 

.om 

.1347 

.I770 .m 
-.awl 
-.01R1 -. 1045 

0 

.Mal 

0. 1% 
,212 
.273 . 128 
.210 . mz . I T ,  
.m 
.258 
.ID 
,225 
. m 7  
.124 . Is9 
.MO 

1.645 
“2.32 
‘1 1.13 
15.0 
1.55 
1.53 

1.133 . iMi 

.137 

.TB 
2 (B 
5 71 
1. 005 

m 

2. n 

(0.095 or 
-0.105) 

I - - -  ___- 

a 1. -0.69 

__ - .. . 

* Th8 value -0.65iA represents time to diminkh by h. 
b Iiea -0.105pr for tuna to diminish by 2/10 when A2 is negative; USB 0.095/x2 for timc to increw by 1/10 \I hen A? is I~ositivc. 

d Ror this m, -0.69hr has limn usnl. 
Quarter period. 

171 



REPORT NO. 63GNATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

The second mode distinguishable in the lateral 
motions (corresponding to A,) is a practically contin- 
uous turning motion, which may either coin-erge or 
diverge. Normal stability of this mode represents the 
slow natural rccorery from a banlred turn. The rate 
of increase or decrease of the turning motion is slow, 
primarily on account of the inseiisitiv-eness of the air- 
plane to displacenient in bank and the strong rcsistance 
to rolling motion. The slow spiral always occurs with 
inward sideslip. 

The third mode (X,) is the familiar oscillti tion, con- 
sisting usually of a yawing and sideslipping motion. 
Such rolling as occurs in the oscillation is detrrnliried 
by the tendency of the wings to follow a path outlined 
by the dihedral in front view. The wing, when side- 
slipping, tends strongly to roll in a way involving the 
least angle-of-attacli change along the span. Thus the 
oscillations involve a “weathercoclrJ’ motion combined 
with a rolling nearly in phase with the sideslip. 

With fairly large fin area, the oscillations are rapid 
and are quickly clamped. Under most conditions the 
amplitude is small. As the fin area is reduced, how- 
ever, the period becomes slower and, with normal 
dihedral, the oscillation takes on the character of a 
swinging in bank and sideslip under the action of 
gravity. The point of instability is reached when the 
oscillation degenerates to an almost pure rolling and 
sideslipping motion, so that the damping derivative in 
yawing, Cn,, has little effect on the occurrence of 
undamped oscillations. As has been shown (reference 
4), unstable oscillations can readily occur if the airplane 
is constrained in yawing. 

Although both the oscillation and the slow mode of 
convcrgence are largely governed by the fin area and 
the dihedral, the rapid convergence AI is practically 
independent of either of these factors. The damping 
comes, of course, from the wings and is an inherent 
characteristic of conventional airplanes. This damp- 
ing is excessive and is undesirable, since it indicates 
great sensitiveness to rolling gusts or to vertical gusts 
with a gradient along the wing span. The damping of 
rolling can be reduced by increasing the lateral moment 
of inertia, but the possible improvement appears to be 
small. 

CALCULATED MOTIONS 

The equations of motion of the airplane form a linear 
system so that the effects of disturbances can be com- 
pounded by addition. Thus, if any sequence of appli- 
cation of forces or couples to the airplane is given, it is 
possible to compute the resultant theoretical motion a t  
any instant by addition, or integration, of separate 
effects. The impressed forces or couples may he due 
to control manipulation or to gusts, alone or in coin- 
bination. 

The foregoing statement refers to a resolution of the 
impressed disturbances along the axes fixed in the air- 
plane. The disturbances are assumed to take on pre- 
assigned values independent of the movements of the 

airplane. With conventional control devices, the dis- 
turbances do remain practically independent of tlie 
motions. The orientation of the gusts is not dependent 
on the motion of the airplane, and deviations caused by 
such outside disturbances will introduce changes in the 
magnitudes of the disturbing factors themselves. For 
small displacements, these changes are of second order 
and are negligible. For large displacements in gusts it 
may, liowever, be necessary to cany out the caleulntion 
in several steps, altering the magnitude of the diiturb- 
nnce as the orientation of the relative wind changes. 

The data needed for the computation of motion under 
any given set of conditions are the histories of motions 
following sudden unit disturbances. Computations of 
such unit motions were made during the course of the 
investigation reported herein and the results were used 
as  the basis for the more complete calculations given 
Later. 

Specifically, the unit disturbance referred to is a 
force (Y) or a couple (L  or N) having the value zero 
up to the time t = O  and maintaining a constant d u e  
thereafter. The magnitude is such as to cause a 
unit linear or angular accelerhtion of the airplane. 
According to well-known mathematical rules, the 
motions under such conditions are given by equations 
of the form 

p y ( t )  = p , , ~ f p l , l e ” f + p y 2 e X ? f + p y 3 ~ n f  cos b(t+t,,) (1) 

rvlicre pya, p u t ,  arid t,Ir are constants, calculated raliics 
of which are given in table 111, and A,, Xp, a+& and 
a- ib  are the roots, or stability indices. (See table 
11.) Three components of motion for each of three 
component disturbanres are given. Thus, p&) denotes 
the rolling velocity clue to a unit side disturbance 
Bnd rL(t) denotes tlie yawing velocity due to a unit 
rolling disturbance. 

Plots of tliese equations were made with scarcely 
The procedure is illus- 

First the coefficients, ‘7s given in 
any additional computation. 
t.ratcd by figure 2.  
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table 111, were marked off on the ordinate scale. The 
time intervals within which the various modes diminish 
or increase by one-half, or by one-tenth in the case of 
kz (see table II), werc then spaced off on the abscissa 
and points on the curves were found by diminishing 
or increasing the ordinates successively as indicated 
by the sign of the root. The oscillatory mode was 
obtained by drawing in the envelope (given by +py3,  
say) and spacing off the quarter periods, beginning at  
the point indicated by the phase angle of this mode. 
The cosine curve was then simply sketched in as shown. 
The final curves were found to give remarkably good 
checks when applied in the original differential equa- 
tions of motion. Such a check shows the correctness 
of both the method of plotting and the analytical 
solutions (equation (1) and table 111). 

If the impressed disturbance is given as a function 
of t by a curve, it will usually be sufficient to approxi- 
mate this curve by the addition of a number of succes- 
sive positive and negative steps. The combination of 
steps necessary to reproduce the disturbance leads 
directly tr, the addition of the elementary motions for 
the resultant motion. Otherwise, for example, if the 
variation of disturbance is given by L(t), then the re- 
sultant motion p ( t )  at any t6ime t due to L(t) beginning 
at  t=O may be found by Duhamel’s theorem, thus 

p ( t )  due 10 oar fab le  r o z r f w  momenl=p&(t) L(0) 

where pL(t)  and p,(t-t,) are obtained from table 111. 
An explanation and a graphical method for evaluation 
of such integrals are given in reference 3. 

MOTIONS IN SIDE GUSTS 

The motion caused by a unit increment of gust 
velocity is found by compounding elementary distur- 
bances in such a way as to simulate the disturbing action 
of the gust. Thus, in a side gust of velocity vo, the dis- 
turbing acceleration along Y will be voY, and angular 
disturbances will be vo L,, vo N,. 

As explained before, the effects of any usual variation 
of gustiness can be largely foretold from the effect of a 
unit sharp-edge gust. The variable gust can be built 
up from small increment jumps of gust velocity corre- 
sponding to sharp-edge cross-currents and the final 
motion will approach that obtained by superposing the 
motions due to the individual elements. 

The effect of a sharp gust from the side is similar to, 
although not exactly the same as, the effect of an initial 
angle of sideslip. For the side gust, it is necessary to 
take account of the period of penetration of the airplane 
into the current. The first effect will be to push the 
nose of the airplane downwind whereas an instant later 
the current will strike the fin, turning the machine into 
the gust. The action of dihedral in causing the ma- 
chine to roll away from the gust will also occur be€ore 
the fin is affected. These effects are, however, of short 

duration and do not alter the motion to any great extent 
after the first fraction of a second, except in cases of 
small weathercock stability where the fuselage con- 
tributes a large unstable yawing moment. 

The computations that follow are based on the as- 
sumption that the rolling action of the gust begins a t  
t = O  and that the yawing action begins when the air- 
plane has traveled far enough to carry the fin into the 
current. The case of Cn,=O was treated by assuming 
a yawing couple equal and opposite to that of the 4-per- 
cent fin applied when t = O ,  this couple being neutral- 
ized at  the instant the fin entered the gust. 

A possible further refinement of the calculations 
would involve the delay in building up the full lift forces 
on the various surfaces. Mathematical methods for 
dealing with various lags or rates of growth of the aero- 
dynamic reactions have been developed, but their 
description is beyond the intended scope of the present 
report. It may be said, however, that, for motions as 
slow as the natural oscillations of a rigid airplane, this 
effect (judging by the theoretical predictions) is quite 
negligible. 

Figure 3 illustrates the results of the calculations 
based on a IO-foot-per-second sharp-edge side gust. 
The curves shown are for flight at  C,=l.O but the 
same general trends appeared in the calculations made 
for other lift coefficients. 

The most noteworthy difference shown is the effect 
of deficiency of fin area on the banking motion (figs. 3 
(a) and 3 (b)). The airplane with IOo dihedral and 
average fin was not displaced so much in bank by the 
side gust as was the airplane with 5 O  &he&ral and a 
small fin. The initial rate of rolling, however, was 
greater with the greater dihedral. 

With a given dihedral an increase of fin area cuts 
down the banlcing motion although, aIter a certain 
size is reached, the gain becomes slight, as is illustrated 
by figure 3 (a). W,ith neutral weathercock stability 
(fig. 3 (c)) the change of heading on entering the gust 
is at  first small and, although the motion is stable, the 
oscillation in azimuth seems to be reinforced for a 
time by the rolling. This action is to be attributed to 
the phase lag between the ro lhg  and the yawing effects 
upon penetrating the sharp-edge current. It scems 
probable that an appearance of inherent instability 
may be reached at  a point considerably above the 
mathematical limit for undamped oscillations. (See 
fig. 1.) It is known, for instance, t,hat unstable oscil- 
lations may result from an attempt to hold the wings 
level with ordinary ailerons unless CnB has a definite 
positive value. 

The side gust is equivalent to a sudden shift in the 
wind directinn, corresponding to a change in azimuth 
#,, as indicated in figurc 3 (c). The normal airplane 
swings about :ind tcricls to approach this hentling. I t  
will be noted t l i a t  the airplane with the large fin turns 
fairly sharply into the wind and, since the banking 
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motion is small, tends to keep the same flight path 
relative to the earth for a short time. After about 6 
seconds, however, tlie spiral divergence begins to be 
apparent and the motion finally results in turning 
downwind. 

An example of extreme spiral divergence is illustrated 
by the airplane with no diliedral. In this case, how- 
ever, the airplane banks and turns directly upwind. 
The airplane with large dihedral illustrates the oppo- 
site condition and shows the predominance of oscilla- 
tions that generally characterizes the effect of dihedral. 
Here the airplane tends back toward its original azi- 
muth heading, drifting sidewise with the gust. 

The airplane with 5' dihedral banked rather sharply 
away from the gust, whereas the airplane with zero 
dihedral showed an undesirable tendency to bank and 
slide into the gust. It was therefore a matter of 
interest to try some modifications lying in between 
these two conditions. It was realized that the rolling 
could not be entirely suppressed by such modifications 
on account of the phase relationships involved in the 
motions. 

It appeared that lo or 2 O  of effective dihedral would 
give about the least banking motion in the side gust 
and hence this condition was investigated. Inasmuch 
as the airpltme might have shown a noticeable spiral 
divergence a t  low speeds with the normal fin area, this 
area was arbitrarily reduced, bringing the weathercock- 
stability factor Cng down in about the safne proportion 
as the dihedral factor C,. The values selected were 
Cn,=0.025 and CIg= -0.035, which corresponds to 
2 O  effective dihedral. The position of this airplane on 
the lateral-stability chart is denoted by the point A 
in figure 1 (b). 

The results for airplane A are compared with the 
others in figures 3 (a) and 3 (b). It will be noted that 
the bank is somewhat smaller than in the case with 5 O  
dihedral and a large fin but that the bank persists for a 
longer time. The difference made by the change from 
5' dihedral to 2' seems surprisingly small. A some- 
what greater difference would be expected if the fin 
had not been reduced. It should be borne in mind 
that the yawing disturbance is reduced by cutting down 
the fin. 

The curve for airplane B (fig. 3 (a)) shows the result 
of attempting to secure spiral stability (at C,=l.O) 
by cutting down the fin of the airplane with 5' dihedral. 
(Note that airplane A is slightly unstable.) Tlie value 
of CnS in this case is about half that assumed for the 
mean condition. (See fig. 1 (b).) The banking dis- 
placement seems nnclesirably large (coinpnrat3ively) iri 

this case. 
OTHER TYPES OB GUST 

The flight velocity of the airplane being normally 
large with respect to gust velocities, it is permissible to 
consider the gusts as being stationary in time with 
respect to the flight path. Thus the gusts are con- 

sidered to exist as a fixed pattern in the air ahead of the 
airplane and not to vary in time within the short space 
required for the machine to travel its own length. 

As mentioned before, when the airplane enters a 
cross-current in level flight, a gradient of sidewise 
velocity along the length of the fuselage will exist. 
The effect of this gradient is similar to the effect of a 
relative yawing motion superposed on the side velocity. 
For a uniform gradient the additional yawing moment 
would be (-dv,/dx) XN,. The calculations involved 
this factor by virtue of the time lag assumed in applica- 
tion of the yawing moment due to the fin, and upon 
this basis they should be applicable to any roasonnble 
variation or gradient of sidewise velocity. 

A somewhat different situation arises when the air- 
plane is climbing or descending through a cross wind 
that varies with height, as, for instance, when descend- 
ing through the earth boundary layer for a cross-wind 
landing, for then no perceptible gradient of sidewise 
velocity along the length of the airplane will exist. 
The motions that arise in these cases can be compounded 
by integration from the motion following an initial 
angle of sideslip. This motion is: not greatly differen6 
from that caused by entering a sharp cross-current and 
the same general conclusions will apply. 

It appears that a true yawing gust, consisting of pure 
angular relative motion of the air, could act only 
momentarily on the airplane. The sidewise velocity 
would predominate after the first two- or three-tenths 
of a second with the airplane flying a t  normal speed. 
Gradients of velocity along the wing span, however, 
might persist for longer periods. 

Away from the ground influence, gradients of for- 
ward velocity and of vertical velocity along the wing 
span must be considered as being about equally prob- 
able. At normal Aight speeds, the vertical gradients 
produce by far the greater effects. As was mentioned 
before, the damping of relative rolling motion is such 
that the airplane very quiclcly takes on the angular 
velocity of the gust gradient. 

Figure 4 shows the rolling motion calculated for the 
medium airplane ( 5 O  dihedral and 6 percent fin) in a 
momentary rolling gust pOb/2Uo=0.05. It will be 
noted that the airplane takes on approximately half 
the rolling velocity of the gust within one-fifth second. 

As might be expected, observations have shown that 
vertical currents tend to diminish near flat ground. 
Thus side gusts and yawing gradients are more likely to 
affect the airplane while it is landing and taking off. At 
very low speeds with Aaps down, tlie rolling tlcrivtitivci 
due to yawing becomes :IS grc:tt :IS that tlue to rolling 
(see t:it)le I) so t h t  in this condition t h b  :tirplnnc is 
:illkcc.ted as much by spnwisc gratlicnts of 1ongitucliri:il 
velocity xs it  would be by the rolling gradients. (Note 
also that the effect of the rolling gradients is less a t  

Figure 5 shows the banlcing reactions of the various 
airplanes in a sudden, persistent yawing-gradient gust. 

low speed.) 
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Time. sec 

FIGURE 4 -Typical rolling motion caused by a sudden rolling gradient 

~ ~ - 0  05(t>O), U0=88 5 f. p s. pob 

The gust assumed corresponded to a difference of longi- 
tudinal velocity between the two wing tips of about 9 
feet per second (7$/2Uo=0.05). All the examples 
show roughly the same banking tendency within the 

IISTURBED MOTIONS OF AN AIRPLANE 

first second, since the disturbing factors (rolling 
moments due to yawing velocity) are the same in all 
cases. The subsequent motions show the influence of 
different degrees of spiral stability and instability. 

The primary dishrbing factor in the yawing-gradient 
gust being proportional to the derivative L, (rolling 
moment due to yawing), the greatest room for improve- 
ment would be to reduce this derivative. Taper and 
washout (such as are attained with a partial-span flap) 
are beneficial in this respect. It is estimated that L, 
might have been reduced by one-third of the given 
value (see table I) at  CL= 1.8 if a 50-percent-span flap 
had been assumed. The effect of plan form is not so 
pronounced, leading to a reduction of one-sixth for a 
4: 1 taper. 

I n  general, a reduction of the rolling moment due to 
yawing seems desirable from considerations of lateral 
stability. The magnitude of this derivative with con- 
trols k e d  is, like that due to rolling, primarily a con- 
sequence of the general lay-out of the airplane and is 
not dictated by considerations of stability. It appears, 
however, that the magnitude of L, with controls free 
(or loosely held) could be reduced or reversed by mak- 
ing use of an appropriate combination of ailerons with 
increased upward pressure (attained by cambering the 
ailerons) and a differential linkage, as described in 
reference 10. An appropriate linkage would eliminate 
the necessity of applying contrary aileron pressure 
during steady'turns and would also eliminate the spiral 
instability with controls free. 

CONCLUDING REMARKS 

A s h d y  ol tlic cfkcts of gusts givcs tlilrcwllrt indica- 
tions depcndirig on the interval of tiirrc consitlcrctl. 
During the first stagcs, the upsetting moveincnts of the 
stable airplane may be more severe than those of a 
slightly unstable one. If the airplane is under control 
and if the gusts are of noticeable magnitude, then the 
motion during the first % o r  3 seconds is of primary 
concern. For uncontrolled flight or for flight in rela- 
tively calm air wlierc disturbances could beconrc ap- 
parent only through introtlucing a clivcrgcnce, the 1:iter 
stnges of tlie motion are of interest. 

In a consideration of the early stages of tlie inotion, 
it is evident that the requirements of fin area and 
dihedral for spiral stability a t  low speed conflict some- 
what with the requirements for steadiness in side gusts. 
If spiral instability is present, the rates of divergence 
introduced by various disturbances appear to be small 
as long as there is a moderate cliheclral action present. 
The condition of zero (effective) dihedral leads, how- 
ever, to definitely undesirable rates of divergence. 

If average weathercock stability (cn8=0.05 to 0.07) 
is assumed, the optimum magnitude of the rolling de- 
rivative due to sideslip for steadiness in side gusts 
appears to be about C,,=-O.Ol to -0.04, correspond- 
ing to an effective dihedral of 1' or 2O. Spiral stability 
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throughout the flight range could be secured with this 
dihedral by cutting down the fin effect. The latter 
change would lead to somewhat greater banking dis- 
placements in the gusts and would also be detrimental 
to aileron control, unless such control were obtained 
without adverse yawing moments. 

The damping of rolling is such that the airplane very 
quickly takes on any rolling component of gust velocity. 
The usual modifications of the lateral-stability factors 
have but little influence on the immediate effects of the 
rolling gust. An automatic device, acting so as to cut 
down the damping of rolling (relative to the air), 
should be advantageous from considerations of riding 
comfort. 

The effects of longitudinal gradients of gust velocity 
become fairly large a t  low flight speeds. Noticeable 
improvement can be obtained by the use of partial- 
span flaps or by otherwise concentrating the lift toward 
the center of the wing, but this conclusion applies, of 
course, only as long as no portion of the wing is brought 
near the stalling point. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

L.4NGLEY FIELD, VA., June 8, 1958. 
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO, 667 

OPERATIONAL TREATMENT OF THE NONUNIFORM-LIFT THEORY 

I N  AIRPLANE DYNAMICS 

By Robert T. Jones 

SUMMARY 

The method of operators is  used i n  the  appl icat ion of 
nonuniform-lift theory t o  problems of a i rplane dynamics. 
The method is adapted t o  the  determination of the  l i f t  under 
p r e s c r a e d  conditions of motion or  t o  the  determination of 
t h e  motions with prescribed dis turbing forces.  

INTRODUCTION 

Problems i n  a i rplane dynamics are usual ly  t rea ted  on 
the  assumption tha t  t he  air  forces  are ins t an t ly  adjusted 
t o  each motion of t he  airplane.  Since the  development of 
recent theories  f o r  the  nonuniform motion of a i r f o i l s ,  it 
has become possible  t o  consider more exact l a w s  fo r  t he  ad- 
justment of t he  l i f t .  

The nonuniform-lift theory has already been applied t o  
ce r t a in  dynamical problems, notably t o  the  problem of f lu t -  
ter. These appl icat ions have, however, been confined e i t h e r  
t o  approximate solut ions o r  t o  cases i n  which the  type of 
motion is prescribed beforehand. The more usual  problem, 
i n  which t h e  resu l t ing  motion is  unknown, requires  t h e  so- 
l u t ion  of i n t eg ra l  equations. The present paper shows how 
solut ions of these equations may be obtained f a i r l y  simply 
by operat ional  methods. 

SUPERPOSITION OF LIFTS 

I n  nearly every aerodynamic problem, the  approximations 
tha t  must be made t o  e f f ec t  solut ions are such as t o  lead t o  
l i n e a r  re la t ions .  Thus, i n  the  case of the  unsteady l i f t  of 
a wing, Laplace's equation combined with the  assumption of 
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an'undistorted wake leads t o  a linear r e l a t ion  between the  
l i f t  and the  angle of attack. 
t he  l i f t  due t o  the sum of two var iable  motions is equal 
t o  the  s m  of the l i f t s  f o r  t he  two motions taken independ- 
ent l y  . 

Such a r e l a t ion  means t h a t  

I n  par t icu lar ,  i f  the  l i f t  following a sudden un i t  
jump of angle of a t tack  is known (see reference l ) ,  then 
t h e  l i f t  f o r  any var iable  motion is  eas i ly  obtained by 
breaking the  given motion down i n t o  a succession of small 
jumps o r  s teps  and adding the  l i f t s  incident t o  each one. 
The case treated by Wagner thus becomes the key t o  the 
calculat ion of l i f t  fo r  any var iab le  motion. 

Wagner's function (reference 1) giving the  l i f t  a f t e r  
a sudden un i t  jump of angle of a t tack (two-dimensional 
case) may be denoted by cz (5). The superposition of 

1 
l i f t s  f o r  any var iable  motion a ( s ) ,  as previously ex- 
plained, is accomplished by the  integrat ion of Duhamel's 
i n t eg ra l  

(See reference 2.) 

OPERATIONAL SOLUTION OF INTEGRAL EQUATIONS 

It is evident t ha t ,  i n  order t o  take account of un- 
steady air-flow phenomena i n  the theory of airplane dynam- 
ics (including s t a b i l i t y  and related problems) the custom- 
ary  instantaneous equations of motion must be replaced by 
equations involving the in tegra l  (1). The equations of 
motion then become l inear  in tegra l  equations. 
of these equations may be conveniently obtained by opera- 
t i o n a l  methods. 

Solutions 

Let D represent the operator d/ds and let  1 = l ( s )  
represent t he  uni t  jump function, tha t  is, a function of s 
having the  value 1 at  s > 0 and having the value 0 a t  
s < 0. Then a function of s may be represented by a com- 
bination of operations on the un i t  jump function 
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The combination of operations F(D) on 1 necessary 
t o  reproduce the function 4(s) is called the  "operational 
equivalent" of the  function 4 ( s ) .  The operational equiva- 
l e n t  of a given function 4 may be found by the  infi- 
ni te- integral  theorem (reference 2) 

A general operational equivalent is 

(See Peirce's table ,  p. 6 3 ,  no. 493 . )  

The operational treatment of in tegra l  equations is 
based on the  proposition tha t  an in tegra l  of the  form 

4 ( ~ )  = Z(S) X ( 0 )  + Z(S - s o )  X'(S,) dso ( 5 )  c 
may be regarded as the solution of a l inear  d i f f e r e n t i a l  
equation. As such, its operational equivalent is 

- - 
$(s) = Z(D) X ( s )  = Z(D) X(D) l(s) ( 6 )  

- 
where Z and fT are the  operational equivalents of the  
functions Z and X. 

In order t o  i l l u s t r a t e  the operational solution, let 
it  be required t o  find the  function X ( s )  from 
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assuming tha t  X ( 0 )  = 0. Here the function corresponding 
t o  Z(s) i n  equation (5) is l/&. With the  a id  of equa- 
t i o n  ( 4 ) ,  t h e  various components are wr i t ten  i n  operational 

Equation (6) becomes 

o r  

Simplifying: 

It w i l l  be helpful  t o  review ce r t a in  aspects of t he  
theory of unsteady l i f t  before proceeding t o  the  applica- 
t i o n  of t h i s  theory i n  a i rplane dynamics. 
convenient t o  think of the  l i f t  on the  a i r f o i l  as composed 
of th ree  par t s :  (1) A par t  due t o  instantaneous acceler- 
a t ion  of the  noncirculatory poten t ia l  flow. This l i f t  is  
equal t o  the  v i r t u a l  addi t ional  m a s s  of the  wing 

C2 
(w 7 p 

t h e  rate of increase of t h e  r e l a t i v e  wind ve loc i ty  normal 
t o  the  chord. 
and dependent on t h e  angle-of-attack var ia t ion ,  i.e., the  
l i f t  given by cz ( s ) .  (3) A pa r t  due t o  t h e  circulatory 

It is found 

per un i t  span, f o r  i n f i n i t e  aspect r a t i o )  times 

(2) A pa r t  due t o  the  circulatory flow 

1 

184 



N.A.C.A. Technical Note No. 667 

flow and ascribed to a relative curvature or camber of 
the airfoil in pitching motion. The third component will 
be automatically included with the second if the angle of 
attack is obtained by resolving velocities at the 75-per- 
cent-chord point. 

With these provisions, the instantaneous lift of an 
airfoil in combined pitching and vertical motion may be 
written (see fig. 1) 

+ Ea(0) + Z758'(0)Iczl(s) + cz (S - s o ) [ ~ ' ( s 0 )  + z7,e"(~~)]ds 0 

i (11) 
J: 

where 1.1 is a coefficient for the virtual additional m a s s  
of the wing (1.1 = IT for infinite aspect ratio). Now let 

be the operational equivalent of Wagner's function CZ, : cz 1 

is 
by 

No concise formula for cz (s) is known although it 
found that Wagner's curve islreproduced almost exactly 
the equation 

where eo = 28 

C1 = -0.330 IT 

C2 = -0.670 A 

al = -0.0455 

A2 = -0.300 

and where s refers to the half-chord as unit, that is 
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I n  t h i s  form, the  operational equivalent is readi ly  
found from t h e  r e l a t ion  

whence 

The calculat ion of l i f t  under a prescribed var ia t ion  
of angle of a t t ack  can be i l l u s t r a t e d  by assuming tha t  the  
a i r f o i l  is given a sinusoidal motion 

(16) i n s  
4 s )  (or e ( s ) )  = R.P. or  I.P. of e 

This var ia t ion  is reduced t o  operational form (see equation 
(14) 1 : 

D 
1) - i n  

- 
a(D)  = 

(See equations (12) and (15) e ) 

The resu l t ing  operator may be evaluated by the Heavi- 
s i d e  expansion theorem: 

where the  A ' s  are the  roots  of F(D) = 0. 
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+ '2 i n  in - 1 i n  
i n  - A 1  

cz,(s) = u ine  

The terms involving ehs disappear i n  time and hence 
The terms may be disregarded i n  a continuous osc i l la t ion .  

C.1 einS = 21r[F f i G ]  eins (21 1 i n  i n  

yield approximate expressions of the l i f t  functions fdr 
the  osc i l la t ing  a i r f o i l  introduced by Theodorsen (refer- 
ence 3): 

A s  pointed out by Garrick (reference 4),,Theodorsen's 
function f o r  sinusoidal motion 

C(in) = F(n) + iG(n) (equation (21) ) 

may be regarded as the operational equivalent of Wagner's 
curve, i.e., 

This f ac t  may be ver i f ied  by referr ing t o  equation (15). 
This r e l a t ion  is  especially interest ing because it shows a 
connection between the Fourier and the  operational analyses. 
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Thus, i f  the response of a l inear  system t o  a continuous 
sinusoidal exci ta t ion is known, 

Then the  function f furnishes immediately the  operational 
equivalent of the uni t  response so that fo r  any var iable  
exci ta t ion Z (6) , 

R ( s )  = f (D) Z(s) = f (D) z(D) 1 (25) 

I n  general, the  motion of the  a i r f o i l  o r  a i rplane 
w i l l  not be prescribed beforehand but must be determined 
from dynamical equations. This type of problem can be dl-  
lus t ra ted  simply by considering the disturbed v e r t i c a l  mo- 
t i on  of the airplane without pitching. The dynamical 
equation i n  t h i s  case is  

(26) 
dw 
d t  m -  - r e s i s t i ng  force = impressed force,  Z 

where w is  the  v e r t i c a l  veloci ty  of the airplane and m 
i s  the  mass including the v i r t u a l  additional m a s s  of the 
wing. Since 

dw V2 da 
d t  c/2 d s  
- = - -  

2m V2 da dw 
d t  S p / 2  c c / 2  ds 

x s p / 2  c/2 x -- m - =  

Making the subst i tut ion 

= c T  
2m 

s P I 2  c 

and writing the equation i n  coeff ic ient  form, 
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where czo is the l i f t  coeff ic ient  of the  given disturb- 

ing force. The operational solution is  

Again, as i n  the case of the l i f t ,  the  solut ion f o r  the  
elementary jump is the key t o  solutions f o r  var iable  con- 
d i t ions .  

- (D) by (15) and simplifying: c-h Replacing 

which is  i n  standard form f o r  evaluation by the  expansion 
theorem (19).  Finally,  

The extension of t h i s  treatment t o  problems involv- 
ing the number of degrees of freedom w i l l  be evident. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for  Aeronautics, 

Langley Field,  V a . ,  September 12, 1938. 
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Figure 1,- Moving axes. a = w/V ; s = Vt/c/2 , 
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1 3 ,  equation (10) : 
Last term should read: -y 

4 ,  equation (13) : 
Second integral sign should read: 

(k $) should read: 
(k -+) 

1 4 ,  equation (14) : 
Second l ine  should read: + T; E(k) - 11 I 
8,  equation ( 4 9 )  should read: 

- 
~ D C X  + EL, (D)a = C L ~  (D)ag 
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THE UNSTEADY LIFT OF A WING OF FINITE ASPECT RATIO 
By ROBERT T. SONE% 

SUMMARY 

Umteady-liB functwns for wings of finite aspect ratio 
have been &&ed by correcting the aerodynamic inertia 
and the angle of attack of the infinite wing. The cak&- 
t i m  are based on the operational method. 

llhe starting lift of the $nite wing is found to be only 
slightly less than that of the infinite wing; whereas the 
$mi &t may be considerably less. The theoq indicates 
that the initial distribution of KB is SimiEar to the $d 
disikibdion. 

CU~VES showing the variatwn of li$ after a sudden unit 
change $n angle of attack, during penetration of a sharp- 
edge g&t,and during a continuous oscillation, are given. 
Operational equivdknts of these functions have been devised 
to fm'litate the calculation of lift under various conditions 
of motion. As an application of these formulas, the 
vertical acceleration of a loaded wing caused by penetrat;ng 
a gust has been calculated. 

INTRODUCTION 

The two&ensional potential theory of airfoils in 
nonuniform motion was given by Wagner (reference 1) 
and has been &tended to problems involving the motion 
of hinged or fl&ble airfoils by Theodorsen (reference 2) 
and Eussner (qference 3). 

In the case of steady motion, a correction is known to 
be necessary before the results of the two-dimensional 
theory can be applied to wings of finite aspect ratio. 
A theory for the unsteady lift of k i t e  wings was devel- 
oped in reference 4. This theory has since been some- 
what improved mathematically by making use of 
operational methods in the solution of the integral 
equations. (See reference 5.) The present repo t 

show the effects of gusts. 
combines this previous work and extends the theory l o 

THE INDICIAL LIFT 
INFJXENCE OF TEE WAKE 

Owing to the presence of circulation, the lifting wing 
leaves in its path a surface of discontinuity, the local 
vortex strength of which is determined by the rate of 
change of circulation taken both across the span and 
along the flight path. (See fig. 1.) The distribution 
of vorticity in the wake is determined by the assump- 
tion that the flow field at each instant conforms to the 

Kutta condition. An essential feature of the problem 
is the determination of the influence of this wake on 
the flow at the wing. 

It is important to note that the wake is supposed 
to remain plane and undistorted. As 8 consequence of 
this assumption, the effects of different wakes are 
additive,.permitting the various flows to be built up by 
superposition. Thus, if the solution for the growth of 
the increment of lift following a sudden change of nor- 
mal velocity-or, what amounts to the same thing 
under the assumptions involved, a sudden change in 
the angle of attack-is known, this solution may be 
used as the element in an integral that gives the lift in 
any variable motion. With this point in mind, atten- 
tion will at first be directed to the special case in which 
the wing starts suddenly from rest at t =O with the 

Start 
_v, 

f 
FIQWE 1.-Flow c a d  by wing starting from rest. 

normal velocity w and the flight velocity Uo, the 
velocities remaining constant thereafter. 

LIFT NEAR TEE START 

The starting lift of any wing may be expressed by a 
simple theorem based directly on the Kutta condition. 
As a consequence of this condition, the portion of the 
wake adjacent to the trailing edge must move as an 
impermeable extension of the wing surface. Thus, the 
first element of wake formed must move with the same 
normal velocity as the wing. The flow produced a t  
the first instant is what might be caused by the wing 
in process of growing wider at the rate Uo while moving 
ilownward with the velocity w. The starting lift may 
then be thought of as the reaction to uniform motion 
If the wing as a body with increasing mass: 

dm' L=- at 
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where m' is the mass representing the aerodynamic 
inertia of the wing in normal motion. 

In order to apply equation (1) to the finite wing, 
the inertia factor for such a wing must be known as a 
function of the width. Solutions for elliptic plates are 
given by the clmsical hydrodynamic theory, and these 
solutions can be used to represent approximately the 
initial rates of increase of inertia of wings of oval or 
elliptic plan form. 

The distribution of potential over each chordwise 
section of an elliptic plate in normal motion has the 
same form as the corresponding two-dimensional 
potential. Thus 

#+&/- (2) 

where E is the elliptic integral giving the ratio of the 
semiperimeter to the span. At bhe normal velocity 
w=E, the potential distribution over any chord is 
represented by a circle having the chord as diameter. 
(See fig. 2.)  If the edge of the plate distorts into a 
slightly wider ellipse, the change in potential arisfng at 
any point will be measured by the difference between 
the original and the slightly expanded circles. (The 
change in the factor E during widening may be neg- 
lected for ordinary aspect ratios.) The pressure dif 
ference across the plate with changing potential is given 
by the formula 

i 
I 111 

W 

(31 

4 

vo U t  
FIQWE 2.-The wske and the distrlbution of potential over the chord shortly after 

thestart. 

and, from the geometry of the circle, 

The pressure across the plate with the normal velocitj 
w=E and the flight velocity Uo is, therefore, 

(6, 

Integration of this pressure over any section givea the 
ift coefficient for angle of attack a of the plate, 

(7) 

with each local center of pressure at the quarter-chord 

The start of the plane elliptic wing being equivalent 
b a uniform lengthening of each chord, the true elliptio 
outline is not preserved. Such a change, however, may 
be shown to conform very nearly to a change into 
another, slightly larger, ellipse at all points except those 
very near the tips. Furthermore, if the wing is assumed 
to distort in any of a number of ways into a slightly 
different elliptical plan form, the change of aerody- 
namic inertia will be found to be but little affected by 
the change in shape and to depend primarily on the 
over-all change in size. Each such distortion can be 
thought of as representing a certain distribution of the 
starting velocity U around the edge of the Wing. 
Equation (5 )  is exact for all distortions of this class, 
Inasmuch as they may be made to fall on either side of 
the distortion represented by U= bonstant (represent- 
ing the start of the rigid wing), the equation is also 
considered applicable to this case. 

point. 

THE DOWNWASH CORRECTION 

A reasonably accurate curve of the growth of lift 
might now be drawn by connecting the starting value 

, l ~  Basic ffow 

rrmsfwmed flow 
FIGWE 3.-Elemeut of circulatory flow. 

(equation (7)) asymptotically to the known steady 
value given by the Prandtl theory. Calculations have 
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shown, however, that, after the wing has progressed a 
distance of the order of one semispan, the effect of 
f i t e  width of the wake can be treated simply as a 
modi6cation of the angle of attack of the entire wing, 
as in the steady-lift theory. A closer approach to the 
true form of the curve may be obtained by proceeding 
on this basis. 

Before the three-dimensional problem is considered, 
it be helpful to review certain aspects of the two- 
dimensional theory (reference 1). In order to make 
the analysis nondimensional, all velocities are expressed 
in terms of the flight velocity Uo and all lengths, in 
terms of the half chord. 

Figure 3 shows the element- two-dimensional flow 
used as a starting point by Wagner (reference 1). 
This flow is caused by two vortices, representing, re- 
spectively, an element of circulation around the wing 
and the vortex left in the wake when this circulation 
originated. The streamlines of this flow are eccentric 
circles. One such circle (of unit radius) is chosen to 
represent the wing section and the axes are so placed 
that this circle has its center at the origin. The geom- 
etry of the resulting pattern is such that, when the 
wake vortex is a t  z, the Wing vortex will be at l/z. 
This spacing preserves the unit circle as a streamline 
of the flow. 

Transformation of the pattern by the formula 

flattens the unit circle into a thin-line wing section and 
distorts the originally circular streamlines into oval 
Joukowski Egmes. The transformed pattern thus rep- 
resents the circulatory flow around a flat wing section 
with an associated countervortex in the wake. In the 
transformation, the centroid of Wing vorticity remains 
at the position of the original bound vortex while the 
wake vortex is shifted forward somewhat as shown 

Each elementary flow of the type shown contributes 
a certtiii velocity around the trailing edge of the airfoil. 
The flow due to an instantaneous change of angle of 
attack of the airfoil may be superposed on these flows 
and will contribute a trailing-edge velocity of opposite 
sense. On this basis, the problem of circulation with 
varying angle of attack may be solved by an inverse 
procedure. Assume some convenient distribution of 
wake vorticity and cailculate (by integration) the trail- 
ing-edge velocity at each point along the flight path 
corresponding to the prescribed wake. The particula1 
variation of angle of attack necessary to cancel this 
trailing-edge flow at  each instant (Kutta condition) can 
then be determined. If a number of such curves arc 
found, they may be added in various ratios so as to 
approximate some prescribed variation of angle 01 
attack; the corresponding circulation cuvw are added 
in like ratios. 

(fig. 3). 

In essentially the manner described, Wagner (refer- 
nce 1) calculated the two-dimensional flow around a 
ring section following a sudden Uuit change in angle of 
-ttack. The integrated pressures over the airfoil give 
, lift coefficient that asymptotically approaches the 
aown steady value 2 ~ ;  whereas the starting lift 
oefficient is found to be exactly one-half this value. 
L‘he center of pressure remains at  the quarter-chord 
)oint throughout the motion. 
In the ca4e of the finite Wing, an element of the wake 

v i l l  be as depicted in figure 3 but d, in addition, 
:ontain vortices completing each circuit to the wing 
!bough the tips. The length of the tip vortices may 
)e approximated by assuming that they extend to the 
:hordwise centroid of the wing circulation. After some 

tp- 
_----------- ---_ 

0 1.0 
FIGUBE 4.-Position of the centroid of discontinuity in the wing for different positions 

of the wake vortex. 

salculation, the equivalent length z of the tip vortices 
in terms of the distance traveled s reduces to 

z= Js (s+2) (9) 

figure 4 iUustrates the rapid travel of the centroid of 
discontinuity within the wing subsequent to its initial 
position at the trailing edge.‘ It is seen that, after a 
travel of several chord lengths, the centroid may be 
taken at the middle of the wing section. This assump- 
tion will later be used. 

Figure 5 shows how an elementary loop vortex in the 
wake of a finite wing can be formed by cancelation from 
an element of the wake of an infinite wing. The 
downwash induced by segments CD and FH acoounts 
for the aspect-ratio effect. Since a uniform distribu- 
tion of the downwash flow is assumed, the calculations 
will be restricted to the center of the Wing. By the 
application of Biot-Savart’s rule, the downwash velocity 
due to elements CD and FH is found to be 

This expression for downwash may be integrated in 
I Ata=O,thetipvortiessar?lengtheningatanineniterateand a l t h o ~ t h e V 0 r t e x  

strength is m o  at the heginnlng of the motion the limiting calcniation &Ow8 that the 
induced downwash flow baa 8 mrtsin rate of ixah8tLm at this instant. A8 a d h  
the starting lift of the flntte wing is diminished, in seeordanos with the result Of the 
previous calculation. 
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FtGUBE 5.-Supar~.osition of vortices to obtain itnib Imp. 

ihe case of elliptic spanwise loading. Let 7 represent 
the circulation around any chordwise section; then 

Y = r  sin e (11) 

where y=2 cos 8, and r is the value of 7 at the center 

section. 

6 

1 where k2= 

Then the induced velocity due to a series of finite loops 
of the form CEF (fig. 5) is given by 

where K (k) and E (k) are the complete elliptic integrals. 
(See Peirce's table.) 

Subtracting the two-dimensional vortex E gives the 
effect of a series of segments of the form of D C and F H , 
distributed along the span according to the elliptic 
loading. 

Figure 6 shows the variation of downwash velocity 
with increasing length of the wake as determined by 
this formula. Some additional rough calculations have 
shown that the dowriwash becomes practically uniform 
over the entire wing before the wake has attained a 
length of one semispan. 

Figure 7 shows downwash curves derived from equa- 
tion (14) for elliptic wings of aspect ratios A of 3 and 6. 
In this derivation, the unit of length was taken as half 
the central chord of the wing. Thus, the wings have 
the same chords (c,.,=2) but are of different spans. In 

Length of woke, semispoffs 

FiOVBs &-Growth Of dowtiwssh wlth increasfng h g t b  of the wake. rO=l.O; 
elliptical span bed. 

order to define the later portions of the curve, the wake 
was assumed to start with length equal to the mean 
chord bJA in each case. This assumption, though 
somewhat arbitrary, makes allowance for the curvature 
of the trailing edges of the wings. 

0 2 4 6 8 l 0 / 2 / 4  
s I half chords 

FIGWE 'I.-DowtiWanh fimCtionS, W &a). 

The induced downwash w( with any variation of 
circulation r(s) along the flight path may be deter- 
mined from the curvesgiven in figure 7 by superposition; 
thus 

wim(s) =wr (s> ~JP) + [wr(s-so)rwr(so)ho (15) 

The growth of circulation following a sudden start of 
the motion will be determined from the two-dimen- 
sional theory by using the effective normal velocity 

w,=w-ws= 1 -w< (16) 

Let row be the rise of circulation followkg a sudden 
start with unit normal velocity as given by the two- 
dimensional theory. Then, for the finite wing, 

The determination of the effective normal velocity 
and the circulation for the finite wing thus depends on 
the simultaneous solution of integral equations (15) 
and (17). This solution may be conveniently obtained 
by operational methods. 
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represt& the unit jump function, that is, a function of 
s having the value zero at s<O and having the value 
1 at  s>O. A function of s may be represented by a 
combination of operatioas on the unit jump function . 

Let D represent the operator d/& and let l= l ( s )  

@(si =Z(D)l 

The combination of operations g(D) necessary to 
reproduce the function @(a) is called the operational 
equivalent of the function @(s). 

Rules for finding such equivalents me discussed in 
reference 6. The most general rule for proceeding 
either from 5 to @, or ViOe versa, is: 

- +(a) =aJmm(z)e-nzdz 

or,-*m operational form: 
- 
CL~(D) =nGa(D) -z+(D)%tw(D) (25) 

Substitution of the expression for GtW(D) from equation 
(22) gives the operational form of the lift  function for 
$he G t e  wing in terms of the known functions 

The rule needed in the following development is 
the Heavkide expansion theorem: 

where f and F are algebraic polynomials and the X's 
are the rod& of F(A) =O. 

The operational treatment of integral equations is 
based on tbe proposition that an integral of the form 
of (15) may be regarded as the linear superposition of 
the eEects of a succession of small jump functions. 
The operational form of (15) is 

- 
wtW(D) =wP(D)Ftc(D) (20) 

r W ( m  =Tow(D) [I -Zoiw(D)l (21) 

and that of (17) 
- 

Solving algebraically for ztw (D): 

The induced velocity wfw(s) gives the variation of 
the effective angle of attack of the finite wing when the 
geometric angle of attack is held constant. The lift at 
later stages of the motion is then found by combining 
the effective angle-of-attack variation 

wew(s)=1-wIw(s) (23) 

with the two-dimensional indicial-lift function given 
by Wagner. Let C%w(~)=Chu(~) be the lift in two- 
dimensional flow following a sudden unit jump of angle 
(the curve given by Wagner is for a=1/2r); then, for 
the finite wing: 

8 

C,,(S) =CL& - - ~ L O u ~ ~ ~ ~ ~ W ~ ~ ~  - Qz.Q,(s-so)w*w'(so>~o 

(24) 

Becausano concise expressions of the required func- 
ions are known, approximate formulas must be devised. 
'he function e'" has a simple operational equivalent, 
amely , 

D--x D l  (26) 

ad, since the curves to be fitted are asymptotic in 
haracter, series of such functions were chosen h 
ollows: 

rm(s) = 5.75 - 3.75e-0-239s- 1 .50e-1-970' 
cGa(s) =2r- 0.330~e4.9g~- 0.670?re-0-ma 

~ 0 r ( s ) ~ , ~ = 0 . 0 9 6 - 0 . 0 5 3 e ~ ~ ~ * ~  
~ ( s )  A =6 = 0.04 5 - 0 .032e-0*203* 

F'igures 7 and 8 show the degree of epctness attained 
It was considered not im- vith these expressions. 

)ortant to fit the curves accurately near the origin. 

6 

4 

r 
2 

0 2 4 6 8 / 0 / 2 / 4  
8 ,  half chords 

FlQOBE E.-Growth Of CirCUlatfOU ill t w o - d i m e n s f O ~ ~  fiOW, l'd8). 

The operational equivalents Tow(D), &tw(D), etc., 
we easily written down' from (26). The substitution 
rtf these equivalents into equations (22) and (25) and 
the evaluation of the resulting operators by the IIeayi- 
ide expansion theorem are quite lengthy and w i l l  not be 
reproduced. The resulting expressions for C,,(s) 
were found to be 

CLmAiJ= r[1.288 - 0. 190e-0.045s f0.055e4.3COa 

' L a m  =r[l.589 -0.242e-0.0us- 0.403e4.3008 J(a8) 
+0.043e-2"18+0.915e-0.283' cos 0.095(~-19.135)] 

+ 0.008e-' 308s + 0.872e-O .2345 cos 0.0724 (s -21.1 17)] 

Because the curves given by these formulas are 
considered invalid ne& the start of the motion, new 
curves having the . correct starting values given by 
equation (7) were drawn in as shown (fig. 9). These 
final curves have the useful approximate expressions: 

CLUns(s) = 1.200r( 1 .OOO -0.283e-0.540*) 
CLuM(s) = 1.48r(l .000-0.361e-0.381B) 
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An analogous expression for infinite aspect ratio is 

CQ~(S) =2r( l  .OOO - 0.1 65e-0 s8-0.335e-0 am8) (30) 

ZIT 

0 2 4 6 8 IO I2 I4 
s half chards 

FIQURB Q.--lndiClal lift fUQ&bUS, CL&) 8nd cL.(S). 

LIFT M VARIABLE MOTION 

In addition to the lift given by tho lift function 
CL,(s), the airfoil experiences a reaction equal to the 
instantaneous rate of change of the normal-velocity 
component times the virtual additional mass of the 
wing in noma1 motion. In coefficient form: 

Furthermore, if the wing is rotating in pitch, the effect 
of an additional relative camber is introduced. A 
simple integration, making use of well-known results 
of thin-airfoil theory, shows 

where the factor I is j4 for a straight rectangular wing. 

For the elliptic wing, 5 > E > : ,  approximately, being 1 
- 

somewhat smaller than j4 because the rotation intro- 
duces a smaller relative camber at the narrower sections 
toward the tip. 

The effects of combined vertical motion a=- 

and rotation (a=@) may be conveniently treated by the 
use of moving axes as shown in figure 10. With these 
points in mind, the following operational formula for 
the total lift may be derived: 

( go) 

LIFT FUNCTION8 FOR AN OSCULATING W O I L  

The lift in sinusoidal motion where 

a=efn8 and 8=0 

is given by 
c,,, (8) = -Ifinetm +aL, (D)ein8 E 

Since 

D oLa(D)ein"=oL',,(D)-l D-in 

(34) 

(35) 

Expansion of this operator gives, with the exception of 
transient terms, 

The function (in) corresponds to the lift func- 
tion C(n> introduced by Theodorsen (reference 2) for 
the oscillating two-dimensional airfoil, &at is, in 
Theodorsen's terminology 

EL-&) =2rC(n) =27r[F(n) +iG(n)] (38) 

The expressions for F+iG found from the operational 
equivalent8 of (29) are: 

Figure 11 shows these functions plotted against the 
wave length 2rln of the oscillation. 

- 
FIQUBE 1l.-oscihtii-lift tunctions, Z=,(iw) =zs(F+ict) and cE;(is) -p+iQ. 

Relation (37) is especiauy interesting (see reference 
7) because it shows a connection between the Fourier 
and the operational analyses. Thus, if the response of 
a linear system to a continuous sinusoidal axcitation is 
knOWn, 

then, the function f immediately furnishes the opera- 

&(s) =f(in)efn8 (40) 
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7Lp(s)A=B =L 1.500r(1.0Q0-0.448e-o-2808 

5, (s) oI =2.000r( 1 .OOO - 0 .236e-0*w88 
- 0.272e-0*7268- 0. 193e-a.008) 

tional equivalent of the unit response so tht, for any 
variable excitation z b ) ,  

R(s)=f(D)Z(S)=f(D)Z-(~) 1 (41) 
LIETIN GUSTS 

The foregoing calculations provide the basis for the 
determination of lift under any prescribed conditions 
of motion of the wing. These results may also be used 
in conjunction with the equations given by Theodorsen 
(reference 2) to predict the air forces on wings with 
hinged flaps. 

In all cases treated, the airfoil has been considered 
as moving in air that would otherwise be at  rest. . An- 
other problem of considerable interest is the prediction 
of lift during passage of the airfoil through gusts. 
The two-dimensional theory for this case was developed 
by Kiissner (reference 3) and has since been corrected in 
certain details by von K&rmBn and Sears (reference 8). 

The basic solution required in the gust problem is 
the solution for a unit sharp-edge gust of uniform up- 
ward velocity. In  order to obtain this solution, it is 
useful to substitute for the change in direction of the 
relative air velocity an equivalent fictitious bending of 
the airfoil in still air such that it has a t  every point an 
angle of attack equal to the angle that would otherwise 
be produced by the gust. 

The effect of a bend progressing along the chord of 
the airfoil.may be calculated by thin-airfoil theory 
(reference 9, chs. 111 and IV). A part of the effect 
appears as a change in angle of attack of the airfoil as 
a whole, namely: 

'(45) 

(42) 
cos-ys - 1) + &(2 -8) Aa,= 1' - 

r 

The corresponding part of the lift is obtained from the 
indicid-lift function CLa(s) by superposition. I n  
addition, a reaction caused by acceleration of the non- 
circulahry potential flow exists during the time the 
airfoil is partly immersed in the gust. In two-dimen- 
sional flow, the additional reaction is 

ACs,= 24s (2 -s)  (43) 

No corresponding expression for the finite wing i e  
known, but it may be reasoned that the maximum cor- 
rection will be no greater than that indicated by the 
inertia factor of the rigid elliptic disk, 1/E. Hence, the 
formula 

A c L , = & l s F )  (44) 

was used for the finite wings as an approximation. 
The consideration of wings with curvature or sweep- 

back introduces another Wcul ty  into the analysis, 
since the sections of such wings will not strike the edge 
of the gust simultmeously. It is obviously impractical 
to attempt to include in the analysis the effects of the 
many possible variations of plan form, and the calcula- 

180811--U)--a 

A-6. 

MOTION OF AIRPLANE IN GUST 

In most problems that arise in practice, the motion 
of the airfoil, or airplane, will not be prescribed before- 
hand but must be determined from dynamical equa- 
tions. The rising motion of an airplane (or, as it shall 
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be considered here, a loaded wing) while entering a 
sharp-edge gust presents such a problem and will be used 
to illustrate the application of the operational formulas. 

The dynamical equation for this case (neglecting 
pitching motion) is: 

mx+resisting force=impressed force (47) 

where the impressed force is that part of the lift caused 

dw 

by the gust. Since 
dw U,"dar 
dt - el2 ds 
_-- - 

In coefficient form, 2m where fi=---. 

&Y-Z?~,(O> a=ZL0(D) a. (49) 

where CY# is the change in sngle of attack represented by 
the gust. 

For a Unit sharpedge gust, ao=l; then (salving 
for a), 

(50) 

By the use of the approximate expressions given for 
CLm and CLo (equations (29) and (45)), thisoperator may 
be reduced to the form (19). 

Figure 12 shows the lift coefficient CL(s)=pDa(s) 
computed from equation (50) for several values of the 
density ratio p and for A=6. Figure 13, derived from 
similar calculations, gives maximum lift loads attained 
in the sharp-edge gust as functions of the relativc 
density. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ARVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., June 16, 1939. 
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 771 

TRANSIENT EFFECTS OF THE WING WAKE 

ON THE HORIZONTAL TAIL 

By Robert T. Jones and Leo F. Fehlner 

SUMMARY 

An i nves t iga t ion  w a s  made of t he  e f f e c t  of t h e  wing 
wake on t h e  l i f t  of t h e  hor izonta l  t a i l  surfaces.  I n  t h e  
development of expressions f o r  t h i s  e f f e c t ,  the  growth of 
wing c i r c u l a t i o n  and wing wake, t h e  t i m e  i n t e r v a l  repre- 
sented by t h e  t a i l  length,  and t h e  development of l i f t  ' 
by t h e  t a i l  w e r e  considered. The theory has been applied 
t o  a s p e c i f i c  case t o  show the  magnitude of t h e  e f f e c t  t o  
be expected. 

It is  shown t h a t ,  f o r  motions below a c e r t a i n  f re -  
quency, t h e  development of l i f t  by the  t a i l  may be repre- 
sented by a simple l a g  function. The l a g  is, however, 
somewhat g r e a t e r  than t h a t  indicated by t h e  t a i l  length. 

INTRODUCTION 

During unsteady motions of t h e  a i rp lane ,  t h e  wing 
leaves i n  i ts  wake a shee t  of v o r t i c e s  of varying s t rength .  
The ve loc i ty  induced by these  v o r t i c e s  may have a pro- 
nounced e f f e c t  on t h e  d i r e c t i o n  of t he  air flow near t h e  
t a i l ,  p a r t i c u l a r l y  during motions involving rap id  changes 
of l i f t  such as o s c i l l a t i o n s  of sho r t  period o r  passage 
through gus ts ,  

An approximation t o  t h e  e f f e c t  of t h e  wing wake has  
been used by Cowley and Glauert (reference l ) ,  They as- 
sumed t h a t  t h e  downwash associated with a change i n  l i f t  
is  equal t o  t h e  corresponding steady va lue  but t h a t  t h e  
e f f e c t  a t  t h e  t a i l  is delayed by t h e  t i m e  required f o r  t h e  
a i rp l ane  t o  travel a d i s t ance  equal t o  t h e  t a i l  length. 
It is  known, however, t h a t  during increases  of c i r c u l a t i o n  
t h e  wing develops counter ro ta t ing  v o r t i c e s  which must, f o r  
a t i m e ,  a t  least, induce a s t rong  upwash, increasing t h e  
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+ L1 t 

L * 

l i f t  of the  tail.  In addition t o  the time lag  considered 
by Cowley and Glauert, both the var ia t ion  of v e r t i c a l  ve- 
loc i ty  and the  delay i n  the  development of l i f t  by the  t a i l  
are considered i n  the  present paper. 

-4-1 

The flow around the  wing, hence the w a k e  produced by 
the  wing, is  assumed t o  be uninfluenced by the  presence of 
the t a i l  surface. The interference is thus confined t o  
the e f f ec t  of the  wing on the  t a i l  and, since the wake 
formed by an isolated wing is  known, the interference can 
be d i r ec t ly  calculated f o r  any relative posi t ion of the 
two surfaces. 

Although the theory is thus applicable t o  a var ie ty  
of arrangements, computations t o  cover a l l  conditions w e r e  
not considered t o  be worth while. I n  par t icu lar ,  the exact 
v e r t i c a l  location of the t a i l  surface (within the usual 
range) w a s  not expected t o  be c r i t i c a l .  The t a i l  surface 
w a s  therefore considered t o  be located d i r e c t l y  i n  the 
wake where the e f f ec t  is  a maximum. The e f f ec t  of t a i l  
length w a s  investigated and it w a s  found t h a t  t he  r e s u l t s  
obtained from computations covering a typical  case could 
be extrapolated t o  take account of t h i s  factor  i n  a sat- 
isfactory manner. 

LIFT FUNCTIONS 

Figure 1. 
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Figure 1 shows the  notat ion used i n  t h e  development. 
Variable quan t i t i e s  are expressed i n  terms of the  dis tance 

where t represents t i m e .  along t h e  f l i g h t  path, s = - 
The analysis  is kept nondimensional by expressing a l l  veloc- 
i t i es  i n  terms of the  f l i g h t  veloci ty ,  
i n  terms of t h e  half  chord, 

UOt 

c/2 

Uo, and a11 lengths 
c/2. 

The rate of development of v o r t i c i t y  by the  wing fol-  

is given i n  reference 3 and shows d i r ec t ly  the  
lowing a sudden u n i t  increase i n  angle of a t tack  a 
(a = l (s))  
d i s t r ibu t ion  of vor t ices  i n  the  wake. The t o t a l  circula- 
t i on  a t  any in s t an t  a f t e r  such a change is denoted by 
r a ( s ) .  
the  ta i l  induced by a un i t  wake vortex, ( f ig .  2) 
may be calculated from t h e  Biot-Savart ru le ,  The resul t -  
ant  var ia t ion  of v e r t i c a l  ve loc i ty  following a uni t  change 
of angle of a t tack  of the wing follows from t h e  combina- 
t i o n  of these two functions,  i.e., 

The v e r t i c a l  ve loc i ty  of air  i n  the  v i c i n i t y  of 
wr(s)y 

The e f f e c t  of t he  v e r t i c a l  ve loc i ty ,  ww, on the  t a i l  
surface may be t rea ted  as the  e f f ec t  of a varying gust.  
The l i f t  on an a i r f o i l  penetrating t h i s  gust  is given by 

where C L ~ ( S )  

face (reference 3) .  

is the  gust l i f t  function f o r  t he  t a i l  sur- 

The in tegra t ions  (1) and (2) may be carr ied out i n  a 
s ingle  s tep  by using the  operational equivalents of the  
functions involved. Thus 

(s) is the  l i f t  on the  t a i l  surface due The function 

so le ly  t o  a un i t  change i n  the  angle of a t t ack  of t he  wing 
and is t o  be added t o  t h e  l i f t  developed independently by 
the  t a i l  surface. 

CLtW 
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The func t ion  T(s) denotes t h e  c i r c u l a t i o n  around 
t h e  wing (or t h e  equal and opposite c i r c u l a t i o n  measured 
around t h e  wake) i n  t h e  plane of symmetry. The spanwise 
d i s t r i b u t i o n  of v o r t i c i t y  is  assumed t o  remain e l l i p t i c a l .  
A u n i t  increment of r(s) thus  involves a s i n g l e  wing and 
wake vortex of u n i t  s t r eng th  at t h e  center ,  the s t r eng th  
f a l l i n g  off toward t h e  t i p s  i n  accordance with t h e  e l l i p -  
t i c  loading. The two v o r t i c e s  are connected by a shee t  
containing only t h e  spanwise component of d i scont inui ty .  
This arrangement can be derived by t h e  superposit ion of 
v o r t i c e s  of t h e  type shown i n  f i g u r e  3.  

The centroid of wing c i r c u l a t i o n  i s  assumed t o  remain 
s t a t iona ry  a t  t h e  center  of t h e  wing chord. Although the  
wing c i r c u l a t i o n  o r i g i n a t e s  a t  t h e  t r a i l i n g  edge, l i t t l e  
e r r o r  is incurred through t h i s  assumption because t h e  trav- 
e l  of t h e  cent ro id  t o  t h e  center  of t he  chord is  very rap id  
(reference 3 ) .  I f  t h e  wing c i r c u l a t i o n  is replaced b y ' a  
s i n g l e  vortex A ( f ig .  3 ) ,  t h e  v e r t i c a l  ve loc i ty  a t  t h e  
t a i l  due t o  v o r t i c e s  A and B is  given by 

The opera t iona l  equivalent of t h i s  func t ion  is  

where t h e  symbol 
func t ion ,  i .e.,  

The downwash 
t i n u i t y  (vo r t i ce s  

E i  represents  t h e  exponential  i n t e g r a l  

due t o  t h e  spanwise component of discon- 
C and D ,  f i g .  3)  may be determined 

from f i g u r e  6 of re ference  3 ,  which shows t h e  downwash at 
t h e  edge of a shee t  of d i scont inui ty  of varying length.  
The downwash i n  t h e  region of t h e  t a i l  corresponding t o  
any pos i t i on  o r  ex ten t  of t h e  wake may be obtained by add- 
ing  t h e  e f f e c t s  of two shee t s  of d i f f e r e n t  lengths,  as in- 
d ica ted  i n  f i g u r e  4 .  
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APPLICATION OF THEORY 

I n  order t o  i l l u s t r a t e  the application of the theory 
and t o  show the order of magnitude of the r e su l t s  t o  be 
expected, the l i f t  functions a re  determined for  a specif ic  
example. The proportions considered are as follows. (See 
f ig .  1.) 

Aspect r a t i o  of wing - - - - - - 6 
Aspect r a t i o  of ta i l  surface - - 3 

Chord of t a i l  surface - - - - - 1.0 

The ef fec t  of the noncirculatory component of the flow 
about the wing is  neglected, i t s  influence at  the t a i l  
being small and constant i n  value. 

- 
C (D) and T,(D) are: 

The apprgximate expressions used €or the functions 

Lg 

2.56 D - 1.044 D 
cLg(D) 3*77 - D + 1.116 D + 6.40 
- 

(7) 0.800 D - 1.25 D - - 2.11 D 
4*71 - D + 0.290 D + 0.690 D +'0.276 

is  i n  
cLg 

It should be noted that  the function 

terms of the half-wing chord which, i n  the example chosen, 
is twice the corresponding dimension of the t a i l  surface 
i t s e l f .  There is a s l igh t  change i n  the expression as 
given i n  reference 3 t o  make it  more closely approximate 
the s t a r t i ng  value. 

I f  the proper values are substi tuted i n  equations (4) 
and (5), the function W r A B  becomes 

and 
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WrAB (D) = -& [D Ei(5.54D) - &] ( 9 )  

No concise expression f o r  the  spanwise component of 
can be given. the downwash, 

proximated, however, by a series of exponential terms of 

the  form A e  . For the  proportions considered 

The curve can be ap- WrCD ' 

AS 

-0.354s 
(s) - 0.083 + 0.047e -0*067s + 0.145e WrCD 

-1.45s - 0.156e -09742s + 0.047e 

+ ... - 0.047 D 
wrcD(D) - 

+ D + 0.067 

These expressions are t o  be added t o  equations (8) and ( 9 ) ,  
respectively,  t o  give the  function Wr(D) required i n  the  
evaluation of equation (3). 

- 

The calculat ion of CLt according t o  equation (3) 
W 

r e s u l t s  i n  t he  l i f t  of the t a i l  surface,  as a function of 
the  dis tance traveled following a sudden un i t  jump i n  the  
angle of a t tack  of the  wjtng, i.e., the "indicia1 lift"; 
it is shown i n  f igu re  5. 

For a un i t  change i n  angle of a t tack  o f t h e  airplane 
as a whole, the  l i f t  developed independently by the  t a i l  
must be added. This l i f t  increment is  given by equation 
(29) of reference 3 f o r  an a i r f o i l  of aspect r a t i o  3 but 
it must be expressed i n  terms of the  wing cord. 
function CLt (s) ( f ig .  6) shows the l i f t  resu l t ing  from 

the  un i t  change of angle of a t tack  of t he  e n t i r e  airplane.  

The 

a 

Although t h e  i n d i c i a l  l i f t  curves ( f igs .  5 and 6) 
show i n f i n i t e  values, i t  is  t o  be noted t h a t  the  integra- 
t i o n  of t he  expressions by superposition f o r  any probable 
disturbance r e s u l t s  i n  f i n i t e  l i f t  a t  a l l  points. 
thermore, when the e f f ec t s  of moderate rates of change i n  
the  angle of a t tack  are integrated,  the exact form of the  
i n d i c i a l  response curve is  not cri t ical .  

Fur- 
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This point is  best  i l l u s t r a t e d  by integrating the  re- 
sponse t o  a continuous osc i l la tory  var ia t ion  of angle of 

attack. I f  a = e , i n s  

The real par t ,  A, is  the component of the response i n  
phase with the  disturbance, and the imaginary par t ,  By 
is  the component 90" out of phase with the  disturbance. 

The evaluation of the exponential i n t eg ra l  with an 
imaginary argument is given i n  reference 4, page 80. 

Ei( in)  = Ci(n) + i Si(n) + - [ 3 
where C i  and S i  are, respectively, the cosine-integral 
and the  sine-integral  functions. 

Figure 7 shows the A and the  B components of the 
( in) ,  the l i f t  on the  CLtW osc i l la tory  l i f t  function, 

t a i l  surface induced by a continuous sinusoidal osci l la-  
t i on  of the  wing. For a continuous v e r t i c a l  o sc i l l a t ion  
of the  airplane as a whole (changes of angle of a t tack 
without ro ta t ion) ,  the function ( in)  ( f ig .  8) shows 
the resu l t ing  l i f t .  

I f  the osc i l la tory  l i f t  functions are approximated by 
a Fourier series, t h i s  series w i l l  be found t o  correspond 
t o  an approximation of the ind ic i a l  l i f t  function i n  the 
form of steps. Thus the function CLt ( in)  is closely 

approximated, as shown by broken l i nes  i n  f igure  7, by the 
expression 

W 

-7.14in 
% ( in)  ii 0.30 - 2.20 e 

tW 

f o r  values of n less than 0.35. I f  the argument (in) 
is replaced by the  operator D, the resul t ing function 
is the  operational equivalent of a simple s tep  function, 
which is an approximation of the corresponding ind ic i a l  
l i f t  function. Thus 

C ( s )  s i  [0.30 - 2.20 e -7.14D-J 

0.30 - 2.20 [ l ( s  - 7.14)] (13) 
L t w  
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This approximation is shown by the broken line in figure 5. 

Similarly, the approximation shown by the broken line 
in figure 8 is 

-7.48in (in) 3.85 - 1.98 e 
and 

(s) g r3.85 - 1.98 e -7*48Dl l(s) g 3.85 - 1.98 [l(s - 7.48)] 
(15) 

and is shown by the broken line in figure 6 .  

In the case of an airplane executing pitching motions 
during which the angle of attack of the wing does not 
change, the component of response out of phase with tqe 
disturbance is insignificant. The response may therefore 
be considered instantaneous. Although the general case in- 
volves motions that combine changes sf angle of attack, 
a, and of angular displacement, 8, the lift increments 
resulting from each motion have been separately treated, 
In this form., the results are directly applicable to the 
differential equations of motion of the airplane. 

CONCLUDING REMARKS 

Although the indicia1 lift of the tail surface actu- 
ally shows a pronounced variation, it is permissible to 
consider the effect of a simple lag if only moderate rates 
of motion are involved. The lag functions shown in fig- 
ures 5 and 6 give the lift quite accurately during any mo- 
tion that can be compounded of frequencies lower than one 
cycle in 18 half chords (n < 0.35). 

It will be noted that these expressions differ from 
those assumed by Cowley and Glauert in two ways. First, 
the value of the function from 0 to 2 is not zero but 
is a positive value, which accounts for the upwash that 
the tail initially encounters. Second, the distance after 
which the value of the function becomes negative is not 
equal to the tail length, 
somewhat greater than the tail length. 
counts for the lag in the growth of downwash and the lag 
in the development of lift by the tail and may be called 
the effective tail length. 

2, but occurs at a distance 
This distance ac- 
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Although t h e  r e s u l t s  t hus  f a r  have been obtained f o r  
one s p e c i f i c  wing and t a i l  arrangement, t h e  e f f e c t i v e  t a i l  
length and t h e  magnitude of t h e  e f f e c t  t o  be expected may 
be determined f o r  o the r  cases. 

According t o  t h e  theory,  t h e  pa t t e rn  of t h e  wake 
formed by t h e  wing remains unchanged as i t  passes down- 
stream. I n  addi t ion ,  t he  rapid changes of induced veloci-  
t y  a t  t h e  t a i l  occupy a f a i r l y  sho r t  d i s t ance  i m e d i a t e l y  
ahead of and back of t h e  edge of t h e  wake. For any usua l  
t a i l  length,  therefore ,  t h e  t i m e  h i s t o r y  of t h e  l i f t  on t h e  
t a i l  is  not s u b s t a n t i a l l y  a l t e r e d  i n  r e l a t i o n  t o  t h e  in- 
s t a n t  a t  which t h e  wake s t r i k e s  t h e  t a i l .  This po in t  is  
i l l u s t r a t e d  by f i g u r e  9 ,  where t h e  induced v e r t i c a l  veloc- 
i t y ,  W r ,  following a u n i t  change i n  wing c i r c u l a t i o n  
(I' = l(s)) 
ahead of t h e  t a i l  surface.  The p r inc ipa l  e f f e c t  of a 
change i n  t a i l  length i s  t o  s h i f t  t h e  o r i g i n  along t h e ,  
r e l a t i v e l y  f l a t  por t ion  of t h e  i n d i c i a 1  l i f t  curves shown 
i n  f i g u r e s  5 and 6. This change i n  t a i l  length then cor- 
responds t o  an  equal change i n  e f f e c t i v e  t a i l  length.  
e f f e c t i v e  t a i l  length f o r  any case is  thus  determined. 

i s  shown f o r  d i f f e r e n t  pos i t i ons  of t h e  wing 

The 

I f  t h e  wing wake passes e i t h e r  above or  below t h e  
t a i l  sur face ,  t h e  l i f t  func t ions  w i l l  not show i n f i n i t e  
values as they do i n  t h e  case considered. The peak va lue  
of t h e  l i f t  func t ion  i s  lowest when t h e  wake passes below 
t h e  t a i l  surface.  The f i n a l  va lue  of t h e  l i f t  i s  but lit- 
t l e  af fec ted  by t h e  v e r t i c a l  displacement as long as t h i s  
displacement i s  s m a l l  relative t o  t h e  span. 

The theory may be extended t o  show the  e f f e c t s  of 
v e r t i c a l  gus ts .  The l i f t  of t h e  t a i l  sur face  due t o  in- 
t e r f e rence  from t h e  wing during penet ra t ion  of t h e  gust 
may be ca lcu la ted  with t h e  a id  of t h e  curves of f i g u r e  5, 
provided t h a t  t h e  v a r i a t i o n  of t h e  angle of a t t a c k  of t h e  
wing is  known. A c lose  approximation t o  t h i s  v a r i a t i o n  
of angle of a t t a c k  during penet ra t ion  of a varying gust is 
obtained by measuring t h e  angle of a t t a c k  with respect t o  
t h e  relative wind d i r e c t i o n  at a point one-fourth of t h e  
chord ahead of t h e  t r a i l i n g  edge of t h e  wing. This approx- 
imation is  based on a well-known r e s u l t  of t h e  t h i n - a i r f o i l  
theory and is  v a l i d  as long as t h e  rate of change of gust  
v e l o c i t y  along t h e  f l i g h t  path is  less than t h a t  repre- 
sented by an o s c i l l a t i o n  of one cycle i n  18 chord lengths.  
The l i f t  independently developed by t h e  ac t ion  of t h e  gust 
on t h e  t a i l  sur face  may be determined from reference 3 .  
This l i f t  is  d i r e c t l y  added t o  t h a t  developed by i n t e r f e r -  
ence from t h e  wing. 
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As noted earlier, only i n  cases of extremely rapid 

Such changes may occur, 
changes i n  wing l i f t  is  the  exact form of the  
ind ic ia1  l i f t  curve important. 
however, i n  sharp gusts  and it is  believed t h a t  the  exten- 
s ion of t he  present invest igat ion t o  cover t h e  e f f ec t  of 
v e r t i c a l  posi t ion of t he  t a i l  surface i n  these cases would 
be worth while. 

(n > 0.35) 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field,  Va . ,  Ju ly  23, 1940. 
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Figure 7,-  

40 80 120 160 200 
Wave length,  2rr/ n, half chords 

Influence of wing osc i l l a t ion  on the l i f t  of the hori- 
eontal  tail. CL ( in)  = A(a)  +iB(n) 

% 
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0 40 80 120 160 200 
Wave length, 2fl/ n, half cho'rds 

lFigure 8.- Lift functicw for horizontal tail of airplane in verti- 
cal oscillation withouk pikching. CL (in) = A(n)+iB(n)  

% 
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AN ANALYSIS OF THE STABILITY OF AN AIRPWE WITH FREE CONTROLS 
By Robert  T. Jones & Doris  Cohen 

Page 7, F igures  10 t o  13: A l l  va lues ,of  given i n  f i g u r e s  10 through 
13 should be reduced by d iv id ing  by 6; t h a t  is, t h e  va lues  on t h e  
curves should read  Cnp = .102, .064, and .026 i n s t e a d  of ,612, 
.384, and .156. 

Page 8: I n  t h e  second equat ion  of t h e  two bracke ted  as (12), t h e  s i g n  of t h e  
t h i r d  term should be changed from minus t o  p lus ;  t hus  t h e  equat ion  should 
read  : 

Pages 8 and 9: Figure 14,  conta in ing  the  a i l e ron - f r ee  s t a b i l i t y  boundaries ,  
has  been found t o  be i n c o r r e c t  and should n o t  be used. 
r e f e r r i n g  t o  t h i s  f i g u r e ,  beginning a t  the  bottom of page 8 and con- 
t i nu ing  through equat ion  (15) on page 9 ,  is t h e r e f o r e  a l s o  i n  e r r o r .  
The c o r r e c t  boundaries  f o r  o s c i l l a t o r y  s t a b i l i t y  wi th  a i l e r o n s  f r e e  are 
given i n  t h e  enclosed new f i g u r e  14. The boundary f o r  divergence is  
that given by equat ion  (16). 
page 9 ,  no longer  a p p l i e s  t o  a i l e r o n s .  

The paragraph 

Statement 3 under "Concluding Remarks," 

Moss -moment poromefer, J 
Figure 14.- Ailerco-free s tab i l i ty .  Boundariee for osci l latory 

s t a b i l i t y .  p , 45; k x  , 1.80. 
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AN ANALYSIS OF THE STABILITY OF AN AIRPLANE WITH FREE CONTROLS 
By RoBEnT T. JONES and DORIS COHEN 

- 
SUMMARY 

An investigation i s  made of the conditions essential to 
the stability of a n  airplane with free control surfaces. 
Calculatwns are based on typical airplane characteristics 
with certain factors varied to cover a range of current 
designs. Stability charts are included to show the limiting 
values of the aerodynamic hinge moments and the weight 
hinge moments of the control surfaces for  various positions 
of the center of gravity of the airplane and for  control 
systems with various moments of inertia. The eyects of 
reducing the chord and of eliminating thegoating tendency 
of the surface, of changing the wing loading, and of 
decreasing the radius of gyration of the airplane are also 
indicated. An investigation has also been made of the 
nature of the motion of the airplane with controls free and 
of the modes of instability that may occur. 

Stability with the controls free generally depends more 
critically on the design of the control system than on the 
stability characteristics of the airplane. In particular, 
too great a weight moment, combined with a high degree of 
aerodynamic balance, may cause undamped oscillations. 
Regardless of the weight moment, i t  appears dijicult to 
secure stability when the aerodynamic balance exceeds 75 
percent of the hinge moment. 

INTRODUCTION 

During recent investigations by the NACA of 
the flying qualities of several airplanes of different 
types, a tendency toward longitudinal instability was 
noted that involved pitching of the airplane reinforced 
by movements of the elevator. In othcr flight tests, 
lateral instability accompanied by oscillations of the 
rudder or of the ailerons has been noticed. The 
oscillations observed were rapid enough to be influenced 
by the incrtia of the control surfaces but were not 
believed to be suflicicntly rapid to involve the elasticity 
of the structure. The probIem is thus concerned with 
motions intermediate bctwecn flutter and movements 
of the airplane as a rigid body. 

It was thought that a theoretical analysis of the 
stability of an airplane with the controls free might 
shed some light on the cause of these undesirable 
motions and might indicate how they could be avoided 
in design. Of the previous publications on the subject, 

- 

the most detailed is that of E. Bartsch on lateral 
motions of an airplane with free rudder and ailerons 
(reference 1). In order to make specific recommenda- 
tions applicable to modern design, a study of stability 
more complete and detailed than any available was 
undertaken. Calculations were made covering both 
longitudinal and lateral motions and the elevator-free, 
the rudder-free, and the aileron-free conditions. The 
computations were based on a set of typical airplane 
characteristics, except for parameters introduced to 
cover such variations in control-surface design as seem 
most likely to affect stability. The results that might 
be expected under corrcsponding conditions in airplanes 
with different over-all mass characteristics have also 
been indicated. 

SYMBOLS AND COEFFICIENTS 

The following symbols are used in addition to those 
defined in the report covers. 

The subscript c refers to a control-surface character- 
istic and is replaced iii the various sections of the 
report by e for elevator, r for rudder, and a for ailerons; 
the subscript s refers to the control stick or whcel 
mechanism. 

A length equal to one-half the mean wing chord is 
used as the fundamental unit of length in order to obtain 
the results in a form applicable to geometrically similar 
airplanes of my size or loading. Conversion to this 
system is made by dividing a11 lengths measured in 
ordinary units by the length of the half-wing chord. 
Quantities entering into nondimensional expressions do 
not, of coursc, require suah conversion. 

(See figs. I and 2.) 

Uo steady-flight speed 
0 angle of sideslip 

k,  radius of gyration of control mechanism about 
control-surface hinge axis 

f, moment arm of center of gravity of control 
system about hinge axis, positive when center 
of gravity is behind hiigc 

distance from centrr of gravity of aileron to plnnr 
of symrnctry 

fj 

A aspect ratio 
1 tail length of airplane 
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x ~ . ~ .  projection on X axis of distance between 
center of gravity of airplane and its aero- 
dynamic center (with controls fixed) 

m 
p = - + r p l a n e  density ratio 

sy 

SC$G 

mC 
pc= --control-surface density ratio 

5 aileron weight-moment parameter. (See 

H control-surface hmge moment 

Ch=- 

s = Uot distance along flight path 

equation (14) .) 

7 control gearing ratio 
H 

s4 U&, 

. .  dw ds 
w, 6, etc.=--, - . dt dt’ 

0, 6,  etc.= - 1  -7 etc. d t  dt2 
, .. de d26 

d D =&differential operator 

STABILITY WITH ELEVATOR FREE 

Pitching motions sufEciently rapid to be affected 
by the inertia of the elevator control probably will not 
involve sensible chsnges in the forward speed of the 
airplane. Accelerations of the airplane along the flight 
path will therefore be neglected. The rapidity of the 
oscillations makes it advisable, on the other hand, to  
include certain aerodynamic effects not retained in thr 
equations of motion in their usual form. In addition 
t,o the moments developed in response to the displacc- 

it----- z -  

FIGWE 1.-Notation for longitudinal motions. 

ments of the tail surfaces, moments due to angular 
velocities of these surfaces are also considered. Thus, 
the pitching moment due to angular velocity of thc 
elevator about its hinge bllf]b8, thc pitching moment 

due to the aerodynamic inertia of the surfaccs bM/&b, 
and the aerodynamic damping of the elevator aH/dh will 
be included in the present analysis. Secondary factors 
entering into the equations, such as the vcrtical acccler- 

4’’ I------ I 

FIGURE Z.-Notation for lateral motions. 

ation a t  the center of gravity due to the lift of the 
horizontal tail, are neglccted. The equations of motion 
take the following form: 

.. .dM dM .dM dM .3M dy2e-e---w-- w - -6- -6- =.,I dw dw d6 

If thc following substitutions are macle 

C 3=1 

and the stability derivatives are replaced by the 
equivalent coefficients, equations (1) are reduced to thc 
following nondimensional form: 

224 



AN ANALYSIS OF TEE STABILITY OF AN AIRPLANE WITH FREE CONTROLS 

:OI 

I t  is to be notcd that, With the exception of the indc- 
pendcn t variable s, equations (2) involve no quantitics 
dcpcndcnt on the steady-flight speed. Motions plotted 
against the distance s are therefore applicable to any 
initial flight condition within the unstalled range. 

The cquations of motion are based on the assumption 
of a constant forward velocity and therefore do not 
show the possibility of a phugoid oscillation of in- 
creasing amplitude or the possibility of a certain typc 
of slow divergence from the steady-flight attitude. 
Experience has shown that the unstable phugoid motion 
is not likely to cause trouble under ordinary operating 
conditions because its period is of the order of 2500 
chord lcngths; the oscillations of interest in control-frec 
stability have periods of the order of 50 chord lengths. 
The slow divergence corresponds simply to a loss of 
static stability when the control is free. Static stability 
with the elevator free is assured if the following con- 
dition is fulfilled: 

c h s c m m >  c m 6 c h ,  (3) 

In this paper tlic divergcnce treated is of a more rapid 
typc. 

Because the pitching that cnters into the equations of 
motion was cxpcctcd to be quite rapid, it was thought 
that thc lag in the effect of the wing wake a t  the tail 
would bc an important factor. Under steady condi- 
tions, the wing wakc diminishes thc relative angle of 
attack at  the tail to about one-half. After a sudden 
cliange of angle, however, the tail will a t  fbst receive a 
strong upwash due to vortices shed by the wing in 
consequence of its additional circulation. The result 
is a rathcr complex transient variation of the vertical 
velocity. This variation affects both the lift of the 
horizontal tail and the floating moment of the elevator. 

The possible effect of the transient-flow phenomenon 
at  the tail was estimated by making several calculations 
in which a simple fixed lag in the action of the downwasli 
was assumed, expressed by setting 

A comparison of the resulting motions with corre- 
sponding results obtained when the lag function was 

1 For the use of the operator c-QJ to show the effeet of lag, see reference 2, page 26. 
Subsequent investigation (reference 3) has shown the complex transient effect to be 
more nearly approximated by the operator e&- (I+:) D .  

entirely omitted showed that the lag, although having 
a noticeable effect on certain stable modes of oscillation, 
caused only a small change in the slower type of oscilla- 
tion in which instability occurs h t .  Revision of the 
computations to include a more accurate representation 
of the lag was therefore considered not worth while and 
aIl calculations were allowed to stand with eae-ID as 
the lag operator. In order to combine this operator 
with other terms of the equations, the expression was 
expanded into a power series in D. 

The stability of the motions is indicated by the nature 
of the roots of the characteristic equation, which is 
obtained from equations (2) by setting the determinant 
formed from the coefficients equal to zero. If DO, 
rather than 8, is considered one of the variables, this 
equation is 

' E L  0 

The equation is tbus a quartic, and terms introduced 
by the expansion of C,,(D) and Ch,(D) that would 
increase its degree were discarded because the roots are 
always small and higher powers are negligible in value. 

The roots of the stability equation were found for 
several typical cases. Apparently, in the usual case the 
motion is oscillatory and of two fairly distinct modes. 
One of the modes of oscillation, although more rapid 
than the modes. encountered with the controls fixed, is 
nevertheless slow enough (with a period of the order of 
60 chord lengths) to involve coupling and reinforcing 
movements of the airplane. The damping is conse- 
quently light, and instability will occur first in thisslower 
mode. I t  is undoubtedly this mode that has been ob- 
served in flight in the cages mentioned in the introduc- 
tion. The second mode is much more rapid but heavily 
damped. The short period (about 15 chord lengths) 
suggests that the motion is essentially limited to a 
flapping of the elevator and may become unstable only 
as flutter involving elastic deformations of the structure. 

It was expected that variations in the aerodynamic 
hinge-moment slope Cha, the mass-moment coefficient 
peZe, the moment-of-inertia coefficient p,k,", and the 
static stability coefficient Cm, would be most important 
from the designer's point of view. These quantities 
were therefore retained in the equations as parameters, 
and numerical values were substituted for the remaining 
quantities. Limiting Conditions for stability are tben 
in the form of relations connecting the four variables. 

Of the conditions for stability, only two were found 
to be effective within the practical range of the param- 
eters. A boundary beyond which straight divergence 
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occurs is obtained by setting the constant term of the 1 
stability equation 

equal to zero. This expression is independent of the 
elevator moment of inertia. The second boundary i s  
the l i t  for oscillatory stability and is obtained by 
applying Routh's discriminant to the stability quartic. 
This boundary was found to shift only a negligible 
amount with a large change in the static-stability co- 
efficient Cm, and was therefore considered to be inde- 
pendent of Cmp. Partial elimination of the parameters 
in this way made possible the presentation of the result2 
in a simplified form. 

The computations of figure 3 were based on the char- 
acteristics of generally used types of balance and on a set 

COMMITTEE FOX AERONAUTICS 

movements of the elevator leading to oscillatory in- 
tability. The boundary for divergence (equation (7)) 

Mass -momenf parumeter, peze 

FLCWE 3.-Elevator-lree stability regions. 50-percent-chord elevator, P, 45, k a  1.79 

of typical airplane characteristics. (See table I of thc 
appendix.) The effect of variation of the moment o 
inertia was subsequently investigated. Figure 4 cover, 
the case of an airplane with the radius of gyration re 
duced to make the moment of inertia half the averagi 
assumed for figure 3. An investigation was also made o 
the stability of a more heavily loaded airplane by dou 
b l i i  the density factor p and comparing (fig. 5) a repre 
sentative stability boundary (ii terms of p&,2 and p z e  
with the corresponding curve for the conditions o 
figure 3. The particular variations chosen were con 
sidered representative of the trends in modern airplanc 
design. 

Of the over-all characteristics of an airplane, thi 
radius of gyration seems most likely to affect it 
stability. The results show that an airplane with : 
small radius of gyration will not permit so wide a rang1 
of the elevator design parameters as will the assumec 
average airplane. Its greater responsiveness to elevato 
deflection will cause it to reinforce more readily th 

ICUIZE I.-Elevator-free stability. Regions for reduccd airplane moment or mcrtia 
%percentchord elevator; P, 45; Ku, 1.27. 

If the airplane is not a critical factor, which may be 
htributed to the fact that the normal relation between 
he lift-curve slope and the loading is such that the 
tirplane is effectively constrained against relative 
notions normal to the wing surface. Differences in the 

Mass -momenf paromefeG pe xe 
FIGUaE 5.-Elcvator-free stability. Effect of increasing denslty factor. Cao, -0 J, 

z. e ,  0.12; ku. I.i9. 

degree of this constraint, as caused by ordinary varia- 
tions in either CLa or p, are unimportant. 

In  general, it may be concluded that the design of 
the elevator itself is of critical importance in obtaining 
control-free stability. A large mass moment or moment 
of inertia of the control surface is seen to be unfavorable 
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to stability. Of primary conccrn, however, is the ad- 
verse effect of aerodynamic balance, especially bccause 
it is found necessary to resort to a high degree of balance 
with many modern airplanes. 

Aerodynamic bo/once area, percenf 
FlGURh 6 -Typical variation of and Chm with aerodynamic balance area for small 

deflections (from reference 4). 

Figurc G (takcn from data of reference 4) shows typical 
Iiinge-momcnt-coefficient curvcs for a control flap having 
tho insct-hingc type of balance used in most modern 
control systems. In  thcse expcrimcnts, the hinge mo- 
ment due to a unit change in the angle of attack: 

remained practically constant as the balance area was 
increased. This form of balance thus would not provide 
compensation for the floating mcsment Chl in the same 
proportion as for the restoring moment Ch6 and, as the 
degree of balance was increased, the equilibrium floating 

angles would become increasingly large, so that there 
would begreater danger of staticinstabilitywith controls 
free, as shown in equation (3). The same considerations 
apply to the balancing tab. 

On the other hand, it should be possible to com- 
pensate for the floating pressure in the same or, perhaps, 
in a greater proportion than the proportion of reduc- 
tion of the restoring moment. Thus, with a horn type 
of balance, for example, the equilibrium floating angles 
may be held constant or may even be reduced, which 
results in greater static stability? A comparison of 
figure 3 (Chnta l l=  -0.24) with figure 7 (Cfintail=O) shows 
that decreasing the floating moment also decreases the 
likelihood of rapid divergence. The boundary for 
oscillatory stability is hardy influenced by this factor. 

The computations for either type of balance apply 
to an elevator operated by a servo tab, provided that 

Mass -momenf porarnefer, ,u& 

FIGURE 8.-Elevator-free stability. Regions for reduced elevator chord. 2S.pereent- 
chord elev@or;p, 45; kr, 1.m. 

the tab remains fixed relative to the devator during the 
oscillations. Thus, as far as stability is concerned, 
servo operation with controls .fixed corresponds to the 
ordinary control-free condition. The stability with 
both elevator and servo tab free is not covered in the 
present study. 

Future designs wil l  probably,show a trend toward 
narrower control surfaces, whether balanced or not, 
because the basic hinge moments can be markedly 
reduced with a small loss of effectiveness. If the chord 
of the elevator is reduced from 50 percent to 25 percent 
of that of the horizontal tail surface, its effectiveness is 
reduced by only 30 percent; whereas, the basic hinge 
moment is divided by 4. 

Figure 8 shows the regions of stability with a reduced 

f Another advantage of the horn type of halanca is that the hinge gap may be 
sealed. The subject of horn balances is discussed further by Hemphillinreferennce 5. 
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elevator chord. The differences between these regions 
and those of figure 3 are principally due to changes in 
the coefficients bChlba, dChlbDG, and dC,,,/dDG. As 
previously noted, the control moment (proportional to 
dC,,,/dii) is reduced by only 30 percent. In the inter- 
pretation of this figure, it should be borne in mind that 
the ratios 2, and k ,  would naturally be smaller for the 
narrower elevator. If account were taken of this scalc 
factor, the region of stability would appear much wider 
than the region for the 50-percent elevator. 

An effective method of obtaining greater stability i i i  

the control-surface motions is the introduction of 
additional damping into the system. If the responsive- 
ness of the control surface is reduced, a considerably 
larger degree of aerodynamic balance may be used 
(fig. 9). The permissible mass unbalance is also 
increased, although to a lesser extent. The results 

Mass -momenf pararnefer, peef 

FIGURE 9.-Elevator-free stability regions. Effect of additional damping in tlii 
control system. SO-percent-chord elevator; p, 45; kr, 1.79. 

shown are for a comparatively small amount of damping 
(Ach,,=-l.o), which corresponds, for a rate oj 
deflection of 20° per second, to the force required 01 
the pilot to maintain lo of elevator deflection. 

STABILITY WITH RUDDER FREE 

Because the lateral motions involve two conbrols an( 
five degrees of freedom, the analysis is more compler 
than for the longitudinal motion, which has one contro 
and three degrees of freedom. Fortunately, tlic 
rudder and the Jerons exert their principal influencer 
on different modes and only a slight loss in accuracy ir 
incurred if each mode is treated separately. 

Oscillation of the rudder control will be primarilj 
influenced by coupling with the yawing oscillations o 
the airplane. The small rolling oscillations simul 
taneously induced will generate neither very stroq 
yawing moments nor very strong rudder hinge moments 

ience, the rolling degree of freedom will be neglected 
the examination of rudder-free stability. This 

issumption, which has been checked quantitatively by 
Bartsch (reference l), reduces the simultaneous equa- 
tions of motion to the following form: 

=o] 

If substitutions corresponding to those introduced in 
the elevator calculations are made, the equations are 
reduced to the following nondimensional form: 

0 

This equation is closrly analogous to equation (6) lor  
longitudinal motion. The corrcsponding coefficients 
have similar values with the exception of CyB, which is 
much smaller than the corresponding term C., becausc 
the normal force that is developcd by the wing in 
pitching is absent in the lateral motions. 

The roots of the stability equation again indicate two 
modes of motion. Thus, in a typical case, the roots 
are -0.008f0.035i and -0.2550.28i. In this in- 
stance, the modes are both oscillatory. The first 
pair of roots indicates a lightly damped oscillation of 
such a frequency (pcriodr9Ochord lengths) as tozinvolvr 
sensible coupling between thc yawing of the airplane 
and the swinging of the rudder. Thc second mode is of 
much higher frequency and undoubtedly represents the 
natural oscillation of the rudder with the airplane acting 
as a practically rigid support. When the restoring 
moment c h 6  is reduced, the second mode becomes 
aperiodic and eventually divergent as the motion be- 
comes less rapid. Oscillatory instability appears first 
n the slower modc, as in the case of the elevator. 
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The calculations of the stability boundaries covered 
changes in rudder chord, changes in the airplane 
moment of inertia mkz2, and changes in the weather- 
cock stability factor CnB. Additional calculations were 
made to show the action of a nonfloating type of rudder. 

MOSS - mornenf pururnefer, ,upr 
FIGURE ln.-Ruddrr-frce stability. Minimum regions (0<prk,2<8). 50-pcrccnl‘ 

chord rudder, p, 45. 

Variations in tlic dcnsity factor p were considercd in- 
significant, this quantity entering the equations indc- 
pcndently only in conjunction with the small side-force 
dcrivativc CY8. 

A simplification corresponding to the climination of 

Muss -rnornenf pururnefer, p& 

50-percent-chord rudder, p, 45, kz, 2.20. 
FIGURE 11.-Rudder-free stability. Varlatlon of boundaries with moment of incrtir 

of rudder 

Cm, as a parameter of the oscillatory stability boundarj 
was not found possible in these equations. Plots oi 
Routh’s discriminant for rudder-free motion show i t  t c  
be noticeably dependent on all four paramctcrs, thc 
least effective being the moment of incrtia of the ruddei 

ystem. Since the permissible mass moment is 
maller for larger values of prk:, an upper practical 
mit (p,kIc:<8) was assumcd for this parameter and the 
esulting family of curves was plotted to give the 
ninimum regions for stability in terms of Ch,, pzr, 

Moss - mornenf paromefer. p& 

(0<rrrk?<8). 25-percent-chord rudder; p. 45, k7,2.20.  
FIGURE 12 -Rudder-free stability. Mmmum regions lor reduced rudder chord 

and Cng (figs. 10, 12, and 13). The margin beyond 
these minimum regions, for values of p,k: lcss than 8 ,  
LS indicated by figure 11, in which thc corrcsponding 
xmws for p,k,2=8 and p,k:=2 are plotted. 

The charts show the weathercock stability of thc air- 

Mass -rnornenf puramefer, p& 

(O+,k.t<S). 50-percent-chord rudder; p, 45, kz, 2 20. 
FIGURE 13.-Rudder-free stability Minimum regions for nonfloating NddeI. 

plane to be of greater importance in the case of lateral 
motion than in the case of longitudinal motion. The 
cffect of the moment of inertia of the control surface, 
which determined tho degree of oscillatory stability in 
longitudinal motion, is small relative to the effect of 
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Cap The greater the value of Cns, the less is the 
dlowable mass moment with any given amount of 
aerodpmio balance. On the other hand, if the 
mass moment is small enough to insure damping of 
the millations, a larger value of CnB will increase the 
aerodynamic balance that may be introduced without 
causing divergence. The radius of gyration of the 
airplane is of considerable importance, shifting the 
boundary for oscillatory stability so as very nearly to 
double the stable region when the moment of inertia is 
doubled. (See fig. 10.) 

ImtabZty with the rudder free is likely to occur in 
the form of a divergence. The criterion is practically 
the same as the condition for weathercock stability 
with the control free, which is 

ch,cn@- ChgCna 2 0 (11) 
This critcrion is independent of the moments of inertia 
of the airplane and of the control surface. The greatest 

Mass -moment paromefer, f 
FIGWBE 14.-Aileron-free stability boundaries. p, 45; k x ,  1.80. 

gain in this margin of stability is obtained by increasing 
cn& and reducing the floating tendency c a p  of the rudder. 
Reducing the chord of the rudder decreases both cos 
and c",, and hence considerably widens the margin of 
stability. (See fig. 12.) Complete ehnhation of ChB 
by the use of a nonfloating type of balance eliminates the 
likelihood of divergence within the normal range of 
weight distribution (fig. 13). Such a gain, howevcr, 
would be achieved only by sacrificing some margin of 
oscillatory stability. 

The lateral oscillations of an airplane with controls 
k e d  are known to be influenced by coupling between 
the rolling and the yawing motions. These oscillation2 
tend to become undamped when the weathercock 
stability cnp approaches zero. Freeing the rudder 
control diminishes c-6 and may thus lead to this type 
of oscillatory instability. The condition for zerc 
weathereock stability is approximately that for straight 

livergence in the control-free condition (equation (11)) 
md the boundaries for divergence (figs. 10 to 13) can 
bherefore be interpreted also as boundaries for stability 
3f the slow lateral OsciIIation, when the airplane is free 
to roll. The absence in the criterion of terms involving 
the mass of the rudder may be explained by the fact 
Lhat, as the h i t  of stability is approached, the oscilla,- 
tion becomes very slow and the yawingeomponent tends 
to disappear. 

STABILITY WITH AILERONS FREE 

The stability of an airplane with the ailerons free is 
examined by including in the equations the interaction 
between rolling motions of the airplane and movements 
of the ailerons. Small simultaneous yawing and side- 
slipping motions will also occur but, because their 
reactions on the rolling and thc hinge moments are 
small, they may be neglected. The resulting equations 
are: 

or, in nondimensional form, 

(9 D - ctD.>~+ - (G,,D + ct,)~ = 01 
(13) 

In the aileron control, a part of thc mechanism 
normally rotates about an axis at  right angles to thc 
aileron hinge axis. As a result, a part of the aileron 
torque produced by angular acceleration of the air- 
plane is proportional to the product of inertia of the 
aileron itself and another part is proportional to the 
moment of inertia of the control stick or wheel. Both 
quantities are included in'ithe parameter E. 

(14) 5- 

where the subscript s refers to the control stick and TJ 

is a constant inserted to take account of any difference 
of gearing between the control and the aileron. 

The calculations, based on values of the derivatives 
given in the appendix, cover two aileron widths: 15 
percent and 30 percent of the wing chord. In both 
cases, the ailerons were assumed to cover 50 percent 
of the wing semispan. 

Variations in the floating tendency of the aileron 
were also considered but were found to havc littlc effect 
on the stability. The results given may therefore be 
applied to any of the existing types of balance that 
give smooth hinge-moment curves? 

The boundaries for stability in the two possible 
modes are presented in figure 14. Instability appears 

(ED-ChD+)D+f bakuZD2-CnD,D-CnJ6 = O  

Thus: 
m,Ffqm&,2 

P s a p  

Certain ailerons 01 the Frise type that show a reversal of the hingemoment slope 
m y  develop nncontrollable oscillations of fixed amplitude. This condition is dis- 
cussed io relerence G 
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in the form of increasing oscillations and is most liiely 
to occur when the ailerons have a high degree of aero- 
dynamic balance and too great a mass moment or 
moment of inertia. As the moment of inertia decreases, 
the boundary for undamped oscillations approaches 
that for straight divergence (which is itself independent 
of the moment of inertia), and it becomes possible for 
both types of instability to exist simultaneously. The 
condition to prevent straight divergence, 

is, however, always satisfied when there is damping of 
the oscillations. 

Straight divergence, as encountered in the eIpvator- 
free and the rudder-free conditions, is indicated when 
the constant term of the stability equation is negative, 
that is, when 

cl,*ch, ? Chwcl:ca (16) 
This condition is not likely to occiir unlcss the aero- 
dynamic balance is nearly complete. 

CONCLUDING REMARKS 

Experience has shown that, before the actual limit 
of stability is reached, the airplane undergoes oscilla- 
tions which, although damped, are still persistent 
enough to be undesirable. The boundaries given in 
the stability charts are therefore of value chiefly as 
indications of the effect of certain design factors; they 
are useful quantitatively only as outside limits, not to 
be approached too closely. Further experiments will 
be necessary to determine the margin of stability re- 
quired for smooth operation in gusty air. 

On the other hand, the charts are to a certain extent 
conservative because they do not take into account the 
possibility of friction of the control system, a factor 
that would widen the margin of stability. 

The indications of the present study may be sum- 
marized as follows: 

1. There is a limit to the effectiveness of the aero- 
dynamic balance that may be safely employed with 
any conventional control system. In  most cases, it 
appears difficult to secure stability with the hinge 
moment reduced to less than 25 percent of its value 
for the unbalanced surface. 

2. Reduction of the floating moment Cbm2 if it can 
be brought about independently of a 
aerodynamic balance, causes a shift d the boundary 
for divergence. (Cf. figs. 3 and 7 and figs. 12 and 13.) 
The effect is particularly noticeable in &e m e  of the 
rudder, where the likelihood of this form of instability 
is materially decreased. 

3. Within the usual range of chambrktics, the 
Elevator and the aiIeron controls are ssuseeptible 
to oscillatory instability than to the rapid 
divergent instability. The stability with either of 
these controls free may be improved by (a) using a less 
effective aerodynamic balance, (b) decreasing the mass 
moment and the moment of inertia of the control, or 
(e) using a control surface of narrow chod. 

4. Divergence is a more likely form of h h b i l i t y  for 
the rudder control (figs. 10 and 11) and ided 

ance or, as has been suggested, by us that 
reduces the floating tendency of the rudder> although a 
highly effective balance of a type thah reduces the 
floating tendency may result in oscillatory instability. 

5. The oscillatory stability qf the elevator-free 
system is but little affected by the rest0 
the airplane in pitch (Cma). In the case of the yawing 
motions, howcvcr, the existence of a strong restoring 
moment (Cns) increases the likelihood of oscillatory 
instablity. 

6. In  all cases, an increase in the rclatim radius of 
gyration of the airplane resuIts in an increased range of 
stability (cf. figs. 3 and 4; see also fig. IO), but changes 
in weight without corresponding changes in the rotary 
inertia have little effect. 

7. The use of a narrow control surface is recom- 
mended as a means of increasing the control-free 
stability as well as from other considerations. The 
marked effect of reducing the chord is shown by a 
comparison of figure 8 with figure 3 and of figure 12 
with figure 10. ' 

by reducing the effectiveness of the bal- 

(Sce, for example, fig. 10.) 

(See fig. 5.3 

LANGLEY MEMORIAL AERONAUTICAL LABOWTOBY, 
NATIONAL ADVISORY COMMITTEE FOB AERONAUTICS, 

LANGLEY FIELD, T T ~ . ,  August 15, 1940. 
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APPENDIX 

_I___ 

C L . .  .......... 
c'"D# ............ 

c"Dv ............ 
""6.. ........... 
""D6.. .......... 
C b 6 .  ............ 
chDb. .  .......... 

% rlnll . 
C " h . .  ........ 

......... 

c",.;l ........... 

STABILITY DERIVATIVES 

The gcomctric and the aerodynamic charactcristics 
used in the stability calculations arc given in tables I 
to IV. 

TABLE 1.-GENERAL AIRPLANE CHARACTERISTICS 
T a i l h  .................................................................. 2.75 

Horizontal-tail area ........................................................... .I53 

Verticd-tail area .............................................................. .ffi 

H o r i z o ? ! d  ......................................................... .50 

Vertical-tail chord.. .......................................................... .333 

Wing chord 

Wing area 

Wing area 

Wing chord 

Wing chord 
Aileronchord .................................................................. .15 
Wing chord 

Wing semispen 
Wing aspect ratio ............................................................. 6 
Horizontal-tail aspect ratio ................................................... 3.75 
Vertical-tail aspect rat,io.. .................................................... 3.00 

Aileron span ................................................................ .50 

50-percent-chord 
elevator 

- 
4.3 

-9.26 

4.XO.135--2. ... ) 
-1.121 
-1.450 
-. 960 
-.57 

-1.00 
-1.33 

-0.24 and 0 

TABLE 11.-ELEVATOR-FREE STABILITY 
COEFFICIENTS 

___ 
cyp  ......... 
c n D + . . ~  ..... 
' - 6  .......... 
' " ~ a ~  ........ 

C h g  ......... 
cAD6 

c A ~ $  .~. . ~ . ~ .  

......... 

50-percent- 25-percent- 
chord rudder chord rudder 

-0.274 -0.274 
--.582 -. 582 
-.0567 -.0397 
-.0460 -.0175 
-. 883 -. 276 

,123 .075 
-1.00 -. 50 

25-percent-chord 
elerator 

%.+ ........ 

cfD6 ......... 
chD( ........ 
"D6 ........ 

.......... ''6 

4.3 
-9.26 

4.3(0.135--2..,.) 
-1.121 
-1.450 
-. 672 
-. 23 
-. 50 -. 406 
-. 075 

-2.94 -2.94 
-.2% -. 352 
--.I10 -. 295 
--.I84 -. 322 
-.650 -1.587 

TABLE 111.-RUDDER-FREE STABILITY COEFFICIENTS 

TABLE 1V.-AILERON-FREE STABILITY COEFFICIENTS 

The aerodynamic coe5cients are, in most cases, 
based on experimental results; theoretical values arc 
used only where such results were not established. 
Discussions of the more commody used derivatives will 
be found in references 7, 8, and 9. Several of the 
unfamiliar coefficients are developed in the following 
paragraphs. 

Damping in pitching Cm,,.-The principal com- 
ponent of damping in pitching,furnished by the horizon- 
tal tail, is 

In  addition, the pitching motion introduces a relative 
camber of tlic wing section, giving rise to a moment 
coefficient 

Thus 

c - _ _  "CL,,+?r 5 )  
m- uo Y S 1  sc 4 21 

Then, sincc 

Pitching-moment slope cnza.-The pitching-moment 
slope is given by 

whcre x,.~. and z , . ~ .  arc tlic distances of thc aero- 
dynamic centcr of the complete airplane behind and 
below the ccnter of gravity. The location of the aero- 
dynamic centcr for the airplane as a whole is estimated 
by taking the centroid of the aerodynamic centers of the 
various components. Thus, if terms in z ~ . ~ .  (which is 
usually small) are ncglected, 
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Pitching-moment coefficient due to vertical accelera- 
tion CmDu.-The pitching-moment coefficient due to 
vertical acceleration arises from the aerodynamic 
inertia of the wing and the horizontal tail surfaces in 
motion normal to their chords. The force on each 
surface is equal to the reaction of a body of air described 
by rotating the surface about its midchord line. Thus, 
the pitching moment 

and 

where xm is the distance from the 50-percent-chord 
point of the wing to the center of gravity of the airplane 
and 3601 is the same distance measured from the cor- 
responding point of the horizontal tail. 

Pitching moment due to elevator deflection Cm6.- 
The pitching moment due to elevator deflection is 
given by the formula 

where ae is the angle of zero lift of the elevator. 
Theoretical and experimental values for d&6, for 

flaps with sealed hinges, are given in figure 15. The eo - 
efficients used in these calculations (Cn6 and C,, as well 
as C,,) were, however, based on the experimentdy de- 
termined changes of lift produced by a flap with open 
gaps at  the hinges. The effect of a small gap is to reduce 
the effectiveness of the flap by about 30 percent. At a 
large deflection, the flap with inset-hinge balance shows 
a still greater loss because of the protruding balance 
portion. 

Pitching-moment coefficient due to angular velocity 
of the elevator C,,,.--The pitching-moment coeffi- 
cient due to angular velocity of the elevator is 

wliere 
dCL, bC, j dCL -=-, $3 -1 
dD6 dD6 dDS da, 

The parameters ~ C L J ~ D S  and dae/aDS may be found as 
functions of the chordwise position of the hinge from 
figure 15. The figure is based on the theoretical treat- 
ment of Theodorsen (reference 7), with the assumption 
of long oscillations (greater than 20 chord lengths). It 
must be remembered that D6 involves the distance 
traveled by the airplane measured in terms of its half- 
wing chord, and the quantities given must be midtiplied 
by the ratio c,/e, to convert them to half-wing chord 
lengths. 

Damping moment of elevator Ch,,.-The hinge mo- 
ment due to angular velocity is treated theoreticdy 
by Theodorsen in reference 7. Figure 16, derived from 

the theory, gives the component parameters of the 
damping moment as functions of the chordwise position 
of the hinge. The same considerations are effective 
here as in the application of figure 15. 

Hinge moment due to pitching C,,,.-Positive pitch- 

FIGURE 15.-Parameters for determining the effects of angular velocity and deflection 
of flaps on the hlt. 

c,,=Da'C" +=a 'A .%. 4 4  '3 ?$ 
bD6 ha ' 0 6  'or 

ing motion causes an increase in the angle of attack of 
the tail surface equal to l%/Uo. The resulting hinge- 
moment coefficient is 

and, since 

Inasmuch as rotation of the airplane about its center of 
gravity does not appreciably change the lift of the 
wing, the downwash correction may be neglected. 
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&ge moment due to change in angle of attack 
Cam----h accordance with the indications of tests by 
Goett and Reedcr (reference 4), the aerodynamic float 
ing moment Cha was assumed independent of the 
(legpee of aerodynamic balance of the control surface 

f a l l  

FEOCJRE lG.--Parameters lor determining the damping monicnts or Raps. 

(fig. 6). The assumption is valid for the inset-hinge 
type of balanced flap shown in this figure. The ffoating 
mornene will vary with the type of balance, however, 
as discussed in the text, and additional computations 
were therefore made in which Ch, was assumed equal 
to zero. 

m i  I 

T h e  l a t e r a l - s t a b i l i t y  der iva t ives  cyo, cnB, 
C =%, and C t , = p e  "' are discussed in refer- 

a- 
2 vo 

D D )  rc a- 
?, vo 

ences 8 and 9. The other coefficients for the lateral 
motions are derived in a manner closely analogous to 
the derivation of the corresponding longitudinal 
coefficients. 

The values of the mass moment and the moment-of- 
inertia coefficients of several representative elevator- 
control systems were determined experimentally in 
order to End the magnitude and the range to be expected 
in practice. The experiments were made by attaching 
a spring of known stiffness to the control column, oscil- 
lating the system, and recording the frequency and the 
damping. The mass moment was measured directly 
with a spring scale. The interpreted results are given 
in the following table: 

I Amhe I r= 1 r A *  I ______ 
NorthamCricanBT-S. .-. 2.70 1.35 
Curtis P-36 ____._ ..... . .. 
Loe%heed12 _____...______.. 1 !t5 1 iT I 
Fairchild22 _____._..._.. _ _ _  3.0 
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G PRESSURE DISTRIBUTION IN 
TWO-~I~ENSIONAL FLOW 
By ROBERT T. J O N E S  and DORIS COHEN 

SUMMARY 

B y  a generalization of the Joukowski method, a pro- 
cedure i s  developed .for effecting localized modijications o f  
airfoil shapes and for  determining graphically the resultant 
changes in  the pressure disfribution. The application qf 
the procedure to the determination of  the pressure distri- 
bution over airfoils of original design i s  demonstmted. 
IIorwLulas .for the lift, the moment, and the nerodynawic 
center are also given. 

INTRODUCTION 

It is possible, by a simple gcometric construction, 
to modify aiiy given streamline shape in such n way 
that thc effect of tlic modification on the prcssurr dis- 
tribution, tlic lift, and tlie moment can be readily 
deterrnincd. The construction i s  cssentially that used 
in deriving the familiar Joukowski airfoils from a circlr 
(reference 1) although i t  may be applicd to an airfoil 
shape to introduce modifications of thc outline. Thr 
method is based on tho conccpt of complex numhrrs 
but its application requirrs no familiarity with tlicm. 

By two or more successivc applications of the con- 
struction to a circle, it  is possible to derive shapcs of 
such diversity as to permit the approximatioil of near17 
any airfoil of current design. For the airfoil derived 
in this way the pressure distribution can be determined 
cxactly, so that thr only error likely to occur is in thc 
rcproduction of the exact airfoil shape. Any inaccuracy 
in this approximation is immccliatcly apparent and can 
bc made as small as is considered tlcsirablr. 

MODIFICATION OF AN AIRFOIL 

The method consists entirely in applications of a 
single construction; desired effects are obtained by the 
proper choice of a parameter k and of the location pf 
the axes with respect to the figure to bc transformed. 
This basic construction applicd to an airfoil surface is 
demonstrated in figure 1.  In order to find the point 
z, on the modified airfoil to correspond to a point z 
on the original airfoil, the vector Oz is drawn from the 

origin and thevector 0- IS added to it. The vector 

0-, which will be termed the “rcciprocal” vector, is con- 

structed with its length equal to kZ times tlie reciprocal 
of the length of Oz and a t  an angle -4 with thex-axis, 
where 4 is the angle made with this axis by Oz. A 

kZ . 
2 

k2 
Z 

point of the modified airfoil, then, is located by the 
resultant of the vector Oz and its reciprocal vector. 

The construction by which a figure is modified ap- 
plies equally well to all its streamlines, altering them 
to conform to the distortion. The change in spacing 
of the streamlines near the boundary of the figure will 
show directly the effect of the transformation on the 
velocity in that region because the velocity varies 
inversely with the spacing. The factor by which the 
elements of length near a point z are changed may be 
shown to be the ratio of the length of the diagonal from 

FIGURE 1.-Construction to determine a point on the modifled airfoil. 

k2/z to z (the vector z-k2/a) to the vector 02. Then the 
ratio of tlie velociey a t  a point z+k2/z to the velocity 
a t  the corresponding point z of the original figure is 
the inverse of this factor. 

The problem of determining the pressure distribu- 
tion is reduced by Bernoulli’s relation P=Po--pV2/2 
to that of finding the distribution of the velocity. If 
the velocity distribution over the original figure is 
known, tlic vclocity distribution over the modified 

figure may then be found by applying the ratio -!?!- 

a t  each point used in the construction. The vectors 
z and z-k2/z have already been used in transforming 
these points and are therefore directly measurable. 

Strictly speaking, the method as outlined is applica- 
ble only to potential flows. It is reasonable to suppose, 
however, that the actual velocity distribution over the 
modified airfoil may be obtained with good accuracy 

Iz-$l 
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from a distribution experimentally determined for the 
original airfoil, provided that: (1) the experimental and 
the theoretical distributions do not differ too greatly 
and (2) the modification itself does not introduce too 
great a change in the distribution. 

The requirements of each problem will suggest the 
proper choice of the axes and of k. A few general 
observations may be helpful in this connection. It is 
evident that the origin must be in the neighborhood of 

\. . y-axis 

Modified airfoil 
I 

1 y-axis 

(d) 1 Origmnal airfoil 

FLGURX Z.-The effect of varying the parameters 01 the construction 

the section to be modified since tbr point nearest tlic 
origin is shifted the greatest distance. The dircctior 
in which a point is shifted depends on the inclination oj 
its vector to the axes, and the shift may have a rclativc4j 
small component normal to the airfoil boundary. I1 
one axis is roughly parallel to the section of the surfact 
to be modified, the point of grcatcst deviation wil 
usually be very near the intersection of the surfacc 
with the other axis. It will tlicrefore be usrful to notc 
that the displacement of a point on either axis ir 
P/d, where d is the distance of the origin from the point 
Points on or near the x-axis are shifted outward fron 
the origin; points near the y-axis arc moved inward 
The transformations of figure 2 show the naturc of tht 
modifications to be obtained by various choices of thc 
axes and of k. Sharp modifications occur when tlic 
airfoil intersects either axis at  a distance from tlit 
origin only slightly greater than k. 

It is expected that thc method as outlined wil l  be 
iseful in ascertaining the, effect on the velocity distri- 
Jution of a localizcd modification of an airfoil. It is 
?ossiblc, however, to approximate a more extensive 
nodification to any desired degree of accuracy b y  
;uccrssivc applications of the same transformation, thc 
vrlocity bcing calculated at each stage by tslie rulr 
ilready given. 

APPROXIMATION OF A GIVEN AIRFOIL 
The foregoing discussion is concerned with tlie 

problem of cff ccting small modifications of existent air- 
;oils for which the velocity distribution is known. It 
IS sometimes required to predict the theoretical cliarac- 
histics of an airfoil not dcrivcd in this way. In  such 
i case, it is customary to use tlie known flow around a 
irclc as a starting point. If the transformation 
$iscussed licre is applied to 5 circle, the result is an 
mal shape with circular-arc camber, as demonstrated 
by Joukowski. (Scr rrfcrcncc 1 .) It should be possible 
to procrecl to modify t,liis figurc (or its special form, a 
Joukowski airfoil) as was tlonc in tlir prcccding section 
to an cxprrimrntally known airfoil. In  gcncral, liow- 
cver, it woiiM requirc. many stGps to reproduce an 
arbitrary airfoil in this way bccausc modifications of 
tlic sliapc alrracty approaching an airfoil would, of 
nccessicy, be small and localizcd. On tlic other hand, 
if tlic procedure were reversed, it would be found that 
ariy airfoil may be derivcd by a single step from a 
figure closely approximating a circle, a figure which 
will Iirrrinaftcr bc callcd tlic “distorted circle” of the 
airfoil. Tlir distorted circlc may thcn be considerrtl 
tlic result of modifying a cirrlc, a result obtained in 
tlic samc way as were the slightly modified airfoils of 
tlic prccrding section. 

For t,lic first step in this proccse, thc clc+rminatiori 
of the tlistortrd circlr corresponding to tlie desirrd 
airfoil, rcfercnrc could br niadc to Theodorscn antl 
G:irri.ck (rrfcrcwx ?) or von KBinih and Rurgrrs 
(rrfrrcncc 3), who givr exact formulas for tlie distortctl 
circle ill tcrms of tlir airfoil coordirmkrs. A graphical 
mrtliod bascd on thc simplcr transforniation that is 
bring usrd in this psprr niakes it possible, lion cver, to 
obtain the tlistortrd circlr mercly by trial. 

Tlic entire prorrtlurr is illustrated st.cp by step 111 

figiirc 3. In ordrr to acliirvr a considertiblc siniplifica- 
tion of t h  constriiction, tlic airfoil is considrred in this 
figiirc, antl in tlir following discussion to liavc hem 
(Ira% n tliroiigli tliv midpoints ratlirr than through tlir 
trrminals of the \ ectors 2-1 kL/z ,  so that t h y  apprar 
hrre as if to half scale. 

Tlic ascs nntl tlir paramc+m k for the first stcp arr 
founcl from tlic airfoil diincvisions nccortling to the 
relations giben in figiirv 3(a). The s-axis is made to 
pass through tlw lcadiiig and the trailing rtlg~s t,o 
rrtlucc to a mininiiim t.hr distortion that will later have 
to be rcproducrd. 

The ascs ant1 k having bwn choscm, thc intcmrctions 
of thr tlistortcd circle with t h c b  axes, Xv, ST, I;, nncl 
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;" (4 

(a) Lwation of the axes and determination 01 the parameter k irom the airfoil. 

Q Construction of thc circle to serve as a first approximation of the distorted circle; 
the reciprocal circle. 

(e) Approximation of the distorted circlc by a small modification of a circle. 

(h) Locatbn of thc intersections of the distorted circle with the axe. 

(d) Construction 01 tho distorted circle of th: airfoil. 

(I) Reconstruction of the airfoil from the circle, showing the lines needed in cornput- 
ing-the velocity distribution. 

FIGURE 3.-Steps in the approximation of a given airfoil by the trausformation of a cirelc. 
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YL, are easily calculated (fig. 3(b)). The const.ruction 
then proceeds as follows: 

In  order to serve as a first approximation of the 
distorted circle, a circle is drawn to fit thc four inter- 
sections with the axes as closely as possiblo. It should 
be remembered that, because this step is a first approxi- 
mation, great accuracy is not a consideration. W i e n  
the vectors z follow this circle, the vectors k2/z,  con- 
structed as previously described, are found to terminate 
in a smaller circle, which is termed for convenience the 
“reciprocal” circle. This reciprocal circle may be easily 
located from its intersections with the axes (fig. 3 (c)). 

Vectors Oz and 0- are then dralin from the origin 

to t.he circle and to the reciprocal circle at equal angles 
below and above the x-axis (fig. 3(d)). The midpoint 
z,’ of t,he diagonal z-k2!z connrcting the ends of thew 
vectors will not, in general, fall exactly on thc airfoil. 
A point of the distorted circle zb is located by adjusting 
with dividers the lrngth of Oz,  along Oz so that thc 
diagonal to its reciprocal is bisected by the airfoil. 
The point of the airfoil z, n t  which this bisection occurs 
will actually be indistinguishable from tlie intersection 
of tlie first diagonal uith the airfoil: this fact is useful 
in making the correction. Because tlic corrections to 

the vectors Oz and 0- are in approximately the samct 

ratio as the vectors. the decrcwe in K’/z that corres- 
ponds to an increase in the length of Oz may be rsti- 
mated and the reciprocal relation bc maintained by 
eye. Any desired degree of accuracy niny be obtniiietl 
by checking numerically the lcrigtlis of thc vcvtors. 

The distorted circle obtained in this way must now 
be approximated by applying a transformation of tlir 
form z+k2/z to the circlc most ncarly approximating it. 
For this purpose the circlc already drawn for the prc- 
ccding step will usually bc satisfactory, although it 
may have to be shifted slightly to obtain a more con- 
venient distribution of the distortion. Depressions 
should occur as nearly as possible on opposite sides of 
&he circle, with distended portions between them. 
(See fig. 3(e).)  The x-axis should then be passed 
through the distended portions and the y-axis, through 
the depressions. Some adjustment will be nccclcd to 
satisfy the condition that the segments of the axes c u t  
off by the eirclc and the rorresponding distortions bc 
approximately in inverse proportion, that is, that their 
product at, racli intersection bc constant. The param- 
eter k for the transformation is then the square root 
of this product. 

Carrying out tho transformation of tlie circle a t  
this point serves a t  onee to check thc cstimntcd param- 
eters or to suggtbst an adjustment and to provide thc 
construction lines that will be needed to determine thc 
velocity distribution. Similarly, thc distorted circle 
thus obtained from tlic circlc should bc reduced to tlie 
desired airfoil. 

In figure 3(f) thc complctc double transformation 
and the lincs neccssary for the computation of the vcloc- 

k2 
Z 

k2 
2 

ity distribution are aiown applied to L poiiit of thc 
circle of figure 3(e). 

Occasionally an airfoil will give fisc to a distorted 
circlc that cannot be obtaincd by a singlc modification 
of a circle. In  such a casc an additional transformti- 
tion may bc applied either to acliicvc tlic dcsircrL 
distortion of thc circlc or to modify locally an airfoil 
that can be derived by two transformations. 

VELOCITY DISTRIBUTION OVER AN AIRFOIL DERIVED 
FROM A CIRCLE 

It is apparent that a large variety of uscful airfoil 
shapes can bc obtaincd by two or more successive appli- 
cations to a circle of the transformation z+k2/z. 
(Two typical examples are shown in fig. 4.) Tho first 
transformation primarily determines the gcneral outline 
of tlic airfoil. The second transformation reduces the 
figure to the dimensions of an airfoil and clctermincs 
tho nose radius, the thickness, and the camber. It 
may be of interest to note that in the first transforma- 
tion k is small relative to the radius of the circle; in 
the second transformation thc ratio of k to the radius 
of thc circle is only slightly less ‘than 1. 

The mctliod of finding the velocity a t  a point on an 
airfoil derived in this manner is deduced from the 
following considerations: 

The velocity n t  a point z on the circlv i s  givcii by 
the formula 

r Vz=2V, sin e+- 
2n-r 

wliere r is the radius of tlic circlc, \’, is t l ic  wind vcLloc- 
ity, and e is tlic angle that t,hc radius to tlir point z 
makes with the tlirvctiori of thc air strcam. Ttic cirru- 
lation r is detcrmincd by the K u t h  condition. Tlicn 

V, = 2 Vo (sin 0 -sin eo) 
wtirrr e, cqiials tiic nnglr brtwwn the air strenm : ~ n d  
the radius to’ zT E ,, tlic point of the circlc that trans- 
forms to the trailing edgr of thc airfoil. This vsprc+ 
sion for 17, lcnds itsvlf readily to grupliical evaluation 
:I$ a pnrt of the construction; the. velocity factor 
(sin &-sin eo) is proportional to t,hc ordinate of tlir 
rirclr measurcd from a line druwn through zT. E .  and 
pamllcl to tlie wind vrlority Vo. 

The vclocity a t  tlic corrcspontling point of tlir trans- 
formrtl fiqiirc. has bccn sliou-11 in a prrerding sciction to 

. -  
circle to triinsform tlir flow to that ovcr the airfoil. 
A simple prorctlurc is t,o plot tlw strvtcliing factor nloiicl 
for the first transformation, as a function of tlic angti1:Lr 
position of tlir transfoiincd point, with tlic lcngtlis 

i/zI and z-- mcasured from thc construction. Thc 

stretching factor for thc sccontl transformation could 
thcn bc applied a t  convcniclnt points to valucs of the 

k2 I 21 
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FIGURE 4.-Airroils derived by two applications of transformation to circle. Airloils arc shown half scale with respcct to circles. 

stretching factor for the fiixt transformation read from 
thc plo't. The rosultant stretching factor obtained in 
this way can be directly applied to the vrlocity at 
points of the circle to give the velocity dist>ribution 
over the airfoil at any angle of attack. 

Figure 5 shows a sample pressurc distribution ovei 
an airfoil (the NAC-4 4112 airfoil) approximated by 
two transformations of a circle. Comparison is made 
with the distribution derived by thc theory of reference 
2 and with exprrimrntnl rrsults taken from referrncr 4. 
The thcorctical distributions wcw computed at an 
angle of attack of 6 . 4 O ,  which corresponds to a geomct- 
ric angle of attack of 8 . 5 O  for the finitespan airfoil of 
refcrencc 4. 

CONCLUSION 

The mcthod of this pnprr has been found useful in 
determining the rffect of small modifications of airfoil 
shaprs on the pressure distribution It is apparent 
that a family of related shaprs can be derived in this 
way with greater simplicity than by standard methods 
because thc effect of the modification alone can be 
calculated for each shape. It is also possible to foresee 
the manner in which a shape must be modified to 
produce a dcsired chnnge in the prrssurc distribution. 
The mcthod is, in fact, reversible and by it an airfoil 
may bc designed to have a predetermincd pressure 

FIGURE 5.-Thcoretical and experrmmtai prrsswe distributions o%cr NACA 4412 
airrod. n ~ b . 4 ~ .  

distribution, provided that a somewhat similar airfoil 
is already known. The modified pressurr distributions 
obtained in this wag have closely checked with ex- 
periment. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 

LANGLEY FIELD, VA.,  November 12, 1940. 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 
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APPENDIX 
FORMULAS FOR LIFT AND MOMENT 

In the case of an airfoil derived from a circle. the 
method of derivat.ion, interpreted in t e r n  of complex 
numbers, makes i t  possible to gire concise formulas for 
the lift and the moment in terms of the parameters 
used in the construction and to locate by simple geo- 
metric methods the theoretical aerodynamic center. 
The general theory for a transformation of the form 

has been developed by von Mises (reference 5, ch. VIT). 
In order to apply the formulas of von Mises, it  is neces- 
sary to expross the resultant of two successive trans- 
formations in a series of the foregoing form. 

Let zb=z+k12/z express the first transformation, z 
being a point on the circle or one of its streamlines 
and zb, the corresponding point associated with the 
distorted circle. The axes for the second transforma- 
tion are described by the complex parameter zl, which 
locates the origin, and 8, the angle between the two set.s 
of axes. 

Then, if primes denote thc vectors drawn to the ncw 
origin, 

Substitute 
zbf=(zb-zl)e-ifl (2) 

k 2  
z,=z+-l- 

Z 

Then 

(3) 

which is the point. on the distorted circle locatcd with 
respect to the axes for the second transformation. 
Apply the second transformation to Z b f ;  then 

(4) 

gives the corresponding point associated with the air- 
foil. Substitute for 20' from equation (3). Equation 
(4) then becomes 

In order to restore the wind velocity Vo to its original 
magnitude and direction, it is necessary to return to 
the original axes. 

and the inverse transformation is 

This expression for the complete transformation can be 
expanded, by carrying out the divkion of the last term, 
into the series 

(9) 

which is in the form of equation (11, where 

a, = k,2 + kZ2e2'8 (10) 

% = kz2e2iflz1 i 
The formulas for the lift and the moment as given by 

Glauert (reference 5 ,  pp. 84 and 85) may now be applied. 
The circulation, and consequently the lift, is unchanged 
by the transformation. Thus the lift depends only on 
the radius of the origiial circle. 

L = p v o r = 8 , A v o 2  2 sin eo ( 1  1) 

or 4 4 V , "  sin e, for the half-scale airfoil. The value 

of Mo, the moment about 0 (fig. 6), is given by the 
imaginary part of the expression (reference 5, p. 84)  

where the quantities not already defined are as defined 
by the figure. Substitution for a, from equation (IO) 
gives 

7 r ~  [ z c k , l + k 2 Z e 2 i f l ) e P " - ~ ~ i ( a - 6 '  7r ] (13) 

for expression (12),  or 
Mo=2rpV,"[k,2 sin 2a+kZ2 sin 2(a+B)] 

Since 
--mpv,r COS (a-s) (14)  

r = 4 ~ V ,  sin (a -q )  (15) 

M,=27rpV,2[k,2 sin 2a+kZ2sin 2(a+j3 
- 2 m ~  COS (a-6) Sin (a-ao)] (16) 
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FIGDRE 6. -Symbols used in development of lift and moment formulas. 

In general, the moment about any point z (see fig. 6 )  
is given by 

Me=2?rpV:[k: sin 2a+k$ sin 2(a+B) 
+2rd cos (cy-+) sin (a-a,,)] (17) 

or 

2?rpV02=[k12+k,2 Mz cos 28+rd cos (++a,,)] sin 2a  
+[kz2 sin 2g-rd sin (++a,,)] cos 2a 

+rd sin (+-a,,) (18) 

The location of the aerodynamic center (or focus) is 
deternlined by the condition that the moment about 
that point be independent of the angle of attack. In 
order $0 satisfy this condition, the coefficients of 
cos2a  and of sin 2a in equation ( I S )  must vanish 
simultaneously. 
Thus 

I(k,"+k," cos 28)=--d cos (++a,,) 

!kZz s in  28=d sin (++a,,) 

(19) 

(20) 

Equations (21) are found to havr a simple geometric 
representation. If kk2/r and kZ2/r are two sidrs of a 
triangle and (180O-28) is the angle between them, t.hen 
d is the Icngth of the third side and (++a,,) is the 
supplement of the angle opposite k:/r. This triangle 
may br usrd to locate the aerodynamic center directly 
on the construction, as shown in figure 7. As in the 
precediug illustrations, this airfoil has been drawn to 
half scale with respect to thr circle and the distance d 
has therefore been bisrctrd. The moment about the 
aerodynamic center 

FIGURE 'I.-Construetion to find the acrodynamie center. 

Mo=2?rpV:rd sin (+-a,,) (22)  

is obtained directly from equation (IS). 
for the half-scale airfoil is one-quarter of this value. 

The moment 
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Theoretical Correction for the Lift 
of Ellip tic 

ROBERT T. JONESt 
National Advisory Committee for Aeronautics 

N THE WING section theory the magnitude of the I circulation, and hence of the lift, is determined by 
the velocity that would be induced near the trailing 
edge of the section in a non-lifting potential flow. In 
three-dimensional flow the problem is complicated by 
the presence of the wake and no simple basic solution 
has been found. Treatment of the problem of a wing of 
finite span has therefore been on the basis of the two- 
dimensional theory, corrected for the effect of the 
wake.* 

The correction commonly applied is that introduced 
by Prandtl and known as the lifting-line theory. The 
downflow induced by the wake is considered, in this 
theory, to reduce the relative normal velocity and hence 
the edge velocity of the wing. It is assumed, however, 
that once the true angle of attack is determined for any 
section of the wing its effect in producing circulation and 
lit is the same as in two-dimensional flow. This as- 
sumption is expressed by the equation 

c, = 2r(a - aj) (1) 

where 27r is the slope of the lift curve for the thin wing 
of infinite aspect ratio, LY is the angle of attack of the 
section, and ai is the induced angle of downflow. 

Eq. (1) takes into account the effect of the wake in 
diminishing the relative normal velocity of the wing. A 
further correction is indicated by the fact, established in 
hydrodynamic theory, that the surface velocities in- 
duced by a given relative motion of a body in-three- 
dimensional flow are generally smaller than those in 
two. For example, the maximum, or “edge” velocity 
around an infinite cylinder is 1, while that around a 
sphere of the same cross-section is ’/2. Similarly, if the 
velocity around the edge of an endless thin plate is 
taken as unity, the corresponding velocity around the 
edge of a circular disc is found to be 2/7r, or 0.637. 

In the case of an elliptic disc the velocity at  every 
point is reduced by the factor 1/E, where E is the ratio 
of the semiperimeter of the ellipse to the span. (See 
appendix.) Further investigation shows that the 
chordwise cross-sections of the non-lifting potential 
flow are similar all along the span of the elliptic plate 
and are the same as those obtained from the wing-sec- 
tion theory except for this constant reduction factor. 

Received July 31, 1941. 
t Assistant Aeronautical Engineer. 
* More recently the problem has been treated on the basis of 

the acceleration potential, which vanishes in the wake.’ The 
method is still one of considerable a c u l t y ,  however. 

If the velocity distributions of the circulatory flow 
are also assumed to be similar to those given by the 
wing-section theory, the circulation required to satisfy 
the Kutta condition at  each section should be reduced 
by the same factor. The corrected formula for the 
lift is then 

c, = (27r/E)(a - cyi) (21 

This correction may be given a physical interpreta- 
tion by considering that a finite wing offers a longer 
edge around which the air may escape (see Fig. l), 

FIG. 1. 
perimeter ratio on the lift: 

Correction factor E for the &e& of the 
CL = (Zr/E)(a - e<)- 

and that the air velocities are therefore less in the pro- 
portion that the length of the edge is greater. The rule 
is not exact for plan forms other than the elliptical. 

Since the velocity of the non-lifting potential flow 
is constant all around the edge of the elliptic plate, the 
circulation required will be proportional to the chord at 
each section. The circulation is thus elliptically dis- 
tributed spanwise. Such a distribution, with the chord- 
wise distribution assumed earlier, leads, as in the lifting- 
line theory, to the relation 

L Y ~  = CJTA (3) 

where A is the aspect ratio. 
Substitution of this value into Eq. (2) gives 

C, = BnorA/[EA + 2 )  (4) 

Since the chordwise distribution of the circulation in 
three-dimensional flow is assumed similar to that in 
two, and since the similarity is only proved for the non- 
circulatory flow, Eq. (4) must be considered a correc- 
tion of the wing-section theory rather than a solution 
of the three-dimensional problem. The assumption of 
similarity, although its validity is subject to somewhat 
the same limitations in general, appears to be a more 
justifiable one than the assumption of equality made 
in the lifting-line theory. 

The problem of three-dimensional flow around a lift- 
ing elliptical plate has been treated by Krienes2 using 
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FIG. 2. Theoretical variations of lift-curve slope with 
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aspect ratio. 

Prandtl's concept of the acceleration potential. The 
calculations involve the superposition of a series of 
solutions of Az4 = 0 in ellipsoidal coordinates (Lam6 
functions), the coefficients of the series being obtained 
from simultaneous equations. Although the overall 
lift depends on only one coefficient, calculations of the 
span loading and the drag would require all the terms 
of the infinite series and was therefore not considered 
practicable. 

The lift coefficients obtained by Krienes' method are 
shown in Fig. 2. Results obtained by correcting the 
wing-section theory in accordance with Eq. (4) are 
compared with Krienes', and the agreement is seen to be 
good for ordinary aspect ratios. 

A m e  derived from Blenk's calculation of the vortex 
distribution in a rectangular plate3 also agrees closely 

It is found that the additional correction to the wing- 
section theory accounts for an appreciable fraction of 
the loss in lift that is usually attributed to viscosity. It 
has been difficult to reconcile the magnitude of the in- 
efficiency with the observed dimensions of the wake, 
which in the case of smooth wings, is extremely narrow 
a t  the trailing edge. The foregoing correction accounts 
for as much as half of this discrepancy in cases of wings 
with sharp trailing edges. (See Fig. 3.) 

According to Munk's theorem, the induced drag is 
not affected by a displacement of the lifting elements 
in the direction of the chord; hence the relation be- 
tween the l i f t  and the induced drag may be derived on 
the basis of the lifting-line theory. Also, since the pitch- 
ing moment of the elliptic wing involves the same cor- 
rection as the lift, no change of aerodynamic center 
location with aspect ratio is indicated. 

The three-dimensional potential flow around the 
elliptic disc may be used also as the basis for calculating 
the lift of an elliptic wing with varying angle of attack. 
On account of the linearity of the equations, the gen- 
eral problem may be reduced to a determination of the 
growth of lift following a sudden start of the motion with 
the fight velocity V and the normal velocity w = Va. * 

with Eq. (4). 

* The infinite force implied by the sudden start leads, in prac- 
tice, to a fiaite value during the continuous motions to which the 
formulas are applied. 
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FIG. 3. Experimental and theoretical lift-curve slopes. 
Aspect ratiq. 6. 

Since the steady or asymptotic value of the lift is 
already known, the most important point is the deter- 
mination of the l i f t  near the start of the motion. 

As a consequence of the Kutta condition, the layer of 
air leaving the wing at the trailing edge must satisfy 
the same boundary condition as the adjacent wing sur- 
face for a short distance downstream. Thus the layer 
of air in contact with the wing retains the motion im- 
parted by the wing and for a short distance after the 
start this layer (the vortex wake) behaves as an im- 
permeable extension of the wing surface.' The flow a t  
the first instant after, the start is thus what might be 
caused by the wing in process of growing wider a t  the 
rate V while moving with the normal velocity w. The 
starting l i f t  L,,o may then be thought of as the reac- 
tion to uniform motion of the wing acting as a body with 
increasing mass: 

L,,, = w (dm'ldt) = w (dm'/dc)V (5) 

where m' is the mass representing the aerodynamic 
inertia of the flow and G is the apparent length of the 
chord. In two-dimensional flow 

m' = R (c2/4)p (6) 

c,,=, = *a (7) 
so that 

In the case of the elliptic wing the starting process 
is pictured as a change into a similar but slightly wider 
ellipse. For normal aspect ratios this change f W s  
the required conditions everywhere except near the 
extreme tips. The aerodynamic inertia of the elliptic 
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wing is the same as if the sections were in two-dimen- 
sional flow except for the factor E .  Hence: 

CLtZO = 4 E  

According to some approximate calculations (based 
on the lifting-line theory) made by the author,* the 
lift of the elliptic wing approaches its final value more 
rapidly than would be suggested by the two-dimensional 
theory. 

In the case of A = 3, or in the equivalent case of 
A = 6 with the wing vibrating symmetrically in torsion, 
the development of lift appears to be nearly instan- 
taneous. 

APPENDIX 

The problem of the fluid motion produced by trans- 
lation of a solid ellipsoid was first solved by Green in 
an investigation of the vibration of pendulums. For- 
mulas given for this problem in textbooks on hydro- 
dynamics become indeterminate when applied to the 
case of an elliptic disc. The following short discussion 
is therefore presented to show the application to the 
present problem. 

As explained in ref. 5, the surface potential of an 
ellipsoid can be given by a very simple formula. For 
motion along a principal axis, the potential at any 
point on the surface is proportional to the coordinate 
of the point in the direction of motion. Thus, if the 
ellipsoid with semiaxes a > b > c along x ,  y ,  and z, 
respectively, is moving with unit velocity in the direc- 
tion of z, the surface potential is simply 

ffJ = cz (3) 
The equipotential lines are the similar ellipses formed 
by the intersection of the ellipsoidal surface with a series 
of equidistant parallel planes perpendicular to z. The 
constant C depends on the axis ratio and its evaluation 
involves a special class of transcendental function 
known as “Green’s Integrals.” The solution for the 
surface potential appears in the form: 

4 = I % / @  - Y J l Z  (4) 
-where 

is Green’s integral. 
The reduction of these integrals to the standard 

elliptic functions is given in ref. 5. Following equation 
(6.1) of ref. 5 and substituting X = 0, in order to re- 
strict the solution to the surface of the ellipsoid, will 
give 

where E is the complete elliptic integral with the 
modulus k = .\/(a2 - b2)/a2. The integral E is equal 

to the perimeter of a quadrant of the ellipse ab divided 
by the semiaxis a.6 

T@- 2 - (@)El 

Since Eq. (4) becomes indeterminate (z + 0 and 
yo -+ 2), it is necessary to express the solution in 
terms of x and y, which are related to z through the 
equation of the ellipsoidal surface: 

A S C - 0  

or 

Substitution for yo and z in Eq. (4) gives 

(5) 

or 

(x2/a2) + b2/b2)  + [ f f ~ ~ / ( b / E N  = 1 (8) 

Hence the distribution of the surface potential over 
the disc may be represented by the ordinates of a cir- 
cumscribed ellipsoid having the vertical axis 2b/E. 
For infinite axis ratio, E = 1 and the chordwise aoss- 
seckons of the potential distribution are circles of 
radius b. 

In order to illustrate the analogy to two-dimensional 
flow, it is convenient to introduce the angle 0 defined, 
at a particular value of x, by 

cos 0 = y/y, (9) 

where YC = b dl - (xz/a2) is the ordinate of the edge 
of the disc. Then, from Eq. (€9, 

4 = (y,/E) sin 0 (10) 

which is the potential function of the two-dimensional 
case except for the factor 1/E. It follows then that 
the edge velocity is also reduced from that in two- 
dimensional flow by the factor 1/E. 
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 837 

NOTES ON THF, STABILITY AND CONTROL 

OF TAILLESS AIRPLANES 

By Robert T. Jones 

SUMMARY 

Problems involved i n  the  s t a b i l i t y  and control of 
tai l less airplanes are discussed. 
cation of the aerodynamic center and i ts  e f f ec t  on the 
longitudinal s t a b i l i t y ,  longitudinal trim with high-lif t  
devices, the e f f ec t s  of various changes i n  the shape of {the 
wing on lateral s t a b i l i t y ,  and the e f f ec t s  of nacelles are 
covered. 

Such fac tors  as the lo- 

It appears t ha t  suf f ic ien t  s t a b i l i t y  and controllabil-  
i t y  can be secured without sweepback. With sweepback, a 
f l ap  over the center section of the  wing may be used t o  
serve the  dual purpose of elevator control and high-lif t  
device. 
t e r i s t i c s ,  however, and may require auxi l iary devices t o  
prevent s t a l l i n g  of the t i p s .  

Sweepback introduces undesirable s t a l l i n g  charac- 

INTRODUCTION 

The advantage i n  arrangement and performance tha t  the 
tai l less airplane has over the conventional type has al- 
ready been the  subject of considerable discussion. The 
present paper is chief ly  concerned with aerodynamic fac- 
t o r s  as they a f f ec t  the s t a b i l i t y  and control of tailless 
airplanes.  

With the  aerodynamic information avai lable  a t  pres- 
en t ,  the  designer should be able  t o  predict  with confi- 
dence the  behavior of an airplane tha t  resembles i n  design 
a reasonably conventional wing. There is  still, however, 
a lack of information on the  loading of wings with large 
angles of sweepback and on the loading of wings of very 
low aspect ra t io .  
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Lift CL = s -uo2 P 
w 2  

L cz = Sw 2 P Uo2 b 

M 
% $  uo2 c 

c m =  

N cn = 
Sw P Uo2 b 

Y 

w 2  
cy = 

s uo2 

SYMBOLS 

aspect ratio 

angle of attack 

wing span 

angle of sideslip 

wing chord 

lift coefficient 

rolling-moment coefficient 

pitching-moment coefficient 

yawing-moment coefficient 

side-force coefficient 

D = -  derivative with respect to distance 
ds along flight path 
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6 elevator o r  rudder deflection 

5, $, kz r a d i i  of gyration about axis 
indicated by subscript  

length of fuselage 

m a s s  of a i rplane 

angular veloci ty  i n  ro l l ing  

angular velocity i n  pitching 

angular veloci ty  i n  yawing 

dis tance along f l i g h t  path U O t  s = -  
C 

a i rplane axes 
Z 

LONGITUDINAL STABILITY AND CONTROL 

An ordinary wing with a s l i g h t  re f lex  camber and dihe- 
d ra l  has a l l  the  aerodynamic charac te r i s t ics  necessary 
f o r  both lateral and longitudinal s t a b i l i t y .  
conventional airplane,  longitudinal s t a b i l i t y  i n  gliding 
f l i g h t  is prac t ica l ly  assured i f  the  center o f ,g rav i ty  is  
located s l igh t ly  ahead of the  aerodynamic center of the 
wing (fig.  1). For wings of normal aspect r a t i o  and di- 
mensions the aerodynamic center is located a t  about 24 
percent of the mean chord. 
aerodynamic center moves ahead and upward, and the a t ta in-  
ment of s t a b i l i t y  and balance becomes more d i f f i c u l t .  The 
location is  a l so  appreciably changed by the addition of a 
streamline nacel le  or  by sweepback. Changes i n  wing sec- 
t i on  generally have only a s l igh t  effect .  An e x t r e m e  re- 
duction i n  thickness toward the t r a i l i n g  edge may cause a 
backward displacement of 2 or  3 percent. Conversely, i t  
is  possible t o  produce a forward s h i f t  of the s a m e  amount 
by abnormal thickening of the rear portion. 

A s  i n  the 

A t  very low aspect r a t i o s  the 

The addition of a streamline fuselage or  nacelle 
causes a forward s h i f t  of the  aerodynamic center,  thus ne- 
cess i ta t ing  a more forward location of the  center of grav- 
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i t y .  Figure 2 (plotted from data  given i n  reference 1) 
shows the movement of the aerodynamic center actual ly  
caused by a r e l a t ive ly  la rge  fuselage i n  combination with 
the wing. It w i l l  be noted tha t ,  when the  wing intersec- 
t i on  was  near the nose of the fuselage, the  interference 
w a s  suf f ic ien t  t o  nu l l i fy  the unstable moment; tha t  is, 
the aerodynamic center w a s  not shif ted.  A comprehensive 
analysis  of the e f f ec t s  of the fuselage and nacelles on 
both the longitudinal and the lateral s t a b i l i t y  parameters 
w i l l  be found i n  a recent article by Multhopp (reference 2). 

The s t a b i l i t y  charac te r i s t ics  of a tailless airplane 
d i f f e r  from those of a conventional a i rplane chief ly  i n  
the reduced kinematic damping of the  pitching motion. 
Figure 3 shows the estimated damping coeff ic ients  

fo r  several  a i r f o i l  arrangements. It is t o  be noted tha t  
the  addition of t he  t a i l  surface increases the  kinematic 
damping nearly 10 times. 
ca te  tha t  the e f f ec t  of the  fuselage on the damping is 
not important. (The value of A is of the order of 

-0.2 f o r  a fuselage of the proportions i l l u s t r a t e d  i n  
f ig .  2). 

Both theory and experiment indi- 

I f  the tai l less airplane is s t a t i c a l l y  s t ab le  ( tha t  
is, has i t s  center of gravity ahead of the aerodynamic 
center) ,  the f r e e  ro ta t ions  i n  p i tch  w i l l  be coupled with 
motions normal t o  the chord and the  damping of these mo- 
t ions  w i l l  be e f fec t ive  i n  reducing the pitching. 

Figure 4 shows the calculated periods and rates of 
damping of the short-period longitudinal osc i l la t ions ,  f o r  
varying degrees of static s t a b i l i t y .  I n  addition t o  the 

reduced damping coeff ic ient  [&De = - 2 , the  all-wing 

airplane w a s  assumed t o  have a reduced moment of i n e r t i a  

i n  p i tch  [Icy = 3 c). The curves shown apply t o  a wing 

chord of 10 f e e t  a t  a loading of 20 pounds pe r  square foot 
and are typica l  of the r e su l t s  of an extensive series of 
calculations.  The dotted l i nes  indicate  locations of the 
center of gravi ty  f o r  aperiodic motion i n  t h i s  mode. 

1 
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It is  remarkable t h a t ,  although t h e  r o t a r y  damping 
coe f f i c i en t  %e of t h e  tailless a i rp l ane  is only one- 

t en th  t h a t  of t h e  conventional a i rp l ane ,  t h e  r e s u l t a n t  
damping of o s c i l l a t i o n s  i n  f l i g h t  is  near ly  as grea t .  The 
add i t iona l  damping is  obtained through coupling with t h e  
vertical motion. 
alter the  sequence of t h e  motions i n  such a way as t o  make 
t h i s  coupling more e f f e c t i v e  i n  t h e  case of t h e  tailless 
a i rp lane .  

The l ack  of d i r e c t  damping appears t o  

I n  slow long i tud ina l  motions involving changes of 
f l i g h t  speed, t h e  s t a b i l i t y  of t h e  conventional a i rp l ane  
i s  usua l ly  impaired by t h e  ac t ion  of t h e  s l ips t ream on t h e  
t a i l  surface.  I n  t h e  usua l  arrangement, t h e  l i f t  of t h e  
wings a c t s  behind t h e  center  of g rav i ty  and a downward 
trimming load is  ca r r i ed  by t h e  t a i l  surface,  which is  i n  
t h e  sl ipstream. Since t h e  v e l o c i t y  i n  t h e  s l ips t ream 
tends t o  remain more near ly  constant than t h e  f l i g h t  ve- 
l o c i t y ,  t h e  fo rces  on t h e  wing and on t h e  t a i l  sur faces  
w i l l  not vary with f l i g h t  speed i n  t h e  s a m e  proportion. 
Thus i f  t h e  a i r p l a n e  noses up and lo ses  f l y i n g  speed, t h e  
wings, having most of t h e i r  area outs ide  t h e  s l ips t ream,  
w i l l  l o s e  l i f t  at a rate g r e a t e r  than t h e  rate of reduc- 
t i o n  of t h e  downward trimming load and t h e  a i rp l ane  may 
continue t o  nose up i n  an uns tab le  manner. The tail less 
arrangement a f fo rds  a d e f i n i t e  advantage i n  t h a t  such ad- 
verse  e f f e c t s  can be e a s i l y  eliminated. 

I n  t h e  g l id ing  condition, t h e  damping of t h e  phugoid 
motion of a tailless a i rp l ane  is  less than t h a t  of a con- 
vent iona l  a i rp l ane  and t h e r e  is, i n  genera l ,  sbmewhat 
g r e a t e r  l ike l ihood of phugoid i n s t a b i l i t y  with t h e  ta i l -  
less a i rp lane .  (See f i g .  5.) With power on, t h e  conven- 
t i o n a l  a i r p l a n e  is  more uns tab le  because of t h e  des t ab i l -  
i z i n g  inf luence  of t h e  sl ipstream. Inasmuch as t h e  period 
of t h i s  o s c i l l a t i o n  is  very long and t h e  damping s l i g h t  i n  
any case, t h e  d i f f e rences  shown are considered unimportant. 

A decided change i n  t h e  charac te r  of t h e  longitudi- 
n a l  motion w i l l  occur i f  t h e  center  of g r a v i t y  is  allowed 
t o  s h i f t  t o  a pos i t i on  behind t h e  aerodynamic center .  I n  
t h i s  condi t ion  t h e  rate of divergence of t h e  tailless 
a i r p l a n e  is much more rap id  than t h a t  of t h e  conventional 
type and may become uncont ro l lab le  a t  r e l a t i v e l y  s m a l l  
negative values of Xe Figure 6 shows t y p i c a l  v a r i a t i o n s  
of t h e  damping f a c t o r s  a t  s m a l l  va lues  of 
d i t i o n  of n e u t r a l  s ta t ic  s t a b i l i t y  (rt: = 0) i s  approached, 

T. A s  t h e  con- 
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the  complex roots are replaced by real roots ,  one of which 
becomes posi t ive at  I = 0, indicating a rapid divergence 
of the tailless airplane i n  the region of static instabi l -  
i t y .  

It should be possible to  secure sa t i s fac tory  longitudi- 
na l  control with a s t r a igh t  wing simply by u t i l i z i n g  the 
pitching act ion of narrow flaps.  Because tr im at  higher 
angles of a t tack  would be at ta ined by ra i s ing  the f l a p  and 
thus reducing the camber, the arrangement would e n t a i l  some 
reduction i n  maximum l i f t ,  the amount depending on the  de- 
gree of static s t a b i l i t y .  Figure 7 shows the  elevator an- 
g l e s  and corresponding reductions i n  C k  f o r  several  

f l aps  with a s t r a igh t  wing. 
reductions i n  CL (below 

obtained i n  experiments with f laps .  It is t o  be noted! 
tha t  the narrower f l a p  is the more e f f i c i en t  (though less 
powerful) elevator. The computations w e r e  made f o r  a rec- 
tangular wing of aspect r a t i o  6. 
c ien ts  could be at ta ined only with the aid of some device 
tha t  did not displace the center of pressure, 

The curves w e r e  based on the  
) and the  pitching moments cLmax 

Very high l i f t  coeffi- 

Figure 8 shows elevator def lect ions necessary t o  pro- 
duce a specified curvature of the  f l i g h t  path and i l l u s -  
trates the increased maneuverability of the tailless air- 
plane. The elevators are designed t o  give equal pitching 
moments i n  order t ha t  both the conventional and the tail- 
less airplanes would require the same elevator deflections 
t o  produce equal changes i n  trim. The increased path cur- 
vature or normal acceleration possible with the  tailless 
airplane is a consequence of the  smaller damping i n  pitch- 
ing. 

I f  suf f ic ien t  sweepback is employed, i t  becomes pos- 
s i b l e  t o  use cambered sections o r  sections with f l aps  
designed t o  increase the  l i f t  over the center sections of 
the wing. 
the f l a p  o r  by the  camber is placed su f f i c i en t ly  f a r  ahead 
t o  of fse t  the pitching moment. Furthermore, i f  the flapped 
portion of the wing is placed somewhat fa r ther  ahead, so as 
t o  bring the centroid of i t s  load forward of the  center of 
gravi ty ,  the f l ap  may be used d i r ec t ly  as an elevator. 
(See f i g .  9.) Downward def lect ion of the  f l a p  w i l l  then 
increase the  l i f t  and the angle of a t tack  simultaneously, 
as i l l u s t r a t e d  i n  f igure 10. 

In  such an arrangement the l i f t  developed by 

I f  the angle of sweepback is  s m a l l ,  i t  may be assumed 
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t ha t  the  spanwise loading is not a l tered but i s  merely ro- 
ta ted backward through the angle of sweep. 
moment due t o  a small amount of sweep thus depends on the  
spanwise locat ion of the load centroid of the s t r a igh t  
wing. Figure 11 shows the  calculated locations of t h i s  
centroid corresponding t o  f l aps  of various lengths extend- 
ing from the middle of the wing. The centroid f o r  a f l ap  
of 100-percent span is the same as tha t  f o r  a change i n  
angle of a t t ack  of t he  wing as a whole and thus locates  
the  spanwise posit ion of the aerodynamic center. It is  
preferable t o  assume tha t  the  l i f t  loads ac t  along the 
quarter-chord l i n e  and t o  take account of the backward 
displacement of the f l a p  l i f t  load by calculating the in- 
tegrated pitching moment of the flapped sections,  because 
t h i s  moment i s  more independent of aspect-ratio e f f ec t s  
than is  the  l i f t .  For rough estimates, the l i f t  added by 
the f l a p  may be assumed t o  act a t  about 45 percent of the 
chord of those sect ions inboard of the f l a p  t i p  and along 
the quarter-chord l i n e  outboard of the  f l a p  t i p .  

The pitching 

is a de f in i t e  ad- ‘%e A s m a l l  damping coeff ic ient  

vantage i n  t h a t  the pitching disturbances produced by 
gusts  are smaller. According t o  calculations made by 
KIissner (reference 3 ) ,  a s t r a igh t  wing moving in to  an in- 
creasing gust w i l l  experience no pitching moment what- 
ever about the  quarter-chord l ine .  Although it might be 
expected tha t  the nose of the wing, being i n  a region of 
greater  veloci ty  than the rest of the wing, would be de- 
f lec ted  upward, there  w i l l  be a t  the same t i m e  an acceler- 
a t ion  of the  average normal veloci ty  over the  e n t i r e  chord, 
which w i l l  lead t o  an aerodynamic i n e r t i a  force acting a t  
the  50-percent-chord point and which, calculatZons show, 
is j u s t  suf f ic ien t  t o  balance the moments about the aero- 
dynamic center. The argument may be extended t o  include 
any a rb i t r a ry  var ia t ion  of v e r t i c a l  veloci ty  along the 
path of the  airplane. 

Because the wing w i l l  ac tual ly  have i ts  center of 
gravi ty  ahead of the aerodynamic center f o r  s t a b i l i t y ,  it 
follows tha t  the act ion of a r i s ing  gust w i l l  be t o  reduce 
the  angle of a t tack and thus automatically t o  diminish the 
force of the gust. 
calculated by the method of reference 4 ,  t o  show the ef- 
f e c t  of a gust on tailless and conventional airplanes. 
The gust w a s  assumed t o  have uniformly increasing velocity.  
In  the  case of the  conventional airplane,  the  i n i t i a l  
pitching motion is i n  a d i rec t ion  tha t  increases the angle 

I n  f igure  12 are plotted some curves, 
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of a t t a c k  because of t h e  d i f fe rence  i n  t h e  gus t  veloci- 
ties a t  the wing and at the ta i l .  

LATERAL STABILITY AND CONTROL 

With ca re fu l  design, t h e  tailless a i r p l a n e  should be 
a b l e  t o  approach t h e  conventional a i rp l ane  i n  i t s  lateral 
s t a b i l i t y  and con t ro l  c h a r a c t e r i s t i c s .  The main d i f f i -  
c u l t y  is  undoubtedly i n  t h e  provision of s u f f i c i e n t  weath- 
ercock s t a b i l i t y  and damping i n  yawing. The required de- 
gree  of such s t a b i l i t y  is e s s e n t i a l l y  t h e  same as t h a t  f o r  
a conventional a i rp l ane  and i n  e i t h e r  case is  g r e a t l y  re- 
duced i f  t h e  adverse yaw of t h e  a i l e r o n s  i s  eliminated. 
For t h i s  reason it  seems des i r ab le  t o  use  a lateral con- 
t r o l  having a zero o r  a s l i g h t l y  favorable yawing action. 
Favorable ac t ion  is  probably bes t  achieved by a linkage 
between t h e  a i l e r o n  and t h e  rudder con t ro l s  o r  by a l ink- 
age between t h e  a i l e r o n s  and a servo t a b  on t h e  rudder. 
With t h e  a i l e r o n  yaw compensated, t he  f i n  area required 
w i l l  be about i n  proportion t o  t h e  s i z e  of t h e  nace l l e s  
because the  wing alone has marginal weathercock s t a b i l i t y  
and damping. The uns tab le  moment of t h e  nace l l e s  may be 
estimated by Munk's formulas (reference 5). 

Di f fe ren t  s ta t ic  yawing-moment c h a r a c t e r i s t i c s  may be 
obtained by a l t e r i n g  t h e  p lan  and e leva t ion  shapes of t h e  
wing. Changes of p lan  form alone do not ,  however, have a 
pronounced e f f e c t  on t h e  l a t e r a l - s t a b i l i t y  c h a r a c t e r i s t i c s  
except i n so fa r  as they modify t h e  s t a l l i n g  behavior of t h e  
wing. 
sweepback combined with negative d ihedra l  o r  with end 
p l a t e s  at  t h e  t i p s .  The negative-dihedral arrangement re- 
s u l t s  i n  a favorable  combination of r o l l i n g  and yawing 
moments i f  t h e  con t ro l  i s  made t o  act on t h e  turned-down 
t i p s .  
i s  adverse, however, and of such magnitude as t o  counter- 
a c t  t h e  favorable  e f f e c t ,  unless extreme negative d ihedra l  
i s  employed. I f  extreme negative d ihedra l  is used, t h e  
c o n t r o l l e r s  on t h e  t i p s  act primarily as rudders and sep- 
arate a i l e r o n s  must be provided on t h e  main wing surface.  
The t i p s  then correspond t o  end p l a t e s  on t h e  under s i d e  
of t h e  wing. 

Weathercock s t a b i l i t y  may be secured by t h e  use of 

The yawing moment due t o  t h e  r o l l i n g  motion produced 

End p l a t e s  on t h e  under s i d e  of t h e  wing w i l l  expe- 
r i ence  an outward fo rce  as a continuation of t h e  l i f t  of 
t h e  wing. It might be thought t h a t  t h e  outward l i f t  of 
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such end p l a t e s  would be unfavorable t o  weathercock s t a b i l -  
i t y ,  because a s i d e s l i p  would increase  t h e  l i f t ,  and hence 
t h e  drag, on t h e  down-wind p l a t e .  I n  t h e  t r u e  r e so lu t ion  
of forces ,  however, it is  found t h a t  t h e  r e s u l t a n t  tends 
t o  turn ,  maintaining a d i r e c t i o n  nearly enough at r i g h t  
angles t o  t h e  wind t o  outweigh t h e  drag increase.  There 
is, therefore ,  ac tua l ly  a favorable weathercock ac t ion ,  as 
shown i n  f i g u r e  13. Similar considerations apply i n  de- 
termining t h e  yawing moment of a wing with d ihedra l .  I n  
t h i s  case the customary s e t t i n g ,  which i n c l i n e s  t h e  l i f t  
inward, r e s u l t s  i n  adverse weathercock ac t ion .  For a more 
complete ana lys i s  of t he  l a t e r a l - s t a b i l i t y  charac te r i s -  
t ics of wings, t h e  reader is refer red  t o  re ference  6 .  

The requirement of d ihed ra l  f o r  s t a b i l i t y  is  essen- 
t i a l l y  t h e  same f o r  a tailless a i rp l ane  as f o r  a conven- 
t i o n a l  a i rp lane .  I f  s p i r a l  s t a b i l i t y  is not considered 
e s s e n t i a l  a t  a l l  speeds (as is  usua l ly  t h e  case) ,  i t  s g e m s  
advisable t o  l i m i t  t h e  d ihed ra l  t o  1" o r  2" i n  order t o  
reduce lateral o s c i l l a t i o n s  i n  rough air .  

A s  i n  t h e  case of p i tch ing  motion, e l imina t ion  of t he  
t a i l  g r e a t l y  reduces t h e  r o t a t i o n a l  damping. Figure 14 
shows t h e  estimated damping c o e f f i c i e n t s  of yawing motion 

f o r  some t y p i c a l  arrangements. The damping of acn 
'nr .e = -  

OUO 
a well-streamlined fuse lage  of round o r  ova l  c ross  sec t ion  
w i l l  be very small. 

'nr gave a value equivalent t o  

having a length  equal t o  two-thirds t h e  wing span. I n  
t h i s  case, however, t h e  fuse lage  terminated i n  a v e r t i c a l  
wedge, a f e a t u r e  which may w e l l  have accounted f o r  t h e  
g r e a t e r  p a r t  of i t s  damping. 
due t o  t h e  d i s t r i b u t i o n  of drag along t h e  span and becomes 
g r e a t e r  at higher l i f t  coe f f i c i en t s .  
l i m i t s  of d ihed ra l  and weathercock e f f e c t s ,  t h e  damping of 
t h e  f r e e  lateral o s c i l l a t i o n s  is invar iab ly  g rea t e r  than 
is indica ted  by t h e  damping of pure yawing motion alone 

and is introduced through t h e  coupling of t hese  motions 
( s ides l ipp ing  and r o l l i n g )  with t h e  yawing motion. Be- 
cause both Cy and Cnr as w e l l  as t h e  coupling between 

B 
yawing and r o l l i n g  motions tend t o  diminish at lower an- 
g l e s  of a t t ack ,  t h e  lateral o s c i l l a t i o n  is more l i k e l y  t o  
be troublesome at  high speed. Figure 15 shows ca lcu la ted  

One set of o s c i l l a t i o n  experiments 
= -0.005 f o r  a fuselage 

The damping of the  wing is  

Within t h e  usua l  

. The add i t iona l  damping is provided by CY and Czp 
'nr f3 
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rates of damping of t h e  f r e e  lateral o s c i l l a t i o n s  f o r  typ- 
i c a l  va lues  of t h e  s t a b i l i t y  der iva t ives .  

C z B  
used corresponds t o  a d ihedra l  angle of approximately 

2". An ind ica t ion  of t h e  v a r i a t i o n  of lateral s t a b i l i t y  
with C and C z  a t  low values of C may be ob- 

ta ined  from t h e  c h a r t s  given i n  reference 7. 

The va lue  of 

n#3 B nr  

I f  sweepback is  employed, t h e  f a c t  should be borne i n  
mind t h a t  a pronounced r o l l i n g  o r  p i tch ing  i n s t a b i l i t y  may 
develop at high angles of a t t a c k  because of premature t i p  
s t a l l i n g  assoc ia ted  with a lateral flow of t h e  boundary 
l aye r .  The e f f e c t  of sweep is t o  introduce a component of 
t h e  r e l a t i v e l y  g rea t  chordwise pressure grad ien t  i n t o  a 
d i r e c t i o n  a t  r i g h t  angles t o  t h e  main stream ve loc i ty  over 
t h e  wing. 
t o  prevent flow of t h e  boundary l aye r  l a t e r a l l y  i n t o  re- 
gions of lower pressure  over t h e  forward por t ions  of ad- 
j acen t  wing sec t ions .  The r e s u l t  is t h a t  t h e  boundary 
l aye r  flows toward t h e  t i p s  of a swept-back wing and prema- 
t u r e  separa t ion  occurs. Figure 16, p lo t t ed  from d a t a  given 
i n  re ference  8, shows t h i s  e f f e c t  on sec t ions  near t h e  t i p s  
of two rectangular wings with sweep. The ex is tence  of t h i s  
e f f e c t  may a l s o  be  in fe r r ed  from t h e  tests of re ference  9, 
i n  which t h e  swept-back wings tended t o  nose up when 
s t a l l e d .  (See f i g .  17.) With 30" sweepback t h i s  tendency 
pe r s i s t ed  even when t h e  wing w a s  given 8.5" washout. 
i s  know about t h e  v a r i a t i o n  with angle of sweep, although 
t h e  tests of re ference  9 showed an  appreciable e f f e c t  at 
an angle of 15". 
v i s a b l e  t o  incorpora te  some aux i l i a ry  boundary-layer con- 
t r o l  device,  such as leading-edge s l o t s ,  i n  t h e  design of 
a tai l less a i r p l a n e  having considerable sweepback. 

The viscous drag of t h e  stream then cannot act 

L i t t l e  

From these  ind ica t ions ,  it would s e e m  ad- 

CONCLUSIONS 

1. With c a r e f u l  design it should be poss ib le  t o  se- 
cure s a t i s f a c t o r y  s t a b i l i t y  and con t ro l  i n  a tailless air- 
plane. The small r o t a t i o n a l  damping hardly a f f e c t s  t h e  
short-period longi tudina l  o s c i l l a t i o n s ,  although t h e  damp- 
ing of t h e  s t a b l e  lateral  o s c i l l a t i o n  i s  l i k e l y  t o  be re- 
duced somewhat, p a r t i c u l a r l y  at high speeds. 

2. Although t h e  damping i n  p i tch ing  has a s m a l l  ef-  
f e c t  on t h e  s t a b i l i t y  with normal center-of-gravity loca- 
t i ons ,  t h e  tailless a i r p l a n e  is i n  g rea t e r  danger of in- 
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s t a b i l i t y  due t o  an abnormal backward s h i f t  of the center 
of gravi ty  because t h i s  i n s t a b i l i t y  becomes more serious 
as the  damping is reduced. 

3 .  A s  t he  weathercock s t a b i l i t y  or  t he  damping i n  
yawing is  reduced by elimination of t he  t a i l  surfaces,  it 
becomes more important t o  overcome the  a i le ron  yaw and 
the  yaw due t o  ro l l ing .  

4. A considerable reduction of the disturbances pro- 
duced by vertical gusts  is possible i n  the  case of a ta i l -  
less a i rp lane  without sweepback. This e f f e c t ,  which is 
due t o  a favorable pitching motion, depends on the s t a t i c  
s t a b i l i t y  and the  moment of i n e r t i a  of t he  airplane.  

5. The use of sweepback makes it possible t o  employ 
a partial-span f l a p  as a high-l i f t  device. It also sim- 
p l i f i e s  the  problem of securing weathercock s t a b i l i t y  And 
damping i n  yawing. 
back show, however, t h a t  it is necessary t o  guard against  
a pronounced ro l l i ng  and pitching i n s t a b i l i t y  near the  
stall.  

Wind-tunnel tests of wings with sweep- 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee fo r  Aeronautics, 

Langley Field,  VA., October 2 ,  1941. 
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Aerodynamic center 

Figure 1.- Typical limiting 
positions of the 

center of gravity for static 
stability, Aspect ratib, 6. 

Figure 10.- Simultaneous changa in lift and anglc of attack 
produced by a flap on a wing with swmpback. 
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i- 
I 

0 .5 1.0 
Position along fuselage 

P i w e  2.- Forward displacement of tho aerodynamic eontor 
caused by tho fuaolago in combination with tho 

wing. Wing span, 1.5. Data from referones 1. 
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cqe = -1.2 

5 
UO 

Figure 3.- Representative damping coefficients. CmDe = qc b- 
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Figure 4.- Characteristics of the short-period longitudinal oscillation. 
m 
p = 5 0  
- 
s2c 
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-.01 0 . 01 .02 
Forward displacenent of centcr of gravity, Z/c 

Figure 6.- Variations of stability with small displncencnts of the 

stability equation, X ; 
center of gravity fron the aerodynariic center. Root of 

Kl - 
p = 150; CL = 2.0. 

szc 
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0 .02 e 04 .06 e 08 e 10 
Displacement of c.2. ahead of aerodynamic center, z/c 

Figure '7.- Elevator deflections and correspoxding raductions 

aspect ratio, 6. 
in C k  for trim at ct = 20'. Rcctangdar wing, 
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.. 

cg 

20 

10 

0 * 02 .04 .06 . oa 8 10 

Forward displacement of center of gravity, Z/c 

Figure 8.- Typical elevator deflections required to produce 

to give equal pitching moments.) 
specif iod acueleration in pull-up. (Elevators designed 
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0 
4 

0 . 

A, Load due to doflection 

B, Load duo to camber of I 
of flap. 

wing sections. 

angla of attack. 

I 

C, Load due to incraaso in 

Controids of loads, 

Figure 9.- Diagram illustrating thc use of swcepback to 
secure trim with a partial-span flap. 

273 



NACA Technical Note No. 837 

80 100 
Extent of flap from ccntor lino, percent sernispan 

Figure 11.- Spanwisa location of the centroid of thc loading 

(Loading A, figure 9.) 
due to defloction of partial-span flaps. 

274 



NACA Technical Rote Bo. 837 

1.2 

1.0 

.8 

CL 

.6 

.4 

.2 

0 2 4 6 8 10 
Distance flom into gust, chords 

Figure 12.- Gust-alleviating action due to pitching notion and to 
lag in the development of lift. 
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\ 
\ 

‘Pin: St = 0.035 S, 

/ 

Fin: St = 0.07 sw * 
(io 

Figure 14.- Representative damping coefficients. Snr = rb b -  

277 



278 

NACA Technical IJote Ho. 837 

-.01 - .02 -.03 -.04 -.OS 

cnr Coefficient of damping in yawing, 

nr* 
Figure 15.- Variation of damping of lateral oscillations with C 

m - 
= -0.026 ; CnB = 0.020 . p q&. 9-1,  - - kZ = - - ‘  1 

S2b 3 ’  b 8 ’  h 7”1f3 
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0 4 8 12 15 20 24 
Angle of a t tack ,  a, deg 

Figure 15.- Effect of swcop on tho l i f t  of a wing sect ion near the t i p  (80 
percent semispan s ta t ions) .  Data from ref  erence 8. 
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Figure 17.- Test results showing pitching instability of 

reference 9, 
swept-back, wing at C b x  . Data from 
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W I N D - T U N N E L  INVESTIGATION OF CONTROL-SURFACE CHARACTERISTICS 

V - THE USE OF A BEVELED T R A I L I N G  EDGE TO REDUCE 

THE H I N G E  MOMENT OF A CONTROL SURFACE 

By R o b e r t  T .  J o n e s  a n d  M i l t o n  B .  A m e s ,  J r .  

SUMMARY 

W i n d - t u n n e l  t e s t s  h a v e  b e e n  made t o  i n v e s t i g a t e  t h e  
p o s s i b i l i t y  o f  r e d u c i n g  t h e  h i n g e  moments o f  a c o n t r o l  
s u r f a c e  by  b e v e l i n g  t h e  t r a i l i n g  e d g e .  The t e s t s  w e r e  made 
w i t h  a 9 - p e r c e n t - t h i c k  a i r f o i l  h a v i n g  a 3 0 - p e r c e n t - c h o r d  
p l a i n  f l a p .  A f a i r e d  b e v e l e d  s h a p e ,  5 p e r c e n t  o f  t h e  a i r -  
f o i l  c h o r d  i n  w i d t h  and  h a v i n g  a t h i c k n e s s  of 2% p e r c e n t  
of t h e  a i r f o i l  c h o r d ,  w a s  f o u n d  t o  g i v e  a p p r o x i m a t e l y  50- 
p e r c e n t  r e d u c t i o n  i n  t h e  h i n g e  moment c a u s e d  by a givlen 
d e f l e c t i o n  of  t h e  f l a p  and  8 0 - p e r c e n t  r e d u c t i o n  i n  t h e  
h i n g e  moment d u e  t o  t h e  a n g l e  of  a t t a c k  of  t h i s  a i r f o i l  
f o r  a w i d e  r a n g e  o f  a n g l e s .  A b l u n t e r  b e v e l e d  p o r t i o n  of  
t h e  s a m e  t h i c k n e s s  g a v e  o v e r b a l a n c e  and  r e v e r s a l  of  t h e  
f l o a t i n g  t e n d e n c y  o v e r  a s m a l l  a n g u l a r  r a n g e .  E l l i p t i c a l  
t r a i l i n g - e d g e  s h a p e s  w e r e  a l s o  t r i e d  b u t  w e r e  f o u n d  t o  b e  
somewhat l e s s  e f f e c t i v e  t h a n  t h e  s h a p e s  e n d i n g  i n  a n  a c u t e  
a n g l e .  A s e m i c i r c u l a r  t r a i l i n g  e d g e  p r o d u c e d  o n l y  a s l i g h t  
c h a n g e  i n  t h e  h i n g e  moments b u t  c a u s e d  a d r a g  i n c r e m e n t  much 
g r e a t e r  t h a n  t h a t  o f  a n  e f f i c i e n t  b e v e l e d  s h a p e .  

I N T R O D U C T I O N  

The h i n g e  moments o b t a i n e d  i n  t e s t s  of  a i r f o i l s  w i t h  
p l a i n  f l a p s  h a v e  o f t e n  b e e n  o b s e r v e d  t o  f a l l  c o n s i d e r a b l y  
b e l o w  t h e  v a l u e s  p r e d i c t e d  by t h e  p o t e n t i a l - f l o w  t h e o r y .  I t  
h a s  a l s o  b e e n  n o t e d  t h a t  t h e  h i n g e  moments o b t a i n e d  i n  
d i f f e r e n t  t e s t s  show w i d e r  d i s c r e p a n c i e s  t h a n  do  o t h e r  a i r -  
f o i l  c h a r a c t e r i s t i c s .  

S e v e r a l  y e a r s  a g o  t h e  NACA had o c c a s i o n  t o  t e s t  a f l a p  
w i t h  a p a r t i c u l a r l y  t h i n ,  s h a r p  t r a i l i n g  e d g e .  I n  t h i s  ca se  
t h e  h i n g e  moments w e r e  h i g h e r  t h a n  u s u a l  a n d  a g r e e d  b e t t e r  
w i t h  t h e  t h e o r y .  T h u s ,  i t  a p p e a r e d  t h a t  t h e  d i s c r e p a n c i e s  
i n  t h e  h i n g e  moments o b t a i n e d  i n  t h e  u s u a l  t e s t s  m i g h t  h a v e  
b e e n  d u e  t o  m i n o r  d i f f e r e n c e s  i n  t h e  s h a p e s  o f  t h e  t r a i l i n g  
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e d g e .  T h i s  phenomenon l e d  t o  s p e c u l a t i o n  c o n c e r n i n g  t h e  
n a t u r e  o f  t h e  f l o w  n e a r  t h e  t r a i l i n g  e d g e  a n d  t h e  e f f e c t  
o f  s m a l l  d e p a r t u r e s  f r o m  t h e  K u t t a  c o n d i t i o n .  

I n  t h e  i d e a l  f l o w ,  t h e  K u t t a  c o n d i t i o n  r e q u i r e s  t h a t  
t h e  a i r  l e a v i n g  t h e  t r a i l i n g  e d g e  m a i n t a i n  t h e  d i r e c t i o n  o f  
t h e  mean camber  f o r  a s h o r t  d i s t a n c e  downs t r eam.  The  
v e l o c i t i e s  o n  t h e  u p p e r  a n d  l o w e r  s u r f a c e s  a p p r o a c h  t h e  
same v a l u e  w i t h  t h e  r e s u l t  t h a t  t h e  p r e s s u r e  d i f f e r e n c e  o r  
l i f t  v a n i s h e s  a t  t h e  t r a i l i n g  e d g e .  The c u r v e  marked  "a" 
i n  f i g u r e  1 shows t h e  l i f t  d i s t r i b u t i o n  o v e r  a n  a i r f o i l  
s e c t i o n  w i t h  t h e  f l o w  c o n f o r m i n g  p e r f e c t l y  t o  t h i s  c o n d i t i o n .  
The g u i d i n g  a c t i o n  of  a s l i g h t l y  b l u n t  o r  b e v e l e d  t r a i l i n g  
e d g e  w i l l  n o t  b e  p e r f e c t ,  however ,  a n d  i n  s u c h  a case a re- 
l a t i v e l y  g r e a t  n e g a t i v e  l i f t  w i l l  b e  d e v e l o p e d  a c r o s s  t h e  
e d g e ,  a s  shown by  c u r v e  "b" i n  f i g u r e  1. A d e l i b e r a t e  
t h i c k e n i n g  of t h e  a i r f o i l ,  d e s i g n e d  t o  p e r m i t  f u r t h e r  
d e v i a t i o n  f rom t h e  K u t t a  c o n d i t i o n ,  m i g h t  t h e r e f o r e  l e a d  t o  
t h e  t y p e  of  p r e s s u r e  d i s t r i b u t i o n  r e p r e s e n t e d  by c u r v e  "b" 
i n  f i g u r e  1. I t  w a s  t h o u g h t  t h a t  t h e  e f f e c t  m i g h t  b e  u s e d  
t o  p r o v i d e  a e r o d y n a m i c  b a l a n c e  f o r  a c o n t r o l  s u r f a c e  a n d  
i n  o r d e r  t o  t e s t  t h i s  t h e o r y  a s e r i e s  of  w i n d - t u n n e l  e x p e r -  
i m e n t s  w a s  p l a n n e d .  T h e s e  t e s t s  h a v e  r e c e n t l y  b e e n  made 
a n d  f o r m  t h e  s u b j e c t  of  t h e  p r e s e n t  p a p e r .  

TESTS 

A p p a r a t u s  a n d  Mode l s  

I n  f i g u r e  2 a r e  shown t h e  s h a p e s  t e s t e d .  T h e s e  s h a p e s  
a r e  o f  two t y p e s  - b e v e l e d  and  e l l i p t i c a l .  I n  t h e  c a s e  o f  
t h e  b e v e l e d  f l a p ,  t h e  p o i n t  a t  w h i c h  t h e  b e v e l i n g  o f  t h e  
f l a p  b e g a n  w a s  f a i r e d  i n t o  a n  a r c  i n  o r d e r  t o  a l l o w  smoo th  
f l o w .  The p o r t i o n  o f  t h e  f l a p  e x t e n d i n g  f r o m  t h e  c e n t e r  
of t h i s  a r c  t o  t h e  t r a i l i n g  e d g e  w i l l  b e  r e f e r r e d  t o  h e r e -  
i n a f t e r  a s  t h e  " b e v e l . "  B e c a u s e  t h e  a c t i o n  of  t h e  b l u n t  
t r a i l i n g  e d g e  i s  i n  some ways s i m i l a r  t o  t h a t  o f  a n  a u t o -  
m a t i c  b a l a n c i n g  t a b  (see f i g .  3 ) ,  t h e  b e v e l e d  s h a p e s  w e r e  
d e s i g n e d  t o  a p p r o x i m a t e  t h e  o u t l i n e  of  s u c h  t a b s  i n  t h e  
b a l a n c i n g  p o s i t i o n .  The  2 0 - p e r c e n t  b e v e l  c o r r e s p o n d s  t o  a 
2 0 - p e r c e n t  cf  t a b  d e f l e c t e d  loo. The e l l i p t i c a l  s h a p e s  

a r e  of  somewhat s i m i l a r  p r o p o r t i o n s .  A f l a p  h a v i n g  a b u l g e d  
p o r t i o n  n e a r  t h e  h i n g e  w a s  a l s o  t r i e d .  Wi th  t h e  e x c e p t i o n  
o f  t h e  b u l g e d  f l a p ,  a l l  s h a p e s  t e s t e d  w e r e  o b t a i n e d  by i n -  
t e r c h a n g i n g  t r a i l i n g - e d g e  b l o c k s  h a v i n g  t h e s e  s h a p e s  on  a 
s t a n d a r d  2 - f o o t - c h o r d  by 4 - f o o t - s p a n  mode l  of  l a m i n a t e d  
mahogany. 
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T a b l e  I g i v e s  t h e  o r d i n a t e s  o f  t h e  s t a n d a r d  s e c t i o n  
( d e r i v e d  f r o m  t h e  NACA 0009 a i r f o i l  by d r a w i n g  s t r a i g h t  
l i n e s  f r o m  t h e  5 5 - p e r c e n t  s t a t i o n  b a c k  t o  t h e  r e m o v a b l e  
t a i l  b l o c k ) .  The  d i m e n s i o n s  of  t h e  r e m o v a b l e  t a i l  p o r t i o n s  
a r e  shown i n  f i g u r e  2 a n d  t h e  o r d i n a t e s  o f  t h e  b u l g e d  f l a p  
a r e  g i v e n  i n  t a b l e  11. A s  shown i n  f i g u r e  2 ,  t h e  f l a p  w a s  
o f  t h e  p l a i n  u n b a l a n c e d  t y p e ,  3 0  p e r c e n t  o f  t h e  a i r f o i l  c h o r d  
i n  w i d t h .  The t e s t s  were made w i t h  t h e  g a p  b o t h  s e a l e d  a n d  
open .  

The p r o c e d u r e  o f  t h e  t e s t s  w a s  s i m i l a r  t o  t h a t  f o l l o w e d  
i n  r e f e r e n c e  1. They were made i n  t h e  NACA 4 - f o o t  by 6 - f o o t  
v e r t i c a l  t u n n e l ,  m o d i f i e d  as  d e s c r i b e d  i n  r e f e r e n c e  2 .  The 
l i f t ,  t h e  d r a g ,  a n d  t h e  p i t c h i n g  moments w e r e  m e a s u r e d  o n  
a t h r e e - c o m p o n e n t  b a l a n c e ,  The  h i n g e  moments w e r e  m e a s u r e d  
e l e c t r i c a l l y  w i t h  a c a l i b r a t e d  t o r q u e  r o d  b u i l t  i n t o  t h e  
mode l .  The  m o d e l  e x t e n d e d  c o m p l e t e l y  a c r o s s  t h e  c l o s e d  
t e s t  s e c t i o n  of  t h e  t u n n e l ,  s o  t h a t  t h e  f l o w  w a s  v e r y  n e a r l y  
t w o - d i m e n s i o n a l .  The t e s t s  were made a t  a dynamic  p r e s s u r e  
of  15 p o u n d s  p e r  s q u a r e  f o a t ,  c o r r e s p o n d i n g  t o  a v e l o c i t y  
o f  a b o u t  76  m i l e s  p e r  h o u r  and  a t e s t  R e y n o l d s  number o f  
1 , 4 3 0 , 0 0 0 .  The f l a p  d e f l e c t i o n  w a s  v a r i e d  i n  50 i n c r e m e n t s  
f r o m  00 t o  300. I n  some c a s e s  c h e c k  p o i n t s  a t  + 2 0  f r o m  
n e u t r a l  w e r e  o b t a i n e d .  L i f t ,  d r a g ,  a i r f o i l  p i t c h i n g  moment , 
a n d  f l a p  h i n g e  moments w e r e  m e a s u r e d  t h r o u g h o u t  t h e  a n g l e -  
o f - a t t a c k  r a n g e ,  f r o m  p o s i t i v e  t o  n e g a t i v e  s t a l l  of  t h e  
a i r f o i l ,  a t  20  i n t e r v a l s  o f  a n g l e  of  a t t a c k .  

P r e c i s i o n  

The maximum e r r o r  i n  t h e  a n g l e  of  a t t a c k  o r  i n  f l a p  
s e t t i n g  a p p e a r s  t o  b e  a b o u t  kO.20. An e x p e r i m e n t a l l y  
d e t e r m i n e d  c o r r e c t i o n  h a s  b e e n  a p p l i e d  t o  t h e  l i f t  b u t  n o t  
t o  t h e  h i n g e  moments. The  h i n g e  moments a r e  p r o b a b l y  
s l i g h t l y  h i g h e r  t h a n  would  b e  o b t a i n e d  i n  f r e e  a i r .  I t  
s h o u l d  b e  n o t e d  t h a t  t h e  d r a g  of t h e  b a s i c  0009 a i r f o i l  
i s  somewhat h i g h e r  t h a n  i s  o b t a i n e d  i n  o t h e r  t e s t s  a t  t h e  
same R e y n o l d s  number .  

RESULTS AND DISCUSSION 

Symbols  

cz  a i r f o i l  s e c t i o n  l i f t  c o e f f i c i e n t  ( Z / q c )  

c d o  a i r f o i l  s e c t i o n  p r o f i l e - d r a g  c o e f f i c i e n t  ( d o / q c )  

cm a i r f o i l  s e c t i o n  p i t c h i n g - m o m e n t  c o e f f i c i e n t  (m/qc2)  

. 
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f l a p  s e c t i o n  hinge-moment c o e f f i c i e n t  ( h / q c f 2 )  

a n g l e  of  a t t a c k  o f  i n f i n i t e  a s p e c t  r a t i o  

e q u i v a l e n t  a n g l e  o f  a t t a c k  

f l a p  a n g l e  w i t h  r e s p e c t  t o  a i r f o i l  

a i r f o i l  s e c t i o n  l i f t  

a i r f o i l  s e c t i o n  p r o f i l e  d r a g  

a i r f o i l  s e c t i o n  p i t c h i n g  moment a b o u t  q u a r t e r - c h o r d  
p o i n t  o f  a i r f o i l  

f l a p  s e c t i o n  h i n g e  moment 

c h o r d  o f  a i r f o i l  w i t h  f l a p s  n e u t r a l  

f l a p  c h o r d  

c h o r d  o f  b e v e l e d  p o r t i o n  o f  f l a p  

S e c t i o n  d a t a  a r e  p l o t t e d  i n  f i g u r e  4 .  F i g u r e s  5 and  
c r o s s - p l o t t e d  f r o m  t h e  s e c t i o n  d a t a ,  show t y p i c a l  v a r i a -  

t i o n s  o f  l i f t  a n d  h i n g e  moment a n d  i l l u s t r a t e  t h e  m a g n i t u d e  
of  t h e  e f f e c t  o b t a i n a b l e  w i t h  a m o d e r a t e  a n d  w i t h  a n  e x t r e m e l y  
b l u n t  b e v e l .  I t  w i l l  b e  n o t e d  t h a t  t h e  r e d u c t i o n  i n  h i n g e  
moment o u t w e i g h s  t h e  loss i n  l i f t  a n d  a l s o  t h a t  t h e  r e d u c t i o n  
i n  ach /aa0  i s  g r e a t e r  t h a n  t h e  r e d u c t i o n  i n  a c h / a 8 f .  

The l i f t  o f  t h e  a i r f o i l  w i t h  t h e  c o n t r o l  f r e e  i s  t h e r e f o r e  
a c t u a l l y  g r e a t e r  f o r  t h e  b l u n t  t r a i l i n g  e d g e  t h a n  f o r  t h e  
p l a i n  f l a p .  The  r e s u l t s  f o r  t h e  p l a i n  f l a p  a r e  t a k e n  f r o m  
r e f e r e n c e  1, p a r t  I .  

The  r e s u l t s  g i v e n  f o r  t h e  f l a p  w i t h  b e v e l e d  t r a i l i n g  
e d g e  a r e  f o r  t h e  g a p - s e a l e d  c o n d i t i o n .  The  t e s t s  w i t h  t h e  
g a p  o p e n  showed no n o t e w o r t h y  r e s u l t s  beyond  t h e  l o s s  i n  
e f f i c i e n c y  u s u a l l y  a s s o c i a t e d  w i t h  t h i s  c o n d i t i o n .  

T a b l e  111 s u m m a r i z e s  s e v e r a l  i m p o r t a n t  c h a r a c t e r i s t i c s  
of t h e  s h a p e s  t e s t e d .  T h e ' v a l u e s  g i v e n  i n  t h e  t a b l e  a p p l y  
t o  a f a i r l y  w i d e  a n g u l a r  r a n g e .  An i d e a  o f  t h e  d e v i a t i o n s  
f r o m  l i n e a r i t y  may b e  o b t a i n e d  by i n s p e c t i o n  o f  f i g u r e  4 .  

The r e s u l t s  show a n  i n t e r e s t i n g  d i f f e r e n c e  i n  t h e  
b e h a v i o r  o f  t h e  e l l i p t i c a l  and  t h e  b e v e l e d  t r a i l i n g  e d g e s .  
The b l u n t e s t  e l l i p t i c a l  s h a p e ,  w h i c h  w a s  s i m p l y  a c i r c u l a r  



r o u n d i n g ,  i n c r e a s e d  t h e  f l o a t i n g  t e n d e n c y  a n d  t h e  d r a g  b u t  
had  no  a p p r e c i a b l e  e f f e c t  o n  a c h / a 6 f  o r  a c z / a c t o .  I n  

t h i s  case t h e  c u r v a t u r e  o f  t h e  s u r f a c e  i s  s o  g r e a t  t h a t  
t h e  f l o w  a p p a r e n t l y  l eaves  t h e  a i r f o i l  a s  i f  t h e  end  had  
b e e n  c u t  o f f  s q u a r e .  The  i n c r e m e n t  o f  d r a g  c o e f f i c i e n t  i n  
t h i s  ca se  i s  a p p r o x i m a t e l y  0 .0028.  The  m o d e r a t e l y  b e v e l e d  
o r  t a p e r e d  s h a p e s ,  t h e  0 . 2 0  cf a n d  0 . 1 5  cf b e v e l s ,  09 

t h e  o t h e r  h a n d ,  showed l e s s  t h a n  0 . 0 0 0 4  i n c r e a s e  i n  d r a g  
c o e f f i c i e n t ,  i n d i c a t i n g  f a i r l y  c o m p l e t e  c l o s u r e  of t h e  f l o w  
b e h i n d  t h e  a i r f o i l .  T h i s  s m a l l  d r a g  i n c r e a s e ,  t o g e t h e r  
w i t h  t h e  r e g u l a r i t y  of  t h e  hinge-moment v a r i a t i o n ,  i n d i c a t e s  
t h a t  t h e  b a l a n c i n g  a c t i o n  o f  t h e  m o d e r a t e  s h a p e s  d o e s  n o t  
d e p e n d  o n  a p r o n o u n c e d  s e p a r a t i o n  o f  f l o w  b u t  o n  m o r e  o r  
l e s s  p r o g r e s s i v e  c h a n g e s  i n  t h e  b o u n d a r y - l a y e r  t h i c k n e s s  
o n  t h e  two s i d e s  of  t h e  b e v e l .  A s  t h e  a n g l e  o f  t h e  b e v e l  
becomes  s t e e p e r ,  t h e  c l o s u r e  of t h e  f l o w  becomes  l e s s  com- 
p l e t e  a n d  t h e  b a l a n c i n g  a c t i o n  becomes  more  p r o n o u n c e d  
t h o u g h  somewhat i r r e g u l a r  a n d  may i n v o l v e  c o m p l e t e  s e p a r a -  
t i o n  o n  o n e  s i d e  o r  t h e  o t h e r .  The c r i t i c a l  a n g l e  i n  t h e  
p r e s e n t  t e s t s  w a s  t h a t  o f  t h e  0 . 1 3  cf b e v e l .  

A s  w i l l  b e  n o t e d  i n  t a b l e  111, t h e  a i r f o i l  p i t c h i n g  
moments f o l l o w  t h e  v a r i a t i o n  t h a t  m i g h t  b e  e x p e c t e d  f r o m  t h e  
h i n g e  moments.  I n  t h e  m o s t  e x t r e m e  c a s e  ( 0 . 1 0  c f  b e v e l ) ,  
t h e  a e r o d y n a m i c  c e n t e r  w a s  s h i f t e d  0 . 0 5 1 ~  a h e a d  o f  t h e  
q u a r t e r - c h o r d  p o i n t .  

From a p r a c t i c a l  s t a n d p o i n t  t h e  m o s t  i n t e r e s t i n g  re- 
s u l t s  a r e  t h o s e  o b t a i n e d  w i t h  t h e  m o d e r a t e l y  b e v e l e d  a n d  
e l l i p t i c a l  s h a p e s  ( 0 . 1 5  cf t o  0 . 2 0  cf b e v e l s ) .  Thus  
t h e  0 . 2 0  cf b e v e l  shows n e a r l y  5 0 - p e r c e n t  r e d u c t i o n  i n  
a c h / a 6 f  a n d  m o r e  t h a n  5 0 - p e r c e n t  r e d u c t i o n  i n  a c h / a a o ,  
as  compared  w i t h  t h e  p l a i n  f l a p .  The d r a g  i n c r e m e n t s  
a r e  n o t  s o  g r e a t  a s  t h o s e  o b t a i n e d  i n  c o m p a r a b l e  t e s t s  
( r e f e r e n c e  1 )  of  t h e  c o n v e n t i o n a l  i n s e t - h i n g e  b a l a n c e  w i t h  
t h e  medium o r  t a p e r e d  n o s e  b u t  a r e  g r e a t e r  t h a n  t h o s e  ob-  
t a i n e d  w i t h  t h e  b l u n t  n o s e  b a l a n c e .  Inasmuch  a s  t h e  
b e v e l e d  t r a i l i n g  e d g e  i s  e f f e c t i v e  i n  r e d u c i n g  t h e  f l o a t -  
i n g  moment, t h e  l i f t  o f  t h e  a i r f o i l  i s  g r e a t e r  w i t h  t h e  
c o n t r o l  f r e e  t h a n  w i t h  t h e  p l a i n  o r  t h e  i n s e t - h i n g e  f l a p .  

I t  i s  f r e q u e n t l y  f o u n d  t h a t  f u l l  b a l a n c e  c a n n o t  b e  
o b t a i n e d  i n  a s a t i s f a c t o r y  manner  by  t h e  u s e  o f  a s i n g l e  
d e v i c e ;  f o r  e x a m p l e ,  a l a r g e  d e g r e e  o f  b a l a n c e  w i t h  t h e  
i n s e t - h i n g e  t y p e  o f  c o n t r o l  s u r f a c e  r e q u i r e s  s u c h  a l o n g  
o v e r h a n g  t h a t  t h e  p e r m i s s i b l e  d e f l e c t i o n  o f  t h e  f l a p  i s  
l i m i t e d .  The  u s e  of  a l a r g e  h o r n  b a l a n c e  i n t r o d u c e s  
s t r u c t u r a l  d i f f i c u l t i e s .  I t  i s  h e l p f u l ,  t h e r e f o r e ,  t o  
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h a v e  a v a i l a b l e  s e v e r a l  i n d e p e n d e n t  means  o f  r e d u c i n g  h i n g e  
moments. The  b e v e l e d  t r a i l i n g  e d g e  s h o u l d  b e  e s p e c i a l l y  
u s e f u l  i n  c o m b i n a t i o n  w i t h  o t h e r  t y p e s  o f  b a l a n c e ,  b e c a u s e  
i t  i n v o l v e s  no a d d i t i o n a l  l i n k a g e s .  A l s o ,  i t  i s  o c c a s i o n -  
a l l y  f o u n d  d e s i r a b l e  t o  i n c r e a s e  t h e  h i n g e  moments s l i g h t l y  
as a f i n a l  a d j u s t m e n t  d u r i n g  f l i g h t  t e s t s .  Such  a n  a d j u s t -  
ment  m i g h t  b e  p r o v i d e d  by t h e  a d d i t i o n  o f  a t h i n ,  s h a r p  
e d g e .  

The  p r e s e n t  t e s t s  a r e  t o o  l i m i t e d  t o  f u r n i s h  more  
t h a n  v e r y  g e n e r a l  i n f o r m a t i o n  o n  t h e  e f f e c t s  of  t r a i l i n g -  
e d g e  s h a p e .  T h u s ,  t h e  v a r i a t i o n s  w i t h  f l a p  c h o r d ,  R e y n o l d s  
number ,  o r  a i r f o i l  s e c t i o n  h a v e  n o t  b e e n  e x p l o r e d .  I n  a n y  
e v e n t ,  i t  i s  t o  b e  e x p e c t e d  t h a t  t h e  e f f e c t  o f  t r a i l i n g - e d g e  
s h a p e  w i l l  b e  g r e a t l y  m a g n i f i e d  a s  t h e  c h o r d  of  t h e  f l a p  i s  
r e d u c e d  - a f a c t  t h a t  makes  i t  n e c e s s a r y  t o  employ  a c e r t a i n  
amount  o f  c a r e  i n  t h e  c o n s t r u c t i o n  of  t h e  t r a i l i n g  e d g e .  

CONCLUSIONS 

The  b e v e l e d  t r a i l i n g  e d g e  p r o v i d e s  a c o n v e n i e n t  means  
o f  r e d u c i n g  t h e  h i n g e  moments o f  c o n t r o l  s u r f a c e s .  I n  t h e  
p r e s e n t  t e s t s ,  a m o d e r a t e  b e v e l  o n  a 3 0 - p e r c e n t - c h o r d  f l a p  
p r o d u c e d  a 5 0 - p e r c e n t  r e d u c t i o n  i n  t h e  h i n g e  moment c a u s e  
by a g i v e n  d e f l e c t i o n  of  t h e  f l a p .  T h i s  b a l a n c i n g  e f f e c t  
e x t e n d e d  o v e r  a w i d e  a n g u l a r  r a n g e  a n d  showed a smoo th  
v a r i a t i o n  w i t h  a n g l e  o f  a t t a c k  a n d  w i t h  f l a p  d e f l e c t i o n .  
The p r o f i l e - d r a g  c o e f f i c i e n t  showed a n  i n c r e a s e  of  0 . 0 0 0 4 .  

O v e r b a l a n c e  a n d  r e v e r s a l  o f  t h e  f l o a t i n g  t e n d e n c y  o v e r  
a s m a l l  a n g u l a r  r a n g e  w e r e  o b t a i n e d  when r a t h e r  b l u n t  b e v e l s  
w e r e  t e s t e d .  The  e f f e c t  o f  t r a i l i n g - e d g e  s h a p e  i s  e x p e c t e d  
t o  b e  e v e n  more p r o n o u n c e d  as  t h e  c h o r d  o f  t h e  f l a p  i s  re- 
d u c e d ,  i n d i c a t i n g  t h e  n e c e s s i t y  f o r  c a r e f u l  c o n s t r u c t i o n  
of  n a r r o w  f l a p s .  

N a t i o n a l  A d v i s o r y  Commi t t ee  f o r  A e r o n a u t i c s ,  
L a n g l e y  M e m o r i a l  A e r o n a u t i c a l  L a b o r a t o r y  

L a n g l e y  F i e l d ,  V a .  
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TABLE I 

S t a t  i o n s  

0 
1.25 
2.5 
5.0 

a i r f o i l  7.5 
s e e  t i o n  10 

15 
2 0  
25 
30 
40 
50 

60 
70 
80 
90 

100 

I 
i S t r a i g h t  

p o r t i o n  

ORDINATES OF MODIFIED NACA 0009 A I R F O I L  

[ S t a t i o n s  and o r d i n a t e s  i n  percent  a i r f o i l  chord] 

Ordinates  

0 
k1.42 
21. 96 
42.67 
k3.15 
k3 .51  
k 4 . 0 1  
k4.30 
k4.46 
k4.50 
k4.35 
k3.97 

43.42 
k2.83 
k2.25 
k1.67 
k1.08 

L .  E .  r a d i u s :  0.89 
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TABLE 11 

ORDIMATES OF BULGED FLAP 

[Ststions and o r d i n a t e s  i n  percent  a i r f o i l  chord} 

2 . 8 6 ~  
I 
I 

I ordinates 
S t a t i o n s  

(from hinge  a x i s )  

0 
1,94 
4.82 
7 . 8 5  
10.80 
15.25 
19.70 
25.1.5 
30.00 

k2 .96  
23.38 
23-62 
rt3.43 
~~3.03 

*1,69 
21.02 
*0*10 

&203? 
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Figure 1.- The effect of flow around the trailing edge on the lift 
distribution. 
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Figure 5.- Typical variations of lift and hinge mmer i t  with angle of 
attack. Sf=Oo. 
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EPORT No. 73 

By ROBERT T. JONES and DORIS COHEN 
- 

SUMMARY 

A theoretical analysis i s  made to determine the optimum 
chord distribution, location, and extent of control surfaces, 
with the ratio of hinge moment to effectiveness as the cri- 
terion. Expressions f o r  the effectiveness - for  ailerons, 
the rolling moment, and f o r  tail surfaces, the change oj 
l i j l  on  the tail due to deflection of the surjace-were 
derived f r o m  lijling-line theory. 

Solutions found f o r  a range of airfoil p lan  forms  indi- 
cate that, regardless o f  the characteristics of the tail sur- 
face,  the chord of the rudder or of the elevator should be 
very nearly constant over its span. The optimum ailerons 
are also o f  a characteristic shape, varying little with the 
p lan  fo rm of the wing. 

INTRODUCTION 

One of the primary difficulties in airplane design has 
been to keep the stick forces required to deflect the 
control surfaces at reasonably low values. This prob- 
lem has inevitably increased in seriousness with the 
size and the speed of modern airplanes. There is as 
yet, however, no basic principle of control-surface 
design that engineers will agree minimizes the ratio of 
stick force to effectiveness. Examination of typical 
designs indicates that hinge-moment reductions as 
great as 40 percent may be achieved in some cases 
without lowering the effectiveness of the flap; that is, 
the efficiency may be increased by two-thirds. 

The present study, which neglects structural and 
similar considerations, is a mathematical analysis lead- 
ing to the plan forms for rudder, elevator, and ailerons 
that will be most effective in producing a given amount 
of control with the least operating force. The solutions 
are applicable to any airfoil of conventional plan form 
to the same extent as are the usual assumptions of the 
aerodynamic theory of airfoils, on which the analysis 
is based. Further discussion covers the extent, the 
location, and the shape of partial-span control surfaces 
to give the greatest efficiency. 

THEORETICAL ANALYSIS 

It is required to find the plan forms for rudder, 
elevator, and ailerons that will require the least stick 
force to produce a k e d  amount of control per unit 

- 
deflection of the surface. This is a problem in the 
calculus of variations, in which the expression for the 
effectiveness is the integral to be kept constant; the 
expression for the hinge moment is the integral to be 
minimized; and the hinge line, defined by a relation 
between the spanwise station and the ratlio of flap 
chord to airfoil chord, may be considered the path of 
integration to be determined so as to satisfy the fore- 
going conditions. In  the case of a rudder or an elevator, 
the effectiveness is measured by the change of lift on 
the tail surface produced by deflection,of the flap; in 
the case of ailerons, it is measured by 'the rolling mo- 
ment produced. 

It will be seen in the course of the discussion that 
all constant factors may be combined in the final result 
into a single factor of proportionality. All the func- 
tions and relations discussed hereinafter d l  therefore 
be treated without regard to such factors. 

The following symbols will be used in the develop- 
ment: 
b span of airfoil 
- Y 
bl2 symmetry 

O=eos-Ix parameter indicating spanwise station 

Ah 

spanwise station measured from plane of 

bI2 
lift per unit span at  any section due to unit 

flaD deflection 
change in effective angle of attack a t  any 

section l i t  coefficient 
chord of airfoil 
chord of flap 
ratio of flap chord to airfoil chord (c,/c) 
chord of airfoil at  plane of symmetry 
angle of flap deflection 
section lift-curve slope 
aspect-ratio pammeter 
hinge moment 
Fourier series coefficients 
Fourier series coefficient proportional to lift 
Fourier series coefficient proportional to 

constants determined by C's and p 
arbitrary proportionality factor 

section due to unit flap deflection 

moment 
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The expression for effectiveness is obtained with the 
aid of the Lotz method, an outline of which is found 
in reference 1. Results obtained by this method clieck 
reasonably well with experiment except for aspect 
ratios less t.lian 2. 

If the lift distribution over the airfoil is given by the 
Fourier series 

AllagAi  t = l  sin is (1) 

the angle-of-attack distribution, by the series 
m 

Aml sin 0 CXCB, sin jS (2) 
J = 1  

and the chord distribution of the airfoil, by 
sin e- m 
--Co~-Cczh COS 2kO 13) 

C k = l  

then the coefficients of the series are connected by the 
relation 
xC2, cos 21ceCAf siniB+pCiAf sin ie=CBr sin je (4) 

or 
I; I I i 

CAICzx[sin (i+2k)e+sin (i-2k)eI 
k t  

+2pCiAI sin ie=2CB, sin j S  (5) 

This identity is equivalent to the set  of simultaneous 
equations obtained by equating coefficients of terms in 
the same multiple of e;  thus, for each valuc of j ,  

I i 

(- I) ( z * 2 x ) ~  g A , C r r +  (C, +2jp)A,=2B, (6) 
k=O I = I  

where i and k are limited to values such that i+ 2k- i-j. 
The plan form of the airfoil under consideration will 

determine thc values for CZh and will probably be 
approximatcd closcly enough with a series of two or 
three terms. (It should be noted that the values of 
CL,. depend only on tlic distribution of tlie chord lcngtli 
rather than on tlic actual plan form.) The B's can 
be cxprcsscd as functions of the ratio r of flap chord to 
airfoil chord. This ratio will be considtwd tlir deprnd- 
ent variable, to he found as a function of tlic spanwise 

station or of e. Thc svt of simuItanclous equations 

may now be solved for A,, which is proportional to the 
total change in lift due to deflection of the flap, a n d  for 
Az,  which is proportional to the rolling moment. 

It should be possible to limit the number of equations 
to six or eight without introducing any noticeable inac- 
curacies. Only odd values of j ,  moreover, are involved 
in the solution for A, and only cven values are involved 
in the solution for Az. The valuc of AI will be found 
to bc proportional to an expression of the form 

KIBl+K3&+ . . - + K z ~ - I B ~ ~ - I  . . . (7) 
and Az will be proportional to CK2nB2nl where K ,  is a 
constant dctermined by the C's and p.  From equatior 
(2) 

(8: 

bI2 

sin 0 sin ne de 

hbstitute in expression (7) ; then 

Alee rAal(~) sin e F,(@ de (9) so 
vherc 

Fl (e )=~K2n-1  sin (2n- 1)8 (10) 

(11) 

F2(e) =CK,, sin 2nB (12) 

n 
Smilarly , 

A2mCa1(r)  sin e F2(e) de 

vhere 

n 

A curve for Aal as a function of r ,  representing a 
,ummary of available experimental data on sealed- 
iinge flaps, is given in figure 1. (A theoretical curve 

FIGURE 1.-Flapeffect curves for flaps with sealed hinges. (Thcoretieal curve Irom 
reference 2 ) S,<<;tZO". 

takcn from reference 2 has been included in fig- 1 for 
comparison.) This empirical curve is closely approxi- 
mated, for flaps up to 70-percent chord, by the equation 

The expressions for the lift and the rolling moment 
obtained by this method take into account the impor- 
tant effect of the aerodynamic induction associated 
with airfoils of finite span. In the expression for the 
hinge moment, this factor will be neglected; that is, 
the end loss in aerodynamic loading and a variation, 

310 



DETERMINATION OF OPTIMUM PLAN FORMS FOR CONTROL SURFACES 

caused by the floating tendency of the flap, in the hinge 
moment developed by the induced downwash will be 
omitted. Both of these effects are small for narrow- 
chord flaps. Without these effects the hinge moment 
is simply proportional to the square of the flap chord 
a t  each section. Thus, 

H . c L  2r2 sin 0 d8 (16) 

This assumption checks reasonably well with experi- 
ments. 

Tho problem may now be restated in more specific 
trrms: to find r as a function of e so that H i s  a minimum 
for a fixed value of AI (or A2). Clearly, an equivalent 
condition would be that H+XA be rendered a mini- 
mum, where X is a parameter associated with the value 
of A required. This condition is satisfied only if the 
variation of the integrand of the sum with the depend- 
ent variable is equal to zero. 
Thus, 

(17) 

(18) 

a - [r*e2 sin S+ xJ; sin 0 F(e) =0] 
dr 

x E m 2  sin e+ - sin e F(e) = O  2 4 ;  

Tlirii 

or 

and 

which is the most grncrnl form of the desired solution. 
In particular, if airfoils tlcfined by two coefficients C, 
and Q arr considered, 

sin 8 
C,+G COS 2e e= 

and 

RESULTS AND DISCUSSION 
Tlir nirthod just d rvdopd  has bcrn npplied to air- 

foils n itli thc following chord distribii tions: 
sin e- ~- 3.071 -0.6904 cos 28 (Munt) e 

(rlliptical) 

sin 8- -- 2.92Bf0.9755 cos 20 (tnpcrrd) 
C 

l'he rlliptical distribution and the degrees of taper repre- 
ented by the relations C2/Co =&1/3 were chosen to 
rive an inclusive indication of the range and the man- 
ier of variation of the solutions. Particular values of 
To were determined by the condition that the airfoils 

Blunt 

1 Elliptical 

I , , , , I , , , , I  

Spanwise station, byz 7- 
1.0 .e .4 e .4 .8 1.0 

F I c a R E  Z.-Airloii plan IormP drfinrd by the two-term series S ~ = C o + C s o s  28. 
Aspect ratio, 6. 

FIGURE 3.-Optimum chord distribution €or contrcl surfam. 

be of unit semispan and aspect ratio 6. The resulting 
chord distributions, plotted about a straight 50-percent 
chord line, are shown in figure 2. 

The solutions were found to be strikingly independent 
of the form of the airfoil. In figure 3, the shapes for 
the movable surfaces are shown for the three airfoils 
just described. The optimum ailerons are seen to vary 
hardly a t  all from airfoil to airfoil. The outlines for 
maximum lift efficiency, although differing slightly, 
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nevertheless suggest the general conclusion that the 
most desirable control surfaces in this respect are of 
nearly constant chord. 

From this result it follows that the most efficient 
airfoil plan form for longitudinal control is also one of 
nearly constant chord, because such a combination of 
airfoil and flap will have a nearly uniform distribution 

Blunt 

Hinge 
line 

e 

FIGURE 4.-AirIoils 01 figure 3 with flags of optimum plan form lor lift. Average 
chord r8tio, 20 percent. 

of effective angle of attack. Calculations also show 
that, if each of the airfoils given by the foregoing distri- 
butions were provided with a flap of optimum shape, a 
somewhat smaller movable surface, and hence a smaller 
hinge moment, would be required to increase the lift 
on the blunt wing a given amount per unit deflection 
than on either of the other two. On the other hand, 
since aileron effectiveness depends on the ratio of rolling 
moment to damping moment, a tapered wing is seen to 
be most efficient for lateral control. 

In figure 4 the flaps are plotted in relation to the 
airfoils. The flaps as drawn are 20 percent of the mean 
chord of the airfoil. It will be noted that, for the 
tapered airfoil, this is the maximum width at  which the 
shape of the flap can be maintained. Ordinarily as 
high a taper as shownwouldnot be used and a 20-percent 
or wider flap would be possible. It is not important, 

in any case, to hold rigidly to the optimum shape a t  
the extreme tip if such a design introduces a cusp in 
the k e d  portion of the surface. 

The corresponding presentation of the solution for 
the ailerons is given in figure 5. The ailerons shown 
we approximately 15 percent of the mean chord of the 
&foil. Seen in this aspect ratio, the ailerons appear 
not to vary greatly in width over their span. As is to 
be expected, however, they do taper off somewhat 
Goward the center where the small moment arm would 
Ibviously make a larger area inefficient. 

The choice of a straight hinge line has led to the intro- 
luction of sweepback in these plan forms. It should 
be remembered, however, that the solutions as expressed 
>y figure 3 are mathematically very general ones and 
:over, w i t h  the limits of accuracy of the lifting-line 
theory, any width of flap, any shape of hinge line or 
parter-chord line, and any normal aspect ratio. The 

--- Hinge - - 
h e  

\ 

\ Japered 

nrrryr , 
/me I- 

FIGURE 6.-AirIoils of 5gure 3 with ailerons of optimum plan form. Average chord 
ratio, 15 percent. 

aspect ratio, i n p ,  affects the expressions for F (6) in equa- 
tions (22) and (23), but calculations made for an aspect 
ratio of 2 resulted in outlines that could not be differen- 
tiated in plottingfrom thosegiven in figure 3. Thus, the 
aspect ratio enters the solutions only in so far as it limits 
the applicability of the lifting-linc theory. The solu- 
lions are also expected to apply in a general way to 
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unsealed flaps which, although less effective than sealed 
flaps, may be supposed to show similar variations of 
effectiveness with chord. 

A separate investigation was made to determine on 
which of the airfoils considered the derived control 
surfaces would produce the most lift for a given hinge 
moment, with a view to estimating the loss resulting 
from the use of a tapered stabilizer. The calculated 
difference of 8 percent between the tapered and the 
blunt airfoils was not so great as might have been 
expected. It is supplemented, however, by other aero- 
dynamic effects such as fuselage interference, which 
may make the use of area near the fuselage inefficient. 

Ailerons on a blunt wing would similarly give more 
rolling moment for a certain hinge moment than on a 
more tapered wing. Since the tapered wing requires 
less powerful ailerons because of the small damping 
moment, the actual rate of rolling would be definitely 
greater for a given hinge moment; thus in the last 
analysis, the tapered wing must be considered the most 
efficient from considerations of aileron control. 

PARTIAL-SPAN FLAPS 

At this point a question arises as to the design of 
partial-span flaps, their shape, optimum length, and 
location. The most efficient shape for such flaps can 
be deduced from a review of the preceding develop- 
ment. If a portion of the airfoil span has no movable 
area, the value of Aa, will be zero over that region and 
the expressions for A, and A, given in equations (14) 
and (15) will reduce to integrals covering only flapped 
portions of the span. The limits for H given in equa- 
tion (16) may be similarly changed. Then the reason- 
ing remains the same; only the limits of integration are 
changed to agree with the extent of the flap and, these 
limits being identical for the functions involved, the 
relations between the integrands may be expressed as 
before and the same solutions will be obtained. It 
follows that flaps extending over a part of the span of 
an airfoil should have the same shape as the portion of 
a flap of optimum shape covering that same part of 
the span. 

Another interesting characteristic of these shapes, 
one from which further deductions concerning partial- 
span flaps may be made, appears when the solution 
given in equation (19) is substituted in expressions 
(14), (15), and (16) for the effectiveness and the hinge 
moment. It is seen that the integrands of these expres- 
sions are identical except for the discarded factors of 
proportionality. This fact may be interpreted as 
meaning that the surfaces found have, for any partic- 
ular solutipn, a constant ratio of effectiveness to hinge 
moment all along the span, or that any portion of a 
given flap of optimum shape is as efficient as any other 
portion. 

This characteristic leads again to the conclusion that 
partial-span flaps should be segments of the optimum 
full-span shapes. The extent and the location of the 

Eaps for greatest efficiency are dso indicated by these 
:onsiderations. If the ratio for a given shape is every- 
where the same, the greatest lift or rolling moment must 
be contributed by the element of the h p  that has the 
maximum chord (and therefore the maximum hinge 
moment). If any other element of equal span is to be 
used to develop the same lift, that element must either 
be deflected through a greater angle or increased in 
width. It is assumed that the maximum degree of 
control possible within the efficient range of fhp deflec- 
tion, which is about +20°, is desired, and the control 
should therefore not be increased at  the expense of 

spanwise sfation, E. 
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FIGURE 6.-Rolling-moment and hinge-moment curves for pertid-span ailerons 
Elliptical wing, aspect ratio, 6. 

e 

flap deflection. If the chord is increased, it will be 
with the square of the lift (equation (13)) and the 
hinge moment wil l  then be increased with the square of 
the chord (equation (16)) or the fourth power of the 
lift. The conclusion is obvious: The most efficient 
flap of a given span will cover the portion over which 
the ordinates of figure 3 are the greatest. This result 
is of particular significance as applied to ailerons, which 
should therefore extend inward from the tips. 

It also follows that the greatest efficiency is obtained 
by using the longest possible control surfaces. Shorter 
flaps must of necessity be wider to produce the same 
effect, and the increase in chord causes a sharp drop 
in efficiency. This consideration should influence not 
only the design of the flaps but also the design of the 
tail surfaces themselves. 

Figures 6 and 7 are a quantitative representation of 
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the situation. In thesc figures, thc “hinge-moment 
factor” is the number by which the hinge moment of 
thc partial-span control surfaces would be multiplied if 
their effectiveness were increased (by increasing the 
chord) to equal that of tho full-span surfaces. Tlic 
“rolling-moment factor” is tlic rolling moment drvel- 
oped by partial-span ailerons (to thc tip) of optimum 
shape, expressed as a fraction of thc moment clcveloped 
by tlie full-span ailerons of which they are a part. 

In  the case of ailerons, tlic loss of efficiency is not. 
very great if thc extremc inboard portion is dispensed 
with, but the rate a t  which the efficicncy drops incrruscs 
rapidly as the span of tlic ailerons is lessened. For 
example, if on a particular wing only tlic outrr GO pcrcctnt 
of the optimum ailerons of a certain percentage chord 
were used, approxhately 16 perccnt of the rolling mo- 
ment would be sacrificed. If it werc desired, however, 
to retain the full power of the control, a GO-pcrcent 
increase in hinge moment would be incurred; or, from 
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FI(.cRE 7 --I~ingC-moment and e.ffrctlvenc~s cI1rvcI lor parllal-span flails 13111plllnal 
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another point of view, a 60-percent aileron will always 
require an opcrating forcc 60 percent greater than is 
entirely necessary for the same cffcctivmess. If only 
40 percent of the span is used for control, thc hinge 
moment required will be almost tlirec times as great as 
for equally effective GO-percent-span ailerons and 4.4 
t i m e  as great as for full-span ailerons. 

The corresponding curves for the elevator (fig. 7) 
show a much sharper dccline in efficiency as the flaps 
are shortened along the span. Because the fixed surface 
between flaps (or the cut-out) is seldom more than 15 

pcrcent, however, tlic rcsultant incrcasc of control forcc 
is not so great as for partial-span ailerons. 

Application of thc principles outlimed has been made 
to a modcrn airplane, with ailrrons as shown in figure 8. 
Calculations indicatc a 30-pcrccnt reduction in liingc 
moment (with no loss of rolling moment) duc to irn- 
provemelit of the plan form of tlic ailerons a10 
an additional 10 percent of the scmisptui wcre allotted 
to each aileron, tlie required operuting forcc would be 
reduced to 45 percent of that for tlic. original ailerons, 
and the efficiency would be more than doublccl. 

CONCLUSIONS 

Coiitrol surfaces of maximum efficiency (requiring a 
minimum operatiny force to achieve a given amount of 
control) may bc tlesignttl almost without regard to the 
:liaracteristics of tlir wings 01’ tiiil surfa:.es to which 
they arc to bc :~ttnrlletl. Esrrpt, pc~l~tups, on very 
low-nsprct-ratio tail surfacrs (nspvct retio less than 2), 
naps slioiild be of almost constant chord ovrr the span. 
Tlic optimum sliapc for ailrrons is of maximum width 
near thc lip of tlic wing and lias a slightly convex 
curvature as it tapers toward tlie center. Partial-span 
control surfaces should be sections of these optimum 
shapes and should includc tlic regions of maximum 
chortl. For maximum cfficicncy, however, brcuuse tlic 
hinge mornciit increascs ns tlic fourth power of tlic lift 
wvlicm the gain in lift must be acliicvetl by increasing 
the chord, flaps nnd ailerons should bc as long and 
narrow as is compatible with structural and otlirr de- 
sign considcr:Aons. 

LANGLEY l f E M O R I 4 L  AERONAUTICAL LAI~OR.\TOI~Y, 
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

EMERGENCY MEASURES FOR INCREASING 

THE RANGE OF FIGHTER AIRPLANES 

By Robert T. Jones and Joseph W. Wetmore 

SUMMARY 

An ana lys i s  w a s  made t o  show t h e  relative ef fec t ive-  
ness of streamline ex te rna l  f u e l  tanks, a f u e l  tank i n  
t h e  form of a wing mounted i n  a biplane pos i t i on ,  and 
a u x i l i a r y  wing panels attached a t  t h e  wing t i p s  t o  in- 
crease t h e  span as temporary means f o r  increas ing  t h e  
range of a fighter-type a i rp lane .  The a i rp l ane  con- 
s idered  is  rep resen ta t ive  of e i t h e r  an Army o r  Navy 
single-engine heavy f i g h t e r .  
var ious  devices considered show t h e  r e s u l t s  of calcula- 
t i o n s  of range, dura t ion  of f l i g h t ,  and take-off d i s t ance  
f o r  both land-base and carrier operation. 

Figures and c h a r t s  f o r  t h e  

The r e s u l t s  ind ica ted  t h a t  t h e  wing-tip extensions 
w e r e  t h e  most promising of t h e  devices considered. It 
w a s  estimated t h a t  10-foot t i p  extensions - t h a t  is ,  an 
increase  i n  span of 20 f e e t  - used i n  conjunction with a 
streamline ex te rna l  f u e l  tank would increase  t h e  range 
of t h e  a i rp l ane  125 t o  130 percent without any increase  
i n  t h e  d i s t ance  required t o  take  off from e i t h k r  a land 
base o r  a carrier. With 5-foot t i p  extensions,  t he  range 
would be increased 65 t o  70 percent,  under t h e  same l i m i -  
t a t i o n s .  The tank wing w a s  found t o  cause some reduction 
i n  t h e  e f f i c i ency  of t h e  a i rp l ane  i n  t e r m s  of m i l e s  per 
gallon. The added area would permi t  a g r e a t e r  f u e l  load 
t o  be ca r r i ed ,  however, f o r  a given take-off d i s tance  and 
t h e  range would thereby be increased. For a given take- 
off d i s t ance  from a land base,  t h e  ca lcu la ted  increase  i n  
range due t o  t h e  tank wing w a s  about 45 percent.  The in- 
crease f o r  a given carrier take-off would be about 20 
percent. Increasing t h e  range 50 percent by carrying 
e x t r a  f u e l  i n  a streamline ex te rna l  tank without any 
o ther  modifications t o  t h e  a i rp l ane  would r equ i r e  an 
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increase  of 20 percent i n  take-off d i s t ance  from a land 
base and 32 percent from a carrier. 

INTRODUCTION 

The range of fighter-type a i rp l anes  is  o r d i n a r i l y  
r e l a t i v e l y  sho r t  because of high span loading and l i m i t a -  
t i o n s  on t h e  space ava i l ab le  f o r  fue l .  Permanent modi- 
f i c a t i o n s  i n  t h e  design of t h e  a i rp l ane  t o  achieve longer 
ranges would not be acceptable because of t h e  consequent 
impairment of o ther  c h a r a c t e r i s t i c s  t h a t  are o r d i n a r i l y  
of g rea t e r  importance. Under c e r t a i n  circumstances, how- 
ever - f o r  example, f o r  f e r ry ing  purposes - it would be 
of g rea t  value t o  increase  t h e  range of f i g h t e r  a i rp l anes  
by temporary devices,  d e s p i t e  s a c r i f i c e s  i n  o ther  perform- 
ance c h a r a c t e r i s t i c s .  

Considerable increases  i n  range may be obtained by 
carrying s t reaml ine  ex te rna l  f u e l  tanks but only a t  t h e  
cos t  of a possibly p roh ib i t i ve  increase  i n  take-off d i s -  
tance. Several methods, designed t o  increase  t h e  range 
without increasing t h e  take-off d i s tance ,  have been sug- 
gested. One of t hese  methods cons i s t s  e s s e n t i a l l y  i n  
making t h e  e x t e r n a l  tank i n  t h e  shape of an a i r f o i l  t o  
increase  t h e  t o t a l  wing area. Another method cons i s t s  
i n  adding area a t  t h e  wing t i p s ,  which has t h e  advantage 
of increasing not only t h e  wing area f o r  take-off but 
a l s o  t h e  span and, thereby, t he  e f f i c i ency  i n  t e r m s  of 
m i l e s  per ga l lon  of f u e l .  Such area might be added i n  
t h e  form of temporary extensions attached i n  place of t h e  
removable f a i r i n g s  on the  o r i g i n a l  wings. 

Determination of t h e  most expedient method w i l l  de- 
pend on a number of f a c t o r s  ou ts ide  t h e  f i e l d  of t h e  
present i nves t iga t ion ,  such as p i l o t  endurance, area 
ava i l ab le  f o r  take-off, and s t r u c t u r a l  considerations.  
The following ana lys i s  is  intended t o  provide a compar- 
i son  of t h e  suggested methods on t h e  b a s i s  of maximum at- 
t a inab le  range, f l y ing  t i m e  required,  and take-off d i s -  
tances from e i t h e r  a land base o r  a carrier. The cal- 
cu la t ions  w e r e  made f o r  an a i rp l ane  t h e  c h a r a c t e r i s t i c s  
of which may be considered r ep resen ta t ive  of e i t h e r  an 
Army o r  Navy single-engine heavy f i g h t e r .  
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ANALYSIS 

Airplane.- The c h a r a c t e r i s t i c s  of t h e  a i r p l a n e  con- 
sidered i n  t h e  ana lys i s  are: 

Wing area, square f e e t  . . . . . . . . . . . . . . .  310 

Wing span, f e e t  . . . . . . . . . . . . . . . . . . .  41 

Wing incidence angle,  degrees . . . . . . . . . . . .  2 

Ground angle ( longi tudina l  a x i s ) ,  degrees . . . . . .  12 

Empty weight (design gross  weight less 

normal f u e l  load),  pounds . . . .  11,000 

Engine displacement, cubic inches . . . . . . . . . .  2800 

Supercharger . . . . . . . . . . .  two-stage, gear-driven 

Propel le r  . . . . . . . . . . .  three-blade, constant-speed 

Propel le r  gear  r a t i o  . . . . . . . . . . . . . . . .  2:l 

Maximum speed a t  sea level, m i l e s  per hour . . . . .  317 

Capacity of i n t e r n a l  f u e l  tank, ga l lons  . . . . - 300 

A ske tch  of t h e  a i rp l ane  with a tank wing'of 300- 
ga l lon  capacity (4-ft chord by 20-ft span) is shown i n  
f i g u r e  1. I n  f i g u r e  2 t h e  a i rp l ane  i s  shown with 10-foot 
wing-tip extensions (area increase ,  approx. 80 sq f t )  and 
a 300-gallon s t reaml ine  ex te rna l  tank., 

Calculation of range.- The range w a s  ca lcu la ted  by 
t h e  Breguet formula, which takes account of t h e  continu- 
ous reduction i n  power required t o  opera te  a t  constant 
l i f t - d r a g  r a t i o .  The equation is  

L w t  R = 375 5 log, w, 



where 

R range, m i l e s  

ri average propulsive e f f i c i ency  during f l i g h t  

C average s p e c i f i c  f u e l  consumption during f l i g h t ,  
pounds per horsepower-hour 

L/D l i f t -d rag  r a t i o  of a i r p l a n e  

Wt 

We 

weight of a i rp l ane  a t  take-off 

weight of a i r p l a n e  with tanks empty 

Calculation of aerodynamic e f f i c i ency  L/D.- The 
values of aerodynamic e f f i c i ency  L/D f o r  use i n  t h e  : 
range equation w e r e  computed from t h e  r e l a t i o n  

where 

f p a r a s i t e  area of a i rp l ane  

W weight of a i rp l ane  

p m a s s  dens i ty  of air 

V t r u e  airspeed, m i l e s  per hour 

be e f f e c t i v e  span 

For t h e  o r i g i n a l  a i rp l ane ,  t h e  value of f w a s  calcu- 
l a t e d  from consideration of t h e  maximum speed and corre- 
sponding power output of t h e  engine. Increments i n  para- 
site area due t o  t h e  ex te rna l  tanks, t h e  tank wing, and t h e  
wing-tip extensions w e r e  estimated by determining t h e  wetted 
areas of t hese  addi t ions  and multiplying by a sk in - f r i c t ion  
coe f f i c i en t  of 0,005, r ep resen ta t ive  of a turbulen t  boundary 
l aye r .  For t h e  s t reaml ine  ex te rna l  tanks,  t h e  wetted area 
w a s  assumed t o  be t h a t  of an e l l i p s o i d  of revolu t ion  having 
a f ineness  r a t i o  of 5 and providing t h e  des i red  volume, The 
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drag of a f a i r e d  tank has been found t o  be s l i g h t l y  less 
than t h a t  obtained by t h i s  method. 

For t h e  normal a i rp l ane  and t h e  a i r p l a n e  with wing- 
t i p  extensions,  t h e  e f f e c t i v e  span be w a s  assumed t o  be 
90 percent of t h e  a c t u a l  span. For t h e  tank wing, t h e  
e f f e c t i v e  span w a s  taken as t h e  e f f e c t i v e  span of t h e  
o r i g i n a l  a i r p l a n e  mul t ip l ied  by Munk's span f a c t o r ;  t h e  
va lue  of t h e  f a c t o r  f o r  t h e  configuration assumed ( f ig .  1) 
w a s  taken from reference  1; and t h e  assumption t h a t  t h e  
l i f t  would be d i s t r i b u t e d  between t h e  two wings i n  pro- 
po r t ion  t o  t h e i r  r e spec t ive  areas w a s  used. 

V The curves of L/D aga ins t  -, where W is  

t h e  a i rp l ane  weight with any f u e l  load and V i s  the  t r u e  
airspeed a t  a n  a l t i t u d e  of 10,000 f e e t ,  are p lo t t ed  i n  f$g- 
u r e  3(a)  f o r  t h e  var ious  modifications of t h e  a i rp lane .  
The curve f o r  a given a i rp l ane  conf igura t ion  is independent 
of loading when p lo t t ed  i n  t h i s  manner. 

Jw/we 

Calculation of engine-propeller e f f i c i ency  n/C.- 
Values of propulsive e f f i c i ency  n w e r e  computed from f u l l -  
scale test d a t a  on a s u i t a b l e  propeller-nacelle combination. 
Spec i f ic  f u e l  consumption C w a s  determined from manufac- 
t u r e r ' s  performance cha r t s  f o r  t h e  engine considered. 
w a s  assumed t h a t  t h e  engine w a s  operating i n  low blower and 
subjec t  to t h e  l i m i t a t i o n s  on engine speed and manifold 
pressure  spec i f i ed  f o r  t h e  c ru i s ing  power condition. The 
values of C w e r e  increased 5 percent t o  take  account of 
o i l  consumption. The maximum value  of the rati'o n /C  w a s  
determined f o r  several values of brake horsepower at each 
of a number of a i r speeds ;  an  a l t i t u d e  of 10,000 f e e t  w a s  
assumed. It w a s  found t h a t  t h e  maximum value  of n / C  at 
a given airspeed is  p r a c t i c a l l y  unaffected by considerable 
v a r i a t i o n s  i n  power, with t h e  r e s u l t  t h a t  a s i n g l e  curve 
of n / C  aga ins t  t r u e  airspeed, given i n  f i g u r e  3(b),  
could be used f o r  a l l  t h e  a i r p l a n e  modifications considered. 

It 

Determination of loading.- The weight of f u e l  ca r r i ed  
w a s  estimated on t h e  b a s i s  of 6 pounds per gallon. This 
value w a s  increased 5 percent t o  allow f o r  o i l  consumption. 
The weight of t h e  s t reaml ine  ex te rna l  f u e l  tanks and t h e  
weight of t h e  tank wing were assumed t o  be 15/85 of t h e  
weight of t h e  f u e l  t h e  tanks are capable of carrying. The 
weight of t h e  wing-tip extensions w a s  taken as 3 pounds per 
square foot  of area added, The loadings used f o r  t h e  sev- 
eral modifications of t h e  a i r p l a n e  t h a t  w e r e  considered i n  

321 



t h e  ca l cu la t ions  are given i n  t h e  following tab le :  

ro t a1  f u e l  
capacity 

(gal) 
Condition 

Empty 
weight 

Ob)  

Normal a i rp l ane  300 

300-gallon e x t e r n a l  
tank added 

11,000 

5-foot wing t i p s  
added 

600 

300 

600 

300 

600 

5-foot wing t i p s  and 
300-gallon ex te rna l  
tank added 

11,319 

11,155 

11,474 

11,300 

11,619 

10-foot wing t i p s  
added 

10-foot wing t i p s  and 
300-gallon ex te rna l  
tank added 

Cake-o f f 
weight 

(lb) 

12,890 

15,092 

13,043 

15,247 

13 , 188 

15,392 

1.172 

1.333 

1.168 

1:328 

1.166 

1.324 

Calculation of take-off distance.- Take-off d i s tances  

For t h e  land-base take-offs, 
from both a land base and a c a r r i e r  w e r e  computed f o r  t h e  
various a i r p l a n e  conditions.  
t h e  d i s t ance  required t o  clear a 50-foot obs t ac l e  w a s  in- 
cluded. 
t h a t  t he re  w a s  no wind. The ground-run d is tances  w e r e  
computed by t h e  method of reference 2. The take-off speed 
w a s  taken as 5 percent i n  excess of t h e  power-off s t a l l i n g  
speed and t h e  ro l l i ng - f r i c t ion  coe f f i c i en t ,  as 0.05. A i r -  
run d is tances  were estimated from the  r e s u l t s  of step-by- 
s t e p  in t eg ra t ions  of t h e  air-run f l i g h t  path,  based on 
t h e  assumption t h a t  t h e  l i f t  coe f f i c i en t  a t  which t h e  air- 
plane takes off would be maintained up t o  t h e  50-foot 
height.  For t h e  c a r r i e r  take-offs, only t h e  d i s t ance  re- 
quired t o  a t t a i n  take-off speed w a s  ca lcu la ted .  Estimation 
of take-off speed w a s  based on t h e  assumption t h a t  t h e  t a i l  
wheel would be i n  contact with t h e  deck a t  take-off. The 
a i rp l ane  w a s  assumed t o  be equipped with partial-span 
s l o t t e d  f l a p s  t h a t  would be def lec ted  30' f o r  carrier take- 
o f f s .  The deck-wind ve loc i ty  w a s  taken as 25 knots and t h e  
r o l l i n g - f r i c t i o n  c o e f f i c i e n t ,  as 0.02, The method of re fer -  

It w a s  assumed t h a t  f l a p s  would not be used and 
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ence 2 w a s  used f o r  t h e  ca l cu la t ion  of t h e  take-off d i s -  
tances.  

For both land-base and carrier take-offs, account 
w a s  taken, as w e l l  as poss ib le ,  of t h e  e f f e c t s  of s l ips t ream 
and proximity of t h e  ground. L i f t  increments due t o  t h e  
s l ips t ream w e r e  estimated from t h e  semiempirical formulas 
given i n  re ference  3. The p a r a s i t e  drag of p a r t s  of t h e  
a i rp l ane  i n  t h e  s l ips t ream w a s  assumed t o  be increased i n  
proportion t o  t h e  increase  i n  dynamic pressure  i n  t h e  s l i p -  
stream. It w a s  assumed t h a t  t h e  induced drag associated 
with t h e  l i f t  increment due t o  t h e  s l i p s t r e a m  would be the  
s a m e  as though t h i s  l i f t  increment w e r e  obtained with a 
f l a p  having a span equal t o  t h e  s l ips t ream diameter. The 
e f f e c t s  of ground in t e r f e rence  on t h e  l i f t - cu rve  s lope  and 
induced drag w e r e  estimated on t h e  b a s i s  of Wieselsberger's 
adaptation of b ip lane  theory (reference 4 ) .  

RESULTS AND DISCUSSION 

Chart f o r  range and take-off distance.-  A cha r t ,  from 
which t h e  range, mean speed o r  dura t ion  of f l i g h t ,  and take- 
off d i s tances  from a land base o r  a c a r r i e r  may be estimated 
f o r  any of t h e  cases considered, has been constructed from 
t h e  r e s u l t s  of t he  ca l cu la t ions  of range and take-off d i s -  
t ance  and i s  given i n  f i g u r e  4 .  Values of t h e  range e f f i -  

ciency f a c t o r  11 li. are p lo t t ed  i n  t h e  upper left-hand 

sec t ion  of t h e  cha r t  aga ins t  a v a r i a b l e  speed scale j u s t  
below. This  p l o t  shows l i n e s  of constant mean speed 
sloping t o  t h e  l e f t  with increasing values of khe r a t i o  of 
take-off weight t o  empty weight, given on t h e  diagonal scale 
t o  t h e  r i g h t ,  and thereby takes  account of t h e  f a c t  t h a t  

t h e  speed corresponding t o  a given point on t h e  

f o r  a given condition increases  with increasing weight. 
Inasmuch as t h e  value of n / C  ( f ig .  3) f o r  a given speed 
is found t o  be p r a c t i c a l l y  independent of loading f o r  t h e  
engine-operating conditions assumed, t h e  value corresponding 
t o  a given value of 
The v a r i a t i o n ,  however, is s m a l l  and values of n / C  f o r  
t h e  airspeed corresponding t o  t h e  average of t h e  f u l l  and 
empty loading f o r  each a i rp l ane  condition were therefore  

curves. n L  used i n  determining t h e  -- C D  

C D  

curve C D  

L/D w i l l  vary somewhat with loading. 
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I n  t h e  upper right-hand sec t ion  of t h e  cha r t ,  curves 

and Wt/We f o r  con- T \ L  def in ing  t h e  r e l a t i o n  between -- 
C D  

s t a n t  values of range are p lo t ted .  The lower pa r t  of 
t h e  char t  shows t h e  v a r i a t i o n  with Wt/We of take-off 
d i s t ance  from a land base o r  a carrier f o r  t h e  var ious  
a i rp l ane  configurations.  

The method of using t h e  char t  is indica ted  i n  f ig-  
u r e  4 by t h e  clashed l i n e s  drawn between t h e  s m a l l  circles 
on t h e  curves and scales. The case i l l u s t r a t e d  is  t h a t  of 
estimating t h e  maximum range and dura t ion  of f l i g h t  of t h e  
normal a i rp l ane  f o r  which the  take-off d i s t ance  from a land 
base is l imi ted  t o  2500 f e e t .  
from t h e  2500-foot point on the  land-base take-off curve 
f o r  t h e  normal a i rp l ane  through the  Wt/We scale and up 
t o  t h e  range sec t ion .  

curve t o  i n t e r s e c t  t h e  r l L  from t h e  peak of t h e  proper -- 
C D  

v e r t i c a l  l i n e .  .!lL 
C D  

is  between t h e  peaks of t h e  no-external-tank and the  300- 
gallon-external-tank curves t o  take  account of t h e  f a c t  
t h a t  an intermediate external-tank s i z e  is required f o r  
t h e  case assumed i n  t h e  example.) 
t h e  hor izonta l  and v e r t i c a l  l i n e s  gives t h e  value of 
maximum range - about 2050 m i l e s  f o r  t h e  example. I n  
order t o  estimate t h e  mean ve loc i ty ,  a v e r t i c a l  l i n e  is 

A l i n e  is drawn v e r t i c a l l y  

Another l i n e  i s  drawn hor i zon ta l ly  

(It w i l l  be noted t h a t  t h e  va lue  of 

The i n t e r s e c t i o n  of 

T \ L  drawn down from t h e  point corresponding t o  t h e  value of -- C D  
used i n  determining t h e  range. The poin t  of i n t e r s e c t i o n  
of t h i s  l i n e  with a hor izonta l  l i n e  drawn from t h e  previously 
es tab l i shed  point on t h e  Wt/We scale g ives  t h e  mean speed 

of t h e  f l i g h t  - about 206 m i l e s  per hour f o r  t h e  example. 
The dura t ion  of t h e  f l i g h t  is  given by d iv id ing  t h e  range 
by t h e  mean speed and i s  found t o  be about 9.95 hours. 
The same procedure would be followed f o r  t h e  case of take- 
off from a c a r r i e r ,  using t h e  carrier take-off curves in- 
s tead  of t h e  land-base curves. 

Figures 5 and 6 have been prepared from t h e  cha r t  i n  
f i g u r e  4 t o  provide a more d i r e c t  comparison of t h e  var ious  
means f o r  increas ing  t h e  range. Figure 5 shows t h e  minimum 
take-off d i s t ances  and t h e  corresponding dura t ion  of f l i g h t  
p lo t t ed  aga ins t  range. 
take-off d i s t ances  with range when t h e  dura t ion  of f l i g h t  
f o r  a given range i s  t h e  s a m e  f o r  a l l  cases as t h a t  f o r  t h e  
o r i g i n a l  a i r p l a n e  operating a t  maximum ef f ic iency .  

Figure 6 g ives  t h e  v a r i a t i o n  of 
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Streamline ex te rna l  tank.- I n  f i g u r e  5 i t  is shown 
t h a t ,  by increasing t h e  f u e l  capacity of t h e  a i rp l ane  from 
300 t o  600 ga l lons  through t h e  use  of a s t reaml ine  ex te rna l  
tank, t h e  maximum range would be increased from about 1450 
t o  2600 m i l e s  o r  about 80 percent.  The take-off d i s t ance  
from a land base would be increased from 2160 f e e t  t o  
2960 f e e t  o r  about 35 percent,  From a carrier, t h e  take- 
off d i s tance  would be increased from 308 t o  500 f e e t  o r  
about 62 percent.  The ex ten t  t o  which an increase  i n  
take-off d i s t ance  from a land base would be acceptable 
depends, of course, on t h e  s i z e  of a i r f i e l d  ava i lab le .  
For carrier operation, however, any material increase  i n  
take-off d i s t ance  would probably be a se r ious  disadvantage. 

Tank wing.- The tank wing i s  e s s e n t i a l l y  a temporary 
means of providing added wing area i n  order t h a t  t he  
a i rp l ane  may t ake  off with a g rea t e r  f u e l  load f o r  c e r t a i n  
long-range missions and, a t  t h e  same t i m e ,  provides tank;  
space f o r  t h i s  e x t r a  f u e l .  This aux i l i a ry  wing would 
probably be mounted as t h e  upper wing of a b ip lane  as 
shown i n  f i g u r e  1. With such an arrangement, i t  would be 
t h e o r e t i c a l l y  poss ib le  t o  increase  t h e  e f f e c t i v e  span of 
t h e  a i rp l ane  t o  some exten t  but t h e  high aspect r a t i o  t h a t  
would be required f o r  t h e  a u x i l i a r y  wing would probably 
unduly complicate t h e  s t r u c t u r a l  problems. For t h e  pur- 
poses of t h i s  ana lys i s ,  it w a s  assumed t h a t  a tank wing 
of aspect r a t i o  5 with an  area of 80 square f e e t  and 
a f u e l  capacity of 300 gal lons  would represent  a reasonably 
p rac t i cab le  case. This arrangement e n t a i l s  a reduction i n  
t h e  e f f e c t i v e  span of t h e  combination of about 2 percent i n  
comparison with t h e  o r i g i n a l  a i rp lane .  The wetted area and 
hence t h e  parasite-drag increase  due t o  t h e  tank wing, 
furthermore, is about t w i c e  t h a t  of a body of revolu t ion  of 
equal volume. A s  a r e s u l t ,  t h e  a i rp l ane  with t h e  tank wing 
is  somewhat less e f f i c i e n t  than t h e  a i rp l ane  with a stream- 
l i n e  ex te rna l  tank. (See f i g s .  3 and 4.) 

The e f f e c t  of t h i s  reduced e f f i c i ency  shows i n  f i g u r e  5 
as a reduction i n  range from 2600 t o  2440 m i l e s  with a 600- 
ga l lon  f u e l  load. The tank wing does, however, give an 
increase  i n  range f o r  a given take-off d i s tance ,  because of 
t h e  g rea t e r  f u e l  load t h a t  can be car r ied .  For land-base 
operation, t h e  tank wing increases  t h e  range from 1440 t o  
2100 m i l e s  o r  about 45 percent f o r  t h e  same take-off d i s -  
t ance  as f o r  t h e  o r i g i n a l  a i rp l ane  with t h e  normal f u l l  f u e l  
load of 300 gallons.  For carrier operation, t h e  range would 
be increased t o  1750 m i l e s  o r  about 20 percent. The effec- 
t i veness  of t h e  tank wing f o r  carrier operation i n  comparison 
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with t h a t  f o r  land-base operation is reduced because t h e  
f l a p  on t h e  o r i g i n a l  wing is  used f o r  t h e  carrier take-offs 
and t h e  added wing area due t o  t h e  tank wing does not ,  i n  
t h i s  case, propor t iona te ly  increase  t h e  take-off l i f t .  

Wing-tip extensions.- Increasing t h e  span of an air- 
plane, o ther  t h ings  remaining equal, w i l l  proportionately 
increase  t h e  maximum range a t t a i n a b l e  with a given f u e l  
load. This f a c t  suggests t h e  use  of a u x i l i a r y  panels,  
at tached t o  t h e  wing t i p s  i n  place of t h e  removable t i p  
f a i r i n g s  (see f i g .  2 ) ,  as a promising means f o r  increasing 
t h e  range. 

Inasmuch as t h e  g r e a t e s t  range is  a t t a ined  a t  moderate 

Fur- 
speeds, it is  poss ib le  t h a t  t hese  temporary t i p  extensions 
could be constructed of f a i r l y  l i g h t  wood o r  p l a s t i c .  
thermore, because t h e  wing of a f i g h t e r  a i rp l ane  i s  designed 
f o r  loadings much g r e a t e r  than those encountered i n  level 
f l i g h t ,  major changes i n  t h e  main wing s t r u c t u r e  might not 
be necessary. It is suggested t h a t ,  by using a g r e a t e r  
t ape r  i n  t h e  t i p  extensions as shown i n  f i g u r e  2 and a t  
t he  same t i m e  s u i t a b l y  increasing the  camber of t h e  air- 
f o i l  s ec t ions ,  t h e  gust loads imposed on t h e  main wing 
s t r u c t u r e  by t h e  t i p  extensions can be considerably reduced 
without ma te r i a l ly  a f f e c t i n g  t h e  range o r  t h e  take-off 
d i s t ance  . 

The t i p  extensions would considerably reduce t h e  
la teral  maneuverability of t he  a i rp lane .  For t h e  a i r p l a n e  
considered, i t  i s  estimated t h a t  t i p  extensions of 10-foot 
span (over-all  span increased from 41 t o  61 f t )  would de- 
c rease  t h e  maximum value of t h e  t i p  h e l i x  angle 
a t t a i n a b l e  with t h e  a i l e rons  about 30 percent.  It is 
believed t h a t  t h i s  l o s s  i n  con t ro l  e f fec t iveness  would not 
be too se r ious  f o r  t h e  maneuvers which might be required 
i n  a long-range f l i g h t .  F l igh t  tests have shown t h a t  t h e  
moment of i n e r t i a  of an a i rp l ane  about its longi tudina l  
a x i s  can be a t  least doubled without ma te r i a l ly  a f f e c t i n g  
la teral  maneuverability; accordingly, t h e  added moment of 
i n e r t i a  due t o  t h e  t i p  extensions should have no not iceable  
e f f e c t  on t h e  response t o  a i l e r o n  control.  

pb/2V 

The r e l a t i v e l y  low s t a b i l i t y  t h a t  is  normally character-  
i s t i c  of fighter-type a i rp l anes  would tend t o  increase  p i l o t  
f a t i g u e  on a long-range f l i g h t .  
f o r  increasing t h e  range should the re fo re  be designed, in- 
so fa r  as poss ib le ,  t o  improve t h e  s t a b i l i t y ,  Increased 
longi tudina l  s t a b i l i t y  could be  obtained by providing sweep- 

The temporary devices used 
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back i n  the  wing-tip extensions or by properly disposing 
t h e  f u e l  load ca r r i ed  i n  ex te rna l  tanks. Wing-tip exten- 
s ions  might be designed with s u f f i c i e n t  d ihed ra l  angle t o  
improve s p i r a l  s t a b i l i t y ,  i f  necessary, i n  order t h a t  t h e  
p i l o t  could f l y  with rudder alone i n  smooth air. 

The use of wing-tip extensions,  e i t h e r  alone o r  i n  
conjunction wi th  s t reaml ine  ex te rna l  f u e l  tanks,  appears t o  
be t h e  most e f f e c t i v e  of t h e  means considered f o r  increasing 
t h e  range a t t a i n a b l e  with f i g h t e r  a i rp lanes .  Not only is  
t h e  e f f i c i ency  of t h e  a i rp l ane  increased, as shown i n  f ig-  
u re s  3 and 4 ,  with t h e  r e s u l t  t h a t  t h e  range with a given 
f u e l  load is g r e a t e r ,  but a l s o  t h e  added wing area w i l l  
g ive  a s u b s t a n t i a l  improvement i n  take-off d i s tance .  I n  
f i g u r e  5, t h e  maximum range of t h e  a i rp l ane  wi th  600 ga l lons  
of f u e l  is shown t o  be increased from 2600 t o  3030 m i l e s  
with %foot t i p  extensions and t o  3450 m i l e s  wi th  10-foot 
t i p  extensions. It is  a l s o  shown t h a t ,  without exceeding 
take-off d i s t ance  of t h e  o r i g i n a l  a i rp l ane  from e i t h e r  a 
land base o r  a carrier, t h e  range is increased from 1440 
t o  about 2400 m i l e s  o r  almost 70 percent with 5-foot t i p  
extensions and t o  about 3300 m i l e s  o r  between 125 and 130 
percent with 10-foot t i p  extensions. The wing-tip exten- 
s ions ,  i n  con t r a s t  with t h e  tank wing, appear equally 
e f f e c t i v e  i n  increasing t h e  range f o r  a given take-off 
d i s t ance  from e i t h e r  a land base o r  a carrier because t h e  
increased l i f t - cu rve  s lope  with t h e  wing-tip extensions 
g ives  a r e l a t i v e l y  higher take-off l i f t  f o r  t h e  f ixed  
angle of a t t a c k  of t h e  carrier take-offs than is  obtained 
with t h e  tank wing. 

Inasmuch as an increase  i n  span reduces t h e  airspeed 
at  which maximum e f f i c i ency  is a t t a ined ,  t h e  t i m e  of 
f l i g h t  over a given d i s t ance  w i l l  be g r e a t e r  with t h e  
wing-tip extensions than with t h e  o r i g i n a l  a i rp l ane  or  
with t h e  tank wing, i f  t h e  primary consideration i s  t h e  
attainment of a given range with t h e  least poss ib le  f u e l  
load o r  take-off d i s tance .  This case is  represented i n  
f i g u r e  5. When t h e  d i s t ance  t o  be flown is so g rea t  as 
t o  t a x  t h e  p i l o t ' s  endurance, i t  may be d e s i r a b l e  t o  f l y  
at  speeds higher than those a t  which maximum e f f i c i ency  
occurs, even though a g rea t e r  f u e l  load and take-off d i s -  
tance w i l l  be required. Comparison of f i g u r e s  5 and 6 
shows t h a t  t h e  f l y i n g  speed f o r  t h e  a i rp l ane  equipped with 
wing-tip extensions could be increased t o  the  ex ten t  t h a t  
t h e  dura t ion  of f l i g h t  f o r  a given range i s  t h e  same as f o r  
t h e  o r i g i n a l  a i r p l a n e  without s e r ious ly  increasing t h e  take- 
off d i s tances  f o r  a given range o r ,  conversely, without g r e a t l y  
reducing t h e  range a t t a i n a b l e  f o r  a given take-off distance.  
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C0NCLUI)ING REMARKS 

Of t h e  methods considered f o r  temporarily increasing 
t h e  range of fighter-type a i rp lanes ,  t h e  use  of a u x i l i a r y  
wing-tip extensions appears t h e  most promising. 
a i rp l ane  considered, i t  w a s  estimated t h a t  10-foot exten- 
s ions  - t h a t  is ,  an increase  i n  span of 20 f e e t  - used i n  
conjunction with an ex te rna l  f u e l  tank would increase  t h e  
range of t h e  a i rp l ane  125 t o  130 percent without any in- 
crease i n  t h e  d i s t ances  required t o  take  off from e i t h e r  a 
land base o r  a carrier. With 5-fOOt t i p  extensions,  t h e  
range would be increased 65 t o  70 percent,  under t h e  same 
l imi t a t ions .  

For t h e  

An a u x i l i a r y  wing of &foot chord and 20-foot span 
mounted above t h e  main wing and providing tank capacity 
f o r  300 ga l lons  of ex t r a  f u e l ,  w a s  shown t o  g ive  somewhat 
lower e f f i c i ency  i n  t e r m s  of m i l e s  per ga l lon  than t h e  
o r i g i n a l  a i r p l a n e  with t h e  e x t r a  f u e l  ca r r i ed  i n  a stream- 
l i n e  ex te rna l  tank. 
f u e l  load t o  be car r ied  f o r  a given take-off d i s t ance  
because of t h e  added wing area ,  and t h e  range would thereby 
be increased. For a given take-off d i s t ance  from a land 
base, t h e  increase  i n  range w a s  estimated t o  be about 45 
percent. 
be about 20 percent.  

The tank wing would permit a g rea t e r  

The increase  f o r  a given c a r r i e r  take-off would 

Increasing t h e  range 50 percent by carrying e x t r a  
f u e l  i n  streamline ex te rna l  tanks without any o ther  modi- 
f i c a t i o n s  t o  t h e  a i rp l ane  would e n t a i l  an  increase  of 
20 percent i n  take-off d i s t ance  from a land base and 
32 percent from a carrier. 

Se lec t ion  of t h e  most s u i t a b l e  method f o r  a p a r t i c u l a r  
appl ica t ion  w i l l  of course depend on o ther  f a c t o r s  besides 
t h e  a t t a i n a b l e  range and take-off performance, such as 
s t r u c t u r a l  problems, p i l o t  endurance, and area ava i l ab le  
f o r  take-off. For example, i f  i n  a given case t h e  dura t ion  
of f l i g h t  with ex te rna l  tanks alone i s  equal t o  the  endurance 
of t h e  p i l o t  and i f  t h e  area and the  span ava i l ab le  f o r  take- 
off are adequate, t h e r e  w i l l  be l i t t l e  advantage i n  t h e  use  
of more e f f i c i e n t  methods. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley F ie ld ,  V a ,  

328 



REFERENCES 

1. Diehl, Walter S . :  Engineering Aerodynamics. The 
Ronald Press Co., 1928, pp. 36-40. 

2. Hartman, Edwin P.: Considerations of the Take-Off 
Problem. T.N. No. 557, NACA, 1936. 

3. Smelt, R., and Davies, H.: Estimation of Increase in 
Lift due to Slipstream. R. & M. No. 1788, British 
A.R.C., 1937. 

4. Wieselsberger, C.: Wing Resistance near the Ground. 
T.M. No. 77, NACA, 1922. 

329 



EACA 

a
 

d
 

Y
 

330 



NACA 

Figure 3.- Variation with true nlrapaed of lift-drag ratio and ratio 
of propulsive efficieqc$ to specific fue l  coi~sumptjon for 

various modifications of fighter eilrplaile, Altitude 10,000 feet. 
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REPORT No. 798 

EFFECT OF HINGE-MOMENT PARAMETERS ON ELEVATOR 
STICK FORCES IN RAPID MANEUVERS 

By ROBERT T. JONES and HARRY GREENBERG 
- 

SUMMARY 

The importance of the stick force per unit normal acceleration 
as a criterion of longitudinal stability and the critical depend- 
ence of this gradient on  elevator hinge-moment parameters have 
been shown in previous reports. The present report continues 
the investigation with special reference to transient e$ects for 
maneuvers of short duration. 

The analysis made showed that dijerent combinations of 
elevator parameters which give the same stick force per unit 
acceleration in turns give wiclely dijerent force variations during 
the entries into and recoveries f rom steady turns and during 
maneuvers of short duration such as abrupt pull-ups. A com- 
bination of relatively large negative values of the restoring tend- 
ency C,,, and theJloating tendency Chal7 approaching those of 
a n  unbalanced elevator, results in a stick force that is high during 
the initial stage of a pull-up and then decreases, and may  even 
reverse, as the acceleration i s  reduced at the end of the maneuver. 
The stick force per unit acceleration i s  greater for  abrupt than 
for gradual control movements. 

I f  the negative value of Ch, is reduced so that the correspond- 
ing value of Ch,' becomes slightly positive, the reversal of force 
may  be eliminated and the force may  be brought nearly in phase 
with the acceleration. There i s  a limit to the permissible reduc- 
tion of the value of Cha, however, because as approaches zero 
the stick force per unit acceleration may  become 1ower.for abrupt 
than for gradual maneuvers and may thus lead to undesirably 
low stick forces at the beginning of the maneuver. 

INTRODUCTION 

The stick force per unit normal acceleration as measured 
in steady turns or pull-outs, which was proposed as a cri- 
terion of longitudinal handling in reference I ,  is now gen- 
erally accepted as a basic measure of longitudinal stability. 
The critical dependence of this stick-force gradient on ele- 
vator hinge-moment parameters and on mass unbalance of 
the control system was shown in reference 2. It was found 
that a given stick-force gradient can be obtained by any of a 
series of combinations of these parameters satisfying certain 
prescribed relations. 

Further consideration of the problem and some recent 
flight experience, however, have shown the need for inves- 
tigating the transient effects that occur during the change 
from steady unaccelerated flight to steady accelerated fight. 
These transient effects cause a difference between the stick- 
force gradients in a steady turn and in a maneuver of short 
duration such as a pull-up. 

The purpose of the present report is to investigate the 
74lm6-47 

__. 

variation of elevator stick force and normal acceleration 
during the transition interval preceding the shady turn and 
also during turns or pull-ups of short duration. The effect 
of combinations of hinge-moment parameters is considered; 
each combination is chosen to give the same stick-force 
gradient in a steady maneuver. Time histories of the stick 
force and normal acceleration are found for predetermined 
variations of elevator deflection. An attempt is made to 
explain and to suggest a remedy for the large variations of 
stick force with time observed during pull-ups cf short dura- 
tion on different airplanes in flight. A previous analysis, 
somewhat similar to the present one, was made in England 
(reference 3) but included a smaller range of hinge-moment 
parameters. 

SYMBOLS 

A aspect ratio of wing 
b wing span 

6, elevator hinge-moment coefficient 

CL airplane lit  coefficient (F) 
C ,  pitching-moment coefficient about airplane 

center of gravity (Pitchm;syment 

C wing chord 
C ,  elevator chord 
D differential operator (dJds) 
FS stick force, pounds 
F,, . . . F5 cases representing particular combinations of 

hinge-moment parameters 

stick-force gradient in maneuvers 

acceleration of gravity 
hinge moment; positive when tends to lower 

elevator 
mass moment of elevator control system about 

elevator hinge; positive when tends to lower 
elevator 

radius of gyration of airplane about Y-axis 
tail length, half-chords 
mass of airplane 
normal acceleration per g of airplane due to 

curvature of flight path; accelerometer reading 
minus component of gravity force 

dynamic pressure 
wing area 
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S* elevator area 
S distance traveled, half-chords (2Vt/e) 
T period of elevator motion 
t time 
U 

V velocity 
Xa.c. 

independent variable used in Duhamel’s integral 

distance between center of gravity and aero- 

deflection of elevator per unit movement of 
dynamic center; positive when stable 

stick, radians per foot 
a! angle of attack, radians 
ffl  angle of attack at  tail, radians 
6 deflection of elevator; positive downward 
e angle of pitch of airplane 
x root of stability equation 
P airplane-density parameter (m/pSb) 
P mass density of air 
Subscript: 
max maximum 

.Subscripts a!, Da, D2a, ai, DO, 6,  and D6 indicate deriva- 

tives; for example, C m D o = s .  A dot over asymbol indicates 

differentiation with respect to time. 

METHOD OF ANALYSIS 

The following assumptions are made in the present analysis: 
(1) Variation in forward speed is negligible 
(2)  Stability derivatives are constant; that is, any possible 

nonlinearity of coefficients is negligible 
(3) Effects of power are negligible 
(4) Effects of control-system moment of inertia are 

negligible 
(5) Control-system mass unbalance is all located at air- 

plane center of gravity 
The equations of motion of an airplane subjected to a 

prescribed elevator motion can be obtained from reference 2 .  
If forward speed is assumed constant, there are three equa- 
tions of motion. The first two equations determine the 
motion of the airplane if the control motion is specified. 
The third equation determines the hinge-moment coefficient, 
which depends on the motion of the control surface and the 
airplane. These equations are 

(%+ 2ApD) CY- 2 ApDe= 0 (1) 

(Crn,+C,D,D+CmD,uD2)a!+ (CmDe-2ApkY2D)DO= - Cms6 ( 2 )  

(3) 
Equations (1) and (2)  are used to solve for a! in terms of 6. 

[ c h u  + (chDuD- h) D + ChD?uD21a! + ( c h D 8  + h) DO 
+ ( c h 8  + chDsD)6= ch 

The solution can be expressed in determinant form as 

Cf 6 is given as a function of time, the solution for a! is found 
by the method of operational calculus as follows: First a! is 
found for a unit change in 6. This solution is obtained from 

where F(D) is the determinant given in equation (4) and 
X represents the roots of F(D)=O. The solution for a! 
(equation (5)) may be denoted by Z ( s ) .  The value of a! for 
a given variation of 6 is then given by Duhamel’s integral, 
which is 

a!=Z(s)6(0) + ~ Z ( S - U ) ~ ’ ( U )  du 

By a similar procedure DO can be found for a prescribed 
variation of 6. The angle of attack at the tail can then be 
found from 

aa! 
aa! a,=-t a!+lhDe 

The normal acceleration, which is considered positive up- 
ward, is proportional to the change in angle of attack a! and 
is given by 

v* CL, n=- ~ 

cg 2 A p  a! 

The value of the stick force can be obtained by substituting 
the derived values of a! and De and the given value of 6 in 
the hinge-moment equation (equation (3)). The relation 
between the stick force and C, is simply 

The assumed variation of elevator deflection with time is 
illustrated in iigure 1 and can be represented analytically by 

1 1 2n 6=6,,, (3-5 cos t )  

k T 
FIOVBE I.-Shape of curve ofelevator deflection sgsinst timeassumedin the analysis. 
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The calculations were made for a pursuit airplane for five 
different combinations of the hinge-moment parameters 
C,,,,, and h; for three different durations of the maneuver 
T; and for three different center-of-gravity locations. These 
five different combinations of the hinge-moment parameters 
were selected to give, for one center-of-gravity location, the 
same stick-force gradient in a steady turn, as determined by 
the formula for stick-force gradient in a gradual pull-up or 
steady turn given in reference 2, which is 

The locus of points in the C,,,,C,,, plane corresponding to 
a value of the stick-force gradient of 5 pounds per g and a 
center-of-gravity location 7% percent chord ahead of the 
aerodynamic center is shown in figure 2 for a mass-balanced 
and also for a mass-unbalanced elevator. The amount of 
unbalance corresponding to the line marked h=5 would 
require a pull of 15 pounds on the control stick for balance. 
The five points marked Fl ,  . . . F5 represent the com- 
binations of the hinge-moment parameters used in the 
calculations. 

NUMERICAL VALUES USED IN ANALYSIS 

The following parameters were used in the analysis: 
c,,= .__..__..._._________________________.~.-~-~~~~ 4.3 
........................................................ 12.5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
C, = _ _ _ _  .........___..______________ -0.348, -0.195,or -0.0464 
2, _ C . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . - - . . - . - . . . - . - - . - . -  0.075c, 0.042c, or 0 . 0 1 ~  

CmDZa--. . . .. .._. . ._. . ._. . . . ._. _ _  23.2 

k y ,  half-chords __._...._.___._._._.____________________..~ 1.5 

lh ,  half-chords ._._.........._.___.____________________..- 6.6 
dS/dx, radian of elevator motion per foot of stick travel._ __.__ 0.5 

a, 
Ch ___..._..._....._...____________________.~.~.~~~. 0.514Cn 

C ~ ,  ................................................... -8.9 
__. -. . . ._. . . . . . . . . .. . 

c,,, _______ .___~~__ . .~~~~~~~~~~~ . . . . . . . . ~ -~~~ .~~~~~~ . . .  -15.3 

C” ..................................................... -1.54 

ChDm.. .. . .. . ._._. . ._. . .. . . . - ._.__._. _. _. _-_. _ _  _ _ _ _  .. . 3.22Chm, 
Ch,? =__.__ _ _  _. _. _ _  -. _. _ -  _. _ - _ _ _ _  _ _  __._ .---.- .. .-_. . - 10.55Chaf 

ChD, .................................................... -1 

The following dimensions and density were assumed: 
e, feet .................................................. 7 
re, feet --.---------------------------..----....----.----- 2 
S., square feet _______________._.______________________... 30 
p, slug/eu ft; at altitude of 10,000 feet _______.__________._. 0.00176 

The foregoing airplane derivatives are for an airplane 
having a wing loading of 30 pounds per square foot. Five 
combinations of hinge-moment parameters selected to give a 
stick-force gradient of 5 pounds per g in a steady pull-up 
when the center-of-gravity location is 7% percent chord ahead 
of the aerodynamic center (see fig. 2) are as follows: 

B 1 4 i m ~  2.-Lines of constant stick-force gradient showing wmbinations of hinge-moment 
parameters used. F.=5 pounds per g; zo ..=O.O75c. 

All these values were used in calculatihg the variation in 
stick force during a maneuver for za =O.O75c. For quali- 
tative comparison, case Fl may be taken to represent a nor- 
mal elevator with a fairly high trailing tendency and a 
moderate amount of blunt-nose inset-hinge balancc. The 
characteristics of F2 or F3 could be achieved by the use of a 
sharp-nose inset-hinge balance, a horn bdance, or a beveled 
trailing edge; F4 combines a large amount of inset-hinge bal- 
ance with a bobweight at  the control stick; F5 is the case in 
which the stick force is due entirely to the bobweight. Two 
more-rearward center-of-gravity locations (z~.~, =0.042c and 
0.01~) were also assumed, and the stick force in maneuvers 
was worked out for cases Fl, F,, and F5. 

RESULTS 

Curves of stick force and normal acceleration for a varying 
elevator deflection are shown in figures 3,4, and 5 for T=4, 
2, and 1 seconds, respectively, for V=400 miles per hour, 
and for za.,.=0.075c. In  these curves, the stick force for F, 
reaches a maximum value before the peak acceleration and 
reverses direction in the latter part of the cycle. This effect 
becomes more pronounced as the duration of the maneuver 
becomes shorter. The curves for F2, F3, F4, and F5 show a 
progressively smaller phase difference between the stick force 
and the acceleration. The stick-force curve for F4 is most 
nearly in phase with the acceleration curve. 

The effect of center-of-gravity location on the stick-force 
gradient in steady turns or pull-ups can be shown in diagrams 
of the type of figure 2. Figure 6, for example, shows that the 
“maneuver point” (c.g. location for zero stick force per g) for 
case Fl is 4.2 percent chord ahead of the aerodynamic center 
(point where Cm,=O). For center-of-gravity locations behind 
the maneuver point, the stick-force gradient for case Fl is 
negative. The stick forces for F3 and F5, however, are un- 
affected by center-of-gravity location. 

The time histories of the stick forces in a %second maneu- 
ver for the cases shown in figure 6 for z~...=0.042c and 0 .01~ 
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0 1 2 3 4 5 6 7  
Time, t, sec 

FKX~E %-Stick fore and n o d  seaeleration due to  rapid elevator motion. T=4 seconds 
V = m  miles per hour;%'. r.=0.075c. 

are plotted in figures 7 and 8. In  figure 7, the stick force 
corresponding to Fl (cy. a t  maneuver point) is positive at 
first and then reverses and becomes negative. The maxi- 
mum values of the positive and negative forces are approxi- 
mately equal. As the center of gravity is moved behind the 
maneuver point for Fl (fig. 8), the negative maximum force 
is greater than the positive; this increase would be expected 
since a negative force is required to hold the airplane in a 
steady turn. The stick forces for F3 and F5 remain positrive. 
The elevator deflection required to produce a given accelera- 
t.ion, however, decreases as the center of gravity moves 
rearward. 

Airplane speed has no effect on the shape of the stick- 
force and acceleration curves, if compressibdity effects are 
neglected and if the product of speed and duration of maneu- 
ver is held constant; for example, the shape of the curves of 
figures 3 to 5 is unchanged if the speed is halved and the 
duration is doubled. The effect of increasing speed there- 
fore is the same as the effect of increasing duration in the 
same ratio. 

DISCUSSION 

Before the various elevator cases and degrees of stability 
for which the computations were made are discussed, i t  
appears desirable to explain the effects of the separate param- 

eters that combine to give the resultant elevator forces in 
pull-ups. These effects, as already stated, are the variation 
of hinge-moment coefficient with elevator deflection, BS 

indicated by Ch8; the variation of hinge-moment coefficient 
with angle of attack at  the tail, as indicated by Ch+ the 
variation of hinge moment with angular velocity of the 
elevator about its hinge; the mass unbalance (bobweight 
effect); and the effective moment of inertia of the elevator 
system. 

Because preliminary computations indicated that the 
inertia of the elevator system had a negligible effect on the 
stick force for the shortest maneuver assumed, it was 
neglected in the analysis. For airplanes larger than the one 
considered in this report and for other special cases, inertia 
of the elevator systrm may be an important factor. 

The influence of the important parameters is shown in 
figure 9, which gives a breakdown of the factors contributing 
to the stick-force curve for case F4 in figure 5.  Case F4 was 
chosen because it was the only condition in which all the 
parameters were combined. 

Figure 9 shows that the effect of C,, is to produce a com- 
ponent of stick force in phase with elevator deflection. The 
magnitude of this component of the stick force depends 
solely on the elevator deflection a t  a given speed and is 
independent of the duration of the maneuver. 
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FIGURE 5 -Stick force and normal acceleration due to rapid elevator motion. T=l second: 
V=4M) miles per hour,z, ..=0.075c. 

The normal acceleration produced by the elevator de- 
creases as the duration of the maneuver is made shorter. 
The stick force per unit acceleration due to the Ch8 term 
therefore increases as the maneuver becomes more rapid. 

The effect of the mass unbalance of a bobweight is to 
contribute a component of force that is in phase with and 
solely dependent on the normal acceleration of the airplane. 
The stick-force gradient due to the bobweight is therefore 
independent of duration of maneuver. Although figure 9 
deals with a mass unbalance that tends to depress the trailing 
edge of the elevator, in the general case the unbalance may 
be of the opposite sign so that push instead of pull forces 
result. 

The effect of C,,., is similar to that of the bobweight since 
the component of force caused by Chat is nearly in phase 
with the acceleration. The slight difference in phase be- 
tween the values of 0 1 ~  and n is the effect of the rate of change 
of airplane angle of attack. For maneuvers of short duration, 
this slight phase shift causes a noticeable difference between 
the action of Chmz and of a hobweight. 

FIGURE B.-Lines of mnstant stick-Iorw gradient. 6.=0 and 5 pounds prr a. 

Time, t, sec 

FIGURE 7.-Stick force and normal acceleration due to rapid elevator molion. T=2 seconrls; 
V=4w miles per hour: I. ..-O.O4Zc. 
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Trm- e- 

PlGVRE 8 -Stmk loree and normal acceleration due to lapid elevator motion. T=2 seconds; 
V=400 miles per hour, zo a =O Olc. 

The component of force due to the angular velocity of the 
elevator may be very important for maneuvers of short 
duration. It has the effect of reducing the stick-force 
gradients in cases in which the maximum force occurs after 
the elevator has reached maximum deflection. 

The cases for which the results are presented in figures 3 to 5 
were chosen to show the effects of different combinations 
of the hinge-moment parameters subject to the designer’s 
control. In  
case F,, the desired stick force for a steady turn is achieved 
by a balance of relatively large negative values of c h ,  and 
Char. The stick forces due to these two parameters are in 
opposite directions so that the net value in a steady turn is 
due to the difference in their effects. In a maneuver of the 
type shown in figure 1, the elevator-deflection curve leads 
the normal-acceleration curve; hence ch, has the pre- 
dominating effect in the initial stages of the maneuver and 
the negative Cl,et, in the later stages. This fact accounts 
for the high stick forces in the first half of the maneuver and 
the reversal of force in the second half for case Fl. The 
difference is more noticeable in the shorter maneuvers. As 
the duration of the maneuver decreases, the lag between 

The parameter C,,, is the same for all cases. 

FIGURE 9.-Components of stick force for ease Fd in fimrre 5. 

airplane motion and elevator deflection becomes greater and 
the maximum value of the acceleration for the given elevator 
deflection becomes smaller. Both of these factors tend to 
reduce the importance of the Cha, component in the early 
part of the maneuver and to increase the maximum force 
required for a given maximum acceleration. This variation 
of maximum force per unit maximum acceleration shown in 
figure 10 is quite large. 

For case F,, the desired stick force for steady turns is 
achieved through the action of Ch, alone. All curves for F2 
would have the same magnitude for any duration of maneuver 
and would be in phase with the elevator-deflection curve but 
for the contribution of ChD6- The effect of Ch,, increases 
with the rapidity of the elevator movement and causes a 
phase shift in the force curve relative to the elevator deflec- 
tion, which results in a slight increase in the maximum value 
for the shortest maneuver. A slight push force near the 
end of the maneuver is produced by C,,,. Figure 10 shows 
that in case F2 the maximum force per unit maximum 
acceleration increases as the maneuver is shortened although 
not so much as in case F, 

The balance is achieved in case Fa through action of 
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c h a t  alone. In this case, the maximum stick force at- 
tributed to c h a r  is nearly in phase with the acceleration and, 
consequently, the maximum value occurs after maximum 
elevator deflection when the elevator is being moved back 
to its original position. The forces at the beginning of the 
maneuver are consequently smaller than in cases Fl and F2 
and may be too small for satisfactory handling qualities. 
The effect of c h , ,  is to decrease the maximum force by an 
increasing amount as the maneuver becomes shorter. The 
discontinuity in the F3 curve (and also in the F4 and F5 
curves) for the 1-second maneuver results from the disap- 
pearance of the C,,, component a t  the completion of the 
elevator motion. Figure 10 shows that the maximum force 
per unit maximum acceleration for case F3 decreases as the 
maneuver is shortened; this effect is primarily a result of the 
action of ChDr 

Duration of maneuver, X sec 
FIGURE 10 -Maximum stick for* pcr unit maximum aceeleration against duration of 

maneuver. zo ..=O.O75c. 

For case F4, the stick force for steady turns is achieved 
mainly by a balance of negative c h a f  and bobweight effects. 
As a result of the large mass unbalance required, the maxi- 
mum force in the 1-second maneuver occurs at the end of the 
elevator motion. 

The stick force is achieved solely through the action of mass 
unbalance, or a bobweight, in case Fs. Computations have 
been made for only the 1-second maneuver. The action of 
the bobweight, as previously mentioned, is similar to that of 
Chnf but for a slight phase shift. The phase shift for a 
maneuver of short duration is sufficient to reduce the adverse 
influence of c h D 6 .  This case would show a slightly greater 
decrease of maximum force per unit maximum acceleration 
than case FA with decreased duration of the maneuver. 

The change of stick force with center-of-gravity location 

for case Fl, shown in figures 7 and 8, is caused by the greater 
angular response of the airplane to a given elevator deflec- 
tion that occurs with reduced stability. The greater 
response changes the balance between the Ohat and c h ,  com- 
ponents. If the stick force is independent of c h , ,  as in case 
F3 and Fs, the form of the stick-force curves is unchanged by 
variation of the center-of-gravity location. Figure 11 shows 
that the variation of maximum force per unit maximum 
acceleration in a rapid maneuver with center-of-gravity 
location becomes less as the value of C,,, is reduced. 

The adjustment of the elevator parameters so that the 
stick forces for steady turns are directly proportional to the 
normal acceleration produced and independent of center-of- 
gravity location is generally conceded to be desirable. It 
appears possible from the analysis to accomplish these con- 
ditions by m a k g  the stick forces depend primarily on c h , $  

or on a bobweight, provided the entrance and recovery are 
made slowly. It is not definitely known whether this con- 
dition of strict proportionality is desired in maneuvers of 
short duration. In  these cases, however, when the entry 

IO 
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86 \ 
c 4  

2 

0 I 2  3 4 5 6 7  

FIGURE 11.-Variation ofmaximum stick farce per unit maximum acceleration with canter-of- 
c.4 /ocaimn, percent chord' ahead o f  ax. 

gravity location. T=2 sewnds, V=4W miles par hour. 

and recovery are of necessity rapid, strict proportionality 
between stick force and acceleration appears impossible 
because of the action of ch, , .  According to figure 10, a 
stick-force gradient that is independent of duration of 
maneuver but varies somewhat with center-of-gravity loca- 
tion can be obtained for a case intermediate between F2 and 
F3. This case would correspond to a certain amount of 
negative Cn, and positive Ckmf and would also result in higher 
stick forces a t  the start of the maneuver. A bobweight 
that increases the stick forces can be substituted for the 
positive cam,. 

CONCLUDING REMARKS 

A small stick-force gradient in steady turns can be obtained 
with fairly large negative values of the restoring tendency 
Ch, and the floating tendency c h a t ,  approaching those of an 
unbalanced elevator. Although suitable for slow maneuvers, 
this combination of parameters leads to a high initial value 
followed by a reversal of the stick force in abrupt maneuvers. 
This dficulty can be avoided and the stick force can be made 
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to follow closely in phase with the airplane normal1accelera- 
tion during both abrupt and slow maneuvers by decreasing 
the value of ch8 and by making ChQI slightly positive. 

If Cn, is made zero, the stick-force gradient depends entirely 
on a positive value of C,,, and is unaffected by the location 
of the airplane center of gravity. In  this condition, however, 
the stick force required to initiate a maneuver may be unde- 
sirably light. I n  order to prevent undesirably light stick 
forces a t  the beginning of a maneuver, a small negative 
must be retainefi. 

The use of a bobweight in tlir e,evator control system has 
an effect similar to that of increasing ChQ. although, in rapid 

LANGLEY MEMORIAL AERON-4UTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., October II, 194.  
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MEMORANDUM REPORT 

f o r  t he  

Army A i r  Forces ,  Materiel Command 

VIND-TUNNEL INVESTIGATION OF A BEVELED AILERON SHAPE 

DESIGNED TO INCREASE THE USEFUL DEFLECTION RANGE 

By R. T. Jones and W. J. Underwood 

INTRODUCTION 

The u s e f u l  range of d e f l e c t i o n  of a c o n t r o l  s u r f a c e  
is o r d i n a r i l y  l i m i t e d  by t h e  occurrence of flow sepa- 
r a t i o n  on t h e  convex s i d e  of t he  su r face  behind t h e  
hinge.  Af t e r  t h i s  s e p a r a t i o n  occurs  t h e  hinge moment 
i n c r e a s e s  r ap id ly ,  making i t  extremely d i f f i c u l t  t o  
d e f l e c t  t h e  a i l e r o n  beyond t h i s  p o i n t  a t  high speed. 
An a i l e r o n  fol lowing t h e  shape of t he  o r i g i n a l  a i r f o i l  
forms an o u t s i d e  c o m e r  on one s i d e  of t h e  f l a p  hinge 
when i t  is  d e f l e c t e d  through a s m a l l  angle.  The 
increased  l o c a l  v e l o c i t y  around t h i s  corner ,  which i s  
followed by an adverse p re s su re  g rad ien t ,  is r e spons ib l e  
f o r  t h e  flow sepa ra t ion .  

When beveled a i l e r o n s  w e r e  cons t ruc ted  f o r  t h e  
XP-51 a i r p l a n e ,  t he  beve l  w a s  b u i l t  up by spreading  
t h e  upper and lower s u r f a c e s  apart behind t h e  h inge  
(see f i g ,  1, conf igura t ion  B,  and f i g .  2 of r e fe rence  l ) ,  
making a s l i g h t  i n s i d e  corner  on each su r face .  During 
t h e  f l i g h t  tests, i t  w a s  noted t h a t  t h e s e  a i l e r o n s  
showed a somewhat g r e a t e r  u s e f u l  range of d e f l e c t i o n s  
and gave s l i g h t l y  b e t t e r  c o n t r o l  a t  low speed than d id  
t h e  o r i g i n a l  a i l e r o n s .  

I n  an at tempt  t o  f u r t h e r  i nc rease  t h e  u s e f u l  range 
of angular  d e f l e c t i o n s ,  t he  a i l e r o n  shown i n  f i g u r e  1, 
conf igu ra t ion  C,  w a s  designed. The more pronounced i n s i d e  
corner  a t  t h e  a i l e r o n  h inge  po in t  causes an i n i t i a l  posi-  
t i ve  p res su re  peak, so t h a t  a c e r t a i n  amount of def lec-  
t i o n  is p o s s i b l e  be fo re  t h e  p re s su re  curve becomes f l a t .  
The purpose of t he  p re sen t  i n v e s t i g a t i o n  made i n  t h e  
Langley Memorial Aeronaut ica l  Laboratory two-dimensional 
low-turbulence tunne l  w a s  t o  determine the  gene ra l  
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aerodynamic c h a r a c t e r i s t i c s  of t h i s  a i l e r o n  and, i n  
p a r t i c u l a r ,  t o  determine i ts  u s e f u l  angular  range. 

APPARATUS AND METHODS 

A scale model having a 36-inch wing chord and 
35.75-inch span w a s  made t o  correspond t o  t h e  measured 
o r d i n a t e s  of an in t e rmed ia t e  s e c t i o n  of t h e  a i l e r o n  
po r t ion  of t h e  wing (16 inches outboard from t h e  inboard 
end of t h e  r i g h t  a i l e r o n )  of t h e  XP-51 a i rp l ane .  The 
wing s e c t i o n  w a s  modified a f t  of t h e  70-percent chord 
p o i n t  i n  o rde r  t o  f a i r  i n  t h e  0.150-chord a i l e ron .  
(See f i g .  1, conf igura t ion  C.) The ordinatBs of t h e  
modified wing s e c t i o n  forward of t h e  a i l e r o n  hinge l i n e  
and t h e  o r i g i n a l  measured o r d i n a t e s  of t h e  p l a i n  wing 
are given i n  t a b l e  I. 

The a i l e r o n  shapes t e s t e d  are shown i n  f i g u r e  2. 
T h e  t h r e e  a i l e r o n s  w e r e  hinged a t  the  85-percent chord: 
po in t .  Therefore ,  w i th  t h e  0.145-chord a i l e r o n  t h e  
wing chord w a s  reduced approximately 0.2 inch. I n  t h e  
s e a l e d  condi t ion ,  t h e  a i l e r o n  nose gap w a s  s e a l e d  wi th  
t h i n  rubber dam. 

For t h e  low-drag condi t ion ,  t h e  model w a s  f i n i s h e d  
wi th  number 400 waterpaper t o  produce aerodynamically 
smooth sur faces .  For the  high-drag condi t ion ,  t he  
model s u r f a c e s  w e r e  t h e  s a m e  as i n  t h e  low-drag condi- 
t i o n ;  b u t  roughness s t r i p s ,  made of carborundum g r a i n s  
embedded i n  g lue  on a 1-inch s t r i p  of Scotch t ape ,  
were placed on the  upper and lower su r faces  nea r  t he  
l ead ing  edge of t h e  model. 

L i f t  and drag measurements of t h e  model w e r e  made 
by t h e  methods descr ibed  i n  r e fe rence  2. The p r o f i l e -  
drag and l i f t  c o e f f i c i e n t s  w e r e  based on a nominal wing 
chord of 36 inches.  The a i l e r o n  hinge moments were 
measured by means of a c a l i b r a t e d  torque rod and t h e  
c o e f f i c i e n t  i s  based on t h e  a c t u a l  chord and span of 
t h e  a i l e ron .  

A l l  tests w e r e  made a t  a dynamic p res su re  of 
59.7 pounds p e r  square  f o o t ,  which corresponds t o  a 
v e l o c i t y  of about 150 m i l e s  p e r  hour and a test Reynolds 
number of approximately 4,000,000. 
given i n  t h e  fol lowing t a b l e .  

The test program is 
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Aileron de f l ec t ion ,  +30", f o r  a l l  runs 

Run no. Aileron 

1 
1 

1 

2 

2 

3 

3 

3 

0 
0 

0 

0 

0 

0 

0 

0, 24.1 
8 . 3  

Gap condition 

Seal 
N o  seal 

Seal 

Seal 

Seal 

Seal 

Sea l  

Seal 

Surf ace 
condition 

Smooth 
Smooth 

Roughness 
s t r i p s  

Smooth 
Roughness 

s t r i p s  
Smooth 

Roughness 
s t r i p s  

Roughness 
s t r i p s  

RESULTS AND DISCUSSION 

Effec t  of hinge-gap seal.- The e f f e c t s  of s ea l ing  
the  hinge gap on the  a i l e r o n  c h a r a c t e r i s t i c s  can be seen 
from the  r e s u l t s  presented i n  f igu re  3. With t h e  gap 
open the re  is a tendency f o r  a i l e ron  1 t o  overbalance 
f o r  s m a l l  def lec t ions .  
found i n  o ther  tests on beveled-trailing-edge a i le rons .  
As  shown i n  f i g u r e  3,  t h i s  tendency t o  overbalance w a s  
el iminated by sea l ing  t h e  gap t o  s top  the  flow of air. 
Apparently t h e  pressure d i f fe rence  r e s u l t i n g  from a 
s m a l l  de f l ec t ion  of the  a i l e ron  is  s u f f i c i e n t  t o  cause 
a l a rge  por t ion  of t h e  boundary l aye r  t o  flow from one 
s i d e  of t he  a i r f o i l  t o  t he  o ther  through t h e  hinge gap, 
accentuating t h e  e f f e c t  of the  bevel. I n  addi t ion  t o  
e l imina t ing  the  overbalance, s ea l ing  the  gap a l s o  reduced 
the  increment i n  l i f t  f o r  t he  l a r g e r  a i l e ron  def lec t ions .  
This i s  not  i n  agreement with the  usually favorable 
e f f e c t  of s ea l ing  the  gap of contour a i l e rons  o r  less 
severely shaped a i le rons .  
t he  e f f e c t  of the hinge gap may, of course, be influenced 
by the  i n t e r n a l  pressure i n  the  wing. 

A similar tendency has been 

I n  a p r a c t i c a l  i n s t a l l a t i o n  
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boundary-layer t h i ckness  and p r o f i l e ,  i t  i s  t o  be 
expected t h a t  t h e  amount of ba lance  obta ined  may vary 
considerably w i t h  su r f  ace roughness and Reynolds number. 
Because t h e  boundary-layer th ickness  nea r  t h e  t r a i l i n g  
edge of t h e  a i r f o i l  is  i n t i m a t e l y  r e l a t e d  t o  t h e  drag  
c o e f f i c i e n t  and because t h e  form of t h e  boundary-layer 
p r o f i l e  nea r  t he  t r a i l i n g  edge varies l i t t l e  f o r  t h i n  
a i r f o i l s  a t  s m a l l  angles  of a t t a c k ,  i t  i s  t o  b e  expected 
t h a t  t he  ba lanc ing  a c t i o n  of t h e  beve l  can be r e l a t e d  
t o  t h e  drag  c o e f f i c i e n t  of t h e  sec t ion .  The e f f e c t s  of 
Reynolds number, p o s i t i o n  of t r a n s i t i o n ,  and s u r f a c e  
condi t ion  on a i l e r o n  c h a r a c t e r i s t i c s  may t h e r e f o r e  be  
c o r r e l a t e d  wi th  t h e i r  known e f f e c t s  on p r o f i l e  drag. 

The e f f e c t  of changes i n  p r o f i l e  drag  on the  a i l e r o n  
c h a r a c t e r i s t i c s  is i n d i c a t e d  by t h e  results presented  
i n  f i g u r e  4. The presence of t h e  roughness s t r i p s  
approximately doubles t h e  drag of t h e  a i r f o i l  s e c t i o n  
i n  each case. 
drag condi t ions  f o r  t h e  t h r e e  conf igura t ions  shows t h a t  
the s l o p e  of t h e  hinge-moment curve is  reduced f o r  s m a l l  
d e f l e c t i o n s  and t h e  increment of l i f t  i s  reduced f o r  
almost a l l  a i l e r o n  d e f l e c t i o n s  by t h e  a d d i t i o n  of t h e  
roughness s t r i p s  nea r  t h e  lead ing  edge of t h e  model. 

A comparison between t h e  high- and lowr 

For a conserva t ive  design,  t h e  c o n t r o l  s u r f a c e  
should be proport ioned so as t o  avoid overbalance wi th  
t h e  h i g h e s t  p rof i le -drag  c o e f f i c i e n t  t h e  wing would be 
expected t o  have i n  service. 

Although these  r e s u l t s  ( f i g .  4) may b e  taken as an 
i n d i c a t i o n  of t h e  e f f e c t  of drag  on a moderately t h i n  
a i r f o i l ,  i t  is  n o t  thought t h a t  t he  r e s u l t s  &an be  
s a f e l y  app l i ed  t o  a i r f o i l s  of g r e a t e r  th ickness .  On 
t h i c k e r  a i r f o i l s  t h e  boundary l a y e r  a t  t h e  t r a i l i n g  
edge is o f t e n  considerably n e a r e r  t h e  s e p a r a t i o n  p o i n t ,  
and t h e  behavior  of t h e  a i l e r o n  under these  circum- 
s t ances  may be q u i t e  d i f f e r e n t .  

E f f e c t  of a i l e r o n  p ro f i l e . -  The e f f e c t s  of a i l e r o n  
p r o f i l e  on t h e  a i l e r o n  c h a r a c t e r i s t i c s  are presented  i n  
f i g u r e s  4 and 5. 

I n  f i g u r e  4(a)  t he  hinge moment and l i f t  charac- 
terist ics are given f o r  a i l e r o n  1, which had a t r a i l i n g -  
edge beve l  angle  of 2 7 O .  I n  t h e  smooth cond i t ion ,  t h e  
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r e s u l t s  show t h a t  f o r  t h i s  moderate bevel angle the  
hinge-moment and l i f t  cha rac t e r i s  t ics are approximately 
l i n e a r  u n t i l  a down de f l ec t ion  of 25" is  reached. For 
upward de f l ec t ions  near -lo", an abrupt change occurs 
i n  the  s lope  of t he  hinge-moment curve. Although 
a i l e r o n  1 would give the  required lateral cont ro l  a t  
l o w  speeds, t h e  l a rge  negative value (-0.0053) of 
(ach/asa), combined with t h e  c h a r a c t e r i s t i c  pos i t i ve  
value of (ach/aa) 6, 

would r e s u l t  i n  too l a rge  s t i c k  forces  a t  high speeds 
t o  s u i t  present-day con t ro l  requirements. 
i n  f i g u r e  4(b), wing smooth, show t h a t  a i l e r o n  2 with 
a bevel angle of 30", an increase  of 3' i n  the  bevel 
angle of a i l e r o n  1, would a l s o  f a i l  t o  give the  required 
la teral  con t ro l  a t  high speed because of t h e  too l a rge  
negative value (-0.0044) of (ach/aSa),. The r e s u l t s  i n  
f igu re  4 (c ) ,  wing smooth, show t h a t  a i l e r o n  3 with a 
bevel angle of 33", an increase of 3* i n  the  bevel angle 
of a i l e r o n  2 ,  combined with a reduction i n  a i l e r o n  chord 
of 0 . 0 0 5 ~  had a value of -0.0020 f o r  (ach/a6a)a which 
should be low enough t o  give t h e  required lateral  cont ro l  
a t  high speeds on a pu r su i t  plane of conventional s i ze .  

f o r  beveled-trailing-edge a i l e rons  

The r e s u l t s  

A comparison of f igu res  4(a) ,  4(b) , and 4(c) shows 
t h a t  by increas ing  the  bevel angle from 27" t o  33" t h e  
s lope  of t he  hinge-moment curve is  progressively reduced 
a t  s m a l l  def lec t ions  , r e su l t i ng  i n  considerable curva- 
t u r e  of t he  hinge-moment curve, while the  l i f t -  
c h a r a c t e r i s t i c  curves remain about t he  same f o r  t he  
th ree  a i l e rons  . 

N o  contour a i l e ron  w a s  t e s t e d  f o r  comparison with 
t h e  modified a i l e ron ;  hence, i t  is  not poss ib le  t o  
state d e f i n i t e l y  t h a t  the  r e s u l t s  of these  tests show 
an increase  i n  the  range of usefu l  de f l ec t ion  over t h e  
usual contour a i l e ron ,  although low values of t he  hinge 
moment appear t o  be extended t o  g rea t e r  de f l ec t ions  than 
is  o r d i n a r i l y  found f o r  conventional shapes. 

Figure 5 gives a comparison of drag po la r s  f o r  t h e  
modified a i l e r o n  sec t ion  and the p l a i n  wing sec t ion  
with and without a 0 . 1 8 7 ~  contour a i le ron .  This com- 
parison shows t h a t  i n  the  range of test Reynolds number 
an increase  i n  minimum p r o f i l e  drag cdornin of about 
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0.0002 r e su l t ed  from deforming the  p l a i n  sec t ion  with a 
contour a i l e ron  t o  form the  modified sec t ion  and a i le ron .  

Because the  r e s u l t s  given i n  f igu re  6 ,  wing leading 
edge rough, showed t h a t  a 33" bevel angle would j u s t  
balance out t h e  a i l e ron  hinge moments with t h e  model a t  
0" angle of a t t ack ,  tests w e r e  made t o  determine the  
c h a r a c t e r i s t i c s  of a i l e r o n  3 with the  model, leading 
edge rough, at  o the r  angles of attack. These r e s u l t s  
( f ig .  6 )  show t h a t ,  as the angle of a t t a c k  w a s  increased 
from 0" t o  4.1" and t o  8.3",  a i l e r o n  3 showed pos i t i ve  
hinge-moment s lopes  i n  the  negative de f l ec t ion  range. 
It w i l l  be noted, however, t h a t  the  combination of r i g h t  
and l e f t  a i l e rons  is  not overbalanced. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley F ie ld ,  Va. ,  April  8, 1944. 
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TABLE I 

A I R F O I L  ORDINATES OF INTERMEDIATE WING SECTION OF XP-51 AIRPLANE 

Plain w i n g  section M o d i f i e d  wing sect ion 
X I C  

0 

.0125 

.025 

.05 

.075 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.60 

.70 

.80 
805 

.8125 

.815 

.8175 
82 

.85 

.90 

.95 

.998 
1.000 

YU/C 
0 

.0184 
,0267 
.0368 
.0438 
.0500 
,0598 
.0664 
.0717 
,0763 
,0787 
.0793 
.0790 
.0769 
.06 75 
,0520 
,0338 
.0326 

.0228 

.0133 

.0056 

.0011 
0 

Y L I C  
0 

-.0134 -. 0181 -. 0249 
-.0304 
-.0349 
-.0412 
-.0464 -. 0506 
-.0546 
-.0550 -. 0552 
-.0545 
-.(I530 
-.0447 
-,0319 
-.0168 
-.0163 
-.0156 
-.0154 
-.0151 
-.0143 
-,0113 
-,0066 
-.0024 
-.0011 
0 

X I  c 

.0125 

.025 

.05 

.075 

.10 

.15 

.20 

.25 

.30 
* 35 
.40 
.45 
.50 
e 60 
.70 
.80 
-85 

0 
Y U I  c 

0 
,0184 
.0267 
,0368 
.0438 
.0500 
,0598 
,0664 
.0717 
.0763 
.0787 
.0793 
.0790 
.0769 
.0675 
.0520 
,0328 
.0220 

Y L I C  
0 
-.0134 
-.0181 
-.0249 
-.0304 -. 0349 
-,0412 
-.0464 -. 0506 
-.0546 
-.0550 
-.0552 -. 0545 

I- 0530 
-.0447 
-.0319 
-.0173 
- .0080 
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Modified aileron sect ion - aileron 1 

0 -- Seal 
+ - - N o  s e a l  6,,0°; R ,  4 x 10 6 

6 Plain wing sect ion;  R, 6 x 10 ( f i g .  5 - ref. 3 )  - - - _ _ _  Plain wing gection with 0 . 1 8 7 ~  contour aileron; 
R, 6 x 10 ; no sea l .  ( f i g .  10 - re f .  3 )  

Plgure 5.- Comparison of the drag polars of  the modified 
r ing  sect ion w i t h  aileron 1 and the plain wing with and 
without a contour aileron. 
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Figure 6.-  Section aileron characteristics of aileron 3 on a 
scale model of the htermediate ning section of the 3 - 5 1  
airplane. Wing leadlng-edge rough, sealed; R, 4 x 10 . 
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REPORT No. 801 

A METHOD FOR STUDYING THE HUNTING OSCILLATIONS OF AN AIRPLANE WITH A SIMPLE 
TYPE OF AUTOMATIC CONTROL 

Iiy ROBERT T. JONES 

SUMMARY 

A method i s  presented .for predicting the amplitude and 
frequency, under certain simplijying conditions, of the hunting 
oscillations of a n  automatically controlled aircraft with lag in 
the control system or in the response of the aircraft to the controls. 
If the steering device i s  actuated by a simple right-left type of 
signal, the series of alternatingjixed-amplitude signals occurring 
(luring the hunting may  ordinarily be represented by a “square 
wave.” Formulas are given expressing the response to such a 
variation of signal in terms of the response to a unit signal. 
A more complex type of hunting, which may  involve cyclic 
repetition of signals of varying duration, has not been treated 
and requires further analysis. Several examples of application 
,)f the method are included and the results discussed. 

INTRODUCTION 

When an airplane or other aircraft is directed by a simple 
right-left signal from an automatic steering device, the 
result is usually a maintained hunting oscillation about the 
desired path. The amplitude of this oscillation is influenced 
by the amount of backlash or “dead spot” in the control 
system and by the damping of the motion of the airplane. 
In the following analysis the amplitude and frequency of 
these oscillations is investigated in terms of the response 
characteristics of the airplane. 

ANALYSIS 

The aiialysis is based on consideration of the response of 
the airplane (in terms of angle of yaw or pitch) to a continued 
(unit) signal (fig. 1).  This response may be calculated by 
the ordinary theory of dynamical stability and is conveni- 
ently represented in operational form (references 1 and 2) as 
follows: 

The unit response ordinarily occurs in the form 

from which is obtained 

Rl(t)=C(t)+(C,e~lr+Cze~zr+ . . .) (2) 

where Clt) is the steady-state motion, Cl and C2 are the 
constant coefficients of the Heaviside expansion, and XI, Xz, 
and so forth, are the nonzero roots of the characteristic 

- 
equation defining the natural periods of oscillation and the 
damping of the aircraft without signal. The function f ( D )  
and the particular solution C(t) depend on the time variation 
of control displacement produced by a signal and on the 
stability characteristics of the airplane in the degrees of 
freedom in which the control operates. (See reference 3.) 
In the case of a continued signal, the usual form of the func- 
tion C( t )  is 

where C, is the steady rate of turn called for by the signal 
and is a constant. (See fig. 1.) : 

C(t) = c-I+ cot 

Siqnal 

‘ rime. t 

FIGURE 1.-Typical responw to continued sigual. 

During a hunting oscillation, the automatic steering device 
reverses the signal periodically as the airplane swings through 
the desired heading. A typical hunting oscillation is shown 
in figure 2. Here it is assumed that the reversal of signal 
is delayed either because of a “dead spot” in the steering 
device or because of backlash in the control mechanism or a 
combination of the two. As indicated, the oscillation will 
have a fundamental period 2 ~ / w  (where w is the angular 
frequency of the hunting oscillation) but may also involve 
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components of higher frequency, depending on the natural 
modes of oscillation of the airplanc. Ordinarily, the shorter- 
period components do not have suEcient amplitude to cause 
a reversal of the signal during a half cycle. In these cases 
the variation of signal with time will be represented by a 
simple “square wave,” which niay be expressed as a function 
of time by 

(3) ( n = l ,  8,  5, . . .) 1 4 E- sin n w t  
r ,, n 

or, more convekently, by the imaginary part of the cor- 
responding exponential series; that is, 

where t = O  is taken to represent a time a t  which the signal 
becomes positive. 

4 
r----- 
I 

Dead spot 

““”J 

I. I<,URE L --Bunting osetilntion with “square” signal 

The response to the alteriiating signal is obtained by 
substituting expression (4) for the nnit function l(t) in 
equation ( 1 ) .  Thus, 

( 5 )  R ( t ) = I  P .  w,CD); E- e l n m  

I f  the airplane is inherently stable, so that transient efl’ects 
following the start of an oscillation disappear with time, the 
remaining steady oscillation will be represented by 

4 1  
n n  

Equation (ti) gives the forced oscillation of the airplane in 
response to an alternating signal in the form of a square wave 
of any frequency w. 

By investigating the form of these forced oscillations at 
various frequencies it will be possible to ascertain whether 
such oscillations, under the conditions of automatic control, 
will give rise to the assumed alternating signals of equal 
duration, and thus to establish certain ranges of w over which 
hunting of this type can occur. It will also be possible to 
establish, in these ranges, a correspondence between the fre- 
quency of the hunting oscillation and the magnitude of the 

dead spot. With the frequency determined, it is possible 
also to find the amplitude of the oscillation and the maximum 
deviation of the airplane from its path. 

In the simplest cases the required information may be 
obtained directly from equation (6) .  In the case of more 
complex motions, further analysis will be required as follows: 

As a first step, separate B l ( i n w )  into its real and imaginary 
parts 

W l ( i n w )  =A(no) + i ~ ( n w )  

The functions A and R may be plotted against n w  as in 
figure 3. These functions will show peaks near values of n w  

I .. . Resmant -... ,.“ frequencies %-.. ...I 
1 

FIGURE %-Ciirves showing in-&ihax nnd out-ut-phdw corni)oncncs uf reaponso I O  

periudic signs1 

corresponding to the resonant frequencies of the ahplane. 
Then, for any particular hunting frequency w, 

4 1  
R(t)  =; E- [A(nw) sin nwt+B(nw) cos nut] (7) 

n ?  

At the time of reversal of the signal sin nwt=O and 
cos nwt= f 1, the sign depending on whether the signal is 
becoming positive or negative. The amplitude of the response 
a t  this instant is therefore 

1 1 ’; 4L m J ) + p ( 3 w ) + p ( 5 w ) + .  . 

This amplitude will also be the amplitude of the dead spot. 
(See fig. 2.) A plot of 

4 1  
n n  

R,(w) =; E-B(nw)  (TL=~, 3, 5, . . .) 

can readily-be obtained from the curve of B in figure 3 and 
will show the periods of the hunting oscillation corresponding 
to various widths of dcad spot. 

The slope of the response curve at this same instant is 
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A METHOD FOR STUDYING THE HUNTING OSCILLATIONS OF AN AIRPLANE 

If the response to a positive signal is npgative (as in fig. I), 
in order that the motion represent a possible hunting oscilla- 
tion (that is, bc consistent with the assumed variation of 
signal), it is ncctlssary that 

( 1 )  R,?O 
for a positive dead spot, and that 

(11) R’,,>O 
indicating that the airplane crosses the dead spot in the 
proper direction. A further condition is that no more than 
one complete crossing of the dead spot occurs within one- 
half cycle; that is, 

(111) (0 > -R,; 
(See fig. 2.) 
is relatively simple to obtain 

The value of R(t) in the middle of a half cycle 

.I R , - ~ [ ~ ( , ! - ~ A ( : ~ ~ ) + - A ( ~ ~ : -  1 1 . 
5 

and may be used as a criterion, though RA is not necessarily 
thc maximum or minimuni value of R(t) (see fig. 4) and 
condition I11 may not be satisfied even though R,>-R,. 

4 

Half-cycle of hunting motion 

EIGURE 4.-Plot ot RA and Rs against frequency, showing approximate regions in whieh 
hunting osrillations arc possible and width of dead Spot in those regions. 

It should be noted that, in the regions excluded by the 
foregoing conditions, a more complex type of hunting 
oscillation involving a sequence of signals of different dura- 
tions may occur. In  these regions, the curves of R, and 
R, derived for the square-wave signal no longer apply to 
the condition of automatic control. These oscillations re- 
quire analysis beyond that presented in this report. 

EXAMPLES 

In order to demonstrate and check the procedure described, 
assume a simple response characteristic in which the air- 
plane immediately starts turning at a constant rate, as 
directed by the signal. With this response 

C” RI (D) = -- D 
- 

and, from equation (7), 

which is the FGurier series for a “saw-tooth” wave 90° out 
of phase with the signal. (See fig. 5.) In this case the 
response occurs without lag and the amplitude of the hunt- 
ing is exactly equal to the dead spot. The frequency w 
is xC0/2 divided by the width of the dead spot. 

->n <- w 

FIGURE 5.--Exsmple in which response is instantaneous. 

A simple example nearer the practical case is one in which 
In this case the signal causes a force F to act on a mass m. 

the response to a unit signal is 

F 1  R , ( D , = - - -  m D2 

and the hunting oscillation is seen to be 

4 F  1 R(t)=- -E, sin nwt  ~ r n  n w  

The expression is recognized as the Fourier series for a 
succession of parabolic segments (fig. 6). It should be 
noted that there is no component out of phase with the 
signal, with the result that RB is zero for all values of w. 
Hence the calculation shows no possibility of hunting with 
a finite dead spot. In  fact, it  can be seen from energy 
considerations that if a dead spot existed the oscillation 
would be divergent. 
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4 1  F-m,&z sin nwt F- l(t) 
I I 1 I I 

t 

Hunting osollaf~on, R(t]-g:&n& sm n w t  
'LI , /pO.robdic seqnenfsJ 

E s 
B 
d 

Unit response. 

PiouRE 6.-Huncing oscillation of mas? iited un by 1 0 ~ ~ 0  

lnteresting applications of the method arc furnished by 
cases in which the response to a signal shows a lag, possibly 
tluc to backlash in the control mechanism, in addition to a 
dead spot. A simple example of this kind is illustrated in 
figure 7. Here the response is similar to  that  in the first 
twxmplc (fig. 5 )  except for the time lag r .  Usc is made of 
the well-known lag operator crU. Thus, 

e-'" f ( t )  =J(t- 7) 

Applying this operator to the response in figure 5 gives 

c, . 
nu E1(+nu)=- (sin nwr+i cos nwr)=A+iB 

and, finally (equation (7)), 

4 C" R(t)==; (sin nor sin nwt+cos nu7 cos nut) 
n n u  

With the lagging response, the hunting oscillation is not 
coilfined to the amplitude of the dead spot and, in fact, 
hunting will occur with no dead spot. It is easily seen by 

A 
ond 
B 

0 

Pioui :~  7.-Example in which respumc shuns lag 

reference to figure 7 that  the half period of the osrillatioii 
in this case (no dead spot) is 
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REPORT No. 835 

PROPERTIES OF LOW-ASPECT-RATIO POINTED WINGS AT SPEEDS 
BELOW AND ABOVE THE SPEED OF SOUND 

By RORERT T. JONES 

SUMMABY 

Low-aspect-ratio wings having pointed plan forms are treated 
on  the assumption that the flow potentials in planes at right 
angles to the long axis ofthe airfoils are similar to the correspond- 
ing two-dimensional potentials. For the limiting case o f  small 
angles of attack and low aspect ratios the theory brings out the 
following signijcant properties: 

(I) T h e  lijt o f  a slender pointed airfoil momng in the direc- 
taon of i t s  long axis depends on  the increase in undth of the sec- 
tions in a downstream direction. Sections behind the section 
of maximum width develop no  lift. 

(2)  The spanwiserloading of such an airfoil i s  independent 
of the plan fo rm and approaches the distribution giving a 
minimum induced drag. 

( S )  T h e  lijt distr%bution of a pointed airfoil traveling point- 
foremost i s  relatively unaffected by the compressibility of the air 
below or above the speed of sound. 

A test of a triangular airfoil at a Mach number of 1.75 
verified the theoretical zvllues of lijt and center of pressure. 

INTRODUCTION 

The assumption of small disturbances in a two-dimensional 
potential flow leads to the well-known thin-airfoil theory 
of Munk (reference 1) and the Prandtl-Glauert rule (references 
2 and 3) a t  speeds less than sonic. At speeds above the speed 
of sound, application of the same assumptions leads to the 
Arkeret theory (reference 4) according to which the wing 
srctions generate plane sound waves of small amplitude. 
As is wdl known, the Ackeret theory predicts a radical change 
in tho properties of such wings on transition to supersonic 
vdocities and these changes have been verified by exprri- 
ments in supersonic wind tunnels (reference 5 ) .  

Both the Avk(,ret theory and the Munk theory apply to 
llic casr of a wing having a large span and a small chord. 
The present discussion is based on assumptions similar to 
those used by Adicrcit and  hiunk but covers the opposite 
extreme, namely, the* wing of small span and large chord. 
In the latter case the flow is expected to be two dimensional 
when viewed in planrs prrpendicular to the direction of 
motion. 

A theory for tlrc rectangular wing of small aspert ratio 
has been given by Bollay ( i r f ( w i w c ~  6). Bollay assumes a 
separated, or discontinuous, potential flow similar to the 
well-known Kirchoff flow and shows that under these 
rirrumstances the lift is proportional to the square of the 
angle of attack. Bolloy tlocss not consider tho effect of 
compressibility. The present treatment ('overs other plan 
forms and, although based on diEcrcnt assumptions, is not 

78887.549 

inconsistent with Bollay’s theory in the limiting case of small 
angles of attacli. 

By limiting the plan foims to small vertex angles, the 
properties of the wings in compressible flow a t  high subsonic 
and a t  supersonic speeds are also covered. Tsien (reference 7) 
has pointed out that Munlr’s airship theory (reference 8) 
applies to a slender body of revolution at speeds greater than 
sonic. The lift and moment of such a body are not ex- 
pected to change appreciably with Mach number. The 
present paper gives an analysis of the low-aspect-ratio air- 
foil based on similar assumptions and shows that little change 
of the lift distribution of an airfoil of pointed plan form lying 
near the center of the Mach cone is to be expected. 

SYMBOLS 
flight velocity 
angle of attack 
wing area 
aspect ratio (y) 
distance along axis of symmetry of pointed airfoil, 

measured downstream from nose 
spanwise distance, measured from axis of symmetry 
vertical distance from plane of wing 
time 
additional apparent mass (spanwise section) 
loca1 span 
chord 
derisity of air 
dynamic pressure -pV 
local lift force (per length dx) 

local lift coefficient’ ____ 

intlucecl drag 
induced-drag coefficient 
total lift 

(: 9 
(rlbldx) 

($1 lift coefficient 

surface potential 
spanwise-location parameter 
local pressure difference 
Mach number, ratio of flight velocity to speed of 

distance of center of pressure from nose of airfoil 
sound 

pitching-moment coefficient 
lift a t  Mach number M 
lift a t  zero Mach number 
maximum (used as subscript) 
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THEORY FOR WINGS OF LOW ASPECT RATIO 

The flow about an airfoil of very low aspect ratio may be 
considered two dimensional when viewed in cross sections 
perpendicular to the longitudinal axis. With this idealiza- 
tion, the treatment of the low-aspect-ratio airfoil becomes 
exceedingly simple; formulas are obtained that are similar 
in some respects to those derived by Munk (reference 8) 
and Tsien (reference 7) for an elongated body of revolution. 

Perhaps the simplest case from the analytical point of 
view is that of the long, flat, triangular airfoil traveling 
point-foremost a t  a small angle of attack. Viewed from a 
reference system at rest in the undisturbed fluid, the flow 
pattern in a plane cutting the airfoil a t  a distance x from 
the nose is the familiar turo-dimensional flow caused by a 
flat plate having the normal velocity Va. (See fig. 1.) 
Observed in this plane, the width of the plate and hence the 
scale of the flow pattern continually increase as the airfoil 
progresses through the plane. This increase in the scale 
of the flow pattern requires a local lift force I equal to the 
downward velocity Va times the local rate of increase of 
the additional apparent mass m', or 

dm' l=Vf f -  dt 

since 

dm' = pff-  dx 

By well-known formula from two-dimensional-flow 

b2 
4 

theory, 
m'=r-p dx 

where b is the local width of the plate. Hence 

dm' b db 
dx 

_- d X - r 2 p d x -  

and the lift I per length dx will be given by the expression 

db 
dx l=ra f V2b - dx 

Dividing by 4 V 2  and by t,he area b dx gives the local lift 
coefficient 

db e , = r f f  - dx 

When this flow is considered in more detail, it is found from 
the two-dimensional theory that the surface potential rp  is 
distributed spanwise according to the ordinates of an ellipse, 
that is, 

4J= f vffJ($Y- y2 

(2) 

where cos 6 =- and the sign changes in going from the 

= f V a Z s i n e  b 

Y 
bl2 

upper to the lower surface of the airfoil. (See fig. 2 . )  An 
instant later, in the same plane, the ordinates are those of a 
slightly larger ellipse, corresponding to an increase of 4. The 
local pressure difference is given by the local rate of increase 
of +, that is, 

d4J = 2 p v  - bX 

db 
= 2 p v  bb -- dx (3) 

where b+/bb is a function of y. 
the equation 

Differentiation of 4 yields 

or 
201 db - 

p sinedx (4) 

The pressure distribution thus shows an infinite peak along 
the sloping sides of the airfoil similar to the pressure peak 
a t  the leading edge of a conventional airfoil. The distribu- 
tion along radial lines passing through the vertex of the 
triangle (lines of constant 1J is unifcrm (fig. 3), however, 

and the center of pressure coincides with the center of area. 
Equations (1) and (4) show that the development of lift 

by the long slender airfoil depends on an expansion of thr 
sections in a downstream direction; hence a part of the 
surface having parallel sides would develop no lift. Further- 
more, a decreasing width would, according to equation (4), 
require negative lift with infinite negative pressure peaks 
along the edges of the narrower sections. In  the actualflow, 
however, the edge behind the maximum cross section will 
lie in the viscous or turbulent wake formed over the surface 
ahead; and for this reason it will be assumed that the infinite 
pressure difference indicated by equation (3) cannot be de- 
veloped across these edges. It is this assumption, corre- 
sponding to the Kutta condition, which gives the plate the 
properties of an airfoil as distinct from another type of 
body, such as a body of revolution. 

bI2 ) 

t "  

FIGURE l.-Flow patf2rn. FIGURE z.-Potential. 
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With the aid of the Kutta condition, it may easily be 
shown that sections of the airfoil behind the section of greatest 
width develop no lift. A potential flow satisfying both the 
boundary condition and the Kutta condition may be obtained 
by the introduction of a free surface of discontinuity behind 
the widest section. This surface of discontinuity (fig. 4) 
would be composed of parallel vortices extending down- 
stream from the widest section of the airfoil as prolongations 
of the vortices representing the discontinuity of potential 
over the forward part of the airfoil. This sheet, although 
possibly wider than the downstream sections of the airfoil, 
still satisfies their boundary condition, since the lateral 
arrangement of the vortices is such as to give uniform 
downward velocity equal to J7a over the entire width of the 
sheet including the rearward portion of the airfoil. Since 
the pressure difference across the airfoil is proportional to 
b+/bx and since this gradient disappears as soon as the 
vortices hecome parallel to the stream, no lift is developed 
on the rearward sections. 

Integration of the pressures in a chordwise direction from 
the leading edge downstream to the widest section will give 
the span load distribution and the induced drag. The span 
load distribution is 

or, from equation (31, ~ 

~~ bL = 2p v+ 
hY 

From equation ( 2 ) ,  

+= VU ' 2 2  sin e 

Hence bI&y is elliptical and independent of the plan form. 
With the elliptical span load the induced drag is a minimum 
and is equal to 

2 

dL 
bY 

A second integration of -- dy across the widest section 

gives the total lift, which is 

(6) 
7r "=& pv2ff! l ,na22 

----- 
I 
I 
1 I ~ I 

FIQURB I.--Pressure distribution. FIQUBE (.-Wake. 

r SPEEDS BELOW AND ABOVE THE SPEED OF SOUND 

The lift of the slender airfoil therefore depends only on the 
1 width and not on the area. If the l i f t  is divided by zpVzS 

and if the aspect ratio A is considered to be b,.,", then s 
CL=;Aa (7) 

and the induced-drag coefficient is 

From equation (8) it appears that the resultant force lies 
halfway between the normal to  the surface and the normal 
to the air stream. 

It is seen that in the case of a rectangular plan form the 
simplified formula (equation (4)) gives an infinite concen- 
tration of lift at the leading edge and no lift elsewhere, 
whercas a more accurate theory would show some distribu- 
tion of the lift rearward. If the rate of increase of the width 
becomes too great, the flow cannot beiexpected to remain 
two dimensional. It can be shown by examination of the 
known three-dimensional (nonlifting) potential flow around 
an clliptic disk (reference 9), however, that the two- 
dimensional theory gives a good approximation in the case 
of an elliptical leading edge, which indicates that the theory 

Aspect ratio, A 
FIGURE 5.-Comparison oi lilt calculate& by present theory for elliptical wings oi low aspecl 

ratio with results of Krienes (reference 10). 

is applicable over a large range of nose shapes. In figure 5 is 
shown a comparison of the lift calculated by the present 
theory for elliptical wings of low aspect ratio nith the 
results of the more accurate three-dimensional potential-flow 
calculations of Krienes (reference 10). The results are in 
good agreement up to aspect ratios approaching 1.  Appli- 
cation of equation (4) gives a center of pressure on the 
elliptical plan form a t  one-sixth of the chord. Figure 6 also 
shows this value compared with values given by Erienes' 
theory. In this respect it appears that the agreement is 
not so good as for the lift. 

EFFECT OF COMPRESSIBILITY 

In  order to show the effect of compressibility, use will be 
made of the theory of potential flow with small disturbances. 
Glauert (reference 2) and Prandtl (reference 3) have demon- 
strated that, a t  subsonic speeds, a distribution of potential 
satisfying Laplace's equation will satisfy the linearized 
compressible-flow equation if the distribution 4 (2, y, z)  is 
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Aspecf ratio, A 
FIGURE 6.-Compnrison of center of pressure cnlcnlated by present theory for elliptical 

wings of low aspect ratio with results of Krienes (leference 10). 

foreshortened along the direction of motion by the 
transformation 

This fact may be applied in a calculation procedure by start- 
ing with a fictitious airfoil longer in the x-direction than the 
true one and calculating the potential distribution for this 
airfoil by methods of incompressible flow. The correct 
dimensions and correct distribution of +- are then obtained 
when the transformation is applied. 

For the long slender airfoil, the potential distribution a t  
each section is similar to that for an infinitely long body; 
therefore d+/dx and hence the local pressures vary in inverse 
proportion to the length. The foregoing calculation pro- 
cedure gives a null result in this case, since the pressures 
calculated for the fictitious airfoil at M=O will be reduced 
in the same ratio that the length is increased and the Lorentz 
transformation to restore the correct length will also restore 
the same pressures as those obtained a t  M=O. Since 
b+/dz is unchanged by the transformation, the normal 
velocity component and hence the angle of attack are un- 
changed also. These results can be obtained by referring 
directly to the linearized equation for the potential 

(See reference 3.) If the airfoil is sufficiently slender, 
d2+/dx2 can be neglected in comparison with d+/dr except 
near the edge. Since the lift is proportional to d+/dx, the 
increase of the lift with Mach number can therefore be 
neglected in comparison with the lift. 

It is important to note that the theory of small disturb- 
ances is not limited to subsonic velocities and that, so long 

as the term (1-M2)  in equation (9) remains small, the 

solution in the region of the wing will continue to be given 
by the potential (equation (2)). Evidently the Mach num- 
ber cannot be increased indefinitely, for then the coefficient 
of d2+/dx2 will become so large that the first term will no longer 
be negligible. The required condition will be satisfied, how- 
ever, by adopting a pointed plan form with the vertex angle 
so small that the entire surface lies near the center of thc 

3% 

Mach cone (fig. 7). The condition of a small vertex angle is 
also necessary in order that the potential distribution of 
equation (2) may apply. In the case of a wing with a blunt- 
leading-edge plan form, abrupt changes in the flow arise on 
transition to supersonic velocities, and potential flow of the 
subsonic type no longer exists. 

The lift and lift distribution for rectangular surfaces a t  
supersonic speeds have been calculated by Schlichting (refor- 
ence 11). Figure 7 shows the variation of lift-curve slopc 
with Mach number as obtained from Schlichting's results for 
rectangular wings of two different aspect ratios and for the 
range of speeds in which the two Mach cones from the tips 
do not reach the center of the wing. In  t.he subsonic rnge ,  
values given by the Prandtl-Glauert rule are shown. These 
curves are compared with the values indicated by the present 
theory for a triangular wing lying near the center of the 
Mach cone. Figure 8 shows the travel of the center of pres- 
sure for these plan forms. It is to be noted that, with the 
blunt-leading-edge plan forms, the center of pressure travels 
from a point near thc quarter chord to a point near the mid- 
chord when the velocity is increased above the speed of 
sound. 

Mach number, ill 
FIGURE 'i.-Varintion of lift with Mnch numher for ciiflrrrnt 111.m frrins. 
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TESTS OF A TRIANGULAR AIRFOIL AT SUPERSONIC SPEED 

As a test of thc foregoing analysis, a small triangular air- 
foil in the form of a steel plate with rounded leading cdgcs 
was constructed and tested in the Langley model supersonic 
tunnel. The tests were made at a Mach number of 1.75. 
Figure 9 shows the details of the model and figure 10 sum- 
marizes the results of the test. At zero angle of attack a 
small lift and a small pitching moment occur, which are pre- 
sumably the result of the camber given the airfoil by round- 
ing off the leading edges in the manner shown by section 
A-A in figure 9. In general, the results are in good agree- 
ment with the theory if an allowance is made for this camber, 
as shown in figure 10. 

CONCLUSIONS 

1.  The lift of a slender, pointed airfoil moving in the di- 
rection of its long axis depends on the increase in width of 
the sections in a downstream direction. Sections behind 
the section of maximum width develop no lift. 

2. The spanwise loading of such an airfoil is independent 
of the plan form and approaches the distribution giving a 
minimum induced drag. 

3. The lift distribution of a pointed airfoil traveling point- 
foremost is relatively unaffected by the compressibility of the 
air below or above the speed of sound. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., May 11,1945. 
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REPORT No. 863 

WING PLAN FORMS FOR HIGH-SPEED FLIGHT 
By ROBERT T. JONW 

SUMMARY 

It is  pivinterl oui that, i n  the case qf a n  airfoil o f  inJnite as- 
pect ratio moving at a n  angle of sidedip, the pressure distribp 
tion i s  determined solely by that component qf the motion in a 
direction normal to the leading edge. A follows fhat the at- 
tachment of plane wauee to the airfoil at near-sonic or super- 
sonic speec1.s (Ackeret theory) may  be auoidecl a i d  the prersure 
drag may  be W ~ U C Q I I  by the use of plan forms in which the angle 
of sweepback i s  greater than the Mach angle. 

The analysis indicates that for aerodynamic pficiency, wings 
designed fo r  jlight at supersonic speeds should be swept back 
at a n  angle greater than the Mach angle and the angle q f  sweep- 
back should be such that the component q f  velocity normal to 
the leading edge i s  less than the critical speed of the airfoil 
sections. This principle may  also be applied to w’ngs designed 
-fnr subsonic speeds near the speed qf sound,.for which the induced 
ra!ocities result 
ciently great to shock waves. 

m the thickness tniaht ofhe  

INTRODUCTION 

The theory of potential flows with small disturbances is 
particularly suit,ed for application to aeronautiral problems 
because the assumptions of small disturbances and isen- 
tropic flows on which this theory is bawd agree with tlic 
requirements for efficient flight. Theories of large disturb- 
ances, which deal with tlic formation of shock waves, are of 
lesser practical interest since surh theories describe the losses 
of energy and the large drags assoriatsd with unsuitable 
forms. 

At subsonic speeds the assumption of small disturbances 
leads to the well-known thin-airfoil theory and the Prandtl- 
Glauert rule (references 1 and 2) ; whereas a t  supersonic 
velocities this assumption leads to the Ackeret theory 
(reference 3), according to which the wing sections generate 
plane sound waves of small amplitude. The assumption of 
small disturbances, although mathematically valid in the 
limiting case, does not, of course, insure that such a condition 
will exist with an actual body of finite thickness. Fortu- 
nately, experiments have been made that show in a general 
way the limits of applicability of this assumption. Of par- 
ticular interest are the experiments of Ferri (reference 4) and 
Stanton (reference 5 ) .  

At. present both the experiments and the theory have 
bren restricted primarily to the two-dimensional flow caused 
by motion of the wing at right angles to its long axis. For 
this case the theory shows a radical change in the properties 
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of tlic wing on transition from subsonic to supcrsonic speeds. 
A t  subsonic speeds the air flows smoothly over the wing scc- 
tion and no pressure drag arises. At angles of attack a 
suction forcc is developed on the nose of the airfoil of suf- 
ficient magnitude to bring the resultant air force forward 
relative to the chord axis to a position nearly a t  right angles 
to the rcllativc wind. As soon as the speed of sound is 
rsccetled, howevrr, the nature of the flow changes and these 
favorablc characteristics disappear. Instead there arise a 
pressure drag proportional to the squarc of the thickness and 
an additional drag equal to the lift times the angle of attack. 
These adverse effects are associated with the formation of 
plane sound waves by the airfoil. Predictions of the theory 
arc borne out  by experiments in supersonic wind tunnels. 

The purpose of the present report i,s to show how thc 
adverse effects of high speed may be minimized by the use 
of a relatively large angle of sweepback, so that the type of 
flow described in tlic Arlwret theory no longer occurs. Cer- 
tain cffects of sweepback have, of course, been known for 
somc time (refcrences 6 to 9). Kussner (reference 8) men- 
tions compressibility effects of sweepback a t  subsonic 
speeds. Busemann (reference 9) considers the effect of 
sweepback a t  supersonic speeds and points out that the 
drag associated with flows of the Ackeret type may be re- 
duced by the use of sweepback. Busemann does not, 
however, consider angles of sweepback greater than the 
Mach angle, which rcsult in a different type of flow. 

SYMBOLS 
angle of attack 
angle of sideslip or sweepback 
velocity components along T ,  y ,  c” 

coordinates 
transformed coordinate 
wing span 
wing chord; velocity of sound 
thickness 
velocity of flight 
disturbance-velocity potential 
lift 
drag 
lift coefficient 
drag coefficient 
Mach number 
local pressure difference 
dynamic pressure 

spanwise-location parameter 
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THEORY OF WING AT AN ANGLE OF SIDESLIP 

The primary effects of sweepback may be illustrated by 
considering the problem of a long and approximately cylin- 
drical airfoil a t  an angle of sideslip. Two such airfoils may 
then be combined (with due allowance for their interference) 
to give a sweptback plan form. 

First consider the airfoil with its long axis parallel to the 
x-axis and with the relative wind at an angle P. to the coordi- 
nate system as in figure 1.  By following equation (sa) of 
reference 2 the differential equation of the flow may be 
written 

The Prandtl-Glauert rule follows from the assumption 
that only the velocity component u is comparable to the 
velocity of sound. In  the present example both u and v, 
since they contain components of the flight velocity, are of 
the order of magnitude of the sound velociiy c. On the 
other hand, if the flow patterns in planes perpendicular to 
the long axis of the wing are similar (two-dimensional flow), 
the terms buldx and bvlbx vanish. 

If small velocity disturbances are assumed, the term w/c 
may be neglected and the term 1-2 may be replaced by 212 

1...., ---v cos /9 s 

FIGURE l.-Plac view of airfoil showing axes used in equation (1). 

v cos p 
1 - ( ~ )  where V cos 0 is the component of the flight 

velocity in the direction normal to the long axis of the wing. 
By using this relation and introducing the disturbance po- 
tential (6, there is obtained 

It is important to note that, the derivation of this equation 
involves no restriction on the flight ve1ocit.y V,  which may 
be subsonic or supersonic. The restriction is that the dis- 
turbance velocities b+/by and 34/bz be small relative to c. 

If Vcos p is less than the sound velocity c, the substitution 

yields Laplace’s equation 

and it follows that the flow patterns are similar to those 
occurring in an incompressible fluid except for an increase 
of the pressures in t,he ratio 

If V cos p is greater than e,  the substitution 

y ’ = Y v cos p 

results in the hyperbolic equation 

(5) 

which is the basis of the Ackeret theory. 
The derivation of equations (4) and (6) is actually a special 

case of a more general statement, namely, that the component 
of translation of a cylindrical body in the direction of its long 
axis has no effect on the motion of a frirtionless fluid. In 
the case of a wing of constant section moving through still 
fluid, the flow is determined by the normal components of 
velocity of its solid boundaries and these components in turn 
are completely specified by the component of motion in 
planes perpendicular to the axis V cos 0. When the normal 
component of velocity V cos 0 is less than sonic, then the 
wing-section flows are determined by solutions of Laplace’s 
equation. As is well known, these flows show no pressure 
drag due to thickness of the airfoil. On the other hand, if 
the normal component exceeds the velocity of sound, the 
flow patterns are of a different type and are characterized by 
plane sound s-aves. In this case a pressure drag arises and 
the suction for-? at the leading edge disappears (fig. 2 (a)). 
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WING PLAN FORMS FOR HIGH-SPEED FLIGHT 

(n) I -rm B > E .  

(h) V c o s B < c  

FIGURE ?.--Eff~ct 01 leadingedge angle on pressure distrihntion. 

A physical explanation of tlic occurrence of smooth flow 
patterns and pressure distributions at supersonic velocities 
is as follows: If V is greater than c but V cos 0 is less, then 
the angle of sideslip or sweepback is greater than the Mach 
angle (see fig. 2 (b)) and the airfoil will lie behind the charac- 
teristic lines along which pressure influences arc transmitted 
(Mac11 lines). Thus, although tlic fluid dircrtly upstream 
from a given section can rewivc no pressurc signal from this 
section. the flow behaves as though it did receive such signals 
because of the successive influenc3e of similar sections farther 
upstream along the airfoil. The streamlines will thus be 
caused to curve and follow paths appropriate to a subsonic 
flaw, although the speed is everywhere supersonic. 

Figure 3 illustrates the effect of sweepback on the change 
in cross section of a stream tube passing near the upper sur- 
face of a cambered airfoil. As is well known, the equations 
of fluid motion show a reduction in the area of a stream tube 
in the region of increased velocity above the airfoil when the 
velocity of flight is subsonic but show an increase in the 
rross section when the velocity of flight is supersonic. In 
figure 3 the component normal to the leading edge T' cos 0 
is subsonic; and hence in section view the strcumlincs, follow- 
ing the pattern for subsonic velocities, appear to contract as 
they flow over the upprr surfacse. In  plan view, however, 
the resolution of velocities shows that the flow lines bend RF 

Plan view 

Section view 

FIGCRB 3.-Chdngc in area of stream tube over upper surfnee ofsweptback wing. 

they pass over the wing in such a way as to increase the 
stream-tubc area. In case the velocity of flight is super- 
sonic, the latter effect must predominate, as is required by 
the equations of motion. ' 

The order of magnitude of the pressure-drag coefficient. 
and its variation with angle of sweepback are indicated by 
figure 4. The calculations were made by applying the 
Ackeret theory and formulas (4) and (5) to a wing of infinite 
aspect ratio. A simple biconvex wing section was assumed 
and the angle of attack was varied so as to maintain a con- 
stant lift coeffcient of 0.5. The calculations were made for 
a Mach number of 1.4, with the result that a t  45" the angle 
of sweepback becomes equal to the Mach angle and the 
factor 

becomes infinite. At this point the pressure drag due to 
tliirkncss becomes infinite and the drag due to angle of 

t attack (shown by the curve marked z=O) vanishes. 
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i 
Section 

a des 
FIGUKE l.-Variation of pressiut? drag with angle 01 slieepbock lor inRnite aspect ratio. 

M-1.4; Cr,=0.5. 

In the case of a wing of finitr aspect ratio, it seems prob- 
able that in the regions of the center section and the tips 
pressure drags .of thr same order as those indicated for tliesc 
sections by the Ackeret theory will appear. If the wing is 
of sufficiently high aspect ratio, however, the fraction of the 
wing area affected will bc negligible and thc pressiirc drag 
will be nearly that given in figure 4. The other drags in- 
volved are: (1) skin-friction drag, which may be of the 
order of 0.01, and (2) induced drag, which for an aspect ratio 
of 8 is also about 0.01. 

WINGS OF FINITE SPAN AND THICKNESS 

Schlichting (reference 10) proposes a trapezoidal plan form 
with tips cut away a t  the Mach angle as the ideal supersonic 
wing, since in this case the wake has no influence on the lifting 
surface and the drag is no greater than that of a wing of infinite 
span. In the plan forms proposed by Srhlichting, however, 
the resultant forcr remains a t  right angles to the chord ; hence 
the pressure drag is equal to the lift tinies the angle of attack. 
With this type of flow thrre is 110 fnvorablr effect of aspect 
ratio. 

It is interesting to note that a favorable interferrnce may be 
obtained by separating the wing into lifting elements and 

staggering the elements in a rearward direction behind the 
Mach lines as in figure 5 .  In  the staggrred arrangement 
the upflow outside the vorticrs trailing from element A 
will be effective a t  the position of B and, although the lift of 
each element is a t  right angles to its chord, the upflow 
permits the angle of atatck of element B to be reduced for 
the same lift and hence the lift-drag ratio will be improved. 

According to Munk’s stagger theorem (reference 11) the 
over-all drag of a lifting system in an incompressible flow 
would not be altered by changing the d a t i v e  positions of the 
lifting elements along the direction of flight. In  the type of 
flow considered by hIunk, t,hereforc, a reduction in the drag 

A 

FIC.URE 6.-Staggcicd lifting elemrnts in supersonic floli. 

of clement B, caused by moving it into a position of greater 
upwash (that is, moving it backward relative to A), would be 
compensated by an equal increasr in the drag of olcment A, 
rrsulting from tho loss of upwash a t  A. (Sec fig. 5.) I n  
supersonic flow, however, this rcciprocd relation clocs not 
exist since a lifting clement can produc~~ no upwash ahcntl of 
its Mach cone. lifting elements sparrd a t  right angles to thr 
direction of fliglit therrforc have no favorable intrrfrrenw, 
and it is evident that the lift-drag ratio (miriot lw improved 
merely by increasing the aspect ratio of tlic lifting systrm. 
Favorable intrrferencc can be obtained only by arranging thr. 
lifting elements brliintl tbc Mach lines, as shown in figurr 5. 

Further analysis is needed to determine the flow near thc 
center section of thc swcptback wing bccaiise in this region 
the flow will not remain two-dimensional, as has twrn as- 
sumed. Departures from cylindrical flow rausctl by tlir tips 
will be small since their influence cannot extend forward of 
the Mach lines drawn from the points a t  which thrse dcpar- 
tures originate in the plan form. As pointed out by Busr- 
mann and Schlichting (references 9 and IO), cylindrical flow 
may be preserved right up to the tips by nitting them OR 
along the Mach lines. (Sre fig. 6.) 

At. large angles of sweepback th(J flow near t h c ,  vcrt.t.s is 
expected to be similar to that ovrr thc low-aspwt-ratio tri- 
angular airfoil discussed in refrrenrc 12. Figure 7 shows tho 
lift dist,ribution obtained in referrnce 12 and shows qualita- 
t ively the type of approximation involved. 
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FIGURE B.-Wing with tips cut away along the Mach lines. 

Finite thickness is expected to result in a pressure drag on 
those sections near the center of the wing and further study 
is also required to establish the flow due to thickness in this 
region. Some insight into the problem of flow near the cen- 
ter section may bc furnished by thc known solutions for 
supersonic flow in three dimensions (reference 13). Finite 
thickness may also cause pressure drag in regions where the 
How is two-dimensional if the induced velocities are great 
enough to cause shock waves. This effect may be avoided 
by increasing the angle of sweepback so that the normal 
component of velocity not only is subsonic but is less than 
the critical speed of the airfoil sections. This principle may 
also be applied to wings designed for subsonic speeds near 
the speed of sound. 

L.4NGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., June 23, 1945. 
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE No. 1081 

FLOW OVER A SLENDER BODY OF REVOLUTION 

AT SUPERSONIC VELOCITIES 

By Robert T. Jones and Kenneth Margolis 

SUMMARY 

The theory of s m a l l  disturbances is  applied t o  t h e  ca l cu la t ion  
of t he  pressure d i s t r i b u t i o n  and drag of a closed body of revolution 
t r ave l ing  a t  supersonic speeds. It is  shown t h a t  toward t h e  rear 
of t h e  body the  shape of t h e  pressure d i s t r i b u t i o n  i s  s i m i l a r  t o  
t h a t  f o r  subsonic flow. For f ineness  r a t i o s  between 10 and 15 t h e  
t h e o r e t i c a l  wave drag i s  of t h e  same order as probable values of 
t h e  f r i c t i o n a l  drag. 

INTRODUCTION 

Methods f o r  ca l cu la t ion  of t h e  flow over a body of revolu t ion  
t r ave l ing  a t  supersonic v e l o c i t i e s  have been known f o r  some t i m e .  
(See references 1 and 2.)  Inves t iga t ions  along these  l i n e s  have, 
however, been confined c h i e f l y  t o  bodies having the  form of 
a r t i l l e r y  p r o j e c t i l e s .  Such bodies, because of t h e i r  b lunt  forms, 
show r e l a t i v e l y  high drags and are thus not su i t ed  f o r  use on 
high-speed a i r c r a f t .  The drag of s lender  bodies and t h e  e f f e c t s  
of f a i r i n g  t h e  rear of these  bodies are the re fo re  of considerable 
i n t e r e s t  i n  connection with the  problem of f l i g h t  a t  speeds above 
t h e  speed of sound. 

I n  view of t h e  i n t e r e s t  i n  poss ib le  aeronaut ica l  app l i ca t ions  
i t  w a s  thought worth while t o  apply the  known methods t o  a 
p a r t i c u l a r  case of a closed body having both a tapered nose and a 
tapered t a i l .  Slender shapes described by t h e  r o t a t i o n  of 
parabol ic  a r c s  w e r e  chosen and t h e  r e s u l t i n g  pressure  d i s t r i b u t i o n s  
ca lcu la ted .  The r e s u l t s  are compared with those obtained f o r  
s i m i l a r  shapes i n  an incompressible f l u i d  and a l s o  i n  one case 
with a two-dimensional body having a s i m i l a r  c ross  sec t ion .  
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SYMBOLS 

X Y  Y, 

V 

a 

M 

B =  

r =  

P 

q 

AP 

$0 

$ 

r 
R 

d 

L 

slIlaX 

D 

C 
Da 

" 

z Cartesian coordinates 

undisturbed fluid velocity 

speed of sound in fluid 

Mach number (V/a) 

ACT-  - 
density of fluid 

dynamic pressure 

pressure increment 

velocity potential of single source 

velocity potential of continuous distribution 
of sources along x-axis 

abscissa of individual sources 

radius of body 

maximum diameter of body 

length of body 

maximum cross-sectional area 

drag 

drag coefficient based on maximum cross-sectional 
area (D/qSmx) 

drag coefficient based on 2/3  power of Dvol L 

D 
2 / 3  q(Vo1ume) 

volume 

CY c cons tan t s 
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METHODS OF CALCULATION 

The method used here in  follows c lose ly  t h a t  of re ference  1. 
Figure 1 shows t h e  shape of t he  body and t h e  o r i e n t a t i o n  of t h e  
axes. 
and t h e  flow i sen t rop ic  so  that t h e  l i nea r i zed  equation f o r  t h e  
p o t e n t i a l  of t h e  disturbance v e l o c i t i e s  4 w i l l  apply. This 
equation is (see re ference  2) 

The disturbance produced by t h e  body is assumed t o  be s m a l l  

A s  i n  t h e  case of an  incompressible f l u i d  t h e  flow over 
t h e  body can be obtained by t h e  add i t ion  of f l o w s  due t o  an 
i n f i n i t e  number of sources d i s t r i b u t e d  along t h e  a x i s .  The 
p o t e n t i a l  of a s i n g l e  source i n  a supersonic stream i s  

cv 
4o = 

k - B ( y  2 2 2  + z )  2 

where 

and B =  J M 2  - 1 

Figure 2 shows the  equipoten t ia l  l i n e s  f o r  the supersonic 
source compared wi th  those f o r  a source i n  an incompressible 
flow. I n  t h e  case of a source i n  an incompressible flow t h e  
equipoten t ia l  sur faces  are spheres,  given by t h e  expression 

cv 40 =- p----TT x + y + z  
(3) 

I n  t h e  supersonic case t h e  equ ipo ten t i a l  sur faces  are hyperboloids 
of two shee t s  contained within t h e  Mach cones. Although t h e  
mathematical expression has va lues  i n  two cones, one ahead of and 
one behind t h e  source, only t h e  values behind have physical 
s ign i f icance ,  
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It w i l l  be noted t h a t  t h e  d i s t r i b u t i o n  of v e l o c i t i e s  along 
t h e  x-axis i s  t h e  same f o r  t h e  supersonic source (equation (2)) 
as f o r  t he  subsonic o r  incompressible source (equation ( 3 ) ) .  
Since the  forward cone i s  t o  be disregarded i n  t h e  supersonic case, 
however, i t  i s  found t h a t  t h e  c o e f f i c i e n t  C i n  equation (2) 
must be doubled i n  order t o  produce t h e  same f l u x ,  o r  i n t e n s i t y ,  
as equation ( 3 ) .  The r e s u l t  is t h a t  t h e  v e l o c i t i e s  along t h e  
a x i s  behind a supersonic source are exac t ly  t w i c e  those of a 
subsonic source having the  s a m e  i n t ens i ty .  

The sources and s inks  are assumed t o  be continuously 
d i s t r i b u t e d  with i n t e n s i t y  2aVf(S) per u n i t  l ength  along the 
x-axis from -1 t o  1 .  The absc i s sas  of t h e  ind iv idua l  sources are 
denoted by 5. P o s i t i v e  values of f ( < )  denote sources and 
negative values denote sinks. 
t h e  s i n g l e  elementary sources 

By adding t h e  p o t e n t i a l s  due t o  
f(S)d< t h e  r e su lan t  flow 

is obtained. 

The problem is  t o  determine a source d i s t r i b u t i o n  i n  such a 
way t h a t  

where 
of revolution. It is  shown i n  re ference  1 t h a t  t o  a f i r s t  
approximation f o r  a s lender  body t h e  source s t r eng th  is  pro- 
po r t iona l  t o  t h e  rate of change of t h e  c ros s  sec t ion  of t h e  body, 
t h a t  i s  

dR/dx gives t h e  shape of t h e  meridian curve of t h e  body 

dR f ( x )  = R -  dx 

a s i m i l a r  approximation can be applied t o  ob ta in  t h e  source 
d i s t r i b u t i o n  f o r  a body i n  subsonic flow. The d i s t r i b u t i o n s  are, 
i n  f a c t ,  t he  same i n  t h e  two cases with t h e  exception t h a t  i n  t h e  
supersonic flow t h e  value of 
f o r  t he  elimination of t he  f l u x  through t h e  forward cones. 

f (x )  must be doubled t o  account 
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By choosing f (x) = c(x3 - x) and solving equation (6), the 
following expression for R was obtained: 

(7) 
2 R =  C (1 - X )  

2 
This expression may be recognized as the equation of a surface 
obtained by revolving a parabolic arc about its chord. The 
fineness ratio of the body is determined by the value assigned 
the factor c. 

On substituting c(C3 -5 ) for f(5) in equation ( 4 ) ,  the 
velocity increment a$/ax at point (x,r) is found to be -(see 
equation (9.5), p.39, reference 1) 

d5 (3E2 - 1) 

- El2 - B r2 2 

i- (3x2 - 1 i- 9 B2r2 

over the body. 

Along the axis 

cv (3x2 r 
behind the body 

x + l  - 1)  1% 

I 

The pressure coefficients were 

, 

the integration gives 

- 6x1 

calculated by the formula 
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RESULTS 

Calculations have been made for a Mach number of 1.4 and for 
three thickness ratios d/L of 0.0667, 0.10, and 0.15 corresponding 
to fineness ratios L/d of 15, 10, and 6.67, respectively. The 
results for the three bodies are shown in figures 3, 4 ,  and 5, 
respectively, and are compared with the theoretical pressure 
distributions over these bodies in an incompressible fluid. A 
discussion of the errors involved in the linear theory and the 
variation of the pressures with Mach number will be found in 
reference 3. 

Comparison of the distributions in a compressible fluid and 
in an incompressible fluid shows a certain similarity, especially 
toward the rear of the body. The effect of supersonic speed 
appears to be similar to the effect of a lag inasmuch as the 
negative pressure peak and the region of pressure recovery are 
displaced rearward. The pressures along the axis behind the body 
are just twice those produced by an incompressible fluid, as may 
be seen by referring to the velocity field of a single source. 

The results obtained herein for the three-dimensional body 
are in marked contrast to the results obtained for two-dimensional 
bodies, or wing sections, having similar cross sections. As is 
well known, in the two-dimensional case no pressure recovery 
takes place at supersonic speeds, the pressure at a point being 
determined solely by the inclination of the surface at that point 
so that positive pressures occur wherever the cross section is 
expanding and negative pressures occur wherever the cross 
section is diminishing. Figure 6 shows the comparison of the 
two-dimensional and three-dimensional bodies for the 0.10 
thickness ratio. 

The essential difference between the two- and three- 
dimensional flows corresponds to the difference noted by Lamb 
(reference 4 )  between the characteristics of a plane sound wave 
and an axially symmetrical wave diverging from a center. 
noted by Lamb, the plane wave, which corresponds in the present 
case to the flow produced by the two-dimensional wing section, 
is propagated indefinitely without change of form; whereas the 
axially symmetrical wave, which approximates that produced by an 
element of the slender body of revolution, does not follow the 
form of the disturbing motion but leaves a "tail" of diminishing 
intensity and indefinite extent. Thus the wing section leaves 
no pressure disturbance in its wake, whereas the axially 
symmetrical body is followed by an indefinite region of positive 
pressure. Integration of the axial components of the pressures 

As 
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Thickness r a t i o  

0.0667 
.10 
.15 

ac t ing  on t h e  body, however, shows t h a t  t h e  p o s i t i v e  pressure  a t  
t h e  rear of t h e  three-dimensional body is  s u f f i c i e n t  t o  cancel 
only a small f r a c t i o n  of t h e  t o t a l  p ressure  o r  wave drag. 

C 
‘Da Dvol 

0.14 0.032 
.17 .051 
.29 .ll 

The wave-drag c o e f f i c i e n t s  based on the  maximum f r o n t a l  area 
w e r e  found t o  be 0.049, 0.11, and 0.24 f o r  t he  bodies with thickness 
r a t i o s  of 0.0667, 0.10, and 0.15, respec t ive ly .  Figure 7 shows 
a comparison of these  values with t h e  wave drags of corresponding 
two-dimensional wing sec t ions .  It w i l l  be noted t h a t  t h e  wave 
drag of t h e  fuse lage  form i s  approximately proportional t o  t h e  
square of t h e  thickness r a t i o .  

An approximate estimate of t h e  t o t a l  drag of a body may be 
obtained by adding values of t he  f r i c t i o n a l  drag t o  t h e  wave drag. 
A r a t h e r  complete treatment of t h e  f r i c t i o n a l  drag of bodies of 
revolu t ion  a t  subsonic speeds i s  a v a i l a b l e  from reference  5. By 
use of values from reference  5 corresponding t o  a f u l l y  turbulent 
boundary l aye r  and a Reynolds number of 10 8 , t h e  following estimates 
of t h e  t o t a l  drags of the bodies w e r e  obtained: 

The drag of a given volume i s  an important c r i t e r i o n  i n  the  
case of an  a i rp l ane  fuse lage  and i t  w i l l  be of i n t e r e s t  t o  compare 
these  va lues  with a t y p i c a l  value a t t a i n a b l e  a t  subsonic speeds. 
For a Reynolds number of lo8 and a turbulen t  boundary l aye r ,  t he  
bes t  va lue  given by Young (reference 5) corresponds t o  a thickness 
r a t i o  of 0.2 and is  approximately 

C = 0.016 
Dvol 

CONCLUDING REMARKS 

The t h e o r e t i c a l  pressure d i s t r i b u t i o n  over a closed body of 
revolu t ion  t r ave l ing  a t  supersonic v e l o c i t i e s  shows a pressure 
recovery a t  t h e  rear of t h e  body s i m i l a r  t o  t h a t  occurring a t  
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subsonic speeds. The extent  of t h e  region of pos i t ive  pressure 
is, however, not  su f f i c i en t  t o  have a pronounced e f f ec t  on t h e  
wave drag. It appears t o  be necessary t o  use extremely slender 
shapes t o  obtain t o t a l  drag values comparable t o  those of a 
conventional a i rp lane  fuselage at  subsonic speeds. 
r a t i o s  between 10 and 15 the theore t ica l  wave drag is of the  same 
order as probable values of the  f r i c t i o n a l  drag. 

For fineness 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee f o r  Aeronautics 

Langley Field,  Va. ,  Ju ly  8 ,  1946 
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F i g u r e  7.- C o m p a r i s o n  of wave d r a g s  o f  two- and t h r e e - d i m e n s i o n a l  
b o d i e s  f o r  a Mach number o f  1.4. 

40 1 



Page intentionally left blank 



REPORT NO. 851 

THIN OBLIQUE AIRFOILS AT SUPERSONIC SPEED 

Robert T. Jones 

Langley Memorial Aeronautical Laboratory 

1946 

40 3 



Page intentionally left blank 



REPORT No. 851 

THIN OBLIQUE AIRFOILS AT SUPERSONIC SPEED 

By ROBERT T. JONES 

SUMMARY 

The well-known methods of thin-airfoil theory have been 
extended to oblique or sweptback airfoils of Jinite aspect ratio 
mowing at supersonic speeds. The cases considered thus j a r  are 
symmetrical airfoils at zero lijt hawing plan forms bounded by 
straight lines. Because of the conical f o rm of the elementary 
flow jields, the results are comparable in simplicity to the 
results of the two-dimensional thin-airfoil theory for  subsonic 
speeds. 

In the case of untapered airfoils swept back behind the 
Mach cone the pressure distribution at the center section is 
similar to that given by the Ackeret theory for a straight airfoil. 
Wi th  increasing distance f rom the center section the distribution 
approaches the .form given by the subsonic-$ow theory. The 
pressure drag i s  concentrated chiefly at the center section and 
or long wings a slight negative drag may  appear on outboard 

sections. 
INTRODUCTION 

In reference 1 it was pointed out that the wave drag of 
an infinite cylindrical airfoil disappears when the airfoil is 
yawed to an angle greater than the Mach angle. This 
observation led to the conclusion that the drag of a finite 
airfoil could be greatly reduced by the use of sufficient 
sweepback. With such a sweptback wing the wa-i-e drag 
would be associated with departures from the ideal two- 
dimensional flow a t  the root or tip sections and would thus 
be a function of the aspect ratio. The present report extends 
the theory of reference 1 to take account of these efl’ects. 

The treatment is based on the theory of small disturbances 
in a frictionless compressible fluid. The idealized fluid and 
its equations of motion are identical with those employed in 
acoustics in the theory of sound waves of small amplitude. 
The application of the theory is thus limited to bodies having 
thin cross sections so that the velocity of motion imparted 
to the fluid is small relative to the velocity of sound and so 
that the pressure disturbances produced are small relative 
to the ambieht pressure. 

The adaptation of the sound-wave theory to the aero- 
dynamics of moving bodies was suggested many years ago 
by Prandtl. The theory was applied by Ackeret (reference 2) 
to thin airfoils moving at supersonic speed. Ackeret’s 
treatment. is limited, however, to infinitely long cylindrical 
airfoils moving transversely. The present theory may be 
considered an extension of Ackeret’s theory to take into 

79524949 

account wings of finite span and wings having tapered or 
sweptback plan forms. In the case of sweptback plan forms 
the results are markedly different from those obtained by 
the Ackeret theory and approach. the values indicated in 
references 1 and 3. 

In reference 4 Busemann describes a method for cal- 
culating the supersonic flow over bodies which produce a 
conical pressure field. Busemann shows that the flow 
around cones of circular cross sections as well as the flow 
around the tip of a rectangular lifting surface satisfies 
this condition. The fact that a great variety of three- 
dimensional flows can be constructed by the superposition of 
conical and cylindrical flow fields leads to an essential sim- 
plification of the airfoil theory a t  supersonic speeds. 

The present treatment differs from Busemann’s in that it is 
further limited to flat bodies, that is, bodies which are thin 
in both longitudinal and transverse sections. This addi- 
tional restriction leads to a much simpler mathematical 
treatment and one which is applicable to a wide variety of 
airfoil shapes. Symmetrical nonlifting bodies arc also 
treated in reference 5 where use is made of integral expres- 
sions corresponding to the velocity potential of plane-source 
distribution. 

SYMBOLS 

V flight velocity 
A4 Mach number , 
x ,  y ,  z coordinates 
E 
z I  limit of integration 
C#J disturbance-velocity potential 
u, c, w disturbance-velocity components 
uz 
u 
p local pressure 

point on X-axis 

value of u at zz 
value of u for conjugate arrangement 

dynamic pressure -pV 

- 

4 G 9 
P density of air 
P,, Qn Legendre functions 
I source-strength factor 
D differential operator 
C, drag coefficient 
t thickness of wing 
m 
C chord of wing 

slope of line source (absolute value) 
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THE OBLIQUE LINE SOURCE 

The assumptions of small disturbances and a constant 
velocity of sound throughout the fluid lead to the well- 
known linearized equation for the velocity potential $ (see 
reference 6) 

(1 --2Gf2)$*,+ $uvS$**=O (1) 

The analysis is simplified by introducing the coordinates 

x1=x \ 

yl= JM2-1 y - - I  
%= JM-21 

Dropping the subscripts from the transformed coordinates 
gives 

$zz-#Jvv- +,z= 0 (3) 

According to the thin-airfoil theory the pressures on the 
transformed airfoil are given by 

dz and the slope of the airfoil surface 

of the streamlines near the chord plane; that is, 

is equal to the slope 

!e=!! 
dx V 

The use of the coordinate transformation, equation (2), will 
be understood in the following development. The results 
are therefore applicable directly to a Mach nuniber of Jz. 
For an equivalent airfoil at another Mach number the y- 
and z- coordinates of the surface will be multiplied by 
dM2- 1 while the pressure coeficients a t  corresponding 
points will be divided by the quantity M2- 1. 

The elementary solution of equation (3) for a point source 
is 

1 
A?= Jx2-y"22 

This solution is directly related to the subsonic potential 

In  the subsonic case the equipotential surfaces are, however, 
ellipsoids, whereas in the supersonic case the equipotential 
surfaces are hyperboloids limited by the Mach cone. (See 
reference 6 for the derivation of these elementary solutions.) 

Because of the linearity of equation (1) a solution may be 
used to denote one of the velocity components rather than 
the velocity potential. The specification of one component 
in this manner actually describes the whole flow field since 

the other components may be obtained by integrating the 
given component to obtain the velocity potential and then 
differentiating the results along the desired directions to ob- 
tain the desired components. This procedure is especially 
useful in the thin-airfoil theory, where the complete velocity 
field may not be required. 

Adopting the foregoing procedure, one may write 

S i c e  u is proportional to the pressure, such a solution cor- 
responds to a point source in the pressure field. The 
solution for an oblique line source may be obtained by 
integrating for the effect of a row of point sources along the 
line y = mx. It will be shown that such a line source satisfies 
the boundary condition for a thin wedge-shape body. This 
solution, as well as other expressions relating to oblique air- 
foils, can be most conveniently expressed by referring to the 
oblique coordinates 

z'= x- my 

y' = y - mx 

z'= J1 -m2 z 
~ 

(See fig. 1.) It may be shown that if any function f(x, y, z) 
is a solution of 

f21-fvy-f*.=0 

then f(x', y', 2') is also a solution. In particular, the point- 
source solution becomes 

1 1 -- 1 _____- 
J x L y / 2 -  2'2 J1-m" 4- 

FIQUBE 1.-Obliquo raardinatcs. 
d=z-my 
Y ' = f l - N  

t'= 2 
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IIcncr the iiitcbgration for tlie effect of an inclined line of 
sources may br pcrformcd tlircctly along the oblique 2‘-asis; 
thus, for m<1.0 

where 
incIutIes the point (TI, y’, 2’) anti is given by 

is the position of tlie last source whose Mach cone 

When m approaches 1 .O the source line approaches coin- 
cidence with the RIach cone, corresponding to a transverse 
velocity component equal to the velocity of sound. 

For values of m greater than 1.0 the integration yields 

I t  will be seen that in this case Z is imaginary. 
The vertical velocity near z=O, which determines the 

shape of the boundary, may be determined by integrating u 
with respect to r and then differentiating the resulting 
velocity potential with respect to z ;  thus (see appendix), 

=-su b dx  
bz 

I 
m = f n  - ,‘l--mz 

if z+O and y’<O. There is thus a discon- 
tinuity in the vertical velocity of the streamlines when they 
cross the line source a t  y’=O. For small values of I /m this 
discontinuity in vertical velocity agrees with the boundary 
condition for a simple wedge shape having a small wedge 
angle. (See fig. 2.) 

If the source strength I is held constant and m is allowed 
to approach zero, the wedge angle ultimately becomes large. 
At m=O the line source actually satisfies the boundary con- 
dition for the circular cone (reference 7), but it is found that 
the slope of the conical boundary does not agree with the 
slope of the streamlines near z=O and hence the theory no 

m 
longer holds. The condition - +O thus represents the transi- I 
tion from an oblique airfoil to a body of revolution and will 
be avoided in the present analysis by restricting the formulas 
to flat bodies, that is, airfoils that are thin in both longitudinal 
and transverse section. 

If y‘>O, w=O. 

AIRFOIL OF WEDGE SECTION 

Over thc wedge section near the planc z=O, the formula (6) 
becomes simply 

(9) 
X’ 

I?] ; 
u= I cosll-’ p 

i9524%49--2 

X 

FIGC RE Z.--Pic~sure field for oblique wedge where m<1.0.*-+. 

a=cosh-l z--?ny 
l v - w l  

I U f n = l  
&=eosh-l z+my 

where Iy’ I denotes the absolute magnitude of y’=y-mx. 
The pressure is thus constant along the radial lines 

(1 0) 
2’ --Constant 
Y’ - 

and is conveniently represented by the variation along a line 
parallel to the X-axis. Figure 2 shows the oblique wedge- 
shape figure corresponding to a line source with m<1.0. In  
this case the pressure field is confined to the interior of the 
Mach cone 2-y2-z2=x’2-y’2-z’z=0 and the theory, 
unlike the Ackeret theory, indicates a stagnation point along 
the leading edge. (Actually, of course, the thin-airfoil 
theory shows an infinite velocity a t  such points, but this is 
to be interpreted as a velocity of the order of magnitude of 
the flight velocity V. The pressure to be expected along the 
leading edge is the stagnation pressure corresponding to the 
tramverse velocity component.) 

Given -=-, the wedge angle measured in downstream 

sections, the source strength must vary with m according to 

d z  w 
d x  V 

(from equation (7)). Then 

If m exceeds 1.0, the leading edge of the airfoil will lie out- 
side the Mach cone. In  this case 
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I n  the region between the leading edge and the Mach cone 

cos-' I is constant and equal to P; hence the pressure in 

this region is constant, that is, 

2' 

IY I 

Figure 3 illustrates this result. 

8 

FIGIRE S.-Prc?sore field for oblique wedge aheie  m>1.0. "-',". 

If m + m  a semi-infinite airfoil with its leading edge a t  
right angles to the direction of flight is obtained; here 

(15) -Y _- _- x-my 
? (1J-mx)'+(1-m2)z2 ? x L - z 2  

Ap dz 
(I dx and - = 2 - wherever y> \I=?. This value agrees with 

the Aclieret theory. 

AIRFOILS BOUNDED BY PLANE SURFACES 

The distribution of pressure over symmetrical airfoils 
hounded by plane surfaces can be obtained by superimposing 
the pressure fields for several line sources and sinlis. This 
superposition is greatly simplified by the conical form of the 
pressure field for each single line source. Because of this 
form, the whole distribution in the plane z=O is, in effect, 
represented by a single curve. If the velocity field for a line 
source beginning at the origin (equation (6)) is denoted by u 

and that beginning at x= - 1 is denoted by u-,, and so forth, 
the sum 

u-1- U+l 

represents the velocity over a plate of uniforni thickness 
having a beveled leading edge of constant width. (See fig. 4.r 
Similarly 

u-1- 2uf u+, 

represents the pressure field for an airfoil having diarnond- 
shape cross sections. 

The superposition required for several sources or sinks 
can be accomplished by manipulation of a single curve if it  
is remembered that u is a function of the ratio x/y. Figure 4 
illustrates this process for a source and a sink. In terms of 
the ratio r /y  the separation of source and sink and hence 
the scale of the chord length continually diminishes with 
increasing distance from the root section. 

At large distances from the vertex (x'+ m) the cxprcssioii 
(for m < l  .O) 

is found to approach the value 

where Qo is the Lrgendrc function. (See refcrcncc 7.) 

I 
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In  the thin-airfoil theory for subsonic speeds it 
can be shown that if 

w =  Pdx) 

dz 
=% 

then 

u=Q,&) 
since Neumann's formula (reference 8, p. 116) 

may be interpreted as the integration for the velocity distri- 
bution due to an array of sources of strength 

w dE=P,(E) dE 

along the chord of the airfoil. The expression Q,, f of equa- 

tion (1 7) thus rcpresents the subsonic pressure distribution 
over the beveled edge.' 

At the root section (y=O) only the forward source need 
be considered since the airfoil surface is ahead of the Mach 
cone originating at the rear source. 

m 

Here 

and tlic prrssurc over the root section is thus constant, as 
givcn by the Ackeret theory, but is altered in magnitude 
by the obliquity. 

Tlic oblique wing lying behind the Mach lines thus shows 
thr Ackeret type of pressure distribution over the foremost 
section and a progressive change along the span from this 
distribution to the subsonic type of distribution. Since the 
subsonic type of distribution shows no pressure drag, there 
is a continuous falling off of the pressure drag with increasing 
distance from the root section. The pressure drag of the 
oblique wing thus arises chiefly on the foremost section, and 
it. follows that the drag coefficient of the wing as a whole 
diminishes with inereasing aspect ratio. It will be shown 
subsequently that the effect of cutting the wing off along a 
line y=Constant to produce a downstream tip causes a 
rcduction of the pressure drag on the adjacent sections; and 
if the aspect ratio is sufficiently high, the pressure drag in 
the region of the downstream tip may actually be negative. 

If the wing lies ahead of the Mach lines (m>l.O) the 
Sckeret type of pressure distribution occurs and a pressure 
drag arises over the wholc length. In this case both u and w 
are constant over the bcvcled part a t  a distance from the origin. 

I Siniilarly if P.(F) d €  is taken as the chordwise distribution of vorticity, 

ZL 0- P" (2) 
w a Q" (Z) 

dz 
dz 

m- 

The first of this series of airfoils is the camber shape curved to support a iiuiiorm load. 

FIQCBE :,.-Sariation of pressure distribution along span of sweptbaek wing. m=lan .?o.' 

Slone. dzldx 

Disfance f rom root section in 1/2 chard lengths 

FIQC RE 6.-Variation 01 draz coefficient with distance from root srrtion for sacpthaek wing. 
Wedge section: M=1.4. 

The treatment thus far applies to semi-infinite cylindrical 
wings having root sections near the origin. A complete 
sweptback wing may be obtained by the addition of a sym- 
metrical or conjugate arrangement of source lines below the 
X-axis. Values of u for this conjugate arrangement may be 
denoted by E. Figures 2 and 3 show 'ii for a single inclined 
source and figure 5 shows calculated pressure distributions 
a t  several sections along the span for a complete sweptback 
airfoil having beveled sections. The addition of the con- 
jugate source lines doubles the pressure a t  the root section, 
but this interference effect falls off rapidly along the span. 
It is noted that, as in figure 4, the most significant change 
in pressure distribution occurs along the expansion wave 
originating a t  the trailing edge of the root section. Figure 6 
shows the variation in pressure drag along the span for this 
airfoil obtained by integrating the chordwise components of 
pressure at the different sections. 

The addition of a reversed source-sink distribution having 
its origin displaced to a point O2 (see fig. 7) will show the 
effect of cutting the wing off in a direction parallel to the 
direction of flight. It will be evident that the effect of such 
a tip is characterized by the subtraction of the curves Z and 
is limited to the area lying within the Mach cone which 
originates at the tip. It is interesting to note that pressure 
distributions of the Ackeret type, except reversed in sign, 
are added near the tip; hence, cutting the tip off in this man- 
ner reduces the drag of adjacent sections. 
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l l +  + 

FIGURE 7.-Addition of reversed source-sink distribution to produce tip. 

Figure 8 shows the p' --=e distributions over a rectangu- 
lar airfoil having a leading edge a t  right angles to the flow. 
In  the triangular area ahead of the Mach cones originating 
atzthe tips the pressure is constant, as given by the Ackeret 
theory, whereas behind these Mach cones the pressure drops 
sharply. 

AIBFOIL OF BICONVEX SECTIONS 

Curved surfaces require a continuous distribution of sources 
and sinks alined with the generators of the surface. Each 
elementary source line causes an infinitesimal change in 
direction of the surface and hence the slope a t  any point may 
be obtained by adding up the effects of all sources ahead of 
that point. Thus 

or 

For airfoils of constant chord, m will be a constant and the 
integrationscan be performed withoutdifficulty. Thesimplest 
case is that of constant curvature, which leads to profiles 
formed from circular arcs. 

In order to obtain a biconvex profile, it is necessary to 
introduce finite sources of strength sufficient to form the 
desired angle of intersection of the arcs a t  the leading and 
trailing edges, together with a uniform distribution of sinks 
along the chord line between the two sources. These pro- 
files thus require a uniform distribution of sources or sinks, 
which may be obtained by integrating the elementary solu- 
tion for the line source (equation (6)). The resulting solution 

1 
may be denoted by ij u and is, for m<l, 

C / Sechon 

FIGURE S.--Pressm distribution over airfoil01 rcctanglllar plan form. 

&-s,n-, I--y+sin-l 5 y .  

y cosh-' Z-L y' cosh-l ") (23) 

Inasmuch as the elementary solution u is of the form 

m IYI ?Ja IY'l 

f c), the integrated solution appears in the form 
1 
U-Yg (;) 

and will be conveniently represented by a curve typical of 
all spanwise stations, namely, 

1 9 u=g (;) 
For a closed profile intersecting the X-axis at the points f 1 
there is obtained 

Zu=~-~+u+,-y(p 1 u-~-- 1 u+') (24) YD 
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FIQUBE Q.-Pressure distribution over wmg of biconvex section, @-@!* 
I *  

This superposition may be accomplished conveniently by 

transposing and adding the typical curves u and - u. (See 

It will be found that if m is legs than 1.0 the velocity 
distribution approaches, with increasing distance from the 
root section, the form given by the subsonic-flow theory for 
an airfoil of biconvex section, that is, 

1 
YD 

fig. 9.) 

w a p ,  ($) 
u a Q l  ($) 

At the root section, however, the form is simply that given by 
the Ackeret theory for a straight airfoil although the values 

m 1 are reduced in magnitude by the factor ~1--m2 cosh-' m' 

The pressure distribution and the variation of drag along 
the span for the bilaterally symmetrical wing are shown in 
figures 10 and 11. 

CONICAL SURFACES 

For tapered airfoils both m and I will be functions of E.  
It is easily seen that closed surfaces can be obtained only if 
the relation between m and E is such that the line sources 
have a common point of intersection, as in figure 7. If this 
point is denoted by x,,, yo 

FJQURE IO.-Pressure distribution at dBerent points along span. Biconvex wing. 

Section parallel io  f lgb t  velocity 

Distance from noot section in l/Z chord lengths 

FIQURE I1 .-Variation of drag coefficient with distance from root section for wings of biconvex 
section. M=I.~:  $10 percent. 

The surface obtained is one generated by a line passing 
through the fixed point x,,, yo and hence is a conical surface. 

The pressure over the tapered airfoil requires the integra- 
tion of 

where is the location of the vertex of the airfoil and 
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In  conclusion it should be noted that the pressures have 
been derived for an airfoil transformed according to equa- 
tions (2). The pressures a t  corresponding points of the 
original airfoil are to be obtained by dividing by M2- 1. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., May 23, 1946. 

APPENDIX 
EVALUATION OF INTEGRAL OF EQUATION (8) 

For m< 1.0 the disturbance is zero outside the Mach cone 
and the range of integration should be extended only from 
xl= JW to x, that is, 

(for unit source strength). Furthermore, 

since the integrand is zero at the lower limit. Now 

and hence the integral 

-x’z’ J1--m2- dx 

must be evaluated. 
First it is noted that the integral vanishes with z except 

in the neighborhood of the Mach cone ( Jx’2-y’Z-z12=O) 
and in the neighborhood of the line source (y’=o). Near 
the Mach cone y’2+z’2~x‘2,  so that 

Since the latter integral approaches zero with z, there is no 
contribution to equation (A4) in the region of the Mach 
cone. On the other hand, near the line source y‘+O and 
Jx/2-y’?- z‘2+x’ ; hence, as 2’-0, 

(A@ 
- 1 tan-’ $+Constant 
m 

The value of the integral changes from 0 to r in crossing 
over the line source a t  y’=O and is positive or negative de- 
pending on whether z’ approaches zero from the positive or 
negative side of the xy-plane. Hence 

w=fTJ1--;;LZ m 

If m is greater than 1.0, 

and the flow disturbance extends outside the Mach cone to 
a region bounded by plane waves extending from the line 
source and tangent to the Mach cone. (See fig. 12.) The 
equation of these planes can be easily shown to be y’2+z’2=O; 
hence for m>1.0 the lower limit of integration is given by 

y’2+ 2 ” k O  

\\ ‘ 
\ \  
\ I  
\ \  ‘\‘ 

FIGURE lZ.-Inlorrnat~on pertinent to evaluation olequation (81 lor m>1.0. (Sce appendix ) 
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or 

Then 

In this case u does not go to zero at  the lower limit but is 
equal to X .  In all other regions, however, the integral 
approaches zero uniformly with z as in the preceding case; 
hence 

*=&udX a 

bZZ =u,- 
b2 

=ff J G F i  
as before. 
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SUBSONIC F’LOW OVER THIN OBLIQUE AIRFOILS AT ZERO LIFT 
By ROBERT T.  JONES 

SUMMARY 

A previozls report gave calcdutions for the pressure distri- 
bution ocer thin oblique airfoils at supersonic speed. The 
pesent report extends the calcukations to subsonic speeds. 

It is-found that theJEows again can be obtained by the super- 
position of elemenday conicalJfowJields. I n  the case of the 
swept-back wing the pressure distributions remain qualitatively 
similar at subsonic and supersonic speeds. ZJms a distribution 
similar to the Aekeret type of distribution appears on the root 
sections of the swept-back wing a€ M=O. The resulting posi- 
tive pressure drag on the root section is balanced by negative 
drags on outboard sections. 

INTRODUCTION 

So far as is known, attempts to extend airfoil pressure- 
distribution calculations to three-dimensional flow have 
been confined to cases of thin lifting surfaces. I t  has gen- 
erally been assumed that the component of the pressure 
distribution arising from the thickness of the airfoil will be 
but little affected by the finite span, or aspect ratio, of the 
wing. This supposition is borne out by the known incom- 
pressible-flow solutions for flat ellipsoids. These solutions 
show that the usual variations of aspect ratio produce small 
effects. 

Compressible-flow theory shows, however, that the effects 
of plan form become more pronounced at higher speeds. 
The theory indicates a progressive reduction of the equiva- 
lent aspect ratio as the Mach number approaches 1.0. 
Hence a t  these speeds the three-dimensional character of tlic 
flow can no longer be neglected. Of particular interest are 
the deviations from two-dimensional flow near the root 
sections of a swept-back wing, since the adverse effects of 
compressibility may arise first in this region. 

In the present report three-dimensional flows are obtained 
from a distribution of “pressure sources” in the chord plane 
of the airfoil. The shapes thus obtaincd are symmrtrical 
airfoils at zrro lift. The calculations are simplified by 
considering airfoils composed of conical or cylindrical surfacrs. 
In these cases the sourres can be arranged into lines of uniform 
strength following the generators of the surface. The relation 
between the strengths of the l i e  sources and the shape of 
the airfoil is the same as in reference I ;  that is, each line 
source produces a deflection of the streamlines crossing over 
the source. The pressure field of the line source again can be 
represented by systems of straight rays of equal pressure 
(isobars) radiating from the ends of the line source. 

84331449 

In general, the present development follows closely that of 
reference 1 and the reader should consult that report for 
additional details of the method. The solutions are given 
explicitly for M=O but are extended to other Mach numbers 
by the well-known Pranatl transformation. 

THE OBLIQUE LINE SOURCE 

It is well known that an individual velocity component of a 
potential flow will satisfy the same differential equation as tlir 
potential. In the approximation of the thin-airfoil theory 
t,he pressure depends only on the individual componrnt u, 
that is, 

whde the slope of the surface depends only on the individual 
component w ,  that is 

dz w 
&=9 

(See appendix for symbols.) Hence in the thin-airfoil theory 
it is often more convenient to deal directly with the vrlocitirs 
u and w as solutions of Laplace’s equation than to derivr 
these components from a velocity potential cp. 

Since u is proportional to the pressurr, a solution of 
Laplace’s equation can represent directly the prrssurr distri- 
bution, hence the term “pressure potential.” In this 
terminology, the fundamental solution 

represents a point source of pressure rathrr than a point 
source of fluid. 

To get the effect of a row of sourrcs, or a linr sourcr, along 
the z axis between thr points a and b, i t  is nrcrmary to intr- 
grate equation (3):  

d5 

The pressure field of the finite line source thus consists of thr 
sum of two conical prrssurr firlds radiating from the ends of 
the line source. In tlir supersonic casr (rvfcr- 
cnce I ) ,  the radial isobars forming thc conical f ir l t l  wrrc 

(Ser fig. 1.)  
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I 
I 

O i 
FIGURE I.-Pressure field for line soura: of length (b-n). 

0 

confined to the downstream h--ch cone. Here, however, 
the isobars extend over the whole space.' 

If the direction of flight is along the axis of the source 
(x axis), the flow will satisfy the boundary condition for a 
body of revolution. However, if the line source is turned 
out to a position oblique to the stream, the boundary shape 
will be distorted and, if the angle of obliquity is large enough 
to place the line source well outside the diameter of the 
original body, the figure formed will be an oblique wedge. 
The nose angle of the wedge is formed where the streamlines 
of the main flow cross the l i e  source. 

At supersonic speeds the expression for the oblique line 
source was obtained by applying an equivalent of the Lorentz 
transformation, for which the wave equation is invariant. 
The equivalent transformation for Laplace's equation is a 
rotation of the axes, given by 

x'=x+my 
y'=y-mx 
z ' = z J l f m 2  

1 The conieal pressure field for either the subsonic or the supersonic line source may be ob 
tamed directly from thegeneral solutions of Laplnce's equations of zero degree m 2, y, 2 given 
by W. F. Doukm. (See reference 2, page 357.) The general solution is 

The solution corresponding to the subsonic line source is 

while the field for the supersonic SOUT~O is given by 

where m is the slope of the new axes relative to the old. 
(Note that a change of scale is admitted for convenience.) 
The geometry of the pressure field relative to the line source 
is not altered in any way by this rotation and the isobars 
behave as though they were rigidly attached to the ends of 
the source. For a line source with one end a t  the origin, 
we have 

(5) 

This field is illustrated in figure 2 for the plane z=O. As 
m-+m the x and y dxes interchange and there is obtained 

for a line source along y. 
The vertical velocity w near z=O, which determines thc 

shape of the boundary, may be found by integrating u with 
respect to z and then differentiating thc rt.siilting velocity 
potential with respect to z. 

Evaluation of this integral for the overlapping fields from 
two ends of a line source gives 

over the area of the xy plane behind the line source. 

418 



SCJUSOMC FLOW OVER THIN OBLIQUE AIRFOILS AT ZERO LIFT 

Y 
I 
i 

FIGURE Z.-Prcssure ficld due to one end oi oblique liuc source. 

The figurc formed by the streamlines crossing a line source 
is tliiis :I wcdge-shaped body having an oblique leading edge 
: l i d  cstciiding indefinitely downstream. It is evident from 
cquation (3) that tho infinitely wide wedge cannot be treated 
in subsonic flow, since it creates an infinite pressure disturb- 
 in^ at all points. 

Tlic. slope of the wedge surface away from the chord plane 
is given by 

(9) 

With this relation and equation (8) the pressure coefficient 
near the plane z=O may be expressed in terms of the slope 

wlicw Iy’ I indicates the absolute magnitude of y’. Following 
thc thin-airfoil theory, the pressure over the chord plane 
(z-+O) is taken as the pressure over the actual aidoil surface. 

AIRFOILS BOUNDED BY PLANE SURFACES 

It was seen that the effect of a line source in the pressure 
field is to cause a deflection of the streamlines crossing the 
S O I I ~ W .  The deflection thus produced is equal and opposite 
a t  points above and below the chord plane, so that the 
source spreads the streamlines apart. If the source is 
followcd by a sink of equd strength, an equal opposite deflec- 
tion of thc streamlines will occur as they cross over the s ink.  
The figure formed by the streamlines near the plane z=O 
will thus be a plate of uniform thickness with a beveled 
lrading ~ t l g e . ~  (See fig. 3.) 

Accorduig to the thm-arrfod thwry the thiekues of the fim ends abruptly a t  thc cnds 
4 more exact consideration would be expected to show some rounding al lhc wurw lais .  

JI 1 hr I t p  al t l w  s ~tlgl. as mdiatcd m fimrc 3. 

b 4 X 1 4 4 9  2 

PI un 

S e c f i o n  I 
FIGUBB 3 -Construction of the pr~ssuic distribution over 3 hevrlcd leading alze. 
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Tlie pressure distribution over such a beveled edge may 
be obtained very simply by superimposing the pressures laid 
oPi on radial isobars originating from the four corners of the 
bevel. Figure 3 illustrates this process for a bevel having a 
square plan form. Only isobars from one tip are shown 
because of the symmetry of the figure. 

In figure 3 ,  the line source and the line sink are parallel 
to the y axis, hence 

I t  can be seen that if the aspect ratio of the figure is increased 
to a large value the ends of the line sources will be separated 
by a great distance and the isobars in intermediate regions 
will approach parallel straight lines, hence the flow field 
approaches a cylindrical or two-dimensional form. At  the 
same time the arguments yf l / lx+l l  in equation (11) be- 
come y + v / x &  1 and q takes on very large values so that 

and equation (11) is found to approach the Legendre func- 
tion Q0, that is 

(See reference 3, p. 110.) 
This expression when combined with equation (8) agrees 

with the two-dimensional potential function for the wedge, 
tliat is, 

- ( ~ - i ~ ) = 4  Qo(z)&2APo(~)  (1 3) 

(See fig. 4.) 
The isobars a t  right angles to the axis of the line source are 

lines of zero pressure, hence the rays originating a t  the tip 
of a rectangular wing contribute nothiig to the pressure 
distribution at this tip. The whole pressure distribution 
a t  one tip is thus obtained by considering only those isobars 
radiating from the opposite tip. It is evident that in the 
case of a long narrow rectangular wing the pressures a t  
either tip will be approximately one-bdf the pressures over 
the middle portion of the wing. 

In case the wing is oblique the tip sections will no longer 
be at right angles to the axes of the sonrce lines and the rays 
originating from the adjacent ends of the source lines will 
contribute to the pressure over the tip. I t  mn be shown 
that this component of the tip pressure distribution is 
similar in form to the Ackerct type of distribution, that is, 
the pressure a t  any point of the surface is proportional to 
the slope of the surface a t  that point. 

Consider h s t  the sloping surface formed by a pair of 
oblique source-sink lmes. The tip section lies along the 
lines of constant pressure of magnitude proportional to 
sinli-' I/m. Between the source and sink the pressures are 
additive, so that 

Ahead of or behind this section the prcssures cancel. 
In  ease of a curved airfoil surface the chord can be tlividccl 

into elements composed of source-sink pairs, the strengths of 
which are proportional to the slope of the surface a t  the point. 
in question. Each pair then contributes a pressure propor- 
tional to the local slope and contributes no pressure a t  other 
points. Hence, equation (14) applies when dz/& is variable 
along the chord. 

' Biconvex Section 

u-iwccQ,/1.ll_+i~PpI fx) 

FIGURE 4.-Two-diiensianal relocity innetions for '.verlge and bicnnvcr srctmns. 

The foregoing arguments of course apply only a t  the tip 
section of the oblique wing. At some distance from the tip 
section the overlapping isobars radiating from the tip again 
produce a quasi-cylindrical pressure field as in the cas(' of 
the rectangular wing. Thus the resultant pressure (list r i l w  
tion a t  either tip of a long oblique wing consists of two coni- 
ponents, one given by equation (14) and of the ,2ckrrc.t t y p e  
while the other component is equal to one-half tho normal 
two-dimensional pressure distribution associa t t d  with the 
airfoil section. 

Figure 5 shows the prcssures over a bcvelctl-cdgc. profile 
having 45' sweepback. The pressure distribution o v c ~  the 
root section is given by 
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at a great distance from either root or tip by 

and a t  the tip by 

Plun 

Secf/oo 

FIGURE 5.-Pressure distribution over beveled edge with 4 5 O  su-eepback. 

To take account of the effect of compressibility we make 
use of the Prandtl transformation, increasing both the x 
dimensions and the pressure coefficients by the factor - __ 41- M2' 
Replacing m by 41 -M2 cot A, where A is the angle of sweep- 
back, equation (16) reduces to 

1 

Thus, a t  a great distance from either root or tip, the pressures 
follow a variation indicated by the normal component of 
velocity cos A. 

At the root section, a component representing the Ackeret 
type of pressure distribution is added to equation (18). This 
component is 

- 4 1 d z  
a 41- (M COS A)' d(x  cos A) 

The factor si&-' shows a logarithmic in- 

finity a t  M=1.0. Hence the pressure on the root section 
increases more rapidly with Mach number than do the pres- 
sures a t  other sections of the swept?-back wing. Further- 
more, the shape of the pressure distribution over the root 
section approaches the Ackeret shape more closely as the 
Mach number approaches 1 .O. As shown in reference I, the 
pressure distribution on the root section is exactly this shape 
a t  supersonic speeds, that is, 

41-p cot A 

Since ~inh-~--tcosh-' for large values of the argument, the 
swept-back airfoil shows no discontinuity in the. type of 
pressure distribution on passing through the speed of sound. 
I t  will be evident that similar reasoning can be applied to 
the tip sections. 

AIRFOIL OF BICONVEX SEFTION 

The use of a finite number of sources and sinks results in 
airfoil sections composed of straight segments. Such sec- 
tions are undesirable, since they show infinite pressure peaks 
a t  the bends in the surface. Surfaces having continuous 
curvature require continuous distribution of sources and sinks 
alined with the generators of the surface. The simplest of 
these is the biconvex profile in which the upper and lower 
surfaces are parabolic arcs and have constant curvature. 
Such a profile requires line sources of finite strength to form 
the desired angles of intersection of the arcs a t  the leading 
and trailing edges together with a uniform distribution of 
sinks along the chord plane between the two sources. 

The pressure field for a uniform sheet of line sources is 
obtained by integrating the field of a single line source in 
the x direction. This integral is 

(21) 
1 X' 
- ?J' sinh-' - 
m JY'! 

The integration for a source sheet is actually somewhat 
simpler if the interference of a bilaterally symmetrical ar- 
rangement of sources is considered simultaneously. The in- 
fluence of the symmetrical, or conjugate, arrangement is 
obtained by substituting -m for m in equation (21). De- 
noting x-my by r' and g f m x  by y' we have 

To obtain a complete swept-back wing it is necessary to 
add a number of component pressure fields as explained in 

42 1 



REPORT NO. 902-NATIONAL ADVISORY COMMITTEE FOR AEROHAUTICS 

reference 1. For an infinite swept-back wing with leading 
and trailing edges at y'=+m and -m, respectively, on one 
side, and at y'= +m and -m, respectively, on the other side, 
there is obtained 

wherc is the thickness-chord ratio of the biconvex 

profile. The terms Q1 ($) represent the pressure distribu- 
tion on the biconvex airfoil in two-dimensional flow. The 
appearance of these terms is the result of the assumption 
that the tips are removed to a great distance. 

At  the root section (y=O) equation (23) reduces to 

Figure 6 shows pressure distributions a t  various stations 
along the span for a biconvex wing with 60° sweepback. 
The curves assume the two-dimensional form at a relatively 
short distance ( y z  e )  from the root section, and similar 1 

2 

,- y =o 

FIGCRI, B.--Pressurc disliibulion ar rarious spanwisp stations on swept-back a-ing, A=GOo, 
M = O .  

behavior is to be expected near the tips. Hencc the assunip- 
tion of infinite aspect ratio should apply very nearly a t  any 
section situated more than one-half chord length from either 
root or tip. 

Figure 7 shows the effect of Mach number on the pres~ures 
over the root section and illustrates thc progressive change 
to the supersonic type as the Mach number approachcs 1.0. 
It can be seen that an increase in lfach number will not only 
increase the distortion of the prrssurt. distribution but, will 
increase the extent of thc distortion along the span. 

12/=/05~ 1 

An intcresting point to be noted is that not all scdoiis of 
the swept-back wing havc zero pressure drag. A positivi, 
drag appears on the root sections and a negative drag 01: tlic 
tip sections. Hence the span\\-isc drag distributiop is 
qualitatively similar to that a t  supersonic spceds though, of 
course, the net subsonic prcssurc drag is zero. 

AMES AERONAUTICAL LABORATO~~I-, 
NATIONAL ADVISORY COMMITTEK FOE AEILOA-AUTK.S, 

MOFFETT FIELD, CALIF., A4ay 1.9.$7. 
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APPENDIX 
SYMBOLS 

flight velocity 
Mach number 
coordinates 
point on x axis 
point on y axis 
disturbance-velocity potential 
disturbance-velocity components 
local pressure 

dynamic pressure (k pv') 

air density 
Legendre functions 
differentiaL operator (d/dx) 
thickness of wing 

e 
m 
5' 

Y' ,. 
y' 
R. P. 

chord of wing (measured along x) 
slope of line source (absolute value) 
x+my 
y-mx 
x-my 
y+mx 
Real part 
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TECHNICAL NOTE NO. 1350 

ESTIMATED LIFT-DRAG RATIOS AT 

SUPERSONIC S P E E D  

By Robert T. Jones 

SUMMARY 

Recent developments i n  supersonic  flow theory are appl ied 
t o  ob ta in  estimates of t he  l i f t - d r a g  r a t i o s  t h a t  may be 
achieved by a i r c r a f t  employing swept-back wings. 
r a t i o s  g r e a t e r  than 10 t o  1 can be  maintained up t o  a Mach 
number of 1.4 by t h e  use  of l a r g e  angles  of sweep and high 
aspec t  r a t i o s .  A s  t h e  speed inc reases  i n  t h e  supersonic  range 
t h e  a t t a i n a b l e  l i f t - d r a g  r a t i o s  decrease and the  gain due t o  
sweepback a l s o  appears t o  diminish. An e f f i c i e n t  conf igura t ion  
f o r  M = 1.4 would r equ i r e  about 60° sweepback, an aspec t  
r a t i o  of 4 and a wing loading of one-third the  atmospheric 
pressure .  For a wing loading of 50 pounds per square foo t  t h e  
c ru i s ing  a l t i t u d e  would be 60,000 f e e t  and t h e  ind ica t ed  
a i r speed  290 m i l e s  per  hour. 

Lif t -drag 

INTRODUCTION 

The work required t o  propel  an a i r p l a n e  a given d i s t a n c e  
i n  s teady  f l i g h t  is  equal  t o  i t s  weight t i m e s  t h e  d i s t ance  
t r a v e l l e d  divided by t h e  l i f t - d r a g  r a t i o  of the a i rp l ane .  
Hence t h e  f u e l  expendi ture  pe r  m i l e  of f l i g h t  need not  increase  
wi th  speed s o  long as the  l i f t - d r a g  r a t i o  of t h e  a i r p l a n e  can 
be maintained. However, wi th  present  shapes a p r o h i b i t i v e  
l o s s  of l i f t - d r a g  r a t i o  occurs on passing beyond t h e  speed of 
sound and i t  is  evident  that a r a d i c a l  change i n  conf igura t ion  
w i l l  be  necessary f o r  e f f i c i e n t  f l i g h t  a t  h igher  speeds. 

The problem of an e f f i c i e n t  conf igura t ion  f o r  f l i g h t  a t  
supersonic  speeds w a s  i nves t iga t ed  by Busemann in  1935 
( re ference  1). Busemann concluded t h a t  an improvement i n  t h e  
l i f t - d r a g  r a t i o  a t  supersonic  speeds could be  obtained by 
sweeping the  wing back a t  an angle  j u s t  ahead of t he  Mach 
cone. Re la t ive ly  much g r e a t e r  
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e f f i c i e n c i e s  are ob ta inab le  when the wing is swept back behind 
the  Mach cone. The change i n  t h e  type of flow when t h e  wing 
lies i n s i d e  t h e  Mach cone, and t h e  r e s u l t i n g  increase i n  
e f f i c i e n c y  have been brought ou t  i n  r e fe rence  2. However, 
both r e fe rence  1 and r e fe rence  2 are r e s t r i c t e d  t o  considera- 
t i o n s  of two-dimensional f low and hence a spec t - r a t io  e f f e c t s  
could n o t  be determined. Recent developments i n  aerodynamic 
theory have overcome t h i s  d i f f i c u l t y ,  making i t  p o s s i b l e  t o  
estimate t h e  l i f t - d r a g  r a t i o  ob ta inab le  wi th  p r a c t i c a l  
conf igu ra t ions .  

The p resen t  r e p o r t  a p p l i e s  t h e s e  new t h e o r e t i c a l  r e s u l t s  
t o  ob ta in  estimates of t he  l i f t - d r a g  r a t i o s  that may be  
achieved wi th  an e f f i c i e n t  a i r c r a f t  a t  supersonic  speeds.  
The estimates are a l l  based on t h e  theory of small d i s tu rb -  
ances,  f i r s t  because t h i s  i s  t h e  only adequate theory 
a v a i l a b l e ,  and second because i t  is reasoned that an a i r c r a f t  
producing a l a r g e  d i s tu rbance  i n  t h e  e x t e r n a l  f low would be 
inhe ren t ly  ibe f  f i c i e n t .  

A t  very high Mach numbers even t h i n  bodies  and s m a l l  
angles  of attack cause r e l a t i v e l y  l a r g e  p r e s s u r e  d i s tu rb -  
ances and consequent hea t ing  of t h e  f l u i d .  H e r e  t he  hea t ing  
e f f e c t  of f r i c t i o n  becomes no longer  n e g l i g i b l e .  
condi t ions  are l i k e l y  t o  be  encountered by rocke t s ;  however, 
i n  t hese  cases the  e f f i c i e n c y  of s t eady  f l i g h t  may n o t  be of 
primary concern.) The p resen t  a n a l y s i s  i s  t h e r e f o r e  l i m i t e d  
t o  more moderate speeds where t h e  e f f i c i e n c y  i n  s teady  f l i g h t  
is  of primary importance and where i t  i s  evident  t h a t  such 
e f f i c i e n c y  can be  achieved by known means. 

(Such 

FUNDAMENTAL RELATIONS FOR WING LOADING, 

ALTITUDE AND MAXIMUM LIFT-DRAG RATIO 

The l i f t - d r a g  r a t i o  of a convent ional  a i r p l a n e  depends 
p r imar i ly  on i t s  e x t e r n a l  conf igu ra t ion  and on t h e  ang le  of 
a t t a c k  and does no t  vary g r e a t l y  w i t h  speed provided t h e  
c o r r e c t  r e l a t i o n  between wing loading and a l t i t u d e  i s  main- 
t a ined .  For maximum e f f i c i e n c y  t h e  a i r p l a n e  should be 
flown a t  t h a t  l i f t  c o e f f i c i e n t  C L ~ ~ ~  f o r  which l i f t - d r a g  
r a t i o  is a maximum. An i n c r e a s e  i n  speed, then, n e c e s s i t a t e s  
an i n c r e a s e  i n  a l t i t u d e ,  s i n c e  wi th  f i x e d  l i f t  c o e f f i c i e n t  
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(For a complete l ist  of symbols see appendix.) 

where t h e  subsc r ip t  o r e f e r s  t o  conditions a t  sea l e v e l .  

With l i f t - d r a g  r a t i o  f ixed ,  higher speed does not  involve 
any increase  i n  t h e  t h r u s t  required f o r  level f l i g h t ;  t h i s  
t h r u s t  is simply 

I f  t he  propulsive e f f i c i ency  of the  engine does not drop ciff 
with a l t i t u d e ,  t h e  increase  i n  speed w i l l  thus be accomplished 
without any increase  i n  the  f u e l  consumption per  m i l e  of 
f l i g h t .  Furthermore, the  increase  i n  speed is not accompanied 
by any s i g n i f i c a n t  change i n  t h e  air  loads o r  pressures on the  
a i rp l ane  and hence no increase  i n  s t r u c t u r a l  s t i f f n e s s  is 
required. An obvious advantage of t h i s  method of increasing 
t h e  c ru is ing  speed i s  t h a t  i t  does no t  i n t e r f e r e  with the  
a b i l i t y  of t h e  a i rp l ane  t o  slow down a t  lower a l t i t u d e s  and 
land on s h o r t  runways. A more complete d iscuss ion  of these  
f a c t o r s  w i l l  be found i n  reference 3 .  

The a l t i t u d e  and speed of t he  a i rp l ane ,  of course, cannot 
be increased i n d e f i n i t e l y  a t  constant t h r u s t ,  s ipce  eventually 
a c r i t i ca l  Mach number w i l l  be exceeded and the  l i f t -d rag  
r a t i o  of the  a i rp l ane  w i l l  begin t o  decrease. The l imi t ing  
speed and the  corresponding a l t i t u d e  may be determined from 
the  r e l a t i o n s  

V = Mla 

and 

(3)  

where PI1 
t h e  drag begins t o  rise abruptly,  a is  the  ve loc i ty  of sound 
and W/S i s  the  wing loading. 

is t h e  Mach number a t  which, f o r  CL = C L ~ ~ ~ ,  
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Equations (3) and ( 4 )  may be combined i n  t h e  form 

where 

p atmospheric pressure a t  a l t i t u d e  

y r a t i o  of s p e c i f i c  hea t s  f o r  a i r  (1.4).  

Equation (5) gives the  r e l a t i o n  between wing loading and 
atmospheric pressure f o r  maximum speed without l o s s  of aero- 
dynamic e f f ic iency .  This condition can hardly be a t t a i n e d  a t  
low a l t i t u d e s  s ince  with an atmospheric pressure of 2000 pounds 
p e r  square foot ,  f o r  Mi = 0.75 and the  usual values of C L ~ ~ ~ ,  
the  wing loading required would be of the  order of 400 pounds 
per square foot.  A t  60,000 f e e t ,  however, t h e  required wing 
loading works out t o  be the  more p r a c t i c a l  value of 30 pounds 
per square foot .  

L a t e r  ca l cu la t ions  w i l l  show t h a t  similar considerations 
apply t o  supersonic a i r c r a f t ;  t h a t  is, the  b e s t  l i f t - d r a g  
r a t i o s  are obtained when t h e  wing loading is an appreciable 
f r a c t i o n  of the  atmospheric pressure.  

A t  subsonic speeds i t  i s  customary t o  d iv ide  the  drag i n t o  
two p a r t s ,  one the  r e s u l t  of f r i c t i o n  (including t h e  f r i c t i o n  
drag of the fuselage) and the o ther  - t he  induced drag - t he  
r e s u l t  of t h e  l i f t .  The f r i c t i o n  drag is considered near ly  
independent of the angle of a t t ack .  Thus 

where C D ~  
equals C D f t  the  f r i c t i o n  drag. I f  t h e  ve loc i ty  and pressure 
disturbances produced by the  a i rp lane  are s m a l l ,  t he  drag 
a r i s i n g  from the  l i f t  w i l l  be s a t i s f a c t o r i l y  represented by 
the  well-known formula 

is the  drag a t  zero l i f t ,  and f o r  subsonic flow 
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o r  

and t h e  f r i c t i o n  drag w i l l  be near ly  independent of the  angle 
of a t t ack .  The l i f t - d r a g  r a t i o  a t  any angle is  then 

Solving f o r  t h e  1 
r e s u l t s  i n  

E t  coe f f i c i en t  a t  max-sum 1 

and therefore  

Et-drag r a t i o  

I n  ca l cu la t ing  l i f t - d r a g  r a t i o  f o r  supersonic speed the  
drag may again be divided i n t o  two components, one inde- 
pendent of the  l i f t  and one propor t iona l  t o  t h e  square of t he  
l i f t  coe f f i c i en t .  However, i n  t h i s  case t h e  drag a t  zero l i f t  
includes a pressure  drag which va r i e s  wi th  t h e  thickness of 
t he  body o r  wing. Also, at supersonic speeds, the  drag due 
t o  l i f t  can no longer properly be ca l l ed  "induced drag." A t  
subsonic speeds the  drag a r i s i n g  from t h e  l i f t  can be traced 
t o  the  inf luence  of t h e  t r a i l i n g  vortex wake on the wing - 
hence t h e  designation "induced." 
however, t he  forward influence of t h e  wake usua l ly  c o n s t i t u t e s  
only a small p a r t  of t he  drag a r i s i n g  from the  l i f t  and hence 

A t  supersonic speeds, 
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the  t e r m  "induced drag" does not seem appropriate.  Di f fe ren t  
d iv i s ions  of the  drag due t o  l i f t  i n t o  components of wave 
drag and induced drag have been proposed, bu t  the  proportions 
a l l o t t e d  i n  any p a r t i c u l a r  case depend on t h e  method of calcu- 
l a t i o n  employed. I n  t h e  present repor t  t h e  drag i s  ca lcu la ted  
by in t eg ra t ing  t h e  pressure  d i s t r i b u t i o n  i n  the  neighborhood 
of t h e  body and i n  t h i s  case 
pressure  drag propor t iona l  t o  the square of t h e  l i f t  coeffi-  
c i en t .  The subsc r ip t  i is  retained t o  i d e n t i f y  the  l a w  of 
v a r i a t i o n  with t h a t  of t he  induced drag a t  subsonic speeds. 

C D ~  appears simply as a 

Then, f o r  comparison with the  subsonic case, w e  may w r i t e  

CDo = CDf -t C D t  

and 

where CDf i s  the  t o t a l  f r i c t i o n  drag, and C D ~  t h e  t o t a l  
thickness drag, due t o  wing and fuselage. The fac to r  
C D ~ / C L ~  bears no simple r e l a t i o n  t o  the  aspect r a t i o  as it 
does i n  the subsonic case, but i s  a complex function of t he  
wing plan form and load d i s t r i b u t i o n .  

With the  values of C D ~  and C D ~ / C L ~ ,  revised f o r  super- 
sonic conditions, equations (10) and (11) f o r  t h e  optimum l i f t  
coe f f i c i en t  and maximum value of t h e  l i f  t-drag r a t i o  remain 
va l id .  Maximum L/D i s  obtained when t h e  drag due t o  l i f t  is 
equal t o  the drag a t  zero l i f t .  

DRAG AT ZERO LIFT 

Thickness Drag of Wings 

The thickness drag of t h e  wing may be ca lcu la ted  by the  
methods of reference 4 or  5. Figure 1 shows the  va r i a t ion  of 
thickness drag with Mach number ca lcu la ted  by the  method of 
reference 5 f o r  a rec tangular  wing and f o r  several swept- 
back wings. I n  these cases the a i r f o i l  i s  of symmetrical 
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biconvex s e c t i o n  5 percent  t h i ck .  The r e s u l t s  f o r  t h e  
swept-back a i r f o i l s  w e r e  obtained from re fe rence  6 .  The 
curve f o r  t he  r ec t angu la r  a i r f o i l  is t h e  same as t h a t  given 
f o r  t h e  i n f i n i t e  wing by t h e  Ackeret theory  s i n c e ,  as has  
been demonstrated by J. N. Nie lsen  i n  an unpublished appl i -  
ca t ion1  of t h e  same method, the i n t e g r a t e d  e f f e c t  of removing 
outboard po r t ions  of t h e  wing on t h e  d rag  of t h e  remainder of 
t h e  wing is zero,  a t  least so long as t h e  Mach cone from each 
t i p  does n o t  i n t e r s e c t  t h e  oppos i te  t i p .  The th i ckness  d r a g  
c o e f f i c i e n t  of the rec t angu la r  a i r f o i l  is  t h e r e f o r e  independent 
of a spec t  r a t i o  when 

where 

A = aspec t  r a t i o  

When t h e  wing i s  swept w e l l  behind t h e  Mach cone t h e  
(See flow over most of the wing is  of t h e  subsonic  type.  

r e fe rence  2.) The p res su re  drag  is s m a l l  and may be  
a t t r i b u t e d  t o  depa r tu re s  from t h e  subsonic  type  of flow i n  
t h e  reg ion  of t he  roo t  s e c t i o n .  I n  t h i s  condi t ion  t h e  
outboard s e c t i o n s  of the wing have l i t t l e  o r  no drag,  and 
hence t h e  drag  c o e f f i c i e n t  i s  inve r se ly  p ropor t iona l  t o  t h e  
a spec t  r a t i o .  
approaches the  leading-edge angle ,  t he  d i s t r i b u t i o n  of d rag  
changes and t h e  drag  c o e f f i c i e n t  i nc reases  r ap id ly ,  p a r t i c -  
u l a r l y  on the  outboard s e c t i o n s .  I f  t h e  l ead ing  edge i s  
too  nea r  t he  Mach cone, t he  d rag  of t h e  swept wing w i l l  
exceed t h a t  of t h e  s t r a i g h t  wing. 

A t  h igher  speeds,  when t h e  Mach angle  

F igure  2 shows a p l o t  s i m i l a r  t o  f i g u r e  1 of t h e  
v a r i a t i o n  of d r a g  wi th  Mach number f o r  tapered swept-back 
a i r f o i l s .  These r e s u l t s  were obta ined  by K. Margolis of 
Langley Memorial Aeronaut ical  Laboratory us ing  t h e  method 
of r e fe rence  5. An ex tens ive  series of c a l c u l a t i o n s  f o r  
tapered  wings has  been given r e c e n t l y  by Stewart  and Pucket t  
( r e fe rence  7 ) .  In o r d e r  t o  s impl i fy  t h e  c a l c u l a t i o n s  a 
double-wedge s e c t i o n  w a s  assumed, though it is  n o t  t o  b e  

'Data on f i l e  a t  Ames Laboratory.  
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supposed t h a t  such a s e c t i o n  would be des i r ab le  i n  p rac t i ce .  
H e r e  t h e  angle of sweepback (60’) i s  t h a t  of t he  midchord 
l i n e  of t he  a i r f o i l s ,  which i s  a l s o  the  l i n e  of maximum thick- 
ness. The sharp rises i n  drag coe f f i c i en t  near M = 1.52 and 
M = 1.71 occur when the  Mach angle approaches the  angle of 
the t r a i l i n g  edge. Evidently a l l  generators of t he  wing 
su r face  must l i e  behind t h e  Mach l i n e s  t o  in su re  favorable 
drag values. 

According t o  the  t h i n  a i r f o i l  theory the  ca lcu la ted  flow 
f o r  a given a i r f o i l  plan form and Mach number w i l l  a c tua l ly  
be s i m i l a r  t o  t he  flow over another plan form at  a d i f f e r e n t  
Mach number, provided the two plan forms are or ien ted  s imi l a r ly  
with respec t  t o  the  corresponding Mach l ines .  This r e l a t i o n  
may be preserved by changing t h e  x coordinates of t he  plan 
form ( f ig .  3) i n  t h e  proportion t h a t  t he  coordinates of 
t h e  Mach l i n e s  are changed, t h a t  is, asq/&. For plan forms 
having similar flow pa t t e rns  t h e  r a t i o  

co t  leading-edge angle 
co t  sweep angle of Mach l i n e s  w i l l  be constant.  m -  

The aspect r a t i o  w i l l  then vary with Mach number according t o  

A ~ C I ” - ~  = constant 

and t h i n  a i r f o i l  theory shows t h a t  t he  drag coe f f i c i en t  w i l l  
be proportional t o  

o r  

where t / c  is the  thickness-chord r a t i o  measured i n  the  stream 
d i rec t ion .  Figure 4 shows the  coe f f i c i en t  
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p lo t t ed  aga ins t  m f o r  the  constant-chord biconvex a i r f o i l s .  

F r i c t i o n  Drag of Wing 

I n  general ,  t he  f r i c t i o n  drag of the  wing w i l l  be of t h e  
same order of magnitude as the thickness drag. 
speeds a considerable amount of hea t  is  generated i n  the  
boundary layer  and t h e  r e s u l t a n t  temperature v a r i a t i o n  a f f e c t s  
t he  magnitude of the  sk in  f r i c t i o n .  
speeds, however, t he  hea t ing  e f f e c t  i s  not  l a rge  and the  normal 
r e l a t i o n  of sk in  f r i c t i o n  t o  Reynolds number w i l l  not be 
g rea t ly  modified. 

A t  very high 

For moderate supersonic 

For present purposes a conservative value of CDf = 0.006 
corresponding t o  a turbulen t  boundary l aye r  a t  a Reynolds 
number of 107 has been used. 

Drag of Fuselage 

Amethod f o r  ca l cu la t ing  the  wave drag of a s lender  
fuselage a t  supersonic speeds w a s  given by von KQrmQn i n  1935 
(reference 8). This method w a s  applied i n  reference 9 t o  a 
series of bodies of parabol ic  arc shape and estimates of t h e  
f r i c t i o n  drag added t o  obtain t o t a l  drag. More recent ly  the  
ca lcu la t ions  of Haack (reference lo ) ,  Sears (reference l a ) ,  
and L i g h t h i l l  (reference 12) have become ava i lab le .  These 
inves t iga to r s  apply K B r m h ' s  method t o  the  determination of 
body forms having a minimum wave drag f o r  c e r t a i n  conditions. 
The minimum problem is  solved f o r  t h ree  cases: v i z ,  I, given 
volume and given length; 11, given length and given diameter; 
and 111, given diameter and given volume. 

The following equations may be obtained2 from Haack's 
repor t  (reference 10). The length I is  s o  chosen t h a t  the 
body lies between +1 and -1 on the  x-axis; r/ro 
radius a t  any s t a t i o n  i n  t e r m s  of t h e  maximum radius  
a is the  f r o n t a l  area aro2. The volume is given i n  terms 
of the  volume of t he  circumscribed cylinder,  and t h e  drag 
coe f f i c i en t ,  which does not include f r i c t i o n ,  i s  given i n  

is  the  
ro and 

2The formulas given as the  f i n a l  r e l a t i o n s  i n  the  r epor t  are 
i n  e r r o r .  However, t h e  co r rec t  r e l a t i o n s  can e a s i l y  be 
derived from t h e  preceding equations. 
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terms of the frontal area. The factor d/l 
ratio, diameter/length. 

Case I: Given length, given volume 

(ky = 

Volume = - 3 ?TI Vro 2 
16 

Case 11: Given length, given diameter 

(k)2 =,/s - x2cosh-l X 

?T 2 
6 Volume = - l no 

Case 111: Given diameter, given volume 
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is the fineness 

I 

1 
= 3 d z  - 2 ( 4 3 )  - 3 ~ ~ c o s h - ~  

(16) Volume = 2L I nro 2 
8 

‘D - $(+)2 - 3 

Figure 5 shows the body shapes computed from these formulas. 
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Although t h e  wave drag  diminishes  wi th  inc reas ing  s l en -  
derness ,  t h e  f r i c t i o n  d rag  f o r  a given volume o r  a given 
c r o s s  s e c t i o n  tends  t o  i n c r e a s e  because of t h e  g r e a t e r  
s u r f a c e  area. With usua l  va lues  of t h e  f r i c t i o n  c o e f f i c i e n t  
a favorable  ba lance  between t h e  two components r e q u i r e s  such 
a s l e n d e r  body t h a t  i n  most cases t h e  dimensions w i l l  a c t u a l l y  
be governed by t h e  minimum a l lowable  c ros s  s e c t i o n .  For a 
s l e n d e r  body t h e  s u r f a c e  area and hence t h e  f r i c t i o n  drag  
a s soc ia t ed  w i t h  a given c ross  s e c t i o n  is p ropor t iona l  t o  
whi le  t h e  wave d rag  is p ropor t iona l  t o  ( d / l ) 2 .  It fol lows 
t h a t  t h e  t o t a l  d rag  w i l l  be  a minimum when t h e  s lenderness  
r a t i o  is  such t h a t  t he  f r i c t i o n  drag  is t w i c e  t h e  wave drag.  

l / d ,  

It w i l l  be  noted t h a t  t h e  body shape f o r  case I a c t u a l l y  
has  very l i t t l e  more drag  than  t h e  case I1 body of t h e  same 
diameter ,  and s i n c e  body I has  a g r e a t e r  u s e f u l  volume, it 
s e e m s  a l o g i c a l  choice f o r  p r a c t i c a l  design.  Figure 6 shows 
t h e  wave drag  f o r  case I and a l s o  t h e  t o t a l  d rag ,  based on 'a 
s k i n - f r i c t i o n  c o e f f i c i e n t  of 0.0021, as a func t ion  of t h e  
f ineness  r a t i o .  The va lue  of t h i s  f r i c t i o n  c o e f f i c i e n t  w a s  
obtained from re fe rence13 ,and  corresponds t o  a f u l l y  turbu- 
l e n t  boundary l a y e r  and a Reynolds number of lo8.  With t h i s  
f r i c t i o n  c o e f f i c i e n t  t h e  optimum f ineness  r a t i o  i s  about 16 
t o  1. 

DRAG DUE TO LIFT 

The d rag  due t o  l i f t  is es t imated  from t h e o r e t i c a l  
s o l u t i o n s  f o r  t h e  supersonic  flow over  t h i n  l i f t i n g  s u r f a c e s .  
Theore t i ca l  s o l u t i o n s  are known f o r  cases i n  which the  
l i f t i n g  s u r f a c e  is curved and twis ted  i n  such a way as t o  
suppor t  a uniform load ( r e fe rence  14) and, f o r  c e r t a i n  
r ec t angu la r ,  t r i a n g u l a r ,  o r  tapered  f l a t  s u r f a c e s  ( r e fe rences  
14 and 15) .  

Uniformly Loaded Surf ace 

The s o l u t i o n  f o r  t h e  uniformly loaded s u r f a c e  may be  
der ived  by methods s i m i l a r  t o  those  descr ibed  i n  r e fe rence  5 
f o r  t h e  n o n l i f t i n g  a i r f o i l .  I n  t h a t  r e p o r t  t h e  p re s su re  due 
t o  th i ckness  on an a i r f o i l  ob l ique  t o  t h e  stream w a s  obtained 
by superposing t h e  e f f e c t s  of ob l ique  l i n e  source  i n  t h e  
a c c e l e r a t i o n  p o t e n t i a l  f i e l d .  The e f f e c t  of a l i n e  source  i s  
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t o  cause a de f l ec t ion  of the  stream l i n e s  crossing t h e  source 
l ike the de f l ec t ion  caused by a t h i n  wedge-shaped body; t h a t  
is, t h e  l i n e  source is  followed by an area over which t h e  
v e r t i c a l  ve loc i ty  w i s  constant and of opposite s ign  above 
and below t h e  chord plane. 

Similarly,  an oblique vortex gives rise t o  a constant 
d i f f e rence  i n  the  hor izonta l  ve loc i ty  increment u, and there- 
fo re  i n  the pressure,  above and below t h e  plane of flow cross- 
ing  t h e  vortex. The corresponding w f o r  a semi-infinite 
vortex is  given by 

where x '  = x - my and y' denotes t h e  absolute value of 
y - m x .  (The geometry of the  f igu re  has been adjusted,  as 
described i n  t h e  preceding sec t ion  and reference 5, t o  
correspond t o  the  case i n  which the  Mach angle i s  45O; t h a t  is, 
F l  = 1 . )  

The shape of t he  sur face  and the  constant pressure are 
r e l a t e d  t o  the  ve loc i ty  increments by the  following formulas: 

dz w 
dx V 
- 8 -  

and 

Thus the  camber of a t r i angu la r  a i r f o i l  shaped t o  support a 
uniform load ( f i g .  7) may be obtained by superimposing two 
oblique v o r t i c e s  t o  form a V coinciding with t h e  leading 
edge of t h e  t r i ang le .  In t eg ra t ion  of equation (17)  f o r  t h i s  
case y ie lds :  
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- 1  
z = -  7' cosh-l -5 -y' cosh-' x' 

le1 I ;i)j (20)  

41~m m 

x cosh" -,/-2)] 

I Y I  

where 

2' = x + my and = y + mx 

To obta in  a l i f t i n g  sur face  of f i n i t e  chord i t  i s  necessary 
t o  introduce a negative V-shaped vortex a t  the  des i red  chord 
length downstream. (See f i g .  8.) Through the  use of a f i n i t e  
number of s t r a i g h t  vortex segments any plan form bounded by 
s t r a i g h t  l i n e s  can be obtained. 

The v a r i a t i o n  of w over the  area enclosed by the 
vortex segments not  only gives the  camber and t w i s t  of the  
sur face  required t o  support a uniform load, bu t  a l s o  can be 
used t o  c a l c u l a t e  t he  drag a r i s i n g  from t h e  l i f t .  It can be 
seen t h a t ,  s ince  the  pressure d i s t r i b u t i o n  i s  uniform over 
the  sec t ion ,  t he  r e s u l t a n t  force  w i l l  l i e  i n  a d i r e c t i o n  a t  
r i g h t  angles t o  the  chord l i n e ,  o r  the  l i n e  jo in ing  the  
leading and t r a i l i n g  edge, regardless of t he  camber of t h e  
sur face .  Hence t h e  angle of a t t ack  of t h e  chord l i n e  a t  any 
sec t ion  t i m e s  t he  l i f t  gives the  drag due t o  l i f t ,  a t  t h a t  
sec t ion .  

I n  case t h e  leading edge of t h e  a i r f o i l  is  ahead of the 
Mach cone the  uniformly loaded sur face  i s  f l a t  over por t ions  
of t he  wing not  influenced by the  root  o r  t h e  t i p ,  as i s  given 
by the  Ackeret theory. More i n t e r e s t i n g  cases are those i n  
which the  leading edges are swep t  behind t h e  Mach cone. 

I n  the  case of the  swept-back wing i t  i s  found t h a t  t he  
angle of a t t a c k  has a logarithmic i n f i n i t y  a t  t h e  center  
sec t ion .  Hence the  wing would requi re  an i n f i n i t e  t w i s t  t o  
maintain the uniform load across t h i s  sec t ion .  A t  a d i s t ance  
from the  center  s ec t ion  t h e  shape of the  l i f t i n g  sur face  
resembles t h a t  of the  fami l ia r  "constant load mean l ine"  used 
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f o r  subsonic  a i r f o i l s .  The t w i s t  and hence t h e  s e c t i o n  d rag  
d isappear  r a p i d l y  wi th  d i s t a n c e  from t h e  cen te r  s e c t i o n .  
There is consequently a marked r educ t ion  of drag  c o e f f i c i e n t  
w i t h  i n c r e a s i n g  a spec t  r a t i o ,  j u s t  as i n  t h e  case of t h e  d rag  
due t o  th i ckness .  

The i n f i n i t e  t w i s t  r equi red  a t  t h e  r o o t  s e c t i o n  of 
course,  makes t h e  cons t ruc t ion  of such a wing imprac t i ca l .  
W e  may conclude t h a t  i n  a p r a c t i c a l  wing t h e r e  w i l l  b e  some 
f a l l i n g  o f f  of t h e  l i f t  ac ross  t h e  c e n t e r  s e c t i o n ,  and calcu- 
l a t i o n s  of t h e  l i f t  d i s t r i b u t i o n  f o r  f l a t  s u r f a c e s  show such 
a l o s s .  The uniformly loaded a i r f o i l  g ives  a u s e f u l  p i c t u r e  
of t h e  v a r i a t i o n  of drag  wi th  p l an  form, however. I n  s p i t e  of 
t h e  f a c t  t h a t  t h e  l o c a l  drag  c o e f f i c i e n t  a t  t h e  r o o t  s e c t i o n  
tends toward i n f i n i t y ,  t h e  i n t e g r a t e d  o r  over -a l l  d rag  
c o e f f i c i e n t  of t h e  swept-back wing is f i n i t e  and a t  reasonable  
a spec t  r a t i o s  is considerably lower than t h a t  of t h e  f l a t  
unswep t wing. 

* 
Figure 9 shows t h e  c o e f f i c i e n t  of drag  due t o  l i f t  

C D ~ / C L  
cons tan t  chord and varying degrees  of sweep. To s impl i fy  t h e  
c a l c u l a t i o n s ,  an approximation w a s  made f o r  t h e  e f f e c t  of t h e  
wing t i p .  With t h e  t i p  c u t  o f f  p a r a l l e l  t o  t h e  d i r e c t i o n  of 
f l i g h t  a l a r g e  t w i s t  would t h e o r e t i c a l l y  have been requi red  t o  
maintain t h e  uniform load r i g h t  o u t  t o  t h e  t i p .  In s t ead  of 
c a l c u l a t i n g  t h i s  a d d i t i o n a l  t w i s t  a t  t h e  t i p ,  t h e  shape of t h e  
i n f i n i t e  wing wi th  uniform load w a s  assumed without  modifica- 
t i o n  and a l o s s  i n  l i f t  w i t h i n  t h e  Mach cone o r i g i n a t i n g  a t  
each t i p  w a s  taken i n t o  account.  Since t h e  l i f t  w i l l  have t h e  
f u l l  va lue  along t h e  boundary of t h e  cone and6will  f a l l  t o  
zero a t  the t i p ,  an average va lue  of h a l f  t h e  f u l l  load w a s  
used over  t h i s  region.  Since t h e  e f f e c t  of t h i s  approximation 
t o  a t i p  e f f e c t  on t h e  t o t a l  d rag  va lue  w a s  s m a l l ,  any e r r o r  
involved i n  t h e  approximation must a l s o  be s m a l l .  I f  t he  t i p  
w e r e  cu t  o f f  a long t h e  Mach l i n e s ,  s l i g h t l y  lower va lues  of 
CD./CL would have been obtained.  

f o r  a series of uniformly loaded a i r f o i l s  having a 

1 

Figure 9 shows t h a t  t h e  va lues  of C D ~ / C L  a t  super-  
son ic  speed are i n  gene ra l  h ighe r  than t h e  va lue  corresponding 
t o  t h e  same aspec t  r a t i o  a t  subsonic  speed b u t  approach t h i s  
va lue  as t h e  angle  of sweep i s  increased  (i.e., as ~ 0 ) .  
The p r a c t i c a l  d i f f i c u l t y  of main ta in ing  a given a spec t  r a t i o  
of course i n c r e a s e s  as the angle  of sweep is  increased .  
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F l a t  L i f t i n g  

Rectangular p lan  form. - For 
i n f i n i t e  a spec t  r a t i o  the  Ackeret 

S ince  t h e  l i f t  is a t  r i g h t  angles  

and 

1 CD; 

Surf aces 

a f l a t  r ec t angu la r  wing of 
theory g ives  

0 

-.L 

@l q = 0.25 

t o  t h e  chord, 

1 

A t  a Mach number of 1.4 t h i s  va lue  i s  n e a r l y  f i v e  t i m e s  t h e  
drag  due t o  l i f t  of a subsonic  a i r f o i l  of aspec t  r a t i o  6 .  

I f  t h e  wing has a f i n i t e  aspec t  r a t i o  t h e r e  w i l l  be  a 
reduct ion  of l i f t  a t  t h e  t i p  and a consequent reduct ion  i n  
a C L / a a  from t h e  va lue  given by equat ion (21).  The d i s t r i -  
bu t ion  of l i f t  over t h e  t i p  of a f l a t  r ec t angu la r  wing has  
been ca l cu la t ed  by Busemann ( r e fe rence  14).  The l i f t  over  t h e  
p o r t i o n  of t h e  wing between the  t i p  Mach cones ( f i g .  10) is  
cons tan t  and equal  t o  t h a t  given by t h e  Ackeret theory.  
Within e i t h e r  t i p  cone t h e  l i f t  p ressure  f a l l s  from t h i s  va lue  
t o  zero  a t  the t i p .  I f  y /x  r ep resen t s  t h e  f r a c t i o n a l  
d i s t a n c e  from t h e  t i p  toward the Mach l i n e  a t  a given chord- 
w i s e  pos i t i on ,  then the  l i f t  p re s su re  varies according t o  
the  func t ion  

401 - cos-1 (1 - 2 4  
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Superposing t h e  e f f e c t s  of t h e  two t i p  cones where they 
over lap  and i n t e g r a t i n g  t h e  p re s su re  over  the whole wing g ives  
f o r  t h e  l i f t  c o e f f i c i e n t  

and f o r  the drag due t o  l i f t  

Busemann’s s o l u t i o n  is v a l i d  f o r  A J M Z - I  2 1.0, t h a t  is, 
so  long as t h e  Mach cone from one t i p  does n o t  c ros s  over  t h e  
oppos i te  t i p .  It i s  i n t e r e s t i n g  t o  n o t e  t h a t  when A m  
t h e  l i f t  f a l l s  t o  zero  along t h e  whole t r a i l i n g  edge and t h e  
span load d i s t r i b u t i o n  i s  e l l i p t i c a l ,  as shown i n  r e fe rence  16 
f o r  a i r f o i l s  of very low aspec t  r a t i o .  

T r i angu la r  p l an  form. - Formulas f o r  t h e  l i f t  d i s t r i b u t i o n  
and aCL/aa  f o r  a f l a t  t r i a n g u l a r  a i r f o i l  behind t h e  Mach 
cone have been given r e c e n t l y  by Stewart  ( r e fe rence  15) .  
Stewart  f i n d s  t h a t  t h e  l i f t  d i s t r i b u t i o n  as p red ic t ed  from 
elementary cons ide ra t ions  f o r  very  s l e n d e r  t r i a n g l e s  ( r e f e r -  
ence 16) a c t u a l l y  ho lds  f o r  a l l  leading-edge angles  u n t i l  t h e  
l ead ing  edge touches t h e  Mach cone. Stewart  f i n d s  a l s o  

where E = E(&) i s  t h e  e l l i p t i c  i n t e g r a l .  

I n  t h e  case of t h e  f l a t  s u r f a c e  wi th  t h e  l ead ing  edge 
behind t h e  Mach cone, t he  chordwise l i f t  d i s t r i b u t i o n  has an 
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i n f i n i t e  va lue  a t  the  lead ing  edge j u s t  as i t  does i n  the 
subsonic  case. Here t h e  r e s u l t a n t  f o r c e  w i l l  be  i n c l i n e d  
forward r e l a t i v e  t o  t h e  chord p lane  because of the.  s u c t i o n  
f o r c e  a t  t h e  l ead ing  edge. 

The drag  due t o  l i f t  f o r  t h e  f l a t  t r i a n g u l a r  a i r f o i l  
w a s  eva lua ted  by s e t t i n g  up t h e  complex express ion  f o r  the 
v e l o c i t y  f i e l d  u and w by m e a n s  of Busemann's method 
( r e fe rence  14) .  The drag  w a s  then ca l cu la t ed  from t h e  
formula 

by i n t e g r a t i n g  around a contour  c a s h o r t  d i s t a n c e  away ' 

from t h e  a i r f o i l  s u r f a c e  and enc los ing  the  s i n g u l a r i t y  a t  
t h e  lead ing  edge. The r e s u l t  i s  

A similar formula has been given r e c e n t l y  by W. D. Hayes 
( r e fe rence  17) .  

I n  t h i s  formula, t h e  f i r s t  t e r m  r ep resen t s  a drag  equa l  
t o  t h e  l i f t  t i m e s  t h e  ang le  of a t t a c k ,  and t h e  second term 
rep resen t s  t h e  t h r u s t  at t h e  l ead ing  edge. It  i s  noted t h a t  
t h i s  la t ter  t e r m  d i sappears  progressively-as t h e  edge 
approaches t h e  Mach cone (i.e., A=+ 4). 
l i m i t ,  t h e  s l e n d e r  t r i a n g l e  n e a r  t h e  cen te r  of t h e  Mach cone, 
E+19 and 

A t  t h e  o t h e r  
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as i n  r e fe rence  16. Although t h e  theory  shows a forward 
t h r u s t  on t h e  t h i n  p l a t e  w i t h  a sharp  edge, i t  is  n o t  t o  be  
expected t h a t  t h i s  c h a r a c t e r i s t i c  w i l l  be  r e a l i z e d  i n  p r a c t i c e  
un le s s  t h e  lead ing  edge i s  given a f i n i t e  r ad ius  o r  camber. 

Tapered p l an  form. - The t h e o r e t i c a l  l i f t  d i s t r i b u t i o n  
f o r  a f l a t  untapered swept-back wing wi th  the  lead ing  edge 
behind t h e  Mach cone has  n o t  y e t  been determined. 
s o l u t i o n  f o r  t h e  f l a t  t r i a n g u l a r  wing may b e  r e a d i l y  extended 
t o  inc lude  a s p e c i a l  family of tapered  wings. This extens ion  
is based on t h e  f a c t  t h a t  an area of t h e  t r i a n g u l a r  wing may 
b e  removed by making c u t s  a long Mach l i n e s  without  a f f e c t i n g  
t h e  flow over t h e  area remaining ahead of t h e  cu t s .  I n  
p a r t i c u l a r ,  t h e  removal of such area w i l l  n o t  a f f e c t  t he  
s u c t i o n  f o r c e  on t h e  l ead ing  edge, as long as t h e  area removed 
does n o t  i nc lude  any of t h e  l ead ing  edge s o  t h a t  t h e  
c o e f f i c i e n t  of t h r u s t  w i l l  be  increased  as area is  cut  away. 
Evident ly  t h e  most e f f i c i e n t  members of t h i s  family of ‘air- 
f o i l s  are those  i n  which t h e  maximum area is c u t  out of t h e  
t r i a n g l e ,  t h a t  is, the  wing i s  tapered  t o  a po in t .  (See 
Fig.  1 1 . )  

However, the  

With t h e  t r a i l i n g  edge f ixed  a t  t h e  Mach angle ,  t h e  angle  
of t a p e r  and hence t h e  a spec t  r a t i o  of t hese  wings varies w i t h  
t h e  angle  of sweep i n  such a manner t h a t  

-1 A = F ~  4m 

as t h e  l ead ing  edge approaches t h e  Mach cone m + 1 . 0  
and t h e  a spec t  r a t i o  approaches i n f i n i t y .  

The l i f t - c u r v e  s lope  of t h e s e  a i r f o i l s  is  determined 
simply by i n t e g r a t i n g  t h e  p re s su re  d i s t r i b u t i o n  f o r  t h e  
t r i a n g u l a r  a i r f o i l  over t h e  appropr i a t e  area. The ca lcu la-  
t i o n  g ives  

and f o r  t h e  drag  due t o  l i f t  
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where N i s  t h e  r a t i o  of t h e  l i f t - c u r v e  s l o p e  of t h e  
t r i a n g u l a r  a i r f o i l  t o  t h a t  of t h e  tapered  a i r f o i l ,  t h a t  is ,  

Equations (31) through (34) apply t o  t h e  case of t h e  
wing tapered  t o  a po in t .  I n  subsonic  flow such extreme t a p e r  
is  known t o  l e a d  t o  h igh  l o c a l  l i f t  c o e f f i c i e n t s  over t h e  
t i p  p o r t i o n s  and t o  t h e  p o s s i b i l i t y  of t i p  s t a l l i n g  even at 
moderate l i f t  c o e f f i c i e n t s .  A similar tendency i s  evident  
a t  supersonic  speeds;  i n  f a c t ,  t h e  s e c t i o n  l i f t  c o e f f i c i e n t s  
tend toward i n f i n i t y  a t  the  pointed t i p .  Hence t h e  extreme 
t a p e r  should n o t  be  used i n  p r a c t i c e  and va lue  of 
ca l cu la t ed  f o r  t hese  cases w i l l  be  somewhat o p t i m i s t i c .  

C D ~ / C L ~  

Comparison of L i f t  and Drag Values f o r  F l a t  Sur faces  

Curves showing t h e  v a r i a t i o n  of l i f t - c u r v e  s l o p e  w i t h  
Mach number and a spec t  r a t i o  f o r  t h e  r ec t angu la r ,  t r i a n  u l a r ,  
and tapered a i r f o i l s  are shown i n  f i g u r e  12.  A t  A d- M -1 = 4 
t h e  l ead ing  edge of t h e  t r i a n g u l a r  a i r f o i l  touches t h e  Mach 
cone and, as shown by Pucket t  ( r e fe rence  4 ) ,  t h e  l i f t  charac- 
teristics a t  h ighe r  a spec t  r a t i o s  are i d e n t i c a l  w i th  those  of 
a r ec t angu la r  a i r f o i l  of i n f i n i t e  a spec t  r a t i o .  

The drag  due t o  l i f t  versus  a spec t  r a t i o  f o r  t h e  va r ious  
f l a t  wings is shown i n  f i g u r e  13. According t o  t h e  Ackeret 
theory 

and i t  is t o  b e  noted t h a t  bo th  t h e  r ec t angu la r  and t h e  
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t r i a n g u l a r  a i r f o i l s  approach t h i s  va lue  a t  h ighe r  aspec t  r a t i o s .  
A t  

t h e  lead ing  edges of t h e  t r i a n g u l a r  a i r f o i l  are behind t h e  Mach 
cone and t h e  drag due t o  l i f t  is  reduced somewhat because of 
t h e  s u c t i o n  on t h e  l ead ing  edge. However, t he  r e a l l y  favor- 
a b l e  va lues  of C D ~ / C L ~  are obta ined  only  wi th  t h e  swept-back 
wings of r e l a t i v e l y  high a spec t  r a t i o .  The f a c t  t h a t  t h e  
va lues  f o r  t h e  f l a t  pointed wings agree  wi th  those  f o r  t h e  
cambered, untapered a i r f o i l s  shown on f i g u r e  9 is an ind i -  
c a t i o n  t h a t  t h e  drag  due t o  l i f t  i s  p r imar i ly  a func t ion  of 
sweepback and a spec t  r a t i o .  

RESULTS 

The t o t a l  d rag  of t h e  supersonic  a i r c r a f t  can now be 
es t imated  by adding up the  components t hus  f a r  considered 
w i t h  an allowance f o r  t h e  f r i c t i o n  drag  of t h e  wing and a 
s m a l l  al lowance f o r  t h e  t a i l  su r faces .  

Since t h e  l i f t - d r a g  r a t i o  inc reases  wi th  inc reas ing  s l en -  
derness  of t he  wing, i t  is necessary  t o  e s t a b l i s h  some s tandard  
of s lenderness  t o  ob ta in  comparative va lues .  A rough measure 
of t h e  s t r u c t u r a l  s t i f f n e s s  of a wing i s  t h e  maximum s p a r  
depth a t  t h e  wing r o o t  d iv ided  by t h e  d i s t a n c e ,  measured along 
t h e  spa r ,  t o  t h e  cen t ro id  of area of t h e  wing.# A va lue  of 
1/15 seems t o  be  about t h e  l i m i t  of present-day cons t ruc t ion .  

Airplane wi th  Constant Chord Swept-back Wing 

Figure 14 shows l i f t - d r a g  r a t i o s  ob ta inab le  a t  M = 1.4 as 
a func t ion  of m w i t h  a conf igu ra t ion  embodying the  cons tan t  
chord, uniform l i f t  a i r f o i l  and a type I body of 15 t o  1 f i n e -  
nes s  r a t i o ,  An allowance of C D ~  = 0.006 w a s  made f o r  t he  
f r i c t i o n  drag  on t h e  wing and a va lue  equal  t o  10 percent  of t he  
wing drag  w a s  a l l o t t e d  t o  t h e  ver t ical  t a i l .  No h o r i z o n t a l  
t a i l  is shown, s i n c e  i t  i s  n o t  clear t h a t  such a t a i l  would be  
requi red  wi th  t h i s  conf igura t ion .  The f r o n t a l  area of t h e  body 
w a s  assumed t o  be 4 percent  of t h e  wing area. The drag  and l i f t  
of t h e  wing w e r e  assumed t o  c a r r y  ac ross  t h e  cen te r  s e c t i o n s .  
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without being modified by the  presence of t he  body, 

The a i r f o i l  shape is obtained by superimposing a para- 
b o l i c  arc thickness d i s t r i b u t i o n  upon a cambered and twisted 
sur face  designed, as discussed earlier, t o  support a uniform 
load. The varion i n  sweepback, o r  m, i n  t h i s  case w a s  
assumed t o  be obtained by r o t a t i n g  the  wing p a n e l s  without 
changing t h e i r  length-width r a t i o ,  hence t h e  aspect r a t i o  
v a r i e s  wi th  sweep as shown. 
would have an aspect r a t i o  of 12. I f  the  r a t i o  of t he  root  
thickness t o  the  s p a r  length from t h e  root  s ec t ion  t o  the  
centroid of t h e  wing panel is 1/15, the  thickness-chord r a t i o  
of t he  unswept wing would be 0.2. 
through 60° (m = 0.577) has an aspect r a t i o  of 3 and a t / c  
(c measured p a r a l l e l  t o  t h e  stream) of 0.1. 

The wing i n  the  unswept pos i t i on  

The same wing ro t a t ed  

The ca l cu la t ions  f o r  t h e  uniformly loaded wings show 
higher l i f t -d rag  r a t i o s  f o r  s t i l l  higher aspect r a t i o s  and 
g rea t e r  thickness-chord r a t i o s ,  but i t  is  doubtful t h a t  t h e  
ca lcu la t ions  based on the  theory of s m a l l  disturbances apply 
i n  these  cases. 

Because of t he  higher aspect r a t i o s  a t t a i n a b l e  with a 
tapered wing it  i s  found t h a t  these  configurations are more 
e f f i c i e n t  than the  constant chord wings, and therefore  they 
w i l l  be discussed i n  somewhat g rea t e r  d e t a i l .  

Airplane with Tapered Wing 

Figure 15 shows t h e  l i f t -d rag  r a t i o s  obtainable a t  M = 1 . 4  
with the  f l a t  pointed wing. 
t a i l  are the  same as i n  the  preceding case, and t h e  s a m e  value 
of CDf w a s  used. 
wedge sec t ions  (as  i n  f i g .  2 ) ,  but an approximate cor rec t ion  
f a c t o r  of 4 / 3  w a s  i n se r t ed  i n t o  the  thickness drag t o  take  
account of t h e  g rea t e r  average slope of t h e  biconvex p r o f i l e .  
The quant i ty  4/3 i s  t h e  r a t i o  of t h e  wave drag of t he  biconvex 
sec t ion  t o  t h a t  of t he  double-wedge sec t ion  i n  two-dimensional 
flow. 
t h e  d i s t ance  from t h e  wing root  t o  the  centroid of area of t he  
ha l f  wing. The v a r i a t i o n  of t / c  (streamwise) i s  shown i n  
f igu re  15. Since t h e  trail ing-edge angle is  fixed on the  Mach 
l i n e ,  t he  aspect r a t i o  increases  i n d e f i n i t e l y  as m approaches 
1, according t o  equation (31). The optimum l i f t  coe f f i c i en t  

The proportions of fuselage and 

The ca lcu la t ions  w e r e  made assuming double- 

The maximum wing thickness i n  each case is again 1/15 
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ca l cu la t ed  by equat ion  ( l o ) ,  is a l s o  shown i n  f i g u r e  15. 

Figure 16 shows t h e  v a r i a t i o n  of (L/D)ma w i t h  m a t  
d i f f e r e n t  Mach numbers. It i s  noted t h a t  t he  optimum va lue  of m 
is  d i f f e r e n t  f o r  d i f f e r e n t  Mach numbers; t h e r e  appears  t o  be  
no f ixed  r e l a t i o n  between t h e  sweepback angle  and t h e  Mach 
angle.  Evident ly  r e l a t i v e l y  g r e a t e r  sweepback angles  should 
be  used a t  s m a l l e r  Mach numbers. The  optimum va lues  of m w i l l ,  
of course,  be  inf luenced  by the  magnitude of t h e  f r i c t i o n  drag.  

DISCUSSION OF RESULTS 

E f f e c t  of P lan  Form 

Figure 17 shows t h e  l i f t - d r a g  r a t i o s  r e p l o t t e d  a g a i n s t  
a spec t  r a t i o  and compared wi th  va lues  es t imated  f o r  a s t r a i g h t  
wing-body combination. It w i l l  be  noted t h a t  up t o  M L 2 t h e  
swept-back wing is much more e f f i c i e n t  than  t h e  s t r a i g h t  wing. 
The d i f f e r e n c e  is smaller a t  t h e  h igher  Mach numbers, however, 
and t h e  advantages of sweepback a t  very h igh  Mach numbers may 
be  quest ioned.  I n  each case t h e  e f f i c i e n c y  diminishes  w i t h  Mach 
number. 

Although the  conf igu ra t ions  shown i n  f i g u r e s  14 and 15 
appear from t h e  c a l c u l a t i o n s  t o  g ive  t h e  b e s t  l i f t - d r a g  r a t i o s ,  
i t  i s  no t  t o  be  assumed t h a t  t h e s e  conf igu ra t ions  are a c t u a l l y  
the m o s t  s u i t a b l e  f o r  p r a c t i c a l  use .  I n  p r a c t i c e  t h e  wing must 
of course have a f i n i t e  t i p  chord and may a l s o  r e q u i r e  some 
camber o r  twist t o  avoid t h e  high concent ra t ion  of load near  
t h e  t i p s .  A l s o ,  as has  been previous ly  remarkpd, t h e  l o c a t i o n  
of t h e  t r a i l i n g  edge on, r a t h e r  than  behind, t h e  Mach l i n e s  
w a s  c h i e f l y  a computational device.  It  i s  probable  t h a t  a 
g r e a t e r  sweep of t h e  t r a i l i n g  edge would be d e s i r a b l e .  

Such modi f ica t ions  w i l l  of course  cause changes i n  t h e  
l i f t - d r a g  r a t i o .  However, i t  i s  be l ieved  t h a t  t h e  h ighes t  l i f t -  
d rag  va lues  shown can a c t u a l l y  be approached wi th  p r a c t i c a l  
conf igu ra t ions  e The t h e o r e t i c a l  va lues  of C D ~ / C L ’  f o r  t h e  
wing wi th  i t s  t r a i l i n g  edge along t h e  Mach cone are somewhat 
more favorable  than  the  va lues  t o  be expected w i t h  a wing 
having i t s  t r a i l i n g  edge behind t h e  Mach cone. On the  o the r  
hand, t h e  l o c a t i o n  of t h e  t r a i l i n g  edge along t h e  Mach l i n e  i s  
unfavorable  from t h e  s tandpoin t  of th ickness  drag,  as shown by 
f i g u r e  2 ,  Hence t h e  n e t  e f f e c t  of t r a i l i ng -edge  l o c a t i o n  on 
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(L/D)max is  n o t  expected t o  be  very  pronounced. The benef i -  
c i a l  e f f e c t s  of t ape r ing  t h e  wing ind ica t ed  by f i g u r e  1 7  may 
a l s o  be assumed t o  ho ld  q u a l i t a t i v e l y  f o r  more moderate degrees  
of t ape r .  

A i r f o i l  Sec t ion  

No a t tempt  w a s  made i n  the  a n a l y s i s  t o  f i n d  an optimum 
a i r f o i l  p r o f i l e .  The s e c t i o n  assumed f o r  t h e  c a l c u l a t i o n s  
has  a pa rabo l i c  th ickness  d i s t r i b u t i o n .  I n  p r a c t i c e ,  as 
previous ly  mentioned, it would be necessary  t o  round o r  
camber t h e  l ead ing  edge t o  achieve t h e  p red ic t ed  va lues  of 
C D ~ / C L ~ .  
t apered  p lan  form) a cusped t r a i l i n g  edge. This  device  would 
enable  t h e  des igner  t o  t ake  advantage of t h e  h igh  l i f t  t o  be 
obtained by p l ac ing  t h e  t r a i l i n g  edge along t h e  Mach l i n e s ,  
whi le  e f f e c t i v e l y  g iv ing  t h e  th ickness  d i s t r i b u t i o n  a g r e a t e r  
angle  of sweep and thus  a v e r t i n g  t h e  l a r g e  wave drag  which 
arises when t h e  genera tors  of t h e  th i ckness  d i s t r i b u t i o n  are 
t o o  nea r  t h e  Mach l i n e s .  

It might a l s o  b e  advantageous t o  use  (with t h e  

F r i c t i o n  Drag 

The allowance of 0.006 made f o r  t h e  f r i c t i o n  drag  coe f f i -  
c i e n t  of t h e  wing corresponds t o  a t u r b u l e n t  boundary l a y e r  
a t  a Reynolds number of lo7 .  
f r i c t i o n  f o r  both wing and fuse l age  i s  be l i eved  t o  be 
conserva t ive ,  s i n c e  t h e r e  are i n d i c a t i o n s  t h a t  l a r g e  areas of 
laminar flow can be  achieved a t  supersonic  speeds.  The 
importance of main ta in ing  laminar  flow o r  o t h e r d i s e  reducing 
t h e  f r i c t i o n  can b e  seen  from t h e  magnitudes of t h e  va r ious  
drag  components w i th  t h e  b e s t  conf igu ra t ion  ( f i g .  15, m = 0.5) 
a t  a Mach number of 1 -4 .  The va r ious  components are shown 
i n  t h e  fol lowing t a b l e :  

(1) Thickness drag  of wing 0.0041 
(2) F r i c t i o n  drag  of wing e 0060 

(4) F r i c t i o n  drag  of body a 0036 

.0167 
Drag due t o  l i f e  C D ~  = -0167 

To ta l  d rag  0 e 0334 
F r i c t i o n  drag  (2) + ( 4 )  0 0096 

The assumption of t u rbu len t  

(3) Thickness drag of body 0020 

(5) Drag of ver t ical  t a i l  .0010 

T o t a l  d rag  at zero l i f t :  CD, - - 
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Note t h a t  t h e  f r i c t i o n  drag  i s  more than  50 pe rcen t  of t h e  
t o t a l  d rag  a t  ze ro  l i f t .  I n  t h i s  case the maximum l i f t - d r a g  
r a t i o  is 10.7; wi th  completely laminar flow t h e  r a t i o  would 
inc rease  t o  about 15. 

Optimum Wing Loading and A l t i t u d e  

The a n a l y s i s  i n d i c a t e s  t h a t  reasonably good aerodynamic 
e f f i c i e n c i e s  are ob ta inab le  up t o  Mach numbers of 1.5. A t  
M = 1.4 
l i f t  c o e f f i c i e n t  of 0.35. From equat ion  (5 ) ,  t h e  wing loading 
f o r  t h i s  case works out  t o  be  about one-half t h e  atmospheric 
pressure .  
s m a l l  and t h e  ques t ion  arises as t o  whether t h e  l i n e a r i z e d  
theory can be  considered app l i cab le  i n  t h i s  case. No accura t e  
a n a l y s i s  of t h i s  l i m i t a t i o n  can be  given a t  p re sen t .  However, 
an approximate c r i t e r i o n  can be deduced by comparing the  flow 
over t h e  swept-back wing w i t h  t h e  two-dimensional subsonic  flow 
over a wing s e c t i o n  a t  t h e  same component Mach number as 
suggested i n  r e fe rence  2. When t h i s  comparison is  made f o r  
conf igu ra t ions  n e a r  t h e  optimum i n  f i g u r e  15 it  is  found t h a t  
t h e  wing s e c t i o n s  are ope ra t ing  beyond t h e i r  c r i t i ca l  Mach 
numbers a t  t h e  ind ica t ed  optimum l i f t  c o e f f i c i e n t .  Thus i t  
appears  t h a t  t h e  optimum l i f t  c o e f f i c i e n t  w i l l  a c t u a l l y  be 
s m a l l e r  than is  i n d i c a t e d  by t h e  l i n e a r i z e d  theory.  For t h e  
b e s t  conf igu ra t ion  a t  M = 1.4, i t  appears  t h a t  t h e  optimum 
l i f t  c o e f f i c i e n t  may be  n e a r e r  0.25 than t h e  0.357 ind ica t ed  
by f i g u r e  15. I n  t h i s  case t h e  L / h a  w i l l  be  diminished 
from 10.7 t o  10, and the  optimum wing loading from one-half t o  
approximately one-third atmospheric p re s su re .  A t  sea level 
t h e  wing loading  requi red  would be  700 pounds ‘per square f o o t ,  
bu t  f o r  opera t ion  a t  60,000 f e e t  t h e  much more reasonable  f i g u r e  
of 50 pounds p e r  square  f o o t  is obtained.  A t  t h i s  a l t i t u d e  the  
t r u e  a i r speed  i s  900 m i l e s  per  hour and the  ind ica t ed  a i r speed  
290 m i l e s  p e r  hour. 

t h e  b e s t  conf igu ra t ion  s tud ied  should ope ra t e  near  a 

This  p re s su re  d i s tu rbance  can no longer  be considered 

Ames Aeronaut ical  Laboratory,  
Nat iona l  Advisory Committee f o r  Aeronautics,  

Moffet t  F i e ld ,  Ca l i f . ,  May 1947 
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APPENDIX 

SYMBOLS 

f l i g h t  v e l o c i t y  

v e l o c i t y  at sea l e v e l  

a i r  dens i ty  

dens i ty  a t  sea l e v e l  

atmospheric p re s su re  

t h r u s t  

weight 

l i f t  

drag 

[+) Mach number 

v e l o c i t y  of sound 

(P /2Lv2s ) l i f t  c o e f f i c i e n t  

wing area 

r a t i o  of s p e c i f i c  h e a t s  (y = 1.4 f o r  a i r ) ,  

(d2DvZs) drag  c o e f f i c i e n t  

drag c o e f f i c i e n t  a t  zero  l i f t  

c o e f f i c i e n t  of drag due t o  th ickness  

c o e f f i c i e n t  of drag due t o  l i f t  

f r i c t i o n  drag c o e f f i c i e n t  
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t 

C 

1 

r 

r0 

d 

W 

U 

Y 

X '  

Y '  

z 

aspec t  ra t  i o  

wing span (perpendicular  t o  d i r e c t i o n  of f l i g h t )  

coord ina te  a long d i r e c t i o n  of f l i g h t  

parameter i n d i c a t i n g  re la t ive s lope  of wing l ead ing  edge 

cotangent  leading-edge angle  
cotangent  sweep angle  of Mach l ines  

th ickness  of wing a t  midchord 

wing chord 

length  of fuse l age  

r ad ius  of fuse l age  

maximum rad ius  

maximum diameter  of fuse l age  

s m a l l  v e r t i c a l  v e l o c i t y  d is turbance  

(d = 2r0) 

s m a l l  h o r i z o n t a l  v e l o c i t y  d is turbance  

lateral  (spanwise) coord ina te  

x - m y  Z ' = x + m y  

y - m x  y t = y + m x  

ver t ical  coord ina te  of wing camber l i n e  

angle  of a t t a c k  

complete e l l i p t i c  i n t e g r a l  of t he  second kind 

r a t i o  of l i f t - c u r v e  s l o p e  of t r i a n g u l a r  a i r f o i l  t o  
t h a t  of t h e  tapered  a i r f o i l  
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 1402 

EFFECTS OF SWEEPMCK ON BOUNDARY LAYER 

AND SEPARATION 

By Robert T. Jones 

SUMMARY 

Following t h e  l a w  of stress adopted i n  t h e  Navier-Stokes equations, 
t h e  configuration of t h e  viscous flow i n  planes a t  r i g h t  angles t o  t h e  
a x i s  of an i n f i n i t e  cy l inder  is found t o  be independent of t h e  a x i a l  
motion of t h e  cylinder.  I n  t h e  l imi t ing  case of a yawed o r  swept wing 
of very high aspect r a t i o ,  c e r t a i n  boundary-layer and separa t ion  phenomena 
are thus determined independently by t h e  crosswise component of ve loc i ty .  
It follows t h a t  t h e  e f f e c t  of sweepback is t o  increase  t h e  area of 
s t a b l e  laminar flow and t o  decrease t h e  l i f t  coe f f i c i en t  a t  which flow 
separa t ion  occurs. 

INTRODUCTION 

Experimental observations of t h e  viscous flow over oblique wings 
and bodies present such complex phenomena t h a t  even t h e  most approxi- 
mate simplifying p r i n c i p l e  may be of va lue  i n  in t e rp re t ing  these  
observations. I n  t h e  case of compressible flow, such a simplifying 
p r inc ip l e  w a s  found by studying t h e  idea l ized  problem of t h e  p e r f e c t l y  
cy l ind r i ca l  oblique flow, corresponding t o  t h e  i n f i n i t e  aspec t - ra t io  
wing, o r  t h e  i n f i n i t e l y  slender body. I n  t h a t  case, t h e  equations 
of motion together with the  boundary conditions appl icable  t o  a moving 
cylinder i n  a f r i c t i o n l e s s  f l u i d  showed t h a t  (1) t h e  flow p a t t e r n  and 
pressure disturbances i n  planes a t  r i g h t  angles t o  t h e  c y l i n d r i c a l  axis 
are determined s o l e l y  by t h e  component of ve loc i ty  i n  these  planes 
and, (2) t h e  a x i a l  motion of t h e  cy l inder  produces no e f f e c t  on t h e  flow. 
Now t h e  question is: Can similar genera l iza t ions  be made concerning t h e  
viscous flow produced by an  i n f i n i t e  cy l inder  moving obliquely? 
t h i s  case, t h e  Navier-Stokes equations, together with t h e  given boundary 
conditions,  supply a d e f i n i t e  answer. 
(1) sti l l  a p p l i e s  while proposit ion (Z), of course, does not. Thus i t  
is  t o  be expected t h a t  var ious  f e a t u r e s  of t h e  viscous flow such as 
boundary-layer thickness and separa t ion  po in t  - i f  observed i n  planes 

For 

It can be shown t h a t  propos i t ion  
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- a t  r i g h t  angles -- t o  t h e  c y l i n d r i c a l  axis w i l l  be determined s o l e l y  by 
t h e  component of v e l o c i t y  of t h e  cy l inder  i n  these  planes. 

OBLIQUE VISCOUS FLOW 

To v e r i f y  t h i s  f e a t u r e  of t h e  oblique flow, consider f i r s t  t h e  
disturbance produced by a pure crosswise motion of t h e  cylinder.  
motion and t h e  state of stress w i l l  be  t h e  same i n  a l l  c ross  sec t ions .  
Each p a r t i c l e  i n  a given c ross  s e c t i o n  i s  thus associated with a whole 
s t r i n g  of p a r t i c l e s ,  o r  a fi lament,  connecting the  var ious  c ross  sec t ions  
and moving as a u n i t .  
w i s e  t r a n s l a t i o n  of these  fi laments without a f f e c t i n g  t h e i r  progress 
ac ross  t h e  cy l inder ,  s ince  each p a r t i c l e  w i l l  simply move from one 
c ross  sec t ion  t o  another similar one. Such a lengthwise motion of t h e  
f i laments  w i l l ,  of course, introduce shearing stresses i n  t h i s  d i r ec t ion ,  
but t hese  stresses w i l l  not a f f e c t  t h e  rate of shear and hence w i l l  
not a f f e c t  t h e  shearing stress i n  t h e  crosswise d i r ec t ion .  

The 

Obviously w e  may introduce any a r b i t r a r y  length- 

The independence of t h e  c r o s s  flow and the  a x i a l  flow is, of course, 
t h e  r e s u l t  of t h e  l a w  of shearing stress adopted i n  the  Navier-Stokes 
equations. The shearing stress i n  one d i r e c t i o n  is  taken t o  be pro- 
po r t iona l  t o  t h e  rate of shearing i n  t h i s  d i r e c t i o n  and i s  independent 
of t h e  rate of shearing i n  o the r  d i r ec t ions .  A t  high rates of shear 
where an  appreciable temperature rise is  involved, t h e  independence of 
t h e  shearing stresses can no longer be assumed. Such conditions occur 
a t  very high Mach numbers and are, of course, beyond the  range of v a l i d i t y  
of t h e  Navier-Stokes equations. 

THE LAMINAR BOUNDARY LAYER ON AN OBLIQUE FLAT PLATE 

The simplest  case of viscous,  c y l i n d r i c a l  flow is t h e  laminar 
boundary l a y e r  over a f l a t  p l a t e  (Blasius flow). 
r e s u l t  of Blasius shows a parabolic increase  of boundary-layer thick- 
ness beginning a t  t h e  leading edge, i.e., 

The w e l l  known 

I n  accordance with t h e  foregoing statements t h e  boundary-layer thickness 
a t  any g i v e n  poin t  w i l l  not be a f f ec t ed  by t h e  in t roduct ion  of an 
add i t iona l  ve loc i ty  p a r a l l e l  t o  t h e  leading edge of  t h e  p l a t e .  I n  
f a c t ,  Blasius '  formula shows no change i n  6 i f  w e  change x so t h a t  
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i t  is measured along the  direcf ion of t he  new re su l t an t  veloci ty  since,  
i n  t h i s  case, both x and V are changed i n  the  same r a t i o ,  f i gu re  1.  
The resu l tan t  drag on the  oblique p l a t e  l i es  i n  the  d i rec t ion  of t he  
resu l tan t  veloci ty ,  but t he  component force  i n  t h e  d i rec t ion  a t  r i g h t  
angles t o  t h e  leading edges can be determined so le ly  from t h e  veloci ty  
component i n  t h i s  direct ion.  

An approximate so lu t ion  f o r  t he  laminar boundary layer  on an 
oblique p l a t e  with a favorable pressure gradient has been given recent ly  
by Prandtl  i n  reference 1. 
boundary layer  departs only s l i g h t l y  from the d i rec t ion  of t he  main 
stream, Prandt l  obtains the  veloci ty  p r o f i l e  of t he  boundary layer i n  
two mutually perpendicular direct ions.  It appears t ha t  the  resu l tan t  
f r i c t i o n  drag i s  inclined away from the  stream di rec t ion  toward the  
d i rec t ion  of t h e  favorable pressure gradient. 

On the assumption tha t  the  flow i n  the 

WIND-TUNNEL TESTS OF CIRCULAR WIRES 

I 

With more complex flows involving pressure stresses as w e l l  as 
viscous stresses complete solut ions have been obtained only f o r  very 
low Reynolds numbers. 
predominate but v i scos i ty  plays an important pa r t  through i ts  e f f ec t  
on separation. 
approximately half-way around the  surface and a KZlrmZln vortex street 
is formed i n  t h e  wake. 
pat tern,  t he  vortex frequency, etc., would depend only on the  crosswise 
component of veloci ty .  

A t  high Reynolds numbers the  pressure stresses 

Thus i n  the  case of a c i rcu lar  cylinder the  flow separates 

One would expect t ha t  t he  geometry of t h i s  

Fig. 2 shows the  r e s u l t  of a wind-tunnel test on a c i r cu la r  w i r e  
a t  d i f f e ren t  angles of yaw (reference 2). 
number based on the  crosswise component varied from lo2 t o  lo3 - a 
range i n  which the  drag coef f ic ien t  is  nearly constant. Over t h i s  
range the  crosswise component of t h e  drag force  on t h e  w i r e  should be 

I n  these tests the  Reynolds 

proportional t o  (V cos f3)2 and the tests do ind ica te  t h i s  variation. 

I n  the  case of t he  c i r cu la r  cylinder there  is a ce r t a in  c r i t i ca l  
Reynolds number a t  which t h e  l i n e  of separation s h i f t s  rapidly t o  a 
more rearward posit ion.  This s h i f t  is  accompanied by a marked reduc- 
t i on  i n  the  drag coeff ic ient .  I f  the  cylinder is oblique, t he  cr i t ical  
Reynolds number should be delayed t o  a higher speed such tha t  

V cos B d 
= Rcritical V 
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STABILITY OF LAMINAR FLOW 

It is well known that a laminar boundary layer or surface of 
discontinuity becomes unstable at certain Reynolds numbers. 
lations of the stability of the laminar boundary layer in two- 
dimensional motion have been made by Tollmein, Schlichting and, 
more recently, by Lees and Lin. 
verified experimentally in important respects by Dryden, Schubauer 
and Skramstad (references 3 and 4 ) ,  who find that transition to 
turbulent flow can result from fluctuations in the laminar layer. 
the case of a yawed plate or airfoil the calculated boundary-layer 
waves would, of course, have their crests and troughs aligned with the 
leading edge and their stability would be determined by the Reynolds 
number of the crosswise component of the stream velocity. In case 
transition is caused by such oscillations one would expect the transition 
line to recede from the leading edge with increasing angles of yaw in 
a stream of constant velocity. On the other hand, if transition is 
caused by roughness of the surface, a cylindrical flow cannot be assumed 
and the transition may, of course, be affected differently: 

Calcu- 

The theoretical predictions have been 

In 

An interesting case which departs radically from the usual 
assumptions made for a cylindrical boundary has been investigated by 
G. I. Taylor (see reference 5). Taylor investigates the stability of 
viscous flow in the annular space between two concentric circular 
cylinders in relative rotation. After a certain Reynolds number is 
exceeded the cylindrical form of the flow disappears and a regular 
vortex formation appears with the vortex rotations at 90° to the 
rotation of the cylinders, and alternating periodically along their 
length. 
in other cases of boundary-layer flow along convex walls. 
to Liepmann(reference 6) transition from laminar to turbulent flow 
results from this three-dimensional type of instability if the surface 
is concave, but transition on a plane or convex surface results from 
the two-dimensional type of wave motion mentioned earlier. 

Gortler and Liepmann find similar three-dimensional disturbances 
According 

FLOW SEPARATION AND MAXIMDM LIFT 

The separation of flow over a straight wing occurs when the 
adverse pressure increase opposing the motion is sufficient to reverse 
the momentum of the fluid in the boundary layer (see Fig. 3 ) .  In the 
case of the oblique wing the resultant pressure gradient is of course 
at right angles to the long axis of the wing and both this pressure 
and the components of the viscous stress distribution lying in this 
direction will be determined by the crosswise component of velocity. 
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Hence the  circumstances leading t o  separation of flow over the  s t r a igh t  
wing w i l l  be reproduced if the  crosswise component of motion of t he  
oblique wing is the  same as that of t he  s t r a i g h t  wing. In  both cases 
separation w i l l  be taken t o  mean tha t  t he  f l u i d  i n  the  boundary layer  
has l o s t  the  component of momentum t h a t  carries it across the  wing, 
In the  oblique case the  boundary layer  w i l l  then flow i'n a d i rec t ion  
p a r a l l e l  t o  t he  long axis. 

The known adverse e f f ec t s  of sweepback on the  l i f t  and drag of a 
According wing can be a t  least p a r t i a l l y  explained by t h i s  analysis.  

t o  t he  two-dimensional theory a wing which shows boundary-layer 
reversal  and maximum l ift a t  CL - 1.4, if yawed 45O, would show 
separation accompanied by a f u l l y  developed lateral motion of the 
boundary layer  a t  CL = .7. In  each case the l i f t  would drop and the  
resu l tan t  force  would f a l l  back t o  a posi t ion nearly at  r i g h t  angles 
t o  the  chord because of t he  l o s s  of t he  suction force  on the  leading 
edge. 
Wind-tunnel observations of t he  boundary-layer flow over swept-back wings 
agree qua l i t a t ive ly  with these predictions i n  regard t o  flow separation 
but do not show t h e  expected l o s s  i n  maximum l i f t .  
i n  l i f t  a f t e r  boundary-layer separation, some experiments ind ica te  
an increase i n  l ift curve slope a t  t h i s  point. 
and moments on the  swept wing do begin t o  show non-linear var ia t ions  
at  the  separation point,  however, and there  is  a sharp rise i n  drag a t  
t h i s  point indicat ing t h a t  t he  lo s s  of suction a t  t h e  leading edge does 
occur. The tendency to  follow the  two-dimensional theory up to  the  
point of separation and the  p a r t i a l  f a i l u r e  of the  theory a f t e r  separa- 
t i o n  ind ica tes  t h a t  the  "end effects"  are much greater  i n  the separated 
flow than i n  the  unseparated flow. 
from t h e  physical standpoint, s ince the  influence of t he  t i p s  would 
obviously be more extensive i n  the  case of a th ick  separated region 
than i n  the  case of a r e l a t i v e l y  th in  boundary layer.  It must be 
supposed, however, t ha t  as the  aspect r a t i o  of t he  swept-back wing 
is  increased i t s  maximum l i f t  coef f ic ien t  w i l l  show an increasing 
tendency t o  follow the  cos2 l a w .  The experiments on oblique c l rcu lar  
w i r e s ,  which involve la rge  regions of separated flow and yet  follow 
the  two-dimensional theory, lend support to  t h i s  hypothesis. 

A t  60° yaw the  predicted m a x i m u m  l ift coef f ic ien t  would be only .35. 

Instead of a drop 

Ordinarily the  forces  

This s i t ua t ion  is not surpr is ing 

Ames Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Moffett Field,  C a l i f .  
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THE USE O F  CONICAL AND CYLINDRICAL FIELDS I N  

SUPERSONIC WING THEORY 

By Robert  T. Jones 

Ames Aeronaut ica l  Laboratory 

Some of t h e  r ecen t  advances i n  t h e  theory of t h i n  a i r f o i l s  are 
presented  wi th  p a r t i c u l a r  r e fe rence  t o  ex tens ions  of t h e  theory  t o  
three-dimensional f lows and t o  supersonic  speeds. 

The t h i n - a i r f o i l  theory is  e s s e n t i a l l y  a l i n e a r i z e d  theory  of s m a l l  
d i s tu rbances  and t h e  o r i g i n  of t h e  concepts may be  t r a c e d  back t o  t h e  
o l d e r  t h e o r i e s  of Munk and Ackeret. 
dimensional f lows a rose  from t h e  discovery t h a t  t h e  type of two-dimensional 
supersonic  flow considered by Ackeret is  aerodynamically i n e f f i c i e n t .  The 
search  f o r  aerodynamically e f f i c i e n t  forms f o r  supersonic  f l i g h t  a l s o  
focuses  a t t e n t i o n  on the  l i n e a r ,  o r  small-dis turbance,  theory  s i n c e  bodies  
and wings c r e a t i n g  l a r g e  d is turbances  are thought t o  be  aerodynamically 
i n e f f i c i e n t .  

The p resen t  emphasis on three-  

The newer development of t h e  theory  is t h e  work of many i n v e s t i g a t o r s .  
The p resen t  d i scuss ion ,  however, is based l a r g e l y  on t h e  conical-flow 
theory  f i r s t  employed by Busemann ( r e fe rence  1). 

The t e r m  " t h i n  a i r f o i l "  is  used t o  denote a t h i n ,  e s s e n t i a l l y  f l a t  
body, t h e  s u r f a c e  of which depa r t s  only s l i g h t l y  from t h e  xy-plane. 
t h e  gene ra l  problem no r e s t r i c t i o n  is made on the  shape of the p lan  form, 
b u t  i t  is e s s e n t i a l  t h a t  t h e  body be  t h i n  and f l a t  i n  a l l  ver t ical  c ros s  
s e c t i o n s ;  hence,  s l ende r  bodies  of r evo lu t ion  are excluded. 

I n  

The problem discussed  h e r e i n  is t h e  c a l c u l a t i o n  of t h e  s m a l l  
d i s turbance  v e l o c i t i e s  u, v, and w i n  t h e  external f i e l d  produced by 
t h e  f l i g h t  v e l o c i t y  V of t h e  a i r f o i l .  

A s  is  w e l l  known i n  acous t i c s ,  air motions of s m a l l  ampli tude are 
governed p r imar i ly  by t h e  s imple p r o p e r t i e s  of e l a s t i c i t y  of volume and 
dens i ty .  I n  o rde r  t o  d e p i c t  such motions mathematically,  a f r i c t i o n l e s s ,  
p e r f e c t l y  e las t ic  f l u i d  is, t h e r e f o r e ,  adopted and a v e l o c i t y  f i e l d  uvw 
must be found which is c o n s i s t e n t  w i th  Newton's l a w s  and which 
agrees  a t  t h e  a i r f o i l  s u r f a c e  wi th  t h e  outward, o r  normal, v e l o c i t y  
imparted by t h e  motion of t h e  a i r f o i l .  
t o  t h e  motions of s m a l l  elements of such a s i m p l i f i e d  model f l u i d  r e s u l t s  
i n  t h e  f a m i l i a r  wave equat ion  f o r  t h e  v e l o c i t y  p o t e n t i a l  4 ,  

The a p p l i c a t i o n  of Newton's laws 

1 
4xx + 4yy + $22 = - O t t  C2 

where c is t h e  v e l o c i t y  of sound and $x = u, Oy = v, $ z  = w. 

(1) 
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The descr ip t ion  of t he  whole ve loc i ty  f i e l d  by a s i n g l e  scalar 
p o t e n t i a l  Cp is, of course, a g r e a t  s impl i f i ca t ion  and, as explained i n  
t e x t  books on hydrodynamics, t h i s  scalar p o t e n t i a l  occurs i n  every case 
of f r i c t i o n l e s s  motion i n  which the  dens i ty  p is  a function of t h e  
pressure only. The elements of such a f l u i d  move only under the  ac t ion  
of "buoyancy" o r  pressure forces. When the  dens i ty  is dependent on the  
pressure only, va r i a t ions  of dens i ty  occur only along the  d i r e c t i o n  of 
t he  buoyant force. This fo rce  then passes through the  center  of g rav i ty  
of each element and no r o t a t i o n  i s  produced. The ex is tence  of Cp follows 
from t h e  absence of ro ta t ion .  

Of f i r s t  i n t e r e s t  i n  t h e  a i r f o i l  problem are steady flows. The 
steady flow cons i s t s  of a f ixed  p a t t e r n  of streamlines attached t o  the  
a i r f o i l  and moving with it. I n  order t o  represent  the  steady flow, i t  
w i l l  be necessary t o  transform the  s t a t i o n a r y  axes of equation (1) t o  axes 

1 
moving with the  a i r f o i l  a t  t h e  f l i g h t  ve loc i ty  V. The quantity 4 t t  
is then replaced by - Cpxx and t h e  equation becomes, a f t e r  t ranspos i t ion ,  V2 

C 2  

V i n  which - is the Mach number M. The problem is now the  mathematical 

one of f ind ing  a so lu t ion  of equation (2) which agrees with the  normal 
boundary ve loc i ty  imparted by the  a i r f o i l .  When the th in  a i r f o i l  as 
spec i f i ed  is used, i t  i s  found s u f f i c i e n t  t o  rep lace  the  a c t u a l  boundary 
condition by an equivalent condition on t h e  v e r t i c a l  ve loc i ty  i n  
the  chord plane; t h a t  i s ,  

C 

w 

where - dz i s  the  s lope  of the  a i r f o i l  surface.  It  i s  important t o  note 

t h a t  the  s l i d i n g  component of t he  a i r f o i l  sur face  imparts no motion t o  the  
f l u i d  s ince  the  f l u i d  i s  f r i c t i o n l e s s .  The e r r o r  made i n  the  equivalent 
boundary condition a t  z = 0 becomes appreciable only a t  d i s tances  of t h e  
order of one wing thickness from the  edge. The pressure d i s t r i b u t i o n  over 
the  a i r f o i l  sur face  may likewise be taken as the  pressure i n  the  chord 
plane and is obtained from the  well-known formula f o r  the pressure i n  a 
sound wave 

dx 
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or ,  i n  steady f l m  

from which 

Thus f a r ,  nothing has  been s a i d  about subsonic- o r  supersonic-fl ight 
ve loc i t i e s .  This d i s t i n c t i o n  arises i n  equation (2) and i n  t h e  form of i t s  
so lu t ions  when M 3 1. 

Except f o r  t h i s  d i s t i n c t i o n ,  va r i a t ions  of M are of no consequence 
mathematically s ince  they can be represented by an equivalent change i n  
the  scale of x r e l a t i v e  t o  the  o the r  coordinates. This change (of scale 
i s  known as t h e  Prandtl-Glauert transformation and is given as 

o r  

The formula t o  be used depends on whether t he  f l i g h t  ve loc i ty  is subsonic 
o r  supersonic. I n  the  la t ter  case, the  s ign i f i cance  of t h e  transformation 
i s  e a s i l y  seen, s ince  t h i s  transformation serves t o  maintain t h e  cor rec t  
i nc l ina t ion  of t he  Mach waves t o  the  l i n e  of f l i g h t  a t  d i f f e r e n t  speeds. 
It should be noted t h a t  the  sudden t r a n s i t i o n  of t h e  d i f f e r e n t i a l  equation 
from the  e l l i p t i c  t o  t h e  hyperbolic type a t  M = 1.0 is a f ea tu re  of t he  
steady-flow equation (equation (2))  and does not ,  of course, arise i n  
connection with equation (1). 

The e s s e n t i a l  f ea tu re s  of t he  steady flow at subsonic o r  supersonic 
speeds can then be ascer ta ined  from so lu t ions  of t he  reduced o r  normalized 
equations, For M = 0,  
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and f o r  M = 1.41, 

4 s  - ($yy - 4zz = 0 

A s  may be  shown by d i r e c t  d i f f e r e n t i a t i o n ,  equat ions  (3) and ( 4 )  possess  
t h e  primary s o l u t i o n s  

4 = f (ax  + By + yz) 

where a, 8 ,  and y are q u a n t i t i e s  determined so t h a t  f o r  equat ion  (3) 

a2 + $2 + y2 = 0 

and s o  t h a t  f o r  equat ion  ( 4 )  

a2 - $2 - y2 = 0 

The c y l i n d r i c a l  f low f i e l d ,  which is t h e  b a s i s  of t h e  two-dimensional o r  
wing s e c t i o n  theory ,  i s  obta ined  by s p e c i a l i z i n g  t h e  primary s o l u t i o n  
t o  t h e  two coord ina tes  x and z .  I n  t h i s  case f o r  equat ion  (3 )  
a = 1.0 and y = i; and f o r  equat ion  ( 4 )  c1 = 1.0 and y = 1.0 s o  t h a t  
t h e  gene ra l  s o l u t i o n s  f o r  t h e  c y l i n d r i c a l  o r  two-dimensional flow f i e l d  
become 

4 = f ( x  f i z )  

o r  

u = f ' ( x  5 i z )  

w = 5 i u  

The gene ra l  s o l u t i o n  i s  t h e  b a s i s  of t h e  Munk theory ,  as w e l l  as t h e  more 
exac t  wing s e c t i o n  ana lyses  which depend on t h e  theory of func t ions  of a 
complex va r i ab le .  A t  supersonic  speeds t h e  corresponding s o l u t i o n s  are 
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= f ( x  2 2) 

o r  

u = f ' ( x  f 2) 

w = + u  

This  lat ter form of s o l u t i o n ,  which r e p r e s e n t s  a p lane  sound wave of 
a r b i t r a r y  i n t e n s i t y  a t  45' t o  t h e  normalized coord ina te  axes, is  the  

. b a s i s  of t h e  Ackeret theory.  

The gene ra l  form of flow f i e l d  given by s o l u t i o n s  of the . two 
foregoing types is  i l l u s t r a t e d  i n  f i g u r e  1. The ske tch  on t h e  lef t -hand 
s i d e  i s  t h e  f a m i l i a r  subsonic  s t r eaml ine  p a t t e r n  f o r  a symmetrical  biconvex 
wing sec t ion .  
diminish uniformly wi th  d i s t a n c e  and i n  t h e  case of s t eady  flow The f i e l d  
possesses  a f o r e  and a f t  symmetry which r e s u l t s  i n  no p res su re  drag o r  wave 
drag. The ske tch  on t h e  right-hand s i d e  ( f i g .  1) i l l u s t r a t e s  t h e  marked 
d i f f e r e n c e  i n  s t r eaml ine  p a t t e r n  t h a t  arises when t h e  crosswise v e l o c i t y  
of t he  c y l i n d r i c a l  f i e l d  is supersonic .  I n  t h i s  case t h e  phase r e l a t i o n  
of u and w i s  s h i f t e d  (from 1 t o  i) and the  p re s su re  d i s t r i b u t i o n  
is antisymmetric,  r e s u l t i n g  i n  a wave drag. This  drag  appears  as t h e  
energy i n  the  plane sound waves emanating from t h e  a i r f o i l .  The change 
from subsonic  t o  supersonic  type  of flow f i e l d  arises when t h e  rate of 
progress  of t he  flow p a t t e r n  through t h e  s t i l l  f l u i d  exceeds t h e  v e l o c i t y  
of sound. With c y l i n d r i c a l  f low, t h e  f i e l d  i s  n o t  a f f e c t e d  by an axial  
v e l o c i t y  of t h e  cy l inde r  and t h e  p a t t e r n  progresses  a t  a rate determined 
only by t h e  crosswise motion of t h e  cy l inder .  Hence, t h e  subsonic  type  
of flow may p e r s i s t  on a yawed wing even though t h e  f l i g h t  v e l o c i t y  is  
supersonic .  (See r e fe rence  2.) 

I n  t h e  subsonic  p a t t e r n  t h e  v e l o c i t y  and p res su re  d is t rubances  

The ske tch  i n  t h e  lower p a r t  of f i g u r e  1 r e p r e s e n t s  a c ros s  s e c t i o n  
of a con ica l  f low f i e l d  of t h e  type  o r i g i n a t e d  by Busemann. 
case used f o r  i l l u s t r a t i o n  h e r e i n  is t h e  flow produced by a f l a t  p l a t e  
of t r i a n g u l a r  p l an  form moving p o i n t  foremost a t  a s m a l l  angle  of a t t a c k  
( f i g .  2) .  The Mach cone o r i g i n a t e s ,  of course,  a t  t h e  apex of t h e  t r i a n g l e  
and the  f i e l d  i n s i d e  t h i s  cone i s  geometr ica l ly  t h e  s a m e  i n  a l l  downstream 
c r o s s  s e c t i o n s  except  f o r  an expansion i n  scale along t h e  x-axis. The 
con ica l  f low f i e l d  may be  obtained by t h e  supe rpos i t i on  of primary s o l u t i o n s  
of t h e  form. 

The p a r t i c u l a r  

u = F(ax + By + yz) 
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I f  p = ei6, then t h e  so lu t ion  

represents  a plane sound wave a t  an angle 6 t o  t h e  y-, z-axes. 
Superposition of such waves of s t r eng th  f ' ( p )  from 6 = 0 t o  8 = 271 
r e s u l t s  i n  a so lu t ion  analogous t o  Whittaker's so lu t ion ;  t h a t  i s ,  

The quantity 

(11 - E )  (p - $) (y - i z )  where 

-2px + (1 + p2)y + i(1 - v2)z may be factored i n t o  

y + i z  
E =  

x + 4x2 - y2 - z 2 

The genera 
t h a t  is ,  

so lu t ion  of zero degree i s  obtained when F i s  replacel- by log; 

6 f (p) dp = 0 o r ,  i n  o ther  i f  the contour does not include = and i f  

words, i f  f is  an a n a l y t i c  function (see reference 3) .  

1 
E 

I f  t he  f l i g h t  ve loc i ty  is  subsonic, t he  argument E is  replaced by 
y 4- i z  

The latter so lu t ion  w a s  given by W. F. Donkin i n  1857 
x + 
(see reference 4 ) .  I n  e i t h e r  case the  form of t h e  argument shows an 
e s s e n t i a l  s i m i l a r i t y  t o  an expanding c y l i n d r i c a l  f i e l d  (see reference 5). 

I n  f a c t ,  f o r  t he  s lender  conical f i e l d ,  where 

i n  comparison with x2, t he  argument becomes simply 

J"2 + y2 + 22 

y2 + z2 may be neglected 
y + i z ,  

2x 
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Although no a n a l y t i c  function of E which removes the  d i s t o r t i o n  of 
t he  conical f i e l d  r e l a t i v e  t o  the  c y l i n d r i c a l  f i e l d  can be found, i t  i s  
poss ib le  t o  transform t h e  f i e l d  i n  such a way t h a t  t he  d i s t o r t i o n  i s  
removed i n  the  neighborhood of t he  a i r f o i l  i n  the  plane The 
desired transformation is  obtained from t h e  f a c t  t h a t  

z = 0. 

y + i z  - 2~ 
X 1 + EE 

Since approaches e 2  near z = 0, t he  ana ly t i c  va r i ab le  

+ i z  
w i l l  approach i n  the  neighborhood of t h e  chord plane in s ide  the  

Plach cone. The new va r i ab le  3 g r e a t l y  s i m p l i f i e s  t he  boundary conditions 
inasmuch as the  Mach cone is transformed i n t o  t h e  pos i t i ve  and negative 
branches of the  real ax i s  ou ts ide  +1 and the  i n t e r i o r  of the  Mach. cone is  
mapped i n t o  the  whole plane. Figure 3 i l l u s t r a t e s  the  e f f e c t  of t h i s  
change of var iab le .  

X 

The r e l a t i o n  between u and w i n  t h e  conical f i e l d  i s  found from 
the  conditions f o r  i r r o t a t i o n a l  flow; t h a t  is, 

I n  terms of t h e  va r i ab le  E 

d57 = 2 (E -a) du 

o r  i n  terms of t h e  va r i ab le  8 

It is i n t e r e s t i n g  t o  note  t h a t  the  condition f o r  a f l a t  a i r f o i l  sur face  i n  
two-dimensional flow holds a l so  f o r  t he  conica l  f i e l d .  I n  the  two- 
dimensional flow w = i u  and the  condition f o r  a f l a t  sur face  (constant w) 
i s  simply t h a t  t he  function adopted f o r  
region of t h e  real a x i s  covered by the  a i r f o i l  (assuming tha t  the  real 

u has no imaginary p a r t  over the  



s o l u t i o n s  f o r  u and w are used).  I n  t h e  con ica l  flow, t h e  quan t i ty  

.- is a real number over t h a t  p a r t  of t h e  real a x i s  between k 1  s o  

t h a t  i n  t h i s  reg ion  t h e  condi t ion  i s  unchanged. 3 

Figure  4 i l l u s t r a t e s  t h e  s o l u t i o n  f o r  t h e  f l a t  t r i a n g u l a r  a i r f o i l  a t  

The 
a s m a l l  angle  of a t t a c k  as obta ined  by H. J. Stewart and M. I. Gurevich 
( re ferences  6 and 7) and a l s o  by Bartels and LaPorte ( r e fe rence  8). 
cons tan t  va lue  of w, denoted by wc, must be c a l c u l a t e d  t o  g ive  t h e  
r e l a t i o n  between t h e  l i f t i n g  p res su re  and t h e  angle  of a t t a c k .  The 
q u a n t i t y  m is t h e  cotangent  of t h e  sweepback angle  f o r  M = f o r  
o t h e r  Mach numbers m = d n t i m e s  t h e  cotangent of t h e  sweep angle.  

Other wing forms gene ra l ly  r e q u i r e  t h e  supe rpos i t i on  of con ica l  and 
c y l i n d r i c a l  f i e l d s .  
shaped s e c t i o n  ( f i g .  5 )  t h e  f i e l d  is  c y l i n d r i c a l  up t o  t h e  Piach cone 
o r i g i n a t i n g  a t  t h e  c o m e r  of t h e  wing and is con ica l  i n s i d e  t h i s  cone. 

Thus, i n  t h e  case of t h e  r ec t angu la r  wing of wedge- 

The s o l u t i o n  f o r  t h e  f l a t  t r i a n g u l a r  wing can be  used as a s t a r t i n g  
po in t  t o  o b t a i n  t h e  p re s su re  d i s t r i b u t i o n  over  a sweptback wing. I n  t h i s  
process ,  which i s  expla ined  i n  r e fe rences  9 and 10,  t h e  des i r ed  wing p l an  
form is, i n  e f f e c t ,  c u t  ou t  of t h e  t r i a n g l e  by t h e  supe rpos i t i on  of con ica l  
f i e l d s  which cance l  t h e  l i f t i n g  p res su re  over  po r t ions  of t h e  t r i a n g u l a r  
area extending beyond t h e  d e s i r e d  o u t l i n e .  The process  is s i m p l i f i e d  i n  
the supersonic  case by t h e  l i m i t e d  zone of i n f luence  of t h e  superimposed 
f i e l d s .  The l i f t i n g  p res su re  d i s t r i b u t i o n  over a wing wi th  63" sweepback 
is  shown i n  f i g u r e  6 .  It w i l l  be  noted t h a t  t h e  l i f t  d i s t r i b u t i o n  over t h e  
foremost s e c t i o n  is f l a t ,  as i n  t h e  Ackeret theory,  whi le  f a r t h e r  a long 
t h e  span t h e  subsonic  type of p re s su re  d i s t r i b u t i o n  appropr i a t e  t o  t h e  
reduced crosswise v e l o c i t y  appears .  I n  t h i s  example t h e  wing t i p s  w e r e  
cu t  o f f  i n  a d i r e c t i o n  p a r a l l e l  t o  t h e  a i r  stream and, i n  such cases, t h e  
l i f t  drops sha rp ly  t o  zero  i n  t h e  reg ion  behind t h e  Mach cone from t h e  
t i p  corner .  

The s o l u t i o n  f o r  a sweptback wing having c u r v i l i n e a r  s e c t i o n s  cannot 
be obtained by the  supe rpos i t i on  of a f i n i t e  number of con ica l  f i e l d s  b u t  
r e q u i r e s  an i n t e g r a t i o n .  Such a case is i l l u s t r a t e d  i n  f i g u r e  7,  which 
shows t h e  p re s su re  d i s t r i b u t i o n s  a t  several s e c t i o n s  of a symmetrical 
biconvex wing at  0" ang le  of a t t a c k .  This  example serves t o  i l l u s t r a t e  
t h e  change i n  proceeding from subsonic  t o  supersonic  speed. Since t h e  
angle  of sweepback is l a r g e ,  t h e  change i s  n o t  pronounced and occurs  
p r imar i ly  a t  t h e  c e n t e r  s e c t i o n s  of t h e  wing. It is  i n t e r e s t i n g  t o  n o t e  
t h a t  t h e  c e n t e r  s e c t i o n s  of t h e  wing have a p res su re  drag  a t  subsonic  speeds.  
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e. 
SUBSONIC CYLINDRICAL FLOW FlELDS SUPERSON,C 
u = f'(x+ir) 
w = i i u  

y + i z  
u = f'c 

CONICAL FLOW FIELD 

Figure 1.- General form of cylindrical and conical flow fields. 

.. 

L 

Figure 2. - Flat plate of triangular plan form in conical flow field. 
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y + i z  
X 

Figure 3.- Transformation of flow field to the ( plane. 

MACH CONE 
/ 

/ \ 

P L A N  VIEW 

'\ MACH CONE 

R E A R  VIEW 

Figure 4.- Solution for flat triangular airfoil at small angle of attack. 



V 

'\ 

SECTION 
P L A N  VIEW 

REAR VIEW w = - i  log 

VELOCITY DISTRIBUTION 
I N t  P L A N E  

Figure 5.- Cylindrical and conical flow fields about a rectangular wing having 
a wedge-shape section. 

Figure 6.- Lifting pressure distribution over a wing with 63' sweepback. 
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Figure 7.- Pressure distributions at several sections of a symmetrical 
biconvex wing at 0' angle of attack. 
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Economy of F l i g h t  a t  Supersonic Speeds 

By Robert T. Jones * Ames Laboratory 

The work required t o  propel an  a i r p l a n e  from one p lace  t o  

another i n  steady f l i g h t  is equal t o  i t s  weight times t h e  d i s t ance  

divided by t h e  l i f t - d r a g  r a t i o .  This simple r e l a t i o n  is i l l u s t r a t e d  

i n  f i g u r e  1. A conventional a i rp l ane  of e f f i c i e n t  form may have a 

l i f t - d r a g  r a t i o  g rea t e r  than 20 t o  1. The a i r p l a n e  holding t h e  

present long-distance record shows a maximum value  0.f 23 t o  1 a t  an 

angle of a t t a c k  of about 10'. 

The energy required t o  propel an  e f f i c i e n t  a i rp l ane  is, much 

less than t h a t  required t o  propel a rocket.  For moderate ranges 

t h e  rocket requi res  an amount of energy a t  least equal t o  i ts  weight 

t i m e s  t h e  d is tance ,  hence t h e  equivalent l i f t - d r a g  r a t i o  i s  only 

one - a f i g u r e  t h a t  can be e a s i l y  surpassed by almost any form of 

winged body. 

I f  a conventional a i r p l a n e  is maintained a t  its optimum angle  

of a t t a c k  and flown a t  progressively increasing a l t i t u d e s  t h e  speed 

necessary f o r  support w i l l  increase  as the  square r o o t  of t h e  air 

dens i ty  decreases. The l i f t -d rag  r a t i o  of t h e  a i r p l a n e  w i l l  not be 

a f f ec t ed  by t h e  higher speed, however, u n t i l  a c r i t i c a l  va lue  equal 

t o  about seven t en ths  t h e  speed of sound is  reached. Thus t h e  higher 

' speed i s  gained without t h e  requirement of any add i t iona l  t h r u s t ,  and 

does not necessa r i ly  c a l l  f o r  g rea t e r  expenditures of propulsive 

energy, o r  f u e l ,  per m i l e  of f l i g h t  provided t h e  a l t i t u d e  of f l i g h t  
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is properly ad jus ted  and provided t h e  ve loc i ty  of sound is  not 

approached too c lose ly .  This n a t u r a l  increase  of c ru i s ing  speed 

with a l t i t u d e  is shown i n  f i g u r e  2. 

method of gaining speed is  t h a t  i t  does not i n t e r f e r e  wi th  t h e  a b i l i t y  

of t h e  a i r p l a n e  t o  slow down a t  lower a l t i t u d e s  f o r  landing. 

An obvious advantage of t h i s  

The tendency f o r  t h e  l i f t -d rag  r a t i o  t o  remain unchanged over 

a wide range of speeds below t h e  speed of sound may be t raced  t o  an  

e s s e n t i a l  geometric s i m i l a r i t y  of t h e  a i r f o i l  s t reaml ine  pa t t e rns  

a t  these  subsonic speeds. This s i m i l a r i t y  appears i n  t h e  ca lcu la ted  

geometry of t h e  f r i c t i o n l e s s  flow f i e l d .  

t h e  method of ca l cu la t ion  employed t o  d e t e m i n e  t h e  streamline f i e l d .  

The quant i ty  4 is t h e  scalar p o t e n t i a l  of t h e  ve loc i ty  imparted t o  

t h e  surrounding a i r  by t h e  motion of t h e  wing. 

t h e  second p a r t i a l  de r iva t ives  with respec t  t o  space and time coor- 

d ina tes .  The quant i ty  V / c  is  t h e  r a t i o  of t h e  ve loc i ty  of f l i g h t  

t o  t h e  speed of sound; known as t h e  "Mach number." I n  these  calcu- 

l a t i o n s  of flow geometry w e  make a new use  of t h e  classical wave 

equation of acous t ics .  According t o  t h i s  theory, which is out l ined  

more f u l l y  i n  re ferences  1, 2, and 3 ,  t h e  air disturbance produced by 

t h e  motion of a slender body o r  wing follows t h e  d i f f e r e n t i a l  equation 

of motion of sound waves of s m a l l  amplitude. If w e  assume t h a t  t h e  

d is turbance  is  of f ixed  p a t t e r n  t r ave l ing  with t h e  a i r f o i l  and obta in  

a so lu t ion  of t h e  d i f f e r e n t i a l  equation t h a t  is cons is ten t  wi th  t h e  

normal motion of t h e  s o l i d  boundary of t h e  a i r f o i l  we f ind ,  a t  subsonic 

Figure 3 shows +n o u t l i n e  

The subsc r ip t s  denote 
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speeds, a p a t t e r n  of streamlines similar t o  t h e  flow of an incom- 

p r e s s i b l e  f l u i d .  An important f e a t u r e  of t h i s  subsonic type of flow 

is t h e  f o r e  and a f t  symmetry of t he  pressure  d i s t r i b u t i o n  over t h e  

body, a symmetry which r e s u l t s  i n  almost complete cance l l a t ion  of 

t he  pressure  drag. The e f f e c t  of t h e  e l a s t i c i t y  of t h e  a i r  is f u l l y  

accounted f o r  by a n  a f f i n e  transformation ( s imi la r  t o  t h e  w e l l  known 

Lorentz cont rac t ion  i n  electromagnetic theory) which r e s u l t s  i n  a 

relative foreshortening of t h e  streamline f i e l d ,  bu t  which does not 

d i s t u r b  t h e  f o r e  and a f t  balance of pressures. The small drag t h a t  

does arise i n  such a flow is t o  be assoc ia ted  with sur face  f r i c t i o n  

and with t h e  production of l i f t .  

The equations of motion show a s t r i k i n g  change i n  t h e  p a t t e r n  

of streamlines when t h e  ve loc i ty  of t h e  p a t t e r n  exceeds t h e  ve loc i ty  

of sound. A t  such supersonic speeds t h e  wing travels f a s t e r  than pressure  

impulses can be propagated, and hence cannot extend i ts  inf luence  i n t o  

t h e  region ahead. The f o r e  and a f t  symmetry of t h e  flow is  thus l o s t  

and t h e  region of disturbance i s  bounded by l a t e r a l l y  spreading waves 

o r  "Mach waves" similar t o  t h e  bow waves generated by a boat. 

The change i n  t h e  p a t t e r n  of streamlines on t r a n s i t i o n  t o  super- 

sonic speeds is most evident i n  t h e  case  of t h e  long narrow wing with 

its leading edge perpendicular t o  t h e  d i r e c t i o n  of f l i g h t .  The flow 

f i e l d  i n  t h i s  case w a s  described many years ago by J. Ackeret and shows 

two plane waves of sound spreading above and below t h e  wing i n  a wedge- 

formation. Ackeret 's ca l cu la t ions  show p o s i t i v e  pressures over t h e  
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f r o n t  of t h e  a i r f o i l  and negative pressures over t h e  rear r e s u l t i n g  

i n  a "wave drag" which is  normally several times as g r e a t  as the  

su r face  f r i c t i o n .  (See re ferences  1 and 4 . )  

Fortunately t h i s  sudden increase  of drag can be avoided by 

sweeping t h e  wing back behind t h e  bow wave. With such a swept-back 

configuration only t h e  foremost s ec t ion  of t h e  wing meets t h e  a i r  

without any preparation. (See f i g .  4 . )  Sections f a r t h e r  along t h e  

span a l l  l i e  behind t h e  zone of influence of t h i s  foremost sec t ion .  

A s  described i n  reference 5 t h e  e f f e c t  of t h e  l a t e r a l l y  spreading 

zone of in f luence  of t h e  forward sec t ions  i s  t o  create a flow p a t t e r n  

of t h e  subsonic type over t h e  outer  o r  rearward sec t ions .  With such 

a swept-back wing t h e  unfavorable e f f e c t  of t h e  supersonic speed thus 

appears only on t h e  forward sec t ions  - while t h e  outer  p a r t s  of t he  

wing show t h e  d rag le s s  type of flow associated with subsonic speeds. 

I n  t h e  l imi t ing  case of an i n f i n i t e l y  long oblique wing the re  is no 

change of flow configuration on passing through t h e  speed of sound 

and t h e  wing behaves simply as i f  i t  w e r e  f l y i n g  a t  the  reduced 

crosswise ve loc i ty  corresponding t o  i t s  angle of ob l iqui ty .  

Maintaining the  l i f t - d r a g  r a t i o  by sweepback r equ i r e s  t h a t  t h e  

wing be kept w e l l  behind t h e  bow wave  and, of course, t h i s  r equ i r e s  

a g r e a t e r  angle of sweep a t  higher speeds. With acute  angles of sweep- 

back a d i f f i c u l t y  arises i n  t h a t  v i s c o s i t y  causes the  flow t o  separa te  

from t h e  upper sur face  of t h e  wing a t  r e l a t i v e l y  s m a l l  values of t h e  

l i f t .  Hence t h e r e  i s  a l i m i t  t o  t h e  p o s s i b i l i t y  of maintaining high 
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l i f t -d rag  r a t i o s  by the  use  of sweepback. 

Recently a number of i nves t iga to r s  have succeeded i n  applying 

P rand t l ' s  theory t o  the  determination of t h e  a i r f low over bodies and 

wings adapted t o  supersonic f l i g h t .  By making use of these  r e s u l t s ,  

and by incorporating i n  them a n  allowance f o r  t h e  probable sk in  

f r i c t i o n ,  I have made some estimates of t h e  l i f t - d r a g  r a t i o s  w e  can 

expect t o  achieve a t  var ious  f l i g h t  speeds with t h e  bes t  configuration. 

(See re ference  6.) A t  each speed a slender body and wings having t h e  

bes t  angle  of sweepback are considered. The r e s u l t s  are shown i n  

f i gu res  5 and 6. A s  shown on f i g u r e  5 t h e  angle of sweepbaak i n  each 

case is  such t h a t  t he  component ve loc i ty  normai t o  t h e  leading edge of 

t h e  wing is  0.65 times t h e  ve loc i ty  of sound. I have not extended t h e  

ca l cu la t ions  beyond 1-1/2 times the  speed of sound because of t h e  

l i m i t a t i o n  previously mentioned. However, i t  does appear t h a t  a r a t i o  

of l i f t  t o  drag i n  excess of 10 t o  1 can be maintained up t o  t h i s  

speed. 

Our estimated values of t h e  l i f t -d rag  r a t i o  can be combined 

with t h e  c h a r a c t e r i s t i c s  of a turbo-jet engine t o  fu rn i sh  an o v e r a l l  

p i c t u r e  of t he  probable economy of f l i g h t  a t  these  speeds. Fortunately 

t h e  propulsive e f f i c i ency  of t h e  turbo-jet  follows r a the r  simple l a w s  

of v a r i a t i o n  with speed and a l t i t u d e  provided c e r t a i n  requirements are 

m e t ,  so  t h a t  t he  c h a r a c t e r i s t i c s  of present day engines can be extra- 

polated t o  t h e  speeds w e  are considering. I have made an estimate of 

t h e  r e s u l t a n t  economy of f l i g h t  i n  terms of m i l e s  per ga l lon  a t  var ious  
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speeds and t h e  r e s u l t s  are shown i n  f i g u r e  7. 

Although t h e  r e s u l t s  apply t o  a family of geometrically similar 

a i rp l anes  t h e  values of m i l e s  per ga l lon  shown are f o r  an a i r p l a n e  

of 40,000 pounds weight, which is  about t h e  weight of a 20-passenger 

t ranspor t .  I be l i eve  these  r e s u l t s  i nd ica t e  t h a t  supersonic a i r  

t r anspor t a t ion  has  p o s s i b i l i t i e s  o the r  than purely m i l i t a r y  ones. 

The l o s s  of economy a t  t h e  lower speeds is t h e  r e s u l t  of t h e  

ine f f i c i ency  of jet  propulsion a t  those speeds. 

t h e  turbo j e t  is  expected t o  become more e f f i c i e n t  than t h e  conven- 

t i o n a l  engine propel le r  combination - a f a c t o r  which shoul+d p a r t i a l l y  

counteract t h e  unavoidable drop i n  l i f t - d r a g  r a t i o .  

A t  supersonic speeds 

For the  range of supersonic speeds shown a n  a i r p l a n e  of normal 

dens i ty  and loading would be required t o  opera te  a t  an  a l t i t u d e  of 

t h e  order of 60,000 f e e t .  

speed of sound corresponds t o  a f l i g h t  speed of 1000 m i l e s  p e r  hour. 

A t  t h i s  speed w e  should be a b l e  t o  ge t  1.5 m i l e s  per ga l lon  of f u e l .  

It i s  i n t e r e s t i n g  t o  no te  t h a t  t h i s  va lue  corresoonds t o  a va lue  of 

mare than 15 m i l e s  per ga l lon  when t h e  weight is reduced t o  corres- 

pond t o  t h a t  of an  ordinary automobile. 

The l i m i t i n g  va lue  of 1-1/2 t i m e s  t h e  
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TECHNICAL NOTE 1901 

A METHOD FOR PREDICTING THE STABILITY 

I N  ROLL OF AUTOMATICALLY CONTROLLED AIRCRAFT BASED ON 

TIE EXPERIMENTAL DETERMINATION OF THE CJURACTERISTICS 

OF AN AUTOMATIC PILOT 

By Robert T. Jones and Leonard Sternf ie ld  

SUMMABY 

A method is suggested fo r  predicting the s t a b i l i t y  of automati- 
c a l l y  controlled a i r c r a f t  by a comparison of calculated frequency- 
response curves f o r  the a i r c r a f t  and experimentally determined 
frequency-response curves fo r  the automatic p i lo t .  
a p p l i e d  only t o  s t ab i l i za t ion  i n  r o l l .  The method is expected t o  be 
useful as a means of establishing the  specifications of the performance 
required of the automatic control device f o r  p i l o t l e s s  a i r c r a f t  
designed as m i s s i l e s .  

The method is  

INTRODUCTION 

Experience has shown t h a t  the provision of automatic s tab i l iza t ion  
fo r  small p i l o t l e s s  a i r c r a f t  designed as m i s s i l e s  is extremely d i f f i -  
cu l t .  The d i f f i cu l ty  i s  a r e su l t  of the high-frequency osc i l la t ions  of 
small-size a i r c r a f t  tha t  require rapid control movements and small t i m e  
lags ,  charac te r i s t ics  which are d i f f i c u l t  t o  obtain, par t icu lar ly  when 
the space available f o r  the control servomotors and intel l igence uni t s  
i s  considered. I n  an unpublished analysis made a t  the Langley 
Aeronautical Laboratory of the NACA, the problem of determining the 
s t a b i l i t y  of an automatically controlled a i r c r a f t  with lag i n  the 
control system w a s  analyzed theoret ical ly  by assuming a simplified 
equation fo r  the control motion, t h i s  equation being obtained from the 
knowledge of the behavior of the automatic p i l o t .  
i r regular  response charac te r i s t ics  often found i n  automatic p i lo t s ,  
however, the control motion is d i f f i c u l t  t o  represent mathematically 
and, hence, the  simplified equations of the  control w e r e  found t o  be 
inadequate fo r  the analysis.  

Because of the 
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The present paper suggests a method f o r  pred ic t ing  t h e  s t a b i l i t y  

The procedure c o n s i s t s  e s s e n t i a l l y  i n  
of an  a i r c r a f t  based on t h e  experimental determination of t h e  character-  
i s t i c s  of i t s  automatic p i l o t .  
ca l cu la t ing  the  con t ro l  motion required t o  maintain a continuous 
s inusoida l  motion of u n i t  amplitude f o r  t h e  degree of freedom being 
inspected. The motion of t he  con t ro l  is  obtained f o r  a range of 
frequencies; t h e  phase angle of t he  con t ro l  motion and t h e  r a t i o  of 
amplitude of con t ro l  motion t o  a i rp l ane  motion are p lo t t ed  as a func t ion  
of frequency. S i m i l a r  curves are es tab l i shed  f o r  t h e  au top i lo t  by 
o s c i l l a t i n g  it and recording the  con t ro l  motion. 
are then compared t o  determine whether t h e  a i r p l a n e  w i l l  be s t a b l e  under 
con t ro l  of t h e  automatic p i l o t .  The method is  developed i n  d e t a i l  only 
f o r  s t a b i l i z a t i o n  i n  r o l l .  It may be used by the  a i r p l a n e  designer f o r  
either determining t h e  s u i t a b i l i t y  of an ex i s t ing  automatic p i l o t  f o r  a 
p a r t i c u l a r  app l i ca t ion  o r  specifying t h e  c h a r a c t e r i s t i c s  of t h e  auto- 
matic p i l o t  needed f o r  t he  appl ica t ion .  

The two sets of da ta  

SYMBOLS 

m 

kX 

q 

S 

b 

CZ 

+ 
P 

6 

C 
ZP 

cz6 

D 

0 

! 

mass of a i rp l ane ,  s lugs  

r ad ius  of gyration of a i rp l ane  about longi tudina l  axis, f e e t  

dynamic pressure,  pounds per square foo t  

wing area, square f e e t  

wing span, f e e t  

rolling-moment coe f f i c i en t  (Rolling moment/qSb) 

angle of bank, radians 

angular ve loc i ty  i n  bank, rad ians  per second (d+/dt)  

de f l ec t ion  of a i l e ron ,  radians 

rate of change of rolling-moment c o e f f i c i e n t  with angular ve loc i ty  
i n  bank, per rad ian  (aCz/ap) 

rate of change of C z  with 6 ,  per radian ( a C ~ / a 6 )  

d i f f e r e n t i a l  operation (d/dt)  

angular frequency, rad ians  pe r  second 
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8 phase angle (pos i t i ve  va lue  means lead  of 6 ahead of 4) 

+max maximum amplitude of 

K control-amplitude r a t i o  ( r a t i o  of con t ro l  de f l ec t ion  t o  a i r p l a n e  
displacement) 

2 l a g  i n  seconds between s i g n a l  f o r  con t ro l  and i t s  a c t u a l  motion 

t t i m e ,  seconds 

real p a r t  of roo t  of s t a b i l i t y  equation 

T1/2 time f o r  o s c i l l a t i o n  t o  damp t o  one-half i t s  amplitude, seconds 

6 ( t )  con t ro l  motion as a func t ion  of t i m e  

T period of o s c i l l a t i o n ,  seconds 

DETERMINATION OF CONDITIONS FOR NEUTRAL STABILITY ' 

The method of determining the  conditions f o r  n e u t r a l  s t a b i l i t y  is  
i l l u s t r a t e d  i n  f i g u r e  1. 
motion and t h e  ca lcu la ted  r a t i o  of t h e  amplitude of con t ro l  motion t o  
a i rp l ane  motion are p lo t t ed  aga ins t  angular frequency as shown by t h e  
so l id- l ine  curves. The upper dashed curve is a p lo t  of t h e  experi- 
mental r a t i o  of t h e  amplitude of con t ro l  motion t o  a u t o p i l o t  motion 
aga ins t  angular frequency. The lower th ree  dashed curves are th ree  
poss ib l e  experimental phase-angle curves f o r  the  automatic p i l o t .  
i n t e r s e c t i o n  of t h e  experimental and ca lcu la ted  control-amplitude 
curves e s t ab l i shes  t h e  approximate frequency of t h e  a i r p l a n e  with t h e  
au top i lo t  i n  operation. I f ,  as i n  t h e  case  of t h e  intermediate experi- 
mental phase-angle curve, t h e  i n t e r s e c t i o n  of t h e  experimental and 
ca lcu la ted  phase-angle curves i s  a t  t h e  s a m e  frequency as t h e  i n t e r -  
s ec t ion  of t h e  control-amplitude-ratio curves, t h e  a i rp l ane  may be 
n e u t r a l l y  s t a b l e  and may be  expected t o  o s c i l l a t e  continuously a t  t h i s  
frequency. It is, however, more usual t h a t  t h e  i n t e r s e c t i o n  of t he  
experimental and ca lcu la ted  phase-angle curves w i l l  not be a t  the  same 
frequency as t h e  i n t e r s e c t i o n  of t h e  control-amplitude-ratio curves. 
I f  t h e  phase-angle curves, as i n  one case shown, i n t e r s e c t  a t  a higher 
frequency than t h e  control-amplitude-ratio curves, t h e  aircraft w i l l  be 
s t ab le .  I f ,  as i n  t h e  remaining case, t h e  i n t e r s e c t i o n  of t h e  phase- 
angle  curves i s  a t  a lower frequency than t h e  control-amplitude-ratio 
curves, t h e  a i r c r a f t  w i l l  b e  unstable.  Because of t h e  nonlinear 
c h a r a c t e r i s t i c s  of t h e  con t ro l  system, i t  is generally necessary t o  

The ca lcu la ted  phase angle  of t he  con t ro l  

The 
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make the experiments for different amplitudes. 
(insensitivity to small deviations) there will probably be some ampli- 
tude below which the system will be unstable. 

With a dead spot 

Calculated frequency-response curves for the aircraft.- In the 
application of the method to the case of aileron control of an aircraft 
or a missile independently stabilized about all three axes, the equation 
of motion for determining the control movement is 

The calculated steady-state solution of the aircraft in response to a 
sinusoidal forcing function of unit amplitude 6 = sin wt is 
4 = c$max sin (ut + (p). (See reference 1.) The values of (pmx 
and 8 are obtained over the desired range of angular frequencies w 
by the substitution of iw for D in the equation I 

U' + Cz D 6 qbS _ -  - 

This substitution is equivalent to specifying an undamped sinusoidal 
motion and results in the expression A + iB from which can be 

- , k v  and 6 = tan-lB. The angle 8 may denote A obtained - - 

either a phase lag or lead, depending upon its quadrant. If 8 is in 

but if 8 is in the first or second quadrant, the control leads the 
motion of the airplane. The ratio of the amplitudes 6 and 4 

4max 

- the third or fourth quadrant, the control lags behind the displacement, 

is and may be defined as the control-amplitude ratio K of the 
hlaX 

control system, that is, the ratio of maximum control deflection to 
maximum displacement in bank. A plot of -K and 8 against w shows 
the combination of control-amplitude ratio and phase lag or lead neces- 
sary to maintain fixed-amplitude oscillations at any given frequency. 
These results are the calculated frequency-response curves due to a 
sinusoidal motion of the aircraft. 

Determination of equivalent sine wave for the automatic-pilot 
response. - The experimental f requency-response curves are obtained by 
oscillating the automatic pilot sinusoidally at various amplitudes 
through the desired range of frequencies. 
oscillate at the same frequency as the automatic pilot but because of 

The control is assumed to 
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the physical charac te r i s t ics  of the  autopi lot  the control motion may 
d i f f e r  widely from a t r u e  s ine  wave and may show a rb i t r a ry  phase, 
amplitude, or  wave-form re l a t ions  (f ig .  2). It is necessary, therefore, 
to determine an equivalent sine-wave response fo r  any arb i t ra ry  control 
motion. 

I n  order t o  determine the equivalent s ine wave fo r  an a rb i t r a ry  
control motion, the following relations are assumed: 

(1) The work done per cycle by a control following the equivalent 
s ine  wave on an a i r c r a f t  having a harmonic displacement 
be the same as tha t  done by the actual control var ia t ion.  

s i n  w t  must 

(2) The angular impulse of the equivalent s ine  w a v e  act ing on the  
airplane over a half  cycle must equal the change i n  angular momentum of 
the airplane caused by the ac tua l  control motion during the same 
in te rva l  . 

The work done by a nonharmonic force B(t) of frequency w upon 
a harmonic motion s i n  u t  i s  proportional t o  

/ 

T 
B1 = $L 6 ( t )  cos u t  d t  

2* and B is the coeffi-  where the period of the  osc i l l a t ion  is  T = - 
0’ 

c ien t  of the component cos u t .  (See reference 2.) This component of 
the  control motion t h a t  is out of phase with the a i r c r a f t  motion is  the 
only harmonic of the Fourier series representing the  forcing func- 
t ion B(t) which contributes t o  the  work done on the a i r c ra f t .  The 
angular impulse is obtained by integrat ing the curve of control deflec- 
t ion  against  t i m e  over a half  cycle. This component of the control 

1 

motion i n  phase 
from the  second 

with the sinusoidal motion of the  a i r c ra f t ,  obtained 
re la t ion ,  is  

T/2 
B(t) d t  

where A1 is the coeff ic ient  of the component s i n  u t .  The condition 
of zero net  impulse over a series of cycles may be m e t  by adjusting the 

reference axis fo r  6 ( t )  so  tha t  B(t) d t  = 0. The control motion 
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may then be expressed as the  sum of t h e  in-phase and out-of-phase 
components : 

AI s i n  u t  + B1 cos w t  

o r  

The control-amplitude r a t i o  K i s  equal t o  and t h e  phase 

l ag  of t h e  system e i s  tan-’ %. The control-amplitude r a t i o  and t h e  

phase l a g  o r  lead  are determined from records taken of t h e  o s c i l l a t i o n s  
and p lo t t ed  aga ins t  w .  I n  con t r a s t  t o  t h e  ca lcu la ted  frequency- 
response curves which involve t h e  aerodynamic and m a s s  c h a r a c t e r i s t i c s  
of t h e  a i r c r a f t ,  these  experimentally determined curves w i l l  be 
functions of t h e  dead s p o t s  and various types of l a g  found i n  t h e  
con t ro l  system. I n  general ,  t h e  behavior of the  automatic p i l o t  w i l l  
be nonlinear and hence a family of curves showing d i f f e r e n t  phase and 
amplitude r e l a t i o n s  f o r  d i f f e r e n t  amplitudes of d i s turbance  w i l l  be 
obtained . 

A1 

Comparison of t he  ca lcu la ted  frequency-response curves of t h e  
a i r c r a f t  and t h e  experimental frequency-response curves of t h e  automatic 
p i lo t . -  The two sets of frequency-response curves show, on t h e  one hand, 
t he  values of K and 8 necessary f o r  hunting a t  a given frequency 
and, on t h e  o the r  hand, t he  a c t u a l  values of K and 8 obtained 
experimentally a t  t h i s  frequency. I n  order t o  determine from these  
curves whether t h e  a i r c r a f t  w i l l  hunt i n  f l i g h t ,  t h e  following condi- 
t i ons  must be s a t i s f i e d :  

(1) A t  a given frequency and amplitude t h e  experimental values 
of K and 8 must agree with the  ca lcu la ted  values. 

(2) The motion must be s t a b l e  f o r  amplitudes l a r g e r  than t h e  one a t  
which the  a i r p l a n e  w i l l  hunt ( a s  determined from t h e  f i r s t  condition).  

The f i r s t  condition ind ica t e s  t h a t  t h e  control-amplitude r a t i o  and 
phase l ag  o r  lead obtained as a r e s u l t  of a l l  types of l a g  i n  t h e  
cont ro l  system must agree with the  combination of K and 8 necessary 
f o r  hunting t o  e x i s t .  
i n s t a b i l i t y  i f  t h e  a i r c r a f t  i s  displaced t o  amplitudes l a r g e r  than t h e  
one a t  which it  w i l l  hunt. The a i r c r a f t  is s t a b l e  a t  these  l a rge r  
amplitudes i f ,  a t  t h e  frequency f o r  which t h e  ca lcu la ted  and experi- 
mental control-amplitude r a t i o s  are equal, t h e  ca lcu la ted  value of t h e  
phase l a g  required f o r  hunting is g rea t e r  than t h e  experimental value. 

The second condition is  e s s e n t i a l  t o  prevent 
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I n  o ther  words, t h e  ca lcu la ted  va lue  of 8 i s  a cr i t ical  va lue  of t h e  
l a g  necessary t o  cause the  aircraft t o  hunt. 
of e are less than t h e  c r i t i ca l  value,  t h e  a i r c r a f t  motion is damped, 
whereas i n s t a b i l i t y  occurs if t h e  experimental va lue  of 0 exceeds t h e  
ca lcu la ted  cr i t ical  value ( f i g .  1 ) .  

I f  experimental values 

I l l u s t r a t i v e  case.- The equation of motion i n  bank of a small 
experimental a i r c r a f t  t e s t ed  i n  t h e  Langley 7- by 10-foot tunnel w a s  
estimated as 

(0.000245D' + 0.00245D) QI = -0.26456 

Solving t h e  equation f o r  6/QI  and s u b s t i t u t i n g  i w  f o r  D give t h e  
expression 

d - = 0 . 0 0 0 9 2 6 ~ ~  - 0.00926wi 
9 

The r e s u l t a n t  va lues  of K and 0 ,  t h a t  is, t h e  ca lcu la ted  frequency- 
response curves f o r  t h e  a i r c r a f t ,  are shown as s o l i d  l i n e s  i n  f igu re  3. 
These curves show t h a t  f o r  small values of 
steady o s c i l l a t i o n  is  low and t h e  motion w i l l  not be sustained unless 
t h e  phase l a g  i s  l a rge .  As K increases ,  t h e  frequency of t h e  steady 
o s c i l l a t i o n  increases  but t h e  phase l a g  required decreases. It is 
important t o  no te  that an automatic p i l o t  with a constant t i m e  l a g  
would be uns tab le  a t  high angular frequencies s i n c e  t h e  r e l a t i o n  between 
angular frequency, phase l ag ,  and t i m e  l a g  i s  

K, t h e  frequency o f ' t h e  

Z 

0 (radians) = w Z .  

The experimental frequency-response curves w e r e  obtained by 
o s c i l l a t i n g  t h e  automatic p i l o t  a t  amplitudes of loo  and 20° through t h e  
range of des i red  angular frequencies. 
amplitude r a t i o  f o r  t h e  two amplitudes w e r e  determined from records 
similar t o  f i g u r e  2 and are p lo t t ed  as a function of 
f o r  two va lues  of control-amplitude r a t i o  K. For t h i s  p a r t i c u l a r  
automatic p i l o t ,  t h e  control-amplitude r a t i o  w a s  independent of ampli- 
tude whereas t h e  phase l ag  var ied  wi th  amplitude. 
f i g u r e  3 i n d i c a t e  t h a t ,  f o r  each control-amplitude r a t i o ,  t h e  experi- 
mental values of 8 are g rea t e r  than t h e  ca lcu la ted  phase l ag ,  and 
hence t h e  a i r c r a f t  would be unstable.  Unpublished r e s u l t s  from wind- 
tunnel tests indica ted  t h a t  t h e  motion w a s  unstable,  as predicted from 
t h e  curves of f i g u r e  3 .  

The phase l a g  and control-  

w i n  f i g u r e  3 

The r e s u l t s  i n  

I n  an e f f o r t  t o  m a k e  t h e  a i r c r a f t  s t a b l e ,  t h e  parameters of t he  
automatic p i l o t  w e r e  modified and add i t iona l  wind-tunnel tests were 
performed. 
however, d i f f e r e n t  from those conditions f o r  which t h e  experimental 
frequency-response curves w e r e  obtained and hence no d i r e c t  p red ic t ion  
of t h e  a i r c r a f t  s t a b i l i t y  could be  made. 
tunnel tests with t h e  modified automatic p i l o t  indicated a steady 

The conditions se l ec t ed  f o r  these  wind-tunnel tests w e r e ,  

The r e s u l t s  of t h e  wind- 
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osc i l la t ion ,  and records taken of t he  tests showed tha t  t he  values 
of K and 8 agreed very closely with t h e  combination of K and 8 
determined from t h e  calculated frequency-response curves. 
points  of f i gu re  4 show the  combination of K and 8 f o r  the  cases i n  
which steady osc i l l a t ions  occurred i n  the  r o l l  tests. 

The test 

CALCULATED FREQUENCY RESPONSE OF THE AIRCRAFT 

FOR DAMPED OSCILLATIONS 

The previous calculat ions of the  frequency-response curves w e r e  
based on the  assumption tha t  the  sinusoidal motion of the  a i r c r a f t  is 
neut ra l ly  damped. It i s  of ten desirable,  however, t o  determine the. 
performance of an automatic control  device required t o  cause the  motion 
of t he  a i r c r a f t  t o  damp a t  a su f f i c i en t ly  rapid rate. Although no 
sa t i s f ac to ry  analysis  of t h i s  problem has been given, a qua l i t a t ive  
indicat ion of t h e  rate of damping t o  be  expected i n  a given case may be  
obtained by comparing t h e  measured phase and amplitude of t he  control  
t o  the  phase and amplitude calculated t o  be required t o  enforce a given 
rate of damping. 

S t r i c t l y  speaking, the assumed exponential damping of the  motion 
would require  an exponential decrease i n  the  response of the  autopi lot  
a t  decreasing amplitudes. I n  general, such a l i nea r  response cannot 
be expected and hence the  method w i l l  require  carefu l  judgment i n  i t s  
application. 

The equation of damped motion i n  bank f o r  t he  i l l u s t r a t i v e  case 
may be wr i t ten  by adding a real pa r t  11 t o  the imaginary root i w  

[0.000245(-11 1- iw)2 + 0.00245(-~ + i u ) ]  $ ,=  -0.26456 

where p is  given a value as deterrnined by the desired rate of damping. 

The motion damps t o  one-half i t s  amplitude i n  

Solving the  equation f o r  6 / 4  gives the  expression 

=- 0*693 seconds. 
T1/2 11 

= 0.000926w2 - 0 . 0 0 0 9 2 6 ~ ~  + 0.0092611 + i(-0.0092& + 0 . 0 0 1 8 5 2 ~ ~ )  
4 

The frequency-response curves shown in  f igure  5 w e r e  calculated f o r  
values of 1-1 varying from 0.175 t o  8.31. The control-amplitude-ratio 
curves are only p lo t ted  fo r  values of equal t o  0 and 5 s ince they 
are the  l imit ing curves fo r  t he  values of 11 investigated.  Figure 5 
indicates  t h a t  t he  control-amplitude r a t i o  is  almost independent of 

11 

1-1 
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whereas t h e  phase l a g  decreases as 1-1 increases .  For a con t ro l  system 
with a given control-amplitude r a t i o ,  therefore,  t h e  damping of t h e  
o s c i l l a t i o n  increases  as t h e  phase l a g  is reduced. 
i s  t o  damp one-half i n  lesa than 1/7.22 second, t h e  con t ro l  motion must 
lead the  a i r c r a f t  motion. 

I f  t h e  o s c i l l a t i o n  

I n  order t o  p red ic t  quan t i t a t ive ly  t h e  s t a b i l i t y  of t h e  motion of 
an a i r c r a f t  which damps exponentially,  t h e  experimental frequency- 
response curves would have t o  be obtained f o r  the condition where t h e  
forced o s c i l l a t i o n  of t he  automatic p i l o t  a l s o  damps exponentially. 

CONCLUDING REMARfcS 

A method f o r  pred ic t ing  the  s t a b i l i t y  i n  r o l l  of automatically 
cont ro l led  a i r c r a f t  by a comparison of ca lcu la ted  frequency-response 
curves f o r  t h e  a i r c r a f t  arid experimentally determined frequency- 
response curves f o r  t h e  automatic p i l o t  is presented. The method is 
expected t o  be use fu l  as a means of e s t ab l i sh ing  t h e  s p e c i f i c a t i o n s  of 
t h e  performance required of t h e  automatic con t ro l  device f o r  p i l o t l e s s  
a i r c r a f t  designed as missiles. 

Langley Aeronautical Laboratory 
National Advisory Committee f o r  Aeronautics 

Langley A i r  Force Base, Va. ,  June 13, 1946 
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Leading-Edge Sin 
T him Air foil 

ROBERT T. JONES* 
Ames Aeronautical Laboratory, N. A.C.A. 

SUbfMARY 

If the *-airfoil theory is applied to an airfoil having a rounded 
leading edge, a certain emor will arise in the determination of the 
pressure distribution around the nose. It is shown that the 
evaluation of the drag of such a blunt-nosed airfoil by the thin- 
airfoil theory requires the addition of a “leading-edge force,” 
analogous to the well-known leading-edge thrust of the lifting air- 
foil. The method of calculation is illustrated by application to 
(1) the Joukowski airfoil in subsonic flow and (2) the thin elliptic 
cone in supersonic flow. The paper concludes with a general 
formula for the edge force which is applicable to a variety of 
wing forms. 

INTRODUCTION 

N TEIE APPLICATION of thin-airfoil theory to air- I foils of finite thickness, care must be taken to 
evaluate the effects of singularities that appear in the 
thin-airfoil flows. One example of such an effect is the 
finite force arising from the singularity a t  the leading 
edge of a lifting airfoil-that is, the well-known “lead- 
ing-edge thrust.” 

Another example is the finite force arising from the 
singularity in the flow field of a nonlifting airfoil hav- 
ing a blunt leading edge. The latter effect does not 
appear to have been discussed previously and is of im- 
portance at supersonic speeds where it is desired to 
calculate the “wave drag” arising from the thickness 
of the airfoil. 

THIN JOUKOWSKI AIRFOIL IN SUBSONIC FLOW 

A simple example of the leading-edge force is pro- 
vided by the two-dimensional flow over an airfoil of the 
Joukowski type. Fig. 1 shows such an airfoil and the 
coordinate axes used. According to the thin-airfoil 
theory, the conjugate u-iw of the perturbation velocity 

Received July 7, 1949. 
* Aeronautical Engineer. 

vector will be represented by an analytic function of the 
complex variable f = x + iz; that is, 

u - iw = f(4) 
The functionf is chosen to satisfy the desired boundary 
conditions around the slit -1 < x < +1 and to make 
u - iw vanish at infinity. 

By a process of trial, it was found that for the example 
chosen 

Zc- iw=  

Near the chord line E = x =t oi and 

u/vt 2 1 - 2x 

- 2 d i - q  ( 2 )  E:*(= 1 - x  

The ordinate of the airfoil surface, obtained by integrat- 
ing w/V = dz/dx is 

z = t ( l  - x ) d l  - x2 (3) 
The cotlstant t is thus thrordinate of the airfoil at the 
50 per cent chord station ( x  = 0). The pressure co- 
efficienr is given by 

AP/(1/2)PP = -2wv (4) 

and, hence, is proportional to 1 - 2% in the interval 
- 1 < x < + 1. At the ends of the interval the terms 
under the radical change’ sign and the expression for  
u - iw become a pure real number, so that w = 0 
along the streamline ahead.of and behind the airfoil. 
Fig. 2 shows the pressure distribution along this stream- 

FIG. 1. Thin Joukowski airfoil. FIG. 2. Pressure distribution for Joukowski airfoil. 

5 3 5  



J O U R N A L  O F  T H E  A E R O N A U T I C A L  S C I E N C E S - M A Y ,  1 9 5 0  

I 
FIG. 3. Contour for evaluation of leading-edge force. 

STAGN ATI( 
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I i 
FIG. 4. Comparison of velocity distribution along chord line 

with velocity at airfoil surface. 

I””’ MACH CONE1 

FIG. 5. Elliptic cone in supersonic flow. 

c:= Y 
+I -I p -I 

FIG. 6. Transformation of conicai flow field. 

line and over the airfoil chord between * 1. An alter- 
nate treatment of the thin Joukowski airfoil is given in 
reference 1. 

As is evident from Fig. 2, the thin-airfoil theory shows 
a negative pressure over the forward three-fourths of 
the airfoil, changing with a constant gradient to  a posi- 
tive pressure at the trailing edge. Such an increase of 
pressure toward the rear obviously leads to an upstream 
buoyancy, or negative drag, in contradiction to D’Alem- 
bert’s principle. A simple calculation shows that the 
buoyant force in this case (D = -volume X @/ax) 

corresponds to a drag coefficient of 

CD = -2& (5) 
It will now be shown that this negative drag is exactly 

canceled by a positive contribution arising from the 
singularity in the flow field near the leading edge, pro- 
vided the integration of pressure over the airfoil sur- 
face is properly modified by a limiting process to in- 
clude this singular term. To carry out this limiting 
process, we select, in preference to the airfoil surface 
itself, a streamline a short distance above the airfoil 
surface and, furthermore, allow the integration to ex- 
tend a short distance ahead of the airfoil nose. The 
drag is to be obtained from the product of the pressure 
and the slope of the streamline-that is, the product 
uw may be formed by noting that 

(u - iw)2 = u2 - w2 - 2iuw (6) 
Considering a contour as illustrated in Fig. 3, the drag 
of a portion of the nose of the airfoil will be given by the 
integral 

D,, = I.P. of p (u - iw)VE = 

The first term in the square brackets contains the sin- 
gularity. In the limit as the airfoil thickness ap- 
proaches zero and the contour approaches the real 
axis, this term contributes the value 

over a small length of the path c just above the point 
-1. This varue is equal and opposite the value ob- 
tained [Eq. (5 ) ]  from the approximate surface pressure 
distribution. The remaining terms in the integral (7) 
need not be considered, since they correspond to this 
previously determined value. 

Further insight into the signiiicance of this calcula- 
tion may be gained by an examination of the velocity 
field represented by the complex velocity function (1). 
As illustrated in Fig. 4, the velocity function shows that 
the horizontal velocity u approaches - at the point 
- 1. Obviously, the leading edge of the airfoil will lie 
some distance to the left of this singular point, since the 
additive velocity u becomes equal and opposite to the 
stream velocity V before the point E = - 1 is reached. 
The point at which u = - V is the stagnation point 
and marks the position at which the stream divides to 
form the upper and lower surfaces of the airfoil. Be- 
hind the stagnation point the velocities given by the 
thin-airfoil theory are, in fact, the velocities of an 
internal flow along the central source-sink distribution 
of the airfoil. It is evident that the velocity distribu- 
tion along the source-sink line does not represent a good 
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T H I N - A I R F O I L  T H E O R Y  

FIG. 7. Pressure distribution over thin elliptic cone in supersonic 
flow. 

approximation to the actual surface velocity distribu- 
tion in the vicinity of the rounded nose. The exact 
shape and pressure distribution over the rounded nose 
are thus not determined by the thin-airfoil theory. 
The determination of the drag of the nose portion with- 
out knowledge of its exact shape or pressure distribu- 
tion is possible, however, because of the invariant prop- 
erty of the contour integral. 

Similar considerations apply in the case of a lifting 
airfoil. Here, an inclined thin plate is used as an ap- 
proximation to a lifting airfoil of finite thickness, and 
the leading-edge force (a forward thrust in this case) is 
determined from the singularity in the flow around the 
edge of the plate. The plate in this case represents a 
line of discontinuity, or a vortex sheet, along the 
interior of the airfoil. 

In either case the application of the theory to com- 
pressible flows is made on the assumption that the con- 
figuration of the flow exterior to the airfoil remains es- 
sentially- similar to the corresponding incompressible 
potential flow. The contour of integration (Fig. 3) 
is further supposed to lie in a region where the additive 
velocities are small, so that the velocity u and the 
corresponding pressure can be corrected by the Prandtl- 
Glauext rule. 

ELLlprIc CONE IN SUPERSONIC FLOW 

As an example of a supersonic flow, consider the case 
of the flattened elliptic cone which was previously con- 
sidered by Squire. Adopting a variation of Buse- 
mann's method,a the velocity field may be described by 
an analytic function of the variable r where 

= 2€/(1 + a2) (9) 

and 

As pointed out in reference 3, the variable e is the argu- 
ment of the general solution of Prandtl's equation, of 
zero degree (cf. references 4 and 5 for the equivalent 
solution of Laplace's equation). The variable b is an 
analytic transformation of E that maps the interior of the 
Mach cone onto the whole complex plane, transforming 
the Mach cone itself into the positive and negative 

variable approaches the undistorted space coordinate 
0, + iz)/x near the plane of the airfoil inside the points 
*1 and thus facilitates the choice of functions to 
represent various airfoil boundary conditions. Figs. 
5 and 6 illustrate these relations. 

As in the case of the Joukowski airfoil, the elliptic 
cone requires a singularity of the order -1/2 in the 
expression for the vertical velocity w to represent the 
rounded leading edge. A trial shows that the simple 
function* 

satisfies the boundary condition for an elliptic cone of 
maximum thickness xt having its leading edges along 
the lines y = *mx. 

The horizontal perturbation velocity u, which deter- 
mines the pressure distribution ( A 9  = -puV), is 
found from w with the aid of the-condition for irrota- 
tional motion-that is, bu/bz = dw/bx. In terms of 
the variable 5 this relation is equivalent to 

,. 
J 

where the integration begins at a point of zero disturb- 
ance. 

Integration for the ordinate of the surface yields 

The constant t is seen to be the maximum thickness of 
the section at  x = 1.0. 

In the present example, the sweep angle is assumed 
to be greater than the Mach angle so that the elliptic 
cone lies entirely within' the Mach cone. The veloci- 
ties u and w then vanish on the Mach cone, and u 
can be determined by integrating Eq. (12) from - 1 to 1 

(14) 

where 

@ = arc sin i' - - b2 
1 - m2' 

A=- 

and Fand E are the elliptic integrals. A plot of the real 
solution for u, which is proportional to the pressure 
distribution, is shown in Fig. 7. It is interesting to 
note that the elliptical cross section leads to a constant 

* The proper value of the function is selected with the aid of 
the condition that w is to be discontinuous across the real axis be- 

branches of the real axis outside the points * l .  The tween *m and positive on the upper side. 
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surface pressure distribution. This result has pre- 
viously been obtained by Squire. 

As in the preceding example, the drag is determined 
by integrating the product -piw along a stream sur- 
face just above the airfoil surface. Eqs. (11) and (14) 
for u and w actually contain two (Le., the real and 
imaginary) solutions. Since the xed solutions are the 
ones uSed here, it is necessary to separate the product 
of the real solutions from the complex product uw. 
With the aid of Eq. (12), it can be shown that the re- 
quired product of the real solutions is equal to one-half 
the real part of the complex product in a limited region 
near the nose of the airfoil where the term {/- 
can be considered constant. 

With this latter point in mind, the expression for  the 
leading-edge force of a section at z = 1 can be writ- 
ten 

or, in coefficient form, 

for both edges. 
The contour for Eq. (15) crosses only a limited region 

near the airfoil nose and involves in the limit only the 
singular term {e/({2 - m2). Over the remainder 
of the interval the contour is equivalent to an evalua- 
tion of the surface pressure times the surface slope. 
Over this interval the pressure is constant, proportional 
to 

and the resulting drag is easily computed from the pro- 
jected area of the cone-that is, 

In this case, both the drag arising from the approxi- 
mate surface pressure distribution and the leading- 
edge force act in the same direction so that the total 
drag amounts to the sum of Eqs. (16) and (17). 

The quantity t/2m is the "thickness ratio" of the cross 
sections of the elliptic cone. Eq. (18) does not, of course, 
include the wake drag that would arise if the cone were 
cut off so as to have a blunt base. 

NOSE RADIUS = r 

FXG. 8. General expression for force per unit length normal to 
oblique leading edge. 

GENERAL EXPRESSION FOR LEADING-EDGE FORCE 

In the foregoing example, the flow field is conical, 
and the drag coefficient of each section throughout the 
lergth of the conical body is the same. In more general 
examples such as that described by Lighthill,2 however, 
this simplifying feature will not appear, and the co- 
efficient of the leading-edge force will vary from point 
to point along the length of the edge. Furthermore, it 
will not be possible, in general, to represent the entire 
geometry of the flow field by a function of a complex 
variable. However, if the body is sufficiently thin and 
flat and presents no abrupt changes in the radius of 
curvature of the leading edge, the flow field in the im- 
mediate neighborhood of a point on the leading edge 
may be considered to have a cylindrical, or two-dimen- 
simal, form. In such cases the localized region of the 
flow field can be represented by a function of a complex 
variable, and the contour integration for the leading- 
edge force can be performed. Fig. 8 illustrates the more 
generd relation obtained when this calculation is ap- 
plied to an elliptical leading edge with nose radius r. 
It is seen that the f,orce normal to the edge at  large 
angles of sweep is approximately equal to that de- 
veloped by the impact pressure of the normal stream 
component acting on the developed area of the circular 
cylinder having the radius of the leading edge. 
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THE SPANWISE DISTRIBUTION OF LIFT FOR MINIMUM INDUCED 

DRAG OF WINGS HAVING A GIVEN LIFT AND A 

GIVEN BENDING MOMENT 

By Robert T. Jones 

SUMMARY 

The problem of the minimup induced drag of wings having a given l i f t  
and a given span is extended t o  include cases i n  which the bending moment 
t o  be supported by the wing is a l s o  given. A s  i n  the  c lass icd l  problem 
of induced drag, the theory is  limited t o  l i f t i n g  surfaces traveling a t  
subsonic speeds. 
t r ibu t ion  can be obtained i n  an elementary way which is  applicable t o  a 
var ie ty  of such problems. 
responding spanwise load d is t r ibu t ions  are a l so  given fo r  the case i n  
which the  l i f t  and the  bending moment about t he  wing root are fixed while 
the span is  allowed t o  vary. 
the  induced drag with a 15-percent increase i n  span as compared with 
r e su l t s  fo r  an e l l i p t i c a l l y  loaded wing having the s a m e  t o t a l  l i f t  and 
bending moment. 

It is  found t h a t  the required shape of the downwash dis- 

Expressions fo r  the minimum drag and the cor- 

The r e su l t s  show a 15-percent reduction of 

INTRODUCTION 

I n  the problem of minimum induced drag as or ig ina l ly  t reated by Munk 
(references 1 and 2) the span of the wing and the  t o t a l  l i f t  w e r e  supposed 
t o  be given and the d is t r ibu t ion  of l i f t  over the span resul t ing i n  a min- 
innun of drag was  sought. The solut ion of t h i s  problem thus provided a 
convenient lower bound f o r  the induced drag of a wing of given dimensions. 

In  the prac t ica l  design of wings the requirements for  low induced 
drag and the requirements for  s t ruc tu ra l  strength are opposed. 
bending moment developed by the l i f t  becomes an important considera- 
t ion - more important i n  many cases than the ac tua l  spanwise dimension 
of the wing. 
minimum drag with l imi ta t ions  imposed on the bending moment as w e l l  as 
on the t o t a l  l i f t .  It is the  purpose of the present paper t o  show how 
the methods of t he  earlier analysis can be extended i n  a very simple way 
t o  the solution of problems involving the bending moment of the load 
dis t r ibut ion.  

H e r e  the  

Such considerations lead t o  the problem of determining the 
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A complete list of symbols employed i n  t h e  ana lys i s  w i l l  be found i n  
t h e  appendix. 

GENERAL FORMULAS FOR LIFT, DRAG, AND BENDING MOMENT 

Reference may be  made t o  t h e  o r i g i n a l  papers of Prandt l  and Munk 
(references 1 and 2 ) ,  o r  t o  any of t h e  standard t e x t  books on aerodynamics, 
f o r  t h e  fundamental developments of wing theory which form t h e  b a s i s  f o r  
the  ca l cu la t ions  of induced drag. 
i s  given by 

I n  these  developments t h e  over-all  l i f t  

+S 

r d y  (1) 
J - S  and t h e  drag i s  given by 

+S 
wi r dy 

I n  these  formulas t h e  wing span is  supposed t o  extend along t h e  y a x i s  
between -s  and +s ,  r is the  l o c a l  c i r c u l a t i o n  o r  vor tex ' s t rength ,  and 
V i s  t h e  constant ve loc i ty  of f l i g h t .  The induced downwash ve loc i ty  w i  
i s  va r i ab le  along the  span and i s  connected with t h e  vor tex  d i s t r i b u t i o n  
l' (y) through t h e  r e l a t i o n  

With t h i s  va lue  f o r  W i  

a double i n t e g r a l  involving the  spanwise d i s t r i b u t i o n  of l i f t  as repre- 
sented by t h e  c i r c u l a t i o n  s t r eng th  

t h e  expression f o r  t h e  drag may be converted t o  

I' 

This i n t e g r a l  may be  reduced t o  a more symmetric form i f  i t  is  in t eg ra t ed  
by p a r t s  on the  supposit ion t h a t  I' f a l l s  t o  zero a t  t h e  wing t i p s .  Thus1 

lThe v a l i d i t y  of equations ( 3 ) ,  ( 4 ) ,  and ( 5 )  can be demonstrated by 
r e f e r r i n g  t o  t h e  l i m i t i n g  values of complex i n t e g r a l s  taken along a pa th  
a shor t  d i s t ance  above t h e  s ingular  po in t  on t h e  real axis. I n  t h e  case 
of equations ( 3 )  and ( 4 )  t h i s  process y i e l d s  t h e  Cauchy p r inc ipa l  value. 
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I n  mathematical terms t h e  problem is  t o  minimize t h e  double i n t e g r a l ,  
equation (5), while holding f ixed  values of 

L = pV lS+' I' dy 

and 

where B is t h e  bending moment spec i f i ed  about t he  poin t  so. For the  
t i m e  being 
although later another example w i l l  appear. 

so w i l l  be taken as t h e  o r ig in ,  o r  wing roo t  (so = 0), 

Although t h e  de r iva t ion  of t h e  formulas f o r  induced drag lfiakes use of 
the  concept of the  l i f t i n g  l i n e ,  i t  is important t o  no te  that t h e  r e s u l t s  
are not a c t u a l l y  r e s t r i c t e d  t o  t h i s  approximation. 
well-known stagger theorem the  induced drag of a l i f t i n g  sur face  w i l l  be  
equal t o  t h a t  of a l i f t i n g  l i n e  i f  t he  spanwise load d i s t r i b u t i o n s  are 
t h e  same. 

According t o  Munk's 

It should be noted f u r t h e r  t h a t  t he  induced drag of a wing having a 
given l i f t  and a given spanwise load d i s t r i b u t i o n  is not  a f f ec t ed  by t h e  
compressibil i ty of t h e  air  a t  subsonic speeds. 
add i t iona l  drag assoc ia ted  with t h e  formation of waves arises and t h e  
induced drag, which i s  assoc ia ted  with t h e  vor tex  wake, becomes only a 
pa r t  of t h e  t o t a l  p ressure  drag. 

A t  supersonic speeds an 

THE DISTRIBUTION OF DOWNWASH FOR MINIMUM DRAG 

I n  general ,  i f  t h e  drag is t o  be a minimum, a s m a l l  v a r i a t i o n  i n  t h e  
shape of t h e  curve of spanwise loading w i l l  produce no f i r s t -o rde r  change 
i n  t h e  drag. 
t o  t h e  o r i g i n a l  loading; i t  is  then necessary t o  f ind  conditions under 
which t h e  drag added by a s m a l l  add i t iona l  loading is  zero. 

The v a r i a t i o n  i n  shape may take  t h e  form of a small addition 

The so lu t ion  of t h i s  lat ter problem is  rendered e spec ia l ly  simple 
by t h e  mutual drag theorem (reference l), which arises from t h e  evident 
symmetry of t h e  i n t e g r a l  t o  be  minimized (equation (5)) .  
states t h a t  i f  t h e  l i f t  d i s t r i b u t i o n  (represented by I' (y)) is t h e  sum 
of two d i s t r i b u t i o n s  r l ,  and I'2, t h e  drag of I'l a r i s i n g  from t h e  
downwash f i e l d  of r2 is  exac t ly  equal t o  t h e  drag of r2 a r i s i n g  from 
the  downwash of 

The theorem 
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Consider now an i n i t i a l  d i s t r ibu t ion  designed t o  achieve minimum 
drag. (See f ig .  1.) The drag added by a s m a l l  addi t ional  loading w i l l  
be composed of three par ts ,  namely: 

1. 
2. 

3. 

The drag of the additional l i f t  act ing alone 
The drag of the or ig ina l  loading a r i s ing  from the downwash 

'J$e drag of the additional loading induced by the downwash f i e ld  
f i e l d  of the addi t ional  loading 

of the or ig ina l  loading 

I t e m  1 is  of second order i n  terms of the  magnitude of the  added l i f t  f o r  
smooth dis t r ibut ions,  t ha t  is, so-called "weak variations." (The f ac t  
tha t  t h i s  second-order t e r m  is invariably posi t ive insures tha t  the  drag 
w i l l  be a minimum and not a maximum.) 
mutual drag theorem. The f i rs t -order  var ia t ion i n  drag can then be com- 
puted by considering only the drag of the  small addi t ional  l i f t  act ing in  
the induced downwash f i e l d  wi(y) of the or ig ina l  l i f t .  

Items 2 and 3 are equal by the 

The conditions of fixed bending moment and fixed t o t a l ' l i f t  are m e t  
by allowing only those curves of l i f t  var ia t ion tha t  produce no change i n  
these quant i t ies ,  t ha t  is, curves having zero area and zero moment. It 
can be seen tha t  such curves of var ia t ion  must have a t  least three ele- 
ments t o  m e e t  the conditions of zero area and zero moment. Furthermore, 
any curve meeting these conditions can be subdivided in to  groups of three 
elements so tha t  the individual groups a l so  s a t i s f y  the conditions. 
Hence, as the representative of such r e s t r i c t ed  curves of var ia t ion w e  
may adopt three small elements having areas 21, 22, and Z3 ( f ig .  1 ) .  
These elements, together with t h e i r  posit ions y l ,  y2, and y3 and the 
loca l  values of the  downwash w -  etc., due t o  the or ig ina l  loading 
must s a t i s f y  the following three equations: I1 , 

> fo r  6L = 0, Z l  + 22 + Z3 = 0 

f o r  

for  

6B = 0, 

6 D i  = 0, 

Z l Y l  + Z2Y2 + Z3Y3 = 0 

Zlwil + Z2wi2 + Z3wi3 = 0 

It can be seen tha t  these equations w i l l  be consistent if 
w - a+by2 and wi3 - a+by3, where a and b are constants t o  be 
determined from the given conditions. 
f ied  f o r  a l l  posit ions y ~ ,  y2, etc. ,  i t  is concluded tha t ,  i n  general, 

w i l  - a+byl, 
52 

Since such equations must be satis- 

w - a + b y  (9) i 
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Hence, f o r  a minimum induced drag with a given t o t a l  l i f t  and a given 
bending moment the  dowzlwash must show a l inea r  var ia t ion  along the span.2 
(See f ig .  2.) 

The foregoing method may be r'eadily extended t o  a more general class 
of problems involving bending moments o r  ro l l i ng  moments. Suppose, f o r  
example, a braced wing is considered, as i n  the dotted out l ine  of f ig-  
ure  3. I n  t h i s  case the bending moment developed by tha t  portion of the 
l i f t  act ing inboard of the  point of bracing attachment may be of no con- 
cern, but it may be desired t o  l i m i t  the bending moment developed by tha t  
portion of the  spanwise load curve extending between t h i s  point and the 
t ip .  I n  t h i s  case so w i l l  not be zero. A t  least three elements are 
required t o  preserve s ta t ionary values of the l i f t  and bending moment, 
and it i s  evident that at least two of the  elements must l i e  t o  the r igh t  
of the point sQ. The three  simultaneous equations are (see f ig .  2): 

Here y2 and y3 are to  the r igh t  of the point so and y1 lies t o  the 
l e f t  of t h i s  point. For these equations3 t o  be consistent wi must have 
the form 

yil - a; wi - a+b(y2-s0); wi3 - a+b(yg-s0) 
2 

Hence, i n  general, the  downwash w i l l  be a constant over the portion of the 
span f o r  which the moment i s  not specified,  as i l l u s t r a t ed  i n  f igure  3. 
I f  no r e s t r i c t ion  whatever is placed on the moment there  is obtained the 
solution of Munk's or ig ina l  problem, namely, t ha t  the  downwash should be 
constant over the e n t i r e  span. 

21t may be noticed a t  t h i s  point tha t ,  whereas the discussion has empha- 
sized the idea of minimizing the  drag, the analysis  actual ly  makes no 
d is t inc t ion  between the l i f t ,  bending moment, or  drag, i n  tha t  station- 
ary values of a l l  three are demanded. Thus equation (9) may be consid- 
ered a necessary condition f o r  the  solution of the following problems: 
(1) given the  t o t a l  l i f t  and the induced drag t o  f ind the d is t r ibu t ion  
of l i f t  over the span tha t  w i l l  r e su l t  i n  a minimum bending moment, 
and (2) given the  bending moment and the induced drag t o  f ind the dis- 
t r ibut ion resu l t ing  i n  the maximum t o t a l  l i f t .  

3See reference 3 fo r  a discussion of solutions of such equations. 
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Determination of Span Loading and Induced 
Drag From t h e  Downwash Dis t r ibu t ion  

The case of b i l a t e r a l  symmetry with moment spec i f i ed  about t h e  
roo t  s ec t ion  w i l l  serve as an example of t h e  ca l cu la t ion  of t he  a c t u a l  
span loading and induced drag. 
t h a t  t h e  downwash d i s t r i b u t i o n  w i l l  cons i s t  of two s t r a i g h t - l i n e  
segments w i th  a reversal of s lope  a t  t h e  plane of symmetry. 
necessary t o  compute t h e  spanwise v a r i a t i o n  of T corresponding t o  
such a curve of downwash. 

It w i l l  be evident from t h e  foregoing 

It is then 

To perform t h i s  c a l c u l a t i o n  by standard methods of a i r f o i l  theory, 
use is made of t h e  idea  t h a t  a t  a g r e a t  d i s t ance  behind t h e  wing t h e  
vor tex  shee t  forms a two-dimensional f i e l d  of motion, with t h e  discon- 
t i n u i t y  i n  t h e  lateral v e l o c i t y  across  t h e  shee t  given by and 
t h e  downwash w given by t w i c e  t h e  va lue  of t h e  induced downwash wi 
a t  t h e  wing. Hence, t h e  quan t i ty  1 / 2  (dI'/dy) - 2iwi can be evaluated 
by means of t he  f ami l i a r  complex ve loc i ty  func t ion  v - i w  of t h e  two- 
dimensional p o t e n t i a l  theory using f o r  
vor tex  sheet.  
is given along t h e  l i n e  represent ing  t h e  trace of t h e  span, then t h e  
ve loc i ty  vec tor  a t  any o ther  po in t  i n  t h e  f i e l d  
obtained from the  r e l a t i o n  (reference 4) 

dr/dy, 

v i t s  value j u s t  abbve t h e  
I n  t h i s  theory i f  t h e  v e r t i c a l  component of ve loc i ty  w 

5 = y + i z  may be  

A s  noted above, 

- -  dr - v(y + o i l  - v(y - o i )  = 2vfy + o i l  
dY 

Introducing w = a + b y  f o r  y > 0 and w = a - by f o r  y < 0 i n t o  
equation (11) y ie lds ,  a f t e r  i n t eg ra t ion ,  

and hence 

r = 2 (a + $) ,/-+ y2 cosh-' - S 
IYI 

lr 

The spanwise loading thus  conta ins  t h e  e l l i p t i c a l  d i s t r i b u t i o n  as one 
component. 
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Equation (13) f o r  the  spanwise d is t r ibu t ion  of c i rculat ion enables 
the determination of the  over-all l i f t ,  bending moment, and drag i n  t e r m s  
of the unassigned constants a and b. The use of equations (2), ( 6 ) ,  
and (7), together with the  wing semispan s, yields  the following values: 

B = 0 V s 3  f 6 a  + I b s )  \ 

a b Di = - 2 V L + V B  

It is  convenient t o  specify the bending moment of the l i f t  i n  t e r m s  of 
the lateral posit ion of the centroid, or  center of pressure, of the load 
curve. The lateral centroid as a f rac t ion  of the  semispan s may be 
denoted by y' (i .e. ,  y'  = 2B/Ls). Then, solving fo r  a and b, 

The expression for  induced drag in  terms of the l i f t  and the lateral 
center of pressure becomes 

This equation y ie lds  the minimum drag for  the given posit ion of 
the lateral center of pressure is specified so as t o  coincide with tha t  
for  an e l l i p t i c a l  loading (i.e., b = 0; y' = 4/33), then the above 
formula reduces t o  

y'.  I f  

The optimum dis t r ibu t ion  of loading for  a given posit ion of the centroid 
y9  
The re su l t  is  

may be obtained from equation (13) with the  a id  of equations (15). 
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Drag f o r  a Given Bending Moment with Unrestricted Span 

The foregoing calculations show, as w a s  t o  be expected, t ha t  the 

However, i f  the  r e s t r i c t ion  on the span is removed, 
e l l i p t i c  loading yields  a smaller drag than any of the others  within a 
r e s t r i c t ed  span. 
s t i l l  lower values of the  induced drag can be obtained without any 
increase i n  the bending moment at  the wing root. 
obtained by permitting the span t o  increase and a t  the  s a m e  t i m e  adopt- 
ing a more tapered form of the  loading curve. 

The lower values are 

Equation (16) which contains the three var iables  l i f t ,  span, and 
center of pressure can be eas i ly  rearranged t o  show the var ia t ion of 
drag with span when the bending moment and the l i f t  are held a t  fixed 
values. I n  t h i s  case, the lateral posit ion of the  center o f  pressure 
y's w i l l  be fixed, while the form and extent s of the load curve w i l l  
vary. I n  order t o  provide a convenient basis  f o r  comparison the span 
and shape of the load curves w i l l  be re la ted t o  the e l l i p t i c  loading. 
I f  S/Se denotes the r a & h  of the  semispan of the  wing t o  that of an 
e l l i p t i c a l l y  loaded wing having the s a m e  t o t a l  l i f t  and bending moment, 
then equation (16) can be rewritten: 

The quantity i n  the bracket is the r a t i o  of the  induced drag t o  that of 
the corresponding e l l i p t i c a l l y  loaded wing. 
f igure 4 t o  show the  decrease of drag possible by increase of the span. 
The forms of load curve required fo r  the minimum drag a t  various values 
of s/se are shown i n  f igure  5 .  

This r a t i o  is plot ted i n  

It w i l l  be noted t h a t  a 15-percent reduction of the induced drag 
below tha t  fo r  e l l i p t i c  loading can be achieved with a 15-percent 
increase i n  span. 
50 percent (s = 1.15 t o  1.50) yield no s ignif icant  reductions, however. 
A t  still la rger  values of s 
a t  an i n f i n i t e  value of s. For extreme values of s/se the curves begin 
t o  show negative loadings a t  the t i p s  and eventually the bending moment 
at  ce r t a in  points along the  span w i l l  exceed t h a t  a t  the wing root. 

Further increases of span between 15 percent and 

the  drag becomes lower, and approaches zero 

Ames Aeronautical Laboratory 
National Advisory Committee for  Aeronautics, 

Moffett Field, Calif . ,  Sept. 25, 1950. 
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APPENDIX 

DEFINITIONS OF SYMBOLS 

t o t a l  l i f t  

element of l i f t  

induced drag 

bending moment 

air density 

circulation 

induced downwash velocity a t  wing 

downwash velocity, a t  i n f in i ty  

lateral velocity 

velocity of f l i gh t  

distances along wing semispan 

point of orggin fo r  bending moment 

length of wing semispan 

lateral position of load centroid as a fraction of 

constants 

( w - 2wi) 

s 
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FiGURE 1.- SPANWISE LOAD 
ELEMENTS OF VARIATION 

-=T$$&7 

CURVE WITH THREE 

a +  by 

551 



NACA TN 2249 

1. zii 
M
 (3

 
L
rd
a 

Lr, 
0
 

a
 

n
 

0
 

a
 

W
 

I- W
 
I
 

I- 

5 52 



NACA TN 2249 

553 



5 54 



a, 
a
 

* rn a, 
rn $
4
 

a, 

&
 

ti u
 s 9 u u m 

v
 

4
 

n
 

a m a, 
m u a, u 

3 ti do u
 L) cd 

555 



a
 

U
 

V
 

m 1-I 
U

 
UJ 9 

U
 

V
 

m 1-I 
u
 rn 

% U
 

1-I 
U

 

s 9 rn 

5 56 



"FIE M I N ~ ~  DRAG OF THIN WINGS IN FRICTIONLESS FLOW 

Robert T. Jones 

Ames Aeronautical Laboratory 

February 1951 

557 



Jones, R. T., "The Minimum Drag of Thin Wings in Frictionless Flow," Journal 
of the Aeronautical Sciences, vol. 18, no. 2, Feb. 1951, pp. 75-81. 
@ 1951 by the Institute of Aeronautical Sciences, Inc. 
Reprinted by permission of the American Institute of Aeronautics and 
Astronautics. 

558 



Copyright, 1951, by the Institute of the Aeronautical Sciences and reprinted by permission of the copyright owner 

F THE 
AE UTICAL 

VOLUME 18 FEBRUARY, 1951 NUMBER 2 

The Minimum Drag of Thin 
in Frictionless Flow 

ROBERT T. JONES* 
Ames Aeronautical Laboratory, N. A.C. A. 

S-Y 

The assumptions of the thin airfoil theory are found to pro- 
vide certain necessary conditions for the minimum drag of airfoils 
having a given total l i t ,  a given maximum thickness. or a given 
volume. The conditions are applicable to steady or unsteady 
motions and to subsonic or supersonic speeds without restriction 
on the plan form. The computation of drag and the statement of 
the conditions for minimum drag depend on the consideration of 
a “combined flow field,” which is obtained by superimposing the 
disturbance velocities in forward and reversed motions. 

If the plan form of the airfoil and its total lit are given, it is 
found that, for minimum drag, the lift must be distributed in such 
a way that the downwash in the combined field is constant over 
the entire plan form. If the plan form is given and the thickness 
of the airfoil is required to contain a speciiid volume, then the 
thickness must be distributed over the plan form in such a way 
that the‘pressure gradient of the combined field in the dreqtion 
of flight is constant at  all points of the wing. A specification of 
the thickness along some lie drawn on the plan form is found to 
lead to the requirement that the gradient of the pressure vanishes 
on either side of this line. For the drag to be a minium with 
respect to small changes in the plan form, the foregoing conditions 
must extend continuously for a small distance beyond the edge of 
the plan form. 

INTRODUCTION 

T tributable partly to the action of tangential, or 
friction, forces and partly to the action of normal pres- 
sures. With well-streamlined bodies, the friction forces 
are ordinarily confined to a relatively thin boundary 
layer adjacent to the surface, and in such cases that 
part of the drag arising from the normal pressures can 
be determined on the assumption of a frictionless po- 
tential motion in the region outside the boundary layer. 

A practical way of minimizing the pressure compo- 
nent of the drag is to make the body slender and its 
angle of attack small. Man? of the results of the mod- 

HE DRAG OF A BODY moving through a fluid iS at- 

Presented at the Aerodynamics Session, Annual Summer Meet- 

* Aeronautical Engineer. 
ing, I.A.S.. Los Angels, July 12-14, 1950. 

ern airfoil theory, such as the theory of the induced 
drag of airfoils, are based on the assumption that the 
velocities imparted to the air are small in relation to the 
velocity of fight and, hence, are limited to cases of thin 
airfoils and small lift coefficients. 

In the present paper, certain necessary conditions 
for the minimum pressure drag of thin airfoils are de- 
rived. The analysis makes use of, and extends, certain 
“reversed flow” theorems originally derived by Hayes’ 
and von K h % n 2  and is based on the i%ea of super- 
imposing the disturbances in forward and reversed 
motions originally advanced by Munk.% Althowh 
the analysis is restricted to motions involving small dis- 
turbances, the conditions for minimum drag are found 
to be applicable in a wide variety of circumstances of 
such motions. Thus, the motion may be steady or un- 
steady ahd the velocity of fight may be greater or less 
than the velocity of sound. 

MINIMUM DRAG DUE TO THICKNESS 

In the linearized theory the effects of camber, or lift, 
and thickness can be treated independently and later 
superimposed in any desired linear combination. Wing 
problems can therefore be divided into two classes- 
i.e., those involving thickness but no lift and those in- 
volving a distribution of lift over a surface having zero 
thickness. 

Consider first the case of a thin nonlifting body or 
wing, such as shown in Fig. 1. The surface is assumed 
to be everywhere nearly parallel to a horizontal plane 
in the direction of motion. A distribution of thickness, 
symmetrical above and below this plane, is supposed 
to be given over the plan form. Computation of the 
drag of such a body will involve, first, the determina- 
tion of the pressure distribution over its surface. The 
drag may then be obtained by one of two methods. In 
the first method the body is divided into elements of 
area, and the element of drag is obtained from the in- 
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P L A N  - V I E W  

SIDE V IEW 

SHOWING PRESSURES 
FIG. 1. Thin airfoil with elements representing slope of surface. 

clination of the local pressure force. In the second 
method, which is related to the first through an integra- 
tion by parts, the body is divided into small elements of 
volume, and the drag is computed from the force of 
buoyancy on each element arising from the local gradi- 
ent of the pressure distribution. 

As is well known, the pressure distribution over such 
a thin, nearly flat body can be calculated by consider- 
ing only the inclinations or slopes of the surface ele- 
ments-without regard for the actual displacement of 
the surface away from the mean plane. The body can 
then be replaced by a large number of small elementary 
areas having slopes equal to the local slope of the sur- 
face. Each such element can be conceived to create a 
disturbance field of its own, and the geometric charac- 
ter of this field will depend on the properties of the 
medium (its elasticity, density, etc.) and on the cir- 
cumstances of the motion. The disturbance fields of 
all elements will be alike except for a factor of strength, 
which is measured by the product of the area of the 
element and its slope. The total disturbance field of 
the body may be obtained by superimposing the in- 
dividual disturbance fields of its elements. 

With the aid of this concept of superposition it may 
be shown that the drag of such a body is unchanged 
by a reversal of the direction of motion. The pressure 
at each point of the body is obtained by d g  up 
the influence at this point of every element of the sur- 
f ace. T h q  drag is then obtained by a second summation 
involving the total pressure force on each element and 
the slope of its surface in the dragwise direction. Thus, 
two integrations over the surface are required- or four 
integrals in all. A typical single element of this sum 
(see Fig. 1) will be represented by the pressure force 
on element 2 caused by the pressure field of element 1 
;md multiplied by the slope of element 2. Now the 

pressure field of any element, regardless of the distribu- 
tion or zone of action of the pressure, will be propr- 
tional in magnitude to the slope and area of the ele- 
ment. The magnitude of the small contribution to the 
pressure on element 2 caused by element 1 will there- 
fore be given by the product mlPpl, where ml is the 
“strength” of element 1 as determined from the product 
of its slope by its elementary area (i.e., ml is equal to 
the frontal area of element 1) and where Pa is the pres- 
sure arising at ,element 2 from a unit disturbance at 
element 1. The increment of drag produced will be 
equal to the product of the pressure mlPa by the area 
and the slope of element 24.e., mlPslm. In reversed 
motion, element 1 will lie in the same relation to element 
2 formerly occupied by 2 in relation to 1. Hence, P.z~ 
is equal to Pn provided the fluid itself is homogeneous. 
The signs of ml and are both changed, but their 
product retains the same sign. The corresponding ele- 
ment of drag in reversed motion is, therefore, d n m l ,  
which is exactly equal to the element of drag in forward 
motion. Such an equality can be assigned to every pair 
of elements and therefore must apply to the total drags 
on forward and reversed motion. 

It should be noted that the reversal principle involves 
hardly any restrictive assumptions aside from those in- 
volved in the linearization. It applies, therefore, to 
steady or accelerated motions and to subsonic or super- 
sonic speeds. 

The fact that the drag of the body is the same for 
either direction of motion leads to the consideration of 
a method of computing the drag wherein the forward 
and reversed disturbance fields are considered simul- 
meously. It is found that the sum of the two drags, 
or twice the actual drag, can be obtained by super- 
imposing the two fields of disturbance vdocitie~ and 
considering the pressures that would arise from motion 
of the combined field in the flight direction. The 
superposition of the two disturbance fields produces a 
fore-and-aft symmetry in the disturbance field of each 
element, with the result that the combined flow field is 
generally simpler in structure than the actual physical 
field and the calculation of drag is simplified. The 
pressure in the combined field is simply the difference 
between the pressures in forward and reversed mo- 
tions. 

It can be shown that in the combined flow field the 
mutual interference drags of two distributions of thick- 
ness are equal. Consider two distributions A and B as 
illustrated in Fig. 2. The two distributions can be di- 
vided into an equal number of elements, and elements 
from the two distributions may then be paired in an 
arbitrary way. Considering two elements such as 1 
and 2 shown in Fig. 2, it is’evidemt from the symmetry 
of the combined field of &ch element that the drag of 
element 1 caused by element 2 is equal to the drag of 
element 2 caused by element 1. Since this equality 
holds for every pair of elements, it must hold for the 
total distributions A and B. 
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FIG. 2. Elements showing the mutual interference of two wings 
in combined flow. 

consider two such elements of volume added to the 
original distribution as shown in Fig. 3. Fohwing the 
prinaple of superposition, the drag added by the ele- 
mentswillbecornpsedoftbreeparts: (1)thedragof 
the elements in their own pressllre fields; (2) the drag 
added to the original distriition by the pwssure fields 
oftheelements; an&(3)thedragoftheelelgentsin 
the pressllre field of the original distribution. since 
t h e v a r i a t i o n i n t d i s t r i i u t i o n i s s m a l l c o m ~  
to'* OPiginal tllickness, item (1) will be of smatler 
order than (2) or (3).* Furthermo- if use is made of 
the combined flow field, items (2) and (3) will be equal 
because of the mutual drag th- previously demon- 
strated. The added drag is then equal to twice the 
buoyancy of the volume elements in the pressure field 
of tbe original distribution. Denoting the pressure in 
the combined field by P. and the volumes of the de 
men& by vl and v2, as in Pig. 3. we have the following 
two equations: 

(1) For m change in total vozzLmc: VI + vz = 0 

(2) For m change in drag: v1 - + y.rz)* = 0 

The two equations will be consistent if 

(3PJaX)l = (bPJaX)s 

Since such equations must hold for all positions of 
the elements within the specified plan form, we con- 
clude that the pressure gradient bPJ& must have the 
same value at  all points of the wing. For minimum 

AIRFOIL SHOWING ADDITION OF EOUAL OPPOSITE 
ELEMENTS OF VOLUME. 

* Th- fact that the secouddff variation in drag is h p  
positive ensures that a stationary d u e  will be a minimum and 
notamaxhum. 

. 
PRESSURE DISTRIBUTION FOR WHICH DRAG 

OF ADDED ELEMENTS IS ZERO. 

FIG. 3a (to#). FIG. 3b (bob). 

We are now in a position to determine the conditions 
for minimum drag with various  specification^ of thick- 
ness or volume. Consider, first, the following problem: 
Let the plan form of the wing be given, and suppose 
that the thickness distribution is required to contain a 
certain specified volume. What distribution of thick- 
ness over the plan form will result in the minimum 
drag? First, let a distribution of t h i h e s s  having the 
specified volume and designed to achieve the minimum 
drag be given. If the drag is actually a minimum, then 
a small variation in the shape of the distribution will 
produce no first-order change in the drag. The varia- 
tion in shape must not change the original volume and, 
hence, may be divided into pairs of elements h a a g  
equal and opposite volumes. The drag of each element 
is a force of buoyancy equal to the volume of the ele- 
ment multiplied by the local gradient of the press~re. 

", SHOWING PRESS- 
DISTRIBUTION 

FIG. 4. condition for minimum drag with a given tatal volume. 

56 1 



J O U R N A L  O F  T H E  A E R O N A U T I C A L  S C I E N C E S - F E B R U A R Y ,  1 9 5 1  

drag, therefore, the thickness must be distributed in 
such a way that the drag per unit volume is constant 
over the entire wing in the combined flow field. The 
signiscance of this condition in terms of the pressure 
distributions on an oblique airfoil in supersonic motion 
is illustrated in Fig. 4. 

Examples of bodies satisfying this condition are not 
difficult to find. One example is that of a thin, flat- 
tened ellipsoid accelerating in an incompressible fluid. 
The drag force in this case is in opposition to the accel- 
eration of the motion and, hence, is attributed to a 
“virtual additional mass” of the body. The surface 
pressures due to the acceleration are proportional to 
bq/bt, where Q is the surface potential. As is well 
known, the surface potential of any ellipsoid moving 
in a direction x parallel to a principal axis is of the form 
Q = KVx, where K is a constant depending on the 
proportions of the ellipsoid and V is the velocity. In 
accelerated motion, &/at and, hence, the pressure are 
also proportional to x, and this is true for motion in 
either direction except that the pressures are changed 
in sign. The pressure distribution in the combined 
flow, therefore, has a constant gradient in the direction 
of x,  and the ellipsoid satisfies the necessary condition 
for minimum drag with a given volume. In this case 
the condition is perhaps better stated as the condition 
for minimum virtual voliime with a given actual vol- 
ume. 

Another example is that of a biconvex airfoil of in- 
finite aspect ratio in steady motion at supersonic speeds. 
If the upper and lower surfaces are parabolic arcs, the 
Ackeret theory gives a straight-line distribution of pres- 
sure from nose to trailing edge for motion in either 
direction. 

The foregoing method may be readily extended to 
other problems of minimum drag involving different 
specifications on the thickness distribution. Perhaps 
the simplest of these is the case in which the thickness 
of the wing is spec5ed a!ong some line such as A-B 
in FiG. 5. Over the remainder of the Wing plan form 
the thickness is to be distributed so as to achieve the 
minimum drag under the spesed  conditions. 

In this example we wish to consider variations in the 
thickness distribution which do not alter the shape of 
the cross section A-B. Any small element of slope 
having the strength ml, as in Fig. 5, must therefore be 
followed by an equal opposite element mz at  some down- 
stream position ahead of the line A-B so that the thick- 
ness strong the line A-B is not changed. The two equa- 
tions aetenninin g the necessary condition on the pres- 
sure distribution are: 

(1) For no change in thickness along A-B: 

(2) For no change in drag: mlPol + Ma = 0 

and these lead to the relation 

m l + m z = O  

P* = Pa 

SECTION 
A-B V 

B I- 
V 

---D 

SECTION C-D 
FIG. 5. Wing showing variation of thickness distribution with 

ked section A-B. 

i 

dPc -=O dX 
C 

SECTION C-D SHOWING 
PRESSURE DISTRIBUTIONS 

Condition for minimum drag with given maximum FIG. 6. 
thickness. 

Hence, the pressure must not vary in the streamwise 
direction at points ahead of the section A-B. If the 
airfoil is further required to close along the trailing 
edge, a similar condition will be imposed on the pres- 
sures in the region behind the line A-B (see Fig. 6). 

It will be noted that the condition for minimum drag 
does not impose a restriction on the spanwise variation 
of the pressure and that this variation will presumably 
be determined by the given shape of the section A-B. 
If the shape of the section A-B is not given exactly 
but is merely required to have a certain frontal area. 
then it is found that the pressure in the combined flow 
field must have the same constant value at  all points 
ahead of this section. The existence of a constant pres- 
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sure means that the drag per unit of frontal area is con- 
stant. 

It is interesting to note that the condition for mini- 
mum drag with a given frontal area requires that the 
drag per unit frontal area be constant over the entire 
wing, while the condition for minimum drag with a 
given volume requires a constant drag per unit volume. 
If the maximum thickness of each streamwise section 
is specified, then the drag per unit thickness must be 
constant over each section. 

MINIMUM DRAG FOR A GIVEN LIFT 

The foregoing principles of calculation can be carried 
over without essential modification to the problem of 
lift distribution. The drag arising from the lift can be 
calculated independently of the thickness; hence, the 
wing can be considered a <‘lifting surface” slightly cam- 
bered or twisted in such a way as to support the de- 
sired distribution of lift. A given distribution of lift 
will induce a certain downwash velocity, and the result- 
ant inclination of the stream lines must agree with the 
slope of the lifting surface at  all points. The drag of 
the lifting surface will be computed by integrating the 
product of the local lift by the local inclination of the 
lifting surface. 

The fact that a given distribution of lift has the same 
drag for either direction of motion can be seen by con- 
sidering the mutual drags of a pair of lifting elements. 
Each element of lift produces a distribution of down- 
wash over the plane. The actual configuration of the 
downwash field does not need to be specified, but its 
value at  all points is assumed to be proportional to the 
lift of the element. Hence the downwash of an element 
Zl at  the position of another element 12 may be expressed 
in the form w21 = llWzl, where Wzl is an influence func- 
tion that depends on the geometric position of element 
2 in relation to element 1. The drag of element 2 
caused by element 1 is, therefore, ZIWz&. 

In reversed motion the roles of the elements are re- 
versed and the drag of element 1 caused by element 2 is 
now law& and WU = WZI. Similarly, the drag of ele- 
ment 2 caused by dement 1 in reversed motion is equal 
to the drag of 11 caused by 12 in forward motion. These 
statements do not exclude the possibility that ea& ele- 
ment lies wholly or paftially outside the zone of in- 
fluence of the other element, and, hence, the rever- 
sal principle holds for unsteady or supersonic mo- 
tions. 

Suppose a plan form and a distribution of lift are 
given, and consider again the field of perturbation veloc- 
ities obtained by superimposing the fields in forward 
motion and in reversed motion. The horizontal pertur- 
bation velocities that give rise to the lift will be ex- 
actly canceled at each point of the surface. However, 
the downwash velocities over the surface will not, in 
general, be canceled, and the drag of the given distri- 
bution of lift for either direction of motion can be com- 

puted by considering this lift to act in the combmed 
downwash field. 

If consideration is restricted to the method of calcu- 
lating drag by combining the Bow fields in forward and 
reversed motion, it is easily seen that the mutual inter- 
ference drags of any two lifting areas are equal. The 
drag of lifting surface A caused by the downwash of 
lifting surface B is exactly equal to the drag of B caused 
by the downwash field of A. This theorem follows 
from the symmetry of the combined flow fiela of any 
element and the equality of interf-m’ drags of two 
elements exactly as was previously demonstrated in 
the case of thickness. 

Consider now a lifting surface supporting a given lift 
L, and suppose that a distribution of lift over the plan 
form designed to achieve the minimum drag under the 
stated conditions is given. Any small variation in the 
shape of the lift distribution which meets the condition 
of constant total lift can be divided into pairs of ele- 
ments of equal, opposite lifts. If the drag added by 
every such pair of elements is zero, then the drag 
added by any small continuous distributiyn of the re- 
quired type will also be zero. 

Considering two such elements of a small additional 
distribution of lift, it is seen that the drag added to the 
original distribution will again consist of three parts: 
(1) the drag of the elements alone; (2) the drag added 
to the original distribution by the downwash fields of 
the elements; and (3) the drag of the elements in the 
downwash field of the original distribution. The drag 
of the elements alone will be of second order but will 
always \e positive so that the second-order variation 
in drag is positive. Items (2) and (3) wil l  be equal by 
virtue of the equality of mutual interference drags. 
For the first-order variation in drag, therefore, we need 
only consider the elements of lift acting in the down- 
wash of the original distribution. Since the elements of 
l i t  are equal and opposite, +eir drags will be equal and 
opposite, and the added drag will be zero if the down- 
wash is the same at each element. For all such pairs 
to contribute zero drag, the downwash must be constant 
over the whole wing. Hence, for minimum drag the 
lift must be distributed over the wing in such a way 
that the downwash in the combined flow field is don- 
stant at all points of the plan form. The condition is 
illustrated in Fig. 7. 

EXAMPLES OF TBE: MINIMUM DRAG OF LIFTING 
SURFACES 

The stated condition for minimum drag with a given 
total lift obviously includes the well-known condition 
for minimum induced drag in steady Gght at subsonic 
speeds4 In that case the combined flow field is nothing 
more or less than the two-dimensional field of motion 
induced by the vortex wake that is normally trailing 
but which now extends to infinity both ahead of and 
behind the wing. The elliptic span loading, which 
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FIG. 7. Condition for minimnm drag with a given total lift. 

( A I  OBLIQUE LIFTING LINE 

(B) NARROW LIFTING SURFACE 

yields the minimum drag in this case, produces a uni- 
form downwash not only over the plan form of the 
wing but over the whole infinite vortex ribbon as well. 

In addition to providing the conditions for minimum 
drag, the combined flow field also provides a simplifica- 
tion of the actual computation of the drag in spec& 
cases. Thus, in the case of steady motion at  subsonic 
speeds, the superposition of the forward and reversed 
disturbance fields, which are three-dimensional, results 
in a two-dimensional field of motion. In Supersonic 
motion, the combined field retains its threeaun * &Onal 
character, but the integration for the downwash is 

nevertheless considerably simplified when the forward 
and reversed fields are considered simultaneouslyly. 

In the supersonic .&E, the computation of downwash 
over the surface involves the superposition of lifting 

sented by the potential of an elementary honeshoe 
vortex that has the form+ 

Whose individd distubance fields r e p -  

for an element of lift rpVdy located at  the origiu. The 
downwash at the position x, B, a near the plane z = 0 
arising from an element of lift at  the position xb 91 
is obtained by differentiating 'p with respect to z near 
8 = 0 and introducing the displaced origin 

Normally, the computation of: downwash over the 
lifting surface requires that the range of integration be 
limited to a portion of the plan form so as to exclude 
the forward branches of the Mach cones, where there is 
no real disturbauce. In the combined flow field, how- 
ever, both branches of the cones are to be included, and 
the integration for the downwash at  each point can be 
extended over the entire plan form provided the sign 
of the radical in the equation is chosen so that the down- 
wash of the lifting dement has the same sign in both 
branches of the cone. 

One example that lends itself to calculation is that of 
an extremely long narrow wing or "lifting line" at an 
angle of yaw such that the line lies inside the Mach cone 
originating from its forward tip (see Fig. 8). Here the 
integration for the downwash in the combined flow 
field extends from'one end of the line to the other, as in 
the subsonic case, and it is found that an eIliptic dis- 
tribution of lift results in a uniform dowawash, yielding 
the value 

for the minimum drag. Here, the quantity m is the 
ratio of the dope of the lifting line to the slope of a 
Mach line and is less than 1.0 when the croswise mm- 
ponent of velocity of the lifting line is subsonic. As 
the angle of yaw is decreased so that the lifting line ap- 
proaches the Mach cone, the drag of this distribution of 
lift approaches infinitv. a fact that must be taken to 
mean that the concentration of a finite amount of lift 
witbin an extremely narrow chordwise dimension is 
not perrnissble when the c r ~ ~ ~ w i s e  velocity cornpnmt 
is near sonic velocity or is supemonic. 

For a lifting surface of narrow proportions lyhg near 
the center of the Mach cone, it is found that the -pres- 
sion for the drag can be separated into two eomponeuts,. 
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one of which depends on the lengihwise distribution of 
lift while the other depends on the spanwise loading. 
The minimum value in this case is found to be 

where b is the overall span of the wing and c is the over- 
all length. The minimum value of the drag is achieved 
when both the spanwise and the lengthwise loadings are 
elliptical. 

DETERMINATION OF O p T ~ ~  PLAN FORM 

In practi*, the determination of the best distribution 
of lift or thickness for a given plan form may not be so 
important as the problem of determining the best shape 
for the plan form. Unfortunately, it is difficult to 
formulate the latter problem in such a way as to lead to 
a single definite solution that will be generally useful. 
The foregoing analysis does, however, provide one im- 
portant principle concerning wings of minimum drag. 
Such wings will be characterized by the fact that the 
drag is stationary not only with respect to variations 
in the lift or thickness distribution but also with re- 
spect to variations in the shape of the outline. Sup- 
pose the plan form of such a wing, together with the 
distribution of lift or thickness satisfying the desired 
condition for minimum drag, is given. If the drag is to 
remain unchanged when the outline of the wing is dis- 
placed through a small distance, then the distribution 
of pressure or downwash corresponding to a minimum 
drag not only must appear over the plan form itself 
but must also extend for a small distance, without iirst- 
order variation, away from the edge of the plan form. 

That the foregoing condition leads to .a stationary 
value of the drag can be seen by considering the effect 
of a small displacement of the outline of a lifting wing, 
as illustrated in Fig. 9. Supposing the total lifts of the 
original and the distorted wings to be the same, lift 
must be removed from the original area and placed on 
the added area. The first-order variation in drag can 
again be computed by considering only the effect of the 
original downwash field on the added distribution of 
lift. If this downwash, which was required to have a 
constant value at all points of the original plan form, 
remains constant in the regions of the added area, then 
a redistribution of lift from the original to the added 
area will not affect the total drag. 

Curves of variation of the drag with plan-form coef- 
ficients seldom show local maxima or minima but show, 
more often, a monotonic character. As an example 

O F  T H I N  W I N G S  

f A  

Fro. 9. Condition for drag to be a minimum with respect to 
variations in plan form. 

we may consider the induced drag of wings at  subsonic 
speed. Here, the combined flow field, as previously 
noted, is simply the two-dimensional motion induced 
by the vortex wake, and, in the case of minimum drag, 
the downwash is constant over the whole wake ex- 
tending ahead of and behind the wing. Smce the condi- 
tion for minimum drag persists along the whole wake, 
the drag is unaltered by any displacement of the Wing 
boundary in the chordwise direction parallel to the 
wake. If one proceeds beyond the tip of the wing, 
however, the downwash changes sign abruptly, and 
Iarge values of upwash are encountered. The drag is 
thus not a minimum with respect to changes in the span 
of the wing but can be continually diminished by re- 
moving area from the center portions of the wing and 
placing it at the tips. At supersonic spekds, the mini- 
mum drag for a given area and lift occurs when the 
wing surface is disposed along narrow lines lying near 
the center of the Mach cone and having the greatest 
possible length and span. 
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h S T R A C r  

Consider a thin wing in frictionless flow and suppose the plan 
form of the wing and also the total lift to be given. The drag of 
the Wing will then depend on the way in which the lift is dis- 
tributed over its surface. In a previous paper, it was shown that 
the minimnm drag occurs when the superposition of the induced 
disturbance fields in forward and reversed motion results in a 
constant value of the induced downwash at all points of the wing 
snrface. Similar problems involving the ideal distribution of 
thickness over the snrface were found to lead to similar condi- 
tions governlng the distribution of pressure in the superimposed 
or “combined” flow field. 

The present paper describes a method for determining mathe- 
matically the combined disturbance field, and in certain cases the 
minimum drag, of wings at supersonic speeds. The simplest 
analytic example is provided by the wing of elliptic plan form, 
which achieves its minimum drag when the lift is distributed 
uniformly over the surface. With a symmetrical distribution of 
thickness. the requirement of minimum drag for a given total vol- 
ume is found to lead to profiles of constant curvature. 

INTRODUCTION 

N THE THEORY OF WINGS at  subsonic speeds, it is I shown that the production of lift by a wing of k i t e  
span gives rise to a drag force that depends on the dis- 
tribution of lift over the span. This component of the 
drag, which arises in frictionless motion, may be re- 
lated to the energy required for the continual extension 
of the two-dimensional field of motion induced by the 
wake of trailing vortices. Alternatively, by examining 
conditions in the vicinity of the wing sections, the drag 
may be related to the downward inclination of the air 
stream induced at  the position of the wing by the ac- 
tion of the trailing vortices. Following the latter con- 
cept, the drag arising from the lift at subsonic speeds 
has been termed the “induced drag.” It was Shown by 
Munkl that this drag is a minimum for a given l i t  and 
a given span when the induced downwash is constant 
at all points of an equivalent lifting line, or vortex, hav- 
ing the same spanwise distribution of l i f t  as the wing. 
It was further shown by Munk that the induced drag 
is actually independent of the chordwise distribution of 
lift. 

At supersonic speeds an additional component of 
drag arises because of the formation of waves by the 
airfoil, and in this case the drag depends on both the 
spanwise and chordwise distributions of lift or, in other 
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words, on the actual distribution of lifting pressure 
over the surface of the wing. In order to extend Munk’s 
problem to wings at supersonic speeds i t  was necessary 
therefore to consider cot merely the span as given but 
the actual shape of the wing in plan view. The prob- 
lem could then be stated in the following form: For a 
given plan form s and a given total lift L, what dis- 
tribution of the lift L over the surface s results in the 
minimum drag? 

Furthermore, at  supersonic speeds a certain drag 
arises from the thickness of the airfoil independently 
of the lift. The two components of d h g  may, how- 
ever, be considered separately and later added in any 
desired combination. To isolate the effect of lift, as dis- 
tinct from the effect of thickness, it  is sufficient to re- 
place the wing by its mean surface, which is supposed 
to be warped or cambered in whatever way may be re- 
quired to cause the specified distribution of lift. On 
the other hand, the drag arising from the thickness may 
be determined by considering the thickness to be sym- 
metrically disposed above and below a flat mean scr- 
face having no lift. In this way additional problems 
involving the ideal distribution of thickness over the 
plan form become apparent. 

In reference 2 it was shown that all distributions of 
lift having the minimum drag for a given plan form and 
a given total lift are chafacterized by a single condi- 
tion. If we suppose the wing with its given distribution 
of lift to be held fixed in a stream of velocity V, then 
there will arise in the vicinity of the wing and its wake 
additional small disturbance velocities u, v, and w. 
Now let the direction of the stream be reversed, but sup- 
pose that the curvature and inclination of the surface 
is so modified as to maintain the original distribution of 
lift. A new field of disturbance velocities u, v, and w 
will appear. The wake of trailing vortices will have 
the same form as before, but the wake will now extend 
from the wing in the opposite direction. We may now 
superimpose the two fields of disturbance velocities 
and obtain by this means a “combined ‘disturbance 
field,” associated with the given distribution of lift. 
For the drag to be a minimum, the downwash in the 
combined disturbance field must be constant at  all 
points of the wing surface s. 

If the velocity of flight is subsonic, the superposition 
of the two fields can be shown to  result in a two-dimen- 
sional field of motion identical in form to the velocity 
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FIG. 1. Lifting surfaces with superimposed disturbance fields. 

field of the vortex wake. For distributions of lift 
having the minimum drag, the downwash induced by 
the vortex wake in its own plane is a constant, and it 
will be evident that in this case the downwash is con- 
stant not only within the plan form of the wing but at  
all points of the vortex ribbon ahead of and behind the 
wing (Fig. 1A). 

At supersonic speeds the combination of the forward 
and reversed disturbance fields again produces an in- 
h i t e ,  parallel vortex ribbon, but the field is no longer 
two-dimensional in character and is bounded by two 
overlapping zones of influence or wave fronts, as illus- 
trated in Fig. 1B. 

By treating the problem of thickness in a similar 
manner, it was also shown in reference 2 that the mini- 
mum drag for a given frontal area of the wing occurs 
when the pressure in the combined flow field is constant 
at all points of the wing surface. Similarly, consider- 
ation of the minimum drag consistent with a given total 
volume led to the requirement of a constant streamwise 
gradient of the pressure in the combined flow. 

The present paper describes a method for determin- 
ing the combined disturbance fields associated with 
given distributions of lift or thickness. The basic idea 
of the method is to represent the elementary solutions 
of the flow equation, such as the solutions for the source 
and for the horseshoe vortex, by contour integrals, 
following forms introduced by Whittakera and Berg- 
man4 rather than the usual forms. The distribution 
of sources or dipoles over the wing surface is then rep- 
resented by a triple integral, in which the surface in- 
tegral, after a change in the order of integration, repre- 
resents a distribution of two-dimensional disturbances 
over the surface. The three-dimensional flow is thus 
obtained finally by the superposition of elementary 

two-dimensional flows. As will be shown, this method 
enables the calculation of three-dimensional wing flows 
that satisfy the conditions for minimum drag and pro- 
vides, as examples, formulas for the minimum drag 
of Wings of elliptic plan form at supersonic speed. 

P R E L ~ ~ Y  CONSIDERATIONS 

As is well known in the thin-airfoil theory, the lift 
distribution over a thin cambered wing or lifting sur- 
Face appears as the resultant of two equal, opposite 
pressures over the upper and lower surfaces With 
the pressure disturbance given by 

Ap = -@V (1) 

where u is the longitudinal perturbation veloclty, we 
obtain, for the local l i t ,  

Z(x,y) = 2pVu(u(x,y;z); 2 + +o (2) 

The velocity u is discontinuous across the lifting sur- 
face and is to be evaluated on the upper side (2 + +0) . 
In the lifting case, the downwash v,locity w(x,y) is 
continuous over the whole plane of the wing. The 
drag is given by 

D = if l(x,y) w F d x d y  (3) 

In certain cases, the lift density I and the stream in- 
clination w / V  may approach inh i te  values around 
the edges of the surface. The integral (3) must then be 
evaluated by a suitable limiting process, as described 
in reference 5. 

It has been shown by von K h 6 n 6  and Hayes' 
that the drag of a given distribution of l i f t  is unchanged 
by a reversal of the direction of motion. Hence, the 
drag of a specified distribution of lift may be calculated 
from the corresponding distribution of downwash in 
either direction of motion or from the combined down- 
wash @, as indicated by the following formulas: 

JJ- l@ ax dy (4) 
2 v  

For the minimum drag the combined downwash d will 
be constant over s, and we have 

D = ( 1 p w ( @ / n  (5) 

where L is the total lift. 
Turning to the case of a prescribed distribution of 

thickness with no lift, it is noted that the velocity u and 
the pressure as given by Eq. (1) are continuous across 
the upper and lower sides of the mean plane, but the 
velocity w has a discontinuity related to the equal and 
opposite slopes of the upper and lower Wing surfaces. 
If t(x,y) is the Trescribed thickness of the Wing at the 
point (x,y), we ha.-e 
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w(x,y) = -(1/2) Vt/ (x,y) ;  a - +o (6) 

where t' denotes dt/dx. It can be readily verified that 
the velocity 6, in the combined flow field, vanishes at all 
points of the wing plan form. A value of ZZ remains, 
however, and determines the drag through the relation 

As shown in reference 2 the requirement of minimum 
drag with various specifications on the maximum thick- 
ness or the volume of the wing leads to conditions of the 
form 

ti = constant (8) 

&/ax = constant (9) 

or 

over all or part of the wing plan form. 

GENERAL FORM OF THE SOLUTION 

The field of disturbance velocities surrounding the 
airfoil will be characterized by a velocity potential satis- 
fying the well-known differential equation 

(M2 - 1)Pm - Puv - P z e  = 0 (10) 
The same differential equation holds for the disturbance 
field in either direction of motion, as well as for the com- 
bination of the two fields. Since the fields for different 
Mach Numbers differ only by an affine transformation, 
it will be convenient to perform the calculations for 

As may be shown by direct differentiation, the re- 
M = d .  

sulting equation possesses the primary solutions* 

9 = F(cux - BY - 7-4 (11) 
where F is an arbitrary, differentiable function and 
a, 8, and y are parameters d e t a i n e d  so that 

(12) ff2 - - yz = 0 

Through Eq. (12), or, B, and y may be made to de- 
pend on a single complex parameter X. Writing 
X = ea and setting 

f f = l  

7 = sin e = ( i /2)  [(l/x) - X] 
Eq. (12) is satisiied for values of X extending over the 
entire complex plane. For real values of 0 (14 = l), 
Eq. (11) becomes 

B = COS e = (1/2) [(i/x) + XI } (13) 

p = F(x - y COS e - a sin e) (14) 
and the solution is seen to represent a plane wave of 
arbitrary form F. The wave front lies at an angle of 
45" to the x axis (M = G) but is inclined at an angle 
B in the y,z plane. On the other hand, for large values 
of X we have 

p = F[-(h/2)0, - i~)] (15) 
and the solution here represents a cylindrical or two- 
dimensional flow with its axis parallel to k. This two- 
dimensional field is evidently a solutidn of 

- 9 u u  - Pzz = 0 (16) 
with pzz separately equal to zero. 

A general solution of Eq. (10) may be constructed by 
superimposing a number of solutions of the form (11) 
for various values of the parameter X. It is clear that 
the form of the function F need not be the same for all 
values of X, so that F may depend on the two variables 
ax - By - yz and A. Thus we obtain 

p = F ( m  - By - yz,X) dX (17) 

where C is some contour in the X plane. Eq. (17) is 
closely analogous to Whittaker's solution of the La- 
places equationa and belongs to the more general class 
of integral operators studied by Bergman.' 

EXPRESSIONS FOR ELEMENTARY DISTURBANCE FIELDS 
As an example of Eq. (17), we may construct the well-known solution for the supersonic point source by means 

of the superposition of plane waves. This solution can be represented in terms of rea3 values of 0 as follows: 

/O, unless x2 > y2 f ea 

(See references 9 and lo.) Here, R = 1 / x 2  - y a  - z2 and is assumed to have it positive real part. The equation 
R = 0 represents the Mach cone, which extends both ahead of and behind the point source. The integral (18) 
shows a "zone of silence" in the space between the fore cone and the rear cone. 
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For the purpose of constructing the solution for a 
complete wing, it is found desirable to represent the 
elementary solutions in terms of the complex parameter 
X = eie and to select a contour C which avoids points on 
the unit circle. It will appear later that the contour 
C can be selected in a way that simplifies the integra- 
tion of the elem&ntary solutions over the wing surface. 

Course of 4 and e during variation of point X YZ. 

In terms of X the potential of the source becomes 

The integral may now’be evaluated by the method of 
residues. After expressing or, 0, and y in terms of X 
with the aid of Eqs. (13), we have 

cwx - By - yz = 

The quantity in the brackets is a quadratic in y and 
may be factored so that 

(1/2X) [2xx - (1 + X2)y - i(1 - X 9 Z ]  (20) 

where 
X - R  y + i z  

x + R  y + i z  e 2 = - = -  
Y - ~ Z  X - R  

with the real part of R positive. The integral (19) may 
now be written 

To evaluate the integral (23) by the method of resi- 
dues, it is necessary to investigate the positions of the 
poles 4 and €2 in the A plane as functions of the coordi- 
nates x,y,z. Fig. 2 illustrates this correspondence. 
The three-dimensional x,y,z manifold is reprented on 
the two-dimensional complex plane by the identifica- 
tion of points with rays. This representation was used 
by Busemann in his conical-flow theory.“ Each ray 
drawn from the origin in (x,y,z) space appears as two 
points €1 and €2 in the X plane. For rays drawn toward 
the positive direction of x and lying inside the Mach 
cone (y2  + z2 < x2),  the point €1 will lie inside the unit 
circle, 1x1 < 1, while the point e will lie outside this 
circle at the reciprocal radius-that is, 

€2 = l/a 

Investigation of Eq. (22) shows that for each point 
(x,y,z) in the space outside the Mach cone (y2  + z2 > 
13, both €1 and €2 lie exactly on the &it circle. Thus, 
el and €2 project the space (x,y,z) inside the Mach 
cone on a surface, while the whole portion of the space 
(x,y,z) in the “zone of silence” outside the Mach cone 
is represented on a single line--Le., the circle 1x1 = 1. 

A SURFACE S2OW/tVG CUT 

A A 

tour c. FIG. 3. Representation of X surface showing two parts of con- 
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This suggests cutting the X surface into two pieces 
around the unit circle (see Fig. 3). The gap between 
the two portions of the surface can then represent the 
gap between the forward cone of disturbance and the 
rearward cone of disturbance in the (x,y,z) space. If 
the outer portion of the X surface is now mapped onto a 
second area bounded by a unit circle by meafls of points 
at inverse radii, the two circular areas can be related to 
the circular cross sections of the Mach cone at x = =kl.  
~ s c h  point on the intexior of the unit circle 1x1 < 1 
then corresponds to a point (y + ie)/x, defined by a 
ray drawn through the "Mach circle'' at  x = +I. 
The negative ray that pierces the Mach circle at  x = - 1 
then corresponds to a point Q on the second surface, 
1/lh( < 1. The center of each surface corresponds to 
the center of the Mach cone. When both the fore cone 
and rear cone m e  considered, it is found that each piece 
of the A surface is covered twice, once by q and again by 

Now consider the evaluation of Eq. (19) when the 
contour is drawn just inside the unit circle, enclosing 
the surface 1x1 < 1 in the positive direction. For posi- 
tive values of x such that x2 > y2 + 9, the contour will 
enclose Q so that the value of the integral is 

4. 

1 
(25) =- 

-1 I 
u b-k)  (Q-  e) 2uR 
- 

For points outside the Mach cone, both Q and e lie in 
the gap between the two portions of the X surface and 

are outside the contour, so that the value of the integral 
is zero. Proceeding toward negative values of x, as 
soon as the point (x,y,z) reageS the upstream Mach 
cone, the pole Q moves onto the second portion of the 
X surface, while the pole Q now appears inside the eon- 
tour 1x1 < 1. The value of the i n t e d  is now 

u (y - k) (h - €l) 
(26) 

-1 
ZTR 

=- 1 1 -- 

Exactly the same determination of p, results from a 
contour in the negative diredion endosing the re- 
mainder of the surface, l/lrl < 1. As later d&- 
tions wil l  show, changes in the order of integration and 
Werentiation are simpliiied if the contour Cis extended 
around both portions of the X surface and if the points 
X = 0 and 1fi = 0 (Le., poles of fl and 7)  are excluded 
by small circles. The two parts of the contour C afe 
shown in Fig. 3. 
To describe the flow in the region around a lifting 

surface we need an expression for the potential field of a 
"horseshoe vortex" representing the disturbance c a d  
by an element of lift at  the o.igin. This eEpresson 
may be obtained by the f d a r  process ofhtegrating 
the expression for the source in the x direction and then 
differentiating in the e direction. These operations 
performed on the integrand of Eq. (19) yield the factor 

--rdx/iarx = a@ (n) 
so that the expression for the horseshoe vortex becomes 

10, unless 2 2  > y8 + e= 

(2i;z + e*) for x < 0 

The field is not that of a single horseshoe but of a closely spaced vortex pair extendhg to Wty in botb directions 
along the x axis. Outside the cone R = 0, the disturbance is zero. 

COXBIIWD D~S~URBANCB ~ L D  OF A LJXWING SURFACE 

The combined disturbance field for an entire lifting surface s is obtained by superimpshg elementary solutions 
of the form (28). This superposition amounts to a double integration of elemen- horseshoe vortices over the 
surface, the strength of the vortices at each point being determined by the local lift Z(x1,yz). After introducing a p  
propriate constants and changing the order of integration sn that the contour integral is performed last, the ex- 
pression for the combined potential $ of the lifting surface becomes 

It will be shown later that the double integral over the surface s in Eq. (29) yields a two-dhensional complex 
potential function, the form of t h i s  function depending on the parameter 8. The iid integration over @ (or) X 
then yields the three-dimensional disturbance. By analogy to well-known fomiulas in two-dimensional potential 
theory, the integration over the surface s may be defined in such a way as to permit differentiation under the in- 
tegrd. Performing this differentiation for the velocity components f and a, we obtain from Eq- (29) 
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The component a/ V must, of course, vanish at every point of the wing surface. 

Relation to Two-Dimensional Flow Theory 

It may now be shown that Eq. (31) represents the 
downwash in the three-dimensio-nal flow by the super- 
position of the downwash of infinitely many two- 
dimensional flows. Each two-dimensional flow is 
associated with an oblique strip drawn in the plane of 
the wing and having its edges tangent to the outline of 
the wing plan form. It will appear that the downwash 
contributed by each strip is given by the familiar 
"lifting line" formula, the loading on each equivalent 
lifting line being obtained by an integration of the sur- 
face loading on the wing in an oblique direction (see Fig. 

For those parts of the contour consisting of the small 
circles around X = 0 and l / X  = 0, the equivalent load- 
ing is simply the spanwise loading. It will be evident 
that these parts of the contour yield the vortex drag 
of the lifting surface. Considering first the loop around 
X = 0, wehave 

4). 

-=' 1/2x, y -='i/2h (32) 

since a ( x  - XI) is negligible by comparison. 
now becomes 

Eq. (31) 

WfNG PLAfffORhf, s 

/ 
FIG. 4. Integration of surface loading along oblique lines X 

constant. 

The integration along x1 may now be performed di- 
rectly and results in the spanwise loading, which may be 
denoted by 

(35) 

Now the quantity Z(x1,yl) represents the lifting pressure, 
and we may replace it by a quantity that takes equal 
and opposite values on the upper and lower sides of the 
Wing surface. Similarly, the integrated quantity 
L'(y1) may be supposed to take equal and opposite 
values on the upper and lower sides of the strip, which, 
for X = 0, coincides with vortex wake of the wing. In 
fact, if we write 

L'(Yi)/pv AF(yi) (36) 

it is clear that AF represents the discontinuity in the 
real part of the two-dimensional complex potential 
function associated with the trailing vortex wake of 
the wing. 

Instead of integrating A F  across the strip, we may 
integrate, using the values of F = *(1/2)AF, in the 
positive direction on the upper side and continue in the 
negative direction on the lower side, forming a closed 
contour around the strip. Assuming that the function 
F is smooth and continuous at all points except the 
points of the strip and does not have a pole at inlinity, 
the contour around the strip may be deformed so as to 
encircle the pointy + iz. Then we have, by Cauchy's 
formula, 

4 FO1l) = 2riF'(y + iz) (37) 
[rl - (Y + iz>12 

The quantity F'(y + iz) is obviously the complex 
velocity function associated with the vortex wake. 
Because of the factor i, the real part represents the 
downwash and the imaginary part represents the lateral 
velocity v. However, by considering the small  loop 
around the point l / X  = 0 on the second portion of the 
X surface, it is found that the quantity 2RiF'(y - iz) 
arises instead of Eq. (37). Hence, for the integration 
in the X plane around both loops, the lateral velocity v, 
which is an odd function ofzand discontinuous across the 
strip. vanishes, leaving a real value of the downwash 
w which is continuous throughout the field. 
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Returning to Eq. (34), we have, for the integration 
with respect to the parameter A, 

f i dX/h = 2u (38) 

The same value results for each of the small loops 
X -t 0 and l/x -t 0. The downwash contributed by 
these portions of the contour then becomes 

R.P. L’(yl) dyl (39) 
ii, -1 - = -  
v 2 u p P  bl - (Y + i z ) ]2  

which is equivalent to Prandtl‘s formula for the down- 
wash of the trailing vortex wake. 

It will now be shown that those portions of the con- 
tour C near 1x1 = 1 yield the wave drag of the lifting sur- 
face. To illustrate this relation, we replace olx - By - 
.ye by the single variable 

x = olx - By - yz (40) 
and for the variable point on the wing we introduce 

x1= m1- PYl (41) 

(42) 

together with the orthogonal variable 

Yl = (ax1 + aYl)/((Y2 + 83 
The factor a2 + P2 in the latter expression preserves 
the elementary area. Eq. (31) may now be written 

and the integration with respect to Y1 may be performed 
directly by writing 

For 1x1 = 1 the lines X I =  constant correspond to the 
intercepts of a system of plane waves at 45” to the x 
axis ( M  = d) and at the angle 0 = cos-lp in the yz 
plane [see Eqs. (13)]. As the angle 0 varies from 0 to 
2u, the intersections of the plane waves with the lifting 
surface change their inclination between *45”. For 
these various values of 0, Eq. (44) will correspond to an 
integration of the surface loading of the wing along vari- 
ous oblique directions, as illustrated in Fig. 4. As may 
be seen by introducing Eq. (44) in the surface integral 
in Eq. (43), the downwash contributed by each one of 
these integrated loadings is given by the familiar “lift- 
ing line” formula 

2ni F’(X,P) = F(xlla) dX1 (45) 
( X  - X P  

In this form the surface integral in Eq. (31) can be 
recognized as the expression for the downwash arising 
from a given distribution of lift in two-dimensional 
flow. In particular, it is known that, if 

L’(Xi,P) = pVAF(Xi,P) 

is an ellipse, the downwash, which corresponds to the 
imaginary part of F’(X,o), will be a constant. Hence, 
if the lift is distributed over the wing in such a way that 

Y 

Fro. 5. Elliptic wing. 

the integrated loading in every oblique‘ direction be- 
tween *45” is elliptical, then the downwash contrib- 
uted by the outer parts of the contour C (i.e., 1x1 -t 1) 
will be constant over the entire plan form. If, in addi- 
tion, the s9anwise loading is elliptical, then the final in- 
tegrated value of the downwash will be a constant. 

MINIMUM DRAG OF ELLIPTIC WINGS AT Sup~momc 
SPEED 

The foregoing discussion indicated that the downwash 
will be constant over the plan form if the integrated 
loading in every oblique direction is elliptical. This 
condition is, of course, merely a sufficient, and not a 
necessary, one. The condition is met in the case of the 
elliptic plan form having a uniform surface distribution 
of lift. Hence it is concluded that such a uniform sur- 
face loading yields the minimum drag in the case of the 
elliptic wing. 

The downwash of the elliptic wing may be calculated 
directly from Eq. (31). To evaluate the surface in- 
tegral &st, we write 

- - l(xi,Yi) dxi dyi 
[.(x - Xi) - Pb - Y d  - YZI2 

2uipVF’(X,@ (46) 

and integrating over xi, there After introducing Z = 
is obtained 

(47) 
The subscript s has been introduced to denote the limits 
of xl,yl corresponding to the edges of the plan form. 
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For the ellipse with semiaxes a and b, we have, in para- 
metric form (see Fig. 3, 

y1= bcosq5; x, = -a sin q5 (48) 

and the integral (47) becomes 

(49) 

This fern; is obviously similar to Eq. (18), the complex 
nnmbers X ,  68, and au taking the place of the real 
numbers x, y, and e in that quation- 

The evaluation of integrals of this form has been 
given by Jarobi, and a complete discussion will be 
found in reference 10 (see also reference 9). There are 
two determinations depen-hg on the location of the 
poles of the integrand, e1 and e, where 

For real values of @ = cos 6, the equation 

X’ - (bb)2 - (aa)2 = 0 (51) 

determines those values of X which correspond to planes 
tangent to the edge of the elliptic disc. For points 
(qy )  inside the elliptic disc. 

(x”uq + oi”/a”) < 1 (52) 
and in this case we have the g e n d  formula 

- cos&& - 2s 

X + b @ c o s d + ~ s i n d  

- - isin*& 
X + b@ cos + + aa sin q5 

IY 

FIG. 6. Oblique ellipse. 

Eq. (46) corresponds to n = 1,* and the formulas give 

(54) 
l o b 1  P(X,@)  = - ___. 

pVa b@ - iaa 

For %the assumed constant surface loading F’(X,@) is 
thus independent of X ,  and of x and y, over the surf& 
of the ellipse. Hence the downwash will be constant 
at these points. The value of the downwash is ob- 
tained by introducing the value (54) for (46) in Eq. 
(31) after making use of the rdations 

a = l ;  r = G  (55) 

Thus, 

(56) 

Since the value @ = i(u/b) corresponds to two distinct 
poles, one on each portion of the A surface, the value 
of the integral is twice the residue at this point. 

The drag is now given by 

where L is the total lift equal to hS for a wing of area s. 
The formula for the minimum drag of the elliptic wing 
then becomes 

.- 
(58) 

s his relation applies at  M = d. The variation of 
drag with Mach Number may be incorporated in Eq. 
(55) by applying the Prand~-Glauert rule. The re- 
sulting form& in terms of the c&cients C, and CD is 

where A’ = -(A) and A is the aspect ratio. 
When the aspect ratio is large, Eq . (59) approaches 

CD = ( m / 4 ) C A z  (m 
which is the value given by the Ackeret theory for a 
%t wing in two-dimensional flow. On the other hand, 
when A’ is small, the wave drag becomes negligible in 
comparison to the vortex drag, which is given by the 
well-known formula 

C, = CL2/uA (61) 

Elliptic Wing at an ietgle of Yaw 

Eq. (56) indicates that the drag of an elliptic wing of 
finite aspect ratio is greater than that given by the 
Ackeret theory (for e t e  aspect ratio). S d e r  
values of the drag can be obtained, however, by placing 
the wing at  an angle of yaw. 

* It will be evident that the formulas for n > 1 provide a- 
tensions to cases of variable loading over the elliptic Wing. 
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The treatment of the yawed Wing follows the pre- 
ceding analysis with only minor modifications. Again 
the minimum drag occurs when the lift is distributed 
uniformly over the ellipse. With the symbols defined 
as in Fig. 6, the equation of the yawed ellipse becomes 

x8 = m'yl rt ( a ' / b ' ) m  (62) 
The poles of the integrand in the equation correspond- 
ing to Eq. (53) now appear, where 

j3 = m' + i(a'/b') (63) 
and there are two distinct poles, one on each portion of 
the X &ace. The value of the integral (31) reduces to 

_ = -  @ R.P. d w  (64) v pv2s 

and we obtain 

Chs,,. = - c5z R.P. 4 1 - ( m' + i--, :)' (65) 
4 

for the minimum drag of the yawed elliptic Wing at 

The variation of drag co&uent with angle of yaw 
#is shown in Fig. 7 for ellipses of various proportions. 

The limit a'/b' + 0 corresponds to a t e  aspect 
ratio, and in this case the expression for the drag co- 
&Gent reduces to 

M = 4 5 .  
D 30 60 90 

FIG. 7. Minimum drag of elliptic wings at variys angIes of yaw. 

The change of dl - d2 from a real number to an 
imaginary number as m' passes through 1 shows the 
disappearance of the wave drag when the wing 
of infinite aspect ratio is yawed behind the Mach 
cone. 

Minimum Drag Due to Thickness 

To represent the &ect of a symmetrical distribution of thickness, we superimpose elementary solutions of the 
form (19), corresponding to sources, over the plan form. The expressions for the horizontal and vertical veloci- 
ties in the combined disturbance field then become 

where t'(xl,yl) = dt/bxl and (1/2)t denotes one-half the thickness of the airfoil. 

In the case of a symmetrical distribution of thick- 
ness, the combined downwash @ vanishes over the wing 
surface, while a value of 2 remains. The combined 
pressure distribution is &en by the relation 

G =  - p w  (69) 

The evaluation of the integral (64) is again especially 
simple in the case of the elliptic plan form. If t'(q,yl) 
is assumed constant-wrresponding to a constant 
source density over the surface-evaluation of Eq. 
(64) yields a constant value of C. The drag therefore 
has the minimum vaIue for a given frontal area. Since 

the sections are simple flat-sidpd wedges, the airfoil 
does not close at the trailing edge, and the figure is a 
semi-iniinite body rather than a wing. Since the cal- 
culations are similar to those given for the lifting wing, 
they need not be repeated. The result is 

Ch<%. = tt2 [l/dl f ( ~ ~ / b ' ) ]  (70) 
If the source intensity is assumed to vary linearly with 

q so that t"(xl,yJ is a constant, it is found that biZ/dx 
is constant over the &ea of the wing. In this case the 
distribution of thickness yields the minimum drag con- 
sistent with a give2 volume-i.e., 
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MIS RNIO bh 
FIG. 8. Minimum drag of elliptic wings having (1) a given 

volume and (2) a given base area. 

In this case the sections have a constant curvature in 
the stream direction. Eqs. (70) and (71) are plotted in 
Fig. 8. 
In each case the area of the cross sections has the 

same distribution along x as that of the corresponding 

optimum body of revolution. It is interesting to note 
that each of these figures yields the minimum drag for 
all distributions of thickness within the space defined 
by the intersection of its forward and reversed char- 
acteristic envelopes. 
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POSSIBILITIES OF EFFICIENT HIGH-SPEED 
TRANSPORT AIRPLANES 

BY 
Robert 1. Jones 

Notionrti Advisory Conuninee for Arronovtics 

We are accustomed to thinking of the airplane in terms of speed. 
Less familiar is the fact that the airplane actually achieves its speed 
with relatively good fuel economy. Recently I flew, together with eighty 
other passengers, in a scheduled airliner from Kansas City to Los 
Angeles. On this flight we averaged about 8/10 of a mile per gallon,, 
or 65 miles per gallon for each passenger. Thus we achieved about 
the same mileage as an ordinary automobile while traveling at six 
times the speed. 

It is easily seen that the efficiency of the subsonic airplane depends 
on the favorable aerodynamic properties of the wing in this speed 
range. The possibility of such good lifting efficiency was not obvious 
to earlier students of hydrodynamic theory-because of an uncertainty 
in the choice among possible solutions of the flow equations. 

Early predictions of airplane performance were based on the choice 
of the Helmholtz flow. In this flow what is now known as the Kutta 
condition was applied at both the leading edge and the trailing edge, 
and the wing was followed by a wake of dead air attached to its upper 
surface. One of the first text books on aeronautics I studied was en- 
titled ‘Aeroplane Construction and Operation,” by John B. Rathbun 
(Ref. 1). It was  written in 1918 when the wing theory as we now under- 
stand it was relatively unknown in this country. On page 93, I find the 
following statement: “As already explained, the behavior of a body in 
an air stream cannot be predicted with any certainty by direct mathe- 
matical calculation and, for this reason, each and every aerodynamic 
body must be tested under conditions that are as nearly similar to the 
actual working conditions as possible. Prior to Professor Langley’s 
first experiments in 1887, mechanical flight with a heayier-than-air 
machine was derided as an impossibility, even by such scientists as 
Navier, von Helmoltz, Gay-Lussac, and others who proved by the most 
intricate calculations that a body larger than a bird could not be sup- 
ported by its own energy. Such calculations were, of course, based on 
a wrong understanding of air flow and, as no experimental work had 
been done up to that time, the flow was assumed according to the in- 
dividual taste and belief of the demonstrator. The presence of a vacu- 
um on the back of a plate was not understood and, as this contributes 
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full  two-thirds of the lift, it is an easy matter to see why all of the 
early predictions fell short of the actual lifting forces. To quote one 
classic absurdity, the scientist Navier proved mathematically that if 
mechanical flight were possible, then 17 swallows would be capable of 
developing one horsepower. 

Alsoin1918, we find in the work of de Bothezat (Ref. 2) (NACA Rep. 
28) a theory of airfoils based on the assumption of leading-edge sepa- 
ration and the introduction of a K 6 r d n  vortex trail in the wake above 
and behind the wing. In his consideration of the tip vortices de Bothe- 
zat obtains the modern form of the law of induced drag. This compo- 
nent of the dragwas, however, negligible in comparison to that induced 
by the lateral vortices in the wake. 

In contrast to these more conservative assumptions, the Kutta-Jou- 
kowsky theory predicts large values of the lift without accompanying 
pressure drag in two-dimensional motion. The degree to which this 
ideal dragless type of flow can actually be approached under suitable 
conditions is well illustrated by an experiment made by E. N. Jacobs 
(Ref. 3) at the NACA's Langley Laboratory a number of years ago. 
The airfoil in this experiment had a %foot chord and extended com- 
pletely across the (low turbulence) wind tunnel (Fig. 1). At an air- 
speed of 50 miles per hour and an angle of attack of 7", a lift force of 

Figure 1 -Airfoil compared with circular wire having 
equal drag. 

100 pounds was measured. The drag amounted to only slightly more 
than one-third of a pound, so that the lift-drag ratio was nearly 300to 
1. For comparison a round rod or wire having the same drag as the 
lifting airfoil is also shown. 

Flows of the Helmholtz or de Bothezat type are not completely con- 
trary to experience, and yet an airplane designed according to those 
formulas would have a decidedly unconventional appearance and would 
require a large thrust. A modern airplane in cruising flight obtains 
about three times as much thrust from the suction developed in the 
flow around the leading edge as it does from its engines. This type of 
assistance from the flow requires a wing of large aspect ratio. In re- 
cent years the aspect ratios of transport airplanes have increased to 
values of 10 or more. Calculations can be made which show that, if 
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the energy required to transport a given payload were the deciding 
factor, then still further increases in aspect ratio at the cost of struc- 
tural weight would be desirable. 

A s  is well known, the fuel consumption of most vehicles increases 
disproportionately when we try to increase their speed simply by in- 
stalling more horsepower. The airplane differs from earth-bound 
vehicles in this respect, however, sirice, by climbing to a higher alti- 
tude, it can increase its speed without necessarily increasing the fuel 
consumption per mile of flight. 

In 1929, B. V. Korvin-Kroukovsky (Ref. 4) published a series of 
articles in “Aviation” entitled, “The High Altitude Airplane.” In that 
discussion it was pointed out that high economical cruising speeds 
could be achieved by an ordinary low-speed airplane if this airplane 
and its power plant could be equipped for operation at high altitudes. 
Korvin-Kroukovsky’s argument was roughly a s  follows: The ratio of 
lift to drag of a conventional airplane is determined primarily by its 
external form and is essentially independent of the airspeed, the wing 
loading, and the air density. If the airspeed is increased while thd 
airplane is held at a fixed angle of attack, both the lift and the drag 
will increase with the square of the speed but tend to remain inthe 
same ratio. Now an airplane of conventional form and loading achieves 
its maximum lift-drag ratio at a rather high angle of attack, which 
corresponds to a low airspeed at sea level. One method of increas- 
ing the speed is to supply more thrust and counteract theincreased 
lift by reducing the angle of attack. Eventually the horsepower re- 
quired begins to increase as the cube of the speed and the fuel con- 
sumption per mile increases, as it does for other vehicles. However, 
if  the airplane is kept trimmed at its optimum angle of attack and the 
altitude is increased so that the air density diminishes in proportion 
to the inverse square of the speed, then the air forces, both the lift 
and the drag, remain constant. In this way the speed can be increased 
without the requirement of any additional thrust. Since the drag and 
the thrust required do not increase, then the energy expended per mile 
of flight remains constaat and we can obtain, theoretically, the same 
number of miles per gallon at progressively higher speeds. 

Let us  see what happens if we apply this concept to a small lightly 
loaded airplane of the ‘Cub” type. Such an airplane might cruiseat 
perhaps 100 miles per hour at a lift-drag ratio of 15 to 1. Suppose a 
thrust of 1/15 the weight can be supplied at any altitude and t!!t some 
excess thrust is available for climbing. Figure 2 shows the progres- 
sive increase of cruising speed with altitude. At 40,000 feet the speed 
will  have increased to 200 miles per hour and at 68,000 feet the Cub 
will be traveling at 400 miles per hour. may ask whether the fab- 
ric wings will withstand such a speed or w er  there will be difficulty 
in moving the controls. Of course the indicated airspeed has remained 
at 100 miles per hour so that the air forces remain essentially un- 
changed. One effect that might be noticeable is a relative loss in the 
damping of angular motions. obvious advantage of this method of 
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ALTITUDE 
IN M 
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spEED/SPED AT S€A LEVEL 

Figure 2 -Increase of cruising speed with altitude for constant 
thrust. 

gaining speed is that it does not interfere with the ability of the air- 
plane to slow down for landing at lower levels. 

At first thought one is inclined to ask whether the climb to such a 
great altitude would be worth-while for any except the longest journeys. 
Although the increased distance involved in the high altitude path is not 
important, the time spent at lower altitudes and slower speeds amounts 
to a considerable fraction of the duration of trips less than 500 miles. 
However, calculations I have made indicate that, if the means were 
available, a climb as high as 80,000 feet would save time on a 500 mile 
flight. 

In this connection it is interesting to note that the plan of operation 
of the Comet airliner, as explained by A. C. Campbell-Orde (Ref. 5) 
in his paper given at the 20th annual meeting of the Institute of the 
Aeronautical Sciences, requires a climb to 35,000 feet for the pur- 
pose of reaching an alternate airport only 250 miles distant. The sav- 
ing of time here is essential because of the fuel-burning characteristics 
of the turbojet engine. 

Since density is a relative matter, we might consider, alternatively, 
increasing the economical cruising speed at low levels simply by in- 
creasing the density of theairplane. This method has a marked struc- 
tural advantage, since the same load would be supported by a more 
compact structure. A comparison of these methods, that is, increas- 
ing altitude vs. increasing airplane density leads to some interesting 
results. We should also consider the possibility of simply increasing 
the thrust. This latter method may be thought of as that presently in 
vogue among automobile manufacturers. 

The following table (Fig. 3) shows some results of this comparison- 
which, needless to say, is made on the simplest possible basis. The 
numbers listed under the three airplanes to the right show various re- 
sults of doubling the speed in the subsonic range. In the first method 
the speed is increased simply by increasing the thrust and the balance 
between lift and weight maintained by reducing the angle of attack be- 
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I 2 3 

Figure 3- Comparison of three methods of.increasing speed. 

low the optimum value. In the case of a propeller-driven airplane the 
range in miles per gallon would fall to about one-half and, because of 
the increased gust force, the ride would be twice as “bumpy.” With jet 
propulsion the range in either case wouldbe rather poor but would not ’ 
be decreased by going to the higher speed. Of course a considerable 
increase in the structural stiffness would be required for the higher 
speed. 

In following the second method we would attempt to conceal the same 
mass and payload in an airplane of one-half the size. If this can be 
done it is seen that the speed may be doubled without any increase in 
the required thrust. Thus with jet propulsion the range in miles per 
gallon will. be increased by about the same factor. Furthermore, the 
riding qualities of the airplane will be improved. The engineering ad- 
vantage of supporting the given load on a more compact structure is 
immediately apparent. One difficulty with this method is that the land- 
ing speed increases in the same ratio as the cruising speed. 

If only the final result is considered, it is clear that an increase of 
the cruising altitude is the best method of gaining speed. If we can 
assume that gust velocities diminish at higher altitudes then the gust 
forces will be even lower than indicated by the table. Each method is 
essentially limited by the possibilities of engine development. The 
denser airplane requires the same thrust from engines having one- 
fourth the normal frontal area, while the engines of the high altitude 
airplane must develop the required thrust in an atmosphere of one- 
fourth normal density. 

It seems that airplane constructors have actually utilized the bene- 
fits of increased density as far as practicable, but the result has been 
heavier airplanes rather than smaller ones. Figure 4 shows a log- 
arithmic plot of weight versus wing span for a nuniber of successful 
commercial aircraft. It will  be noted that older airplanes and smaller 
ones, whose design has not changed, tended to follow the law of con- 
stant wing loading, that is, W s b2. Modern airplanes, especially since 
restrictions on the landing speed have been removed, tend-to follow 
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Figure 4 -Airplane weights as a function of a linear dimension. 

what might be termed a line of '"maximum density." Such a trend, 
corresponding to constant weight per unit volume, seems to indicate a 
maximum practical utilization of the space within the airplane. The 
weight per unit of actual volume along this line approaches tha;t of a 
loaded railway coach. With the original engine used by Orville and 
Wilbur Wright the possibility of flight depended on achieving a struc- 
ture having the minimum density. With present engines it seems that 
the successful constructor must achieve a maximum density. Although 
calculations of the landing speed have always occupied an important 
place in aeronautical engineering, they do not seem to have influenced 
the final result appreciably. 

For many years the airplane designer has advocated a decrease in 
landing speeds, and yet he has evidently been forced by economic con- 
siderations to follow the trend of maximum density according to which 
the landing speed increases with the size and weight of the airplane. 
Not long ago landing speeds greater than 65 miles per hour were con- 
sidered unsafe. Last year, however, approximately 50,000,000 people 
took off and landed, mostly at speeds of over 100 miles per hour. The 
landing of transport airplanes at present-day speeds and loadings has 
proved to be a far safer and more reliable proposition than the land- 
ing of early model airplanes, which, with their light wing loadings and 
slow speeds, could hardly be managed in normal winds and gusts. 

There is, of course, a limit to increases of the economical cruising 
speed of the subsonic airplane and the same limit appears whether we 
attempt to increase the speed by increasing the density of the airplane 
or by increasing the altitude of flight. This limit is set by the well- 
known sudden increase of pressure drag at a critical Mach number. 
If the optimum lift coefficient and the critical Mach number are given, 
then we can derive an optimum ratio between the wing loading and the 
ambient atmospheric pressure Pa. This ratio is 

and corresponds to the highest cruising speed without loss of efficiency. 
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At CL, = 1.0 and M,, = 0.7 we obtain a wing loading of 1/3 of an 
atmosphere. Thus, for cruising flight at sea level we require about 
700 pounds per square foot. At 60,000 feet, however, the ambient pres- 
sure fallstoonly 150 pounds per square foot, so that the optimum wing 
loading becomes 50 pounds per square foot. This latter value cor- 
responds to the current density of construction and loading and enables 
landings to be made at not over 100 miles per hour. It is certainly 
surprising that our present day heavy wing loadings are really best 
adapted to the thin air at 60,000 feet. 

It has been said that as the speeds of a i rcrgt  increase the wings 
must become proportionately smaller. However, it is hard to discern 
this trend in the geometric proportions of actual airplanes. Thus, the 
Comet airliner which flies at about 4-1/2 times the speed of the Ford 
Trimotor seems to have proportionately even larger wings. Such stud- 
ies as I have made indicate that if economy of propulsion is to be a 
major factor, then the relative proportions of the wings will  not di- 
minish even at supersonic speeds. 

With the velocity given in terms of the Mach number there exists, 
the temptation to think of supersonic speeds in increments of a whole 
unit. However as our understanding of supersonic wave drag and lift 
increases it seems increasingly probable that the speeds of commer- 
cial aircraft will grow continuously in this range, just as they have in 
the subsonic range. If we are willing to assume such a continuous 
transition to the problems of air transportation at supersonic speeds, 
then it will seem appropriate to follow the trends of loading, density, 
and altitude disclosed by the preceding development of the subsonic 
airplane. 

The appearance of the wave drag at supersonic speeds does of 
course require a marked change in the form of an airplane designed 
for economical flight. Figure 5a illustrates for bodies of revolution 
the change in the optimum slenderness ratio on going to supersonic 
speeds. The volume of both bodies is the same and theproportions 
shown minimize approximately the sum of the drag arising from the 
normal pressures and from the friction of a turbulent bourldary layer. 
The balance between friction and wave drag is such that a single ob- 
ject 5 feet in diameter requires a fairing 75 feet long. 

A s  a further illustration of the relFtive magnitude of the wave drag 
for different forms, I show in Figure 5b two models which, accxding 

Figure Sa-Change in the ideal proportions of a body of revo- 
lution on transition to supersonic speeds. 
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Figure 5b -Models having same drag at low super- 
sonic speed, (zero lift). 

to the indications of our experiments, would have the same total drag 
at a low supersonic Mach number. This comparison of course ddes not 
apply to cruising flight since the comparison is made at zero lift. 

With regard to the ideal form of the supersonic wing it is interest- 
ing to translate the following from Dr. Busemann’s paper given 20 
years ago at the Volta Congress in Rome (Ref. 6): 

“It is clear that the arrow form, quite apart from other considera- 
tions, must be favorable since the pressure differences producing lift 
are fully effective, whilst those producing drag have only a component 
in the directionof flight. If now a reduction of the effective Mach num- 
ber makes. possible the utilization of a greater surface loading at the 
same angle of incidence, the relative effect of the shearing forces in 
the friction layer necessarily decreases.” According to our present 
concept a “subsonic” sweep angle will be required to achieve this ob- 
jective. 

On the basis of the papers of Prandtl (Ref. 7) and vonKkm6n (Ref. 8) 
at the 1935 VoltaCongress linearized supersonic floy theory has been 
used to develop the means for estimating the wave resistance of a wide 
variety of shapes. Even on this simplified basis, however, the formulas 
often become rather complex so that the trends to be followed by the de- 
signer are not clearly displayed. One method of obtaining more in- 
structive formulas is to study the minimum values of the drag under 
various engineering constraints. As an example we may think of Munk’s 
problem of the minimum induced drag of a wing with a limited span. 

At subsonic speeds, even if we allow a large area for the production 
of lift, the minimum drag can still be achieved by a concentration of 
the lift along a narrow “lifting line” having a small exposed area and 
hence small friction. At  supersonic speeds the minimum pressure 
drag usually requires that the given lift be spread over as large an 
area as allowed by the constraint. An interesting example is pro- 
vided by the wing of elliptic plan form, which curiously enough seems 
to have especially simple mathematical properties at supersonic 
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speeds (Ref. 9). Here the optimum distribution shows no concentra- 
tion of the l i f t  in any preferred region, but spreads uniformly over 
whatever elliptical area is allotted. The resulting formula for the 
pressure drag is 

Dmin = - - 
2 pv2s 

Here a/b is the axis ratio, subject to the Prandtl-Glauert transforma- 
tion. 

E. W. Graham, H. Luskin, and P. A. Lagerstrom (Ref. lo), in stud- 
ies made for the Douglas Aircraft Company (Ref. 10 et. seq.), have 
extended these ideas to distributions of lift in three dimensions. As 
pointed out to the author by Graham, formula (2) yields the minimum 
drag not only for the given elliptical area but also for an enlarged area 
bounded by Mach lines and by lines parallel to the stream direction. 

With a straight ellipse the reduction of drag for a given total lift 0: 
for a given maximum thickness depends primarily on increasing the 
exposedwingareas. If we consider an oblique ellipse, then a different 
form of dependence appears. In this case Eq. (2) is replaced by 

Here m is defined by the shearing transformation of the ellipse: 
x ' = x + m ' y ,  y ' = y ,  

a '  is the intercept of the sheared ellipse with the longitudinal x axis 
and b is the maximum semispan (see Ref. 9). If we now assume that 
the area allotted by our constraint is that bounded by the Mach lines 
and the streamlines as shown in Fig. 6, it is seen that the area ac- 
tually occupied by the ideal distribution becomes extraordinarily small 
when the wing is yawed behind the Mach cone. This change coincides 
with the reappearance of the Kutta-Joukowsky flow, and enables the 

Figure 6-Optimum distribution of lift 
for area bounded by streamlines and 
Mach lines tangent to ellipse. 
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requirements of minimum pressure drag and minimum friction drag 
to be satisfied simultaneously. 

At large angles of sweep or yaw the drag due to lift becomes in a 
large measure independent of the exact distribution, but depends pri- 
marily on the span b and the length 1 of the wing. For such cases the 
simpler approximate formula 

L2 M2- 1 L2 
Dmin =- +z* (4) 

shows the essential dependence. The minimum drag occurs when both 
the lengthwise and the spanwise loadings are elliptical. 
For supersonic speed we thus require the maximum span b and the 

maximumlength 1, together with the minimum of exposed area. These 
conditions determine the oblique, elliptically loaded lifting line as an 
ideal limiting form for the supersonic wing. It seems unfortunate that 
a bilaterally symmetrical form, such as a swept wing or a V-shaped 
lifting line could not satisfy the requirement. However if we bend the 
lifting line at the middle to form a V it is seen that the wave resistance 
increases considerably. 

In order to show the effect of more conventional wing forms on po- 
tential supersonic cruising efficiency, I have estimated the lift-drag 
ratios of several wings in combination with a slender fuselage. Con- 
verting these to values of the thrust required by an airplane weighing 
50,000 pounds and cruising at 900 miles per hour yields the values 
shown on Fig. 7. For this comparison the wing thicknesses were se- 
lected so as to make possible equal bending stiffness. The order of 
the comparison would not be changed, however, if a wing of zero thick- 
ness were substituted in any one of the examples. 
For an operating altitude of 60,000 feet the wing loading in the first 

two examples should be about 50 pounds per square foot-or the same 

5QOO Ibs 7poo I bs 9,000 I bs 

Figure 7-Effect of wing form on required cruising 
thrust. Values shown are for 50,000-Ib. airplane. 
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as that of a subsonic airplane of this size. Since the indicated airspeed 
at 60,000feet is one-third the true airspeed, the structure needs to be 
sufficiently rigid to withstand-with customary safety margins-a sea- 
level cruising speed of only 300 miles per hour. 

Figure 7 also shows the relative proportions of a conventional turbo- 
jet engine designed to produce 10,000 pounds of thrust at sea level. 
Under our conditions the thrust will be diminished to about one-fourth 
this value, so that two such engines would be required in the first ex- 
ample. In this case we obtain a specific range of more than one mile 
per gallon. This latter value compares favorably with that achieved by 
early model Trimotors, but is of course somewhat less than that ob- 
tained with present-day transports operating at subsonic speeds. 

We hear a greatdeal these days about the "heat barrier." However, 
at 900 miles per hour and 60,000 feet this barrier has notyetbeen 
reached. It may be readily calculated that at this speed the aerody- 
namic heating is no more sufficient to bring the airplane up to room 
temperature at these levels. Of course, demonstrations of speed at 
sea level would be rigidly prohibited, both for structural and therqal 
reasons. 

To adapt the airplane to a lower altitude the wing loading needs to 
be increased. However, if we assume that the maximum density has 
already been reached in examples I and 11, this cannot be done within 
the limitation of strict geometric similarity. On the other hand, if the 
airplane is adapted to the lower altitude simply by reducing the size of 
the wing, then the lift-drag ratio will naturally be reduced. In example 
IIIof Figure 7 the wing area was so reduced to suit conditions at 40,000 
feet. The thrust required to support the given load then increased to 
9000 pounds. Of course if strict geometric similarity could be main- 
tained, a sacrifice of economy would not be involved. 

Comparisons of such oversimplified wing-body combinations as 
shown here may not disclose the full effect of a loss in aerodynamic 
efficiency. If the thrust needs to be increased at a given altitude then 
more or  larger engines will have to be used and the possibility of con- 
cealing them becomes less. In this process the lift-drag ratio of the 
complete airplane may become still more unfavorable than indicated 
by the comparison. 

These primarily aerodynamic and structural considerations point 
toward the development of turbojet engines specifically adapted to 
operation in an atmosphere of one tenth normal density. In addition to 
the numerous other technological problems associated with operation 
at these highaltitudes, the problems of safe descent and effective limi- 
tation to low speeds at low altitudes seem important. 
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REPORT 1335 
MINIMUM WAVE DRAG FOR ARBITRARY ARRANGEMENTS OF WINGS AND BODIES 

By ROBEBT T. JONES 

SUMMARY 

Studies of various arrangements of wings and bodies designed 
to prowide favorable wave interference at supersonic speeds lead 
to the problem of determining the minimum possible value of the 
wave resistance obtainable by any dispositwn of the elements of 
an aircraft within a deJinitely prescribed region. Under the 
assumptions that the total l if t  and the total volume of the aircraft 
are given, conditions that must be satk$ed i f  the drag is to be a 
minimum are found. !Z%e report concludes with a discussion of 
recent developments of the theory which lead to an improved 
understanding of the drag associated with the production of lift. 

INTRODUCTION 

The losses associated with the production of a given lift in 
frictionless flow are generally diminished by increasing the 
mass of air entrained or influenced by the wing system. At 
the same time, however, the loss due to friction becomes 
greater when the exposed surface area of the wing is in- 
creased. To minimize the resultant drag we thus require a 
lifting system which effects the largest entrainment and yet 
has the smallest exposed surface area. 

At subsonic speeds the mass of air entrained depends only 
on the lateral dimensions of the wing and is not diminished by 
concentrating the lift within a narrow chordwise dimension. 
The fact that a lifting line perpendicular to the direction of 
flight has such an extensive lateral influence must be con- 
sidered a peculiarity of subsonic flow; it depends of course on 
the unlimited propagation of the pressure field ahead of the 
wing. At supersonic speed the lateral entrainment begins 
only at the foremost points of the wing surface and is con- 
fined to the interior of the rearward-sloping Mach waves from 
this point. Finally, at  extreme speeds for which Newtonian 
flow may be envisioned, the mass of air affected is limited to 
the mass coming directly into contact with the wing, so that 
the area of influence is simply the frontally projected area of 
the wing. 

Another peculiarity of the subsonic inviscid flow is the 
complete lack of resistance associated with the thickness of 
the bodies or wings. At supersonic speeds, however, such a 
component of drag does arise and this drag appears in the 
energy required for the continual extension of the wave 
system. 

Now the problem of minimizing drag at  supersonic speeds 
may be treated mathematically in eeveral ways, depending 
on the constraints adopted in the statement of the problem. 
If, following Munk’s problem of the minimum induced 
drag at  subsonic speeds, we impose a constraint merely on 

the lift L and the span b of the wing, then we obtain the 
same value for the drag at all Mach numbers, namely the 
induced drag associated with the vortex wake. However, 
to achieve this value at  supersonic speeds the wing would 
be required to have an infinitely great length in the flight 
direction so that the downward momentum associated with 
the lift could be introduced gradually along the flight path, 
without appreciable wave formation. 

In order to put the problem of drag at supersonic speeds 
in a definite form the present writer proposed (ref. 1) that 
the outline or plan form S of the wing be adopted as a 
constraint rather than single lengthwise or spanwise dimen- 
sions. Thus for supersonic speeds we are led to consider 
the distribution of a given total lift L o&er a specified plan 
form S in such a way as to minimize the drag D. 

In the latter problem it is presupposed that the lifting 
system is confined to a plane. However, the possibility 
of favorable interference with three-dimensional arrange- 
ments of airfoils and bodies should not be averlooked. 
Thus, Busemann has shown (ref. 2) that the wave drag can 
be completely canceled by reflection between the upper and 
lower wings of a biplane. Later Ferrari (ref. 3) showed 
that the drag of a body of revolution muld be canceled by 
the addition of a ring airfoil to catch the wave from the 
nose and reflect it back to the tail. 

The examples in which the wave cancellation is complete 
are, however, limited to systems in which the net lift 4 
lateral force are zero. Nevertheless, examples cited by 
Ferri (ref. 4), Lomax and Heaslet (ref. 5) ,  and Graham 
(ref. 6) indicate that thg wave drag associated with the 
lift can be diminished by various three-dimensional arrange- 
ments of wings and bodies. These examples lead to a search 
for some general statements or criteria regarding the drag 
of such three-dimensional arrangements. 

CONDITIONS FOR MINiMUM DRAG 

To put the present question in a definite form it will be 
assumed the airfoils and bodies are disposed in the interior 
of a definite three-dimensional region R (see &. 1). The 
region R thus represents a geometrical constraint on the 
dimensions of the aircraft. Three-dimensional problems 
of a similar type have been considered by E. W. Graham 
and his colleagues (ref. 6) who give, for example, the opthum 
distributions of lift in spherical and ellipsoidal regions. 
Here we assume the total lift L and the volume V to be 
given. In a typical situation the l i f t  L will be produced 

SUpeRedes NACA TN 3530 by Robert T. Jones. 1856. 
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T= 0 
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FIGURE I.-Conditions for minimum drag distributions of lift and 
volume in region R. 

by one or more airfoils whie the volume V will represent 
the internal volume of one or more bodies of revolution plus 
the volume of the wing. The region R may then be thought 
of as the region within which the parts of the aircraft may 
be disposed so as to gain the maximum favorable interference. 
From a slightly different standpoint, R merely represents 
the maximum dimensions of the aircraft. We shall be 
especially interested in structures which minimize the 
drag for the largest possible region, but which in themselves 
occupy only a small part of this region. 

region R together with a distribution of singu- 
larities, such as sources or lifting vortices, is given (see fig. 1). 
Then by Khrmiin and Hayes’ cheorem (ref. 7) the drag will 
be unchanged by a reversal of the whole system. The 
geometry of the flow, including that of the airfoils and bodies, 
will be changed by the reversal but the total lift and the 
total volume will not. The drag for either direction of flow 
may then be computed by means of a fictitious “combined 
disturbance field” obtained by superimposing the disturb- 
ances in forward and reversed motion. The perturbation 
velocities in this combined field may be denoted by: 

Suppose 

21=u 

25 =1)J+1),  

2E= WJ+ w, 

It may he shown that an arrangement of sources or lifting 
elements, or their combination, which yields the minhum 
drag is characterized by the following conditions 

E= constan t 1 
z-constan t 
-- I 

throughout R. 

the whole system will be given simply by 
If cosditions (1) are satisfied, then the integrated drag of 

The first term on the right-hand side of this expression will 
be recognized as the drag arisimg from the rearward inclima- 
tion of the lift vector, whereas the second term is simply the 
product of the volume and the constant gradient of pressure 
in the combined flow field. 

These conditions may be verified by making use of a 
“mutual drag relation” (ref. I), essentially similar to the 
well-known Ursell-Ward reciprocal relation, which connects 
the drag of any two interfering distributions of singularities 
in the combined flow field. According to this relation, the 
drag of distribution A caused by the interference of a second 
distribution B is equal to the drag added to B by the inter- 
ference of A. Now let A be a distribution within RA satis- 
fying conditions (1). For B select a distribution having 
zero total lift and zero total volume. If RB is contained 
within RA, then the addition of B will amount simply to a 
redistribution, without changing the given lift L or volume 
V of A. The drag of A+B may then be written i r L  short- 
hand notation 

(3 1 
Then, since by the mutual drag relation DAB=DLIA1 this 
equation may be written as 

D(A + B )  = DA,t +*REA +DEB (4 ) 

Here DBA is the drag of B in the combined disturbance field 
of A. Since EA=constant, v A = O  and (g)A=constant in 
RA, this interference drag may be written simply LUS 

D(A +B)=D.u +DAB + DBA +DEB 

DE, = L ~ $ +  puvB( E)A 
However, since LE and V, are both zero DBn vanides and 
the added drag is that of distribution B alone, or DBB. Now 
the drag of an isolated system can never be negative, hence 
D(A+B) cannot be less than D(A)  under the conditions (1). 

On the other hand, suppose, for example that the side- 
wash Z A  were not zero. A distribution of lateral forces 
could then be found which would result in a negative inter- 
ference drag, dominating the quadratic term DEBt so that 
&e total drag could be reduced. Hence, if the drag of 
distribution A actually is a minimum value, then conditions 
(1) must be complied with. 

The question of uniqueness depends on the existence of 
distributions of type B for which the drag is zero. As shown 
by Graham, such distributious exist in three dimensions 
and hence the minimum drag corresponding to a given 
region R may be achieved by a variety of arrangements. 
In the case of a planar region, such as the plan form S of a 
wing, distributions of lift or volume having zero drag do not 
exist, and hence in these cases the optimum distributions are 
unique. 

a+ ai; d;ii a r  
az ay ax ax Since %=-, 5=- and -=z2’ it  can be seen that con- 

ditions (1) do not agree with the linearized flow equation 

(1 - - ~ ) & * + Z l l v + i i ; z r = O  (6) 

in general, but only if - 
bU4-J 
ax (7) 
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au 
bX 

Since - is proportional to the drag per unit volume, one 

concludes that the drag cannot be minimized in an absolute 
sense d e &  the drag associated with the volume of the 
system is zero, or unless the distribution of singularities is 
continuous throughout R. Examples such as the Busemann 

biplane satisfy the condition --0. ax- 
It is interesting to note that conditions analagous to E= 

constant and 5=0 were found by Munk in connection with 
the vortex drag of lifting systems a t  subsonic speeds. In 
that problem, the conditions apply to the twodimensional 
motion associated with the trace of the wing system in the 
Trefftz plane. If the idea of superimposed disturbance 
fields is utilized in the subsonic problem, one finds that the 
cylindrical flow associated with the Trefftz plane emrtends 
along the whole fiight path, including the region R. Con- 
ditions (1) thus apply at both subsonic and supersonic 
speeds. 

Munk’s condition of constant dowuwash and zero side- 
wash were used by Hemke (ref. 8) to calculate the effective- 
ness of end plates in reducing the vortex drag a t  low speeds. 
In such problems the condition is usually imposed by the 
statement that the trace of the airfoil system must move 
downward as a rigid body. It will be interesting to see 
how this condition might be used under more general cir- 
cumstances. This application is illustrated in figure 2 for 
an end plate on the tip of a wing. 

With the wing in forward motion, the lateral velocity 
v, a t  the surface of the end plate is simply the lateral slope 
of the fin surface multiplied by the stream. velocity. The 
condition iJ=O implies that v,=-v, and this condition is 
obviously satisfied by keeping the geometry of the fin fixed 
when the flow is reversed. At the same time, however, 
recall that the distribution of lift and lateral force must be 
kept the same in forward and reversed flow. Hence, the 
problem of finding the optimum setting and camber for such 
a fin is solved by finding that particular shape for which the 
flow is exactly reversible, that is, the lateral pressure distri- 
bution remains unchanged by a reversal of flow direction. 
At first it seems impossible to satisfy such a requirement, 
since, for example, the direction of the force on an inched 
surface is usually reversed by a reversal of the direction of 
flow. However, the form of the adjacent wing surface 
must, in general, change with the reversal, since zO#O and 
since the l i f t  distribution on the wing must remain unchanged. 
Then it is evident that the conditions might be satisfied if 
the pressures on the fin surface were dominated by the wing 
pressures through interference. 

Recently W. Wilmarth (ref. 9) has found several examples 
of wings with end plates which minimize the drag for certain 
prismatic regions. 

The conditions for minimum drag are of course simply the 
result of the constraints adopted in the initial statement of 
the problem; and these are to a certain extept arbitrary. 
Nevertheless, experience shows that the study of such 
problems is likely to disclose essential relations in their 
clearest form. 

With the aid of the combined flow field and the mutual 
drag theorem, it is a relatively simple matter to extend the 

aiz 

Vertical fin 

c--- 

, Lotwol force distribution 
on fin,& 

Apl=A+; Lateral face distribution unchanged 

= -5 ; Fin geometry unchanged 

FIGURE !L-Use of condition 3=0 to determine optimum setting of 
vertical fin on wing tip. 

constraints in various ways. Thus in the case of a planar 
wing if both the total lift L and the spanwise loading are 
specified, minimum drag requires that E be constsnt along 
chordwise strips, but may vary laterally. Here we have 

i 

Z=f(v) (8) 

In case thclengthwise loading is specified we have 

Z = j ( x )  (9) 

Again, if the first moment of the load distribution about the 
?J axis is specified 

and so on. 
If the conditions on the combined disturbance velocities 

hold beyond the boundaries of the region R, then the drag 
cannot be changed by extending the distribution of lift or 
volume into the new region. In general, this will-not be 
the case, however, and the drag can be continually dimmished 
by increasing the dimensions of R. Thus in the case of a 
monoplane wing a strong upwash appears beyond the wing 
tips, indicating that thb drag could be diminished by 
increasing the span. Similarly, sidewash velocities appear 
just above and below the planar region, and the drag could 
be reduced by extending vertical fins, or “fences” into this 
region. 

It must be admitted that the considerations have thus 
far been rather abstract. A more concrete result would 
yield the actual magnitudes of the drag associated with 
various regions, as well as the shapes of the bodies or wings. 
Although no direct method of calculation has been proposed, 
numerous examples have been found. Thus reference 6 
gives the optimum distributions of lift in spherical and 
ellipsoidal regions. 

A rough lower bound for the minimum wave drag associated 
with any region may be obtained from Hayes’ formula (ref. 
7) or the formula of Lomax (ref. 5). With these formulas a 
spatial distribution of lift or volume may be resolved into 
a number of equivalent lmear distributions, the latter 
obtained from the intersections of the region R by plane 

E=a,+ap (10) 
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waves lying a t  various/ angles e around the 2 axis. The wave 
drag of the system is then the sum of values for the linear 
distributions integrated from B=O to ~ = 2 ~ .  The expression 
for the wave drag of a single linear distribution is the same 
(except for a constant factor) as the expression for the vortex 

.drag of a lifting line in subsonic flow. Thus, for a single 
e l l ip t idy  Ioaded lifting line of length I parallel to the flight 
direction the wave drag is: 

This value may be used as an approximation for the wave 
drag of any narrow wing lying near the center of the Mach 
cone. Deviations are to be expected for wider wings; 
however, these deviations are not very pronounced, as 
figure 3 shows. In this figure values of the wave drag 
obtained from exact theoretical formulas are compared 
with the values given by the approximate expression (11). 
The “exact” values were obtained by superimposing uni- 
formly loaded wings of elliptical plan form and are not the 
minimum values for the resulting plan forms. 

A sufficient condition for the wave drag of a lifting system 
to have a minimum value is that all the projected loadings, 
in addition to the lengthwise loading, be elliptical. In this 
case we obtain the formula 

where 

(12) 

and Z(0) is the projected length of the region R as defined in 
figure 4 with fl=Jj$jCi. 

The value given by equations (12) and (13) is Bctually 
attained by elliptic wings and by distributions of lift in 
spherical or ellipsoidal regions (ref. 6). However, for 

I I I I I I 
0 .2 .4 .6 .8 I .o 

m 

FILWIZE 3.-Approximate expression for wave drag of lifting surface. 

/ 
/ 1 ./ Mach plane 

/ 

7 

* x  / 

FIGURE 4.-Lower bound for wave drag Ussociated with the Pegion R 
md the lift L. 

triangular or swept wings of the type depicted in figure 3, 
the values given by the simpler expression equation (11) are 
more accurate. 

In a recent paper (ref. 10) M. I. Kogan has pointed out 
that determination of the minimum drag of a lifting surface 
having no subsonic edges can be reduced to the solution of 
Laplace’s equation in the two-dimensional region bounded 
externally by the trace of the chqacteristic envelope, and 
bounded internally by the vortex trace of the Wing. In 
addition to pvv+qtl=O, the boundary condition that no 
disturbance extend beyond the Mach cone corresponds to the 
condition q=O on the outline of the characteristic trace; S j  
(i. e., the outer rim of the Mach envelope in fig. 1)  while the 
condition of constant downwash corresponds to q,=constant 
on the vortex trace. 

The result given by Kogan has been derived independently 
by E. W. Graham (ref. 11) and by G. N. Ward (ref. 12). 
Graham makes use of the combined flow field, and shows 
that fields which are two-dimensional throughout the 
interior of any given characteristic envelope, and which 
satisfy the condition q-,=G=constant on a vortex trace 
passing through the region, can be constructed. 

Such solutions correspond to our previous conditions (6) 
and (7) and are not restricted to wings having supersonic 
edges. 

In Ward’s analysis the physical flow is used, but the drag 
is calculated by using the forward-going surface of the 
characteristic envelope as a control surface. Since q = O  
there in the reversed flow, it can be seen that the values of Q 

in the real flow coincide with those in the combined flow on 
this surface. By a projection of the disturbance velocities 
on this surface, Ward reduces the integral for drag to I)iri- 
chlet’s integral, which is a minimum when the derived velocity 
field satisfies hplace’s equation. 

Applicstions of this method to problems involving thick- 
ness and volume have been given by M. A. Heaslet (ref. 13). 
Problems in which both the lift and $he center of pressure are 
given have been treated by P. Germain (ref. 14). 

These theoretical developments provide an interesting 
intuitive picture of the drag associated with the production 
of lift a t  supersonic speeds. At subsonic speeds the lifting 
wing leaves in its wake a two-dimensional, essentially in- 
compressible downwash flow bounded internally by thc 
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vortex wake, but unbounded externally. According to 
Eelvin’s theorem such an incompressible downwash flow 
satisfying puv+pzz=O, minimizes &he kinetic energy rela- 
tive to all other streamline motions satisfying the saIlie 
boundary conditions. For a given lift, (or downward 
momentum) the kinetic energy, and hence the drag, is 
minimized when the wake moves with constant downwash. 
A t  supersonic speeds we are led to consider not the flow in 
the Trefftz plane a t  infinity, but the flow in the last charac- 
teristic surface where the zone of inflnence lies entirely 
behind the wing. The two-dimensional flow obtained by 
projection on this surface will be limited laterally by its 
intersection with the real Mach wave, where ‘p must vanish, 
and will be bounded internally by the vortex wake on the 
the trailing edge of the wing. This flow is certainly not in- 
compressible in general. However, if the wing is to have 
the minimum drag consistent with the given span and with 
the given limitations of the lateral zone of influence, then 
by Kelvin’s theorem the flow must imitate the streamlines 
of an incompressible lateral flow in this intervening limited 
region. For a given total lift the vortex wake should again 
move with constant downwash. 

The condition p=O on the rim of the characteristic 
envelope is exactly the same as that imposed a t  the bound- 
ary of an open-jet wind tunnel. Hence, we are led to com- 
pare the ection of the wing in supersonic flow with that of a 
wing in a finite jet (fig. 5 ) .  Wings having small fore and 
aft dimensions have a limited lateral entrainment, as shown 
by the small cross sections of their equivalent incompressible 
jets (see fig. 6). 

In Munk’s theory of the minimum induced drag the “area 
of the additional apparent mass” associated with the vortex 
trace of the wing plays an important role. Denoting this 
area by S,‘, we have for the drag due to lift 

This formula actually applies in perfect fluid flow a t  all 
speeds if S,‘ is replaced by Sm,‘, the additional apparent 

FIGURE 5.-Equivalent incompressible jet for wing at supersonic speed. 

FIGURE &-Effect of fore and aft dimension of wing on area of lateral 

mass of the wing in the limited jet determined by the Mach 
waves. If the Mach number of the stream is reduced, the 
waves become more nearly vertical and the equivalent jet 
expands laterally, reaching an infinite cross section a t  M= 1 .O. 
Below M=1.0 the wing is operating in unlimited flow and 
we then have: 

entrainment. , 

(15) 
b2 S,’=r - 4 

2 L2 D=- 
upUZ6‘ 

which leads to 

On the other hand, a t  extremely high supersonic speeds, the 
equivalent jet contracts into a narrow space around the 
frontal projection of the wing. In this case the streamlines 
of the downflow in the jet will be nearly straight and parallel, 
as illustrated in figure 6, and the area Sm,’ will be substan- 
tially equal to the area of the jet S,. 
Jh special cases the two-dimensioDal downflow in the 

characteristic trace or jet S, can be readily calculated. Thus 
in the case of the elliptic wing the envelope of characteristics 
has an elliptic cross section, with the vortex trace of the wing 
extending between the foci. Now if a flat plate moves down- 
ward (along z )  in unlimited flow, the potential at the surface 
of any confocal elliptic cylinder will be of the form p,=kzd. 
Hence the boundary condition $=O may be satisfied on any 
such confocal ellipse by adding a uniform downwash through- 
out its interior so that w= -k or p= -kz. When the down- 
ward momentum of the resultant flow is computed, it is 
found to correspond to a virtual mass with area Sui‘ given 
bv 
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FIGUEE 7.-Effect of Mach number on lateral entrainment. 

In the case of a long slender wing lying near the center 
of the Mach cone (slender wing theory) the characteristic 
trace will be circular. An elliptical lengthwise distribution 
of l i f t  then produces an incompressible downwash flow 
resembling that of a dipole a t  the center of the circle. The 
added downwash required to make p=O on this circular 
boundary then yields our formula (1 1) for the wave drag. 

If we try to find the surface loading or shape that corre- 
sponds to the drag given by equation (14), we discover that 
Kogan’s analysis has in fact carried us away from our origi- 
nal problem in which the plan form of the wing (or the 
regioD R occupied by the lifting system) was given. The 
information given now concerns only the trace of the wing 
and its Characteristic envelope. Now, the relation between 
the plan form of a wing and its characteristic trace is certainly 
not unique. On the other hand the particular form of the 
two-dimensional flow on the reversed characteristic surface 
must require a unique distribution of lift in the plane of the 
wing. Otherwise one could show by superposition that 
planar distributions of lift having no drag would exist. It 

must be concluded therefore that of dl the plan forms having 
a given characteristic envelope, only those whose surface 
area is extensive enough to enclose the required surface dis- 
tribution of lift can achieve the minimum drag given by 
equation (14). 
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in the Aerodynamii of Wings for High Speeds"*) 
Ubersicht: Die in der vorltegenden Arbeit behandelten Gegenstande betref fen 1. eine kiirzlich vorgescblagene Korrekturformel 
f i r  den EinfluJ der Kompressibilitat bei der zweidimensionalen Unterschallstromung, 2. Aquivalenzsatz und Flachenregel fur 
transsoniscbe Stromungen, 3. Reziprozitatsbeziehungen in der linearisierten Tragfliigeltheorie und 4. einige allgemeine Ergebnisse, 
die mit dem Problem des minimalen Wellenwiderstandes zusammenhangen. Die Arbeit schlieflt mit einem Beispiel uber die Ein- 
schniirung des Rumpfes zur Erzielung einer giinstigen Interferenz mit dem Fliigel bei Uberschallgescbwindigkeit. 

Summary: The items discussed in this summary paper are 1. a recently proposed correction formula for the effect of compressibi- 
lity in two-dimensional subsonic flow, 2.  the equivalence rule and the area rule for transonic speeds, 3. reciprocal relations in 
linearized wing theory, and 4. some general results connected with the problem of minimum wave resistance. The paper 
concludes with an example showing indentation of the fuselage to  obtain favorable interference with the wing at supersonic 
speeds. 
Risumi: Les probUmes traitis dans le travail prisent concernent: 1) une formrle de correction, ricemment proposde, destinhe d 
diterminer l'influence de la compressibiliti dans le cas de l'dcoulement subronique bidimensionnel; 2 )  le thioreme de l'iquivalence 
et la regk de la surface des icoulements transsoniques; 3) des relations de riciprocitC de la thiorie liniarisie des ailes portantes; 
4 )  quelqaes rdsultats giniraux liis au probl2me du minimum de la rdsistance d'ondes. Le travail conclut en relevant un exemple 
de retricissement du fuselage destini d provoquer une interfirence plus favorable avec l'aile aux vitesses supersoniques. 

The student of fluid mechanics cannot fail to be impressed 
by the complexity of the phenomena that arise under 
simple circumstances. Even if we admit only the simplest 
properties of the fluid together with elementary 
dynamical laws for the motion, unexpectedly intricate 
motions may appear. As examples, I may mention the 
periodic Taylor-Gortler vortices that appear when a 
slightly viscous liquid flows over a concave surface or, 
again, the characteristic geometrical shapes of rhe 
"patches" of turbulence that have recently been observed 
by Emmonr and Schubauer (NACA TN 3489, Sept. 1955) 
in regions of transition from laminar to turbulent 
boundary-layer flow. 
In what is commonly understood by the term "airfoil 
theory" we limit the range and complexity of our 
investigations considerably by studying particularly 
simple flows that are apt to be of efficient service in the 
flight of an airplane. Thus in the Prandtl wing theory we 
study the properties of long, narrow wings, which afford 
the highest aerodynamic efficiency at ordinary speeds 
ad-which at the same time admit a mathematical simpli- 
6cation because of their extreme proportions. Further- 
more, in Prandtl's theory we consider only section flows 
of the Kutta- Joukowsky type. 
With a different type of section flow, such as might be 
produced by shakpening the leading edge, the long, 
narrow wing loses its advantage and the dependence of 

drag on aspect ratio follows more unfavorable laws. (See, 
e. g., ref. [l].) 
The extraordinary efficiency of a well designed airfoil 
in two-dimensional flow is illustrated in Fig. 1. Such an 
airfoil, of conventional form, may show a lift-to-drag 
ratio of 100 to 1 or at smaller lift coefficients, a drag 
coefficient of 0,005. The latter coefficient corresponds 
roughly to the drag of a circular cylinder having a 
diameter %oo th of the wing chord. 

Fig. 1 Airfoil compared with circular wire having equal drag 

As is well known, airfoil flows basically similar to the 
Kutta-Joukowsky flow can be maintained up to very 
high speeds in the subsonic range. Within this range the 
drag of the wing consists essentially of the induced drag 
and the surface friction, so that the plan form of the wing 
is determined, roughly speaking, by the criterion of 
maximum span together with that of minimum surface 

*) National Advisory Committee for Aeronautics, Ames Aeronautical Laboratory. 
") Paper for presentation at the meeting of GAMM. VDI. and W G L  at Gottingen, Germany, October 6, '1, 8, 1955. 
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area. For this range of speeds the straight wing having or Laplace's equation for an incompressible flow in planes 
the highest practicable aspect ratio thus remains the most perpendicular to the direction of propagation of the 
efficient aerodynamic form. disturbance. Now, such a disturbance of fixed form may 
The efficient operation of airfoils at the upper end of this easily be reduced to a steady so that the Stream 

speed range seems to require primarily that the sections tubes in the Oncoming flow must agree With the simple 
be thin - so that a method of calculation based on one-dimensional flow equation for stream tubes or 
expansion in powers of the thi&ness-&ord ratio would channels of Slowb varying width. As is well known, the 
appear be especially appropriate. such are stream tube cross sections reach an absolute minimum at 
well known through the work of Gsrtler [2], Huntzs& the speed of sound. It is clear then that the "lateral 
and Wendt [3], Kaplan [4], Imaj [5], and others. incompressibility" of the flow at sonic speed may be 
Recently Van Dyke [6], utilizing a result of  ayes [7], related to this stationary Property of the stream tube 
has shown that the pressure distribution around a thin areas* 
airfoil in two-dimensional motion can be related in a The stationary character of the stream tube areas at  
simple way to the corresponding distribution in in- sonic velocity does not depend on the linearization, but 
compressible flow by this method. If the leading terms in is a characteristic of nonlinear steady flows as well. For 
the expansion of the surface pressure coefficient Cp in such flows the one-&ensional flow equation forms a 
powers of the thidmess-chord ratio t are necessary condition to be satisfied along every stream 

tube. Here too, we must expect that the lateral flow will 
agree closely with Laplace's equation for two-dimensional (1) 

for incompressible flow, then Van Dyke gives for corn- motion in those regions of nearly sonic velocity. nese 
conditions are, of course, not ordinarily sufficient to pressible flow (see Fig. 2) 

(2) dztermine the flow field as a whole but they are of 
with considerable assistance in the intuitive understanding of 

While these elementary considerations dp not furnish an 
exact or detailed picture of the transonic flow, it is 

(3) 

possible to determine certain integrated properties such, 
as the lift and moment of slender wings from them. The 

(4) K2 = 

simple is found yield previous~y theory of slender wings is based on just the assumptions 
implied in equation (7). The applicability of this theory 
at  transonic speeds has been investigated by Robinson 
and Young [SI and by Heaslet, Lomax, and Spreiter [9], 
following the lines of a theory given by the present 

It is interesting to note how far the experimental lift and 
lift distribution follow this simple linear theory in the 
transonic range. Fig. 3, taken from some experiments 
made at the NACA's Ames Aeronautical Laboratory by 
Nelson and McDevitt [I 1, 121 shows the variation with 
aspect-ratio parameter Of the lift-?urve and the 
pressure drag for a Of wings at a 
Mach number very close to 1. In Of the fact that 

Cpinc = t f ( x )  + t2 g ( x )  

Cpcomp = Ki t f ( x )  + K2 t* g ( x )  

1 1 transonic flow phenomena. 
K1=-=- 

11-M' 8 '  
(y  4- 1) M4 + 482 

4 F4 

obtained by rather difficult calculations. 

Cp,,,= t f ( X )  + tzg(x) Cpcorn;Ki t f ( x 1  + K E  t'g(x1 

Fig. 2. Pressure correction formula for subsonic flow 
m two dimensions, Eq (1) - (4) 

As the speed of sound is approached, the three- 
dimensional wing flow can no longer be approximated by 
the assumption of locally two-dimensional flows over the 
wing sections. As shown by the linear Prandtl-Glauert 
theory, the disturbance field of a wing section expands 
venically without limit, so that the dimensions of the 
region of disturbance eventually become large compared 
to the chord of the wing sections. The section flow is 
then no longer a local phenomenon but must be modified 
by the spanwise dimensions of the wing. 
In linear theory we treat the disturbance field of a 

acoustics. Thus the velocity potential of the flow 
disturbance around the wing at either subsonic or super- 
sonic velocities satisfies the well-known sound wave 
equation 

(5) 

To represent disturbances of fixed form travelling in the 
direction of x with a velocity equal to the speed of sound, 

(6) 
Such disturbances thus satisfy, in addition, the relation 

(7) v f f u  + 9 2 2  = 0 

these wings can hardly be considered slender, the linear 
theory 3. 
Another interesting result is the tendency noted in these 
experiments for the center Of pressure to the 
wing leading edge as the aspect ratio is reduced, in accord 
with the prediction of slender-wing theory. 

up to an aspect ratio Of 

moving wing by ' the approximations employed in R5 

v z x + v u , f q J z z - p t t = 0 .  1 

DI 

a, we may write the solution in the form A(I/ctv3 A(?/c)'~ 
0 0 0 ~ b ~ o a b r s ~ + v ~ ~ o ~  

l p = f ( y + t z , x - - a t ) .  A 6 6 6 4 4 4 4 3 2 2 2 2 I . 5 1 1  1 1 . 5  
I l C  K) a6 .IO .06 R4 09 JO M) .06 1)9 R4 J O B  06 W R4 

Fig. 3. Drag and lift at M. c 1. Rectangular wings, 
NACA 65 A 0 XX profiles 
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At higher aspect ratios the values of lift and drag given 
by Guderley and Yoshihara [13] are approached. 
When we try to determine the disturbance field produced 
by a body or wing moving at  sonic velocity we face the 
difficulty that the form of the disturbance is not very 
definitely connected with the geometry of the body. At 
this speed extensive longitudinal disturbances can travel 
almost indefinitely without the assistance of a moving 
solid. Hence it is perhaps not surprising that a relatively 
intense longitudinal wave is built up by a solid which 
travels for some time at  this speed. Those who have been 
in the path of the well-known "sonic boom" have had a 
direct experience of this longitudinal wave. 
According to the "equivalence principle" of Oswatitsch 
[14], the potential, q, of this large-scale longitudinal 
disturbance is determined by the longitudinal distribution 
of areas presented in planes perpendicular to the flight 
direction. Hence, the potential at large distances reduces 
to that for an equivalent body of revolution. In 
Whitcomb's paper [ 151 on the "area rule" both the form 
of the wave disturbance and the incremental drag at 
transonic speeds were shown to depend on this 
distribution of cross-sectional area. The dependence of 
wave drag on the area distribution was given by Hayes 
[16] as a formal result of the linear theory at transonic 
speed. In Whitcomb's experiments it was demonstrated 
further that the drag associated with the thicknesc of a 
wing can be effectively suppressed by removing an 
appropriate "area distribution" from the fuselage. With 
these new developments it appears that wing theory at 
transonic speeds should not be limited to the properties of 
isolated airfoils. 
As a simple test of Whitcomb's drag-equivalence idea, 
Spreiter [17] has analysed the results of experiments 
made at  Ames Laboratory on rectangular airfoils having 
various aspect ratios and various thickness-chord ratios. 
To maintain the same area distribution an airfoil having 
a high aspect ratio and a thin section is compared with 
one of lower aspect ratio but with a thicker section. For 
nonlifting wings with symmetrical sections the rule is 
verified up to aspect ratios of 3 or more. Fig. 4 shows the 
comparison for aspect ratio 4. 

I,,,,,, 
0 7 8 9 1.0 II 12 

MACH NUMBER 

Fig. 4. Drag of wings having same area distribution 

Rectangular wings of the forms shown have, of course, a 
large incremental drag at  transonic speeds. Perhaps the 
most effective practical method of reducing the drag at 
transonic speeds is the use of extreme angles of sweep, thin 
sections, and slender bodies. As an illustration of the 
magnitudes involved I would like to show drawings of 
two models that have been tested by the NACA (Fig. 5). 
The two models with the relative dimensions shown would, 
according to the indication of our experiments, have the 
same drag a t  a slightly supersonic Mach number. 
At the present time the calculation of three-dimensional 
wing flows at  supersonic speed is carried out almost 

Fig. 5. Models having same drag at low supersonic s p d  (zero Izft) 

exclushely by means of the linearized theory. The 
principles employed in these calculations were brought 
into sharp focus in the papers of Prandtl [18], von Kdr- 
mdn E191 and Busernann [20] at the 1935 Volta Congress, 
while the f irst known application to the three-dimensional 
lifting wing appeared in Sfhlichting's paper of 1936 [21]. 
Linearization of the flow equations brings the three- 
dimensional wing theory within the realm of classical 
methods of analysis and so has disclosed a variety of 
interesting and unexpectedly *simple relations. For 
example, if we consider a thin wing or body whose 
disturbance field can be produced by the action of simple 
sources, then the drag of this body will be unchanged by 
a reversal of the flow direction. Our attentioq was called 
to this "reversed flow" relation by von Kdrmrin and it 
was generalized by Hayes [16] to include arbitrary 
distributions of singularities such as lifting elements and 
sources in three-dimensions. Reversal of the now may 
change the geometrical shapes however. In an interesting 
paper, Munk [22] has shown how such reversed flow 
relations can be derived by considering the abstract 
disturbance field obtained by superimposing the distur- 
bance velocities generated by the forward motion, and 
those generated by the reversed motion of the system. 
Utilizing this idea, Brown [23] has been able to show 
that the lift-curve slope of a wing of any planform is 
unchanged by a reversal. 
A more general form of reversed-flow relation in steady 
wing flow theory is the reciprocal relation discovered by 
Ursell and Ward [24]. Starting with a shin lifting surface 
of planform S, we may consider the effect of warping or 
twisting the wing in various ways, represented by 
permitting the local angle of attack a to vary with the 
position x, y of a point on the planform. Such a warp or 
twist a ( x ,  y )  will give rise to a distribution of lifting 
pressure p ( x ,  y )  which is a linear functional of a deter- 
mined by the flow equation and by the outline shape of the 
wing. Let a, and p 1  be two functions so related and let 
a, and p z  be a different, but similary related, pair of 
distributions for the wing S in reversed flow; then the 
Ursell-Ward relation is 

Fig. 6 illustrates one of the many interesting applications 
of this theorem. Here a1 is taken as a constant value e ual 
to unity, over the whole surface, so that p1 is the distri- 
bution of lift arising when the wing as a whole is given a 

3 2  

PI ,a2 Pi 

I I 

Fig. 6. Reciprocal relation. Eq. (8) 
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unit angle of attadr. cc, has the value unity over a portion 
of the wing, or a flap, but has the value zero elsewhere. 
pz then represents the distribution of lift over the whole 
wing, resulting from the deflection of a flap. The 
reciprocal relation then tells us that the l i t  on the wing 
due to deflecting the flap is equal to the lift on the flap 
due to deflecting the wing with the flow reversed. This 
relation is applicable at  both subsonic and supersonic 
speeds. The extension to airfoils in unsteady motion has 
been given by Flax [25] and by Heuslet and Spreiter [26] 
who point out its connection with classical reciprocal 
theorems of Helmholtz, Maxwell, and Ruyleigh. 
It is interesting to note that extension of the reciprocal 
theorem to nonstationary motion provided a means for 
verifying the coincidence between Kuessner and Sears’ 
“gust lift functions“ and Wagner’s function describing 
the growth of circulation around an airfoil starting from 
rest for wings in three-dimensional flow. 
A classical problem in the theory of airfoils is the 
determination of the form of the wing or the distribution 
of lift for minimum drag. Thus we may think of Munk’s 
problem of the minimum “induced“ drag for a given 
total lift L and a given span b [27]. At supersonic speeds 
we have to consider in addition to the induced drag a 
wave drag which depends in a rather complex way on the 
distribution of lift over the whole surface. Surprisingly 
enough, however, we find a continual recurrence of ideas 
derived from this earlier problem in our studies of wave 
drag of lifting surfaces at  supersonic speeds. 
In  Munk’s problem it was found that minimum drag 
occurs when the “induced downwash* is constant at all 
points of the span. To extend these considerations to 
supersonic speeds we find it essential to specifiy not 
merely the span, but the plan form of the wing [28]. By 
making use of the reversibility theorem we are able to 
express the drag in terms of a fictitious disturbance field, 
obtained by combining linearly the disturbances produced 
by a given distribution of lift in forward and in reversed 
motion. The mean downwash W, obtained by averaging 
at  each point the values in forward and reverse flow, then 
takes the place of the “induced downwash“ and is 
quantitatively equal to the latter if the speed is subsonic. 
The drag is obtained by integrating over the plan form S the 
product of the local lifting pressure A p and themean angle 
of attack ii = G/V. With a given total lift L and a given 
plan form S the minimum drag occurs when the mean 
downwash G has the same value a t  all points of S. This 
result holds whether the speed is subsonic or supersonic. 

Fig. 1. Conditions for minimum drag: distributions of hft and volume 
in region R 

It is interesting to note that the idea of superimposing the 
forward and reversed disturbance fields was utilized in 
Munk’s original proof of the so-called stagger theorem. 
If we accept the idea of a combined supersonic distur- 
bance field, then the necessary conditions for minimum 
resistance can be generalized to include interfering 
distributions of lift and volume in three-dimensional 
regions. Here we may think of an arrangement of airfoils 
or lifting elements in space, but limited to the interior of 
a region R. If the total lift L and the region R are given 
then the minimum drag occurs when (see Fig. 7) 

(9) W = const, 6 = 0 

throughout R. The value of the minimum drag is then 
(10) Dmin = L W / K  
The computation of the drag of interfering lift distribu- 
tions is simplified by a reciprocal relation, essentially 
similar to the Ursell-Ward relation, which appears in 
the combined flow field. Thus if we consider any two 
distributions of lift represented by 1, ( x ,  y, z) and lb ( x ,  y, z) 
then we may write in short-hand notation: 

(11) Dab = & a  

or, in words, “the drag of a caused by the (combined) 
disturbance field of b is equal to the drag of b caused by 
the (combined) disturbance field of a.“ 
In view of this, we may write for the total drag 

(12) 
Now suppose that 1, satisfies conditions (9) and suppose 
that Rb lies entirely within R,. Then 

(13) Doa = Lb E$v 
with 
(14) e&’ = const = Da$L,, 
so that the total drag, including the interference, is given 

(15) D (a  f b) = Daa ( I  f &/La) -k Dbb. 

As is well known, the elliptical spanwise distribution of 
lift yields the minimum, drag for a monoplane wing at  
subsonic speeds. In our studies of minimum drag at  
supersonic speeds we have found that the closest 
connection with the theory for subsonic speeds can be 
maintained if we employ a special method for the 
calculation of drag. In this method [29] we make use of 
Hayes’ idea of equivalent positions of sources or lifting 
elements, together with the idea of the combined 
disturbance field. Following this method, the combined 
disturbance field of a lifting surface is constructed by the 
superposition of infinitely many plane waves, all lying at 
the Mach angle, but at  varying angles 0 around the flight 
axis ( x  axis). At each angle 0 we construct an equivalent 
“lifting line“ by integrating the lift distribution in the 
direction parallel to these planes. A sufficient condition 
for the wave drag to be a minimum is that each equivalent 
lifting line be elliptically loaded. I find it quite surprising 
that the elliptic loading appears again in the problem of 
minimum drag at supersonic speeds, although von Klr- 
mln and Busemann have already noticed a similar 
connection with the wave drag of bodies of revolution. 

With a wing of elliptic plan form the minimum drag 
occurs when the lift L is distributed uniformly over the 

D ( u  4- b) = Daa f 2 D b a  f Dbb. 

by 
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surface. In this case integration of the surface loading in 
any oblique direction yields an elliptically loaded lifting 
line, as shown by Fig. 8. Since the spanwise loading is 
elliptic, the induced drag or vortex drag is also a 
minimum. 

LINES X =  CONST, 2.0 

LIFTING SURFACE OS%-z S I N 8  

i i  
Fig. 8. Integratlon of surface loading alonq Mad2 planes 

The assumption that the integrated loading for ea& angle 
0 is elliptical can be used to derive a lower bound for the 
wave resistance associated with a given total lift and a 
region R. This formula is illustrated in Fig. 9. For the 
minimum vortex drag under these conditions we may 
refer to Munk's original paper [27] .  

MACH PLANE 

Fig. 9. Lower bound for wave drag associated with the region R 
and the lift L 

For a region R lying everywhere close to the x axis at  the 
center of the Mach cone, the loadings integrated along 
Mach planes will all be similar to a "lengthwise loading" 
obtained by integrating the lift over planes x = const. 
If this loading is ellipticar, we may write for the wave 
drag 

For wider wings the deviation from this value can be 
taken into account by a factor K. Values of K for several 
different plan forms are shown in Fig. 10. 

I 
0 .2 4 6 8 1 0  

m 

Fig 10. Approximate expression for wave drag of lifting surface 

As is well known, there exists a certain correspondence in 
airfoil theory between problems involving distributions 
of lift and those involving distributions of thickness. If 
the solution of a problem of one type is known, then a 
corresponding solution of the other type can usually be 
constructed. Thus our studies of wave drag associated 
with distributions of lift can readily be extended to 

problems involving the optimum distribution of .~.i&ess 
or volume within a region R or a plan form S. 
Following along the lines of the previous discussion, we 
suppose that a region R is given and also a certain volume 
Y to be contained in slender, closed bodies or airfoils 
within R. The condition for minimum drag is then that 
the pressure gradient, proportional to az /an ,  in the 
combined flow field be constant. Since the total drag is 
obtained by integrating the product of the local pressure 
gradient over the volume, we may say that minimum 
drag for z given volume occurs when the drag per unit 
volume is constant thro6ghout the region. It must be 
rememb'ered, however, that the distribution of drag 
implied in this statement refers to the fictitious 
disturbance field obtained by averaging the forward and 
the reversed disturbances. 
The drag of interfering bodies and airfoils in three- 
dimensional regions has been discussed in a recent paper 
by Graham, Beane, and Licher [30] .  For nonliting 
systems the wave drag can always be reduced to zero by 
reflections within the system as, in Ferrari's well-known 
example of a shrouded body, or the Buseman72 biplane. 
The projectile shapes of won Kirmrin [17], Sears [31],  
and Haack [32] satisfy the condition 3ji/an = const 
throughout the region R determined by-the interior of the 
"double Mach cone- with vertices at the nose and the tail. 
In this case, of course, the drag is only a relative minimum. 
However, it is interesting to see how we may simplify the 
computation of interference drag in such cases as 
illustrated in Fig. 11. In  this example we start with a 

2Dac=2% va 

NEGATIVE VOLUME; V c * - - q  
DlO+C)= Dan -Dee 

SEARS-HAACK BODY 

Fig. 11. Use of combined disturbance fields in calculating 
wing-body drag 

planar source distribution, or a nonliiting wing "a", and 
introduce a linear distribution of sources along the central 
axis, denoted by "cy. For the drag of this combination we 
may write 
(17) D (a  i- c)  = D,, + ZD,, + D,,, 
where Da,  is the drag of the wing in the combined 
disturbance field of the linear source distriburion. Now 
if the combined disturbance field of the linear source 
distribution satisfies the condition a @ x  = const, as in 
the case of a Sears-Haah body, it will do so throughout 
the interior of its double Mach cone. Furthermore, by 
making this source distribution sufficiently long, the wing 
can be contained entirely within this region. The inter- 
ference drag is then simply the volume of the wing, va, 
times the constant gradient of pressure in the field around 
the body; or 
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A negative interference drag can be produced by using a 
source distribution of reversed sign, leading to a 
"negative volume" for  c. If this "volume" is made equal 
and  opposite to the volume of the wing then the 
distributions a and c can be added to a larger Sears- 
Haack body b without interference. The resultant drag is 

(19) D (a 4- b 4- C) = D u n  4- D b b - D c c .  

This equation shows the reduction in over-all drag pro- 
duced by the source distribution c. 
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T H ~ R Y  OF ~ ~ G - ~ O D Y  DRAG AT SUPERSONIC SPEEDS’ 
By ROBERT T. JONES 

_. 

SUMMARY 

The relation .J Whitcomb’s “area &” to the linear formulas 
for waue drag at slightly supersonic speeds is discussed. By 
adopting an approximate relation between the source strength 
and. the geomety of a wing-body combination, the wave-drag 
theory is expressed in &rms ineolving the areas intercepted by 
oblique planes or Mach planes. The resulting formulas are 
checked by comparison with the drag measurements obtained in 
wind-tunnel expeTiments and in experiments with falling models 
in free air. Finally, a theory for determining mig-body 
shaps o j  minimum drag at supersonic Mach numbers is 
discussed and some prelimimry experiments m e  reported. 

DISCUSSION 

At subsonic speeds the pressure drag arising from the thick- 
new of the body or wings is negligible so long as the shapes are 
sufficiently well streamlined to avoid flow separation. I n  
that range there exists no possibility of either favorable or 
adverse interference on the pressure distributions themselves. 
If one body is so placed as to receivc a drag from the pressure 
field of another then the second body is sure to iweive a 
rorrcsponding increment of thrust from the first. 

At supersonic speeds this tolrrance, wliich was permit ted 
the designer, disappears, and thc drag becomrs sensitive to 
the shape and aii*angement of the bodics. ‘I’o be sure, the 
primary factor here is the thickness ratio, but nevertheless 
there exist arrangements in wliich a large cancellation of drag 
occurs, Examples of thelatter are: the sweptback wing and 
the Busemann biplane. 

Recently R. T. Whitcomb (ref. 1) has shown how the drag 
at transonic speeds may he reduced to a surprising extent by 
simply cutting out a portion of the fuselage to compensate 
for the area blocked by the wing. The purpose of the present 
paper is to discuss some of the theoretical aspects of this 
method of drag reduction and to show how the basic idea 
may be extended to higher speeds in the supersonic range. 

Wbitcomb’s deduction of the “area rule” was based on 
considerations of stream-tube area and the phenomenon of 
“choking”-which follow from one-dimensional-flow theory. 
Each individual stream tube of a threedimensional-flow field 
must obey the law of one-dimensional flow. Whiie we can- 
not actually determine the three-dimensional field on this 
basis alone, nevertheless it provides a good starting point for 
our thinking. The results demonstrate again the effective- 
ness of basic and simple considerations. 

I BupersedesIiACA RM A53NlPa by Robert T. Junes, I¶%. 
$9481-7 

- 
While onedimensional-flow theory thus ppovides a clue 

to the area rule, the necessary principle appears more spe- 
cifically in the three-dimensional-flow theory. Thus, the 
lormdas for wave drag given by linear theory, if followed 
toward the limit as M approaches 1.0 (from above), show 
that the wave drag of a system of wings and bodies depends 
3olely on the longitudinal area distriboliorr of the system as a 
whole. This was fmt noted by W. D. Hayes in his 1946 
thesis (ref. 2). However, because of the h i t a t i o n s  of the 
theory at transonic speeds, this result was not thought to be of 
practical significance. Later G. N. Ward (ref. 3), E. W. 
Graham (ref. 4), and others, restricting themselves to very 
naxrow shapes, expressed the wave drag in terms of the 
longitudinal area distribution for Mach numbers above 
1.0, where the linear theory has a better iustification. 

It should be noted, however, that both of the problems 
cited are limiting cases of the more general problem of super- 
sonic drag and it should be borne in mind that only in certain 
cases has it been possible to rrdurr thr geiiernl theoretical 
formulas to the form of an awn rule. It can be shown that 
the flow field about arq- system of bodies inn!- br ereateti by n 
rrrtain distribution of soourcc~ and sinks over t,he surfaces 
of thr bodies. Hayrs’ formula mid the forinulas given in 
reference 5 rclatc thc tirag of such a s p t r m  to t.lie distribution 
of these singdaritics. T o  obtain a formula for the wavt 
drag in t e r m  of mpa distributions we have to adopt n simpli- 
fied relation between the source strrngtli and the geometry 
of the bodies, namely, that the source strength is proportional 
to the normal component of the stream velocity a t  the body 
smtace. There are examples (e. g., Busemann biplanes and 
ducted bodies) for whicli this assumption is not valid. If, 
on the other hand, we limit ourselves to thin symmetrical 
wings mounted on vertically symmetrical fuselages, there are 
indications that a good estimate of the wave drag at  super- 
sonic speeds can be obtained on the bask of the simplified 
relation assumed. 

Following Hayes’ method of calculation, we find that a t  
M= 1.0 the expression for the wave drag of a system of wings 
and bodies reduces to KBrmin’s well-known formula (ref. 6) 
for the wave drag of a slender body of revoIutioii, that is, 

Here S(X) represents the total cross-sectional area inter- 
cepted by a plane perpendicular to the stream at the station 

, 

611 



REPORT 1284-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

+ 

( 1 )  Equivalent body of revolut ion 

u 
( 2 )  Gradient of  area 

\ 

i 1 
X O \  XO 

( 3 )  Fourier series 
S’(x:: IA,sin n+ 

x =xo cos + 

(4 )  Wove drog (M-IO) 
D = -ZnA2, V V 2  

8 

Frcx RE I.-Steps ill thc celculatiu1i of wave dmg for M-1.0. 

L (see fig. 1) and S”(r) is the second derivative of S with 
respect to 2. Following Sears (rei. 7) we may expand 
S’(z) in a Fourier series and obtain in this way a formula for 
the drag which is completely analogous to the well-known 
formula for the induced drag of a wing in terms of its span- 
wise load distribution. Thus, if we write 

and 
z=z,cos .b 

%(z) = 2A,sin n+ 

we obtain for the wave resistance 

7 r p v 2  D=- ZnA,2 8 

Of all the terms of the series, each contributes to the drag, 
but only AI and A, contrihutc to the volume or the base 
area of the systeni. ‘rhus, to achieve a small drag with a 
given base area, or with a giveii over-all volumr within tho 
given leiigth, Lliu higher harmonics iii tlic ciirvc S’(s) should 
be supprcssed. This forniuh riiablrs us to cliaract.criz.,r Llic 
smoothness of a givcn shapc in a quaiititativc fashion. 

1 o extend these considcratious to supersonic speeds wc 
l~ave to consider a series of cross sections of the system made, 
not by planes perpendicular to the stream but by planes in- 
clined a t  the Mach angle, or “Mach planes.” By means of 

,, 

Finr RE P.-Arc:r dktr i l ) i i t i~ i i  givcm I)? iiitwwrtioiis of hl:irli pI:iiw>. 

a set of parallcl Xlach planrs (SCC fig. 2) \vc c~ollstruct an 
“equivalrut body of revolution," using thc iiiterccptcd 
arras, and compute tlw drag by von IiBrmtin’s formula. 
?‘tic theoretical basis of this step is t l i c  fact that the completr 
tlirce-tlimensioi~al disturbanc~r ficM may be ronstruvtrd by 
the superposition of elcmeiitarg one-diniciisional disturbances 
in the form of plane waves (ref. 8). I t  is evident that the 
set of parallel Mach planes may be placed a t  various angles 
around the z axis. In constructing the flow field it is neces- 
sary to superimpose disturbances a t  all of these ariglcs arid, 
in computing the drag, to consider the drags of all the ccjuiv- 
alent bodies of revolution. The final valuc of thc drag is 
simply the average of the values obtained through a complete 
rotation of the Mach planes. 

ln order to make these statements more specific, we may 
write tho equation of onc such Mach plaiic as follows: 

X=s-y‘cos 8-z‘sin 8 

where y’=<M2-1 y, ~ ’ = < A 4 ~ - 1  P, and 8 is the anglc of 
rotation of the .\lac11 plaric. By assigning different valucs 
to A whilc kccpiiig 8 constarit, we obtain a series of parallcl 

~ 
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planes at the same angle 0 around the z axis. By assigning 
different values to 8 while keeping X a constant, we obtain 
a set of planes enveloping that Mach cone whose apex lies 
at the point X=z .  

Selecting a value of 8, we cut through the wivg-body 
system with a series of planes corresponding to different 
values of X .  The total intercepted area in each plane is 
then equated to the area intercepted by this plane passing 
through the equivalent body of revolution. If we denote 
the area intercepted obliquely by dX,8), then the area 
S(X,e) is defined by 

S=s sin p 

where p is the Mach angle (i. e., sin p = l / M ) .  Thus, S is 
the area intercepted by normal planes passing through the 
equivalent body of revolution on the assumption that this 
body is slender. Again, we write 

b s’(x,e)=,x S(X,O)=ZA, sin np 

with 
X cos p=- 
XO 

Here, however, both the length 2X0 and the shape of the 
equivalent body vary with the angle 8. The drag of each 
equivalent body of revolution, which we may denote by 
D‘ (e) is then determined by applying Sears’ formula: 

The total drag of the wing-body system is the average of all 
these values between O=O and 8=2r, that is, 

D=$ D’(8)d8 

In  general, the coefficients A, will be functions of the angle 
of projection e. However, calculation shows that the first 
two coefficients A,  and A, are again related in a simple wa\r 
to the base area and the volume v. Thus, 

A,=- 2 2 S ( X )  
a xo 

None of the higher coefficients contribute to the base area 
of volume, but they invariably contribute to the drag. 

The rules for obtaining a low wave drag now reduce to 
the rule that each of the equivalent bodies obtained by the 
oblique projections should be as smooth and slender as 
possible, the “smoothness” again being related to an absence 
of higher harmonics in the series expression for S‘(X). Thus 
in  the case of given length and volume the series should 
contain only the term A2 sin 2p (see fig. 3) .  It should be 
noted that in this theory, the equivalent bodies of revolution 
do not have a physical significance. The concept is simply 
an aid in visualizing the magnitude of the drag of the com- 
plete system. 

394915-57-2 

S(x)’.A, sin2 
(Seors-Haack body) 

FIGURE 3.-Optimurn area distribution for given length and volume. 

To check the agreement between these theoretical formulas 
for the wave drag and experiment.al values, we have com- 
pared our calculations with the results of tests made by 
dropping models from a high altitude. This comparison 
was made by George H. Holdaway of Ames Laboratory who 
supplied the accompanying illustration (fig. 4). In  some of 
these cases it was found necessary to retain more than 20 
terms of the Fourier series in order to obtain a convergentj 
expression for the drag. 

Considering the variety of the shapes represented here, the 
agreement is certainly as good as we ought to expect from 
our linear simplifications. The agreementjs naturally better 
in those interesting cases in which the drag is small. 

- Theory 
---- Experiment 

M 

FIGURE 4.-Comparison of theory with results of Arnes Laboratory 
drop tests. 

Figure 5 shows an analysis of one of Whitcomb’s experi- 
ments. The linear theory, of course, shows the transonic 
drag rise simply as a step a t  M=1.0. We may expect such 
a variation to be approached more closely as the thickness 
vanishes. To represent actual values here a nonlinear 
theory would be needed. For many purposes it will be suffi- 
cient to estimate roughly the width of the transonic zone by 
considerations such as those given in reference 9. In the 
present case it will be noted that agreement with the linear 
theory is reached a t  Mach numbers above about 1.08, and 
the linear theory clearly shows the effect of the modification. 

For further theoretical studies of wing-body drag, shapes 
have been selected which are especially simple analytically, 
namely, the Sears-Haack body and biconvex wings of elliptic 
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plan form, having aspect ratios of 2.54 and 0.635. Figure 6 
shows the effect of wing proportions on the variation 
of wave drag with Mach number, both with and without the 
Whitcomb modification. In each case the modification has 
the effect of reducing the wave drag to that of the body 
alone a t  M=1.0. In  the case of the low-aspect-ratio wing 
this drag reduction remains effective over a considerable 
range of higher Mach numbers. With the higher aspect 
ratio, however, the drag increases sharply at  higher speeds, 
so that a t  A4= 1.6 the modification nearly doubles the wave 
drag. 

The rapid increase of drag in the case of the high-aspect- 
ratio wing is, of course, the result of the relatively abrupt 
curvatures introduced into the fuselage lines by the cutout. 
Such abrupt cutouts are necessarily associated with wings 
having small fore and aft dimensions, that is, unswept wings 
of high aspect ratio. 

These considerations led to the problem of determining a 
fuselage shape for such wings that is better adapted to the 
higher Mach numbers. The first step in this direction is, 
obviously, simply to lengthen the region of the cutout-thus 
avoiding the rapid increase of drag with Mach number. The 
problem of actually determining the best shape for the fuse- 
lage cutout a t  any specified Mach number has been under- 

+$ ++ 
M 

‘., 

I I I 
100 104 108 I12 

FIGURE 5.-Comparison of Whitcomb’s experiments with theory. 
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F~QTJRE 6.-Effect of Whitcomb modification on calculated wave drag. 
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277 0 

FIGURE 7.-Design of fuselage modification for specified Mach number. 

taken by Harvard Lomax and Max. A. Heaslet a t  Ames 
Laboratory (ref. 10). Their solution of this problem provides 
a definite method for determining the distribution of sources 
and sinks along the fuselage axis that will achieve a minimum 
value of the drag for a given wing shupe a t  any specified 
Mach number. Furthermore, by admitting singularities of 
higher order-quadrupoles, etc., which would distort the 
rotational symmetry of the fuselage, they have been able to 
show that the wave drag of a wing-body system can be 
reduced, in principle a t  least, to a minimum value associated 
with the given overall length and volume of the system, that 
is, t,o the value for a simple Sears-Haack body containing the 
whole volume of the system.2 

By adopting our simplified relation between the source 
strength and the body shape, we may describe the result of 
this theory by a relatively simple concept, which is illustrated 
in figure 7. For modifications of the first type, the problem 
is to determine the area AS, to be removed from the fuselage 
to best compensate for a given wing. (See fig. 7.) Selecting 
a station along the fuselage axis and a Mach plane passing 
through this station, we revolve this plane around the axis, 
measuring at  each angle $ the normal projection, or frontal 
projection, of the area intercepted where the plane cuts 
through the wing., After plotting these areas against $ and 
integrating between 0 and 27r, we obtain AS, z1s the average 
of the values of S,. At any Mach number the total volume 
to be subtracted from the fuselage is equal to the wing vol- 
ume. At higher Jlach numbers, since the modification ex- 
tends over a greater length, the area subtracted at  individual 
cross sections becomes less. 

Figure‘ 8 shows the calculated result of designing the 
fuselage cutout for a specific Mach number, 1.2 in this case. 
The lower’curve is an envelope showing the minimum values 
that can be achieved by such a radially symmetric cutout. 

Figure 9 shows the magnitude of the gain that is theo- 
retically possible by higher order modifications of the fuselage 
shape. There are three lower bounds here, and the symbols 
a,, a,, etc., attached to them refer to a representation of the 
fuselage shape by singularities of increasingly higher order. 

2 This value is, of coursr, not an absolute minimum lorn given volume since, BS shown hy 
Ferrari, the Fave drag ai a body can be reduced to zero by special volume distributions (see 
El. 11). 
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(a I 
I 

The curve labeled a0 is that given on the previous figure and 
shows the maximum effect of radially symmetric modifica- 
tions. While the fuselage shapes for the other curves have 
not actually been determined, the curve labcled ao+az may 
be thought of as referring to a cutout with an additional 
elliptic modification. 

In  order to test this theory of determining optimum body 
shapes we have started a program, using models simiiar to 
those investigated theoretically. Several of these models 
have already been tested in the Ames 2- by 2-foot wind 
tunnel, with results that agree quite well with calculations 
made on the assumptions given earlier. Shown in figure 10 
are the experimental and theoretical curves. I t  is evident 
that the calculated differences are all reproduced approsi- 
mately in the experimental values. 
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FIGURE %-Effect of modification designed for a specified bI:icli 
number. 
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FIGURE 9 -Envelopes for drag at design Mach number. 
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APPENDIX A 
SIMPLIFIED CALCULATION OF DRAG IN SPECIAL CASES 

If special shapes such as the Sears-Haaclr body (ref. 7) and 
the elliptic wing (ref. 8) are selected for exploratory studies, 
then the calculation of drag can be greatly simplified. 

The radius r of the Sears-Haack body at any station X is 
given by 

(AI) 

For this shape 

S’(X)=A2 sin 2q (-42) 

and the drag has a minimum value for the given volume and 
length. The value of the drag is given by  

The elliptic wing has symmetrical biconvex sections, with 
ordinates z given by 

where a and b are the semiaxes. The area distribution for 
.;very angle of projection is similar to that of the Sears-Haaclr 
body, but the projected length varies with the angle. The 
wing thus yields a minimum value of the wave drag consistent 
with a given volume and the elliptic plan form. The value 
of this drag is: 

where S is the plan area of the wing. 
By making use of the reversal theorem for drag we may 

compute the wave drag of any body from the fictitious 
pressure field obtained by superimposing the perturbation 
velocities for forward and reversed motion (refs. 12 and 13). 
This process leads to some interesting relations for the shapes 
selected. ‘Thus in the case of the Sears-Haack body it may 
be shown that the combined pressure distribution consists 
of a uniform gradient of pressure over the whole interior R 
of its “characteristic envelope” defined by the Mach cone 
from the nose together with the reversed Mach cone from 
the tail. (See fig. 11.) 

By thinking of the characteristic region R as a region of 
uniform horizontal buoyancy, and of the body b in terms of a 
certain volume, v b ,  we see that the drag is simply the product 

The ex?stence of a constant pressure gradient makes tho 
computation of interference drag particularly simple for such 
shapes, provided the interfering body lies entirely within 
the characteristic region R. Thus Ihe additional drag of an 
airfoil R placed within the double cone of the fuselage will be 
given by 

(-47) Dbb Daa=~, - 
vb 

Now, by the mutual drag theorem (ref. 13) we have 

Da,=Db.z (A81 

or, “the drag of the fuselage caused by the presence of the 
wing is equal to the drag of the wing caused by the presence 
of the fuselage.” In  this way we obtain the general formula 

D(ai-b)=Dbbi-2DabfD,, (A91 

’(a) Body of revolution. 

(b) Elliptic wing. 

FIGURE 1 1.-Characteristic envelopes. 
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and for the special shapes selected: 

The effect of an indentation or cutout in the fuselage may 
be calculated by introducing a second “body,” e, shorter 
than the fuselage, and having a negative volumc cqual to the 
volume subtracted by tlie indentation. 111 order to simplify 
the situation as much as possible it. will be ussumcd that the 
wing lies entirely withiii the characteristic region of the 
indentation, and furthermore that the latter may be repre- 
sented by a “negative” Scars-Hawk body with volurnc equal 
to that of the wing. 

Sears-Hoock body; 
Negative volume 

2Doc=2+ uo 

Negative volume, uc=-u0 
DIo+c)= D,,-Dcc 

W 

Sears-Hoock bodv 

Pint RE 12.-SiinpIifird calculation of iiitrrftwiice drag. 

‘l’hr ralculation of drag in this casr is illustratrd in figurr 
12. 

but, siiwc, 

For the airfoil and rutout wr havr 

(A1 1) 

D(a+c)= nu+ 2&+ n,, 
2D,,=-2D,, 

D(a-f-e)= 0,-D,, 

Now, the combination (a+c) may be placed inside the charac- 
teristic region of the body b without interference, since 
va+v,=O. Hence, 

D(a+ b+c)  = Dan+ LA!,-- D,, (A12) 

This formula yields the minimum drag for the shapes selected 
under the assumption that v B t c  is fixed. In this case tlie 
drag saving is rqual to the drag of thc inrleiitatioii alone. 

The negative Sears-Haack body is not the optiniuni shape 
of the indentation G for tho c11ipt.ic wing, as shown by the 
rcsdt of Heaslet aid  Lomax yuotcd citrlier (ref. IO). Again, 
however, ill tlrc case of tho optimum shape fob c, our previous 
equation holtls. IIowcvcr, the calculation of D,, is morc 
complex in this case and its value is somcwliat grcutcr. 
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The Compressibility Rule for Drag of Airfoil 
Noses 

R. T. JONES* AND M. D. VAN DYKE* 
Ames Aeronautical Laboratory, NACA 

SnnraraRY 

It is shown that the drag of any semi-infinite airfoil section in 
purely subsonic inviscid flow follows precisely the Prandtl- 
Glauext compressibility rule. The result for the parabola has 
application to leadmg-edge corrections in thin airfoil theory. 

INTRODUCTION 

EMI-INFINITE BODIES have long been used to repre- S sent the noses of elongated aerodynamic shapes. 
This role assumes increased importance in compressible 
flow, because the approximate linearized theory must 
usually be employed, and it breaks down in the neigh- 
borhood of stagnation points.’ It can be corrected, 
however, if the flow is known past a simple semi- 
infinite shape (such as a parabola) that matches the 
actual body near its nose.2 Except in incompressible 
flow, the semi-infinite shape itself cannot be treated 
exactly, but only by another approximation such as 
the Janzen-Rayleigh method. However, it is shown 
in the present paper that for the drag itself the effect 
of compressibility is known exactly. 

DRAG OF A PAFL~BOLA IN SUBSONIC FLOW 

As discussed by Prandtl and Tietjerqa the drag of a 
semi-infinite body in inviscid flow is understood to be 
the limit of the pressure drag on a finite section isolated 
by a transverse slit into which the surrounding pres- 
sure penetrates (see Fig. 1). With this definition, the 
drag (per unit span) of an infinite parabolic cylinder in 
incompressible flow along its axis is UR times the dy- 
namic pressure, R being the nose radius. 

As the free-stream Mach Number increases to any 
value short of uriity, the entire flow field remains sub- 
.sonic and hence free of shock waves, because a pa- 
rabola exerts only a retarding iduence on the flow. 
Local pressures do not, of course, follow the Prandtl- 
Glauert compressibility rule even approximately near 
the stagnation point. Nevertheless, the particular 
weighted average of surface pressures that yields the 
drag does obey that rule exactly. Thus, at any free- 
stream Mach Number EA less than unity, the drag is 

D = (1/2)pU2 (?rR/- 

The proof can be based on consideration of any thin 
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airfoil (say, a symmetrical Joukowski section) of thick- 
ness r. If the leading edge is analytic, it has a nose 
radius proportional to r2. Now suppose the airfoil 
divided into a short nose section of length r and a re- 
maining tail section (see Fig. 2), and consider the con- 
tribution of each to the total drag. The drag vanishes 
as r approaches zero, but the drag coefficient remains 
finite if referred to a length of order r2, such as the nose 
radius. The nme section disappears in the same limit; 
but if it is magnified so that its nose radius remains 
constant, it  approaches an infinite parabola. 

Over the rear section the slope is uniformly small, so 
that the linearized theory becomes exact in the limit, 
giving a drag coefficient proportional td (1 - M2) -(’”) 
Over the nose section linearized theory cannot be ap- 
plied. However, if the flow is purely subsonic, the 
total drag is zero according to Theodorsen’s extension 
to subsonic flow of d‘Alembert’s paradox.‘ Hence 
the drag of the nose also varies as (1 - M2)-(’’2). 

The same compressibility rule holds for the well- 
known leading-edge suction force associated with angle 
of attack. This is clear from a repetition of the pre- 
ceding argument with the airfoil considered to  have an 
angle of,attack a! that tends to zero in proportion to the 
thickness r. In the limit we obtain asymmetric flow 
past an infinite parabola (see Fig. 3). One cannot 
speak of the angle of attack, because the slope of all 
streamlines tends toward zero far upstream, decaying 
finally like [ s ~ / ( - x ) ] ” ~  where SO is some characteristic 
length. However, one, can instead characterize the 
degree of asymmetry of the flow field far upstream by 
specifying t h i s  parameter SO in the dimensionless form 
so/R. (In the limiting process just envisioned, the 

- 
FIG. 1. Flow past a semi-infinite airfoil. 
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k-T-4 
FIG. 2. Division of airfoil into nose and tail sections. 

ratio a/r that was held fixed is proportional to dsz.) 
As indicated in Fig. 3, the stagnation point lies a dis- 
tance SO downstream of the vertex in incompressible 
flow, but moves nearer the vertex as the Mach Number 
is increased. Then for a fixed flow pattern far up- 
stream, corresponding to constant SO, the drag of a 
parabola is given by 

D = (1/2)pU2[r(R - s o ) / d I  - W ]  (2) 

This rule now holds only below the critical Mach Num- 
ber, which is less than Unity for asymmetric flow. At 
speeds above the critical Mach Number, local super- 
sonic zones appear which undoubtedly terminate in 
shock waves, and these invalidate the extended d'Alem- 
bert paradox on which the argument rests. It may be 
noted in Eq. (2) that even in nonlinear flow the drag 
terms are additive. 

The rule provides an integral check on detailed ap- 
proximate solutions. For example, Imai6 has calcu- 
lated the Janzen-Rayleigh expansion in powers of W 
for the surface speed on a parabola in symmetric flow, 
retaining terms in M4. Carrying out the complicated 
integration for the drag gives 

D/(1/2)pU27rR = 1 + ( l / 2 ) M 2  + (3/S)M4 + . . . (3) 

This is just the expansion to order M4 of the Prandtl- 
Glauert factor (1 - M2)-(1/2), so that Imai's approxi- 
mation is in accord with the present rule. Again, 
Raplane and others have treated the inclined ellipse by 
the Janzen-Rayleigh expansion to order Mz, and from 
that has been extracted the series to M2 for asymmetric 
flow past the parabola.' Integrating for the drag gives 
again the compressibility factor [I + (1 /2)M2 + . . . 1. 
To obtain sufEaent accuracy for purposes of correcting 
compressible thin-airfoil theory for lifting round-nosed 
wings,2 this last solution should be extended to include 
terms in M4; when that is accomplished the present 
rule willeprovide a useful partial check on the formidable 
calculations involved. 

DRAG OF O ~ R  SEMI-INFINITE BODIES 

It is clear that the proof given for the parabola will 
not be invalidated by local changes from parabolic 
shape near the vertex. Hence any semi-infinite cylin- 
der that approaches a parabola far downstream has 
(below its critical Mach Number) ~e drag of that 
parabola. For example, in Helmholtz' solution for 
incompressible free-streamline flow past a plate of unit 
height normal to the stream, the dead-water region 
far downstream approaches a parabola of nose radius 
2/(7r 1- 4). According to Eq. (I), the dead-water re- 

gion replaced by a solid body would have a drag of 
s p v " / ( r  + 4), and this is in fact Helmholtz' value for 
the plate. For the solid body this value would rise 
with Mach Number as (1 - W)-('/') until the speed 
of sound was attained on the surface. 

Furthermore, the proof indicates that the rule applies 
as well to a semi-infinite body that ultimately grows 
more slowly or more rapidly than a parabola. How- 
ever, a body has zero drag if it grows more slowly and 
$ b i t e  drag if it grows more rapidly. Hence only the 
dividing case of a body asymptotic to a parabola pro- 
vides a signiscant result. 

Similar considerations could be applied to a three- 
dimensional semi-infinite body-for example, a body of 
revolution. However, the significant shape that sep- 
arates axisymmetric bodies of zero and infinite drag 
has been found by Gurevich8 to be a peculiar one whose 
radius varies asymptotically as x'/'(ln x)-("~). AS in 
plane flow, its ultimate form must be the same as that 
of the dead-water region in axisymmetric free-stream- 
line flow, for which Levinsong has indeed found the 
same form. For a body of noncircular cross section, 
mce  the drag depends only on the +ape far  down- 
stream, where slender body theory becomes accurate, 
the area rule shows that the drag depends only on the 
cross-sectional area. Hence, any three-dimensional 
semi-infinite body having finite drag in subsonic flow 
grows with cross-sectional area ultimately proportional 
to x(1n x )  -(I"). 

APPLICATION TO SUBSONIC LEADING EDGES 

Thin airfoil theory breaks down near the leading edge 
of a wing in subsonic flow or in supersonic flow with 
the edge swept behind the Mach cone. For round 
edges, the error in pressure is such that the drag can 
be found correct only by including a leading-edge force 
associated with the singularity.' This force is just the 
drag of a parabola having the same nose radius, given 
by Eq. (1). (On swept,edges, U and M are to be re- 
placed by their components normal to the edg5.) The 

-x  - 

FIG. 3. Asymmetric flow past a parabola. 
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derivation of these corrections on the basis of thin air- 
foil theory was, of course, inadequate since the flow is 
clearly nonlinear in local regions, but when the deriva- 
tion is based on the extended d'Alembert paradox the 
corrections are seen to apply to more realistic fluids 
provided only that the flow remains of the reversible 
subsonic type. 
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AERODYNAMIC DESIGN FOR SUPERSONIC SPEEDS 
By ROBERT T. JONES" 

National Advisory Committee for Aeronautics 
Ames Aeronautical Laboratory 

Moffett Field, California 

Summary--The aerodynamic phenomena that may profitably be employed by 
the designer at subsonic speeds seem now to be well understood. At supersonic 
speeds such phenomena show a greater and more interesting variety. Search 
for the minimum number of guiding principles of design thus becomes more 
diflicdt and more dangerous. 

Studies which can cover an adequate range of geometrical form are at present 
limited to the linearized version of aerodynamic theory. Such studies, especially 
those by variational methods, have disclosed certain basic principles of design for 
aerodynamic efficiency. In present-day experiments, however, the indicated 
trends are rather quickly confronted with effects of viscosity and nonlinearities. 
While the theory indicates that good values of aerodynamic efficiency are possible 
at supersonic speeds it is not yet clear how closely these expectations may be 
approached in practice. 

In the present paper several arrangements of supporting surfaces and bodies 
are discussed and in some cases comparisons of theory and experiment are made. 
Finally, certain phenomena connected with lift and drag in a rarefied medium 
are considered briefly. 

INTRODUCTION 

IN its earlier development the subsonic airplane showed a great variety 
in the arrangement of airfoils, bodies, and other parts. For the past 15 
or 20 years, however, those airplanes which have passed the tests of 
experience have shown little alteration in basic form. The aerodynamic 
principles which have determined this form seem now to be well under- 
stood and agreed upon. 

The situation is different in the case of the supersonic airplane. Here 
the aerodynamic rules seem more complex. No clear direction toward 
a specific form is evident. Our theoretical investigations have taken a 
rather wide range-seeming in some cases rather far removed from 
practical questions. 

In  the present paper we shall review some of the recent theoretical 
and experimental work in supersonic aerodynamics with its practical 
application in mind. 

*Aeronautid Research Scientist - .  
r 
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COMPONENTS OF DRAG 

When considering the drag of a complete airplane it is natural to 
simplify our thinking by dividing the drag into components according to 
differences in origin. One possibility here is to assign a drag to the in- 
dividual parts of the airplane and then allow for a certain “interference” 
between the various components. This scheme is not completely satis- 
factory at supersonic speeds since the individual drags often tend to be 
outweighed by the interference. A somewhat more satisfactory division 
associates a component of the drag with lift-producing elements, elements 
of volume or thickness, and a component of surface friction. Here again 
the interference must not be discounted and it is necessary to guard against 
the acceptance of any such division as having a fundamental significance. 

Thus the division of drag according to normal pressure and skin 
friction or “tangential pressure” seems a natural one, and yet situations 
arise in which this convention is not appropriate. In the case of a cooled 
body in a rarefied gas stream the resultant stress acts nearly in the stream 
direction, independently of the inclination of the surface. Here the 
resultant affords a simpler description than any of its components. 

If we accept tentatively the division according to lift, volume, and 
surface area, then it is possible to trace the variation in the relative magni- 
tude of these items as the Mach number increases. The range of low 
supersonic speeds is characterized by the development of large pressures 
on surfaces having a small inclination. Thus the drag due to thickness 
or volume is relatively large in comparison with the drag due to lift. At 
the same time any disturbance causes an extensive lateral influence, giving 
rise to pronounced interference effects. The surface friction is, however, 
hardly changed from its subsonic value, provided the increased tendency 
toward separation can be avoided. 

At higher speeds the Mach waves bend back so that the zone of influence 
is contracted laterally into a smaller space around the body. The pressure 
developed by a given surface inclination becomes smaller in proportion 
to the dynamic pressure. For this reason the drag associated with the 
thickness is reduced. To support a given lift the wing must have a larger 
angle of attack, so that the drag due to lift is increased. The friction co- 
efficient with either laminar or turbulent flow diminishes, but not as 
rapidly as the normal pressure. 

The drag arising from the volume of the wings or bodies is most pro- 
nounced at low supersonic speeds near M = 1.0. For airplanes intended 
to fly in this range a proper distribution of volume according to the area 
rule is important. As in the case of the lift distribution, however, our 
studies have shown that the minimum of the drag is not a sharp minimum, 
but there exist many smooth shapes near the optimum which have essen- 
tially the minimum drag. From the designer’s standpoint the influence 
of the over-all proportions is perhaps the dominant influence, the wave 
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drag being reduced most effectively, of course, by extending the volume 
in the flight direction. 

MINIMUM DRAG OF LIFTING SURFACES 
In the problem of minimum drag, as previously considered by the present 
write+), the plan form of the wing is assumed to be given as well as the 
total lift. The result provides a certain unification of subsonic and super- 
sonic airfoil theories through the artifice of a “combined flow field”. By 
considering this problem from a different point of view, M. N. Kogan(2) 
has recently given a derivation in which the significant quantities seem 
to have a closer relation to the physical phenomena. Rather than consider ’ 

a reversed motion of the wing, Kogan utilizes the reversed Mach wave 
as a control surface in applying the momentum theorem to the calculation 
of drag. As a result of this choice, the expression for the drag reduces to 
the Dirichlet integral of the local disturbance velocities projected on this 
surface. Thus 

while the lift is given by 

Here yg and ‘pz are the y and z components of the disturbance velocity 
after projection on the characteristic surface r. The lift is thus propor- 
tional to the downward momentum of this lateral flow and the drag to 
its kinetic energy. Now, of flows having a given momentum, the one 
having the smallest kinetic energy is that one which follows the stream- 
lines of an incompressible fluid. Hence a wing of minimum drag should, 
if possible, produce on this rear characteristic surface a flow satisfying 
Laplace’s equation in two dimensions, that is : 

The projected velocity distribution on the reversed characteristic surface 
thus plays a role similar to the lateral velocity distribution in the Tref€tz 
plane in ordinary wing theory. Unlike the Trefftz plane, however, the zone 
of disturbance on the reversed characteristic surface is limited in extent. 
Beyond the Mach waves from the leading edge the lateral entrainment of 
the wing ceases, leading to the boundary condition q~ = 0, so that the 
wing operates effectively on a limited jet of air. The problem is thus 
analytically the same as that of a wing at low speed in an open jet wind 
tunnel (see Fig. 1). The increase of the induced drag which results 
from the limitation of the wing in the finite jet is exactly equal to the 
“wave drag” of the wing in unlimited supersonic flow. Wings having 
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short fore-and-aft dimensions have a small area of entrainment, as shown 
by Fig. 2. The effect of increasing the Mach number is shown in Fig. 3. 

- .  

FIG: 1. Equivalent incompressible jet. 

FIG. 2. Effect of fore-and-aft dimension of wing on area of lateral entrainment. 
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FIG. 3. Effect of Mach number on area of lateral entrainment. 

We recall the formulas of Prandtl and Munk for lift and drag of the 
wing at low speed, that is 

L = pwUS' (4) 
D = *pwaS' ( 5 )  

where w is the downwash and S' is the area of virtual additional mass of 
the wing's trace. In the new theory these same formulas will apply at 
supersonic speed if the area S' is replaced by the area of virtual mass of 
the wing trace in the finite jet a~ limited by the Mach waves. 

It seems unlikely that a result of this kind, referring to principles of 
momentum and energy, would be strictly l i t e d  to the linearized version 
of the wing theory. Following this thought, M. D. Van Dyke and I have 
recently found that equations (l), (2), and (3) remain valid even when 
quantities of second order in the velocities and pressures are retained. 
As ,Ward has indi~ated'~), the relation between the characteristic trace 

of the wing and its plan form is not unique. Now Kogan's analysis yields 
the minimum drag consistent with a given characteristic trace (including 
the vortex trace) and a given total lit ,  or, by an obvious extension, a given 
spanwise load distribution, but it does not give necessarily the minimum 
drag associated with a given plan form, only a lower bound. For, consider 
two outline shapes, one lying within the other, yet both having the same 
characteristic trace, so that the two-dimensional solution is the same for 
both. Subtract one flow from the other: the disturbance is canceled 
completely at the characteristic surface, indicating zero drag, yet a dis- 
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tribution of lift remains in the region of the wings. Thus in determining 
the minimum drag for a specified characteristic trace we are also deter- 
mining the associated plan form. For the solution of the minimum 
problem when the plan form is given we have to return to the criterion 
of constant downwash given earlier. 

E. W. Graham(*) has shown that a result similar to Kogan’s can be 
derived by utilizing the idea of the combined flow field. Graham’s 
analysis provides further a simple determination of the loadings of the 
wing when integrated in various oblique directions. Graham’s analysis 
brings out the following interesting question: Suppose we have a surface 
distribution of lift Z(x,y) and suppose the projected linear loadings 
IL(x,,a) obtained by integrating Z(x,y) along lines in various directions 
x = xo + ay are known. Can the surface distribution Z(x,y) be deter- 
mined from IL(x,,a) ? 

3> 

Graham(5) gives the following result; if 

E(x0,a) = ss Z(x,y)~(~-xO-~y)dx dy = ~ ( x o + ~ , ~ ) d ~  (6 )  

(7) 

s 
then 

dx,da 
@’Y) = &Sf& ax, x -~,--oly 

A somewhat more symmetrical relation can be achieved if we substitute 
for the Dirac delta function, 6, its equivalent Cauchy integral formula: 

x + 0i)- f(x- oi) 
f(x)b(x-x,)dx= - dx = f(xo) s 

Then we may write 

-e+ 

The integrations should extend over the largest plan form consistent with 
the projected lengths of the loadings IL, though the9 lift distribution 
Z(x,y) may not do so. 

Studies by variational methods often establish essential relations with 
greater clarity than other methods. Here the relation of the drag to the 
area of entrainment and to the momentum and energy of the downwash 
flow is perhaps more significant than the relation for the drag to be an 
absolute minimum. Following this thought we may seek functions for cp 
which satisfy the condition v = 0 on the outer boundary of the charac- 
teristic trace and y2 = constant on the wing trace, but which satisfy 

+ vz2 = 0 only approximately. Thus Heaslet and Fuller(6) find 
quite simple expressions for the drag of wings having the plan form of a 
hyperbola by relaxing this latter condition. Their solutions correspond 
to exact minima of the drag for special positions of the center of pressure. 
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The problem of minimum drag when both the lift and the center of 
pressure are fixed has been considered by P. Germah('). In this case 
the divergence of the velocity field is not zero as in equation (3) but has 
a constant value. From the practical standpoint it may be noted that a 
wing whose width increases toward the rear generally has a smaller drag 
when the centroid of the lift distribution is placed ahead of the aero- 
dynamic center. Thus we may say that the triangular wing has a "negative 
trim drag". The optimum loading of wings having fore-and-aft symmetry, 
however, acts at the middle of the wing, behind the aerodynamic center. 
Hence wings having fore-and-aft symmetry or wings whose width de- 
creases toward the rear (e.g., a reversed triangular wing) may be expected 
to have a positive trim drag. 

YAWED A N D  SWEPT W I N G S  
With planar wings the wave drag is reduced as the lift distribution is 

extended in the flight direction, while the vortex drag is reduced by ex- 
tending the span. At the same time the friction drag is reduced by 
diminishing the exposed area of the wing. At subsonic speeds the last 

'two considerations are effective and they lead to wing forms approaching 
a lifting line perpendicular to the flight direction. At supersonic speeds 
the added condition on the length leads to a long, narrow wing placed 
at an angle of yaw. 

It is interesting to analyze the yawed lifting line in terms of its area of 
entrainment. The forward and reversed Mach waves are simply circular 
cones drawn from the ends of the line. At subsonic angles of yaw the 
cones are displaced laterally so that the contour of their inter-section, 
which outlines the equivalent jet, is an ellipse. The area of this ellipse 
vanishes rapidly, however, and disappears completely as the lifting line 
approaches the Mach angle. The area of entrainment is zero and the 
wave drag given by the theory is infinite at supersonic angles of yaw. 

If we convert a yawed wing into a swept wing by bending it at the 
middle, keeping the same structural slenderness, we see that the length 
in the flight direction is reduced to about one-half. The wave drag is 
then increased, so that the potential lift-drag is invariably smaller for 
the bilaterally symmetric arrangement. 

Figure 4 shows the estimated lift-drag ratios for a slender elliptic wing 
at various angles of yaw. The Mach number considered here is 1.4, so 
that the transition from flow of the Kutta- Joukowsky type to the Ackeret 
type occurs in the vicinity of 45". The best angle of yaw is 30", placing 
the wing at a transverse Mach number of approximately 0.70. The lift 
coefficient required for maximum LID at this point is, however, too high 
for the Kutta-Joukowsky type of flow; hence, additional curves have been 
computed to show the effect of limiting the lift coefficient based on the 
transverse component of velocity to values of 1.0 in one case and 0.5 in 
another. 
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ANGLE OF YAW 
Effect of yaw on lift-drag ratio of elliptic wing. FIG. 4. 

Whether the wing is yawed or swept, the potential lift-drag ratio in- 
creases almost without limit as the aspect ratio is increased. The 
practical limit is reached when the lifting pressures become so great 
that Kutta-Joukowsky flow is no longer possible. A similar situation 
arises in the design of a sailplane. Here the lift-drag ratio increases 
rapidly with aspect ratio up to the point at which the optimum lift co- 
efficient begins to exceed the maximum lift coefficient of the wing sections, 
that is, when Kutta-Joukowsky flow is no longer possible. 

Figure 5 shows the results of some experiments made by Robert T. 
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FIG. 5. Effect of Reynolds number on lift-drag ratio; M = 1.53. 
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Madden at Ames Laboratory on a swept-wing model at a Mach number 
of 1.53. Here the limitation imposed by the action of viscosity on the 
performance of the long narrow swept wing is evident-especially at low 
Reynolds numbers. The sweep angle in this case is 67". 
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FIG. 6 .  Effect of wing plan form on LID. 

Figure 6 shows experimental values of LID obtained by Hall and 
Heitmeyer(*) for a model having a triangular wing. Their values are 
compared with the highest curve for the swept wing. The models have 
the same fuselage and are tested at comparable Reynolds numbers. 
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FIG. 7. Effect of Reynolds number on lift-drag ratio; M = 3.0. 

Figure 7 shows results of experiments made by Elliott Katzen(B) of 
Ames Laboratory on a wing having 80" of sweep. The Mach number in 
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this case is 3.0. The airfoil section of the model shown is the well-known 
Clark Y, which proved superior to especially cambered sections at these 
Reynolds numbers. 

The curve termed “theory” on the figure (Fig. 7) is simply an estimate 
in which the limitation on the transverse lift coefficient was not imposed. 
At the peak of this curve the lift greatly exceeds the maximum lift co- 
efficient of the Clark Y ai;foil section in two-dimensional flow. The 
two arrows shown indicate values of 1.0 and 2.0 for this transverse lift 
coefficient. There is clearly an uncertainty in our considerations here 
since the wing has widely different angles of sweep at the leading and 
trailing edges. 

In spite of their limitations, the swept wings nevertheless maintain a 
margin of superiority over rectangular or triangular plan forms except 
at the lowest Reynolds numbers. The narrow swept wings, however, 
have a greater structural weight and a smaller usable lift coefficient for 
landing. Unless their potential LID ratios can be approached more 
closely in practice, their use is difficult to justify in many applications. 

c -  

REDISTRIBUTION OF L I F T  BY FUSELAGE 
In steady flow at subsonic speeds the fore-and-aft influence of the wing 

is complete so that concentration of the lift within a narrow chordwise 
dimension causes, theoretically, no increase in the pressure drag asso- 
ciated with the lift. At supersonic speeds the unlimited forward influence 
of the wing is lacking, and the lifting system itself must have an extension 
in the flight direction if lift is to be produced with a minimum of wave 
dissipation. 

Since the fuselage of a supersonic airplane tends to be long and slender, 
the question of distributing a part of the lift along the fuselage arises. 
The possibilities inherent in this suggestion have been studied at Ames 

?: 
i :  
, I  
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c v  

FIG. 8. Distribution of lift along fuselage. 
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Laboratory and by the theoretical aerodynamics group at the Douglas 
Aircraft Company(l0). 

The simplest aspect of the problem appears if we consider distributions 
of lift on two narrow surfaces in +e form of a cross (see Fig. 8). Both 
the spanwise and the lengthwise loadings should have the form of smooth 
regular functions. However, if appreciable lift is carried on the “fuselage” 
then the spanwise loading will show an undesirable concentration at the 
center. Similarly, a peak in the lengthwise loading appears from the lift 
carried on the “wing”. Desirable loadings appear when the wing and 
the fuselage each carries a lift approximately equal to the specified value 
L except at the center, where a downward load of magnitude -L must 
appear. Hence the fuselage should carry positive lift front and rear but 
negative lift in the middle. 

Detailed calculations show that large gains are to be expected if the 
theoretical redistribution of lift by the fuselage can be accomplished in 
practice. The lifting pressures required on the fuselage are, however, 
of the same order of magnitude as those developed by the wing. According 
to present experience lifting forces of this magnitude cannot be developed 
by bending or inclining a slender body of revolution without causing flow, 
detachment and the formation of discrete vortices. Further study of this 
type of favorable fuselage interference should perhaps include some 
account of flow detachment or, better still, some means for avoiding it. 

HIGH WING ARRANGEMENTS 
Interaction between lift and volume begins to appear in the drag when 

the wing and fuselage are separated vertically. This interference is 
favorable in the case of a high-wing monoplane, but adverse for the low 
wing. More generally, we may consider an interaction between surfaces 
developing forces in a cross-stream direction and elements of volume. 
Such interactions do not appear at all in the so-called “supersonic area 
rule”. They appear in Hayes’ formula‘ll), however, since the latter is 
valid quite generally for distributions of singularities in three dimensions. 
An equally general formulation is given by Lomax and Heas€et(12), which 
expresses the drag directly in terms of the volume distribution and the 
lateral forces. In the well-known Ferrari ringed body the interaction 
between these terms may be considered complete, since the wave drag 
is canceled exactly. 

Such an arrangement may be made to develop l i i ,  but the wave cancella- 
tion is then of course incomplete. The most efficient way to gain lift seems 
to be to omit the lower half of the ring, thus creating a kind of “parasol” 
monoplane with a highly arched wing (see Fig. 9). The possibility of 
obtaining high lift-drag ratios with wing-body combinations of thii form 
has been carefully investigated in papers by Lomax and Heaslet of the 
NACA (ref. 12, and unpublished) and Beane and Ryan of the Douglas 
Company(ls). Figure 9 illustrates the wing-body arrangement and shows 
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FIG. 9. Estimated lift-drag ratio of body with arched wing. 

some typical results at design conditions. As in the case of planar wings, 
important gains could be shown if the fuselage could be assumed to 
develop sizeable cross forces. When this possibility is discounted the lift- 
drag ratios fall considerably but not below those estimated for highly 
swept wings. 

The arrows represent estimates made by Lomax and Heaslet for a 
wing, a body, and two supporting struts. The flattened body carries no 
net lift but does support a lift distribution. The wide band covered by 
the arrows is necessitated by the lack of experimental information on the 
magnitude of the cross forces that can be generated by body distortions. 
The curve represents estimates made by Beane and Ryan for a wing 
and body without the wing support system. Their body, however, was 
required to carry no lift, even locally. Further, their choice of the 
turbulent skin-friction drag coefficient was higher, 0.0030 as compared 
to 0.0025. The conclusion appears to be that the highly arched wing 
and body can have as high a value of LID as the swept wing and body. 

As in the case of the swept wing, the estimated LID ratio increases if 
the wetted area can be reduced by reducing the wing chord. Here again 
we encounter the limitation imposed by the magnitude of the pressure 
coefficient. As the wing is made narrower the pressures on the wing 
increase. The wing pressures are moreover reflected to the rear of the 
body and increased by a focusing effect. Thus we may expect flow 
separation at the rear of the body. The influence of these phenomena 
on the actual characteristics of such an arched wing arrangement will 
have to be determined experimentally. 

In the methods employed by Ferri(I*), and Rossow(15), the physical 
aspect of interference phenomena is made evident. Considering the 
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interference between planar wings and bodies, these studies have shown 
definitely favorable effects for high-wing arrangements. 

It will be interesting to try and determine a lower bound that might 
be approached by this method of drag reduction. Referring to Kogan’s 
analysis we find that the conditions imposed on the downwash flow in 
the “equivalent incompressible jet” are unaltered by the presence of 
bodies, provided these do not extend beyond the characteristic envelope 
of the wing. The added bodies may bring the drag of a given wing closer 
to this lower bound. However, if a wing shape can be found which causes 
the streamlines of the downwash to follow the pattern of an incompressible 
flow, then the addition of bodies cannot reduce the drag, except as they 
may extend the lateral zone of influence of the wing-body system. 

CANCELATION OF THICKNESS DRAG 
At intermediate supersonic speeds the wave drag due to thickness can be 

reduced to small values by the phenomenon of wave reflection. There 
exists a great variety of three-dimensional toroidal shapes for which the 
wave system is entirely self-contained; that is, the wave resistance is zero 
at certain Mach numbers, as in the Busemann biplane. One such ex- ‘ 
ample with which we have experimented at Ames Laboratory is illus- 
trated in Fig. 10. The model is essentially a tube so shaped as to produce 
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ANGLE OF ATTACK 
FIG. 10. Drag of tube having a planar wave system. 

in its interior a finite portion of the plane wave system between the wings 
of a Busemann biplane. Such shapes are easily constructed by marking 
out a stream surface of arbitrary cross section in the undisturbed flow 
ahead and then calculating the inward deflections of this surface as it 
passes through the plane wave system of the biplane. Since the wave 
system has no lateral velocities (Le., no components in the y direction), 
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the boundary conditions may be satisfied most conveniently by referring 
them to sections of the torus made by vertical planes (see Fig. 10). 

Tubular bodies having no wave drag can also be made with multiple 
symmetry, or with complete rotational symmetry. However, such shapes 
ordinarily enclose regions in which the pressure rises to large values 
because of focusing. In the case of plane waves the reflection involves 
only a factor of 2-and this seems to be the smallest value obtainable. 

The experiments were made by Loren Bright of Am- Laboratory and 
showed a negligible wave drag at the design Mach number of 2.0. The 
most complete wave cancelation, however, occurred at a slightly higher 
Mach number, M = 2-3. I n  Fig. 10 the drag is plotted against angle 
of attack at M = 2.0. At about. 5” the wave system changes suddenly 
and the drag increases. 

Similar experiments with a torus designed to produce an oblique 
(i.e., yawed) system of plane waves showed a somewhat more continuous 
behavior. 

Whiie the experiments showed that the wave drag associated with the 
volume could be eliminated, the tubular bodies developed rather low 
values of lift-to-drag ratio. I t  seems that the added surface area reqkred 
to enclose the wave system increased the friction drag enough to over- 
balance the gain in wave drag. At still higher Mach numbers the friction 
drag becomes increasingly important relative to the thickness drag. The 
use of wave cancelation between interfering bodies or surfaces is more 
easily justified if the added surfaces are also desirable for some other 
reason, such as stabilization or control. 

LIFT AND DRAG AT HIGH ALTITUDES 
In his article “Superaerodynamics” in the Journal of the Franklin 

Institute, Feb. 1934(16), Albert F. Zahm refers to flight in the upper atmo- 
spheric layers and states that “Space craft and projectiles must obey new 
or modified laws of air resistance. These may well be studied in high- 
vacuum wind tunnels or chambers, under guidance,of mathematical 
theory”. I remember Zahm‘s paper well, since I was a student of his at 
the time and made drawings for the figures that appear in the paper. I 
also recall that the paper was not accepted for publication by the journals 
to which it was first submitted. One is tempted to think that it might 
be a great service if journals published, in addition to their tables of 
contents, some notice of the rejected contributions. 

Zahm considered the flow of individual particles of a tenuous gas and 
indicated the modifications needed for diffuse reflection or re-emission 
of molecules. In later paper~(~’~l~) ,  E. Sanger and H. S. Tsien brought 
these considerations into closer contact with the physics of gases as based 
on kinetic theory. 

At speeds approaching 20,000 feet per second, we may of course dis- 
pense with aerodynamic lift for cruising. However, there are indications 
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FIG. 11. Effect of lift-drag ratio on maxknum deceleration for recovery of 
satellite. 

that aerodynamic forces however small will play an important role in 
recovery from purely dynamic orbits or trajectories. Figure 11, prepared 
from calculations made by D. R. Chapman'lQ) of Ames Laboratory, shows 
the maximum decelerations encountered in a spiral descent from an 
initially circular orbit around the Earth. The descent is uncontrolled 
except that the direction of the resultant aerodynamic force is maintained 
at a fixed angle to the direction of motion, corresponding to a fixed LID 
ratio. If the body develops no lift the maximum deceleration encountered 
is about 8g. However, even small lift forces result in a much more uni- 
form dissipation of the kinetic energy so that at a lift-drag ratio of one-half 
the maximum deceleration falls to about 2 g. 

Even such small values of the LID may prove difficult 'to achieve if 
the deceleration occurs at altitudes above 75 miles. Figure 12 illustrates 

' 

FIG. 12. Aerodynamic force on inclined plate in low-density flow. 

the expected reaction on an inclined flat plate in air of extremely low 
density. The oncoming molecules are deposited on the plate and are 
emitted with thermal velocities corresponding to its temperature. For a 
relatively cool surface at high flight velocities the pressure due to emission 
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FIG. 13. Drag and lift coefficients on inclined flat plate in low-density flow. 

can be neglected. Under these conditions the aerodynamic force is a 
drag, given by the relation 

D = pU2S’ (9) 
Here S‘ = S sin 01, is the frontally projected area of the wing. Figure 13, 
prepared from data given in ref. 20, shows how closely this simple rule 
is obeyed by more precise calculations. 

The loss of lift in free-molecule flow is a consequence of Knudsen’s 
law, according to which the emission of molecules is independent of their 
angle of arrival at the surface. Such behavior is closely approximated 
in experiments conducted thus far(21122). 

It seems unfortunate that the small departures from Knudsen’s law 
have served to characterize a whole regime of rarefied gas dynamics as 
the region of “slip flow”. The main effects seem to be related more 
directly to the “sticking” of the molecules rather than to their slipping. 

Since the pressures developed at high speed are large compared to the 
ambient pressure, we may expect an extensive range of conditions in which 
the medium behaves as a gas in the vicinity of the body but as a mole- 
cular beam in the exterior flow. The investigation of this semi-continuous 
regime promises a great variety of yet undiscovered aerodynamic 
phenomena. 

In conclusion, the writer wishes to express appreciation to his colleagues 
at Ames Laboratory for assistance in preparing this paper and to 
H. W. Liepmann of the California Institute of Technology for helpful 
discussions. 
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DISCUSSION 

D. W. HOLDER,: Has the author made experiments on wings with subsonic 
leading edges having sections other than the Clark Y section referred to in the 
lecture ? What improvements of lift/drag ratio does he feel could be achieved by 
using suitably designed section shapes ? 

R. T. JONES: The wing having 80” sweep was tested initially with Clark Y 
sections and with its under surface flat. A cylindrical bending of the wing which 
increased the angle of attack at the apex and decreased it at the tips resulted in a 
slight improvement. A fiuther gain might also result from a modification of the 
section shape, but the direction in which improvement lies is uncertain because of 
non-linear effects. Further details of these experiments are presented in NqCA 
T N  4361 by Elliott D. Katzen. 

G. H. Lmt :  The remark by Mr. Jones that there are at present a great many 
possible layouts for a supersonic aeroplane is one that I should like to endorse. 
The fact that the designer has such a wide choice from which to select the layout 
makes his job at present difficult but very interesting; the additional fact that, to-day, 
there is some doubt regarding military and civil aeroplane requirements, adds to 
his problems. 

In such circumstances, the general work being done by Mr. Jones and discussed 
in the lecture is very valuable in helping the designer to make his choice by giving 
him some idea of the relative aerodynamic “attractions”, or the performance 
possibilities, of the different layouts, for example, the relatively small difference, 
shown in one of the slides, between the maximum LID ratio for a “swallow-tail” 
and a delta wing suggests that in many cases LID ratio would not be the decisive 
factor, though in certain applications the additional 10% or 15% could be most 
valuable. 

I think we shall find the present paper most useful in making comparisons of this 
sort and in indicating ways of tackling the various aerodynamk problems which 
arise. 

R. T. JONES : I am grateful to Mr. Lee for his comments and am glad to have my 
opinions reinforced by those of an experienced airp€ane designer. Perhaps the 
present uncertainty in military and civil airplane requirements is simply a reflection 
of our uncertainty concerning the physical limitation on airplane performance. 
Such requirements can usually be modified rather quickly following the introduc- 
tion of a new phenomena or design principle. 

* National Physical Laboratory, England 
t Deputy Chief Designer, Handley Page Ltd., England 
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CHAPTER 8 

THREE-DIMENSIONAL WINGS 

OF MINIMUM PRESSURE DRAG 

by 
ROBERT T. JONES* 

1. INTRODUCTION 
In  linearized flow theory, certain very interesting extrema1 properties 

of wings can be derived under rather broad conditions without the use of 
a complicated mathematical apparatus. The present chapter reviews 
certain results of this theory and indicates some rather obvious extensions 
to incorporate various auxiliary conditions. Several examples illustrating 
the relation between the geometrical features of the wing and the lift 
distribution for minimum drag are given. 

2, MINIMUM DRAG PROBLEM 
I n  this section, we consider a thin, cambered lifting surface of given 

planform and investigate the pressure distribution p ( x ,  y )  which yields 
the minimum drag under various auxiliary conditions (Ref. 1). For this 
purpose, the drag D in frictionless flow is written in the form 

where x is a chordwise coordinate, y a spanwise coordinate, and a ( x ,  y )  
the rearward inclination of the normal to the surface element dS = d x  dy 
(Fig. 1). With regard to the auxiliary conditions, the following isoperi- 
metric constraints have engineering interest: 

L = J-1 p d x d y  
S 

if the lift is given, 

1M, = J-J- PlY I dXdY 
S 

(3) 

* Principal Research Engineer, Avco-Everett Research Laboratory, Everett, 
assachusetts. 
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FIG. 1. Cambered lifting surface. 

if the bending moment is prescribed, and 

M, = jj  p x d x d y  
S 

(4) 

if the pitching moment is given. Incidentally, the constraints (2) through 
(4) are particular cases of 2 more general constraining relationship having 
the form 

where C is a given constant and where f ( x ,  y) is a prescribed weighing 
function. This weighing function has the values f = 1 if the lift is given, 
f = I y I if the bending moment is prescribed, andf = x if the pitching 
moment is given. 

The problem considered here consists of minimizing the drag integral 
(1) subject to one or more isoperimetric constraints 'having the form 
described by Eq. (5). Clearly, this problem involves two independent 
variables (x, y )  and two dependent variables (p, a). The latter, however, 
are related through the partial differential equations and boundary 
conditions describing the flow around the wing or through certain 
integral' relations. Since this method of solution is rather complicated, 
we abandon it and approach the problem through the use of the reverse 
flow theorems already established for a wing in linearized supersonic 
flow (Refs. 2 and 3). 

From the linearized theory, it is known that the drag associated with 
a given distribution of lift remains unchanged when the direction of 
motion of the wing is reversed. The angle of attack distribution over the 
wing surface in the reverse flow may be denoted by ar(x, y) and will, of 
course, differ from a(x, y) if the pressure distribution p(x,  y) is to remain 
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unchanged. In view of the reverse flow theorem, we may express the drag 
in terms of a combinedflow field obtained by superimposing the disturb- 
ances created by the given lift distribution in the forward and reverse 
motions (Fig. 2). Thus, if we write 

E = (a + a,)/2 (6) 

the drag may be rewritten in the form 

and is stationary provided (see Chapter 3) 

where 8p and 8a denote variations calculated at a constant station x,y.  
On the other hand, the satisfaction of the isoperimetric condition (5 )  
requires that 

Hence, if h denotes an undetermined, constant Lagrange multiplier and 
if Eqs. (8) and (9) are combined linearly, we deduce that 

\ 
'\ /' 

'\ '., ,' e Errsonic 

1 2  ,' '\ '. I \  

FIG. 2. Lifting surfaces with superimposed disturbance fields. 
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At this point, we note that the variations 8p and 8E are not independent. 
However, as was shown in Ref. 1, the symmetry introduced by super- 
imposing the forward and reverse disturbance fields is such that the two 
interference drags are equal, that is, 

Consequently, after Eqs. (10) and (11) are combined, we obtain the 
relationship 

SIs(. - A f ) 8 p d x d y  = 0 (12) 

which involves onIy the independent variation 8p. Because of this, the 
Euler equation describing the extremal solution is given by . = Af(x,y)  (13) 
which has the following significance: the angle of attack in the combined 
flow field must be proportional to the weighing function imposed on the 
pressure distribution. 

A modification of the previous problem arises when several isoperi- 
metric constraints of the form 

are impoved on the wing. Under these conditions, the Euier equation 
becomes 

7n 

= Z X , f j ( X , Y )  (15) 
$4 

where each of the multipliers Aj is an undetermined constant. 

3. PARTICULAR CASES 
The previous extremal property for the drag is remarkable for the 

economy of its derivation. It holds for subsonic as well as supersonic 
flows and is not even restricted to steady motion. Several particular cases 
are now considered. 

3.1, Given Lift. If only the lift is prescribed, Eq. (13) becomes 

& = A  (16) 
meaning that the angle of attack of the combined flow field is constant 
over the entire planform. Hence, the downwash angle, which is pro- 
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portional to E, is constant. Furthermore, for the subsonic flow regime, the 
spanwise lift distribution is elliptical, as shown by Munk in Ref. 4. 
Incidentally, a change in the chordwise lift distribution does not cause a 
modification in the induced drag as long as the spanwise lift distribution 
is the same (for further comments, see Section 3.2). 

It should be noted that the elliptic loading also plays an important 
role in the minimum drag of supersonic wings. If, following an analogy to 
Whittaker's solution of Laplace's equation (Ref. 5), we calculate the 
disturbance field of a supersonic wing by the superposition of two- 
dimensional fields, we find that the downwash is the sum of the contri- 
butions due to a series of two-dimensional loadings obtained by projecting 
the lift distribution in different directions. Thus, a Lower bound for the 
drag may be obtained by assuming that each projected or integrated 
loading is elliptical. If the planform is elliptic, this lower bound is the 
actual minimum value, providing the pressure is constant. As an example, 
at Mi = 2/z, the minimum drag of an unyawed wing is given by (Ref. 5 )  

where p is the free-stream density, U is the free-stream velocity, a and 6 
are the semiaxes of the ellipse, and S is its area. If the wing is yawed, the 
corresponding minimum drag is given by (Ref. 5 )  

where i denotes the imaginary unit, 9 the real part of the complex 
number within brackets, and where the quantities a', b', and m are defined 
in Fig. 3. 

FIG. 3. Oblique ellipse. 
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3.2. Given Lift and Bending Moment. In  steady subsonic flow, 
the superposition of the forward and reverse disturbance fields results in a 
purely two-dimensional field of motion identical with the flow produced 
by the vortex wake in the Trefftz plane. The inclination E in the combined 
flow field may then be identified with the induced downwash wi of Munk’s 
theory (Ref. 4), that is, 

E = w , / u  (19) 

In  such a two-dimensional field, E is independent of the chordwise 
coordinate x. Therefore, the specification of a weighing function f which 
depends on x does not lead to a solution of the problem. However, we 
may impose various conditions on the spanwise distribution of the lift. 
Thus, following Ref. 6, we may specify both the total lift and the 
bending moment. In  this case, the angle of attack of the combined flow 
field is given by 

5 = A, + A21 Y I (20) 

In  Munk’s original problem (Ref. 4), the span b and the total lift were 
prescribed, and the optimum lift distribution was found to be elliptical. 
Now, let us consider a family of wings having the same lift and bending 
moment as Munk’s optimum wing, and let us study the effect of the span 
on the optimum lift distribution as well as on the drag. The analysis, 
omitted for the sake of brevity (Ref. 6) ,  shows that increasing values of the 
span cause the lift distribution to become more tapered and the induced 
drag to become smaller (Fig. 4). 

2.0 

1.6 

1.2 

DID. 

0.8 

0.4 

0 
0.8 1.0 1.2 1.4 1.6 

b/b. 
8 

FIG.  4. Minimum vortex drag for wings having a fixed lift and a fixed bending 
moment. 
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3.3. Given Lift and Pitching Moment. If an elliptic wing is 
designed for a given total lift in supersonic flow, the minimum drag 
occurs when the pressure is uniform. I n  other words, the center of 
pressure is identical with the center of the wing. Now, it is known that the 
centroid of the lift added by a change in the angle of attack is ahead of 
this point, especially if the wing has a low aspect ratio. Thus, the wing 
trimmed for flight with the optimum loading is unstable in pitch. These 
ideas lead us to specify the position of the center of pressure, or the 
pitching moment, as well as the total lift. 

Now, if both the lift and the pitching moment are specified, Eq. (1 5 )  
becomes 

G = A 1 + A f l  (21 1 
meaning that the combined angle of attack is a linear function of the 
chordwise coordinate. By the method of Ref. 5, it can be shown that the 
associated pressure distribution is also a linear function of the chordwise 
coordinate, that is, 

P = P l  + Pzx (22) 

Omitting detailed manipulations, we obtain the following expression for 
the minimum drag of an unyawed elliptical wing at M = 1/2: 

where 3 is the chordwise displacement of the center of pressure with 
respect to the centroid of the ellipse. 

4. NONPLANAR WINGS 
The foregoing derivation is easily extended to nonplanar lifting surfaces 

such as a wing with upturned or downturned tips (Fig. 5). If the angle 
of attack is defined as the angle between the free-stream velocity vector 

FIG. 5. Wing with drooped tips. 
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and its projection on the wing surface, the drag is still given by Eq. (7) 
with the understanding that x is a rectilinear chordwise coordinate and y 
is a curvilinear spanwise coordinate parallel to thpl wing surface. Because 
of the inclination of the pressure, the lift is given by 

1, = p cos S(3) dx-dy 
S 

where the angle 001) is defined in Fig. 5. Consequently, if the l i t  is the 
only quantity prescribed, the condition for minimum drag becomes 

ar = x cos e@) (25) 

For a wing with vertical end plates, cos 0 = 0 over the end plates; hence, 
the sidewash of the combined flow field must vanish. 

5. ALTERNA'IZ APPROACH 
In Kogan's analysis (Ref. 7), the minimum drag problem is approached 

from a different point of view. Instead of superimposing the forward and 
reverse disturbance fields, he utilizes the physically real flow and 
expresses the drag in terms of quantities integrated over the enveloping 
characteristic surface of the wing. Such a characteristic envelope involves 
both forward and reverse Mach waves tangent to the edges of the wing 
(Fig. 6). 

With the forward-going characteristic surface Z as a reference, one 
obtains the following expression for the drag: 
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FIG. 6. Characteristic envelope of a wing. 
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while the total lift is given by 

where q is the velocity potential and where qa and qa denote the y-com- 
ponent and the z-component of the disturbance velocity after projection 
on the surface Z. Thus, the drag is proportional to the kinetic energy of 
this two-dimensional flow, while the lift is proportional to its downward 
’isnpulse. Now, among all the flows having a given impulse, the one with 
the smallest kinetic energy satisfies Laplace’s equation (Kelvin’s 
theorem), that is, 

(PVV + (Pzs = 0 (28) 

Hence, minimum drag is achieved when the streamlines of this lateral: 
flow on the rear characteristic surface imitate a two-dimensional incom- 
pressible flow. The connection between Kogan’s analysis and our 
previous treatment employing the combined disturbance field has been 
shown by Graham in Ref. 8. 

Following Prandtl and Munk, we are accustomed to thinking 
of the drag of a wing in terms of its area of entrainment. As is 
well known in subsonic steady flow, the equivalent entrainment with 
optimum loading is represented by a circular jet having a diameter equal 
to the span of the wing. The drag of the wing at subsonic speeds is small 
because the area of entrainment is large. At supersonic speeds, however, 
the lateral influence of the wing is restricted by the Mach waves, so that 
the downwash associated with a given lift must be greater. Kogan’s 
analysis gives a quantitative value to these intuitive considerations. 
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Reduction of Wave Drag by Antisymmetric Arrangement of 
Wings and Bodies 

R. T. JONES* 
N A S A  Ames Research Center, Moffett Field. Calg 

In theory, aotiSymmetrie arrangements of wings and bodies can have smaller wave drag than corresponding 
mirror-symmetrii arrangements. Thus, a long narrow oblique wing which presents the same aspeet for two opposite 
directious of flight is potentially more efficient than corresponding (Le., stmctmaUy equivafent) swept wkg. The 
single continuous wing panel also adapts itpelf more readily to varying angles of obliqnity, and hence, to varying 
flight speeds. The present paper reviews previaus work on the aerodynamies and Right stability of oblique wing 
combinations and suggests a possible mode of application to transport aircraft operating at moderate supersonic 
speeds. 

Introduction 
NE ofthe unspoken assumptions in aircraft design is that of 0 bilateral or mirror symmetry At sloa Right speeds, this 

assumption seems on rather secure ground, partly because of the 
indications of aerodynamic theory. but also because it agrees 
with the observed evolutionary forms of birds 

Although it is perhaps natural to extrapolate the forms of birds 
and animals to the supersonic flight regme, there has been no 
rational discussion ofthe merits of bilateral symmetry for super- 
sonic flight. In fact, once the velocity of sound is exceeded, the 
laws of aerodynamics change in such a way as to make it seem 
inadvisable to arrange the components of an airplane side by side 
or abreast in a supersonic stream unless there are compelling 
reasons for such an arrangement 

Both the transonic area rule and the supersonic small distur- 
bance theory show large adverse interference effects for bodies or 
wings m a mirror-symmetric arrangement Figure I shows the 
result of applying supersonic wave drag theory to two arplanes 
flying in close formation at a slightly supersonic Mach number 
In the mirror-symmetric arrangement, the drag of each aircraft 
is doubled by the interference of the other, making a total wave 
drag of four In the staggered or antisymmetric arrangement, 
however, the wave interference is favorable so that the drag of 
the two airplanes is no greater than that of a single one. Figure 
2 shows the same e l k 3  for oblique wing panels. The arrow 
shape, which seems intuitively correct for supersonic speed, 
nevertheless has a predicted wave drag many times larger than 
the antisymmetric arrangement. 

Elements of lift or volume show favorable wave interference if 

Fig. 1 Wave drag at Mach numbers nears 
1.0. 414 0 = 4  

I 

.007 1 I 

co.oMi-/ .003 n 

Fig. 2 Calculated wave 
drag of symmetric and 

antisymmetric wings. 

.ooz} /f 
50’ SWEEP 
10 TO I AXIS RATIO 

1.0 1,l 1.2 1.3 1.4 1.5 
M 

they are disposed along lines whose normal component of 
velocity is subsonic Thus, the wave drag of a long narrow wing 
tends toward zero if the wing is swept behind the Mach cone 
The reversibihty of the wave drag,’ however, indicates that a 
distribution of lift or volume bavtng a minimum drag should 
shos the same aspect for two opposite directions of flight, i e ,  
would have fore and aft symmetry. Consideration of the vortex 
drag indicates further that the projected lift distribution should 
have lateral symmetry (e g , elliptic-span loading) 

It is interesting that supersonic theory favors symmetry in both 
longitudinal and lateral distributions of volume or lift, but 
evidently not mirror symmetry Intuitively, one feels that a super- 
sonic airplane should take account of the direction of flight in 
its shape, i e ,  it should somehow “point” in the direction it is 
going However, in view of the reversibility of the wave drag, 
current computer programs must gwe the same value of the drag 
with the direction of flight reversed Figure 3 illustrates this 
result t 

Review of Aerodynamic Properties of Oblique 
Elliptic Wings 

To obtain a configuration having a minimum wave drag, we 
suppose first of all that the total Mt and volume are gven and 
second a plane area within which the dimensions must be limited. 

Received May 3, 1971, revision received August 30, 1971 
index categories: Airplane and Component Aerodynarmcs, Aircraft 

* Senior Staff Scientist Fellow AIAA 
Configuration Design 

?The reversibility theorems are, of course, limited to the pressure 
drag and the lift curve slope as determined by linear theory Thus, the 
effect of viscosity demands locally different shapes for leading and 
trailing edges, which are not reversible in practice. 
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Fig. 3 Computer shows same 
wave drag for opposite directions 

of flight. 

As a solution ofthis prohlem, we find that for any area bounded 
by two streamlines and two characteristic lines, the distribution 
of lift and volume yielding the minimum pressure drdg ( I  e ,  wdve 
drag+ vortex drdg) places all the elements of lift and volume near 
d diagonal lifting line Such a drdgonal line mdy be considered 
the limiting configuration of a narrow elliptic wing a\  illustrated 
in Fig 4 Minimum drag occurs when the suif‘ice loading of  the 
ellipse is constant and when the thickness is distributed so that 
the projected cross-sectional areas are tho% of a S e m  Hdack 
body4 

The foregoing result is of interest not so much ds dn  exact 
prescription of shdpe but because it lndicdtes thdt lift and volume 
can he concentrded within d narrow dimension hdving d snidll 
wetted area, and hence, small friction drag, provided the “lifting 
line” extends in d “subsonic” direction (Linear theory shows an 
infinite drdg if the line becomes supersonic ) 

The favorable properties of the oblique wing depend, first of 
dll. o n  the maintendnce of d subsonic type of Section flow dt  
supersonic speeds, and this requires that the wing be pLced dt ‘in 
dngle of  yaw such t h d  the component Mach number normal to 
its long axis be sub\onic I f  one ,i\\umes thdt the criticdl “drdg 
divergence” Mach number o f  the wing \ection\ I \  0 7, then the 
mgle of ydw must be such d,  to reduce the component Mdch 
number to  thi\ value At M = I O  the ‘ingle o f  yaw required 1% 
then 45 

The ddt‘int‘ige ofthe ydwed wing over the swept wing depend\ 
o n  ‘in incredxd extenwn of  the wing in the flight direction As IS 

well knoun, sprending the lift over d greater length diniini\he\ 
both thesonic-boom intensitydndthedrdg Fordgiven Structuidl 
\lendeine\s. the single ydwed wing pdnel may hdve ne‘il1j tuice 
the projected length of the corresponding swept wing 

The foregoing statements may be made more quantitdtive by 
referring to various components of the drag as given by linear 
theory, viz $ 

M Z - l  Lz 128qVol.’ 
Drag = CDo qS,+ ~ + __ - ,+ ~- - ( 1 )  zqY2 2zq xi z X,“ 

+-x+ 

Fig. 5 Oblique ellipse notation. 

averaged lengths X(0) of the wing as projected by characteristic 
planes (Mach planes) set at different angies 0 around the X axis 
The lengths X I  and X, are defined by 

( 2) 

(3) 
1 x,s = &S,’ngji 

At low-supersonic Mach numbers and large angles of sweep or 
yaw, the lengths X, and X ,  are close to the actual X-wise exten- 
sion or length of the wing Hence. thk wave drag due to  the 
lift diminishes approximately as the Inverse square of the length 
while the wave drag due to  volume goes down with the inverse 
fourth power 

The second term of Eq ( I )  is the well-known linear formula 
for the induced drag of a wing having an elliptic span-load distri- 
bution The rules determinmg the form of large birds, sailplanes, 
dnd other subsonic aircraft are evident from the first two terms 
of Eq ( I )  Here, one tries to maximize the span Y and to mini- 
mize the wetted area (ZS,) by reducing the width of the wing in 
the flight direction Accordmg to the linear theory (induced drag 
theory), the drag of the wing at subsonic speeds is independent of 
either the extension or the distribution of lift in the flight direc- 
tion Hence, the long narrow straight wing or “lifting line” is ideal 
at subsonic speeds vnce it minimizes the wetted area The 
success of the rule for increasing LID by increasing the aspect 
ratio depends, however, on the maintenance of Kutta-Joukowsky 
flow If one tries to approach the “lifting line” too closely, the 
lifting pressure becomes excessive, and nonlinear effects associ- 
ated with flow separation or shock losses will intervene In spite 
of these limiting phenomena, sailplanes with extreme proportions 
have achieved L/D ratios as high as  40 or  50 to 1 

The counterpart of the lifting line at supersonic speeds IS the 
oblique lifting line mentioned earlier Here the appearance of the 
wave drag [third and fourth terms of Eq (2)]  requires that the 
wing have as great a length as  possible tn addition to a wide 
span and a small surface area The rules determining the optimum 
wing form are then similar to those determining the form of a 
sdiipkdne,except that at supersonic speeds one tries to maximize 

Here, S ,  is the wing area, Y is the span, X I  and ,u, are 

‘1 Y 

$ The distributions of IiR and volume assumed in Eq ( 1 )  are those 
giving the smallest drag consisient with the geometric cnnstraints X 
and Y 

Fig. 6 Drag due to lift; 
bJa = IO. 
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FRONT VIEW 
SHOWING UPWARD CURVATURE 

Fig. 7 Upward curvatnre of wing to maintain uniform lifting pressnre 
C, = 0.5. 

both the span and the length UI the flight direction together with 
a minimum surface area. 

Again, if one tries to approach the idealized lifting line too 
closely, nonlinear phenomena will intervene. The lifting pressure 
may exceed the maximum lift coefficient of the sections, or if the 
crosswise component Mach number is too high, supercritical 
shock losses will appear. 

For the wing of elliptic planform, the pressure drag associated 
with the lift (wave drag and vortex drag) is a minimum when the 
lift is distributed uniformly over the surface The formula given 
by linear theory in this case is5 

AC, = (CL2/4) R.P .  ID’- (m + iu/b)’] ‘I’ 

where 
Bz = M Z -  1 
m = (b’ - a’) sin (I, cos $/b“ 
b’ = (a’ cos’ (I,+ b’ sin’ J1)”’ 

a and b are the major and minor semiaxes of the ellipse and 
(I, is the complement of the angle of yaw (see Fig. 5). 

Figure 6 shows variations of drag due to lift with angle of yaw 
for an elliptic wing with an axis ratio of 10 to 1 At M = 1.0 the 
value shown is simply the induced drag, or vortex drag, which 
is, of course, large at large angles of yaw because of the small 
span. Also, shown on the graphs, are the angles of yaw at which 
the crosswise Mach number exceeds an assumed critical value of 
0.7. 

To obtain a reasonably uniform distribution of lifting pressure 
at large angles of yaw, the wing must be constructed with a certain 
camber and twist Calculations of the required camber and twist 
have been made by R. Carrnichael and A. D Levin of Ames 
Research Center utilizing the technique of Ref 6 The amount 
of twist indicated for a yaw angle of 45”. a lift coefficient of 0 5, 
and a Mach number near 1.0 is illustrated in Fig 7 It is seen 
that the forward going tip must have a positive angle of attack 
while the angles of the rearmost sections are negative. A practical 

a’b‘ = ab 

Fig. 8 Drag dw to volume; cDll M = I . j ’ I ’  ,/ 
obliqwelliptic wings;@ = 0.1, 

b/a = 10. 02 

olil.LY4L 0 3 0 6 0 9 0  

0 1 0 x ) 3 0 9 0 5 0 6 0 7 0  *. deg 

Fig. 9 Estimated lift/drag ratios; M = I.% b/a = 10(t/2a) = 1/10. 

way to provide an effective twist that automatically increases 
with yaw angle is to construct the wing with a certain amount 
of upward curvature in its unyawed aspect, as shown in the figure. 
Linear theory is useful for determining gross shape parameters, 
but cannot, of course, be relied on for critical details. Thus, for 
the sections of the wing perpendicular to its long axis, one would 
select airfoil shapes capable of sustaining a high-lift coefficient at 
a high value of the crosswise component Mach number. Increas- 
ing the sweep angle will decrease the component Mach number- 
but the lift coefficient based on the reduced component velocity 
will then increase These considerations involdthe critical Mach 
number and the lift coefficient in combination and point to the 
choice of airfoil sections that can develop a high ratio of absolute 
lifting pressure to ambient pressure, i.e., 

PJP. = (v /~)M’CL 
without drag penalty 

The minimum wave drag for a given internal volume of the 
elliptic wing occurs when the thickness ratio of the sections 
falls of elliptically toward the tips.’ The formula for the drag 
due to thickness or volume in the case of the yawed ellipse is 
given by J. H. B Smith’ and the results are plotted in Fig 8 for 
an axis ratio of 10 to 1 and a root thickness/chord ratio ofO.l. 

The wave drag associated with the volume of the wing shows a 
steep rise as the long axis of the wing turns into the wind, the 
influence ofthe inverse fourth power of the projected length. Here, 
however, the drag increase associated with nonlinear or super- 
critical flow over the wing sections may dominate, so that the 
prediction of linear theory will not be adequate. It is here that 
the newer developments in supercritical wing sections exemplified 
by the work of Piercey, Niewland, and Whitcomb may be 
significant for the antisymmetric wing. 

The drag values, given by linear theory together with a suitable 
estimate of the skin friction, enable the prediction to be made of 
lift-dragratiosofelliptic wings at varous Mach numbers and yaw 
angles Such predIctIons wdl be valid if proper account is taken 

0 5 IO 15 20 25 
AXIS RATQ b/a 

Fig. 10 Variation of L/D with axis ratio showing effect of limitatha 
of the normal lift coefficient CL,,, 
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Fig. 11 Estimated L/D 
ratios for M = 2.0 (Refs. 3 

and 5). 

0 .2 .4 .e .a 1.0 
Y I X  

of the limitations imposed by nonlinear phenomena. Figure 9 
taken from Ref. 8 shows such estimates for an ellipse of 10 to 1 
axis ratio, 10% thickness and a friction drag coefficient of 0.005. 
The dotted curves show the effect of limiting the section lift coeffi- 
cients to values of 1.0 and 0.5, respectively Figure 10 shows how 
the increase of L/D with aspect ratio depends on the possibility of 
achieving rather high section lift coefficients. 

Lift-drag values for slanted elliptic wings at M = 2.0 have been 
calculated by J. H. B. Smith’ and are quoted by D. Kuchemann 
Figure 11, adapted from Ref. 7, shows results of this calculation. 
At M’ = 2.0 peak lift drag ratios occur at $ = 15“-20” corres- 
ponding to sweep angles of 70”-75”. The optimum crosswise 
Mach number indicated by linear theory is approximately 0.7, 
close to one limit imposed by nonlinear effects 

Wind-Tunnel Tests of Yawed Wing Combinations 
Few wind-tunnel experiments have been made to test the pre- 

dictions for oblique wings of high-aspect ratio. One set of experi- 
ments testing yawed and swept wings in conjunction with a 
fuselage was made by G.  H. Holdaway and E. W. Hatfield” at 
Ames Aeronautical Laboratory (now Ames Research Center). 
The angles of sweep or yaw in these tests was 40” and the wing 
thickness-chord ratio, approximately 11% Figure 12 shows the 
drag at zero lift for two of the combinations tested At M = 10 
the antisymmetric configuration has much smaller drag, as 
expected At M = 1.15, however, the normal component of M is 
approximately 0 88, exceeding the drag rise Mach number of the 
sections. Beyond this point, the drag of the yawed wing is higher 

Stability and Control of Yawed Wing Aircraft 
When the advantages of“subsonic” sweep first became mident, 

questions were raised about the possibility of flying an airplane 
with the wing set at a large angle of yaw Perhaps the earliest 
experiments to test the flight stability of such an arrangement 
were made in 1946 by J P Campbell and H M Drake” in the 
Free-Flight Tunnel at Langley Field, Va 

Campbell and Drake found that the yawed wing avoided the 
large rolling moment due to sideslip and the consequent short 
period rolling oscillations of the swept wing They noted that the 
flight characteristics ofthe model remained essentially unchanged 
up to angles of yaw of 40’ and were still satisfactory at 50” Of 
special interest is the observation that deflection of the ailerons 
produced no observable pitching motion in free Right Evidently, 
the change of longitudinal lift distributlon produced by deflecting 
the ailerons is almost immediately cancelled by rolling motion of 
the model The wing in effect simply follows the helix angle 
defined by an effective twist associated with the aileron deflection 
with no significant change in lift distribution The longitudinal 
stability and the trimmed lift are then governed by the position of 
the aerodynamic center and the horizontal tail setting referred to 
the oblique axis of the wing Some years later the present writer 
demonstrated the rather surprising stability of the slanted wing 
by flying models at the first ICAS meeting in Madrid 

While satisfactory stability can probably be achieved with the 
yawed wing in the normal flight range, some unusual effects will 
certainly be apparent. One effect that can be anticipated is a 
coupling between yaw angle and vertical acceleration, i.e., i?L/2$. 
A simple estimate for a wing at 45” yaw shows (l/L)(?L/?@) = 1, 
is., lg per radian of sideslip angle $. This value may be com- 
pared to the sensitivity of vertical acceleration to angle of 
attack changes. Assuming aC,/aa = 5, and a flight-lift coefficient 
of 1.0 we have (l/LXaL/aa) = 5; hence, the sensitivity to yaw is 
about f the sensitivity to pitch. 

Dynamic coupling between different degrees of freedom is not 
always undesirable since excessive damping in one mode may be 
distributed to a mode that would otherwise be deficient. Of 
course, conventional treatments of stability, which assume bi- 
lateral symmetry with the resulting division into “longitudinal” 
and ”lateral” motions, are inapplicable in this case, and a full 
treatment involving six degrees of freedom as well as aeroelastic 
deformations will be required. 

As is well known, slanted or swept wings tend to stall first at 
the downstream tips. With the swept wing the loss of lift at the 
tips leads to a nose-up tendency aggravating the stall. In the 
case of the slanted wing, the situation would Seem worse since 
the asymmetric stall would lead to bank. The special measures 
used to control the pitchup tendency of swept wings may quite 
possibly not be adequate for a yawed wing of high aspect ratio. 
At best, it is difficult to envision regular landings with the wing 
in the oblique position, and it seems desirable to incorporate. 
variable geometry so that the wing may be straightened out for 
landing. 

Application to Transport Aircraft 
Varying the angle of sweep or yaw has, of course, marked 

advantages for other flight conditions, such as “holding” at sub- 
sonic speeds or adapting the airplane to cruise effiaently at 
different Mach numbers Thus, overland flights of a supersonic 
aircraft will probably be limited to Mach numbers low enough 
to avoid the sonic boom The same aircraft may fly much faster 
over water 

G H has suggested that the mechanical problems of 
variable geometry would be effectively eliminated by making an 
”all-wing” aircraft Such a step is certainly attractive, but with 
current densities and loadings seems to be possible only for 
airplanes of very great size Lee assumes an airplane designed to 
cruise at M = 2 0 and compares the yawed-wing arcraft with the 
more conventional delta wing type 

The yawed wing was found capable of carrying twice the pay- 
load on the Atlantic flight chiefly because of its better off-design 
performance It is antiapated that current supersonic transports 
may consume as much as my,, of their fuel load in subsonic 
maneuvers The ability to cruise or hold efficiently at reduced 
speed would thus be important for the utility of such aircraft 
Current delta wing transports require laige amounts of power for 
takeoff primarily because of large values of weight per unit span. 
Since the takeoff power diminishes approximately as the 2 power 
of the span loading, extending the wing span can be very effective 
in reducing takeoff distance and noise 

f \ 
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Fig. 12 Drag at zero lift; comparison of yawed and swept wings.’ 
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FEBRUARY 1972 REDUCTION OF WAVE DRAG BY ANTISYMMETRIC ARRANGEMENT 

a) Trimmed for M E 1 

b) Trimmed for M < 0.7 

c) Trimmed for M = 1.3 - 1d 
Fig. 13 Antisymmetric transport aircraft. 

Arrangements permitting more conventional values of wing 
loadingandsizeare shown in Figs 13(a-c) and 14 The useoftwo 
bodies connected across by the wing and horizontal tail in a paral- 
lelogram arrangement has certain advantages ovei the usual 
arrangement for variable sweep Shearing the parallelogram does 
not displace its center of gravity and only slightly displaces the 
center of lift The first-order variation of lateral trim with yaw 
angle can be compensated by constructing the wing with an 
appropriate curvilinear dihedral as indicated earlier 

As is well known, varying the geometry of the swept wing has 
several drawbacks First of all, massive bearings which can carry 
the wing root bending moment must be used Secondly, move- 
ment of the lifting surface backward at supersonic speeds com- 
pounds the normal rearward travel of lifting pressure at these 
speeds With the single slanted wing, however, the wing-beam 
structure is continuous across the pivots and no primary bending 
loads appear 

Intuitively, one would expect the forward tip of the slanted 
wing to show a tendency for aeroelastic divergence Both slanted 
and swept wings tend to become concave upward when deflected 
under a gust load, leading momentarily to a tendency to pitch up 
and increase the load However, the observation made in the free 
flight-tunnel” is relevant here for the case of the slanted wing. 
The observation was that increasing the effective angle of attack 
of the forward wing tip and reducing that of the rearward tip by 
deflecting the ailerons did not result in observable pitching 
motion but only in roll 

It can be seen that the elastic deflection of the oblique wing 

by upward gust is aerodynamically equivalent to a twist, similar 
to that produced by deflecting ailerons. The air load due to such 
a twist is, however, almost immediately cancelled by a rolling 
motion with the helix angle of the roll (pY/Zu) equal to that of the 
twist. Hence, the relief provided by the rolling motion should 
effectively cancel the tendency for aeroelastic divergence in the 
case of the oblique wing. Stresses that arise during the accelera- 
tion of the rolling motion would be proportonal to the inertia 
in roll of the masses attached to the wing. Since the single 
fuselage at the center of the wing has almost negligible inertia in 
roll, one arrives at the surprising conclusion that the one-body 
arrangement has greater aeroelastic stability than the two-body 
arrangement. In either case, stability must be assured by adequate 
wing stiffness and adequate longitudinal stability. Clearly a more 
complete analysis, taking account of the free motions of the 
aircraft as well as its elastic deflections will be required. 

Table 1 listsestimated components ol drag lor the arrangement 
shown in Fig. 13 at M = 1 . s 1 . 1  with the wing set at 45”. 

Table 1 Drag estimate for antisymmehic- ans sport aircraft 
- __ - __ 

I )  Wave drag of bodies 
2) Wave drag of wing alone 00004 
3) Wing-body interference drag 00006 
4) Dragfinterference of tail surfaces 00005 

.5)  Friction drag of wing 0 004 
6) Nonlinear “form” drag of wing 0.004 

0 0034 
8) Friction drag oftail surfaces Ob016 
9) Friction drag ofengine nacelles 00007 

CD = 0001 

7) Friction drag of bodies 

CD, = 0.0162 
10) Lift induced drag at C ,  = 0.575 = 0.0162 

At M = 1 2, the yaw angle required is about 50‘ and the 
estimated L/D falls to approximately 15 When trimmed for sub- 
sonic flight (Fig 13b) the LID should exceed 20 to 1 

In conclusion, it is admittedly surprising that aerodynamics 
and simple mechanics would lead to an antisymmetric form for 
supersonic flight The difficulties with such forms may, however, 
be more conceptual than real and it is hoped that our analysis, 
though incomplete, will show that such configurations deserve 
more serious study 
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t 
By ROBERT T. JONES 
NASA Ames Research Center 

New demands on the SST for better economy and 
less noise make it seem appropriate to consider a 
radically different concept of design. The shape 
suggested here: an almost perfectly conventional 
subsonic aircraft equipped with a straight wing of 
high aspect ratio, but with the wing arranged so 
that it can be turned to different oblique angles for 
flight at different Mach numbers. 

Not a new idea at all, turning the wing as a whole 
instead of sweeping it back from the middle has 
been proposed several times in the past by the 
present writer and others.’- 3,1 O J. P. Campbell 
and H. M. Drake studied the stability and control 
of oblique-winged aircraft in the NACA Free Flight 
Tunnel more than 25 years ago.‘ Early in the 1960s 
G. H. Lee considered the advantages of an “all- 
wing” aircraft arranged so that it could be steered 
by flying at varying oblique  angle^.^,^ In addition 
to American work, it appears that German 
aerodynamicists made classified studies of such 
configurations during WW 11. Specifically, 
Richard Vogt of the Blohm and Voss Company 

ROBERT T. JONES (F) is a senior 
staff scientist at Ames. He has 
played a major part in raising the 
speed of aircraft through 
developing theory for swept and 
slender delta wings. In 1946 the 
AIAA gave him i ts Sylvanus Albert 
Reed Award. He has remained with 
NACA-NASA since 1934, except 
for seven years with the AVCO 
Everett Research Lab, where he  
directed work on cardiac-assist de- 
vices. .He has also professionally 
followed an interest in optics. 

proposed designs of this type, but the projects did 
not reach the stage of flight test. 

These proposals do not seem to have been taken 
very seriously by aircraft designers. In this article, 
consequently, I would like to call attention to some 
rather remarkable properties of the oblique wing, 
report some new discoveries concerning the shape 
of such wings, and discuss their adaptation to a 
practical aircraft. 

To determine an optimum wing sliape, or a 
shape having a minimum of drag, the designer 
must first of all adopt some constraint on the 
dimensions of the wing. Thus in Munk’s problem 
of minimum induced drag the span of the wing is 
supposed to be limited. With the total lift given, the 
induced drag or vortex drag is then found to be a 
minimum when the lift is distributed elliptically 
over the span. Furthermore, the vortex drag is 
independent of the distribution of lift in the 
direction of flight. If a limit’ation on the maximum 
lift coeacient is recognized and if the skin friction 
is taken into account, the optimum wing planform 
turps out to be a narrow ellipse with its long axis 
perpendicular to the direction of flight. 

For supersonic speeds, in addition to the vortex 
drag and the friction, the designer must weigh a 
wave drag associated with the thickness or volume 
of the wing as well as with the lift distribution. 
These latter components are not independent of 
the distribution in the flight direction, but diminish 
rapidly and continuously as the length of the wing 
in the flight direction is increased. So the designer 
must adopt a limitation on the length of the wing as 
well as the span. In spite of the additional sources 
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F-2 OBLIQUE-WINGED MODEL IN AMES 11-11 TUNNEL 

ofdrag, the additional constraint, and the tact that 
the flow equation is now hyperbolic instead of 
elliptic, the subsonic elliptic wing reappears as the 
optimum for supersonic speeds. The wing merely 
takes up the greatest “subsonic sweep” angle 
permitted by the constraints. The minimum drag 
again occurs when the spanwise loading is elliptical 
and when the thickness-chord ratio of the wing 
sections falls off elliptically toward the tips.’ ,6 

The optimum supersonic wing planform thus 
does not have the bilateral (mirror) symmetry of the 
subsonic wing. It is easy to show that the optimum 
thin planar wing cannot have the usual arrow or 
delta form. According to the reversibility theorems 
of Karman and Hayes a given distribution of lift or 
volume must have the same wave drag when flying 
in the opposite d i r e ~ t i o n . ~  - According to Munk’s 
theorem the vortex drag must be the same also. 
Hence, if the arrow wing were the optimum, the 
reversed arrow would also be the optimum. 

The reversibility theorems thus indicate that an 
optimum shape should have fore and aft symmetry, 
i.e., should look the same for either direction of 
flight. The oblique ellipse satisfies this criterion, 
having both longitudinal and lateral symmetry but 
not bilateral symmetry. The indication of fore and 
aft symmetry is certainly remarkable since neither 
the supersonic flow field nor the local distribution 
of the drag shows this kind of symmetry. Small- 
disturbance theory identifies a limitation here. 
Local details of the airfoil section shape are 
strongly influenced by nonlinear effects, and are, of 
course, not reversible. 
December 1972 

40 - F-1 Lift-drag ratios 
of oblique-winged 
model as determined 
in the NASA-Ames 11- 

.7 .8 .9 1.0 1.1 1.2 1.3 1.4 
M 

Wind-tunnel experiments a t  NASA Ames 
Research Center have specifically tested the 
foregoing theoretical predictions (F-1). The wing 
has a quasi-elliptic planform of 10-to-1 axis ratio 
(aspect ratio 12.7). It was attached in the high wing 
position to a fuselage of 12-to-1 fineness ratio. The 
airfoil sections, 10% thick, were derived by the 
conventional NACA “4-digit” formula. To 
maintain the desired symmetry of the lift 
distribution in the yawed position, the wing was 
constructed without twist but with a calculated 
amount of upward curvature, Le., a “curvilinear 
dihedral” in the unyawed position. The wing thus 
has bilateral syrimetry in the unyawed position. 
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With the wing in the oblique positions the 
curvilinear dihedral has an aerodynamic effect 
equivalent to that of twist. 

A photo here (F-2) shows the elliptic wing-body 
model in the Ames 11-ft supersonic tunnel. The 
tests confirmed the theoretical predictions in a very 
satisfactory way. With the wing straight the 
maximum lift-drag ratio L/Dmax exceeded 30 to 1 
at Mach numbers (M) up to 0.7, but fell abruptly to 
11 at M = 0.8. The wing was then turned to 45 deg 
a d L/Dmax increased to 20 at M = 0.98. At M = 
1 4  7 and a wing angle of 60 deg, LID was 
approximately 11. In every case these values run 
significantly higher than those previously obtained 
with arrow wing or delta wing-body combinations. 

Since the oblique wing does not have the 
customary bilateral symmetry, questions of 

F-3 RADIO-CONTROLLED FLYING MODEL 

F-4 OBLIQUE WINGED AIRCRAFT 

stability and control immediately present 
themselves. Perhaps the earliest experiments on the 
controllability of such a configuration were made 
by H. M. Drake and J. P. Campbell in the NACA's 
Free Flight Tunnel at Langley Field.4 They found 
that the oblique-winged model did not have the 
lateral rolling oscillations characteristic of swept- 
wing models and showed satisfactory stability and 
control up to wing angles of 50 deg. At 60 deg 
however, the ailerons become ineffwtive and 
lateral control could not be maintained. 

With the wing kt at a large angle, the ailerons 
are in a position to cause a relatively large pitching 
moment in addition to their normal rolling action. 
Campbell and Drake found, however, that aileron 
deflection in free flight did not produce observable 
pitching motions. Evidently the rolling motion 
quickly cancels the unsymmetrical lift distribution 
produced by the ailerons an6 the resulting pitching 
moment. 

To gain further experience in the control and 
stability of oblique winged aircraft, I have made 
and tested radio-controlled flying models, taking 
advantage of the highly sophisticated techniques 
and equipment developed in recent years by model- 
airplane builders. Photos (F-3 and F-4) show one of 
the models. The radio control9 gives linear, 
proportional deflection of all surfaces and in 
addition permits variation of the wing skew angle 
in flight. Takeoffs and landings were made with the 
wing straight. An enlarged 16-mm movie frame (F- 

F-5 ENLARGED 16-MM MOVIE FRAME OF 
MODEL IN FLIGHT 

R. C. 
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5) shows the model in flight with the wing at 45 deg. 
Burnett L. Gadeberg of Ames controlled the 
model. 

Variations of wing angle up to and beyond 45 
deg produced no apparent changes in stability and 
only a slight change in lateral trim-requiring a 1- 
or 2-deg offset of the ailerons. Elevatoc and aileron 
effectiveness remained normal and we observed no 
change in longitudinal trim. 

Ordinary maneuvers such as loops and rolls were 
performed without difficulty at wing angles of 45 
deg. Coupling between longitudinal and lateral 
motions did not appear in aileron rolls, but was 
quite apparent in the response to elevator control. 
Thus loops performed with the wing at 45 deg 
appeared to take the form of a 45-deg helix, 
indicating that the rotation produced by the 
elevator tends to align with the long axis of the 
wing. With the left tip forward, use of the elevator 
in a left turn tended to steepen the bank angle. 
Analysis shows that in this case a certain amount of 
aileron deflection must be employed with the 
elevator to prevent banking toward the forward tip. 

Varying the sweep by turning the wing as a whole 
has several practical advantages over the usual 
“swing wing” design. It keeps the wing structure 
continuous across the pivot and makes the primary 
load on the pivot tension. With separate wing 
panels pivoted at the root, however, much greater 
loads develop on the pivots (F-6). Also, sweeping 
the wing panels back for high-speed flight 
displaces the center of lift rearward, compounding 
the normal rearward center-of-pressure shift at 
these speeds. Turning the wing as a whole, 
however, does not displace the centroid of area 
relative to the center of gravity (F-7). Even with 
fixed geometry the structure of the bilaterally 
symmetric wing is less favorable because of the 
unbalanced torsion at the wing root. The 
unbalanced torsion may be equated approximately 
to increase in beam length for the swept wing (F-8). 
Finally, conforming to the “area rule,” the swept 
wing requires a rather localized and deep 
indentation of the fuselage. The optimum fuselage 
shape for the oblique wing, however, is much more 
nearly cylindrical (F-9). 

The artist’s rendering on the last page of 
this article shows a conceptual version of a long- 
range supersonic transport utilizing the oblique 
wing. By attaching the wing to the fuselage so that 
it can be turned to different angles, flight at 
different Mach numbers can be made with the 
utmost efficiency. Thus, for overland flights at 
speeds slow enough to avoiZl the sonic boom (M 1.0- 
1.2) the wing angle must be 45-55 deg. For 
overwater flights at Pd 1.4, 60-65 deg would be 
needed. It is anticipated that landings and takeoffs 
would be made with the wing in the straight 
December I972 

F-6 CONTINUOUS WING STRUCTURE; NO 
BENDING LOAD ON PJVOTS 

F-7 CENTROID OF LIFTING AREA NOT DISPLACED 
BY ROTATION 

F-0 STRAIGHT-BEAM STRUCTURE. 

F-9 SMOOTH AREA DISTRIBUTION FOR FUSELAOE 
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Concept of a pivoting-wing SST for commercial operations. 

position. With a straight wing of high aspect ratio, 
the energy required for takeoff should be less than 
that required by conventional subsonic jets and 
about one-fourth that required by current 
supersonic transports. And limiting the maximum 
cruise Mach number to 1.4 will permit the use of 
inherently quiet fanjet engines. Thus it seems that 
a design of the type considered could effectively 
meet current demands for voiding sonic boom and 
reducing noise around airports. 
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AN EXPERIMENTAL INVESTIGATION OF THREE OBLIQLJE-WING AND BODY 

COMBINATIONS AT MACH NUkBERS BETWEEN 0.60 AND 1.40 

By Lawrence A. Graham, Robert T. Jones and Frederick W. Boltz 

Ames Research Center 

SUMMARY 

An experimental invest igat ion w a s  conducted i n  the  Ames 11- by 11-Foot 
Transonic Wind Tunnel t o  determine t h e  aerodynamic charac te r i s t ics  of 
three oblique high aspect r a t i o  wings i n  combination with a high fineness- 
r a t i o  Sears-Haack body. The three  wings had the same e l l i p t i c a l  planform 
and base l i n e  curvature but had d i f f e ren t  a i r f o i l  sections.  One wing had 
an a i r f o i l  sect ion designed t o  have a l i f t  coef f ic ien t  of 1.0 a t  a Mach 
number of 0.7, another t o  have shock-free supersonic flow over the upper 
surface,  and the  other  t o  have a l i f t  coef f ic ien t  of 1.3 at  a Mach number 
of 0.6. I 

Longitudinal and la te ra l -d i rec t iona l  s t a b i l i t y  data were obtained a t  
wing yaw angles of Oo, 4 5 O ,  50°, and 60" over a test  Mach number range from 
0.6 t o  1.4 f o r  angles of a t tack between -7Oand 9: 
the  study were 4 and 6 mil l ion per foot.  
made t o  examine the nature of  t he  flow on the wing surfaces.  

Reynolds numbers f o r  
Flow-visualization s tudies  w e r e  

Notable differences were found i n  the  aerodynamic charac te r i s t ics  of 
the three wing-body combinations, pa r t i cu la r ly  i n  the  la te ra l -d i rec t iona l  
charac te r i s t ics .  The aerodynamic eff ic iency of t he  three wing-body com- 
binations w a s  i n  most instances about t he  same, with two of t he  wings gen- 
e r a l l y  exhibi t ing s l i g h t l y  higher maximum values. 
l y  more e f f i c i e n t  at  Mach numbers where supe rc r i t i ca l  Slow exis ted  on the  
wings. 

The other wing was  s l igh t -  

INTRODUCTION 

Theoretical  predictions and indicat ions r e l a t ed  t o  the  oblique-wing 
concept have been extensively discussed (as i n  references 1 and 2 )  and 
recently invest igated experimentally i n  the  NASA-Ames 11- by 11-Foot Tran-  
sonic Wind Tunnel. 

Theory indicates  t ha t  i n  order t o  achieve maximum eff ic iency t h e  oblique 
angle of t he  wing must be var ied with Mach number i n  such a way t h a t  t h e  
component of veloci ty  normal t o  the  long axis  of t he  wing remains subsonic 
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and below t h e  "drag rise" Mach number of the wing sections.  The sect ions 
taken i n  the planes perpendicular t o  the  long axis then have a "subsonic" 
shape with a rounded leading edge and camber t o  produce a high l i f t  
coeff ic ient  at a high c r i t i c a l  Mach number. Three wings, having dif-  
fe ren t  a i r f o i l  sections i n  the  planes perpendicular t o  t h e  long axis of 
the  wing, have been t e s t ed  i n  the Ames 11- by 11-Foot Transonic Wind Tunnel. 
All wings have the  same e l l i p t i c a l  planform with an e l l i p t i c  axis r a t i o  
of 10  t o  1, an unswept aspect r a t i o  of 12.7 and a thickness-chord r a t i o  
of 0.1. 

One wing has an a i r f o i l  section derived by the  w e l l  known NACA ''4 
dig i t "  formula ( see  reference ( 3 ) ) .  The shape parameters f o r  the  a i r f o i l  
were selected on the  bas i s  of previous wind tunnel experience with the  in- 
ten t ion  of achieving as high a l i f t  coef f ic ien t  as possible at  a c r i t i c a l  
Mach number of O,7. The sect ion has a r e l a t ive ly  blunt  leading edge with 
a radius of 2 percent of the  chord. 

Another a i r f o i l  t e s t ed  was designed by Bauer, Garabedian and Korn 
of t he  Courant I n s t i t u t e ,  New York University using a hodograph method 
t o  obtain a shock-free supersonic zone over the  upper surface. Data on 
t h i s  a i r f o i l  are  given as example 1 (f igure  5 i n  Reference ( 4 ) ) .  

The other  a i r f o i l  w a s  designed f o r  purely subsonic flow a t  a Mach 
number O f  0.60. This a i r f o i l  has more camber and a design l i f t  coeffi-  
c ien t  of 1.3 (based on the  normal component ve loc i ty) .  

NOME!NCLATUXE 

The axis  systems and sign convention are  shown i n  figure 1. L i f t  
and drag a re  presented i n  the  s tab i l i ty -ax is  coordinate system and all 
other forces  and moments are  presented i n  t h e  body-&xis coordinate system. 
Because the  da ta  were computer p lo t ted  the  corresponding p lo t  symbol, 
where used, i s  given together with the conventional symbol. 

P lo t  
Definit ion 

b 

C 

root C 

cD CD 

wing span 

wing chord 

wing root chord 

drag coef f ic ien t  drag/qs 
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‘m 

‘n 

H 

L 

Y-LO 

2-vp 

Z-LO 

z 

CBL rolling-moment coefficient, rolling moment/qm. 

CL lift coefficient, lift/qS 

CLM p i t  ching-moment coefficient, pitching moment/qScroat 

CYN yawing-mment coefficient , yawing moment/qSb 

CY side-force coefficient, side force/qS 

L/D 

MACH 

maximum ver t ical  distance fromwing reference plane 
t o  w i n g  base l ine  at 0 . 4 ~  for W1 

longitudinal distance along the body from body 
maximum diameter 

lift-drag rat io  

free-stream Mach number 
f 

free-stream dynamic pressure 

unit Reynolds number, million per foot 

wing area 

wing thickness 

body width 

Cartesian coordinate 

m a x i m  distance from w i n g  base l ine t o  wing upper 
surface measured perpendicular t o  the wing base l ine 

maximum distance from wing base l ine t o  wing lower 
surface measured perpendicuUr t o  the wing base l ine  

ver t ical  distance fromwing chord t o  w i n g  upper surface 

vertical. distance from wing chord t o  wing lower surface 

Cartesian coordinate 

01 ALPHA angle of attack 
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B 

A 

cp 

max 

0 

1 

2 

4 

W 

F 

B 

BETA angle of sideslip 

WSMBDA angle between a perpendicular to the body longitudinal 
axis and the 0.25 chord l ine  of the wing measured in 
a horizontal plane 

W 

F 

B 

angle between ver t ical  plane and the intersection of 
the circular portion of the body with the rectangular 
portion of the body 

Subscripts 

maximum value 

zero t ra i l ing  edge deflection 

denotes original wing 

denotes wing number 2, wing w i t h  0.013~ leadhg 
edge radius 

denotes wing number 4, wing w i t h  0.005~ leading 
edge radius 

Configuration Code 

wing 

t ra i l ing  edge segment 

body 

TEST FACILITY 

The t e s t s  were conducted i n  the Ames 11- by ll-Foot Transonic Wind 
Tunnel, which i s  a variable density, closed return, continuous flas type. 
T h i s  tunnel has an adjustable nozzle (two flexible w a l l s )  and a slotted 
t e s t  section to permit transonic testing over a Mach number range con- 
tinously variable from 0.4 to 1-4. 
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MODEL DESCRIPTION 

The model consisted of an e l l i p t i c a l  planform wing mounted on top 
of a Sears-Haack body as shown i n  figure 2(a). Pertinent dimensions of 
the wings investigated and of the Sears-Haack body, which w a s  e m o n  t o  
all configurations, are given i n  tables 1 through 3 and i n  figures 2(a) 
through (a).  
wing w a s  pivoted i n  the horizontal plane about the 0.4 root chord point 
t o  obtain oblique angles of Oo, 4 5 O ,  50°, and 6oom sham i n  figure 2(a). 

A photograph of  the model i s  shown i n  f i v e  2(e),  The 

All wings had e l l i p t i c &  planforms w i t h  a straight 25-percent chord 
l i n e  ( f ig ,  2( a) ) . 1' a i r f o i l  section (f ig .  2(d)) perpenbcular to t he  unswept chord l ine.  
second w i n g  t es ted  (wing number 2, W ) had an a i r f o i l  section (f ig .  3 (a))  2 designed using a hodograph method t o  obtain a shock-free supersonic zone 
over the upper surface. The third wing tes ted  (wing number 4,  Wb) had a 
subkonic a i r f o i l  section ( f ig .  3(b)) designed fo r  a l i f t  coefficient of 
1.3 at a Mach number of 0.60. 
are given i n  table 2. 

Wing number 1, W ( see ref. 1) had an NACA 3610-02,40 
The 

Airfoi l  coordinates f o r  the three wings 

TESTING AND PROCEDURE 

The models were s t ing mounted through the base of the model body as 
shown i n  figures 2(a)  and 2(c) ,  and force and moment data were obtained from 
an internally mounted six-component strain-gage balance. 
w a s  on the body center l i n e  and longitudinally at  the wing pivot point 
( 0 . 4 ~ ~ ~  t) .  
per foo?. The angle-of-attack range, selected t o  define maximum l i f t - to-  
drag r a t i o  fo r  each configuration, was  nominally f 8 degrees. 
ponent force and moment data were obtained for  the wing at  oblique angles 
of Oo, 4 5 O ,  50°, and 60O. 

The moment center 

Tests were conducted at Reynolds numbers of 4 and 6 million 

Six corn 

The measured balance data were adjusted t o  a condition corresponding 
t o  free-stream s t a t i c  pressure on the model base, 
fo r  each oblique angle tested is shown i n  table  4, 

The Mach number range 

RESULTS AND DISCUSSION 

A complete index t o  the data figures i s  given i n  table 5. Among the 
noteworthy resu l t s  o r  these experiments are the exceptionally high l i f t -  
drag ra t ios  obtained i n  the transonic and low supersonic speed ranges. 
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Lift-to-drag ra t ios  fo r  the three Wings are sham i n  figures 4 through 7 
for  the  t e s t  Mach numbers and wing-sweep angles. Wing number 2 shows a 
maximum L/D value of 31 fo r  M = 0.80 and zero wing sweep ( f ig .  4, pg. 21). 
Wing numbers 1 and 4 both had a m a x h u m  L/D value of 11 a t M  = 1.40 and 
60° of wing sweep ( f ig .  7, pg. 140), 

Wing number 2, which w a s  designed t o  operate with shock-free super- 
sonic flow over the upper surface showed the expected behavior. A t  zero 
wing sweep t h i s  a i r f o i l  extended the useful Mach d e r  fram 0.70 t o  appraXi- 
mately 0.80. 
at M = 1.40 i s  only 0.70, not suff ic ient  t o  achieve the design condition 
of t h i s  wing. Further refinement of a i r f o i l .  selection for  such oblique - 
wings w i l l  depend on the extansion of three dimensional whg  theory be- 
yond the l inearized formulas now i n  use and probably also on more detai led 
wind tunnel studies. 

A t  60° sweep, however, the crosswise component of Mach number 

Another noteworthy feature of the test  results i s  the remarkably 
s m a l l  s h i f t  of center of pressure f o r  wing sweep variations from Oo t o  
60°. 
4, pg. 9) with that of the same wing turned 60° shows only moderate changes 
i n  sp i t e  of the f a c t  tha t  the fore and aft dimension (streanwise chord) 
of the wing increased almost ten-fold when the wing w a s  swept. 

Comparing the pitching moment of the straight wing at  M = 0.70 ( f ig .  

A similar result can be observed i n  the ro l l ing  moment measure- 
ments. 
the unyawed position. Presumably such moments a r i s e  from accidental 
manufacturing irregularities o f  the models. Figure 7, page 104 shows 
rol l ing moments of the same wings turned 60°. 
these are only s l igh t ly  greater than those developed on the straight, 
supposedly symmetrical wings. A t  l a rger  angles of attack. however, 
effects  of premature s t a l l i n g  of the downstream t i p  are observed on the 
oblique wings. 
ing encountered w i t h  more conventional swept-back wings. 
swept-back wings s t a l l i ng  of the t i p s  causes the airplane t o  pi tch up. 
With the oblique wing only one t i p  stalls and the airplane may be expected 
t o  roll. 

Figure 4, page 13 shows ro l l ing  moments measured on the wings i n  

I n  the normal flight range 

This behavior may be compared with the premature t i p  stall- 
With conventional 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, California 94035 April 2, 1973 
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TABLE 3. - MODEL GEOMETRY 

Body (Sears-Haack) 

Length 
Closed 
cut-off 

Maximum Diameter 

Wing 

45.25 i n  
36.00 i n  
3.37 i n  

Planform 10 :1 e l l i p s e  about c/4 
span (reference) 60.00 i n  
Area (reference) 278.00 in2 
Root chord 6.00 i n  
Aspect r a t i o  12.7 
Maximum 6/c 0.10 
Incidenae O0 
0 . 2 5 ~  sweep oo 
Maximum thickness location, percent chord 
Section 

40 

MACA 3610-02,kO 
Garabedian , 0.013~ nose radius 
Garabedian, 0 .005~ nose radius 

W w1 

4 
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2. - WING GEOMETRIC DATA* 

Semi- 
s p a  

0 .om 
1.000 
2.000 
3.000 
4.000 
5 .Om 
6.000 
7 . 000 
8.000 
9.000 

10.000 
10 986 
u.850 
32.635 
13 356 
14.024 
14.645 
15.226 

16.286 
16.772 

17.671 
18.087 
18 483 
18.862 
19.224 
19.570 
19 -92  
20.220 
20.977 
21 0 533 
22.046 
22 e 523 
22 . 966 

15 772 

17 8233 

23 0 379 
23 e 763 

C h o r d  

6.000 
5 - 997 
5.987 
5.970 
5.946 
5 - 93-5 
5.879 
5.834 
5 783 
5 0 724 
5 0 657 
5.583 
5.512 
5 . u  
5.373 
5 - 304 
5 237 
5 170 
5 . 104 
5.039 
4.975 
4. g l l  
4,849 
4.787 
4.726 
4.666 
4.606 
4.548 
4.490 
4.432 
4.289 
4.178 
4.069 
3.963 
3.860 
3 e 760 
3 . 662 

Wing 1, W1 

Y-up/c 

00775 
-0775 
00775 
00775 
00775 
,0775 
-0775 
00775 
00775 
-0775 
0775 

-0775 
0 0775 
-0775 
00775 
00775 
00775 
-0775 
00775 
00775 
00775 
-0775 
8 0775 
,0775 
-0775- 
00775 
-0775 
eo775 
*0775 
* 0775 
00775 
*0775 
00775 
-0775 
-0775 
00775 
e0775 

Y-Lo/c 

,0298 
-0298 
.0298 
.0298 
-0298 
.0298 
.0298 
,0298 
-0298 
.0298 
-0298 
.0298 
.0298 
-0298 
-0298 
.0298 
.0298 
.0298 
.0290 
.02* 
.0298 
.0298 
.0298 
-0298 . 0298 
-0298 
.0298 
-0298 
,0298 
.0298 
.0298 
,0298 
.0298 
.0298 
.0298 . 0298 
,0298 

H/c 

.OOOO 
-.OOO2 
-.0008 

-.0029 
-.0042 
-.0056 
-00072 
-.oogo 
-.0107 
-.O124 
-.0140 
-.0154 
-00162 
-.0175 
= .0185 
-00193 
-.Olg9 
-.0206 
-.02lo 
-.02l3 - .0218 
-.0221 
-.0221 
-.0222 

- 0224 - , 0224 

=.0017 

-.0225 

-.0225 - .0223 - .0219 
= .0215 
-.0209 - 00202 
-.0194 
-.0186 
-.0177 

* Semispan and chord w e  in inches 



TAEXE 2. - WING GEOMETRIC DATA .. Continued. 

Semi- 
span 

24.323 
24.459 
24.773 

25.344 
25.604 

25.068 

25.848 
26.077 
26.293 
26.495 
26.686 
26.866 
27.036 
27.196 
27 347 
27.489 
27.624 
27 751 
27.870 

28 e 091 
28.345 

28.825 

27- 984 

28.524 
28 . 684 

28.952 
29,064 
29.164 
29.254 
29 0 333 
29,405 
29.468 
29.529 
29.600 

29.800 
29.900 
30 .ooo 

29.700 

Chord 

3.567 
3 474 
3.384 
3 . 296 
3.210 
3.127 
3.046 
2.966 
2.889 
2.814 
2 . 741 
2 , 670 
2.600 
2.533 
2 , 467 
2.403 
2.340 
2 279 
2.220 
2.163 
2,106 
1.965 
1.859 
1.758 
1.662 
1.572 
1.487 
1.406 
1 330 
1.258 
1.19 
1.125 
1.064 

0 977 
.846 - 692 
0489 
,000 

Wing 1, W1 

Y-up/c 

00775 
-0775 
9 0775 
-0775 
00775 
00775 
00775 
0775 

-0775 
90775 
-0775 
,0775 
00758 
-0738 
,0721 
00703 
e 0688 
.0671 
00653 
.0643 
.0613 
eo590 
eo565 
,0546 
90529 
-0 515 
, 0 504 . 0491 
-0481 
.0469 . 0462 
-0453 
.ow 
.04b 
.0449 
.0448 
.04p 
.oooo 

Y-l;o/C 

.0298 

.0298 

.0298 
-0298 
-0298 
,0298 
.0298 
.029 
-0298 
.0298 
.0298 
-0298 
.0292 
,0284 
.0276 
0270 

-0265 
00259 
-0252 
.0245 
-0237 
.0229 
.0221 
-0210 
.0205 
,0197 
-0195 
.0185 
00180 
.0183 
.0176 
.0178 
.0169 

.0165 
e0173 
.0163 
.ow0 

.0174 
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TABLE 2. - W I N G  GEDMETRIC DATA - Continued, 

- .000259 
-.000253 - .000245 
9.000236 
m.000225 
-.0002l3 
=.0001* .. .000183 
-.000156 - . OOOU7 
=.ooOoa 
-.000004 . 000077 

.00018t. 

.000313 
,000482 
.00069 
.OOOg39 
.001226 
eOO1yIO 
.001816 
002177 

,002581 
.003024 
.003584 
.003741 
.003823 
.004052 
.ooh86 
A04774 
.005286 
.005821 
.006380 
-006993 
.007703 
.008523 
,009472 
.010371 
-011837 
-013283 

-002799 
.003206 

.003508 

.003655 

.003800 
e 003941 
.004080 
,0042881 
-004537 
.004814 
.005114 
.005437 

-003358 

.005788 

.006172 

.00659 

.008037 
,008482 
0008963 
.009476 
.010017 
0 10 576 

.011242 
,011420 
.011512 
.011764 
.012016 
.ox2520 

.007047 
0007531 

.013023 

.013524 

.014024 
,014548 
.015127 

.016473 

.017251 
,018106 

.015766 

e 01937 

.014919 
,014942 

.Ol6719 

.016227 

,017617 
-018626 
.019108 
.020538 
.om582 

.023832 
-024277 

,026636 
-027858 

.022320 

,025427 

,031474 
031980 

e 032497 
e 032945 

.034020 
,034543 
-035082 
-035537 
-036082 
.036601 
,037112 
037619 

.038349 
,038942 

.ob086 

.ob636 

e033498 

- 039521 

.04ll.71 
e 041689 
e 042191 
-042677 
.0431@ 
.043605 
.044048 

020037 
,020032 
.020802 
.021082 
.020584 
.022130 
.022389 
.023127 
.023202 
.024010 
.024723 
,02497 
.025&3 
,025968 

.027994 

.026482 

.0281B9 
, 028386 
,028555 
,028761 
* 028953 

-029337 
.029143 

*029499 
.029691 
.029872 
e 030047 
.030220 
,330423 
.030619 
-030809 
-030991 
.031166 
e031335 
.031496 
.031650 
003&798 
0031939 
.032074 
.032204 

. O W  

.044gOl 

.045314 
,045720 
0046122 
.Oh6523 
-0G935 
-047351 
-047772 
,048201 
.04864O 
.04993 
-049562 
,050049 
,050556 
,051086 
,051640 
.O5ZZl 
.052829 
-053467 
054135 

-054835 
-055566 
0056330 
,057127 
-057955 
,058816 
,059707 
.06062g 
,061578 
-062555 
-063556 
.06492 
,065628 
.066694 
eo67779 
.068883 
.07w5 
e071146 
.0723ll 
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TABU 2. - WING GEOMETRIC DATA - Continued. 

0073503 - 074730 
.076001 
~ 7 7 3 2 8  
.078729 
.080223 
,081835 
-083594 
-085532 
.087689 
.og0107 
.092832 
eo95916 
.099411 
1033% 

.io7860 

. u p 6  . a8625 
125010 

e132327 . ik017 

258242 
.168619 
e 179851 
0 197-936 
.204859 

233111 
.248369 
e 261499 
.27 5210 

.304289 

,148713 

.218596 

.289481 

0 319605 
0335396 
* 351625 

0385233 
.368251 

.4O2526 

.038540 

.038742 
038949 

.039260 
e039379 
0039609 
-039851 
.040110 
.Ob39 
04.0654 

.ow976 
a 041331 
.Ob1721 
.0@151 
,042623 
043139 

.Oh3700 

.044307 

.044957 

.Ob5650 

.046380 

047936 
.Oh8749 
.049576 
.050410 
.053244 

e 0471 44- 

.052066 

.052876 

.053661 

.054286 

.054893 

.055476 
-056033 
@ 0 56559 
e 0 57049 
-057P2 
e 0 57912 

0058597 
.058278 

Wing 

.420081 
437854 

0455795 
a 473858 
491996 

.510163 
e 528315 
.546409 
.564404 
.582260 
4 599941 
.617410 
.634633 
651577 

.6682u 

.684502 

.7082117 
715919 

e 730965 
* 745497 
.759430 
772646 

.785031 

.796561 
A07278 

.826502 
* 835095 
e 874772 
.881389 
.886521 
0 893973 
e 898775 
9 905727 
0 907539 
9x7272 

e 923762 
0 932355 
0 936350 
e 946280 

.817242 

.030800 

.02a400 
-029550 

.027150 
0026000 
.024800 
-023150 
.021750 
e020000 
.018350 
e 016250 
.oll!joo 
.OX309 
e0u3u 
.Ol4gO2 

.017227 

.016550 

,018372 
.018917 
.019625 

.020502 

0 017799 

.020235 

020947 
e 021598 
.021796 
.021526 
.021610 
.02133a 
.021038 
.020651 

.018253 

.015678 

e 020179 
.019744 

.016944 

,014932 
.013456 
.012614 
e OU703 
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TABLE 2. - WING GEOMGTRIC DATA = Continued. 

0 794844 
: 789767 
0784463 
0 778938 
773195 

0 770172 
0 767702 
0 762277 
0760899 
0 756939 
75x39 

0 747425 
0746296 
741604 

0 736259 . 735732 
0 729835 
* 727639 
.722656 
718286 
716080 

e 713785 

.698425 

0 707523 
.706231 

.696716 
e 687638 
e 687600 
e 679061 
.674766 
.658057 . a3396 
627219 

8609744 
e 59x49 

e 575291 . 557428 
.e 537560 
e 520372 

.59llOO 

.5u4l2 
0502244 
0492898 
0483403 
0473787 
.464063 
.454281 
-444445 
434573 

.419722 
;b4842 
389941 

e 375014 
0 360044 
03e450 
0 327533 
-326625 
0 31@09 
0310610 
.307293 
0 294383 
291384 

0279420 
.277862 
264209 

0248682 
e 245962 
e233501 
229561 
e217370 

.194206 

.176128 
e 167067 
0 157951 
e 151106 
e 143697 
a 136226 
.X?8686 

.2O3264 

l.85170 
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TABLE 2. - WIMG GEOMETRIC DATA - Continued. 

x / c  

.022570 
,021473 
e 0 2 1 4 4 4  
.020750 
.020483 
,019814 
-018965 
.018883 
-017959 
.017228 
.016508 
00157% 
6015105 
.014&8 
,013772 
.013138 
,012530 . 011950 
.011401 
.010882 
010397 
,009945 
-009526 
.0091@ 
.008787 
,008465 

W i n g  2, W2 

x / c  z / c  

.008173 

.008077 

.007667 
,007626 
.007561 

.007085 

.006963 

.006744 

.006485 

.006207 
-0059u 
0005596 
,005266 
.00498 
.004591 
.004263 
00039% 
0003655 
0003399 
.003141 
.002886 
a02636 

a007909 
007763 

.007471 

.007007 

x / c  

0002392 
.002258 
.002052 
0001gl2 
e001770 
0001557 
O O O l l g O  
. ~ g 4 8  
0000745 
.000576 
0000437 
.om321 
.OW246 
.OOO172 . OOOog8 
.OOOOOO 
-.000009 - .000081 
-.000131 .. .000170 
-0000201 
-.000225 - .000243 
-.OOO254 - .000260 
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TABLE 2. - WING GEOMEXTtIC DATA - Concluded. 

X/C 

99596 
* 98615 
96854 
94348 
91595 
89717 

.85Q54 . 82243 . 77611 . 74682 
* 71655 
068122 - 65330 . 61351 
57465 
54359 
50010 
45495 
38597 . 31761 

.19880 
0 13965 
009339 
006022 
003967 
.02583 
-01539 

. 25034 

wing 4, W4 

z /c  

4 0 6 2 0  

-*00481 
-.OOWl5 
-.oo382 
-3.00308 - 00249 - .00176 
-.OOl20 
-.00058 
0.00000 

.00079 

.00146 

.00191 
000244 
.oo29 
000345 
.00403 
.00463 
.00572 
000653 
.00732 
.00830 
.OOgo9 
.01033 
.01161 

-.00570 
.00519 

X/C 

.00709 

.03197 

.02179 

.0.3187 

.04250 
-06373 
009353 
013389 
17545 . 22415 
28227 

-34741 
. 4 1 U  
.48168 
55738 . 62052 . 68276 . 72012 

0 75413 . 82318 
e 85663 
.89=5 
-924.48 . 95410 
0 97175 

z/c 

.01538 

.01878 

.02928 

004969 
.05882 
.06612 

-07863 
.08291 
-08502 
.Oq487 
.08191 . 07704 
.06982 
.06433 
005845 
.€I4432 
.03610 
-02678 
.01698 

,00178 

,02443 

003373 
.04133 

wO7277 

.00764 

.013b . -  
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TABU 3. - BODY DIMENSIONAL DATA 

L 

. 00 

.LO 

.20 

.30 

.40 

.50 
,60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1.40 
1s 50 
1.60 
1.70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2,80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.40 
3,50 
3,m 
3.70 

X 

22.62 
22.5a 
22 e 42 
22.32 
22.22 
22.12 
22.02 
21.92 
21.82 
21.72 
21-62 
21.52 
21.42 
21.32 
21.22 
21.12 
21.02 
20.92 
20.82 
20.72 
20.62 
20.52 
20.42 
20.32 
20.22 
20.12 
20.02 
19.92 
19.82 
19,72 
19.62 
19.52 
19 . 42 
1'9 ..32 
19.22 
18. %2 

18.92 

D ia 

3.036 
3.036 
3.035 
3.035 
3.035 
3.034 
3.033 
3.032 
3.032 
3.030 
3.029 
3.028 
3.026 
3.025 
3.023 
3.021 
3.019 
3.017 
3.015 
3.013 
3.010 
3 e 008 
3.005 
3.002 
2.999 
2.996 
2.993 
2.989 
2.986 
2.982 
2.979 
2.975 
2.971 
2.967 
2 , 962 
2.958 
2.953 
2 , 949 

Area 

8.909 
8.909 
8,908 
8.907 
8.905 
8.903 
8.900 
8.896 
8.892 
8.888 
8.883 
8.878 
8.872 
8.865 
8.858 
8.850 
8.842 
8.834 
8,825 
8.815 
8.805 
8.794 
8.783 
8.771 
8.759 
8.746 
8,733 

8.705 
8.690 
8.675 
8.659 
8.643 
8.626 
8.609 
8.591 
8.573 
8.554 

8.719 

W 

3.036 
3.036 
3.035 
3.035 
3.035 
3.034 
3.033 
3.032 
3.032 
3.030 
3.029 
3,028 
3.026 
3.025 
3.023 
3.021 
3.019 
3.017 
3.015 
3.013 
3.010 
3.008 
3 ,005 
3.002 
2.999 
2.996 
2 . 993 
2.989 
2.986 ' 

2.982 
2.979 
2.925 
2.971 
2.967 
2.962 
2.958 
2.953 
2.949 

z 

. 000 . 000 . 000 
* 000 . 000 
.ooo . 000 . 000 . 000 
.ooo 
.ooo 
,000 
.ooo 
.ooo 
,000 . 000 . 000 
.ooo . 000 . 000 
.ooo 
,000 
* 000 
,000 . 000 . 000 . 000 
.ooo 
.ooo . 000 
.ooo . 000 
.ooo . 008 
.ooo 
.ooo . 000 
,000 

cfr 

90,0 
90.0 
90 .o 
90.0 
90.0 
90.0 
90.0 
90 .o 
90.0 
90.0 
90.0 
90.0 
90.0 
90 .o 
90.0 
90.0 
90.0 
96.0 
90 .o 
90.0 
90.0 
90.0 
90 .o 
90 .o 
90.0 
90 .o 
90.0 
90.0 
90.0 
90.0 
90,0 
90.0 
90 .0 
90.0 
90 .o 
90.0 
90.0 
90.0 

* All dimensions are inches except Area, in2, and 9, degrees 
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TABU 3. - BODY DIMI3NSIONAL DATA - Continued. 

L 

3.80 
3'90 
4.00 
4.10 
4.20 
4.30 
4.40 
4.50 
4.60 
4-70 
4,80 
4.90 
5.00 
5.10 
5.20 
5.30 
5.40 
5.50 
5.60 
5.70 
5.80 
5.90 
6.00 
6.10 
6.20 
6.30 
6.40 
6.50 
6.60 
6.70 
6.80 
6.90 
7.00 
7.10 
7.20 
7.30 
7.40 
7.50 

X 

18.82 
18.72 
18 . 62 
18.52 
18 . 42 
18 . 32 
18.22 
18.12 
18.02 
17.92 
17.82 
17.32 
17,62 
17.52 
17..42 
17.32 
17.22 
17.12 
17.02 
16.92 
16.82 
16.72 
16.62 
16.52 
16.42 
16.32 
16.22 
16.12 
16.02 
15.92 
15.82 
15.72 
15.62 
15.52 
15.42 
15.32 
15.22 
15.12 

Dia 

2 . 944 
2.039 
2.934 
2.929 
2 . 924 
2.918 
2.913 
2.907 
2.902 
2,899 
2 . 896 
2,894 

2.889 
2.886 
2 . 884 
2 . 882 
2 . 880 
2.877 
2.875 
2.873 
2.872 
2.870 
2 e 868 
2.866 
2.864 
2.863 
2 861 
2 . 859 
2.857 
2.856 
2 . 854 
2.853 
2.851 
2 I 849 
2.848 
2 846 
2.854 

2 m 891 

Area 

8.535 
8.515 
8 . 495 
8.474 
8 , 452 
8.431 
8 . 400 
8.386 
8 . 362 
8.338 
8.314 
8.289 
8.264 
8,239 
8.212 
8.186 
8.158 
8.131 
8.103 
8.074 
8.045 
8.016 
7.986 
7.955 
7.924 
7 . 893 
7.86.1 
7.829 
7.796 
7.763 
7.729 
7.695 
7,660 

7,590 
7,554 
7.518 
7.481 

7.6a5 

2 . 944 
2.939 
2.934 
2.929 
2 , 924 
2.918 

2.907 
2 . 900 
2 . 889 
2.878 
2,867 
2.854 
2 . 841 
2 , 828 
2.813 
2.798 
2,782 
2.766 
2.748 
2.730 
2.711 
2 , 691 
2,671 
2,649 
2,627 
2 a 604 
2.580 
2 . 554 
2 . 528 
2.501 
2 -473 
2.444 
2 , 414 
2.383 
2.350 
2.317 
2.282 

2.913 

z 

. 000 
* 000 . 000 
.OW . 000 
0 000 
000 . 000 
.059 
.119 . 160 
.199 
.230 
.262 
-289 . 318 
s 346 
.372 
8397 
.423 . 448 
.474 
.499 . 523 
.547 
.571 
L 596 
.619 
.642 
a 665 . 689 
e 712 
.736 
.758 
.781 
.804 
,827 
.857 

0 

90.0 
90.0 
90 .o 
90.0 
90.0 
90.0 
90.0 
90.0 
87.7 
85.3 
83.7 
82.1 
80 *O 
79.6 
78.4 
77.3 
76.1 
75eO 
74-0 
72.9 
71.8 
70.7 
69.7 
68.6 
67.6 
66.5 
65.4 
64.4 
63.3 
62.2 
61,l 
60.1 
59.0 
57.9 
56.8 
55,6 
54.5 
53,l 
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TABm 3. - BODY DIMENSIOMAL DATA - Continued. 

L 

7.60 
7.70 
7.80 
7.90 
8 -00 
8.20 
8.20 
8.30 
8.40 

8.60 
8.70 
8.80 
8.90 
9.00 
9.10 
9.20 
9.30 
9.40 
9.50 
9.60 
9.70 
9.80 
9.90 
10 .oo 
10 . 10 
10 . 20 
10.30 
10.40 
10 . 50 
10 . 60 
10.70 
10 . 80 
10.90 
11.00 
11.10 
11 * 20 
11.30 

-8.50 

X 

15 -02 
14.92 
14.82 
14.72 
14.62 
14.52 
14.42 
14.32 
14.22 
14. i4.Q 
14.02 
13.92 
13 . 82 
13.72 
13.62 
13.52 
13.42 
13.32 
13.22 
13 . 12 
13 -02 
12.92 
12 . 82 
12.72 
12.62 
12.52 
12.42 
12.32 
12.22 
12.12 
12.02 
11.92 
11.82 
11.72 
11.62 
11.52 
11.42 
11.32 

Dia 

2.861 
2.867 
2.873 
2.878 
2 . 883 
2.888 
2.891 
2 . 895 
2.898 
2.900 
2.902 
2 903 
2 . 904 
2.905 
2 903 
2.902 
2.901 
2 . 899 
2.996 
2.892 
2.888 
2.883 
2 877 
2 370 
2.861 
2.851 
2,840 
2.829 
2.819 
2.808 
2.796 
2.785 
2.774 
2.763 
2.751 
2.739 
2.727 
2.716 

Arm 

7.444 
7.406 
7.368 
7.330 
7.291 
7.252 
7.212 
7. Ir12 
7 . 13.1 
7.090 
7.049 
7.007 
6,965 
6.923 
6 . 880 
6.836 
6.793 
6.749 
6.704 
6.659 
6.614 
6,568 
6,522 
6.476 
6.429 
6.382 
6.335 
6.287 
6.239 
6,191 
6.142 
6.093 
6.044 
5.994 
5 . 944 
5.893 
5,843 
5.793 

W 

2.245 
2.207 
2 . 168 
2.127 
2 -085 
2.040 
1.994 
1.946 
1,895 
1.843 
1.787 
1.729 
1 . 668 
1.603 
1.534 
1.461 
1.383 
1.298 
1.207 
1.106 
.992 
.463 
.707 
.502 . 000 

2 

.887 

.915 

.943 . 969 

.996 
1.022 
1.047 
1.072 
1 . 096 
1.120 
1,143 
1.166 
1.189 
1.211 
1.232 
1.254 
1.275 
1.296 
1.316 
1.336 
1 . 356 
1.376 
1.394 
1 413 
1.431 

@ 

51.7 
50.3 
49 .O 
47.7 
46.3 
44.9 
43.6 
42.2 
40.8 
38.4 
38.0 
36.6 
35.0 
33.5 
31.9 
30.2 
28.5 
26.6 
24.6 
22.5 
20.1 
17.4 
14.2 
10.1 

.O 
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TABLE: 3. - BODY DIMENSIONAL DATA - Continued. 

L 

11.40 
11-50 
11.60 
11.70 
11.80 
11,90 
12 .oo 
12, lQ 
1%. 20 
12 . 30 
12.40 
L2 . 50 
12 e 60 
12.70 
12 80 
12 90 
13 -00 
13.10 
13 20 
13.30 
13-40 
13.50 
13.60 
13.70 
13.80 
13.90 
14.00 
14.10 
14.20 
14.30 
14.40 
14.50 
14.60 
14.70 
14 . 80 
14.90 
15.00 
15.10 

X 

11 e 22 
11.12 
11.02 
10 92 
10.82 
10.72 
10 . 62 
10 . 52 
10.42 
10.32 
10.22 
10.12 
10.02 
9.92 
9-82 
9.72 
9.62 
9.52 
9.42 
9.32 
9.22 
9.12 
9.02 
8.92 
8.82 
8.72 
8.62 
8.52 
8.42 
8.32 
8.22 
8.12 
8.02 
7.92 
7.82 
7.72 
7,62 
7.52 

D i a  

2,704 
2,691 
2.679 
2.667 
2,654 
2 , 641 
2.629 
2.616 
2 . 603 
2.589 
2,576 
2.563 
2.549 
2.535 
2.521 
2.507 
2,493 
2.479 
2.465 
2 . 450 
2,436 
2.421 
2.406 
2.391 
2.375 
2.360 
2,345 
2.329 
2.313 
2.291 
2,281 
2.265 
2,248 
2.232 
2 -215 
2.198 
2,181 
2 e 164 

Area 

5,740 
5.689 
5.637 
5,585 
5.532 
5 . 480 
5.427 
5.373 
5.320 
5,266 
5.212 
5.158 
5.103 
5.048 
4.993 
4.938 
4.883 
4.827 
4.771 
4.715 
4.659 
4.602 
4.546 
4.489 
4.432 
4.374 
4.317 
4.260 
4.202 

4.0 86 
4,028 
3.970 
3.912 
3.853 
3.795 
3,736 
3.677 

4.144 I 
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TABLE 3. - BODY MMENSIONAL DATA - Continued. 

L 

15.20 
15.30 
15.40 
15.50 
15.60 
15.70 
15.80 
15.90 
16.00 
16.10 
16.20 
16.30 
16.40 
16.50 
16.60 
16.70 
16.80 
16.90 
1T.00 
17.10 
17.20 
17.30 
17.40 
17.50 
17.60 
17.70 
17.80 
17.90 
18.00 
18.10 
18.20 
18.30 
18 e 40 
18.50 
18.60 
18 70 
18.80 
18.90 

X 

7.433 
7.32 
7.22 
7.12 
7.02 
6.92 
6.82 
6.72 
6.62 
6.52 
6.42 
6.32 
6.22 
6.12 
6.02 
5.92 
5.82 
5.72 
5.42 
5.52 
5.42 
5-32 
5,22 
5,12 
5,02 
4.92 
4.82 
4.72 
4.62 
4.52 
4.42 
4.32 
4.22 
4.12 
4.02 
3.92 
3.82 
3.72 

Dia 

2.146 
2.129 
2,111 
2.093 
2.075 
2.057 
2.039 
2.020 
2.002 
1.983 
1.964 
I. 944 
1.925 
1.905 
1.886 
1.866 
1.845 
1.825 
1.805 
1.784 
1.763 
I. 742 
1.720 
1.699 
1.677 
1,655 
1.633 
1 610 
1.587 
1.564 
1.541 
1.518 
1.494 
1.470 
1.446 
1.421 
1.397 
1.372 

Area 

3.619 
3.560 
3.501 
3.442 
3.383 
3.324 
3.265 
3.206 
3.147 
3.088 
3,029 
2.970 
2.911. 
2.852 
2.793 
2.734 
2.675 
2.616 
2.558 
2.499 
2.441 
2.382 
2 e 324 
2.266 
2.208 
2.151 
2.093 
2.036 
1.979 
1.922 
1.8661 
1.809 
1.753 
1.697 
1.642 
1.587 
1.532 
1.478 

696 



TABU 3. - BODY DIMENSIONAL DATA - Concluded. 

L 

19.00 
19.10 
19 . 20 
19.30 
19.40 
19.50 
19.60 
19.70 
19 . 80 
19 90 
20 . 00 
20.10 
20 . 20 
20 . 30 
20.40 
20 . 50 
20 . 60 
20.70 
20.80 
20 . 90 
21.00 
243.10 
21.20 
21.30 
21.40 
21.50 
21.60 
21.70 
21.80 
21.90 
22 . 00 
22.10 
22.20 
22.30 
22.40 
22.50 
22.60 
22.62 

X 

3.62 
3.52 
3.42 
3.32 
3.22 
3.12 
3 $2 
2.92 
2.82 
2.72 
2 -62 
2.52 
2.42 
2.32 
2.22 
2.12 
2.02 
1.92 
1.82 
1.72 
1.62 
1.52 
1.42 
1.32 
1.22 
1.12 
1.02 
.92 . 82 
0 72 . 62 
.52 
.42 . 32 
.22 
.12 
.02 
* 00 

M a  

1.346 
1.321 
1.295 
1.269 
1.242 
1.21s 
1.188 
1.160 
1.132 
1.104 
1.075 
1.046 
1.017 
0 987 . 956 
.926 
* 894 
862 
830 
.797 
763 
729 

e 694 
e 658 
m621 
* 583 . 54s 
505 
464 
.422 
0378 
,332 
e283 
0231 
175 
0111 
e029 
.ooo 

Area 

1.414 
1.370 
1.317 
1.264 
1,212 
10 160 
1.108 
1.057 
1.607 . 957 
.908 
.860 
.812 
.765 . 718 2 

.673 . 628 

. 541 
499 
.457 
0417 
0378 . 340 
303 
-267 
0233 

. 584 

. 200 
169 

* 140 . 112 
.O861 
0063 . 042 
.024 
-010 
0001 . 000 
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TABLE 5. - INDEX O F  DATA FIGlTRES 

Figure T i t l e  

4 Effect of wing a i r f o i l  section fo r  an oblique 
wing angle of 0 degrees. 

5 Effect of wing a i r f o i l  section fo r  an oblique 
wing angle of 45 degrees. 

6 Effect of wing a i r f o i l  section for an oblique 
wing angle of 50 degrees. 

T Effect of wing a i r f o i l  section f o r  an oblique 
wing angle of 60 degrees. 

Page 
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Note: All dimensions are  in 
inches except as noted 

A = 45", 

Wing 1 

0.25 chord il 

Wing pivot pt. / a t  9.4 eroot 

( a )  Model drawing 

Figure 2. - Oblique-wingbody model detai ls  ana photograph. 
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z-up 1 r line 

X 
C 
- 

.001 

.010 

.025 

.050 
075 

a 100 
.150 
* 200 
.300 
.400 
.500 
.600 
.700 
.800 
,900 
1.000 

t - 
C 

.01203 

.03394 

.04849 

.06119 

.06891 

.07446 

.082.50 

.08852 

.09689 

.10000 

.09647 

.08560 

.06796 

.04568 

.02255 

.00400 

Camber 
C 

.00008 

.00078 

.00389 

.00582 

.00195 

.00772 

.01144 

.01498 

.02129 

.02621 

- 02995 
.02785 
.02246 
.01334 . 00000 

.02925 

z-up 

.00609 
01775 

.02619 

.03449 

.04027 

.04&95 

,05924 
.06974 

C 

.05269 

.07621 
07749 
07275 

,06182 
.Oh531 
,02461 
.00200 

2-LO 

- ,00594 
C 

- .01619 
- .02230 
- .02671 

- .02981 -. 02928 

- .O2864 
- -02951 

I- 02715 
-.02379 
- -01899 - 01285 - .00613 - .00038 

.00207 
- 00200 

(a) 1 ing section drawing and tabulated a i r f o i l  section data for wing 
number 1, W1 

Figure 2. - Continued. 

704 



ss 
P

 

W
 

a, 

4
 

E! 
3 n
 

a, 
W

 

5
 

cu 

5 



X 

Chord l ine 

(a) Wing number 2, W p  
(see table 2 for section coordinates) 

/-Chord line 

X 

C 

(b) Wing number 4, W4 
(see table 2 for section coordinates) 

Figure 3.- Wing-section drawings. 
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DATA SET 8VM8OL. CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
(1AEOOS) (.) Wi FO B . 
(UE04D) n; WI FD B 
( UEO.,. 0 W4 FO B 

0.000 0.000 •• 000 
0.000 0.000 •• 000 
0.000 0.000 •• 000 

1.6 
· 

1.4 · · · 
1.2 

1.0 

...J 
u 

0.8 . 
I-
Z 
W 

u 0.6 

u.. 
lL. 
w 0.4 0 
u 
l-
lL. 0.2 
....J 

0.0 

-0.2 

vP A 

~ 
-

/f/) / ~ IJ.\ -
'/ ~ 

y 

/' ./ · 
V</' ~/ 

'/ -
/ ~ -

V L ./~ / -
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
C1AEOOS) (.) Wi FO B 
CtAE040) 2l we FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
CS!AEOOS) 0 Wi FO B 
C S!AE04 S ) :a WI! FO B 
CS!AEOSS) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(UE005) D WI FD B 
(2AE04tl Zl W2 FD B 
(UEOn) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
1 2AED05 ) 0 Wi FO B 
12AE041) 2l W2 FO B 
12AEO.U <> 1i14 FO B 
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DATA aET aYMBOL CONFIGURATION DESCRIPTION 
(UE005) n Wi Fa B 
CIAEO.1) ZI we Fa B 
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DATA lET ITMIOL CONF!GURATION DESCRIPTION 
laAlOOS) n' 10/1 FO I 
C2AE04i) IS we FO I 
C ZAEOGG ) <> 1014 FO I 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(l!AE005) 0 Wi FO B 
(l!AE041) Zl WI! FO B 
(l!AE066) <> W4 FO B 
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DATA aET aYMBOL CONFIGURATION DESCRIPTION 
(2AEDOS) () wt FD B 
(2AE04t ) Z'S WI Fa B 
( 2AE088 ) <> w.. Fa B 
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DATA lET IYMBOL CONFI.URATION DEICRIPTION 
( lIAEDD5I C) Wi FO B 
('AE041) 2l we FO B 
( IAEOO., <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
(SAEDD5) (.) Wi FD B 
CSAED41) 2l W2 FD B 
C SAEDGG) <> W4 FD B 
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ClIAEOO5) 0 \lit 1"0 II 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 8ETA LAM8DA RN/L 
IUEOO5) t:'l Wi FO 8 
laAE041) II W2 FO 8 

0.000 45.000 11.000 
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D4T4 SET SYMBOL CONFIGURATiON DESCRIPTiON 
(34£005) D Wi 1"0 B 
C84E041) Zl we 1"0 B 
(84E066) <> W4 1"0 B 
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DATA SET SYMBOL CONFIGURATION DESCRiPTION 
C lIAED05 ) 0 Wl FO B 
CSAE041) 2l we FO B 
C lIAE066) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(AAEOOs) 0 Wl 1'0 B 
(4AEOA1) IS we FO 8 
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"44EDOI) n loll FO II 
(4AE041) II WI FO II 
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DATA aET aVMBOL CONFIGURATION DESCRIPTION 
(4AEOOS) (.) Wi FO B 
(4AE041) 2l we FO B 
(4AEOGU <> w.4 FO B 
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t4AEOOS) 0 Wi. FO B 
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DATA SET SYMBOl. CONFIGURAT!ONOESCRIPTION BETA LAMBDA RN/L 
'.AE005) () Wi FO B 
'.AEO.1) 2l W2 FD B 

0.000 45.000 '.000 
0.000 .5.000 4.000 

'.AEDSS) 0 W4 FD B 0.000 45.000 •• 000 

.004 . . . . ,-
~ . 

• 003 +----4----~-~~~~--.--~----4---~~---+----~----+---~-----;_ 
,... 
(/') 

~ .002 

>
o g • 001 
..... 

~ .000 
u 

~ .J.~~~ 
~V~I~~ 

. 

. 

v ~" _~ ~ 
• Q I '\ 
~ -.001 +-----+-----+-----+-----~----+-~~~~.--~~--+-----+-----+-----~--~ 

u. -.002 

~ '~ 
u -.003+-----+-----~--~~--~-----+-----+-----r~~~.--~----4-----+---~ 
~ . 
z w . B -.004+-----4-----~--~.--~----+-----4-----~----~----~-----+------~----~ 
L 

(.!) 
. 

Z _. 005 +-----+---l-----II---I--_+----_+--_r--~--4_--+_-~ 
3: 
< 
>-

. 

... 007_ 8 - 6 - 4 - 2 0 2 4 6 8 1 0 12 1 ~ 
ANGLE OF ATTACK. ALPHA. DEGREES 

FIGURE 5 EFFECT ~F WING AIRF~IL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES 
(A)MACH = .95 PAGE 40 



,.... 
(f) -x 
< 
>-
Cl 
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E:) 
1: 

(!) 
z 
.J 
.J 
E:) 
0::. 

DATA lET IYMBOL CONFIGURATION DESCRIPT!ON 
C4AEDD5 , Cl Wi FO B 
(4AE041, IS we FO B 
(4AEOee, <> W4 FO 8 

.016 

.014 

.012 

.010 , 
.008 

.006 
i\ 
~ A~ .004 

0002 
~ ~ .Lll ? , 

"--f v 

.000 

-.002 

-.004 

-.006 

-.008 

f 
,/ 

L -
-.010 -

-.012 

-.014 

-.016_ 8 - 6 - 4 - 2 

BETA LAMBDA RN/L 
0.000 45,000 1.000 
0,000 45.000 4.000 
0.000 45.000 6.000 
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DATA lET IYMBOL CONFIGURATION DESCRIPTION 
('!AEOOS) n Wi FO B 
(4AE041) 21 we FO B 
(4AEO •• ) <> W4 FO B 

40 

35 

30 

25 

20 

15 

10 

5 

0 

- 5 

1 
II! 

/~ '(j/ 
A ~ -/j if -

-10 J 
-1§ 8 - S - 4 - 2 

BETA LAMBDA RN/L 
0.000 4'.000 a.OOO 
0.000 4' .000 4.000 
0.000 4'.000 6.000 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
CSAEDDS) t:'l Wi FO 8 
('AE041) 2l W2 FO 8 
15AEDSS) <> W4 FO 8 

1.6 --.-

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

b& ~ 

~ V 
/ 

VA 
<!1" 

-0.4 

-0. Q. B - 6 - 4 - 2 

BETA LAMBDA RN/L 
0.000 45.000 •• 000 
0.000 45.000 4.000 
0.000 4'.000 '.000 
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l,.P I 

-, 
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(!) 
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u 
I-.... 
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DATA SET SYMBOL CONFiGURATION DESCRIPTION 
C 5AE005 ) Cl 1011 1"0 B 
C5AE041) ZS W2 1"0 B 
CSAEOSS) <> 1014 1"0 B 

.25 

• 20 

.15 

• 10 

.05 

.00 

-.05 

-.10 

-.15 --'I>- -..., 

.... 20· 

Ii. ~ -i\."""-A ...... 

...c -r.\. 

c:Y'" ~ 
~ 

BETA LAMBDA RN/L 
0,000 45.000 •• 000 
0.000 45.000 4.000 
0.000 45.000 •• 000 

. 
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/ · 

f · 
· 

A 

~~ J · 
I 
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· · 

· 
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FIGURE 5 EFFECT ~F WING AIRF~IL SECTI~N F~R AN ~BLIQUE WING ANGLE ~F 4S DEGREES 
(A)MACH = .98 PAGE 44 



0 
u .. 
I-
Z 
I.LI -u 
LI.. 
LI.. 
I.LI 
E:) 
u 
(!) 
< 
0: c 

DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(~AEOO!l) (.) Wi FO B 
(SAE041) II W2 FO B 
(5AEOee' <> W4 FO B 

.22 , 

.20 

.18 

.16 

.14 

.12 

.10 

.08 

\ 
.06 

.04 

~ :r" -

.02 ~ 
"""",-~. r---

.00_ 8 - 6 - -4 - 2 

BETA LAMBDA RN/L 
0,000 45.000 ,.000 
0.000 45.000 4.000 
0.000 45.000 '.000 

. , .. 

, 
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/ 

~. / 
l6 V 
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~ 
..-<-Z 

-, 

0 2 -4 6 
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0 .... 
CJ) 

DATA leT STMBOL CONFIGURATION DESCRIPTION 
ClA£OOU CI \It 1"0 II 
(lA£04& ) Zl WI 1"11 a 
4IA£O") <> W4 1"11 II 

.035 • . . 

.030 

.025 

.020 

.015 A 
'\ 

.010 i\.. 
~ ~ 

.005 
-a v 

~ 
.000 

-.005 / 
-.010 

-.015 

-.020 

-.025 

-.030 
-

-.035 

-.040 

-.045 

•• 050 

.... 055_ 8 -8 - 4 -2 

lETA LAMBOA .M/L 
0.000 41.000 •• 000 
0.000 45.000 4.000 
0.000 .65.000 '.000 
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..A. 
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-. 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(SAEOD5 ) 0 WI FO B 
C5AE04t) 2l we FO B 
(SAEoee ) <> W4 FO B 

.004 ., , 

A 

T 

.003 

.002 

tr' 
~~ 

.001 
/~ 7 ~ 

V 

• 000 
j 

-.001 

-.002 

-.003 

-.004 

-
-.005 

-.006 

-.007_ 8 - 6 - 4 - 2 

BETA LAMBD. 
0.000 45.000 
0.000 45.000 
a.DDD 45.000 

, 

~. A ~ 

~ w~ \ 1\ • 

-~ \\ 
~~ \ 
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-. 

0 2 4 
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4.000 
•• 000 

.. .. 
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DATA lET I'MBOL CON~!GURATION DEICRI'TION 
C IAEDD' l ~ W, ~O II 
(IAED4!, Zl WI ~O II 
C IAEO •• , <> W4 ~O II 

.IHS 

.014 

.012 

.010 

.008 

.OOS 

.004 

0002 

j 

<\ l/? 
~ I~ V 

.000 

-.002 

-.004 

-.OOS 

-.008 
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DATA lET SYMBOL CONFIGURATION DESCRIPTION 
UAEOO!l) Cl Wi'O B 
I IIAE04t ) n W2,0 B 
('AEOell, <> W4'0 B 

40 

35 

30 

25 

20 

15 

j 
10 

5 It 
0 

- 5 

VI/ f;J 

~ V * "'!' - ~ JIf 
V 

-10 

-1~ 9 - S - 4 - 2 
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~ 

0 
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DATA BET BYMBOL CONFIGURATION DESCRIPTiON 
'.4£005 ) C) Wi FO 8 
'.AE04t) 2l we FO 8 
'.AEO •• ' <> '" FO 8 

1.6 . . 
1.4 

1.2 

1.0 

0.8 

0.6 

0 .. 4 
, , 

, 

0.2 

0.0 
I~ 

-0.2 
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-0.4 
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BETA LAMBDA 
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CL 

DATA aET aVMBOL CONFIGURATION DEaCRIPTION 
, eAEOO5) 0 Wi FO II 
,eAE041) II WI FO B 
,eAEOee) <> W4 FO B 

.25 

.20 

.15 

.10 

• OS 

.00 ~ K 
-. OS 

-.10 

,., 

::/ ~ 
~ 
~ 

~ 
V 

-.15 

-.20 

-.2~ 8 - S - 4 - 2 
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0 
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0.000 45.000 
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DATA lET SYMBOL CONFIGURATION DESCRIPTION 
(IAE0051 [.) Wi FO B 
(IAEO.l) Zl we FO 8 
(GAEOII) <> w. FO 8 

.22 , , 

.20 

.18 

.IS 

.14 

.12 

.10 

.08 
.ill. 

'\ 

• OS 

.04· 

~ 
~ 
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~ 
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8ETA LAMBDA 
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DATA SET SYM80L CONFIGURATION DESCRIPTION 
(eAEOOS) t':') WI Fa 8 
(eA£041) 2l WI Fa 8 
(eA£oe., ¢ W4 Fa 8 

.035 

.. 030 

.025 

.020 

.015 
~ ............ 

.010 

.005 "' f$-~ ... ..A 
br 

.000 

-.005 

-.010 

-.015 

-.020 

-.025 

-.030 

-.035 -
-.040 

-.045 

-.050 

-.055_ 8 - S - 4 - 2 

"'" 
~ A 
~ 

0 

~ 
~ 
~ J\ 

BETA LAMBDA 
0.000 45.000 
0.000 45.000 
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DATA a~T 8YNDCL COMFIOURAT1ON DEaCftlPT10N 
C .A£OOs) n Wi Fa 8 
'.A£041) ZI WI Fa 8 
(8AEO •• ) <> 1014 Fa 8 

.004 

.003 

~ 

aETA 
0.000 
0.000 
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LAMBDA 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
(IIAEDDS) 0 W1 FD B 
(IIAE041) 21 we FO B 
(IIAEOIIII) <> W4 FO B 

D,DDD 45,000 11.000 
0,000 45,000 4.000 
0,000 45,000 11.000 
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.014 
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< .010 
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DATA SIT SYMBOL CONFJ~URATJON DESCRIPTION 
'IAIOOS) n WI FO B 
'IAI041) 2l we Fa B 
'IAlOII) <> 1114 FO B 

40 
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20 

15 

10 
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~ V ""'. ~ ... ~ 

-10 

-1~ 8 - 6 - 4 - 2 

BETA LAMBO. RN/L 
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0.000 45.000 4,.000 
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DATA lET IYMBOL CONFI~URATION DEICRIPTION 
nAEOO?) 0 Wi FD B 
C5AE042) 21 W2 FO B 
C54EO.I) ¢ W4 FD B 

1.6 , 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

~ ~ 
h ~ 

~ 
~ 

< 

-0.4 

BETA LAMBDA RN/L 
O.ODO 50.0DD '.000 
0.000 50.000 4.000 
0.000 50.000 6.000 
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DATA 8ET SYMBOL CON~IGURATJON DESCRIPTION 
(SAEOO?) n Wi FO 8 
nAEad ) Zl W2 Fa B 
c SAE0081 <> W4 Fa B 

.25 

.20 

.15 

• 10 

.05 

.00 

A 
A A -I.:JI'" 

..A 

-.05 
~ V 

-.10 

-.15 

A" ~ 

V V 

./ 
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-.20 

-.2~ 8 - 6 - 4 - 2 

BETA LAMBDA RH/L 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
014E001) 0 Wi FO a 
(S4E042) 2l we FO a 
(S4EOG8) 0 W4 FO a 

.22 . 

.20 

.18 

.16 

.14 

.12 

.10 

.08 

.06 
~ 

.04 

.02 

< 

" -

~~ 
~ 

~ 

• 00_ 8 - 6 - 4 - 2 

. . 

~ 

.... 
0 

aETA 
0.000 
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I.J.I 
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(/) 

DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(SA£001') 0 W\ I'D B 
(SAE042) ZS we 1"0 B 
ISIIEOOI:.) 0 W4 1"0 B 

.035 

• 030 

.025 

• 020 

.015 

.010 

.005 

<:, 

~ A- i.'-
~ 

.000 

-. 005 

~ -' 
0'" 

,-' y.A. 

-.010 .P 
u' 

-.015 

-.020 

-.025 

-.030 

-.035 

-.040 

-.045 

-.050 

-.055_ e - 6 - 4 - 2 

BETA LAMBDA RN/L 
0.000 50.000 1.000 
0.000 50.000 4.000 
0.000 50.,000 1.000 

'" ~ ~ ~ 
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~ 

.. ~'\ 
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~ 
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~ r\ 

\. 
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ANGLE OF ATTACK. ALPHA. DEGREES 

.. 
~ 

:: 
~ 

~ 

~ 

:: 

~ 

~ 

. 

; 

I~ 
-:: .. 
-

: 

8 10 12 1 

FIGURE 6 EFFECT ~F WING AIRF~IL SECTI~N FOR AN OBLIQUE WING ANGLE ~F 50 DEGREES 
CA)MACH = .80 PAGE 60 



"" (f) 

x 
-< 
>-
0 
0 
CD .... 
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I-z 
lIJ 
~ 
0 
~ 

t!) 
z 
::J: 
-< 
>-

DATA BET SYMBOL CONFIGURATION DESCRIPTION 
C 5AEOO?) 0 Wi FO B 
(5AE042) 2l we FO B 
(SAEOee) <> W4 FO B 

.004 

.003 A 

~ 
.002 

f\.. 

.001 

~ ~~ /~ ~ / ~ , 
.000 

-.001 

-.002 

-.003 

-.004 

-
-.005 

-.006 

-.007_ 8 - 6 - 4 - 2 

BETA LAMBDA RN/L 
0.000 50.000 '.000 
0,000 50.000 4.000 
0.000 50.000 6.000 
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~ ~ 
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w 
0 
u 
I-z 
W 
l: 
0 
l: 
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z -...J 
...J 
0 
a:: 

DATA SET SYMBOL CONFIGURATION DESCRIPTION 
C SAEOO'l') 0 Wi FO B 
(SAE04e, z:s. we FO B 
(3I1EOIl8) <> 1.14 FO B 

.016 . 
• 014 

.012 

.010 

.008 < 
• OOS 

.004 

\ 

\ 
~ ~ -...J/Y' 

/ 0002 

.000 
J/ 

r.;r 

-.002 

-.004 

t1 

A~ V 
~ 

-.OOS 

-.008 -

-.010 

-.012 

-.014 

-.OIS_ 8 - 6 - 4 - 2 

BETA LAMBDA RN/L 
0,000 50,000 8,000 
0,000 50.000 4,DOO 
0,000 50.000 8,DOO 

~ ~ '0.. 
.-. 
~ A.-........v,.. "z- -..:.. 
A.~ .~ ~ 
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I-"'" , 

i\ 
/ \ 
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\ 

-
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I-
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< 
0:: 
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l-
LL. .... 
...J 

DATA 8£T SYMIIOL CONFIGURATION DESCRIPTION 
(8A£001" 0 Wi 1"0 II 
(8A£042) Zl W2 1"0 II 
CSAE088 , <> W4 1"0 II 

40 . . 

35 

30 

25 

20 

15 

10 

5 

0 

- 5 

// 
/IJi 

) 'j I 
V) j/ 
~ 

e--V V 
-10 Ii 

-1~ 8 - 6 - 4 - 2 

~~ 
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I 
I 

0 2 
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0.000 50.000 
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0.000 50.000 
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ANGLE OF ATTACK. ALPHA. DEGREES 

· 
· 

-
· · · 
· · 
· 
· 
· 
· 

· 
~ 

-
· 

-

· -
· 

8 10 12 1 

FIGURE 6 EFFECT ~F WING AIRF~IL SECTI~N F~R AN ~BLIQUE WING ANGLE ~F 50 DEGREES 
(A)MACH = .80 PAGE 63 



...J u . .... 
Z 
w .... 
u 
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LL. 
w 
0 u 
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DATA I£T IYMBOL CONFIGURATION DESCRIPTION 
(4A£001) (.) Wi FO 8 
(4A£04U 2l WI! FD 8 
(4A£08I, <> W4 Fa 8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

~ bJ 

tg" V 
~ 

<I/' 
V -c:r 

-0.4 

-0. fi 8 - 6 - 4 - 2 

A 
V 

0 

BETA laMBDA 
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0.000 50.000 
0.000 50.000 
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~p 

~ 
V 

2 4 6 
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•• 000 
4.000 
6.000 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
(4AEOO'r' 0 Wi FO B 
(4AE042' Z! we FO B 

0.000 50.000 6,000 
0,000 50,000 4,000 

(4AEOea, <> W4 FO B 0.000 50.000 6.000 

.25 

.20 · 
-

l:: 
.15 

...J I 
u 

· . .10 ~ · z 
w .... -
u -
u.. .05 
u.. 
w 
0 
u .00 
~ z 
W 
l:: 
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(!) 
Z 
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-.20 
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u 
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0:: 
0 

DATA SET SYMBOL CONFIGURATION DESCRIPTION 
141.£00'7) (.) w-t FO 8 
1 4AED42 ) n: WI! FD 8 
14AE066) <> W4 FD B 

.22 

.20 

.18 

.16 

.14 

.12 

.10 

.08 

.06 
& 

-

.04 "'& ~ 
;02 

, 
~ .... 

.00_ 8 - 6 - 4 - 2 

BETA LAMBDA RN/L 
0.000 50.000 6.000 
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0.000 50.000 6.000 

,n 

~ ~ 
~ ~~ 
~ 

0 2 4 '6 
ANGLE OF ATTACK. ALPHA. DEGREES 

· 
· 
· 
· 

· 

· · 
· · 
· 
· 

· 

· 
8 1'0 12 l'i 

FIGURE S EFFECT ~F WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE ~F 50 DEGREES 
CAlMACH = .95 PAGE 66 



>-u 
.. 

I-z 
W -u -lL. 
lL. 
w 
E) 
u 
w 
u 
0:: 
E) 
lL. 

w 
Cl -(/) 

DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(4AEOO?) 0 Wi FO B 
(4AE042) Zl we FO B 
(4AEOe8) <> W4 FO B 

.035 

.030 

.025 

.020 

.01S 

.010 

• 005 

A. , 
'\ 
~ 

• 000 
(:t 

-.; 

-.005 

-.010 ~ 
/' 

-.015 

-.020 

-.025 

-.030 

-.035 
. 

-.040 

-.045 

-.050 

-.055_ 8 - 6 - 4 - 2 

8ETA LAMBDA. RN/L 
0,000 50,000 8,000 
0,000 50,000 4,000 
0,000 50,000 8,000 

'* 
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DATA SET SYM80L CONFIGURATION DESCRIPTION 
(4A£007) 0 WI FO 8 
(4A£042) ZS W2 FO 8 
(44£0118) 0 W4 FO 8 

.004 

.003 

.002 

.001 

.000 

-.001 

-.002 

-.003 

-.004 

-.005 

-.006 

BETA LAMBDA RN/L 
0.000 51).000 .,-000 
0.000 50.000 4.000 
0.000 50.000 6.000 

, 

· · 

· 

· 
· 

-
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· 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
(4AE007) () Wi FO B 
(4AE042) Zl W2 FO B 
(4AEOee) <> W<4 FO B 

0.000 50.000 e.DDO 
0.000 50.000 <4.000 
0.000 50.000, -6.-000 

.01S 
: 

.014 . .... 

.012 tf) 

x 
< .010 
>-
0 

.008 c 
Il'l ..... 

.OOS 
...J 
Il'l .004 u . 
f- .002 z 
IJ.J 

U .000 

~, 
. 

'" .A>... (!) 
: -

" ~ 
,q -

" ~ ~ ~"1.:. ~ -!"~fJ : 
a .Li) ~ "",A -

-...... v ~ -
"--..r. 

v 
~ 
~ -.002 
IJ.J c 
u -.004 
I-
z 
IJ.J -.OOS l: 

111 

/' 
/' . 
~ 

C 
l: -.008 
(!) 
z 
...J 

-.010 -
...J 
c -.012 n:: 

-.014 -
-, 

-. 016_ 8 - 6 - 4 - 2 0 2 4 6 8 1 0 12 14 
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...J 

D~TA SET SYMBOL CONF!GURATION DESCRIPTION 
14A£OO7) n W~ "0 B 
14AE042) Zl we FO B 
(4A£0158) <> 1014 FO B 

40 

35 

30 

25 

20 

15 

10 

5 

0 

- 5 

-10 

J 
If; 

VI /~ p 

Vj VI 
~ 

Co\. ~ V 
A ~ -

-1~ 8 - S - 4 - 2 

BETA LAMBDA RN/L 
0.000 50.000 &.000 
0.000 50.000 4.000 
0.000 50.000 6.000 
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DATA SET SYMBOL CONFI~URATION DESCRIPTION 
(sAEDD?) a Wi FD B 
( UED42 , n; we FO 8 
(UEDII' <> W4 FO 8 

1.8 , 

1.4 

1.2 

1.0 

0.8 

0.8 

0.4 

0.2 

0.0 

-0.2 

~ A 

~ V 
/ 
~ -

<Y 

-0.4 

-O·Ii 8 - 6 - 4 - 2 

8ETA LAMBDA RN/L 
0,000 50,000 1,000 
0,000 50.000 4.000 
0,000 50.000 1.000 

I':lo 

/ ~ 
~ ~ 

.,,-

~ 

-, 

0 2 4 6 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
C'AEOD?) [.) ,Wi FD B 
C5AED42) Zl W2 FD B 
('AEDe8) <> W4 FD B 

.25 

• 20 

.15 

.10 

• OS 

.00 
~ f.......a 

-. OS 

/' -
-.10 

cf' V 
j.-AY 

-.15 

-.20 
V 

<;I 

-.2~ 8 - S - 4 - 2 

BETA L.AMBDA RN/L 
0.000 50.000 8.000 
0.000 50.000 4.000 
0.000 50.000 B.ooO 

~ ~ 
~ A ...Ii'::. ~ --..:.. 

) 

..t=Y' 
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-, 
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DATA SET SVMBOL CONFI~URATION DESCRIPTION 
(SAEOO?) () Wi FO B 
(SAE042 , IS W2 FO B 
(5AE066) <> W4 FO B 

.22 

.20 

.18 

.16 

.14 

.12 

.10 

.08 

.06 

• 04 

.02 

~ 

~ . 

" ~ ~ '--

BETA LAMBDA RN/L 
0,000 50,000 6.000 
0,000 50,000 4,000 
0,000 50,000 6,000 
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0:: 
0 
I.L. 

lJJ 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(5A£00?) () Wi FO B 
(5A£042) ZS W2 FO B 
(5A£O(l(l) 0 W4 FO B 

.035 

.030 

.025 

.020 

.015 

.010 

.005 

.I!l. 

~ 

" ~ t:\. 

'l'-

.000 
-(:' ... 10- -

-.005 

-.010 

yA 

~ 
,..... 

-.015 

-.020 

-.025 

-.030 -
-.035 

-.040 

-.045 

-.050 

B£TA LAMBDA RN/L 
0.000 50.000 6.000 
0.000 50.000 4.000 
0.000 50.000 6.000 
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DATA SET SVMBOL CONFIGURATION DESCRIPTION 
(SAEDD." 0 Wi FO B 
(5AED42) Zl we FO B 
(5AED8S) <> W4 FO B 

~ .002 

>o 
a5 • 001 
'-J 

u 
I.L. -.002 

BETA 
D.DDD 
0.000 
0.000 

LAMBDA 
50.000 
50.000 
50.000 

RN/L 
8.000 
4.000 
8.000 

· 

· 
-
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· · 

I.L. -
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o -
u -.003+-------+-------+--------+-------+-------+-------+-------+-------+-------+-----+---~ 
~ z 
w · 
~ -.004+-----+--------~----~-----+-----~----~--------~----~------+------~----~. 
~ . 
l!) 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(5AEOO?) () Wi FO B 
(5AE042) 2l W2 FO B 
15AE066) <> W4 FO B 

.016 

.014 

.012 

.010 

.008 ~, 

.006 

.004 

0002 

.000 

~ , 
'" ~ r.'I r'Q. ~ 

" / "- ,... -
-.002 

-.004 

-.006 

N 

~ 
j1!1 

V 

/ 
-.008 

-.010 

-.012 

-.014 

-.016_ 8 - 6 - 4 - 2 

BETA LAMBDA RN/L 
0.000 50.000 6.000 
0.000 50.000 4.000 
0.000 50.000 6.000 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(SAEDD?) 0 W1 FO B 
(5AED42) ZS W2 FD B 
(SAEDSS) <> W4 FO B 
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20 
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VI! ;:< 
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DATA lET IYMBOL CONFIGURATION DESCRIPTION 
(1AE001) (.) Wi FO B 
( 1 AE041!) Zl WI!' FO B 
(1AEOII, <> W4 FO B 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

~ 
~ V 

./ 

~~ 
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~ 

-0.4 

-O.~ 8 - 6 - 4 - 2 

BETA LAMBDA RN/L 
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0.000 50.000 4.000 
0.000 50.000 1.000 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
'?UDD7) 0 Wi FO B 
'?AE042) ~ W2 FO B 
'?AEOes) <> W4 FO B 
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DATA SET SYM80L CONFIGURATION DESCRIPTiON 
C7AE007) () Wi FO 8 
C7AE04e, ZI we FO 8 
C?AEO •• ) 0 W4 FO 8 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(l'AEOOl') (') Wi FO B 
(l'AE042) 2l W2 FO B 
(?AE068) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
( 7A£00?) 0 Wl FO B 
(7A£042) Zl W2 FO B 
(7A£066) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
( 1'AEOO1' I () Wi FO B 
(1'AE042I Zl we FO B 
(1'AEOeel <> W4 FO B 
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DATA lET IVM80L CONFIGURATION DESCRIPTION 
(7AEOO" (.) Wi FO 8 
(7AE042' Zl W2 FO 8 
(7AEOIIII, <> W4 FO 8 
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DATA a£T aYMBOL CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
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D4TA SET SYMBOL CONFIGURATION DESCRIPTION 
(IIAE007) 0 Wi FO B 
(84E042) IS we FO 8 
(84E088) <> W4 FO B 

.25 

.20 

.15 

.10 

A 

~ 

~ 
.05 

.00 

~-G '--
.~ -a..... 

~ 

VI~ ~ 
~ -.05 
(!) 
z 
J: -.10 
u ... --tl. 

... 15 

-.20 

·8 

.... --., 

<lj 

-

- 6 - 4 - 2 

"-A 

BETA 
0.000 
0.000 
0.000 

LAMBDA 
50.000 
50.000 
50 .• 000 

7 

RN/L 
8.000 
4.000 
8.000 

l? 

~ 
~ ~ 

[/ 
/' 

~ ~ ~ 

-

0 2 4 6 
ANGLE OF ATTACK. ALPHA. DEGREES 

--,- , , 

· 
· 
· · 

· 
· 
· · 
· 
· 

· 

8 10 12 111 

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES 
(A)MACH = 1.15 PAGE 86 



0 
u .. 
...... 
z 
w .... 
u 
LL 
LL 
w c 
u 
(!) 
< 
!r 
0 

DATA SET SYMBOL CONFIGURATION DESCRIPTION 
C eAEDD7 ) () Wi FD B 
( SAED42 , 2l W2 FD B 
(SAEDSS) <> W4 FD B 
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DATA lET IVMBOL CONFIGURATION DESCRIPTION 
CIAEDD?) () Wi FD B 
CIAED42) 2l we FO B 
COAEDel) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(8AE001) () Wi FO B 
(8AE042) ZI WI FO B 
(UE088) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
( SAEDD?) 0 Wi FO B 
(8A£042) Zl we FO B 
( "'£088 ) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(8AEOO?1 () Wi FO B 
(8AE042I 2l we FO B 
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DATA aET aYMBOL CONFIGURATION DESCRIPTION 
(GAEOO?) () Wi FO B 
CIIAE042) n we FO B 
C9AE0661 <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(9AEOO." 0 Wi FO B 
(9AE042, Xi W2 FO B 
( 9AEOe8 , <> W4 FD B 

.25 

.20 

.15 

• 10 

.05 ..,..- ..... 
~ ~ 

.00 

-.05 

-f.) 

;r-V ~ 
<:>--~ 

I'-.... 
V 

-.10 / 

-.15 -

-.20 

~ 
'-J.\. 

-",;,r 

.,I; 
~ 

BETA LAMBDA 
0.000 50.000 
0.000 50.000 
0.000 50.000 

~ 
~ 

~ ~/ 
~ /' 

--

RN/L 
8.000 
4.000 
8.000 

. 
· 
· 
· · 
· 
· 
-
· 

-
· 

· 

-
-, 

... 2~ 8 - 6 - 4 - 2 0 2 4 6 8 1 0 12 14 
ANGLE ~F ATTACK. ALPHA. DEGREES 

FIGURE 6 EFFECT eF WING AIRFeIL SECTWN FeR AN eSLIQUE WING ANGLE eF 50 DEGREES 
C A ) MACH = 1. 20 PAGE 93 



00 
o 
N 

c 
u .. 
I-
Z 
W .... 
u -l.I.. 
l.I.. 
w 
EJ 
u 
(,!) 
< 
0:: c 

OAT A SET SYM90L CONF'lGUUTlON DESCR1PTION 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
UIAEOOT I (.) Wi FO B 
19AE04Z) Z! W2 FO B 
( 9AEOGSl <> W4 FO B 
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DATA lET IYMBOL CONFIGURATION DESCRIPTION 
(9AEOO?1 (,) Wi FO B 
(94£042 ) 2l W2 FO B 
(9AE068) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
('A£OO1) Cl Wi FO B 
(.A£042' IS W2 FO B 
(.AEOOO, <> W4 FO B 

.016 • • 

.014 

.012 

.010 

.008 

.006 

.004 

0002 

.OOD 

-.002 
, 

\ 
1\ 

~ 
~ 

/' rw 
~// I -.004 

-.006 
~ V pjtv 

-.000 
,~ ~ 
~ 

-.010 -

-.012 

-.014 

BETA LAMBDA RN/L 
0.000 50.000 8.000 
0,000 50.000 4.000 
0.000 50.000 8.000 

: 

: 
-

-
A ~ 

I ~ · 

V ..... · 
/' ~ 
v"""(;).... 

~ 
: 

· 

· -, 

-. 01 S_ 8 - S - 4 - 2 0 2 4 S 8 1 0 12 14 
ANGLE OF ATTACK. ALPHA. DEGREES 

FIGURE 6 EFFECT ~F WING AIRFOIL SECTI~N F~R AN ~BLIQUE WING ANGLE ~F 50 DEGREES 
(A)MACH = 1.20 PAGE 97 



00 
o 
0' 

0 

" .J 

.. 
E) -I-
<: 
0:: 

C!) 
<: 
0:: 
0 
...... 
I-
1.1... .... 
..J 

DATA eET eVM80L CONFIGURATiON DESCRIPTION 
C 9AEOO? ) () Wi FO B 
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ClIAEDtU 0 Wi FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(4A£Otl) 0 Wi FO a 
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DATA lET SYMBOL CONFIGURATION DESCRIPTION 
14AE0121 () Wi FO B 
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DATA aET aYMBOL CONFIGURATION DEaCRIPTION 8ETA LAM8DA RN/L 
(4AEOn I (.) Wi FO 8 
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DATA lET IYMBOL CONFIGURATION DESCRIPTION 
C4A£01l!) (.) Wi FO B 
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DATA lET SVMBOL CONFIGURATION DESCRIPTION 
(7AEG11) (.) Wi FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
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DATA lET SYMBOL CONFI.URAT~ DESCRIPTION 
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(?AEOS?l <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
17AEOt2) () Wi FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(9A£012) () WI FO B 
(9A£04S) 2l W2 FO B 
(9A£01l7) 0 W4 FO B 
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DATA SET8VMBOL CONFIGURATION DESCRIPTION 
(eAEOll) 0 Wi FD B 
(8AE045) 21 W2 FOB 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
«.AEOn) () Wi FO B 
(.AE043) ZS we FO B 
( .AEOn ) <> W4 FO B 
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DATA lET IYMB~ CONFIGURATION DESCRIPTION 
,IIAEOn, 0 WI FO B 
'IIAE043I 2l W2 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(9A£012) () Wi FD B 
(9"'£043) n W2 FD B 
(9AE06'1') 0 W4 FO B 
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DATA lET &VM8OL CONFIGURATION DE&CRJPTJON 
(lI"'EOtU 0 Wi FO B 
C 11",£04"» z:s W2 FO B 
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DATA SET SYMBOL CONFIGUR4TION DESCRIPTION 
194£0111) 0 W1 FO II 
19AE043) Zl W2 FO B 
19AE087) <> W4 FO B 
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DATA SET SVMBOL CONFIGURATiON DESCRIPTION 
(OAE01U 0 Wi FO 8 
(OAE04l1) n WI! FO 8 
(OAEOII?' <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(DAE012) () Wi FO B 
(OAE043) 2l W2 FO B 
(OAE087) <> W4 FO B 

.25 

.20 

.15 

• 10 

• OS 

~ 
.00 

0- t----c. ~ -e-
-. OS 

l!I. 
'"'V' v 

~ t--J.\. 
v 

-.10 
-

-.15 

-.20 

BETA LAMBDA RN/L 
0.000 60.000 6.000 
0.000 60.000 4.000 
0.000 60.000 6.000 

· 

! · 

A 
~ 

A J:.. 
.A ~ 

r-

~ V · 
-:- AJ.\. *,A 

'!' v 
v 

· 
-

I 
- • 2~ 8 - 6 - 4 - 2 0 2 4 6 8 1 0 12 14 

ANGLE OF ATTACK. ALPHA. DEGREES 

FIGURE 7 EFFECT ~F WING AIRF~IL SECTI~N F~R AN ~BLIQUE WING ANGLE ~F 60 DEGREES 
(A)MACH = 1.30 PAGE 128 



00 
w 

"" 

c 
u .. 
I-
Z 
W -u -u. 
u. 
w 
0 
u 
(!) 
< 
0:: 
CJ 

DATA aET aTM8~ CONFIGURATION DEacRIPTION 
COAEOtU 0 Wi FO 8 
(OAE04l1) Z! WI! FO 8 
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DATA SET SVMBOL CONFIGURATION DESCRIPTION 
(DAED12) () Wi FD B 
(DAED43) 2! W2 FO B 
(DAED6?) 0 W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
(OAE011) (.) Wi FO B 
C OAE045 ) z:s WI FO B 
( OIlE087 ) <> W4 FO B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION BETA LAMBDA RN/L 
(OAEOU! ) CJ Wi FO B 
(OAE043) Z1 W2 FO B 
(01lE067 ) <> W4 FO B 
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DATA SET S'MBOL CONFIGURATION DESCRIPTION 
(DAEDtl) (.) Wi FO B 
(OAEOO) Zl WI! FIl B 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
CZAEOte) 0 wt FO 8 
C ZAE04S ) Zl W2 FO B 
CZAE087) <> W4 FO B 
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DATA lET IYMBOL CONFIGURATION DESCRIPTION 
CZAEDtl!) (:) WI FO 8 
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(ZAEG12) C'l WI FO II 
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DATA SET SYMBOL CONFIGURATION DESCRIPTION 
eZAE0121 (.) W1 1"0 B 
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Transonic Transport Win 
Oblique or Swept? 
By ROBERTT. JONES and JAMES W. NISBET 
NASA Ames Research Center Boeing Commercial Airplane Co. 

In terms of gross weight, fuel consumption, and airc 
noise, an oblique-wing aircraft looks best, and it sh 
acceptable aeroelastic stability; but its design ch 
teristics and economic implications need further study 

In transonic-aircraft design, one naturally thinks of 
highly swept arrow or delta-wing shapes. An article 
in the December 1972 A/A, however, proposed a 
radically different wing form for sych aircraft': a 
conventional unswept subsonic wing that can be 
turned to different oblique angles for different 
flight speeds. Tests in the 11-ft supersonic wind 
tunnel at NASA Ames Research Center confirmed 
the superior aerodynamic efficiency of the oblique 

While it seems clear that the oblique wing can 
generate higher lift-to-drag ratios in the transonic 
speed range, it is not clear that such an unusual 
arrangement could be successfully adapted to a 
real airplane. Factors such as increased structure 
weight, aeroelastic instability, or other con- 
figurational considerations might nullify a purely 
aerodynamic advantage. 

To answer such practical questions, a com- 
parative study of transonic and low-supersonic 
transport aircraft was undertaken by the Boeing 
Commercial Airplane Co. under NASA cbntract. 
The study covered five different wing designs (see 
the sketches in F-1 at right). 

wing. 

1. Swept wing; fixed geometry. 
2. Swept wing; variable sweep. 
3. Fixed delta wing. 
4. Oblique wing with two bodies.2 
5. Oblique wing with single body. ' 

The study covered aerodynamic and engine 
performance analysis, preliminary structural 
calculations and weight estimates, and dynamic- 
stability and aeroelastic-stability analysis, as welt 
as configurational work. (Aerodynamic and 
performance considerations: R. M. Kulfan, E. C. 
Noble, J. R. Stalter, and J. K. Murakami. 
Propulsion and noise characteristics: defined by M. 
B. Sussman. Weight and balance estimates: J. P. 
McBarron. Flight stability of the unsymmetrical 
configurations: A. R. Mullally. Structural and 
aeroelasticity studies: J. W. Nisbet and D. W. 
Gimmestad. The general arrangements were 
worked out by F. D. Neumann.) 

It was found that the assigned flight mission 
could be performed b$ any one of the five design 
concepts, although airplane size and weight varied 
considerably. 

ROBERT T. JONES (F) (far left) a senior staff scientist at NASA-Ames, 
played a major part idraising ihe speed of aircraft through developing 
theory for swept and slender delta wings. In 1946 the AlAA ave him its 
Sylvanus Albert Reed Award. H e  has been with NACA and fiASA since 
1934, except for seven years with the AVCO Everett Research Laboratory, 
where he directed work on cardiac-assist devices. Besides aerodynamics, 
he has maintained a professional interest in optics. JAMES W. NISBET, 
during 13 years at Boeing, has worked on nearly all of the current jet 
airplanes as well as in preliminary design and research. Currently 
responsible for aeroelastic loads in airplane exploratory design, he has 
long been involved in analysis, wind-tunnel testin and airplane testing 
regarding aeroelasticity and structural dynamics. tefore joinin Boeing, 
he spent four years with Canadian Westinghouke on the jesign of 
electrical system controls. 
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F-1 CONFIGURATION CONCEPTS 

OBLKlUE WING FIXED SWEPT VARIABLE DELTA OBLIQUE WING 
WING SWEEP WING WING TWIN FUSELAGE SINGLE FUSELAGE 

Complete results and the assumptions employed 
in the study are contained in NASA CR 114658.3 
This article emphasizes certain results charac- 
terizing oblique-wing designs. 

Each airplane was designed to carry 195 
passengers 3000 n. mi. at a speed near the sonic 
ground speed. Operation just below sonic ground 
speed eliminates the sonic boom associated with 
overland supersonic flight. As shown in F-2 (from 
Ref. 4) the shock fronts curve slightly as they 
progress to lower altitude. This curvature, caused 
by the change in speed of sound with temperature, 
establishes the maximum speed at which a tran- 
sonic transport can fly without producing a boom 
at ground level. When the shock front becomes 
vertical the boom does not extend to the ground; 
this would permit boom-free flight at speeds nearly 
50% greater than subsonic jets make today-a 
saving of some 2 hr 012 east-to-west and I hr on 
west-to-east transcontinental U.S. jlights. 

The aerodynamic characteristics of all five 
configurations were developed using similar 
procedures. The planform parameters were 
selected to exploit the aerodynamic benefits of each 
concept. The wing thickness distributions were 
derived from past weight-drag tradeoff studies on 
transonic transports. The camber and twist 
distributions were developed by linear theory. The 
body designs for all configurations were area-ruled 
to yield minimum cruise drag. The nacelle shape 

January 1974 

and location was strongly influenced by the engine 
size and the configurational arrangement. 

Engine performance, size, and weight 
characteristics were consistent with the results of 
the Advanced Transport Technology (ATT) study.5 
Engine selection was based on an engine-bypass- 
ratio tradeoff study. The penalty of reducing the jet 
noise by increasing bypass ratio was compared to 
the penalty associated with jet suppression of 
lower-bypass-ratio installation;. A bypass-ratio-of- 
1 engine with jet suppression .was selected for all 
configurations as the most efficient means of 
achieving low noise levels. 

The swept-wing, variable-sweep wing, and delta- 
wing configurations had the advantage of con- 
siderable previous study; and it seems probable 
that the arrangement of landing gear, engine, etc. 
was near the optimum in those cases. 

The oblique-winged aircraft introduced some 
new problems, and considerable effort was devoted 
to finding a good general arrangement. The em- 
phasis was on the engine and landing-gear 
placement. There was considerable flexibility in 
locating the landing gear because takeoff rotation 
and high-angle landing flare were not required. F-3 
shows the arrangement adopted in the final stage 
of the study. 

A balance and loading analysis of the oblique- 
wing configuration indicated the need for a center- 
oEgravity range of 2570 MAC (mean aerodynamic 
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F-2 AVOlDlNQ SONIC BOOM 

CRUISE MACH NUMBER 

CRUISE MACH NUMBER 

TRANSONIC 

CONSTANT AIRPLANE GROUND SPEED 

NO SONIC BOOM-SHOCK WAVES DO NOT REACH GROUND 
_e_ 

chord). Forward body ballast was required for low 
payloads. Selective fuel management with an aft 
body fuel tank allowed minimizing cruise trim- 
drag. 

Control, trim, and aerodynamic stability 
characteristics were evaluated with the wing in the 
oblique position. Aerodynamic coupling between 
the longitudinal and lateral motions does exist and 
was considered. The effect of wing flexibility on 
this coupling is currently being evaluated. It ap- 
pears that the flight characteristics do not present 
any insurmountable problems, although modified 
control techniques will be required. 

Structural weight of the oblique wing received 
considerable attention because of the concern over 
aeroelastic stability. This phase of the study will be 
presented in some detail because of its potential 
impact on oblique-wing performance and because 
of the unique oblique-wing aeroelastics. 

Wind-tunnel results given last January in A/A 
represented an elliptic wing having an aspect ratio 
of 12.7 (1O:l ellipse) with airfoil sections of 10% 
thicknesdchord ratio.' The beam slenderness ratio 
(length/max thickness) in that case ran 50 to 1, 
whereas 17 to 1 might typify current transport 
aircraft. It was discovered rather early in the 
studies reported here that such proportions would 
lead to excessive structural weight. Reducing the 
aspect ratio to 10.2 (8:l ellipse) and increasing the 
wing root thickness to 12% improved the situation 
considerably, and for the remainder of the studies 
these proportions characterized the oblique wing. 

Structural materials were selected for all con- 
figurations based on the Advanced Transport 
Technology (ATT) study  result^.^ F-4 identifies the 
materials selected for the single-fuselage oblique- 

wing configuration and gives an estimate of the 
percent weight savings of the advanced materials 
relative to conventional aluminum skim-stringer 
construction. 

Graphite-epoxy honeycomb was selected for the 
wing, fuselage, and vertical-tail primary structure. 
Titanium was selected for the wing pivots and 
pivot-support structure. For configurations other 
than the oblique wing, the primary wing-structure 
weightsaving was estimated to be 25%. Primary- 
structure weight savings for the oblique wing was 
determined by analysis of both an aluminum and a 
graphite-epoxy structure. The aluminum oblique 
wing was stiffness- rather than strength-critical; 
the graphite-epoxy oblique wing was strength- 
critical. This resulted in a weightsaving of 35% for 
the advanced material as compared to aluminum. 

Structural analysis of the graphite-epoxy oblique 
wing involved these conditions: 

A ply arrangement-considering external load 
distributions and the bending stiffness required for 
aeroelastic stability. 

Isotropic structural parameters (such as 
ultimate strength and stiffness modulus) 
simulating the anisotropic ply arrangement. 

An estimated compression-buckling curve for 
built up panels. 

Allowables and stiffness moduli were determined 
from material data in the Air Force Advanced 
Composites Design Guide.* High-modulus 
graphite was used. Fiber orientations were selected 
to enhance wing-bending strength and stiffness, 
while retaining adequate strength in the other 
directions. Ply orientation in the graphite-epoxy 
face sheets was 60% (OO), 30% (k4.50) and 1070 
(900). An allowance of 15% for aluminum and 25% 
for graphite-epoxy was added to the wing's primary 
structural weight to account for fittings, fasteners, 
and joints. 

In F-5 you see a copceptual design (cross section) 
for the oblique-wing pivot. It differs significantly 
from a variable-sweep wing pivot. A variable-sweep 
wing pivot must transfer wing-bending moments 
through the pivot bearings. This was avoided on 
the oblique-wing pivot by placing the bearings 
below the wing and maintaining continuous upper 
and lower wing-surfaces to transfer the bending 
moments. In addition, the pivot diameter was 
made as large as possible to keep the bearing loads 
low. Vertical loads, rolling moments, and pitching 
moments were transferred through the bearings on 
the circumference of the pivot. Drag loads and side 
loads were transferred through bearings on the pin 
in the piddle of the pivot. Systems going from the 
body to the wing were routed through the center of 
the pivot. 

As is well known, swept-forward wings show a 
Astronautics &Aeronautics 
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tendency for aeroelastic divergence. Bending of a 
swept-forward wing panel creates an aerodynamic 
force which acts to increase the deflection in op- 
position to the structural stiffness. At a sufficiently 
high flight speed or dynamic pressure the 
aerodynamic destabilizing force can overpower the 
structural stiffness, leading to aeroelastic 
divergence. 

The behavior of the oblique wing differs from the 
bilaterally symmetric swept-forward wing’s: the 
coupled rolling motion exerts a stabilizing in- 
fluence. Aeroelastic instability of the oblique wing 
occurs as an oscillatory instability; there is a 
progressive lengthening of the period and loss of 
damping of the elastic bending oscillations of the 

F-3 OBLIQUE-WING AIRPLANE 

for strength alone. For comparison, it also shows 
stability with the fuselage clamped to prevent 
rolling (as in a wind-tunnel test). At zero flight 
speed (or, equivalently, zero dynamic pressure) the 
frequency of the unrestrained airplane as well as 
both wings of the restrained airplane was 0.93 
Hertz. As the speed was increased, the damping 
ratio initially increased. 

With the fuselage clamped, the frequency of the 
forward wing decreased while the frequency of the 
aft wing increased. The damping ratio of the 
forward wing decreased rapidly at higher speeds. 
(The so-called “static” divergence speed is the 
speed at which both the frequency and damping 
ratio become zero.) 

wing combined with rolling motion. 
F-6 illustrates the dynamic model used to study 

the aeroehstic stability of the oblique wing. The 
wing mass was represented by a series of point 
masses. The aerodynamic lift distribution was 
represented by a section lift coefficient for each of 
the wing panels. Wing flexibility was represented 
by beam bending and beam torsion, although it 
was found in the analysis that torsional stiffness 
had little effect on the stability of a wing with an 
oblique angle of 45 deg. Airplane roll was treated 
as a separate degree of freedom in the analysis. 

F-7 shows the results of the analysis of a wing 
with an aspect ratio of 12.7 (109 ellipse) designed 
January 1974 

F-4 
TECHNOLOGY OBLIQUE-WING AIRCRAFT 

MATERIALS SELECTION FOR AN ADYANCED- 

PIVOT STRUCTURE 

0 NUMBERS REFER TO PERCENT 
WEIGHT SAVING RELATIVE TO 
AN ALUMINUM SKIN STRINGER 
DESIGN 

GRAPHITE EPOXY HONEYCOMB 
GRAPHITE EPOXY INTEGRATE0 ACOUSTIC STRUCTURE 
HIGH TEMPERATURE MATRIX COMPOSITE HONEYCOMB 
DUPONT PRD 49 HONEYCOME 
CONVENTIONAL DESIGN 
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F-5 STRUCTURAL 

OBLIQUE-WING PIVOT 
ARRANGEMENT OF 

d.: -4 
OBLIQUE WING PIVOT CONCEPT 

The unrestrained airplane did not exhibit this 
static instability. As speed was increased, the 
frequency decreased and the bending deflection of 
the forward wing increased relative to the aft wing. 
The wing-bendmg deflections introduced roll 
participation into the oscillation. The oscillatory 
aeroelastic instability occurred at a higher speed 
than the speed at which the clamped fuselage static 
instability occurred. 

Analyses of aeroelastic behavior which assume 
that the fuselage is clamped at the wing root ap- 
pear to be conservative for most oblique-wing 

VARIABLE SWEEP WING 
PIVOT CONCEPT 

f 

configurations. The aspect-ratio-12.7 oblique,wing 
designed for strength alone became unstable at 
about 90% of the airplane's speed. FAA criteria 
require stability up to 120% of the design speed. It 
is evident that a wing of this high an aspect ratio 
would require considerable additional structure for 
stiffness. 

Reducing the aspect ratio to 10.2 (8:l ellipse) 
improved this situation considerably. F-8 compares 
the stability of strength-designed aluminum and 
graphite-epoxy wings of aspect ratio 10.2. The 
aluminum wing designed, for strength alone still 
did not satisfy the requirement for aeroelastic 
stability; it would have to be stiffened with more 
material to improve the stability. On the other 
hand, the graphiteepoxy wing designed for 
strength alone had adequate stability. 

The advantage of using graphite-epoxy rather 
than aluminum for construction of an oblique 
wing, and the importance of aspect ratio, can be 
seen in F-9. A graphite-epoxy wing satisfying only 
the strength requirements offers about 2070 weight 
advantage. Considering the aeroelastic stability 
indicated, the graphite-epoxy should have an even 
greater advantage over aluminum. Reducing the 
aspect ratio of the wing gave lower weight and 
improved stability. These results, however, should 
not be considered as the last word since only an 
elliptic planform was included in this study. 

Astronautics & Aeronautics 
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F-10 GROSS- 
WEIGHT 
SUMMARY 
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Further planform studies considering the 
distribution of mass and stiffness as well as the 
aerodynamic characteristics of the wing would 
seem to be most important. 

Minimum gross weight (F-10) required to 
perform the 3000-n. mi. mission was determined 
for airplanes based on the five configurational 
concepts in this study. Additional work established 
the gross weight penalty for noise reduction. 

Substantially lower gross weights were required 
for the delta-wing and single-body, oblique-wing 
configurations than for any of the others. The 
delta-wing configuration had the advantage of a 
low structural weight and thus a low operating 
empty weight, as shown in F-11. The single-body, 
oblique-wing airplane (F-10) had a smaller gross 
weight because of its lesser fuel requirements. It is 
interesting to note that the structural weight 
penalty of the oblique wing was not primarily 
associated with the peculiar features of the design 
nor the variable geometry, but rather it was the 
result of the basic strength requirements of a high- 
aspect-ratio wing. 

The single-body oblique wing has the advantage 
in aerodynamic efficiency, as shown by the cruise- 
drag comparison in F-12. The effect of the higher 
aspect ratio in reducing drag due to lift is quite 
evident for the oblique-wing configurations. 
Another major difference in drag of the con- 
figurations was found to be the wave drag due to 
volume. The double-pod installation was primarily 
responsible for the high wave drag on the fixed- 
and variable-sweep-wing configurations. The low 
wave drag of the single-body oblique wing reflects 
the integrated body-nacelle arrangement and the 
inherent characteristics of the oblique wing.* 

F-13 describes the impact on takeoff gross 
weight of achieving lower noise levels by engine- 
nacelle treatment. The takeoff-gross-weight in- 
crease reflects weight added for acoustical 
treatment and the associated engine-performance 
losses. Only the oblique-wing configurations could 
achieve a noise level of FAR 36 minus 15 EPNdB. 

This technically orientated study has yielded, we 
believe, a realistic performance comparison of the 
five wing-planform concepts and gives insight into 
areas unique to the oblique-wing configuration. 
The oblique wing offers desirable performance, but 
further analysis and * wind-tunnel work will be 
needed to develop a rounded picture of its 
potential. In particular, future work should include 
an economic evaluation of the consequences of 
oblique wing’s ability to increase today’s cruise 
speeds 50%. 

In terms of the transonic concepts it covers, the 
most significant conclusions of this study might be 
summarized as follows: 
January 1974 

F-13 
TAKEOFF GROSS-WEIGHT 

IMPACT OF NOISE TREATMENT ON 

RANGE 3wo NMI 
PAYLOAD 40 OM LB 
UESIGN M A W  1.2 

AIRFRAME NOISE 
MAY BE LIMITINB 

400 - 

5 0 5 10 15 
TRADE0 NOISE. AEPNdB 

1. The oblique-wing airplane had the smallest 
gross weight and the lowest fuel consumption. 

2. Only the oblique-wing airplane could achieve 
a noise level of FAR 36 minus 15 EPNdB. 

3. The oblique wing is aeroelastically less stable 
than a sweptback wing but more stable than a 
swept-forward wing. For the designs considered, an 
aluminum oblique wing would require a moderate 
amount of additional stiffness to meet stability 
requirements. For graphite-epoxy no additional 
stiffness would be required. 

4. Further development studies supported by 
wind-tunnel tests will be needed to develop the full 
potential of the oblique-wing concept. This should 
be followed by an economic evaluation treating 
productivity. 
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AIRCRAFT DESIGN FOR FLIGHT BELOW THE SONIC BOOM SPEED LIMIT? 

by Dr. R.T. Jones* 

NASA Ames Research Center 

SUMMARY 
The avoidance of sonic booms places a con- 

straint on aircraft design and can lead to unusual 
new configurations. From a comparison among 
several candidate designs, it is shown that an 
oblique winged aircraft offers many advantages 
when structure, stability, flight efficiency, and 
airport noise are considered jointly. 

To avoid the sonic boom, overland flights 
must be limited to a subsonic ground speed, Le. 
approximately 1200 km per hour. Since the 
speed of sound at  low levels is normally 160 
km/hr faster than it is a t  flight altitudes the air- 
plane must fly supersonically in its own medium 
in order to  reach this overland speed limit. 
Under standard conditions the flight Mach num- 
ber is about 1.15. However, the flight speed for 
constant ground speed varies considerably with 
meteorological conditions. 

With a strong headwind aloft and a high 
temperature a t  ground level the aircraft Mach 
number may be as high as 1.3. Under these con- 
ditions the wave's made by the airplane are re- 
fracted by wind and temperature gradients, be- 
come vertical and disappear before reaching the 
ground (Figure 1). Under other (exceptional) 
conditions even a subsonic airplane might pro- 
duce a sonic boom. Flying down wind in a fast 
jet stream the lifting pressure may be transmit- 
ted to a region where the relative velocity is 
supersonic. 

More complete analyses of flight conditions 
and schedules at the sonic boom speed limit will 
be found in References (1) and (2). It appears 
that east to west flights across the US could be 
shortened by two hours and west to east flights 
by about one hour. Flight a t  constant ground 
speed, of course, tends to equalize schedules in 
all directions. 

?Presented at the Quarter Century Symposium, University of 
Toronto,on the 1st April, 1974. 

'Senior Scientist 

An airplane designed for such service 
should be capable of efficient flight at various 
speeds from subsonic to supersonic. Unfortun- 
ately, flight a t  supersonic speed entails some loss 
of aerodynamic efficiency. However, the loss a t  
transonic and low supersonic speeds need not be 
as great as the loss a t  higher supersonic,speeds. 
It seems possible that the increased utilization of 
the aircraft and the time saving for the passen- 
gers could make up for a moderate increase of 
energy consumption per mile of flight. 

The specific range Rsp of an airplane in pay- 
load pound-miles per pound of fuel (or kilogram- 
kilometers per kilogram) is given by 

payload 
Rsp = Ro X q X L/D X 1x1 - 

airplane 
.. 

Here Ro is the specific range corresponding to 
the thermal energy content of the fuel - about 
2700 miles or 4400 kilometers for kerosene (Le. 
one kilogram of kerosene contains enough ener- 
gy to exert a force of one kilogram for a distance 
of 4400 kilometers). L/D is the aerodynamic lift 
to drag ratio of the airplane, typically 15 to 20 
or higher in the subsonic range (below M = 0.8) 
and 7 to 10 in the supersonic range. q is the con- 
version efficiency of thermal energy to thrust. 
With the development of the fan jet engine it has 
become possible to obtain a conversion efficien- 
cy q of 40 percent or more over a wide range of 
speeds - subsonic or supersonic. 

The quantities displayed in the formula are 
not, of course, independent. Thus, a loss in aero- 
dynamic L/D such as occurs at supersonic speed 
will call for a greater fuel load and hence a small- 
er ratio of payload to gross weight. Similarly, 
measures taken to increase the aerodynamic 
efficiency usually result in increased structure 
weight. 

It is important to  note that the basic equa- 
tion for energy economy does not contain the 
flight speed directly but only indirectly as it 
may affect the L/D or other factors. By adjust- 
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Figare 3 

ment of altitude and wing loading the subsonic 
airplane can maintain its high lift to drag ratio 
a t  any speed up to about M = 0.8. Hence, con- 
trary to a popular opinion, the subsonic airplane 
does not have to pay for its speed in terms of 
miles per gallon. Following the above relations, 
current subsonic jets could get 60 or more pas- 
senger miles per gallon, though they have often 
operated profitably in the range 20 to 30 PMPG. 
At transonic and low supersonic speeds it ap- 
pears that with suitable design one could at  least 
equal' or exceed the latter figure. 

The loss of lift/drag ratio begins a t  M = 0.7 
or 0.8. To minimize the loss at higher speeds we 
must ask what wing shape can give the highest 
lift to drag ratio a t  transonic and supersonic 
speeds? The surprising answer given by aero- 
dynamic theory is that the narrow straight wing 
of high aspect ratio, ideal for low speed flight, 
already has the right shape for supersonic speeds 
provided it can be turned so as to move through 
the air obliquely. 

With such a long narrow wing moving at  an 
oblique angle it is permissible to divide the flight 
velocity into two components, one showing the 
air movement across the wing and the other 
along the length of the wing (Figure 2). The 
component of motion along the length of the 
wing has little effect and so the widg behaves as 
though it were flying at  reduced speed, corres- 
ponding to the reduced component of the flight 
velocity in the direction perpendicular to  the 
leading edge. By increasing the angle as the speed 
is increased the effective component velocity 
can be kept subsonic, even though the flight 
velocity is supersonic. 

While the theoretical properties of the ob- 
lique wing have been known for many years 
References (3), (4). (5), it is only recently that 
we have obtained experimental verification of 
the theory in the ll-ft.  supersonic wind tunnel 
a t  NASA Ames Research Center6. In these tests 
we employed rather conventional subsonic wings 
of quasi-elliptic planform, mounted on a slender 
body (Figure 3). By pivoting the wing on the 
body and setting it at  different angles of yaw so 
that the component Mach number remained be- 
low 0.7 we were able to demonstrate lifMrag 
ratios higher than either the delta wing or the 
bilaterally symmetric swept back wing at all 
speeds between M = 0.6 and 1.4. Thus, at M = 
-98 and 45O yaw we obtained an L/D of 20 to  1. 
At M = 1.4, 60' of yaw was required and the 
L/D had fallen to  11 - about 10% greater than 
that of a comparable swept wing model. At still 
higher Mach numbers, the relative superiority of 
the oblique wing over more familiar shapes is ex- 
pected to diminish further. 

Figure 3a shows the maximum lift/drag 
ratios obtained in these tests. The wings were of 
quasi-elliptic planform having an aspect ratio of 
12.7. The results for three different airfoil sec- 
tions of 10 percent thickness are shown. Airfoil 
1 is a conventional NACA "4-digit" shape having 
a critical Mach number of .7. Airfoil 2 is a newer 
type designed by Bauer Garabedian and Korn? 
following the suggestion of R.T. Whitcomb. Air- 
foil 2 was designed for a Mach number of 0.8 and 
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maintained a liftidrag ratio of 31 a t  this Mach 
number with the wing unyawed. A t  60" >raw and 
M = 1.2 to 1.4 the highly cambered section No. 
3 was superior, however. 

Subsequent studies have shown that the 
wings employed in these tests are somewhat too 
slender to satisfy the requirements of strength 
and aeroelastic stability. By reducing the aspect 
ratio to 1 0  and increasing the root thickness to 
12% it appears that the requirements of strength 
and stability can be satisfied with a small loss of U D  2o 
L/D. 

4o 

30 

The elliptic planforfn satisfies the condition 
for minimum drag (Le. wave drag + vortex drag) 
when the overall dimensions of the wing are 
limited. A more appropriate auxiliary condition 
would be a limitation on the wing root bending 
moment8. The resulting planform and span load- 
ing is then somewhat more tapered than the 
elliptical. The potential gains in this direction 
are now being investigated. 

The really significant advantage of the ob- 
lique wing lies in the ease with which the sweep 
angle can be varied to suit flight conditions. 
Thus, during landing, take-off or holding the 
wing should be straight and in this configuration 
the L/D ratio was approximately 30 to 1 - a 
value which could lead to a very low power re- 
qulrement and thus minimize the unwanted dis- 
play of energy in the airport environment. 

Can an airplane with its wing a t  such an 
angle be stable or control!able in flight? A pre- 
liminary answer to this question was given many 
years ago by J.P. Campbell and Hubert M. 
Drake, who tested an oblique winged model in 
the NACA Langley Free Flight Tunnel in 19469. 
Campbell and Drake found their model to be 
more stable against lateral oscillations than high- 
ly swept bilaterdly symmetric models. Even 
though the ailerons on the oblique wing are in a 
position to produce large pitching moments, no 
pitching motion was observed in flight - the 
ailerons producing essentially pure roll. Stability 
and control were satisfactory up to wing angles 
of 50". At 60", however, ailerons became too 
weak for adequate control. 

More recently the present writer with the 
assistance of Mr. Burnett L. Gadeburg of Ames 
Research Center has made experiments with 
larger (6 ft. span) radio-controlled models in free 
flight. In addition to the normal control chan- 
nels the radio was equipped with an extra chan- 
nel to  permit variations of wing and horizontal 
tail angle in flight. Figure 4 shows one of the 
models in flight with the wing and tail at 45". 
Yaw angles greater than 45" were not attempted 
because of the speed of the model (50 to 100 
mph) and the difficulty of visual orientation. 
The results of the free flight tests may be sum- 
marized as follows: 

e Changing the wing and horizontal tail 
angle from 0 to 45 in level flight resulted in no 
perceptible change in longitudinal trim and a 
barely perceptible change in lateral trim. The 
model nosed down and gained speed to com- 
pensate for the loss of lift due to yaw. 

OBLIQUE ELLIPTIC WINGS 
DIFFERENT AIRFOIL SECTIONS 

I I I I I 
.8 1 .o 1.2 1.4 1.6 

M 

Figure 3a 
Oblique elliptic wings - different airfoil sections 

* Aileron rolls were performed with nor- 
mal control movements and without appreciable 
coupled pitching motion - as observed by 
Campbell and Drake. 

* Elevator control was accompanied by 
strongly coupled rolling motion. Use of the ele- 
vator tends to produce a rotation about the long 
axis of the wing - which is oblique - instead of 
about the normal pitch axis. Loops performed 
by pulling back the elevator took the form of a 
helix. 

e The coupled rolling motion produced by 
the elevator results in differing behavior in right 
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Aircraft characteristics and performance 
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being estimate of gross weights for the five designs 

and left turns. Thus, in turning toward the for- 
ward wing tip, use of the elevator tends to steep- 
en the bank; for turns in the opposite direction 
the elevator has the opposite effect. 

While unusual control effects were prom- 
inent in rapid manoeuvres they were not notice- 
able in the use of controls to maintain steady 
level flight. Hence, the lack of bilateral sym- 
metry though interesting theoretically, may not 
be important for high altitude cruising flight 
where oblique wing angles would be used. 

Following our experiments a t  Ames Re- 
search Center t& Boeing Commercial Aircraft 
Company has made, under NASA contract, a 
comparative design study of transonic transport 
aircraft intended to operate a t  speeds below the 
sonic boom cut-off speed. One of the objectives 
of the study was to determine whether the ap- 
parent advantages of the pivoted wing- might be 
realized in a practical airplane. 

The study included consideration of four 
different wing designs (Figure 5); (1) sweptback 
wing with fixed geometry, (2) sweptback wing 
with variable geometry, (3) fixed delta wing and 
(4) pivoted oblique wings. Details and results of 
the Boeing study will be found in Reference (8). 

Prominent in the Boeing analysis were con- 
siderations of structural design and weight, in- 
cluding the use of newer composite materials. 
The oblique wing designs required a new analysis 
of aeroelastic stability as well as the design of a 
suitable pivoting structure. 

Each airplane was sized to carry 195 pas- 
sengers for 3000 nautical miles a t  a flight Mach 
number of 1.2. It was found that this mission 
could be performed by any one of the five de- 
signs but the gross weight and size of the air- 
plane needed varied considerably. A fuel volume 
comparison for these configurations is made in 

I NCLUDl NG 
RESERVES 

Figure 5a. Figure 6 shows the B,oeing estirhate of 
gross weights for the five designs. It is seen that 
the swept back wing with variable sweep re- 
quired the highest gross weight for the mission, 
while the oblique winged design had the lowest. 
Varying'the sweep in bilaterally symmetric fash- 
ion imposes severe requirements of mechanical 
streqgth, leading to excessive weight of the wing 
pivot structure. In the oblique design the wing 
structure is continuous across the pivot and very 
little additional weight is introduced by the 
pivot structure. The analysis did show, however, 
that the oblique wing would be rather heavy, 
primarily because of its high aspect ratio. Of all 
the designs the delta wing configuration gave 
the smallest empty weight. The oblique-winged 
airplane had a smaller take-off weight, however, 
because of its lower fuel consumption. Figure 7 
shows the configuration suggested by the Boeing 
study for an oblique-winged transport. 

Five  7 
Configuration wyb';ested by the Wing study for an 

O b l i q u m i w p l t r ~ r t  
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I t  seems possible that future restrictions on 
the noise made by airplanes may become more 
stringent. Figure 8 shows the estimated increases 
in gross weight that would be required to meet 
such increasingly stringent noise requirements. 
It appears from this study that the oblique wing, 
which can straighten itself out for landing or 
takeoff could achieve the lowest noise levels. 

In summary, the investigations made thus 
far, which have included considerations of struc- 
ture, stability, and flight efficiency as well as 
noise in the airport environment, point to the 
oblique winged aircraft as the optimum design 
for flight approaching the sonic boom speed 
limit. 
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AEROELASTIC CHARACTERISTICS 

OF AN 

OBLIQUE WING 

R. T. JONES 

J.  W. NISBET 

I n  theory, t h e  most e f f i c i e n t  wing shape f o r  t ransonic  and low 

supersonic speeds is simply a long narrow s t r a i g h t  "subsonic" wing 

turned at  an  oblique angle t o  the  f l i g h t  d i r ec t ion .  This theory has 

recent ly  been v e r i f i e d  by tests a t  Mach numbers from .6 t o  1.4 i n  the  

NASA-Ames 11' Supersonic Wind Tunnel (see re ference  1) and by conipara- 

t i v e  s tud ie s  of t ransonic  t r anspor t  designs made by t h e  Boeing 

Commercial Airplane Company ( see  Fig. 1) (see r e f .  2). 

I n  considering t h e  oblique wing, i t  i s  perhaps n a t u r a l  t o  t r y  t o  

relate i ts  behavior t o  w e l l  known phenomena associated with swept for- 

ward and swept a f t  wings. This approach would lead one t o  expect 

severe s ta t ic  divergence and r o l l  t r i m  requirements. Figure 2 shows 

the  e f f e c t  of bending an oblique wing with t h e  fuselage clamped as i n  

a wind tunnel model. 

aerodynamic l i f t  increment, t h e  s t r u c t u r a l  s ec t ions  AB and A'B' tend 

t o  move together.  

t he re  is a reduction i n  the  angle  of a t t a c k  of t h e  sec t ion  C'B' .  

reduction i n  sec t ion  angle  O F  a t t a c k  on t h e  a f t  wing l eads  t o  a loss of 

l i f t .  For t h e  forward wing, t h e  poin t  C moves up more than the  point 

B, causing an increase  i n  angle of a t t a c k  of t he  sec t ion  CB. This 

leads  t o  an increase  i n  l i f t ,  more bending and a f u r t h e r  increase  i n  

When t h e  wing t i p s  bend up as a r e s u l t  of an 

Since the  poin t  C' does not move up as much as B ' ,  

This 
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t he  sec t ion  angle of a t tack .  

increase  i n  l i f t  overcomes t h e  r e s to r ing  moment due t o  wing s t i f f n e s s .  

Aeroelastic divergence r e s u l t s  when the  

After f u r t h e r  consideration of t h e  oblique wing configuration, 

one wonders i f  divergence of t h e  f r e e  f l y i n g  a i r p l a n e  can a c t u a l l y  

occur. 

forward wing and decrease t h e  l i f t  on t h e  a f t  wing. 

c a l  l i f t  d i s t r i b u t i o n  causes t h e  a i rp l ane  t o  r o l l .  The l i f t  caused by 

the  r o l l  rate tends t o  cancel t h e  a e r o e l a s t i c  l i f t .  (See Fig. 3) 

The e f f e c t  of a e r o e l a s t i c i t y  is  t o  increase  t h e  l i f t  on t h e  

This antisymmetri- 

Al te rna t ive ly ,  i f  a i l e r o n  cont ro l  i s  applied t o  prevent r o l l  t h e  

l i f t  d i s t r i b u t i o n  produced by t h e  a i l e r o n s  a l s o  tends t o  cancel t h e  

a e r o e l a s t i c  l i f t  increment. I 

With b i l a t e r a l l y  symmetric swept forward wings, t h e  f r e e  motions 

of t he  a i r p l a n e  show no such r e l i ev ing  o r  s t a b i l i z i n g  influence,  but 

r a t h e r  aggravate t h e  uns tab le  tendency of t h e  wing. Thus, bending 

swept-forward t i p s  upward increases  the  l i f t  on both t i p s  symmetrically 

causing a p i tch ing  moment which tends t o  increase  the angle of attack 

of t h e  whole a i rp lane ,  adding t o  the  a e r o e l a s t i c  increment. 

Clearly, t h e  behavior of t h e  oblique wing i n  f r e e  f l i g h t ,  w i l l  be 

d i f f e r e n t  from t h a t  of t h e  swept-forward wing because of i t s  d i f f e r e n t  

symmetry. Analyses of t he  oblique wing which assume t h a t  t h e  wing is 

clamped a t  t h e  root  s ec t ion  o r  t h a t  t h e  fuselage i s  re s t r a ined  i n  r o l l ,  

t u rn  out t o  be misleading f o r  t h i s  reason. 

The foregoing discussion leads  t o  th ree  questions: 

(1) Does a free-flying oblique winged a i r p l a n e  exh ib i t  t h e  

divergent i n s t a b i l i t y  c h a r a c t e r i s t i c  of a swept-forward wing 

configuration? 
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(2) Does t h e  e l a s t i c i t y  of t h e  wing a f f e c t  t h e  a i l e r o n  con t ro l  

adversely? 

(3) How much a i l e r o n  de f l ec t ion  w i l l  be required t o  maintain 

trim at  d i f f e r e n t  speeds? 

By exploring a simple dynamic model we hope t o  provide i n s i g h t  i n t o  

these  quest  ions. 

Figure 4 shows t h e  s impl i f ied  model assumed i n  our ca l cu la t ions .  

The model c o n s i s t s  of two r i g i d  wing panels hinged near t h e  center  of 

t he  wing with elastic r e s t r a i n i n g  springs. Assuming t h e  hinge axes 

perpendicular t o  t h e  long a x i s  of t h e  wing, t h e  s t i f f n e s s  of t h e  spr ings  

w i l l  represent t h e  s t i f f n e s s  of t h e  wing i n  pure bending, withdut 

torsion. 

behavior, t h e  a i r p l a n e  i s  assumed f r e e  t o  r o l l .  

degrees of freedom corresponding t o  de f l ec t ions  

upstream and downstream wing panels and t h e  bank angle 

4 ) .  

Since the r o l l i n g  motion has an important influence on t h e  

There are then th ree  

$u and 9, of t h e  

4 (see f i g u r e  

The equations of motion of t he  system are: 

I+$, + KamaGU + (Ke - Ke> (9, - 4 cos A) = 0 

I iJ + K m 4 + ( K ~  + K,) (JI, - 4 COS A) = o 
$ 0  a a o  

I $ + 2Ke cos2 A 4  - Ke COS A ( q U  + 9,) = 0 
4 

where 

I9 

I4 

Ke 

= Moment of i n e r t i a  of wing panel about hinge axis 

= Moment of i n e r t i a  of fuse lage  and center  wing por t ion  about 

r o l l  a x i s  

= Elast ic  spr ing  s t i f f n e s s  about hinge (bending moment per 

u n i t  d e f l e c t i o n  angle) 
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K a  

"aKa 

= Aerodynamic bending moment per u n i t  de f l ec t ion  angle 

= Aerodynamic damping moment due t o  angular ve loc i ty ,  assumed 

propor t iona l  t o  Ka 

Both Ke and Ka are taken as pos i t ive .  

r e f e r s  t o  t h e  upstream wing panel and i t  w i l l  be noted t h a t  t he  aero- 

dynamic moment represented by Ka diminishes t h e  apparent s t i f f n e s s  of 

t h e  upstream wing panel bu t  increases  t h e  apparent s t i f f n e s s  of t he  

downstream panel. 

The f i r s t  of t he  t h r e e  equations 

Subjecting any of t h e  th ree  degrees of freedom t o  an i n i t i a l  

disturbance and solving the equations by standard methods we w i l l  f ind  

Ant o r  4 = C A n e  
JIU $0 

where t h e  An are t h e  complex "eigenvalues" o r  roo t s  of t he  

c h a r a c t e r i s t i c  determinant of t h e  equations. 

eigenvalues and i f  t h e  real p a r t  of any one of them i s  p o s i t i v e  t h e  

There are 6 such 

motion following an  i n i t i a l  disturbance w i l l  grow i n  unstable fashion. 

Since the  system has n e u t r a l  s t a b i l i t y  i n  bank angle 

eigenvalues w i l l  be zero. 

4 one of t h e  

Values of t h e  q u a n t i t i e s  appearing i n  equations (1) have been 

estimated f o r  a 200 passenger t ranspor t  a i rp l ane  designed t o  f l y  a t  

Mach number 1.2 wi th  a wing yaw angle of 55' (see r e f .  2).  Figure 5 

shows how t h e  damping of t h e  least s t a b l e  mode varies with f l i g h t  

dynamic pressure f o r  several assumed values of fuselage r o l l  i n e r t i a .  

The case I = 03 corresponds t o  a l ack  of r o l l  freedom (fuselage 

fixed, as i n  a wind tunnel test) and i n  t h i s  case t h e  i n s t a b i l i t y  

4 

occurs as a s t r a i g h t  non-oscil latory divergence (so c a l l e d  "static" 
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divergence) a t  about 1.6 times t h e  c ru i s ing  dynamic pressure 
2 

qcr  

divergence does not  occur and i n s t a b i l i t y  takes t h e  form of increasing 

o s c i l l a t i o n s ,  beginning a t  two t o  th ree  t i m e s  c r u i s e  dynamic pressure. 

(= 0/2 V ). With a f i n i t e  va lue  of r o l l  i n e r t i a  ( I4 ) d i r e c t  

The a e r o e l a s t i c  s t a b i l i t y  boundary, o r  boundary f o r  n e u t r a l l y  

damped o s c i l l a t i o n s  may be obtained from equations (1) by s e t t i n g  the  

real p a r t  of a complex eigenvalue equal t o  zero. 

of t h e  eigenvalue is a l s o  zero then the  i n s t a b i l i t y  w i l l  be non-oscillatory. 

More generally,  t h e  va lue  of t h e  imaginary p a r t  determines t h e  frequency 

of marginally s t a b l e  o s c i l l a t i o n s .  

i u Q ,  w e  ob ta in  1 

I f  t h e  imaginary p a r t  

Se t t i ng  the  eigenvalue equal t o  

0 

- m U Q ~  

2 cos A 
0 

- m U Q ~  

2 cos A 
0 

-uR2 (1 - K) COS A 
0 

0 

- m U Q ~  
0 +muk2 - uk2 

0 

where 

n a t u r a l  bending frequency of wing panel Ke = - = 

O 

I 

I 2 3 cos2 A = m 
0 
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S e t t i n g  both real and imaginary p a r t s  of the  determinant equal 

t o  zero r e s u l t s  i n  expressions f o r  t h e  s t i f f n e s s  r a t i o  K and the  

frequency r a t i o  - at  the  s t a b i l i t y  boundary. 
UR 

UR 
0 

1+m 
2+u~2m2(1  - m -  ATZ) K2 = 

o c  

Figures 6(a and b) show s t a b i l i t y  boundaries f o r  var ious  values 
T 

"IJ 

Ka 

Ke 

of t h e  i n e r t i a  r a t i o  m = 2 - cos2 A 

d I 

and the  s t i f f n e s s  r a t i o  K = - . 

The va lue  K = 1 corresponds t o  t h e  so-called "static divergence" 

case and t o  t h e  a c t u a l  s t a b i l i t y  boundary when t h e  r o l l  i n e r t i a  of t he  

4 fuselage approaches i n f i n i t y  (m = 0). Normally, t h e  r o l l  i n e r t i a  I 

of t h e  fuselage is  s m a l l  compared with that of t h e  wing panels 

Since K is  propor t iona l  t o  t h e  dynamic p res su re ,  q = p / 2  V2 and Ke 

is  constant i t  may be shown t h a t  

I$ 

a 

where qs 

clamped e 

is  t h e  dynamic pressure f o r  divergence wi th  t h e  fuse lage  

AILERON CONTROL AND TRIM OF OBLIQUE WING 

Assuming t h e  wing i s  a e r o e l a s t i c a l l y  s t a b l e  w e  have s t i l l  t o  

inves t iga t e  t h e  e f f e c t  of bending f l e x i b i l i t y  on a i l e r o n  con t ro l  and trim. 
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Figure (7) shows measured r o l l i n g  moments produced by an oblique 

e l l i p t i c  wing model i n  t h e  NASA-Ames 14 foo t  t ransonic  tunnel a t  a Mach 

number of 1.2. The wing has an aspect r a t i o  of 10, an a i r f o i l  s ec t ion  

12% th i ck  and is equipped wi th  conventional a i l e rons .  

shown w e r e  obtained wi th  t h e  wing a t  60° yaw. 

The r e s u l t s  

The model w a s  constructed with an upwardly curved chord plane, 

The r e s u l t i n g  i n  a d ihedra l  angle a t  t h e  t i p s  of approximately 6 O .  

i n t en t ion  here  was t o  provide r o l l  t r i m  a t  a c ru i s ing  l i f t  c o e f f i c i e n t  

of - 3  t o  .35. A t  zero l i f t ,  t h e  r o l l i n g  moment i s  i n  t h e  d i r e c t i o n  t o  

raise t h e  forward t i p  and may be a t t r i b u t e d  t o  the  b u i l t  i n  d ihedra l  

of t he  wing. The downward s lope  of r o l l i n g  moment curve with ihcreasing 

l i f t  c o e f f i c i e n t  shows t h a t  t he  l i f t  curve s lope  of downstream sec t ions  

is g rea t e r  than t h a t  of upstream sec t ions .  

upwash induced by t h e  upstream por t ions  of t he  wing and is predicted by 

l i n e a r  l i f t i n g  sur face  theory. Extrapolation of t he  l i n e a r  por t ion  of 

t h e  curve would show t r i m  with a i l e r o n s  n e u t r a l  a t  t h e  intended l i f t  

c o e f f i c i e n t s  CL - 3 .  Evidently viscous e f f e c t s  intervened, causing a 

This e f f e c t  arises from an 

loss  of l i f t  on t h e  downstream sec t ions  so  t h a t  r o l l  t r i m  w a s  not 

a t t a ined  a t  6, = 0 with t h i s  amount of d ihedra l .  Aileron de f l ec t ions  

within t h e  range 5 10' could, however, provide t r i m  over a wide range 

of l i f t  coe f f i c i en t s .  Deflections within t h i s  range produced no s igni -  

f i c a n t  increments of drag, as might be  expected because of t he  oblique 

angle (60°) of t h e  hinge l i n e s .  Presumably, a smaller d ihedra l  angle 

(i.e., smaller upward t i p  angle) would have lowered t h e  curve f o r  

ga = 0 so t h a t  even smaller a i l e r o n  angles would s u f f i c e  f o r  trim. 
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The model used i n  t h e  1 4  foot  tunnel tests w a s  of s o l i d  steel and 

w a s ,  of course, r e l a t i v e l y  much s t i f f e r  than a fu l l - s ized  wing. There 

remains t h e  problem of t h e  influence of bending f l e x i b i l i t y  of a f u l l -  

s ized  wing on t h e  r o l l  and t r i m  e f fec t iveness .  

The s impl i f ied  a e r o e l a s t i c  model ( f ig .  4 )  used i n  t h e  study of 

s t a b i l i t y  boundaries can provide some i n s i g h t  i n t o  t h e  e f f e c t  of wing 

bending on r o l l  con t ro l  and trim. Assuming t h a t  t h e  s t i f f n e s s  of t he  

wing is  s u f f i c i e n t  t o  provide dynamic s t a b i l i t y  (i.e., i s  within the  

s t a b l e  range of f i g u r e  6 )  t r a n s i e n t  o s c i l l a t i o n s  w i l l  d i e  out and t h e  

a b i l i t y  of t h e  a i l e r o n s  t o  provide a steady r o l l  rate o r  trim can be 

s tudied  by omitt ing the  i n e r t i a  terms from t h e  equations of motion (1). 

To determine t h e  r o l l  e f fec t iveness  of t h e  a i l e rons ,  w e  r e w r i t e  

t h e  equations of motion omitt ing the  i n e r t i a  terms and introduce moments 

6M6 propor t iona l  t o  t h e  a i l e r o n  de f l ec t ions  6, and 6d applied a t  

t = 0. 

2Ke COS' - Ke COS A(JIu+~d) = 0 

where 9 
analogous t o  t h e  damping i n  r o l l .  

M- = Kama is t h e  damping c o e f f i c i e n t  f o r  angular motions +, 
Assuming s t e p  input  a i l e r o n  de f l ec t ions  . 

and solving f o r  t h e  r o l l  rate 4 ,  w e  obta in  

Ka 
u d Ke (Su+ 6d) + (6 - 6 ) - (1 - e  dJ =  COS AM* 

9 

Ke where X = - M. dJ 
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Evidently, i f  the a i le rons  are used together with (equal up 

and down deflections) bending e l a s t i c i t y  of the wing has no e f f ec t  on 

the  r o l l  rate. 

ai lerons is ef fec t ive ly  cancelled by the ro l l i ng  motion as i l l u s t r a t e d  

i n  f igure (3 ) .  

6, = 6d 

In  t h i s  s i tua t ion ,  the spanwise loading produced by the 

A d i f fe ren t  p ic ture  emerges, however, i f  we  a t t empt  t o  control 

r o l l  by using a s ingle  a i le ron  alone on e i t h e r  t i p .  I n  these cases, 

wing d is tor t ions  appear, and i t  is found t h a t  an a i le ron  on the  

downstream t i p  alone ceases t o  be e f fec t ive  at  the  speed fo r  static 

divergence Ke - Ka = 0, or  K = 1. 

at K = 1. 

Figure ( 8 )  summarizes the behavior 

1 

In  the foregoing, w e  have considered bending d is tor t ions  only. 

In  practice,  the e l a s t i c i t y  of the wing i n  tors ion must be considered 

also,  and i t  is  t o  be expected tha t  torsion w i l l  reduce the ai leron 

effectiveness a t  high values of the dynamic pressure. It should be 

borne i n  mind, however, tha t  the dynamic pressure e f fec t ive  i n  pro- 

ducing tors ion is  grea t ly  reduced by the sweep. 

In  conclusion, these r e su l t s  show tha t  aeroelast  i c  divergence , 

which is  charac te r i s t ic  of swept forward wings, does not occur i n  the  

case of t he  oblique wing. Aeroelastic i n s t a b i l i t y  of the oblique wing 

evidently appears i n  the  form of undamped osc i l l a t ions  a t  a dynamic 

pressure which may be considerably greater than tha t  f o r  "s ta t ic"  

divergence of a swept forward wing. 

The s t a b i l i t y  of the oblique wing shows an important dependence 

on the moment of i n e r t i a  of the fuselage i n  r o l l .  I n  a more r e a l i s t i c  
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model, a s i m i l a r  influence of the d i s t r ibu t ion  of mass along the  wing 

span may be expected. 

SUMMARY 

The aeroe las t ic  s t a b i l i t y  of an oblique wing is studied by means 

of a simple model having three degrees of freedom. 

freedom i n  r o l l  exerts a s t ab i l i z ing  influence on t h e  behavior of the  

oblique wing so t h a t  ae roe la s t i c  bending divergence which is typica l  

of swept forward wings does not  occur i n  the case of the  oblique wing. 

I n s t a b i l i t y  of the  oblique wing appears i n  the  form of undamped osc i l -  

l a t i ons  a t  a f l i g h t  speed which may be considerably greater  than tha t  f o r  

s ta t ic  divergence of a swept forward wing. 

the r o l l  i n e r t i a  of the  fuselage and on t h e  d i s t r ibu t ion  of mass along 

the  wing. Bending e l a s t i c i t y  of the  wing has l i t t l e  e f f ec t  on a i le ron  

control  and t r i m  of t he  oblique wing provided equal opposite a i le ron  

def lect ions are employed. 

It is found tha t  

S t a b i l i t y  is  dependent on 

REFERENCES 

1. G r a h a m ,  Lawrence A., Jones, Robert T., and Boltz, Fredrick W. 

"An Experimental Invest igat ion of an Oblique-Wing Body Combination 

a t  Mach Numbers between 0.60 and 1.40." NASA TMX-62, 207 Dec .  

1972. See a l so  NASA TMX-62, 256 Apr. 1973. 

2. Kulfan, Robert M. et a1 

Study of t he  Single Body Yawed Wing Aircraf t  Concept 

Boeing Commercial Airplane Co. NASA CR 137483 May 1974 

878 



879 



OBLIQUE WING AEROELASTICS 

Figure 2 

AT DESIGN CRUISE CONDITION, WING 
CURVE GIVES BALANCED LOAD DISTRIBUTION 

IN FREE FLIGHT ROLLING MOTION OPPOSES 
AEROELASTIC L I F T  INCREMENT 

LEADING TIP 

T 

WITH FUSELAGE CLAMPED INCREASING 
DYNAMIC PRESSURE CAUSES WING DISTORTION 

AND AEROELASTIC LIFT INCREMENT 

AILERON DEFLECTION OPPOSES 
AEROELASTIC LIFT INCREWENT 

Figure 3 
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SIMPLIFIED MODEL FOR AEROELASTIC ANALYSIS 
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Figure 4 
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Figure 5 
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STABILITY BOUNDARIES FOR SIMPLIFIED AEROELASTIC 
MODEL 
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Figure 6a 

FREQUENCY OF NEUTRALLY STABLE OSCILLATIONS 
COMPARED WITH NATURAL BENDING FREQUENCY 
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Figure 6b 
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EFFECT OF AILERONS ON ROLLING MOMENTS OF 
OBLIQUE WINGED MODEL 

NASA-AMES 14ft TRANSONIC WIND TUNNEL 

-0- M = 1.2 

8:l ELLIPTIC WING 
12% THICK 

sa = oo 

sc = f 100 

-.004 ' I I I I I I I I  
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LIFT COEFFICIENT, CL 

Figure 7 

AILERON CONTROL BEHAVIOR AT SPEED 
FOR STATIC DIVERGENCE 

ke-k, =O 

AILERON ON DOWNSTREAM TIP ONLY 
ZERO ROLL RATE 
STATIC BANK ANGLE + 
WING DISTORTION 

AILERON ON UPSTREAM TIP ONLY 

F 
4 FULL ROLL RATE 

DISTORTED WING SHAPE 

EQUAL AILERONS ON BOTH TIPS 
FULL ROLL RATE 
NO WING DISTORTION 

Figure 8 
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Coma of Modified Gregorian and Cassegrain Mirror Systems 
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The equivalence of the classical Newtonian, Cassegrainian, and Gregorian mirror systems with respect 
to the first two Seidel aberrations is rederived by means of a simple congruence. The ef€ects of arbitrary 
small modiiications of the two-mirror systems are then studied and general formulas are derived for the 
effects of such modifications on the spherical aberration and coma. Spherical aberration is corrected to the 
third ordsr if the amount of glass removed from one surface is replaced at the corresponding zone of the 
other surface (approximate expression of Fermat’s principle). Modifications in which one surface is made 
spherical while the other is adjusted to eliminate spherical aberration result in large increases of coma for 
systems having the usual ampliiying ratios. 

N the standard forms of the Cassegrainiin and 
Gregorian telescopes the curves of the primary and 

secondary mirrors are confocal conic sections, so that, 
insofar as geometrical optics is concerned, rays parallel 
to the axis of the system will be brought to a perfect 
focus at the axial image point. There remains, however, 
a slight variation in the equivalent focal length of the 
various rays throughout the aperture of the instrument, 
so that the magnification is greater for the outer zones 
of the aperture than for the central part. Such a varia- 
tion also appears in the Newtonian telescope, with a 
single parabolic reflector, and produces the aberration 
known as “coma.” 

It was shown by A. C. Lunnl that in any combination 
of mirrors having confocal conic sections, the zonal 
magnification error will be exactly the same as that of 
a single parabolic reflector having the equivalent focal 
length of the compound system. Since the magnification 
error of a long-focus paraboloid is slight, and further- 
more diminishes with the inverse square of the focal 
ratio, it follows that the comatic aberration in the con- 
ventional Cassegrainian or Gregorian forms is ordinarily 
extremely small. 

Practical experience has shown, however, that the 
excellence of the calculated properties of these com- 
pound-mirror systems is difEcult to achieve in actual 
construction. To overcome these dficulties several 
modifications of the standard Cassegrainian and Gre- 
gorian forms have been proposed. Perhaps the best 
known of these is the construction employed by Dall 
and Kirkham? Here the secondary is made spherical 
and the spherical aberration is corrected by modifying 
the primary. Descriptions of this and other possible 
modifications have been given by Allyn J. Thompsonx 
and quoted by Albert G. Ingalls! Recently Yoder, 
Patrick, and Gee6 have presented calculations of all the 
thid-order aberrations for an example of the Dall- 
Krkham type. 

The present paper extends the previous discussions 

A. C. Lunn, Astrophys. J. 27,280-285 (1908). 

Albert G. Ingalls, Sci. American (June, 1933, et seq.). 

* Alan R. Kirkham, Sci. American 158, No. 6,374 (1938). 
8 Allyn J. Thompson, Sky and Telescope (May, 1948, et seq.). 

SYoder, Patrick, and Gee, J. Opt. SOC. Am. 43, 1200 (1953). 

by giving general formulas for the effects of various 
modifications on the coma of two-mirror systems. The 
formulas are based, of course, on geometrical optics and 
are limited to small apertures such that the fdth and 
higher powers of the aperture ratio are negligible. 
Within this limitation they agree with the formulas 
given by Schwarzschild for the aplanatic case (zero 
coma), but show in addition the effects of departures 
from aplanatism while maintainiig ‘zero spherical 
aberration. 

Consider frst the unmodified Cassegrainian with a 
parabolic primary mirror p and a hyperbolic secondary 
mirror s (see Fig. 1). Denoting the paraxial equivalent 
focal length by Fo, the “oblique focal lengths” Fy= fp’ of 
the zones y may be found by extending the rays from 
the focal point f straight through the secondary mirror 
and noting the intersections p‘ of these rays with the 
incoming parallel rays. The AbbC sine condition will be 
satisfied if the intersection points lie on a sphere centered 
at f. In this case the oblique focal lengths Fy, and hence 
the magnification, would be constant for all zones. 
However, it is easily verified that in the case of the 
Cassegrainian this intersection surface is not a sphere, 
but is a paraboloid having a focal length equal to Fo. 
Referring again to Fig. 1, consider the conjugate re- 
flecting system formed on the reversed side of the 
secondary by the extended.rays together with the rays 
extended from the primary toward its focal point f. 
Denoting by A the amplification of the original system, 
it is seen that the concave side of the hyperboloid forms 
the secondary of a conjugate Cassegrainian system 
having the amplification 1/A, and having its focal point 

FIG. l.-Congruence of rays in the Cawgrainian and the 
rays from a reversed parabolic reflector. 
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R O B E R T  

at f’. The surface p’ may be considered the primary of 
this system if the incoming parallel rays are reversed. 
However, the only primary surface that will produce a 
focus at  f’ after reflection a t  the hyperboloid s‘ is a 
paraboloid. It follows that the Abbe surface p’ is a 
paraboloid having its focus a t  f. A similar construction 
(Fig. 2), but with the paraboloidal surface p’ located 
behind the primary, is available in the case of the 
Gregorian form. Thus in each of these cases the rays in 
the vicinity of the focal point may be brought into 
congruence with the rays from a simple parabolic re- 
flector having the same equivalent focal length. The 
Newtonian, the Gregorian, and the Cassegrainian are 
thus all equivalent as far as coma is concerned. 
As was shown by A. C. Lunnl thii equivalence holds 

for compound systems comprising any number of 
mirrors, provided all the mirrors have such curves 
(conic sections) that the spherical aberration is per- 
fectly corrected a t  each focus (or virtual focus) within 
the system. 

In the case of the single parabolic reflector a well- 
known derivation6 yields for the departure from the 

P’ - - 

“e-=_ - - - - U 

FIG. 2. Congruence of rays in the Gregorian and 
the rays from a parabolic reflector. 

sine condition 
(1) 

The quantity (Fv/F0)-l may be thought of as the 
percent error in magnification at the zone y. In the case 
of the Gregorian or Cassegrainii the same formula 
applies, but since the equivalent focal length is A times 
the focal length of the primary, the coma is reduced by 
the factor l / A z  relative to that of the primary mirror 
alone. 

To study the effects of various modifications of the 
Cassegrainiin we write for the equation of the primary: 

(Fv/FC) - 1 = (y2/4F0’). 

YIZ ~1~ 
X I  = -+P- 

2R1 ( ~ R I ) ~ ’  

and for the secondary: 

4A 
(3) 

YZZ 
xz=+ s-- 

2Rz (A-l)zl&‘ 

Here R1 and RZ are the radii of the respective surfaces 
EL. C. Martin, Techtticd Optics (Pitman and Sons, Ltd., Lon- 

don, 1948), Vol. II. 

T. J O N E S  Vol. 44 

AX, = AX, 

FIG. 3. Relation between fourth-degree deformations 
for zero spherical aberration. 

at y=O, and the coordinates of each surface are meas- 
ured from its intersection with the x axis. The quantities 

and 

represent deviations of the primary and secondary 
mirrors from their original parabolic and hyperbolic 
forms. Thus, setting P= 1 makes the primary spherical 
instead of parabolic. If S is set equal to 1+4A/(A - l ) z ,  
the secondary will be spherical. 

Analysis of paraxial rays shows that the spherical 
aberration will be corrected if a simple relation is main- 
tained between the deformations of the primary and 
secondary mirrors. This relation is (see Fig. 3) 

Axi= PCyi4/(2RJ3], (4)  

A~z=SCyz*/(2Rz)~], (5) 

 AX^= A%, (6) 
where the increments in x are measured at  the corre- 
sponding zones y l  and yri.e., zones touched by the 
same ray in the undistorted Cassegrainian. This relation 
obviously amounts to an approximate expression of 
Fermat’s principle. If the primary is bent slightly 
toward the object point, the shortening of the light 
time between the primary and secondary must be com- 
pensated by bending the secondary away from the 
primary an equal distance where the ray touches. 
Within the fixed approximate form of Eqs. (2)  and 
(3), the focusing of a time signal is not merely necessary, 
but is also sufficient for the focusing of all four coordi- 
nates of a point event. The approximation here obvi- 
ously involves a small shiit of the rays from those of the 
undeformed Cassegrainian. 

When the equations given by Schwarzschild for the 
surfaces of an aplanatic telescope7 are converted to the 
form of deviations from the standard Cassegrainii, it 
is found that they agree with the foregoing rule. 

A similar comparison is found to hold in the case of 
the formulas given by Kirkham.2 

TK. Schwarzschild, Abhandl. Ges. Wiss. Gattingen Math, 
physik. KI. 2 (1905). 
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If Dz is the nominal diameter of the secondary* we 
have for the undeformed Cassegrainiian the simple 
proportion 

From Eqs. (4), (S), (6), and (7) we obtain 
Dz/Di=y2/yi. (7) 

P= S(RI /RZ)~  ( D d W ,  (8) 
as the relation between P and S for zero spherical 
aberration. 

To study the effect of the deformations P and S on 
the coma we have to consider the changes in inclination 
and intersection points of the rays. Referring to Fig. 1 ,  
the law of sines yields 

( Z J ~ Z ) ~ ,  (9) 
where ll=pf', Zz-s'f', &=Sf. Carrying through the 
analysis for paraxial rays, we find 

where 
( A - 1 1 3  D~ 

C=l+--( 2A l-$ (11)  

C= l+- ( - - l )P ,  2 Dz (12) 

or, in terms of P,  
A2 Di 

P and S being, of course, related through Eq. (8) 
As shown by Schwarzschild, both spherical aberration 

and coma may be eliminated by a special shaping of 
the two mirror surfaces. To obtain Schwarzschild's 
formulas we set C=O and solve Eqs. ( 1 1 )  and (8) for 
the shape parameters S and P.  The result is 

2A 

(A-  l)'[1- (D2/Di>I' 
s= - (13) 

2 

A2[(D&)- 11' 

When these values are introduced into Eqs. (2) and 
(3) it is found that they require, for amplifying ratios 
greater than 1.0, a slight overcorrection of the primary 
(hyperbolic primary) and an increase in the eccentricity 
of the hyperbolic secondary. For values of A less than 
1.0 the secondary is concave and with certain propor- 
tions approaches a spherical shape. 

In the construction employed by Dall and =&am2 
the amplifying ratio is greater than one (convex 
secondary) and the secondary is made spherical for ease 
of construction and adjustment. For this case we find 

p =  - (14) 

S= 1+[4A/(A-1)2], (15) 
* Here DO is the diameter of the secondary illuminated by the 

full aperture DI of the primary from an azid object point. The 
actual diameter of the secondary should of course be slightly 
greater than this to allow for a finite image dmension. 

and for the departure from the sine condition, 

For D2/D1=4 and A=4,  the quantity in the brackets 
(C) is 8. Thus with $ese proportions the coma is in- 
creased by a factor of 8 when compared with the 
standard CassegraKin having a hyperbolic secondary. 
In spite of this, the coma is only half as great as that for 
the primary mirror alone. Figure 4 shows values of C 
for various values of Dz/Dl and A .  Sice the factor C 
diminishes rapidly with a m p i i i g  ratio, it seems ad- 
visable to use somewhat smaller values of A in this 
type if a large field of view is required. The tolerance 
to misalignment is also enhanced if the focal length of 
the primary is made longer (and A smaller), since the 
eEect of misalignment must be related to the coma of 
the individual mirrors. 

Turning now to the case in which the primary is made 
spherical, we set P= 1 and obtain 

A 

For Dl/Dz=4 and A=4, C=24. The coma is thus 14 
times that of the primary alone. The excessive coma 
of a telescope of this type has been noted by Thompson,' 

To treat modifications of the Gregorian we write for 
the equation of the secondary: 

The condition for zero spherical aberration becomes 

S= - P ( R Z / R ~ ) ' ( D ~ / D Z ) ~ ,  (20) 

FIG. 4. Coma of two-mirror systems with spherical 
secondary mirrors. 
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while the factor of increase C in the zonal magnitication 
error reads 

A2 
C=l-- 1+- P. 

2 (  3 
In these equations the amplifying ratio A is considered 
positive. However, in Figs. 4 and 5 the values of C for 
the Gregorian have been plotted on the negative side 
of the axis to distinguish them from the values for the 
Cassegrainiian. The partial obstruction of the aperture 
by the secondary mirror has not been taken into ac- 
count in these calculations. 

To obtain a quantitative idea of the effect of the 
zonal magnification error we may compute the elonga- 
tion of an off-axis star image. The result is 

Here is the angle of the star away from the axis of the 
telescope and 6 is the extreme angular elongation (tan- 
gential coma) of the image in the same units. Setting 
ym== D / 2  and making use of Eq. (10) we obtain 

6=&C(D/Fo)'P. (23) 
Formulas (22) and (23) are, of course, based on geo- 

metrical optics. Studies of the wave-dfiraction pattern 
associated with the coma image8 show that little effect 
is apparent until the elongation given by Eq. (22) is 
about three times the radius of the normal Airy diffrac- 
tion disk, or 

6 / 3 5  1.22(X/D), 

where X is the wavelength. With a radio telescope the 
comatic elongation might be allowed to reach several 
inches, since the normal diffraction disk will be of that 

*R.  Kingslake, Proc. Phys. Soc. (London) 61, pt. 2, No. 344 
(1948). 

FIG. 5. Coma of two-mirror systems having 
spherical primary mirrors. 

diameter. For ordinary light we have 

6/3 6 S.S/D, 
where 6 is now in seconds of arc and D is in inches. 
Using this value of 6, we may solve l$q. (23) for and 
obtain an expression for the angular radius of the field 
of view unaffected by coma: 

,='6(p.)'5.5 
C D  D 

in seconds. 
The foregoing criterion corresponds approximately to 

the Rayleigh limit. In many applications a considerably 
wider tolerance is permissible. Regardless of the toler- 
ance adopted, however, the radius of the field of good 
debition will be inversely proportional to the co- 
efficient C. 
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A PORTABLE 12-INCH 

Rela t ive ly  l i g h t  weight and easy p o r t a b i l i t y  are f ea tu res  of my 12- 
inch  Newtonian. 
diameter aluminum a l l o y  tubes. 
push the  instrument under s h e l t e r  i n  my gazage, as w e l l  as t o  nearby star 
p a r t i e s  of t he  Peninsula Astronomical Society. 

A s  t he  p i c t u r e  shows, i t  is mounted on a system of large- 
The s m a l l  wheels permit r a i s i n g  one end t o  

Gusset p l a t e s  and 5/16" b o l t s  hold t h e  mounting p a r t s  together. 
Extremely s t rong  connections are not  required t o  -develop the  f u l l  r i g i d i t y  
of the  members. The polar  axle is 5" i n  diameter, bu t  is of t h i n  c0.040") 
tubing, and hence is extremely l i g h t  and more r i g i d  than the  customary s o l i d  
steel axle. 
diameter tube which p i e rces  the  upper end of t he  polar  a x i s  a t  r i g h t  angles. 
A t i g h t  press  f i t  w a s  achieved the re  with t h e  a i d  of a paper template, a 
hacksaw blade,  and a round f i l e .  
s i d e s  of t h e  po la r  axis tube res tored  some of i ts  s t r eng th  a f t e r  t h i s  opera- 
t ion .  Aluminum a l loy  is i d e a l  f o r  t h i s  type of construction because i t  is 
e a s i l y  worked with simple too ls .  

The dec l ina t ion  axle tu rns  on b a l l  bearings i n s i d e  a 4" 

The rec tangular  gusset p l a t e s  on opposite 

I 

The slow-motion con t ro l  cons i s t s  of a hand crank adapted from a p i l o t ' s  
rad io  tuner and a speedometer cable which d r ives  a tangent screw through a 
worm-gear reduction. The la t te r  i s  of t he  type commonly found i n  w a r -  
surp lus  r ad io  tuners. The tangent screw, which incorporates a spring- 
loaded half-nut f o r  r e s e t t i n g ,  w a s  made by sawing up an ordinary C-clamp. 
This arrangement has proved adequate f o r  v i s u a l  use. 

The main tube is 14" i n  diameter and w a s  made from 18-gauge 24ST aluminum 
a l l o y  sheet.  
using a r a t h e r  simple pa t t e rn  made from 1/8" t h i ck  Masonite. 
be  ro t a t ed  t o  br ing  t h e  eyepiece i n t o  a convenient pos i t i on  f o r  young 
observem. 

The three s t i f f e n i n g  r ings  w e r e  cast by t h e  l o c a l  foundry, 
The tube can 

The mir ror  has a f o c a l  length of 78", and is  used kith an aper ture  of 
12". T h e  diagonal f l a t  w a s  c u t  from a 4" diameter pyrex blank 3/4" thick. 
I f i r s t  attempted t o  make t h i s  mirror from a crown g l a s s  blank 1/2" th ick ,  bu t  
this suf fered  from thermal d i s t o r t i o n  and flexure.  With the th i ck  pyrex blank, 
production of the  f l a t  w a s  a straightforward matter. 

Especially long eyepiece tubes have been made t o  ca r ry  B a r l o w  lenses. 
These are 1.6" i n  diameter, and are placed 4" i n s i d e  of focus; one amplifies 
the  image 2x, t he  o the r  3x. The l a s t  provides an e f f e c t i v e  f o c a l  length 
f o r  the telescope of nea r ly  20 f ee t .  With the types of g l a s s  chosen, i t  w a s  
found t h a t  both s p h e r i c a l  aber ra t ion  and coma could be canceled almost 
exac t ly ,  even though t h e  lenses  are cemented. 
E r f l e  eyepiece, t h i s  design provides an except iona l ly  wide f i e l d  of v i e w  a t  
high power. 

When used with a large-diameter 
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The rectangular gusset plates and de- 
tails of the spring-loaded slow motion 

are seen in this picture. 

The Jones portable 12-inch reflector. 

Wen the telescope w a s  f i r s t  t r i e d ,  r a t h e r  pronounced thermal e f f e c t s  
were noticed. Out-of-focus star images had a downward elongation that w a s  
no t  a l t e r e d  by r o t a t i n g  the  o p t i c a l  system. 
cur ren t  of a i r ,  inward along the  bottom of the  tube and out along the top. 
Subsequently, s i x  2" diameter openings w e r e  made i n  the  tube d i r e c t l y  i n  f r o n t  
of the mirror. Although the  e f f e c t s  are perhaps no t  completely elimbnated, it 
is i n t e r e s t i n g  t o  watch the star images become approximately round when these  
v e n t i l a t o r s  are opened. 
p l a t e s ,  

T e s t s  with smoke showed a slow 

I n  t h e  photograph, the  vents  are covered by t h i n  

ROBERT T. JONES 
840 Lincoln Ave. 

Palo Alto, Calif .  
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GLEANINGS FOR Am's 

CONDUCTED BY ROBERT E. COX 

A WIDE-FIELD TELESCOPE WITH SPHERICAL OPTICS 

U t i l i z i n g  a doublet l ens  t o  co r rec t  t he  aber ra t ions  of a sphe r i ca l  mir ror ,  
t b  writer has designed and constructed a small f / 8  telescope f o r  v i s u a l  use. 
The l ens  has  considerable negative power, so t h a t  i t  serves as a Barlow lens 
as w e l l  as a corrector.  

The lens  is 2" i n  diameter, placed 6" i n s i d e  t h e  mirror 's  normal f o c a l  
point. 
can be separated a t  su rp r i s ing ly  low power. 
sharp and co lo r l e s s  over a wide f i e l d .  

Extremely s m a l l  star images are produced, and d i f f i c u l t  double stars 
With an E r f l e  eyepiece, images are 

Usually, t h e  construction of an o p t i c a l l y  corrected,  compact telescope 
presents some d i f f i c u l t  problems f o r  t h e  amateur. Short-focus paraboloidal 
mir rors  requi re  increased accuracy of zonal measurements, as shown by t h i s  
t a b l e  f o r  the conventional Foucault test: 

Focal ratio 
of mirror, 

F/D 
f l 3  
f I 4  
f I 6  
fI8 

To lerab 1 e error 
of knife-edge 

reading, i n  inches 
0 006 
0.010 
0.023 
0.041 

For example, t o  v e r i f y  the  f i g u r e  accuracy of an f / 4  paraboloidal mirror of 
any diameter, t h e  knife-edge s e t t i n g  must be read t o  1/100 of an inch. 

Even assuming t h a t  t h e  s p h e r i c a l  aber ra t ion  of a short-focus mirror can 
be pe r fec t ly  corrected,  t h e r e  is  always the  matter of off-axis aber ra t ions ,  
which increase  r ap id ly  as t h e  f o c a l  length is reduced. An exce l l en t  discussion 
of these  aber ra t ions  is contained i n  the  art icle by James G. Baker i n  
Amatewr Telescope Making-Book III. The following t a b l e ,  adapted i n  p a r t  from 
D r .  Baker's article, gives the  s i z e  of t he  f i e l d  outs ide  of which "the 
comatic f l a r e  becomes of such a s i z e  as t o  be apparent over t h e  gra in iness  of 
t h e  [photographic] emulsion o r  l a r g e r  than t h e  seeing disk." 

Focal ratio 
of mirror, 

F/D 
€13 
f l 4  
f I 6  
f I8  

Diameter of 
good f ie ld ,  
i n  inches 

0.36 
0.64 
1.44 
2.56 

nsion l i s t e d  ependent of t h e  absolu te  s i z e  of t h e  
e n t  e 
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A well-known expedient f o r  increasing t h e  angular f i e l d  of a Newtonian 
r e f l e c t o r  is  a n e u t r a l  doublet cor rec t ing  l e n s  near t h e  focus. Lenses of t h i s  
type are used with t h e  Mount Wilson and Palomar telescopes and o ther  l a r g e  
r e f l e c t o r s .  It has been pointed out  by Baker and by C. G. Wynne, however, 
t h a t  such a doublet cannot co r rec t  sphe r i ca l  aber ra t ion ,  coma, and a s t i g m a t i s m  
simultaneously i f  t he  sphe r i ca l  aber ra t ion  is  already corrected a t  t h e  
primary. 

Therefore, i n  t he  re f lec tor -cor rec tor  designed by Baker, sphe r i ca l  
aber ra t ion  is introduced i n t o t h e  system by a f igured  p l a t e ,  permitt ing 
subsequent complete cor rec t ion  by t h e  l ens .  This arrangement has been used 
t o  adapt a conventional paraboloid t o  wide-angle photography (see S7y and 
Telescope, January, 1954, page 7 3 ) ,  but i t  does not lend i t s e l f  e a s i l y  t o  
amateur use. 

I n  t h e  design presented here,  ordinary achromatism is  achieved by t h e  
use  of c lose ly  spaced elements of crown and f l i n t  g l a s s ,  while t he  r a d i i  of 
t h e  four  sur faces  have been adjusted t o  cancel t he  sphe r i ca l  abe r ra t ion  and 
coma of t he  primary mir ror .  The secondary spectrum (expressed as a f r a c t i o n  
of the  over-all  f o c a l  length of t h e  system) introduced by the  power of t h e  l ens  
is less than  half  t h a t  of a comparable r e f r a c t o r ,  t h a t  is, an  aahromat having 
an aper ture  and f o c a l  length equal t o  t h e  equivalent f o c a l  length of the  
new system. 

The diagram shows the  o p t i c a l  arrangment, which i n  my case incorporates 
a 6-inch sphe r i ca l  primary wi th  a f o c a l  length of 24". The cor rec t ing  lens  
is mounted i n  a tube t h a t  a l s o  contains t h e  diagonal mirror.  The f i r s t  element 
(nearest  t he  primary) is made of ordinary crown g l a s s ,  517645, while t h e  
second element i s  f l i n t ,  649338. (It should be noted t h a t  t h i s  arrangement is 
the  reverse of t h a t  i n  the  conventional Barlow lens.)  

Radii  of t he  four sur faces  have been computed f o r  pos i t i ons  of t h e  l ens  
5" and 6" i n s i d e  the  focus of the  primary and f o r  a f ixed  amplifying r a t i o  
of 1.92 t o  1: 

Inches Radii of curvature 
inside i n  inches 

f OCUS RI R2 R3 R4 

5 -8.33 3.74 2.98 5.73 
6 -12.69 4.11 3.54 6.76 

Although the  r a d i i  i n  t h e  t a b l e  w e r e  worked out f o r  a primary f o c a l  
length of 24" (equivalent f o c a l  length 4 6 " ) ,  they may be  adapted t o  l a r g e r  o r  
smaller instruments by a proportionate sca l ing  f a c t o r .  
amplifying r a t i o  chosen, t he  (Gaussian) rays  emerging from t h e  crown l e n s  i n t o  
the  space between the  elements are p a r a l l e l  t o  t h e  o p t i c a l  axis, so t h e  
cor rec t ion  is  not extremely s e n s i t i v e  t o  the  spacing of the  components. 

For t h e  p a r t i c u l a r  

898 



Only sphe r i ca l  o p t i c a l  sur faces  are used i n  t h i s  
compact r e f l e c t o r  constructed by Robert T. Jones. 

Tube Focus 

4- I 

I I 

The o p t i c a l  system of Ilk. Jones' telescope 

The ca l cu la t ions  w e r e  made f i r s t  by thin-lens theory and then v e r i f i e d  
i n  seve ra l  instances by Se ide l  sums fo r  t h e  ind iv idua l  sur faces ,  allowing a 
thickness of 0.33" f o r  each element. The reader i n t e re s t ed  i n  the  methods 
employed i n  such ca l cu la t ions  should consul t  t he  a r t i c l e  by C. G, Wynne i n  
t h e  Proceedings of t h e  Physical Society (London). 62, 360B, December 1949. 
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I n  my f i r s t  experiments with t h i s  design, a 1.4" l e n s  w a s  placed only 4" 
in s ide  t h e  focus (20" ahead of t he  primary). The lens  w a s  made from standard 
blanks, using a s m a l l  l a t h e  and a miniature Draper-type polishing machine. 
Careful f i n e  grinding and pol i sh ing  r e su l t ed  i n  sphe r i ca l  curves t h a t  required 
hard ly  any co r rec t ive  figuring. 
easier t o  make than the  conventional f / 8  paraboloid. 

The f / 4  sphe r i ca l  primary is, I be l ieve ,  

The necess i ty  of p rec i se  coll imation i n  any compact o p t i c a l  system w a s  
f o r c i b l y  demonstrated by the  f i r s t  observations with the  newly assembled 
instrument. 
permanently set by an aluminum r i n g  machined s o  as t o  make a narrow contact 
with the  o p t i c a l  sur face  j u s t  i n s i d e  the  mirror 's  edge. 
with t h e  sp ide r  supporting the  secondary-lens tube, w a s  then assembled per- 
manently i n  the  main tube with the  a i d  of a machined j i g .  

I n  my later experiments, t h e  o p t i c a l  axis of t h e  mirror has been 

This r ing ,  together 

The latter cons i s t s  e s s e n t i a l l y  of a steel tube threaded a t  one end t o  
screw i n t o  the  lens  cel l ,  and having a d i sk  a t  t he  o ther  end t o  hold the  
mirror r i n g  i n  posit ion.  The r i n g  and t h e  sp ide r  are bol ted  i n  the  main tube 
while s t i l l  attached t o  the  j i g .  
l a t h e ,  i t  insures  alignment. 

Since the  j i g  i s  made t o  r u n ' t r u e  on the  

This f i r s t  telescope, however, w a s  no t  d e f i n i t e l y  super ior  t o  a w e l l -  
corrected Newtonian of t he  same equivalent foca l  length ,  s ince  the  angular 
f i e l d  was  no t  noticeably wider and some color  and de-focusing w e r e  apparent 
a t  the  edges of the  f i e l d .  

m e n  a l a r g e r  cor rec tor ,  2" i n  diameter, w a s  i n s t a l l e d  6" in s ide  the  
primary focus, these  defec ts  were removed - the  f i e l d  curvature w a s  reduced 
and the  cor rec t ion  of t he  remaining aber ra t ions  w a s  extended over a wider 
f i e l d .  
l ens  caused no obvious l o s s  of performance, s o  t h a t  t h e  cor rec tor  could 
probably be made t h a t  s i z e  advantageously, f o r  t h e r e  would be less d i f -  
f r a c t i o n  and l o s s  of l i g h t .  

It w a s  found t h a t  a 1.6" apera ture  s top  i n  f r o n t  of t he  2-inch 

Since completion of t h i s  second modification, f u r t h e r  s t u d i e s  of t he  
design have ind ica ted  t h a t ,  f o r  p a r t i c u l a r  amplifying r a t i o s ,  a cemented 
doublet would reduce coma over a wide f i e l d  t o  values below Baker's l i m i t .  
The cemented design requi res  t h a t  t he  f l i n t  element be placed neares t  t h e  
primary, so its sur faces  are R 1  and R2. 
g las s  as in t he  previous l ens ,  and with the  elements f in i shed  t o  a thickness 
of 0.33", t h e  cemented design requi res  t h e  following r a d i i :  
R2 -3.32", R3 -3.32", R4 +l0.50". 
i n s ide  the  focus of a sphe r i ca l  mirror having a 24" f o c a l  length,  and g ives  
an amplifying r a t i o  of 2.5 t o  1. 

Using t h e  s a m e  types of o p t i c a l  

R 1  -7*58", 
This co r rec to r  is t o  be placed 6" 
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A s  many readers know, r e s u l t s  similar t o  mine may be achieved, 
t h e o r e t i c a l l y  a t  least, with a Cassegrainian type of r e f l e c t o r .  The 
present  design, however, with only s p h e r i c a l  sur faces ,  permits t h i s  theore t ic -  
a l  performance t o  be approached more c lose ly  i n  an instrument t h a t  can be 
e a s i l y  made by t h e  amateur. (Commercial r i g h t s  are reserved by me.) 

ROBERT T. JONES 
840 Lincoln Ave. 

Palo Alto, Calif .  
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Abstract of paper t o  be presented a t  Foothi l l  College, 
Space Lecture Ser ies ,  May 16, 1960 

SPACE SCIENCE - SOME SELECTED PROBLEMS 

AND ACCOMPLISHMENTS 

By Robert T. Jones* 

N a t  i on a1 Aeronaut i cs and Space Admini s t r at  ion 
Ames Research Center 
Moffett Field,  Cal i f .  

In  t h i s  las t  lecture  of our Foothi l l  series we s h a l l  t r y  t o  extend 

our viewpoint i n  two direct ions,  looking forward and a l so  backward i n  

time fo r  the s c i e n t i f i c  or igins  of some of our present day exploi ts .  

I t  i s  in t e re s t ing  t h a t  the  p o s s i b i l i t y  of creat ing an a r t i f i c i a l  

ear th  sa te l l i t e  is  discussed ra ther  extensively i n  Newton's Pr incipia  

Mathematica. Modern space s c i e n t i s t s  do not often delve in to  such old 

textbooks, but i f  they were t o  do so  they would f ind many in te res t ing  

theorems - concerning, fo r  example, t he  effect of a i r  res is tance on the 

sp i r a l ing  llre-entrylt of a s a t e l l i t e .  

Newton's a r t i f i c i a l  sa te l l i te  was launched by a cannon. The rocket 

is of course b e t t e r  f o r  t h i s  purpose. By s t a r t i n g  with a su f f i c i en t ly  

large rocket and ending up with a su f f i c i en t ly  small pay load an almost 

unlimited speed can be acquired. 

*Aeronautical Research Sc ien t i s t  

Having a thorough understanding o f  

National Aeronautics and Space Administration 
Ames Research Center 
Moffett Field,  Calif. 
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these pr inciples  the  Russian s c i e n t i s t s  have evidently developed t h e  

largest  rocket boosters. 

provided some insp i ra t ion  t o  them i n  t h i s  task.  

Mili tary pressures from the  s ides  have undoubtedly 

Looking toward improvement of the  rocket, w e  seek means f o r  

increasing the veloci ty  of the  exhaust. 

of the  exhaust by electromagnetic forces is  being studied extensively. 

The ion rocket and t h e  plasma rocket u t i l i z e  such forces .  

rocket, which propels i tsel f  simply by expelling electromagnetic f i e l d  

energy has been the subject of much speculation. 

velocity i s  equal t o  the  veloci ty  of l i gh t .  

A t  t he  present t i m e  acceleration 

The photon 

Here the  exhaust 

I t  is  a w e l l  founded 

t r ad i t i on  o f  physicis ts  t ha t  a body alone i n  empty space cannot change 

the posi t ion of i t s  center of gravity.  

t r ad i t i on  is preserved i n  an unusual way through the  equivalent weight 

of the  expelled energy. 

however disappointingly small. 

With t h e  photon rocket t h i s  

The thrus t  developed by the photon rocket is 

Present day technology contains many h in t s  and clues regarding 

propulsive devices beyond the  rocket. To go i n t o  the  p o s s i b i l i t i e s  

here would be, f o r  me at  l ea s t ,  a reckless venture. We may however 

a r r ive  a t  some in t e re s t ing  conclusions i f  w e  suppose t h a t  t h e  invention 

of such devices succeeds absolutely - so tha t  w e  have available a th rus t  

of comfortable magnitude f o r  as long a period as required. 

ago, following t h i s  thought, I published calculations of t he  times 

required t o  travel t o  various planets  of the  s o l a r  system at  an acceleration 

of 1 g. 

t h i s  acceleration, but only 36 hours are required t o  get t o  Venus. 

Several years 

The human organism i s  known t o  survive upwards of 70 years under 

A 



r e c t i l i n e a r  acceleration of 1 g i n  free space produces a veloci ty  of 

the  order of t he  veloci ty  of l i g h t  i n  one year (32 ft/sec2 1 l i g h t  

year/year ). 

questions far beyond our present experience. 

2 Survival at such cosmic ray ve loc i t ies  does indeed raise 

Final ly  I would l i k e  t o  mention one experiment which seems t o  me 

t he  most exci t ing and perhaps the  most portentous experiment our scientists 

have performed t o  date.  

the  development of t he  theory of ear th ' s  aurora by Stormer, Alfven and 

Poincarg i n  t h e  ea r ly  1900's. 

Birkeland made a small magnetized i ron  model of- t he  ear th .  

To understand t h i s  experiment w e  must go back t o  

In  one experiment, performed i n  1896, 

Suspending 

t h i s  magnetic "earth" i n  a primitive cathode ray tube and exposing it t o  

a stream of e lectrons,  supposed similar t o  those emanating from t h e  sun, 

he observed bands of radiat ion which, as you w i l l  see  from h i s  i l l u s t r a t i o n ,  

are s t r ik ing ly  similar t o  those discovered around the  r e a l  ear th  recent ly  

by James A. Van Allen. 

of our local  s c i e n t i s t s  were engaged i n  carrying out an experiment 

similar t o ,  but  much bolder than Birkeland's - suggested by N. C. 

Christofolos. In  Christofolos '  experiment a s h e l l  of re la t ivis t ic  

electrons was created enclosing the  ear th  along a surface defined by i t s  

magnetic f i e ld .  

number of  e lectrons in jec ted  i n t o  the magnetic shell t o  ensure tha t  no 

radiat ion hazard would be produced. 

ar t i f ic ia l  auroras a t  points  separated by thousands of miles over t he  

ear th  e 

About the time of Van Allen's discovery a number 

It w a s  found necessary t o  impose a l imitat ion on the  

The experiment did however produce 

This a b i l i t y  on the  p a r t  of t h e  s c i e n t i s t s  t o  create conditions 

which involve an in te rac t ion  with t h e  whole ear th  as a planet w i l l  c lear ly  
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c a l l  fo r  increasing a t ten t ion  on the pa r t  of nat ional  leaders. We can 

hardly suppose t h a t  our pas t  disputes w i l l  be resolved by these new 

things,  but it may become necessary t o  neglect some of them - par t i cu la r ly  

those tha t  have already begun t o  appear somewhat conventional. Thus 

progress is  accompanied not  so  of ten by the solut ion of old problems as 

by t h e i r  replacement with new ones. 
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ngle Lenses with urfaces 

Robert T. Jones 

Refracting elements having aspheric correcting surfaca near the center of curv&ure are analyzed. As in 
the case of the Schmidt reflector, such systems can have a wide aperture and a wide field of view; in 
addition, they are free from obstructing surfaces. Being uncorrected for $spexsion, however, the refract- 
ing systems are restricted to nearly monochromatic radiation. Typical forms of the correcting surfaces 
have been determined, both by third-order theory and by numerim1 integmtion of exact equations. 

1. Introduction 
In La Gemtriel ,  Descartes shows how lens surfaces 

may be shaped to achieve axial stigmatism. The curves 
devised by Descartes for this purpose have since be- 
come known as Cartesian Ovals. Later, Huygens2 
showed how the rear surface of a lens could be shaped 
to correct the spherical aberration of preceding surfaces. 

These measures, of course, leave uncorrected oblique 
aberrations such as coma and astigmatism. In 1930, 
Bernhard Schmidt pointed out that the oblique aberra- 
tions of a spherical mirror could be eliminated by placing 
a stop at the center of curvature of the mirror. Since 
the central ray of a pencil always meets the mirror at 
perpendicular incidence, there are, in effect, no oblique 
rays in such an arrangement. Spherical aberration is 
then corrected by placing a thin aspheric lens at the 
stop. The correcting lens, of course, introduces oblique 
aberratioljs of its own, but since it has only enough 
power to correct the spherical aberration of the mirror, 
these are reduced to small values. 

Such a principle, utilizing the symmetry of the sphere 
and with correction at the center of curvature, may be 
adapted to refracting elements as well as to the re- 
flector. Though restricted to monochromatic radia- 
tion, such refracting systems have advantages in cer- 
tain applications. 

Figure 1 shows two dioptric systems of this nature. 
In Fig. l(a), the thickness of the lens is equal to the 
radius of the rear surface, and the aspheric correction 
together with the stop are placed at the front surface. 
The image is formed in air on a surface whose radius 
is equal to the distance between an axial image point 
and the stop. 

The author is with Avco Everett Research Laboratory, Ever- 
ett, Massachusetts 02149. 

Receivqd 8 June 1966. 
This work was supported by U.S. Air Force under a contract. 

II .  Type A Lens 
An approximate form for the correcting surface in 

Fig. l(a)* may be obtained by computing the optical 
path difference between the spherical rear surface and 
an appropriate Cartesian oval. The Cartesian oval 
for stigmatie. refraction of parallel rays at the rear sur- 
face is an hyperboloid of eccentricity’n(n = index of 
refraction). Expanding the equation of this surface in 
terms of the vertex radius r ,  one obtains 

(1) 5 = a + (y*/2r) - [y4/(2r)a](n* - 1) + . . ., 
while for the sphere 

z = a + (~*/2r )  + I Y ~ / ( ~ ~ ) ~ I .  (2) 

The difference in optical path is then 

A2 = -nl [y‘/(2r)”, (3) 

and this is the equation of the front sulfate, to the 
accuracy of third-order theory. Somewhat better cor- 
rection can be obtained if this fourth degree curve is 
combined with a second degree curve in order to bring 
the slope of the correcting surface to zero at  some 
specified zone y,,, of the,lens. In this case, we would 
have 

= [ (2nz~,e~s) / (2r) l  - n*[y4/(2r)*l (4) 

, The foregoing relations, determined by third-order 
theory, will not be sufficiently accurate for lenses of 
wide aperture. Therefore, we have programmed the 
exact determination of the shape of the correcting sur- 
face on the Avco Everett Research Laboratory IBM 

* The lens design shown in Fig. l(a) has b 
pendently by R. Gelles in a paper presented 
meeting of tb Optical Society of America (paper WH 17). Gelles’ 
report (as yet unpublished) &ea fieid abehdon e w e s  deter- 
mined by geometric my t r a m  $n,nd suggests an ihtereatihg applica- 
tion of the Schmidt principle in a spectroscope. 
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Fig. 1. Lenses with correction at center of ciwature. 

Fig. 2. Type A lens, showing departure from sine condition: 
n = 1.52, R = 1.0, f(0) = 1.606 (see Table I). 

7040 computer. Figure 2 and Table I give a typical 
result of these calculations. 

With wide apertures and small field angles, the most 
serious oblique aberration will be coma. In the absence 
of spherical aberration, the extreme Gidth of the coma 
patch for a field angle /3 is given by 6 = 38 If(y) -f(O) 1. 
Here y is the semi-aperture, f(0) is the paraxial focal 
length, and f(y) is the focal length of the zone y ob- 
tained by producing the incoming parallel ray to its 
intersection with the converging ray (see Fig. 2). The 
diEerencef(y) - f(0) is a measure of the departure from 
the sine condition. 

Figure 2 shows the calculated departures from the 
sine condition for thelens shape of Fig. l(a). It is noted 
that the sine condition holds to a high degree of accuracy 
for apertures considerably greater than those accessible 
to third-order theory. Appreciable departures do not 
occur until value of y >0.6. 

With coma eliminated, there remains an aberration 
proportional to the square of the field angle j3. Follow- 
ing an analysis by Caratheodorya, it is found that this 
aberration depends on the slope and curvature of the 
correcting surface and, at a given zone y, is identical 
with the ordinary astigmatism of an equivalent simple 
lens. 

In the case of the Schmidt reflector, the local power 
of the correcting surface is ordinarily quite small, and 
the higher order astigmatism is u s d y  negligible. 

However, the spherical aberration of the refractor is 
much greater than that of the reflector, so the power of 
the correcting surface required may no longer be 
negligible. Thus, in Fig. 2, the curvature of the cor- 
recting surface exceeds that of the main refracting sur- 
face for values of y > 0.47. If the aperture is dowed 
to exceed this value, one would expect the astigmatism 
associated with these zones to be as great as that of a 
simple uncorrected lens. 

111. Type A Lens Reversed 
In addition to the shapes illustrated in the first 

figure, one might also consider a lens in which the main 
refraction occurs at the front surface and with the rear 
surface figured, but nearly flat. Such a surface, how- 
ever, lacks the essential properties of the correcting 
lens since rather large oblique aberrations arise in the 
converging rays. Figure 3 shows the third-order 
astigmatism for several arrangements. In Fig. 3(a), 
the rear lens surface is flat; if is to be noted that the 
sagittal and tangential focal surfaces curve rather 
shrply toward the lens. Such curvature cannot be 
avoided by aspheric figuring. 

Coma and astigmatism can be avoided by a suitable 
curvature of the rear lens surfhce, however. The 
theory gives r2 = rJn/(n2 - l)]. For theusual values 
of n, the second surface has considerable negative 
power, so the resultant power of the lens is rather small. 
Figure 3(c) corresponds to Fig. 1(a); in this case, both 
third-order astigmatism and coma vanish. 

As is well knowna.4 aspheric shapes can be found 
for two refracting surfaces that will eliminate both 
spherical aberration and coma. A free parameter in 
such shapes is the thickness of the lens. By selecting 
thicknesses approximately equal to the radius of one of 
the surfaces, we obtain forms for these aplanatic lenses 
approximating the forms illustrated in Fig. 3. Figure 4 

Table 1. Coordinates of Surfaces and Rays; Lens Fig. l(a) 

f(l) 21 xl 
11, 111 

0.0 
0.0 
0.001799 
0.110773 
0.005914 
0.2O7266 
0.010954 
0.298160 
0.015826 
0.407434 
0.014472 
0.500538 
0.008904 
0.549880 

-0.003427 
0.6OOO30 

-0.018830 
0.634677 

1 .o 
0.0 
0.994987 
0.100000 
0.981784 
0.190000 
0.96oooO 
0.280000 
0.916515 
0.400000 
0.854166 
0.520000 
0.803725 
0.595000 
0.728543 
0.685OOO 
0.649923 
0.759999 

1.606086 

1.605898 

1 A05527 

1.605252 

1.605626 

1.607595 

1.610152 

1.615800 

1.625010 

n =  1.52, R = l.O,f(O) = 1.606. 
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widest apertures and field angles. Here, by third- 
order theory, we obtain 

dz = G(n)[2vm%*//(2r)* - v4/(2y)3, (5) 

where Ax is the thickness of the air kna and G(n) = 
n [n - (2 - n) (2n - l)]. Theseequationsfeferto the 
ease in which the front and rear surfmxs are portions 
of the same sphere. Since the air lens lies in the path 
of converging rays, it seem preferable to curve itEI mean 
line about their center of convergence. 

In order to determine the shape of the c o m t b g  sur- 
f- for wider apehures than permitted by ihird-order 
theory, we have used the method of Wwennan and 
WOW, programmiug the calculation for the IBM 7040 
computer. These calculations yield two surfaces, 
E and Z', which, together with the two spherical sur- 
faces, make the system aplanaqc. Figure 6 shows a 
typical result of these calculations. As might be ex- 
pected, the aspheric surfaces E and E' curve backward, 

Fig. 3. Astigmatism of lenses with stop at center of curvature. 

Fig. 5. Comparison of Huygenian and aplanatic lenses. 

Fig. 4. Aplanatic lens shapes for t N Y. 

shows several aplanatic lenses having the required thick- 
ness. 

The shapes illustrated in Fig. 4 were calculated with 
the aid of the Avco Everett Research Laboratory's IBM 
7040 computer, utilizing equations given by A. I(. 
Head.6 Such lenses, having two aspheric surfaces, can 
achieve rather wide apertures with correction of third- 
order coma. Astigmatism will not be corrected, how- 
ever, unless the rear surface has considerable negative 
power, as in Fig. 3(b). 

Since the main refracting surfaces in Fig. 4 are ap- 
proximately spherical, it is of interest to determine the 
magnitude of the error in the sine condition that would 
be introduced by making the first surface exactly 
spherical. Figure 5 shows such a Huygens lens com- 
pared with a neighboring, perfectly aplanatic lens. 
The small change in shape results in a surprisingly large 
departure from the sine condition. Aspheric figuring 
does not affect the coma of a single surface, but the 
transfer of distortions between two surfaces separated 
by a large distance can evidently produce quite a large 
&e&. 

§ 

The arrangement of Fig. l(b) seems to afford the 

Fig. 6. Spherical lens with aplanatic mrr&ting surfaces. 

X. I 

Fig. 7. Spherical lens with approximately aplanatic correcting 
surfaces: n = 1.52 Rx = 10/9, f (0) = 1.2 (see Table 11). 
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Table il. Coordinates of Surfaces and Rays; Lens Fig. l(b) 

a zr Za  2( 2'..\ 
J W I  

Ill Ill a Il4 

1 . 2 m  

1.198802 

0.998681 1.195709 

1.192091 

1.189908 

1.789347 

1.189568 

1.189998 

1.190335 

1.188204 

1.182566 

' 1.173333 

1.152821 

-1.000000 -0.026OOO -0.011832 1.0000b0 
0.0 0.0 0.0 0.0 

-0.988771 -0.020536 -0.004185 0.999683 
0.149438 0.099504 0.098986 0.025167 

-0.955337 -0.007527 0.017720 
0.295520 0.196272 0.194601 0.051349 

-0.900447 0.012913 0 : 050774 0.996825 
0.434966 0.287773 0.283734 0.079623 

-0.837345 0.035035 0.084161 0.994325 
0.646675 0.360286 0.352980 0.106385 

-0.780506 0.053742 0.109972 0.991682 
0.625148 0.410830 0.400332 0.128711 

-0.37oooO 0.069436 0.129594 0.988967 
0.683447 0.448263 0.434922 0.148135 

-0.685327 0.082624 0.144.462 0.986224 
0.728236 0.477055 0.461329 0.165413 
0.610223 0.103425 0.164562 0.980690 
0.792230 0.518552 0.499402 0.195567 

-0.521892 0.125925 0.181135 0.971954 
0.853012 0.559115 0.5375% 0.235173 

-0.450757 0.142743 0.189489 0.961641 
0.274310 0.892647 0.587048 0.565432 

-0.389937 0.156396 0.193113 0.947501 
0.920842 0.608438 0.588941 0.319753 

-0.309448 0.173742 0.190704 0.896886 
0.950917 0.634l53 0.623372 0.442262 

n = 1.52, R = 1, Rz = 10/9, f(0) = 1.2. 

makiig the air lens more or less normal to the con- 
verging rays. 

The E and E' curves determined in this way provide 
exact correction of third-order coma. Furthermore, 
if the E and E' surfaces are nearly parallel, the higher 
order aberrations introdud by them wiU be quite 
small. If the Z and E' curves actually do satisfy this 
latter condition, i t  will not be essential to make both 
curves aspheric. One curve (E, for instance) can be 
made spherical, and the small difference in optical path 
length can be transferred to the other surface. 

Following this latter thought, we have made cal- 
culations for the shape of the 2' surface on the assump- 
tion that E has a spherioal shape generally similar to 
that of the aplanatic curve. Figure 7 and Table I1 
show one of the shapes determined in such a way for a 
focal length of 1.2 times the radius of the sphere. Also 
shown are the slight departures from the sine condition 
f(v) - f(0). Here the transfer of elements of the 
optical path has occurred over a small distance sep- 
arating the E and 8' surfaces. with the result that the 

sine condition is hardly disturbed. It is noted that the 
example provides a high degree of correction up to an 
aperture of f/O.SS. 

The author would like to acknowledge the msistance 
of J. D. Teare of Avco Everett Research Laboratory in 
formulating the problem of aspheric lens shapes, and of 
H. Kachadorian, Paul Kasperovics, and R. Johnson for 
helping in the programming of the calculations. 
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Times for Interplanetary Trips 
ROBERT T. JONES1 

Arne  Laboratory, NACA, Palo Alto, Calif. 

HE writer found it interesting to calculate the times re- T quired to travel to the various planets at  an acceleration 
of one “g,” or 8 X lo4 mph/h: 

Of course, with a thrust of such comfortable magnitude one 
can neglect surrounding gravitational ‘ fields except for a 
relatively short distance near take-off or landing. The 
“orbit” consists of an essentially straight l i e  with the thrust 
directed toward the destination up to the halfway point, but 
in the opposite direction for the remainder so that the velocity 
is zero on arrival. 

The following table lists the approximate times required, 
and also the maximum velocities acquired in light units V / C .  

Mercury 
Venus 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

t ,  
in days 

2.25 
1.51 
2.08 
5.88 
8.37 

12.07 
15-45 
17.80 

v/c  
0.0032 
0.0021 
0.0029 
0.0083 
0.0118 
0.017 
0.022 
0.025 

In spite of the small values of v /c  the energy expended is 
certainly large by present standards. Nevertheless, it is 
interesting to see how quickly even “astronomical” distances 
succumb to the application of a thrust force of such a reasona-, 
ble magnitude. 

Received Nov. 14, 1955. 
1 Senior Aeronautical Scientist. 
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Extending the Lorentz Transformation by Characteristic Coordinates 
ROBERT T. JONES* 

N a t i d  A ~ r ~ ? ~ ~ u t i t s  and S F E  Administration, Ames Research Center, Moffett Field, CaZiforniO 
(Received May 28, 1959) 

The problem considered is that of rectilinear motion with variable velocity. The paper gives, 
by an elementary construction, a system of coordinates which is conformal in a restricted 
region near the axis of the motion. In such coordinates the velocity of light remains invariant 
even for observers moving with variable velocity. By a particular choice of the scale relation 
the restricted conformal transformations can be made to reduce to the Lorentz transformation 
everywhere in the case of constant velocity and locally in the case of variable velocity. 

N the American Journal of Physics, November, I 1958, Leffert and Donahue call attention to 
irregularities that appear when the Lorentz 
transformation is extended to problems of 
variable motion. Figure 1 illustrates the difficulty 
alluded to. Here the moving origin of a system 
B is plotted as a curvilinear world line on a 
rectangular system which is not shown, but 
which we may designate as A. In such a diagram 
the lines t’ = constant associated with B are 
oblique and if they are continued as straight 
lines they will cross, leading to a nonuniform 
correspondence of events between the A and B 
systems. This lack of uniformity appears in the 
conventional treatments of the problem, as, for 
example, in the analysis given by MZl1er.I 

A uniform correspondence can be achieved, 
however, if the Lorentz transformation is ex- 
tended by means of characteristic lines, rather 

than along straight t’ lines. An extension along 
straight t’ lines amounts to the assumption that 
the Lorentz transformation propagates instan- 
taneously in the B system and at the electro: 
magnetic phase velocity c2/v in the A system. 
The characteristic lines, however, have the same 
slope in either system, and of course propagate 
at the velocity of light. The use of the charac- 
teristic lines establishes a conformal corre- 
spondence between the two systems x,  it and 
x’, it‘. As is well known, such transformations 
preserve a constant velocity of light during 
accelerated motions, even in three-dimensional 
space, if they can be established.2Sa This note 
shows how such coordinates can be established 
in the vicinity of the line of motion for a system 
with variable rectilinear velocity. 

Figure 2 shows the curvilinear coordinates 
obtained in the xt plane when the Lorentz 

* Aeronautical Research Scientist. 
C. Mgler, The Theory of Relativiiy (Clarendon Press, 

Oxford, 1952), pp. 258-263. 

SH. Bateman, Electrical and Optical Wave Hotion 

* L. Infeld and A. Schild, Phys. Rev. 26.250-272 (1945). 
(Dover Publications, New York, 1955), S14. 
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R O B E R T  T. J O N E S  

FIG. 1. Continuation of the Lorentz transformation along 
straight time lines, t’ =const. 

transformation is extended by means of the 
characteristic lines. For convenience the velocity 
of light is chosen so that these lines are a t  45’. 
The spacing of the lines (Doppler frequencies), 
and the extended x’, t’ coordinates may be 
obtained from time signals originated in the 
moving system. Thus we may suppose that a 
clock at the origin of B(x’=O) emits signals at 
equal intervals of its proper time. Each pulse is 
marked by two characteristic lines, x - t = const 
and x+t=const. By extending the pulses in the 
negative time direction, we represent also the 
signals arriving at the origin from the other 
clocks of the system. Such waves, identified with 
length and time signals, are stationary or 
“standing” relative to the moving clock as f a r  
as length and time measurements are concerned. 
The surfaces of constant phase and constant 
amplitude in such a wave pattern form the level 
surfaces of a conformal coordinate system, valid 
at least in a small region of space around the 
x axis. The construction thus provides a particu- 
lar example of the group of conformal trans- 
formations introduced by Bateman and discussed 
by Milne and others. The particular trans- 
formation obtained by our construction differs 
from those previously given in that it reduces 
to the Lorentz transformation locally in the 
case of variable velocity and everywhere in the 
case of uniform velocity. 

930 

Omitting y and a for the moment, we may 
write the Lorenfz transformation in the form 

x’ - t‘ = [ (1 +v)/ (1 -v)-p(x-t), 
x‘ +P = [ (1 -v) /  (1 +v)]+ (x+t). 

The extended transformation is 

X‘ - t’ = G ( X  - t ) ,  
x’+t‘= F(x+t).  

Here F and G are functions partly determined 
by the variable motion of B. Setting 

- g, 
d F  dG’ 

-- - f ;  -- 
d(x+t )  d ( x - t )  

we obtain for the velocity 

g-f  v = ( Z )  -- - 
sp-oonat g+f’ 

For the composition of two velocities 81 and 0 2  

we write 

gl-f l  

gz-f2 

VI=- 
gl+fl’ 

gz+fi 
v2=- 

and from the composition of two transformations 

FIG. 2. Continuation of the Lorentz transformation 
along conformal coordinates. 



E X T E N D I N G  T H E  L O R E N T Z  T R A N S F O R M A T I O N  

there results 

g l g z  - f lf 2 
V a  = 

glgz  + f lfii 
a form which illustrates the group property by 
its symmetry. In the more usual form, 

VI+VZ 

1 +VlVZ 

To calculate the deficit in elapsed time for 

v3=-. 

system B, we need the formula 

(dt')st=const= ( f g ) * ( l  --d)*dt- 

The result is the same as that given by the 
restricted relativity theory since our construction 
makes the factor f g  equal to unity along the line 
x' = 0. For other clocks of the B system the time 
discrepancy is a function of position. However, 
these displacements ultimately adjust themselves 
to the same value if the system comes to rest. 
There is also a discrepancy in elapsed distances, 
obtained by integrating the formula 

(dx') t'-mnst= ( f g ) * ( l - ~ ' ) f d t .  

The foregoing one-dimensional analysis may be 
extended to three-dimensional space at least 
over a small region in the vicinity of the axis 
of motion. If we write 

Y'= (fg)*yY, 
2' = (fd 4% 

- (ds'2) =fg(dx2+dy2+d22--dtZ) as y"2Z 4 0. 

then 

Such restricted conformal transformations permit 
arbitrary motions. Unrestricted transformations, 

which preserve a constant velocity of light 
throughout space, seem to admit only special 
types of accelerated motion. 

To preserve the condition of complete equiv- 
alence demanded by E. A. Milne? we should 
require that the scale factor f g  reduce to unity 
along the line x = 0 and also along the line x' = 0. 
I t  does not seem possible to meet this require- 
ment by conformal transformations except in the 
case of uniform velocity (Lorentz transforma- 
tion). The construction given above makes the 
scale factor equal to one in the vicinity of the 
origin of B(x'=O); A and B are hence not 
equivalent in Milne's sense, but A is here 
distinguished as an inertial system. 

In the analysis of Donahue and Leffert the 
gravitational waves associated with the ac- 
celeration of B travel instantaneously in the B 
system and at the electromagnetic phase velocity 
c2/v in the A system. As Fig. 2 shows such 
waves travel at the velocity of light in the 
conformal coordinate system. However, a phys- 
ical interpretation of these distortions seems 
difficult, since both incoming and outgoing waves 
are present. Such questions could hardly be 
answered by the elementary considerations we 
have employed. 

Additional details of this analysis will appear 
in a forthcoming NASA Memorandum.6 

In conclusion, the writer wishes to acknowledge 
helpful discussions with Professor Paul R. 
Garabedian of Stanford University and Barrett 
S. Baldwin of AmesrResearch Center. 

E. A. Milne, Relatidy, Gravitation, and World Structure 
(Clarendon Press, Oxford, 1935). 

SRobert T. Jones, "Extending the Lorentz Trans- 
formation to Motion with Variable Velocity," NASA 
MEMO 7-9-59A (1959). 

931 



Page intentionally left blank 



ANALYSIS OF ACCELERATED MOTION IN THE THEORY OF RELATIVITY 

Robert T. Jones 

Ames Research Center 

June 1960 

933 



Jones, R. T., "Analys.is of Accelerated Motion in the Theory of Relativity," 
Nature, vol. 186, no. 4727, June 4, 1960, p. 790. @ 1960. 
Reprinted by permission of Maemillan Journals, Ltd., London. 

934 



ANALYSIS OF ACCELERATED MOTION I N  THE 

THEORY OF RELATIVITY 

Conventional treatments of acce lera ted  motion i n  the  theory of rela- 
t i v i t y  have l e d  t o  c e r t a i n  d i f f i c u l t i e s  of i n t e rp re t a t ion .  Thus, Crampin, 
McCrea and McNallyl mention the  lack of uniformity i n  the correspondence 
of events as depicted by the  transformation of Born and Biem.  
Donahue and Le f fe r t2  and Moller3 d iscuss  c e r t a i n  reversals i n  t h e  apparent 
g r a v i t a t i o n a l  f i e l d  of an acce lera ted  body. 
c u l t i e s  may be avoided by simpler ana lys i s  based on t h e  use of r e s t r i c t e d  
conformal transformations. I n  t h e  conformal theory t h e  ve loc i ty  of l i g h t  
remains constant even f o r  experimenters i n  acce lera ted  motion. 

Again, 

I have found4 t h a t  these  d i f f i -  

The problem considered is t h a t  of r e c t i l i n e a r  motion with a va r i ab le  
ve loc i ty  u.  I introduce two coordinate systems, A ,  ( x , t )  and B ,  ( z ' , t ' ) .  
The motion takes place along the  x o r  x' axis. 

The correspondence between the  xt and z ' t '  systems may be expressed 
q u i t e  simply by t h e  transZormation: 

x' + t' = F(x + t) 
X' - t' = G ( x  - t) 

The ve loc i ty  is given by: 

-9-f 
g + f  

v -  

Here f and g are the  de r iva t ives  of F and G with respec t  t o  t h e i r  arguments 
x 2 t. I now suppose t h a t  A ,  ( x , t )  is an i n e r t i a l  system, and i n  order t o  
s a t i s f y  t h e  r e l a t i o n  of equivalent scale i n  the  v i c i n i t y  of B ,  I apply the  
boundary condition: 

fg = 1 along x' = 0 (3) 

I f  t he  motion of B is given then t h i s  r e l a t i o n ,  together with equation (2), 
is s u f f i c i e n t  t o  determine the  functions F and G. A s  determined i n  t h i s  way, 
t h i s  transformation becomes tangent t o  instantaneous Lorentz transformations 
a l l  along the  path of B and i n  t h e  case of uniform ve loc i ty  reduces t o  the 
Lorentz transformation everywhere. 
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Fig. 1 shows how such x ' t '  co-ordinates  may be  cons t ruc ted  g raph ica l ly  
wi th  t h e  a i d  of p e r i o d i c  t i m e  s i g n a l s  o r i g i n a t i n g  i n  t h e  B system. Such 

T. 

Figure  1. A system of conformal eo-ordinates a s soc ia t ed  wi th  
non-uniform motion 

s i g n a l s  genera te  a family of outgoing waves, represented  by t h e  charac te r -  
i s t i c  l i n e s  t 4 x = constant .  I f  t h e s e  l i n e s  are now extended backward, a 
corresponding family of incoming s i g n a l s  w i l l  b e  represented .  
of the c h a r a c t e r i s t i c  l i n e s  may then  be  i d e n t i f i e d  wi th  t h e  events  of 
synchronizat ion of t h e  va r ious  clocks of t h e  B system. 

I n t e r s e c t i o n s  

Extension of t h e  theory  of r e l a t i v i t y  by conformal t ransformat ions  i n  
four  dimensions w a s  considered many yea r s  ago by Batemans. 
t h e  group C4 admits only r e s t r i c t e d  motions,  and of t h e s e  t h e  Lorentz  t r ans -  
formation a lone  maintains  e q u a l i t y  i n  t h e  scale r e l a t i o n .  
do n o t  speak of a conformal t ransformat ion  of t h e  whole space.  
r e s t r i c t i n g  a t t e n t i o n  t o  a narrow c y l i n d r i c a l  reg ion  around t h e  x-axis, 

It seems t h a t  

Therefore ,  w e  
However, by 

F igure  2 ,  Example showing a p p l i c a t i o n  of r e s t r i c t e d  conformal 
t ransformat ions  
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conformal mappings can be employed l o c a l l y ,  s o  tha t :  

Fig. 2 i l l u s t r a t e s  a simple example of the  type discussed i n  connexion 
with the  clock paradox. 
A t  t = 5, B reverses i t s  motion and re turns .  Values of f and g i n  various 
regions are indica ted  between c h a r a c t e r i s t i c  s i g n a l  l i nes .  
l o c a l  scale equivalence, fg = 1, r e s u l t s  i n  a 20 pe r  dent reduction of the  
elapsed t i m e  along the  path of B.  I n  addi t ion  t o  the  t i m e  discrepancy, 
t he re  appears a l s o  a discrepancy i n  t h e  r e l a t i v e  s p a t i a l  displacements. 

A t  t = 0, B starts away from A a t  the  ve loc i ty  3/5. 

The condition of 

ROBERT T. JONES 

National Aeronautics and Space Administration, 
Ames Research Center , 

Noffe t t  F ie ld ,  California.  
Jan. 20. 
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Conformal Coordinates Associated with 
Uniformly Accelerated Motion . 

ROBERT T. JONES 
National Aeronautics and Sflace Administration, Amcs 

Research Center. Moffe:t Field, California 

ISCUSSION of specific problems in the theory of 
relativity is often simplified by  an appropriate choice 

of the coordinate system. Thus the restricted conformal 
coordinates described in a previous communication’ provide 
an especially simple analysis of motion with uniform ac- 
celeration, known as “hyperbolic motion”.% 

Conformal coordinates x‘, t‘ may be obtained from 
Cartesian coordinates x ,  t by the tramformation 

x’ +ct’ = F(x +ct) 

x ‘ -G~ ’=G(x -G~) ,  (1) 
where G is the velocity of light. A variable motion of the x‘ 
system will be determined by the choice of the functions 
Fand G. However, since a function remains constant when- 
ever its argument is constant, light signals have the same 
velocity c in both x and x’ systems. 

The scale factor of the transformation is given by the 
product fg, where f and g are the ordinary derivatives of 
F and G. The line x’=O may be taken as the world line of 
a particle. To satisfy the principle of relativity in the 
vicinity of this particle, we impose the boundary condition, 

f g = l  along x‘=O. (2) 
With this boundary condition, the functions F and G are 
determined so that both the transformation and its inverse 
have the same scale along x‘ =O. 

As an example, try 

X’+Ct’ =log (x+ct) 
x’ -ct‘ =log (x  -d). 

2x’=Iog(x%--G2t2). 

(3) 
By addition] 

The world line x’=O is then given by the hyperbola 

xz - C2F = 1. 

After differentiating Eqs. (3), we obtain 

fg = 1 / ( x2  - 8 F )  ] 

which has the value 1 along x‘=O. Equations (3) thus 
yields the conformal coordinates associated with uniformly 
accelerated motion. The acceleration here has the value 
one light-year/year,2 or approximately one “g” ; however, 
the formula is easily generalized. 

I t  is interesting t o  note that the gravitaFiona1 field in the 
~ ‘ t ‘  system is singular at the origin of the xt system. Such 
singularities ’arise when simple analytic formulas are 
employed. In the present case, the singularity disappears 
if the acceleration is not continued for an infinite time. 

As is well known, conformal transformations in Euclidean 
space are carried out with the aid of functions of a single 
complex variable. Such a conformal map may represent the 
streamlines and equipotential lines of a fluid motion. On 
using the customary Q and $ for the potential function 
and the stream function, we may write 

c ++ = F(x +iYh 
The complex potential for a vortex is given by 

p+i$ = i log (x+iy).  

This formula is clearly anaiogous to our Eq. (3) for hyper- 
bolic motion. Thus the conformal coordinates associated 
with hyperbolic motion in Minkowski space become the 
circular paths of a vortex motion in Euclidean space. 

Now the vortex motion is merely the simplest example 
of a wider class of fluid motions known as “free streamline 
flows”. The boundary condition of such flows is that the 
scale factor of the mapping reduce to unity along a (free) 
streamline $ =O. This condition is clearly analogous to our 
condition fg= 1, along x‘=O. Thus, every free streamline 
may be transformed into an analytic world line with its 
associated conformal coordinates. The converse is not true, 
however, since the possibilities in Euclidean space are 
limited to analytic functions of a single (complex) variable. 

1 Robert T. Jones, Am. J. Phys. 28, 109 (1960). 
2 W. Piuli, Theory of Relativity (Pergamon Press. New York, 1958) 
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CONFORMAL COORDINATES ASSOCIATED 
WITH SPACE-LIKE MOTIONS 

BY 

ROBERT T. JONES 

ABSTRACT 

Conformal transformations in two dimensions provide a simple extension of the Lorentz 
transformation. The velocity of light appears in such transformations as a singular velocity 
rather than as an upper limit for the velocity. A well-ordered branch of the theory exists 
for velocities in excess of the velocity of light. 

If the velocity of a point exceeds the singular velocity in an inertial pystem, then the 
conformal representation of the motion is no longer uniform, but contains a folded region. 
However, the branching of the transformation may be determined so that the elapsed time 
along the path of such a motion remains positive. 

Kinematic relations on the other side of the singular velocity seem to complement the 
usual results of relativity theory in an interesting way. Thus it is known that motion at  
the speed of light occurs along a null geodesic, and'hence corresponds in a certain sense 
to motion at infinite velocity (that is, in the sense of proper time elapsed). The comple- 
mentary relation is that a motion of infinite velocity corresponds in the same sense to motion 
at the speed of light. 

INTRODUCTION 

In the world of the physicist everything moves, but always at speeds 
less than the speed of light. The astronomer's world, too, is filled with 
moving objects, moving at u < c. In the world of the mathematician, how- 
ever, anything is possible, provided only that it is a consequence of some- 
thing else. 

Strangely enough, writers on physics would like to refer the nonexistence 
of velocities greater than light to a mathematical demonstration-con- 
necting it with the transition of the Lorentz factor 1/ dl - u2/c2 to imagi- 
nary values, or to a supposed continuity of the conformal scale factor. It is 

'Research Scientist, National Aeronautics and Space Administration, Ames Research Center, 
Moffett Field, Calif. 

(Note-% Franklin institute is not rrsponsible for the statements and opinions a d v d  by mntributom in the JOURNAL) 
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known, however, in the theory of Cerenkov radiation and also in supersonic 
aerodynamics that the wave equation remains invariant under transforma- 
tions having the factor l / d F l  for velocities u in excess of the charac- 
teristic velocity c. 

pointed out that different theories of 
relativity could be formulated for media having different dielectric proper- 
ties. For an observer whose experience is confined to such a medium, the 
retarded velocity of light c’ = c/n appears again as a limit for the velocity 
to which a body can be accelerated by electrodynamic action. As Rosen 
pointed out, a particle might, however, enter such a region with a velocity 
inexcess of c’ (as in the phenomenon of Cerenkov radiation) and its be- 
havior could not be accounted for by such a theory. 

A theory for particles travelling faster than light may thus be viewed 
simply as a mathematical formality, or it might be considered a physical 
theory for the inhabitants of Rosen’s c’ land. There is one additional point, 
however, and this refers to the elements of idealization in the classical 
theory. As is well known, relativistic dynamics depends on the linearity of 
the wave equation and on the assumption of point particles. These aa- 
sumptions are enough to lead to infinite field energy, and in the aerody- 
namic analogue they are just sufficient to give the sonic barrier an infinite 
rigidity. 

If one of the foregoing points of view is adopted, then it becomes of 
interest to investigate kinematic relations on the other side of the singular 
velocity u = c. Following a conventional terminology, such motions, with 
velocity u > c, may be termed “space-like. ” 

For the investigation of space-like motions we restrict ourselves first of 
all to purely kinematic relations, and we adopt the simplest possible math- 
ematical model, namely, conformal coordinates and their transformations 
in two dimensions x ,  t. 

Several years ago N. Rosen 

CONFORMAL TRANSFORMATIONS IN TWO DIMENSIONS 

In conformal coordinates the velocity of light remains constant for all 
experimenters, whether moving or fixed. The invariance here is not merely 
a local relation, but holds also for finite displacements. Thus it has been 
shown (2) that an expanding light pulse continues to maintain spherical 
symmetry about its point of origin. 

Figure 1 shows how this invariant property of electromagnetic signals 
may be used by two experimenters, A and B, to establish identical Car- 
tesian coordinate systems x ,  t and x’, t‘. In our units the velocity of light is 
taken as unity and a signal pulse is thus represented by lines expanding 
at 45”. Though A and B may be in relative motion, each assumes that 
there is no “upstream” or “downstream” influence on his signals and sets 
every distant clock at a time halfway between the times of departure and 
return of an electromagnetic signal from the origin-in accordance with 

The boldface numbers in parentheses refer to the references appended to this paper 
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Einstein's well-known rules. We have no need here for the assuqp 
the electromagnetic velocity is the maximum possible. If a 
transmission existed, we might still prefer to use electromagnetic signals 
because of their supposed invariant property. 

if 4 and B are in uniform relative motion, we may establish a conformal 
correspondence between their coordinate systems by means of the Lorentz 
transformation. In Fig. 2 this correspondence is illustrated graphically by 
an artificial distortion of the I# coordinate system so that its corresponding 
points coincide with those of an undistorted (that is, rectangular Car- 
tesian) A system. In such a diagram the lines t' = const 'are inclined so as 
to represent B's position at the center of an expanding signal pulse. 

f 
I 

1' 
I 

FIG. 1. COOrdiMteS established by light signals. 

The Lorentz transformation is of course limited to motion at constant 
velocity. A transformation which maintains the conforma! property for 
variable motions in two dimensions i s  given by (3) 

x' + t' = F(x + t )  
X' - t' = G(x - t )  

The lines x' A t' = constant may be identified with signal pulses emitted 
by a periodic oscillator or a clbck in the B system. The transformation thus 
amounts to a specified variatiqn of the Doppler frequency of time signals 
emitted by B as they might be received in the A system. The Doppler fre- 
quencies arg in fact the derivatives: 

dG 
d(x  - t )  

5 =  
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Such variable Doppler frequencies will correspond to a certain varia- 
tion of the velocity of the B coordinate system. The velwity is given by 

u = E )  --. - s -f 
x‘ =.corut s +f (3) 

The velocity of the “world line” x’ =: 0 may be taken as the velocity of the 
oscillator B in’the A system. The other coordinate points x‘ = const, 
though at rest relative to B, move with varying velocities in the A system. 

Figure 3 shows a correspondence of the type given by Eqs. 1 for an 
example in which B moves to the right of A at a velocity 3/5 the velocity of 
light and comes to rest at the time t = 5, t’ = 4. i t  is seen that in spite of 
the motion, B remains at the center of the signal pulse emitted at the be- 
ginning of the trip. 

FIG. 2. Lorentz transformation. 

If we invert the transformation (Eqs. l ) ,  we find that the velocity is 
reversed at every point. Thus, as would be expected, the velocity of B rela- 
tive to A is the reverse of the velocity of A relative to B. This relativity of 
velocities is, however, merely a local relation. Reversal of a field of variable 
velocities does not in general reverse the displacements. Thus if B moves 
three units to the right of A,  it does not follow that A has moved three units 
to the left of B. Similarly, finite time displacements of the two systems are 
not equal and there arises a time discrepancy, as is well known. 

e 
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COMPOSITION OF TRANSFORMATIONS 

To explore the group properties of the transformation (1) we consider 
three systems A ,  B, and C, and apply two such transformations in succes- 
sion. For the velocity u1 between A and B there is obtained 

s1 - fl 
g1 +fi 

u1 = - 
and a similar expression for u2 betMeen B and C. For the resultant velocity 
of C relative to A the composition of two transformationssyields 

(4) g1g2 - A h  - - 01 + u2 

SISZ +hf2 1 + U l U 2  

v3 = 

i 

- 4  -2 0 
X’ 

2 4  ii 
FIG. 3. Conformal transformation, u = 3/5. 

The latter formula is, of course, the well-known law for the “addition” of 
velocities. Evidently this law does not depend on the principle of relativity, 
but only on the constancy of the speed of light. 

Figure 4 illustrates graphically the law of composition given by Eq. 4. 
In its usual context the formula is of course limited to the range u < 1. 
However, our extended diagram seems to show more clearly the singular 
nature of the velocity of light. It is evident here that the value u = 1 is not 
altered by composition with any other velocity. If Eq. 4 is interpreted as a 
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VI+ "2 v, * - 
l+V,V, 

FIG. 4. Composition of velocities in conformal coordinates. 

t 

v=  Q 
FIG. 5. Doppler shift of time signals. 
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formula for “addition,” it is seen that the value 1 has the property ordinar- 
ily associated with an infinite value. On the other hand, the value u = Q) 

does not have its usual property as an. infinite magnitude but is reduced to 
finite value by addition of (that is, composition with) any finite value. In 
spite of these unusual relations, it will be observed that the composition of 
two transformations corresponding to v2 = -uf yields the identical trans- 
formation (that is, ug = 0) except for the singular value u1 = 1. There is 
thus no rest system associated with the velocity 1. 

The law of composition of velocities has been cited to show the non- 
existence of velocities greater than light. However, we find in this law 
merely an expression of the invariance of the velocity of light, valid for any 
velocity of the coordinate system. 

SINGULAR BEHAVIOR OF THE DOPPLER FREQUENCY 

Conformal transformations do not, in general, satisfy the principle of 
relativity because of an unsymmetrical scale relation. Thus it is found that 

To make the scale change symmetrical we should have 

1 
f g  = - 

f g  
or 

f g  = il. (7) 
There are thus two values of the scale factor f g  which lead to symmetry in 
the relations A to B and B to A.  The negative value corresponds to veloc- 
ities greater than light. 

Of course, if the motion occurs with variable velocity, one cannot spec- 
ify a fixed value of the scale factor for the whole coordinate tFansformation. 
However, if we identify A as an inertial system then the relation of equiv- 
alent scale may be satisfied locally all along the path of B in the A system. 
Hence, we impose the following boundary condition along the line x r  = 0: 

+ 1 where u < 1 

f g = {  -1 wherev > 1. 
As Eq. 3 shows, if the velocity of a motion is to exceed 1 then one of the 

Doppler frequencies f or g must become negative. The transition to a nega- 
tive frequency may be readily understood with the aid of a simple wave 
diagram as shown in Fig. 5. As the velocity increases toward 1 the signals 
from an approaching oscillator shift to higher and higher frequencies while 
those on the receding side become slower, approaching zero at a rate deter- 
mined by the relation f = l/g. The high frequency received from the ap- 
proaching oscillator persists on transition through u = 1, but the signals 
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now arrive at the stationary oscillator suddenly and in reversed order. The 
transition of g from positive to negative values thus takes place by way of 
infinity (see Fig. 6). The frequency f shows no such singular behavior but 
retains positive values on each side of the value zero at u = 1. The discon- 
tinuous change of the scale factor fg from +1 to -1 on transition through 
the critical velocity may thus be explained simply in terms of the expected 
behavior of the Doppler signals. The possibility of such a discontinuous 
change seems to have been overlooked in the literature. Thus in (3) and 
(4) the negative value is omitted in the derivation. In t5) the negative value 
is discarded by an argument based on the supposed continuity of the scale 
factor as a function of velocity. 

FIG. 6.  Behavior of the Doppler frequenciesfand g on transition through u = 1. 

If we suppose that the path of B involves a transition through the speed 
of light, then several sets of time signals will appear simultaneously in A .  
Since the transformation (1) is expressed in terms of the Doppler shift of 
time signals, it is evident that the correspondence between x,t  and x’,t‘ will 
become multiple-valued. This multiple correspondence may be seen in 
another way from a simple plot of the function For  G. If the derivative of a 
function changes sign, then either the function itself or its inverse must 
become multiple-valued. 

Figure 7 shows the conformal correspondence for a space-like motion of 
B in the inertial system A.  It has been assumed that B remains at rest until 

952 



Jan., 1963.1 CONFORMAL COORDINATES 

t = t’ = 0 and then moves to the right of A with the velocity u = 5/3, 
coming to rest at x = 5, t = 3. This particular example may be obtained 
from the previous one for which u = 3/5 by a folding of the diagram (Fig. 
3) along lines x - t = const. 

Though B moves faster than light in the A system, we have nevertheless 
supposed that the propagation of electromagnetic signals takes place in the 
B system exactly as in Fig. 1. The “upstream” propagation of signals in 
such a system is, of course, an intuitively difficult concept-but not essen- 
tially different from that employed in the usual range of the theory. 

Since we have supposed that the conformal property is retained for 
such motions, the point B must at every instant lie at the center of light 
pulses emitted along its path. In Fig. 7 the marked x‘ coordinates illustrate 

0 2 4  
I‘ 

Conformal transformation, u = 513. FIG. 7. 

this property for the instant t’ = 4. The function g is of course multi- 
valued in this region, but according to our convention the values 0 < x‘ < 4, 
0 < t’ < 4 are assigned to the branch g = -2. This convention, which 
maintains the conformal property, is evidently also sufficient to avoid the 
occurrence of negative time intervals along the path of B in the A system. 
Such negative intervals, or time reversals, do occur, however, along the 
path of A in the noninertial system B. 

Recently R. Penrose (6) and J. Terrell (7) have shown that the contrac- 
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tion of length indicated by the Lorentz transformation is not a visually 
observed phenomenon. It is interesting also to speculate on the visual 
appearance of a superlight particle. As Heaviside (8) has shown, such a 
particle would appear suddenly at a point and then split into two 
particles which appear to recede from each other. This double appear- 
ance is illustrated in Fig. 8. In three dimensions the boundary of sensible 
disturbance expands along a cone behind the body. Such a cone may be 
thought of as an envelope of spherical waves emitted by the body. It is 
readily seen that any point within the cone lies on the intersec 
such spheres and is thus affected by two apparent sources of dis 

I \ \  

\ 

FIG. 8. Double appearance of particle travelling at u > 1. 

RELATIONS OF ELAPSED TIME 

Equation 5 may be used to obtain an analytic expression for the elapsed 
time along a space-like world line. Since dx’ = 0 we have 

-dt” = fg(dx2 - dt’). 

dt’ = dfg(1 - v’). 

(dt‘), = 0 = d n d t .  

(9) 

(10) 

(11) 

After introducing dx = u dt, there is obtained 

The boundary condition (8) then yields for u > 1 
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The discontinuous change in sign of the Doppler frequency g thus prevents 
the radical from becoming imaginary. 

The range of values u > 1 provides relations which seem to complement 
those of the usual range of the theory. These relations are illustrated in 
Fig. 9, which shows the times elapsed in both A(x , t )  and B(x’,t’) systems 

Velocity V 
FIG. 9. Elapsed times at various velocities. 

for a trip covering one light year in the A system. For velocities less than 1 
the elapsed time along an accelerated path ( B )  is always less than that in 
the inertial system and reaches a minimum value of zero at u = 1. Travel 
at the velocity of light is thus equivalent to infinite velocity. In our theory 
superlight velocities offer no advantage to the traveller. At velocities 
greater than u = fi the travelling twin of the well-known paradox comes 
back older instead of younger. At higher velocities the elapsed time in- 
creases and becomes equal to the light time at u = m. Thus infinite velocity 
in the inertial system is equivalent to the velocity of light for the traveller. 
These dual relations do not make the world of electromagnetic signals any 
less strange, but they seem to make it more symmetrical. 
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MOTIONS OF A LIQUID IN A PULSATING BULB 
WITH APPLICATION TO PROBLEMS OF BLOOD FLOW* 

ROBERT T. JONES 
Avco Everett Research Laboratory, Everett, Mass., USA. 

Abstract-Potential flows of the form + = (az + by' + czz)f( t )  may be u t i l i  to represent 
motions produced in pulsating bulbs. W e  the initial bulb shape may be arbitrary, sequential 
shapes are related by affine transformations. Two components appear in the distribution of pres- 
sure, one dependent on the instantaneous velocity and the other on the acceleration. For flows 
with stationary streamlines the inertial impedance is that of a simple mass, and is proportional to 
the first moment of the actual mass of fluid contained within the bulb. Examples treated are: 
(1) expanding and collapsing circular cylinders and (2) elliptical cylinders in which the peri- 
meter is held constant. 

The thickness of the pulsatile laminar boundary layer is found to be approximately one milli- 
meter for conditions in the vicinity of the heart. Conditions for separation and turbulence 
differ from those in steady flow. 1 

FLOWS in pulsating or squeezing bulbs are of 
very common occurrence, and yet they seem to 
have received but little attention from fluid 
dynamicists. As an example we may mention 
the heart, which receives and expels blood nearly 
forty million times a year. 

If the shape of the heart or bulb were given 
precisely, or if the course of its motion could be 
prescribed exactly, then one might attempt an 
accurate mathematical analysis of the flow, 
treating the phenomenon conventionally as a 
boundary value problem of a well-known type. 
However, the accuracy with which such bio- 
logical phenomena reproduce themselves can 
hardly justify great pretension to accuracy in 
their mathematical treatment. It seems that in 
these cases one should use the analysis rather 
more as a guide to the intuition than as a means 
for producing quantitative results in specific 
cases. 

Considerable insight into the squeezing bulb 
problem may be gained by considering flows of a 
very simple type. Using Cartesian coordinates 

x, y, z, and denoting component velocities of the 
fluid at a point u, v, w, we write: 

u = 2 x )  

v = - y 1  x u o  2L x f ( t ) .  (1) 
w = - z )  

Such a velocity distribution represents the 
irrotational flow of an incompressible liquid, 
and is of course a trivial solution of the Navier- 
Stokes equations as well as of Laplace's equa- 
tion. Figure l shows the streamlines associated 
with this velocity distribution, which will be 
recognized as an axially symmetric flow with a 
stagnation point at the origin, TIETJENS (1957). 

Figure 2 shows how this velocity distribution 
may be adapted to give the streamlines inside 
the bulb. To make the equations dimensionally 
correct the velocities given by (1) are multiplied 
by the ratio of a characteristic velocity uo to a 
characteristic length L. uo may be the velocity 
at the exit of the bulb and L may be the distance 
of the mouth of the bulb from the origin. 

* Received 5 May 1969 
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V 

FIG. 1. Axially symmetric flow with stagnation point at 
OrigiR. 

Furthermore, in order to represent the un- 
steady or pulsatile character of the flow we have 
introduced a function of the time&) as a factor 
in (1). The potential of the flow is then 

circular cylinder collapsing toward the axis or 
@ = +,f(t) (x2  - ’-) zf(t). (2) expanding away from it, and the cylinder may 

have plane ends. 
The fact that plane surfaces convected with 

the fluid remain plane and parallel means of 

2 

The velocity profiles given by (1) are flat in 
all three directions. Thus the flow contains no 

FIG. 2. Streamlines associated with collapsing bulb. 

shearing motion and imaginary plane surfaces 
convected with the fluid remain plane and 
parallel. Thus the flow satisfies the boundary 
condition of a rectangular box whose sides are 
collapsing toward the x-axis an4 whose ends are 
moving outward along the x-axis in such a way 
as to maintain a constant volume. Similarly the 
flow satisfies the boundary condition of a 

I I I I I I 
Successive shapes of bulb 

FIG. 3. Successive shapes of bulb. 
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course that a set of coordinate planes will be 
transformed to a new set related to the fist by an 
"affine" transformation. Thus, starting with a 
bulb of arbitrary shape, one may represent 
motions in which the successive shapes are 
related by a simple stretching transformation. 
Figure 3 illustrates this process. In order to 
approximate the condition of a fixed outlet or 
mouth of the bulb the shape must be drawn so 
that it becomes tangential to the streamlines in 
the neighborhood of the exit. It is surprising how 
well a fixed exit can be represented without 
mathematical complication. Figure 4 shows one 
example. 

Omitting the effect of viscosity, the pressure at 
points within the bulb will be given by 
p = Po ( t )  - P / 2  (24" + o2 + W">f(t)" - df' 0). 

(3) 

/ u 2 + v 2  + w 2  =const. 

2 2 2  2 
PfPo - p m u  + Y  + w  ) f ( t )  -pi# f 'W 

FIG. 5. Components of the pressure in bulb flow. 

PG 

P 

1 
x 

FIG. 6. Distribution of pressure on surface of couapsing 
cylinder. 

The first term po(t) is the pressure imposed by 
the environment into which the bulb works. The 
second term is of course the "Bernoulli" pressure, 
proportional to the square of the instantaneous 
velocity. The last term is proportional to the 
instantaneous acceleration of the flow and is 
responsible for its inertial impedance. 

For the velocity term we have 

x W ) 1 2 .  (4) 

This component of the pressure is constant on 
ellipsoidal surfaces having a 2 to 1 axis ratio. 

For the last term we have 

and the surfaces are hyperboloids. Figure 5 
shows these isobaric surfaces. 

Figure 6 shows the distribution of surface 
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pressure over an expanding and collapsing 
circular tube having one closed end. The distri- 
bution along the tube is parabolic and in the 
limit approaches the value given by one- 
dimensional flow theory. If the tube pulses in a 
cyclic fashion the pressure associated with the 
velocity will oscillate at twice the frequency of 
that associated with the acceleration. 

The dynamics of flow within the bulb deter- 
mine only the gradients of pressure and not the 
pressure itself. Hence we may introduce an 
arbitrary variation of pressure at the mouth of 
the bulb and the pressure inside will rise and fall 
accordingly, and will be felt uniformly over the 
surface of the bulb. The most interesting case is 
that in which the bulb expels its fluid into a long 
elastic tube such as an artery. According to a 
well-known theory the pressure at the end of the 
tube will be given by 

P = Po + P uo CY 

where c is the pulse wave velocity in the tube, 
YOUNG (1808, 1809). Here the pressure at the 
bulb exit will vary with the outflow velocity u 
and the pressures given by (3) are simply to be 
added to this pressure. In the case of the left 
heart the component given by (6) is much larger 
than the variations of pressure developed by 
dynamic motions within the heart. 

The horizontal or x-component of momen- 
tum of the flow is easily computed since the 
horizontal component of velocity of each fluid 
element is simply proportional to x. Thus the 
virtual inertia or virtual mass of the flow is 
proportional to the first moment of the volume 
of the fluid within the bulb. More specifically the 
virtual mass is equal to the actual mass times 
the ratio of the centroid of mass R to the length 
L, i.e. 

(6) 

(7) 

The virtual inertia is referred to the acceleration 
at the exit plane L. 

By placing the bulb at a large distance from 
the origin, so that 3&L, we approach the 
situation of a sac of fluid accelerating back and 

forth along the x-axis without sensible change of 
shape. The virtual mass here is simply the actual 
mass of the fluid within the sac. 

It should be noted that while the forms of the 
streamlines and the isobaric surfaces are sta- 
tionary, the fluid itself may oscillate back and 
forth along the streamlines and the magnitude 
of the pressures will vary in accordance with the 
function fit). 

It will have been noted also that while the 
initial shape of the bulb is arbitrary, the sequen- 
tial shape changes are restricted to those obtain- 
able by affine transformations. However, the 
variation in time of these changes is arbitrary. 
The axially symmetric flow does not exhaust the 
possibilities for affinely related shape changes. 
Thus if we wish to represent the flow in a bulb 
which flattens its shape as it contracts we may 
utilize a flow of the type I 

$ = a x2 + By" + y z 2 ,  

a + B + y = 0. 

(8) 

(9) 

where a, 8, y are any constants such that 

The successive shapes of the bulb, related by 
affine transformations may be conveniently 
expressed by the Lagrangian coordinates 

5 = x ear 

T = yesT (10) 
f=zeW 

where (&/at) = f i t ) .  
For continuity the stretched coordinate planes 

must contain the same volume as the initial co- 
ordinates planes, that is 

X Y Z  = 5.14, (1 1) 

5.14 = xyz e(a+#+Y)r (12) 

and we have from (10) 

so that a + + y = 0. 

As an example we may mention the flow in an 
initially circular tube which flattens into an 
elliptical shape. Supposing at first that the major 
diameter remains unchanged; we would set y = 
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O s o t h a t t = z . T h e n a = l  a n d P = - l  and 
the potential function is 

UO (b = (9 - y2) - 
2L' 

An interesting example is one in which the 
perimeter of the tube remains constant during 
the flattening process. In this case, the quantities 
a, fly y are functions of the time and the flow 
does not have stationary streamlines. 

In certain cases it is desirable to represent the 
flow produced by inflating one bulb inside 
another. MOTJLOPOULOS, et ul. (1962) proposed a 
method for assisting the circulation by inserting 
a long narrow rubber balloon into the abdominal 
aorta. The balloon is inflated and deflated 
through an external air pipe and expels blood 
from the aorta in such a way as to assist the 
pumping action of the heart. To represent this 
situation crudely we may consider the flow in 
the space between two circular cylinders, pro- 
duced by expansion and contraction of the inner 
cylinder. 

Returning to our frrst example 

we have already noted that it satisfies the boun- 
dary condition appropriate to a circular 
cylinder collapsing toward the axis, i.e. 

+r = - r 5 where r = (qy" + z2). (15) 
2L 

Since there is no liquid within the inner tube, we 
are at liberty to introduce singularities there and 
by so doing we can obtain a second flow which 
satisfies the boundary condition of a cylinder 
expanding radially. Superpositions of the two 
flows, one expanding and one collapsing, will 
result in zero radial velocity at a certain fixed 
radius. For the expanding flow we may utilize 
the potential log r of a line source along the 
x-axis. For the two flows we then have 

+ Blogr, (16) 

so that 

- Ar. 21, B - (br  = - 
UO r 

The radial velocity is zero when 
B - = Are, 
r0 

or where ro = (dB/A). (19) 

Flow produced by an expanding cylinder within a fixed cylinder 

Re. 7. Streamlines of flow between concentric circular cylinders. 
m.Ba. 811-8 
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Cylindrical surfaces convected with the fluid 
approach the fixed cylinder from both sides. 
Figure 7 shows the streamlines of this flow. 

In the afkely related shapes we have con- 
sidered that the surface of the bulb moves with 
the fluid at every point. Thus the flow satisfies 
not only the boundary condition of normal 
velocity, but also the condition of no slip at the 
surface. If the surface of the bulb actually moves 
in this fashion then the flows discussed above 
will apply to viscous as well as non-viscous fluids, 
since the potential flows are in this case exact 
solutions of the Navier-Stokes equations. The 
addition of viscosity to the fluid will require 
additional normal and tangential pressures at 
the surface of the bulb. 

It is of interest to estimate the magnitude of 
the additional stresses introduced by viscosity. 
Since the shearing strains (aulay), (avlax), etc. 
vanish, the only surviving terms in the viscous 
stress tensor are 

au av au 
2p-, 2p- 2p-. 

ax ay' a2 

The latter two terms require an additional 
compression from the surface of the bulb acting 
toward the x-axis while the term 2p(au/ax) 
requires a tension along the x-axis. Comparing 
this term with the Bernoulli pressure at the exit 
of the bulb we have 

p/2 u2 E p/2 uo2 

and their ratio is 114 (puoL/p) 

or 1/4 the Reynolds number based on the length 
of the biilb. Since the Reynolds numbers in the 
vicinity of the heart are between lo00 and lO,OOO, 
we see that the additional stresses introduced 
within the fluid by viscosity are very small when 
compared with the dynamic pressures. 

While the afEne transformations can yield 
realistic bulb shapes, the requirement that the 
surface of the bulb move with the fluid both in 
tangential and normal directions is unrealistic. 
In practice we may suppose that the boundary 

condition of normal velocities is satishd and 
that shearing motions arise in a thin boundary 
layer at the surface. 

Since the boundary layer is thin we may con- 
sider a portion of the inner surface of the bulb 
to be locally flat. In this way the boundary layer 
development in a pulsatile flow within the bulb 
can be reduced to the problem of shearing mo- 
tions produced by tangential oscillations of a 
flat plate. The solution of this latter problem is 
given in TIETJENS (1957) and shows that the 
oscillatory shearing motions diminish exponen- 
tially with distance from the surface. The decay 
is given by 

e x p - ( J ~ m / 2 r r ) ~ -  

Taking p / p  = 0.04 for blood and 0-8  sec for 
the period (= 27r/w), then 

ylIe = 0.1 cm. + 

Hence shearing motions decay by the factor l/e 
within a distance of one millimeter from the 
wall. In other words, the boundary layer has 
time to grow to a thickness of one millimeter 
during the period of one heart beat. The stresses 
developed by viscosity within this thin layer will 
of course be much greater than those calculated 
earlier for the body of fluid within the bulb. 

More difficult questions are those of the tran- 
sition to turbulence and flow separation. Reynolds 
numbers in the vicinity of the heart regularly 
exceed those found by Reynolds for transition 
in a straight smootli pipe. However, comparisons 
of the flow in the heart and aorta with standard 
hydraulic experiments should be made with 
caution because of the unsteady nature of the 
flow. It seems doubtful that anything resembling 
fully developed turbulent pipe flow will appear 
in the larger arteries. Transitory separation 
accompanied by the formation of jets and vorti- 
ces may appear, however, but their prediction 
will require a deeper study than we have under- 
taken here. 
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ELEMENTARY THEORY OF SYNCHRONOUS 
ARTERIO-ARTERIAL BLOOD PUMPS* 

ROBERT T. JONES, HARRY E. PETSCHEK and ARTHUR R. KANTROWITZ 

Avco Everett Research Laboratory, Everett, Mass. 

Abshct-h the technique of arkrio-arterial pumping, a volume of fluid is withdrawn from 
the aorta during systole and reinject& during diastole, thereby reducing the systolic pressure 
of the heart and adding energy to the systemic circulation. It is found that an upper bound for 
the effectiveness of such devices is given by the formula 

where Qhu is the stroke output of the unaided heart and AQh is the increment caused by the 
pump with a stroke Qb. Plu and PSu are the systolic and diastolic pressures (unaided). APT is 
normally negative and represents the reduction in ventricular pressure. The division of effort 
of the pump between the reduction of pressure and the increase of flow depends on the physio- 
logical-mechanical impedance of the heart. The total effect is, however, independent of the 
impedance. 

ARTERIO-ARTERIAL pumping provides artificial 
assistance to the circulation by withdrawing 
fluid from the aorta during systole and re- 
injecting it during diastole. 

The arterio-arterial p-mp may take the form 
of a simple pulsating bulb attached to the aorta 
and may operate without valves of its own pro- 
vided the natural aortic valve is competent and 
provided the pump is synchronized with the 
natural heart. During systolic ejection from the 
heart the bulb is expanded, deflating the aorta 
so that the outflow from the heart is received at 
a reduced pressure. During diastole, when the 
aortic valve is closed, the bulb is compressed 
inflating the aorta and providing increased 
pressure for the systemic circulation. Conven- 
tionally, these events are timed by using the 
R-wave of the ECG complex as a signal. This 
principle of synchronous pumping is utilized in 
the Kantrowitz-Avco auxiliary ventricle (Fig. 
1A) and in the technique of intra-aortic balloon 
pumping proposed by KoE, Moulopoulis and 
Topaz (see Fig. 1C). 

The action of such devices is obviously com- 
plicated by their dependence on the natural 
heart. Thus, the auxiliary ventricle (or balloon) 
may both reduce the pressure in the left ventricle 
and may permit the natural ventricle to eject a 
greater volume. The particular division be- 
tween these two effects will depend on the 
mechanical impedance of the heart as a genera- 
tor, a quantity which, in turn, depends on the 
pathologic physiology of the heart. The purpose 
of the present paper is to indicate that a simple 
relation for the sum of these effects can be 
derived independently of the mechanical imped- 
ance of the natural ventricle. 

Without trying to settle any physiological 
questions, it is of interest to attempt to under- 
stand the mechanical action of the synchronous 
arteriokrterial pump on as simple a basis as 
possible. For this purpose we shall employ a 
simple “windkessel” model of the aortic system 
and assume linear peripheral resistances. In 
this model the incremental pressure in the aorta 
is simply proportional to the volume of blood 

* First received 25 September 1967 and in revised form 20 December 1967. 
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( A )  (6)  (C)  

FIG. 1. Arterio-arterial pumps. A, Thoracic awriliary ventricle; B, 
Auxiliary ventricle in descending aorta; C, Intra-aortic balloon pump. 

injected into it.* The pressure and volume decay 
exponentially with flow through the peripheral 
resistances. Typical physiological values of the 
resistance R and the capacitance C give values 
of RC between 0.7 and 1.5 sec. 

Consider first the effect of an arterio-arterial 
pump with the natural heart completely inactive. 
We assume here that the left ventricle and the 
atrium present no impedance to flow and pro- 
vide a reservoir of blood at a low but constant 
(atrial) pressure and that both the aortic and 
mitral valves open when the pressure in the 
aorta falls below this value (see Fig. 2). During 
the intake stroke the pump must first withdraw 
enough blood from the aorta to reduce the 
pressure to the atrial level and thus to open the 
valves. The remainder of the stroke is then 
effective in withdrawing blood from the reser- 
voir. Following completion of the intake stroke 
we assume that the pump quickly ejects its 
contents Qb into the aorta, closing the aortic 
valve and raising the pressure by an amount 

(1) 

where C is the capacitance of the aorta, Le. 
1 

During the interval z, following ejection the 
pressure in the aorta will give rise to flow 

@ - AORTIC VALVE OPENS 
@ -AORTIC VALVE CLOSES 

T 'IME 

RG. 2. Stroke cycle of arterio-arterial pump. Aorticvalve 
opens at A, closes at B. (1) is the pump stroke, (2) is the 
volume ejected from the heart into the aorta, (3) is the 
instantaneous volume in the aorta which is proportional 

to the aortic pressure. 

* As an approximate correction for the position of the pump along the aorta one should make allowance for the 
elay in wave propagation by altering the phase of the pump cycle. 
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through the peripheral resistances and the 
pressure will fall to the value Pp such that 

1 
RC 

where h= - and R is the peripheral resistance. 

Clearly, if the interval 7% were sufficiently long 
the aorta would deflate completely and the 
whole stroke volume Qb of the pump would find 
its way into the systematic circulation. How- 
ever, if the diastolic intervals T~ are short, the 
valveless pump will expend most of its effort 
simply inflating and deflating the aorta. The 
outflow during a cycle will be 

The quantity 1 - e-hTp is thus a measure of the 
stroke effectiveness of the pump* assuming that 
the pump is operated in the manner specified. 
For h = 1-0 and T~ = 0.5 we have Qh = 0-4 Qb 

so that the effectiveness in this case is 40 per cent. 
It is clear that the value given by equation (3) is 
an upper bound for the effectiveness since we 
have assumed that no time is wasted in expelling 
the pump volume Q b  into the aorta. 

It is interesting that in the case of the active 
heart the flow contributed by the pump is still 
given by equation (3) provided the flow imped- 
ance of the heart is negligible. 

Figure 3 compares the pressure pulse for the 

Qh = c(P< - P;) = Q b  (1 - e-aTa) (3) 

unaided and aided heart. Pl is defined here as 
the pressure just following closure of the aortic 
valve. At the instant of closure we assume that 
the auxiliary pump ejects its contents Q b  into 
the aorta. This ejection raises the aortic pres- 
sure from Pl to PI' 

P < =  P1+ 7 Qb (4) 

(This equation is a modification of equation (1) 
taking into account that the pressure at the 
initiation of pump ejection is Pl rather than 
zero.) During the diastolic interval 7% an out- 
flow through the peripheral resistances takes 
place reducing the pressure in the aorta from 
P< to Pp'. 

pi' - P*', = P< (1 - e+?*) 
The total outflow Q h  during a cycle will be 

Qh = Qa 4- (PI' - Pa')C 
where Qg is the outflow to the peripheral 
resistance during the systolic interval. Substi- 
tuting from (1) and (2) we obtain 
Qh = Qa + PIC (1 -e-'?*) + Q b  (1 - e-"'") (7) 

In case the heart is pressure-limited but offers 
no impedance to additional flow Pl will not be 
affected by the auxiliary pump (Pl = Plu) and 
the contribution to the flow will be given by the 
term 

(8) 

(5 )  

(6) 

A Q h  = Q b  (1 - e-'") 

AORTIC. PRESSURE ------ 
VENTRICULAR PEL~SURE 

UNAIDED HEART AIDED HEART 

FIG. 3. Effect of arterio-arterial pumping on ventricular and aortic pressures. 

* In spite of a decrease of stroke effectiveness the total flow volume increases when the pump is operated at a 
faster rate, however. 
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as before. The quantity 1 - e-xq may be con- 
veniently expressed as the ratio of the natural 
pulse pressure to the systolic pressure of the 
unaided heart. Relations for the unaided heart 
can be obtained by taking Qb = 0, Le. no pump 
stroke, in the above equations. In this case 
P: = Pl = Flu and Pi = Pa = Pa8 and equa- 
tion (5 )  can be rewritten as 

(9) 

so that 
AQh PIU -Pm -- - 

Qb PlU 
or expressed as a fractional change in stroke 
output 

(1co 
AQh Qb Pxu - Pxu 
Qhu Qhu Piu 
-=-  

The concept of a “source impedance” of the 
heart as it is to be understood in our analysis 
is perhaps not a conventional physiological 
concept and deserves some elaboration. A 
heart supposed to have a very high, or infinite, 
impedance will eject a fixed volume with each 
stroke and this volume will not be affected by 
the pressure in the aorta. Thus, in this extreme 
the excursion of the heart muscle is supposed to 
be unaffected by the tension developed in the 
muscle. In this case the artificial reduction of 
pressure in the aorta by the auxiliary pump will 
not lead to any increase of flow but will result 
solely in a reduction of ventricular pressure. 

At the other extreme one can envision a heart 
muscle which develops its maximum possible 
tension on each stimulus, but which is capable 
of greater or smaller excursion. 
In the more general case the heart will present 

a finite impedance to flow and the effort of the 
pump will be divided between a reduction of 
pressure in the left ventricle and an increase of 
flow. It is interesting, however, that a relation 
combining the two effects is independent of the 
impedance. For the unaided heart equation (7) 
reduces to 

Qhu = Qgu + Pi, C (1 - e - 9  (11) 

We now assume that the flow into the peripheral 
resistances during systole is proportional to the 
systolic pressure Ply and that the intervals T ~ ,  7, 

are unchanged by the pump. Thus, 

where Tb is the systolic interval and k is a con- 
stant of proportionality. We then have 

and 

Subtracting (14) from (13) and substituting 

we obtain 

and finally 

or 

(16) 
----- AQh r\p, Qb PI, -Pa, 
Qhu Piu Qhu Piu 

- 

Thus the total effect of the auxiliary pump is 
proportional to its stroke volume ratio and to 
the pulse pressure ratio of the unaided heart. 

The determination of either AQn or APl 
alone requires, of course, a second relation for 
the source impedance of the heart which is at 
present unknown. 

Equation (16) may be considered an upper 
bound for the effectiveness since we have 
assumed instantaneous withdrawal and ejection 
from the pump. If the pump stroke occupies a 
iinite time interval, then the effectiveness will 
fall below that given by (16). Since our relations 
are linear it is not difficult to extend this result 
to cases of prescribed injection or withdrawal. 
An interesting example which illustrates the 
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effect of finite ejection time is provided by the 
case in which withdrawal and ejection by the 
pump imitate those of the natural unaided 
heart exactly. Assuming the heart to have 
infinite impedance, the aortic pressure variation 
will then be left unchanged in form but will be 
shifted in phase by the systolic interval T~. The 
ventricular pressure will follow the variation of 
diastofic pressure over an interval T~ near the 

Limited experience acquired thus far suggests 
that the undamaged or healthy heart acts as a 
constant flow generator so that the effect of 
artificial pumping is chiefly to reduce the left 
ventricular pressure (A en-.o>. There are 
indications, however, that the failing heart may 
be pressure-limited and not flow-limited so that 
the flow can be increased by the artificial pump. 
In this case the reduction of left ventricular 
pressure will not be so great but the beneficial 
effect on the patient may be greater. 

In our analysis we have emphasized the 
simplest possible relations and have obtained a 
result which is obviously capable of refinement 
in several respects, Thus in equation (12) the 
outflow during systole could be represented 
more accurately by an integral invol\iing the 
average pressure during systole. Various pro- 
grams for the rate of withdrawal or ejection by 
the pump might also be incorporated by means 
of a convolution integral. Perhaps more serious 
is our assumption that the ventricular pressure 
curves remain similar, and similarly related to 
the pressures at which the aortic valve closes 
(equations 13 and 14). It appears, however, 
that a further refinement of this hypothesis will 
require a deeper study of the physiological 
response of the heart to the artificial assist 
device. 

t- 

FIG. 4. Idealized operation of pump to shift aortic pres- 
sure curve 
Px'= PI" 
P1= P2". 

end of diastole. Figure 4 shows the construc- 
tion of this pressure curve. The result is 

and is precisely equal to our upper bound for 
the effectiveness. However, it should be noted 
that the form of the ventricular pressure curve 
has been changed by the pump (i.e. the propor- 
tionality factor k has been changed) so that its 
typical magnitude is no longer proportional to 

of finite ejection time. 
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BLOOD FLOW 
BY ROBERT T. JONES 

Aoco-Everett Research Laboratoly, Everett, Massachus& 

For our purposes the blood may be treated as a liquid having about the 
density of water in which is suspended a remarkably high concentration 
(40 per cent to 50 per cent) of red cells, together with a smaller volume of 
other so-called “formed elements” such as platelets and white blood cells. 
The liquid component, or plasma, has a viscosity coefficient about 121 times 
that of water & = .015). On the scale of most arteries the whole blood may be 
treated as a Newtonian fluid with p 3 to 5 times that of water, depending on 
the hematocrit. Evidently the concentration of red cells contributes greatly 
to the viscosity. It is not surprising, therefore, that in smaller vessels whose 
diameter is comparable with that of the cells the behavior is not well de- 
scribed by simple rheological coefficients. 

If the flow region is large compared with the dimensions of the cells, 
theories of the viscosity of suspensions are applicable and serve to explain 
the increase of viscosity with increased concentration of suspended particles. 
An excellent and comprehensive review is that by Goldsmith & Mason (1). 

Such theories follow the original treatment of Einstein in 1905 (2). 
Einstein considered a dilute suspension of spherical particles which, though 
rigid, were free to  move with the fluid and to rotate under the influence of 
shearing motions. After the appropriate translation and rotation have been 
subtracted out, the local fluid distortion reduces to a flow in which the undis- 
turbed streamlines are hyperbolic. Einstein calculated the Stokes flow about 
a sphere in such a velocity field and related the increased dissipation due to 
the presence of the sphere to an effective increase of viscosity of the medium. 
His result is 

i 

1. 

where t is the volume concentration of spherical particles. 
The surprising thing about Einstein’s result is the large effect of the sus- 

pended particles on the viscosity. A simple division of the medium into rigid 
and fluid portions, assuming that the shearing deformation is limited to the 
fluid component, would produce the result 

P‘ = P(1 + c) 2. 

for small concentrations. Evidently the spheres, though they accommodate 
partly to the shearing motion, produce a greater effect than would be ex- 
pected from elementary considerations. The result given by Equation 2 is 
actually obtained by G. I. Taylor for gas bubbles (3). 

Einstein’s theory has been extended by Simha and others (4, 5)  to ellip- 
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soidal particles. The values obtained for nonspherical particles are larger 
than those for spheres, becoming logarithmically infinite for extreme propor- 
tions. For flattened ellipsoids of 6 to 1 axis ratio (about the proportions of a 
red blood cell) (4) gives 

P' = B(1 + 5 4  3. 

For a concentration of 40 per cent we obtain p' = 3p. Taking the viscosity of 
plasma as p =  .015, the result is p'= .045. Though the concentration is by no 
means small, it can be seen that there is rough agreement with measured 
values. 

Theories of suspensions lead to a linear, Newtonian, viscosity. Experiments 
with whole blood (6) show, however, an increasing value of p at small rates 
of deformation. Thus, a t  shear rates of 1 per sec, the viscosity is about 
doubled. The stress level at which the non-Newtonian component begins to 
be evident is thus about 1/10 dyne/cm2. On the other hand, the normal 
stress corresponding to a pressure of 1 mm Hg is about 1000 dynes/cm2. 

The relative stiffening of the fluid at low rates of strain will lead to 9 
modification of the parabolic velocity profile in Poiseuille flow, and in the 
extreme case (Bingham fluid) to a blunt-nosed profile or "plug flow." It is 
of interest to estimate the size of this plug in the case of a typical small blood 
vessel. For Poiseuille flow we have 

4. 

Assuming a vessel of radius Y O  = 1 mm with hm equal to 10 cm/sec, we 
obtain Y = .001 cm, or loop.  The effect of non-Newtonian viscosity is evi- 
dently quite negligible in vessels of l mm or larger. The effect on wall fric- 
tion in oscillatory or pulsatile flow has been studied by M. G. Taylor (7). 

The anomalous viscosity of blood becomes more prominent in the smaller 
vessels and capillaries, and it is in these vessels that the primary dissipation 
of energy in the circulatory system occurs. According to Zweifach (8) the 
collective length of capillaries in the human body amounts to about 60,000 
miles. The chief pressure drop evidently occurs, however, in somewhat larger 
vessels, arterioles, which control the peripheral flow by means of precapillary 
sphincters [see (9)]. A preliminary study of the mechanical properties of these 
small vessels has been reported by Y. C. Fung (10). 

In such small vessels the flow is greatly complicated by the relatively 
large sue of the suspended particles, which may occupy the whole cross 
section of the vessel. In this regime, rheological concepts become inappropri- 
ate and one must analyze the phenomena in detail. An analysis of viscous 
flow in a tube with large spherical particles has been given by Wang & 
Skalak (11). 

FLOW AND PRESSURE IN THE HEART AND LARGE ARTERIES 
In the heart and the larger arteries the flow is dominated by normal pres- 

sures and by the elasticity of the vessels. 
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FIG. 1. Left heart, aorta, and main branches 

Figure 1 shows a greatly simplified sketch of the heart and the aorta 
together with some of the main branches. Also shown are typical percentages 
of flow to various organs. The total outflow from theheart, as well as its 
distribution, vary widely under different physiological circumstances. 

Figure 2 shows some features of a typical pulse of the left heart. Ejection 
from the heart into the aorta is remarkably rapid, Mxumng with an accelera- 
tion of lo00 to So00 c m / d  (Le., 1 to 5 “g’s’’) and with a peak velocity u as 
high as 100 cm/sec [see (12,13)]. In spite of this, the kinetic energy of flow is 
but a small fraction of the energy of the heart beat. Thus p/2@ may have a 
peak value of 3 to 4 mm Hg, while the aortic pressure varies from 70 to 120 
mm. The major fraction of the pulse energy appears as elastic inflation of 
the aorta. 

Pressure developed in the right heart and the pulmonary artery is con- 
siderably smaller than the pressures in systemic arteries. The flow energy 
is thus a larger fraction of the total on the right side, but in neither case 
does it dominate. The dominant role of the pressure may be seen in the archi- 
tecture of the arterial system. Branching arteries show no consistent ten- 
dency to come off in the direction of flow, 90° being a common branching 
angle. 

Since the flow in the upper part of the aorta occurs in short spurts fol- 
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EJECTED V0LUYE.C 

t , sac. 

FIG. 2. Typical pulse of left heart. 

lowed by longer periods of near zero velocity, it is of interest to estimate the 
unsteady growth of the viscous boundary layer during this period. Such an 
estimate shows that the boundary layer can grow to a thickness of approxi- 
mately 1 mm during the ejection period. Since the aorta is two or more centi- 
meters in diameter in this region, the flow is evidently far from that de- 
scribed by Poiseuille's law. 

The Reynolds number corresponding to an ejection velocity of 100 cm/ 
sec and a diameter of 2 cm is approximately 5000, higher than the Reynolds 
number for transition to turbulence in steady pipe flow. However, since the 
wall vorticity has diffused inward only one tenth of the arterial radius, transi- 
tion in the usual sense can hardly occur. 

Flow near the heart and in the larger arteries is thus dominated by iner- 
tial stresses and is not turbulent in the usual statistical sense. Flows in this 
regime are nevertheless greatly modified by the action of viscosity (separa- 
tion, vortical flow), though they are typically insensitive to the magnitude 
of the viscosity. 

Figure 3 shows the resistance of a sphere, approximately the size of an 
artificial heart valve, plotted against the relative viscosity. Without viscosity 
the sphere would have no drag, yet a 100-fold variation in p hardly affects 
the magnitude. 

Although the flow in the heart is probably quite irregular, it is nwerthe- 
less instructive to examine some simplified mathematical models of flow in 
a pulsating bulb [see (14)]. For this purpose we consider flows Fith a potential 
4 given by 

9 = ua+ + Pr' + w* 5. 
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VISCOSITY 

FIG. 3. Effect of viscosity on resistance of sphere. 

where a, p, y are functions of the time with 
4 0  + B ( 4  + At )  = 0 6. 

and x ,  y ,  e are Cartesian coordinates. Such flows have the property that ini- 
tially plane surfaces convected with the fluid remain plane. Successive 
changes in the shape of a bulb are thus related to an (arbitrary) initial shape 
by affine transformations. 

If the time dependence in Equation 5 is represented by a single function, 
as in 

7. 0 = f 0  I..’ + by’ + 6 4  = f(t)0(z, Y, 4 
where a, b, G are constants with 

. + b + c = O  8. 

then the streamlines will be stationary though the flow is time dependent. 
Figure 4 shows streamlines for a flow of this type. Here a= 2, b = - 1, G = - 1, 
and the flow is axially symmetric with a stagnation point a t  the prigin. Start- 
ing with a bulb of arbitrary shape, successive shapes are obtained by a simple 
stretching transformation. Figure 4 illustrates this process. In order to ap- 
proximate the condition of a fixed outlet or mouth of the bulb, the shape 
should be drawn so that i t  becomes a tangent to the streamlines in the neigh- 
borhood of the exit. 

With the effect of viscosity omitted, the pressure a t  points within the 
bulb will be given by 

9. 

where u=&, v =A, w =&. The expression for the pressure contains an arbi- 
P = Po($) - b/Z)(%* + ¶I* + w”>lr(Ol’ - Pf’(t) 
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FIG. 4. Streamlines for collapsing bulb. 

trary function of the time, P&), which must be determined by the impedance 
into which the bulb works. 

For flows with stationary streamlines the isobaric surfaces given by 
ua+vz+w2 and Cp in Equation 7 are also stationary. Figure 5 shows these 

u2 + v2 + w2 8 CONST / 

P = po - P,*(u2+v2+we1f (tP-p 4 f'( t) 
FIG. 5. Isobaric surfaces. 
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isobaric surfaces for flows with axial symmetry. The component associated 
with (b may be termed the “acceleration pressure” while (p/2) (a2+u2+d) 
Lf(t)12 is the “Bernoulli pressure.” In an oscillatory flow the latter component 
will oscillate a t  twice the frequency of the former. 

Figure 6 shows pressures computed by the above formulae for the initial 
instant of collapse of the bulb shown. Here w2+u2+w2=0, and the pressures 
are entirely due to acceleration of the flow [P=Po--p(&/dt)]. For an ejection 
curve of the type shown on Figure 2, the pressure changes within the bulb 

P I 
BULB SURFACE 

OUTLET PRESSURE 

X 

FIG. 6. Initial distribution of pressure within collapsing bulb. 

amount to 4 or 5 mm Hg, while the outlet pressure may be 70 mm. Pressures 
due to the acceleration of flow within the heart are thus of the same order as 
the “Bernoulli” pressures. 

If the aorta behaved as a rigid pipe, the inertial reaction would lead to 
excessive outlet pressures. The elastic compliance of the aorta serves an im- 
portant function in smoothing out pressure fluctuations from the heart. 
Thus the simplest theory of the action of the aorta is known as the “wind- 
kessel theory” (15), relating its action to that of the pneumatic chamber 
formerly used to smooth the impulses from fire engine pumps. 

According to the windkessd theory, the aorta acts simply as an elastic 
bag or, in electrical terms, as a capacitor. The incremental pressure developed 
in the aorta is then proportional to the volume ejected into it. Typically, 
the ejection of 50 cc of blood into the aorta will raise the pressure from 70 
mm to 120 mm, or by 62X108 dynes/cm2, so that dP/dQ=(62x108)/50. 
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Considered together with a "lumped" peripheral resistance, the wind- 
kessd theory leads to a simple exponential decay of pressure in the aorta 
during diastole according to the formula 

Pa - P.t?-U 10. 

where A-  ( l /R)(dP/dQ).  
Values for R may be estimated from data given in textbooks on physiol- 

ogy. For a mean aortic pressure of 100 X 18 dynes/cmz and a cardiac output 
of 70 cc/sec, the value of R works out to 1400. The time constaht 1/x is then 
approximately 0.9 sec. 

The windkessel theory gives remarkably good predictions of pressure in 
the larger arteries during diastole. The inflation of the arterial system is, 
however, complicated by the phenomenon of wave propagation and reflec- 
tion, which involves the lengths of the arteries. The propagation of pulse 
waves was first investigated mathematically in 1808 by T. Young (16) who 
gave the basic formulation. 

PULSE WAVE PHENOMENA 

Perhaps the most comprehensive recent analysis of pulse wave phenom- 
ena is that by Womersley (17). An excellent review of modern work is given 
by Skalak (18). 

An instructive derivation of Young's formula results if one chooses axes 
in which the pulse waves are stationary and the flow steady. Consider a long 
elastic tube filled with incompressible liquid flowing a t  a velocity t. Small 
wavelike changes in diameter of the tube will be opposed by changes in the 
elastic tension of the wall. In addition to the pressure developed by elastic 
stress, bulges in the tube will also cause changes in the flow velocity and, 
hence, the pressure developed in the fluid. For small flow velocities the elastic 
pressure will dominate, restoring the tube to its initial straight form. How- 
ever, for a sufficiently high velocity t, the changes in fluid pressure can over- 
come the elastic restoring tension. At this speed the tube is neutrally stable 
and variations in cross-sectional area will retain whatever form is given them. 
The internal pressure associated with circumferential tension T in the tube 
wall is 

i 

T 

and 

or 

P = - f _  
R 

dP 1 -=-E7 
dR Rs 

dP E7 _-  -- where A = TRP 
d A  2AR 

11. 

Here E is the elastic modulus, and T is the thickness of the wall. 
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Turning to the pressure developed by the motion of the fluid we can write 
12. P = Pa - (p/2)(c + 24)’ 

RC) that 

A@ - P W  13. 

Here u is the perturbation (assumed small) produced by the change in cross- 
sectional area. From continuity we may write 

cdA = - UA 

so that dfi=pc2(dA/A), or 
dP PC9 

d A  A 

Equating this “Bernoulli pressure” to the pressure developed elastically 
(Equation 11) we obtain 

-=- 

14. 

If the flow velocity exceeds G, then the Bernoulli pressures will dominate the ~ 

elastic restoring pressures and stationary waves will grow in amplitude. I t  
may be expected that attempts to force fluid through an elastic tube (with 
fixed ends) a t  a velocity greater than c will result in unstable distortions. 

Transforming to axes moving a t  the velocity -c  we obtain Young’s 
formula for the wave speed, Equation 14, in a tube with zero mean velocity. 
More generally, if the mean velocity is Uo we find that the waves travel a t  
the velocity c in either direction relative to axes moving a t  the velocity 
UO, i.e., the waves are convected with the fluid. The pressure is now given 
by Equation 13 with the sign reversed if we adopt the convention that u is 
positive in the direction of the wave. 

The foregoing analysis presents the problem in its simplest terms. 
Olsen & Shapiro (19) have investigated several of the nonlinear effects asso- 
ciated with waves of larger amplitude. One interesting result of their analysis 
is that the nonlinear elasticity of a material like rubber cancels the nonlinear 
component of the hydrodynamic pressure, producing a “linear” behavior for 
large-amplitude waves. 

Our analysis has assumed one-dimensional flow. However, solutions that 
show the effect of radial motions of the liquid are available in the hydrody- 
namic literature [e.g., Lamb (20a) p. 4721. Figure 7 shows the effect of radial 
motions in reducing the speed of shorter waves. A more complete treatment, 
including unsymmetrical modes, will be found in the paper by Anliker & 
Maxwell (20). 

Since the arteries are imbedded in tissue, an estimate of the effect of a 
surrounding medium on the pulse is of interest. Figure 8 shows the influence 
of a surrounding liquid on the wave velocity of tubes filled with the same 
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liquid. Such an effect simulates the inertial impedance of the surrounding 
tissue, but does not simulate viscous or elastic effects. 

A treatment of the tapered artery based on the assumption of constant 
wave speed c leads to the well-known differential equation used in the study 
of acoustic horns. An analysis of an exponentially tapered artery, on this 
basis, has been given by R. L. Evans (21). A somewhat simpler analysis, 
adaptable to a conical taper, utilizes the spherical wave equation; Le., 

In this case, pressure pulses retain their shape but vary in amplitude in- 
versely as the vessel diameter. The velocity, given by d+/dR, shows a more 
complicated dependence. 

BRANCHING ARTERIES: PERIPHERAL IMPEDANCE 

Proceeding from the large arteries to smailer branching vessels, viscosity 
begins to play an increasingly important role. A very complete treatment of 
the effects of viscosity in pulsatile flow has been given by Womersley. In the 
larger arteries vorticity can diffuse only a short distance into the flow during 
a pulse. In smaller arteries, however, the unsteady boundary layer begins to 

* 3 4 

2n-3- 
OO I 2 

FIG. 7. Effect of radial motions on pulse wave velocity. 
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FIG. 8. Effect of surrounding liquid on pulse wave velocity. 

occupy the total cross section of the artery. As an introduction to Womers- 
ley’s results, it is instructive to consider the oscillatory shearing motion of a 
viscous liquid produced by a flat surface oscillating in its own plane. In this 
case a well-known solution gives 

B E U.,.CSYCOS (nt - ky) 15. 

where R = (n/2v)l/%. Here u is the velocity (parallel to the plate), y is the dis- 
tance normal to the surface, and Y is the kinematic viscosity. For a normal 
heart rate n is about 10. Taking v as 0.05 we obtain R = 10; henbe, the oscilla- 
tory shearing motions diminish to l/e of the surface value at y =O.l,or 1 mm. 

For a vessel 2 cm in diameter the viscosity hardly modifies the velocity 
proiile. Such a thin boundary layer, however, leads to values of wall-shearing 
stress considerably higher than those for steady Poiseuille flow. The shearing 
stress on the oscillating plate is given by 

7=p&k&(acoB nt+- 1 6. 

and is thus 45O out of phase with the velocity. For a peak velocity u, of 
100 cm/sec, v=0.05, K =  10 as above, we obtain 

T- = 140 dynes/cm 

( 3 
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For an artery 50 cm long, this value corresponds to a pressure drop of ap- 
proximately 11 mm Hg at peak flow-about 7 times that associated with 
steady Poiseuille flow. 

Our rough calculation is intended only to give an intuitive picture of the 
problem. For rigorous theory and results one should refer to Womersley's 
paper. Oscillatory shearing motion adjacent to a flat surface is simply a 
damped sinusoid with surface traction 45" out of phase with the velocity for 
all frequencies. In a circular tube the oscillations are described by Bessel 
functions and the phase shift is a function of the frequency. 

For blood vessels below a certain diameter, the diffusion of vorticity is 
essentially complete at every stage of an oscillatory flow. Since the Reynolds 
number is quite small, the flow is dominated by viscosity. In this limiting 
case the equation of motion is simply Poiseuille's formula 

17. 

The continuity relation is, however, modified by the elasticity of the vessel; 
i.e., 

aA a _-  - - - P A ~  
at ax 

18. 

Introducing the relation between the pressure and the elastic distension of 
the cross section by means of the pulse wave velocity G, we write 

so that Equation 18 becomes 
1 aP a% 

- - + p - - e o  
cz at ax 

19. 

20. 

Eliminating u between Equations 17 and 20 we obtain for the pressure 

21. 

which is the well-known diffusion equation. Evidently in vessels of this size 
the pulse no longer travels as a wave, but is reduced to a diffusion of pressure 
by the action of viscosity. Equation 21 has a one-parameter family of solu- 
tions corresponding to a step input of pressure, viz., 

22. 

The phenomenon of diffusion of pressure is evidently restricted to vessels 
smaller than 1 mm in diameter. To determine the critical size, we may com- 
pare the pressure a t  a point along the artery with the pressure that would 
arrive at  that point if the pulse wave were unimpeded. Hence, we set t in 
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Equation 22 equal to X / G .  For G = 1000, r = 0.05 we find that the pulse is re- 
duced to one half in a distance of 6 cm. 

Perhaps the most doubtful quantity in the foregoing estimate is the 
magnitude of c in such small vessels. A constant value of c would correspond 
to a constant ratio of wall stress to pressure and, hence, would give large and 
small vessels the same margin of safety. Measurements show, however, that  
the wave speed is higher in branching arteries than in the aorta. Whether 
this tendency persists to very small vessels in not known. 

AORTIC PRESSURE PULSE 
Since the collective area of the arterial branches increases with distance 

from the heart, the average flow velocity must decrease. Thomas Young 
supposed that the pulse pressure would decrease also. However, D. McDon- 
ald (22,23) and others have shown that pulsatile components of the pressure 
actually increase for a certain distance in going toward the periphery. The 
increase of harmonic components with distance from the heart corresponds 
to the well-known sharpening of the pulse in the distal radial and femoral 
arteries. 

The phenomenon of pulse sharpening can be demonstrated quite well 
with a simple physical model of the aortic system. Figure 9 shows such a ’ 
model in use at Avco Everett Research Laboratory (see 24). This model 
consists of an untapered rubber tube having geometric and elastic properties 

FIG. 9. Simplified physical model of aorta. 
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FIG. 10. Proximal and distal pulse shapes produced by simplified model. 

FIG. 11. Later version of aortic model. 
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similar to those of the aorta. Pulsatile flow is produced by an electric motor 
and a mechanical linkage that imitates the ejection curve of the heart. A t  its 
lower end the rubber “aorta” enters a box filled with plastic sponge, intended 
to simulate the peripheral resistance. Aortic and mitral valves are plastic 
flaps. Figure 10 shows the forms of the pressure curves in the aorta for posi- 
tions near the (rubber) “heart” and near the peripheral resistance. These 
curves show a striking similarity to physiological pressure pulses. 

A direct physical model such as described above has been found useful in 
isolating and studying purely mechanical phenomena connected with the 
circulation. Figure 11 shows a later version in which the aorta (silicone rub- 
ber) is tapered and is equipped with rudimentary carotid and renal-celiac 
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FIG. 12. Transient pulses produced by model. 

branches. The rectangular reservoirs that supply the ventricle are separated 
by an orifice plate so that the difference in level is an indication of mean flow. 
This model has been used at Avco Everett Research Laboratory for the in- 
vestigation of various “circulatory assist” devices. 

Figure 12 shows transient pulses in the left ventricle and the aorta, ob- 
tained by starting and stopping the drive motor. About four strokes are 
required to build the aortic pressure up to its steady value. When the motor 
is stopped the pressure decays exponentially, accompanied by outflow 
through the peripheral resistances. Evidently the windkessel theory gives a 
good representation of the phenomenon except during the early part of the 
pulse, where the pressures are complicated by wave reflections and vary 
with position. 

Before proceeding to the discussion of reflections, i t  is useful to consider 

991 



JONES 

the effect of a stepwise input of flow (assumed frictionless) into an elastic 
tube. Figure 13 illustrates this phenomenon. The injection of “new” fluid 
into the tube sets into motion a part of the fluid already there, creating a 
bulge which travels at the velocity c, greater than u. The new fluid is sepa- 
rated from the old by a “contact surface.” The change in momentum at the 
wave front is pu and occurs at the velocity c, so that  the pressure is 

A# = p w  23. 

Since (p/2)u2 is usually small compared with puc, the pulse is not very sensi- 
tive to variations in the velocity profile of the injection, depending primarily 
on the volume influx. 

If A is the cross-sectional area of the tube, the volume flow will be Q = uA.  

‘NEW“ FLUID 

CONTACT SURFACE 

. VELOCITY = u 
A P = p U C  

FIG. 13. Injection of fluid into an elastic tube. 

The pressure required is in phase with the flow rate and, hence, the elastic 
tube without reflections and with frictionless flow presents a simple resistive 
impedance 

In the electrical analogue, Z, is termed the “characteristic” or “surge” im- 
pedance. 

Typical values of mean flow to various organs, together with the mean 
aortic pressure, may be used to estimate the resistive impedance associated 
with various branching arteries. Values corresponding to Figure 1 are shown 
on Figure 14. It will be seen that the resistance associated with the capillary 
beds is an order of magnitude greater than the pulse impedance of the aorta. 

Figure 15 shows by means of a characteristics diagram how the aortic 
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FIG. 14. Pulse impedance of aorta compared with peripheral resistances. 

t- 

FIG. 15. Superposition of reflected pulses in proximal and distal aorta. 
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pressure appears as the superposition of a series of partially reflected pulse 
waves of the form 

P W  = f(0 24. 

where u=u( t )  is the  original ejection curve. Assuming, for the moment, per- 
fect reflections (i.e., no outflow), the pressure at a position x along the aorta 
will be 

X 
p - p , = f  1 - -  +f t---T)+f(t-;-$)+ x 2L 

( 3 ( G  

+f [c + ($ - 3 1  +++ ($ - $-) - $1 
+f[l+ ($-$) -3 + * - - . 

... 
25. 

The superposition of functions repeated with a small shift is equivalent, 
in the limit, to the process of integration. Thus, the Euler-Maclaurin sum- 
mation formula gives 

This equivalence may be used to show the relation between the pulse wave 
theory and the windkessel theory of the aorta. The Euler-Maclaurin series 
will further provide a first-order correction of the Windkessd theory for the 
effect of finite length of the aorta. As Equation 26 implies, the correction 
amounts simply to the addition of the term +f(t) =but to the pressures 
computed from the windkessel theory. 

The integral on the right-hand side of Equation 26 may be rewritten as 
(since At = 2L/c) 

27. 

where A is the cross-sectional area of the aorta. The term uA is then the 
volume flow and pce/LA is the reciprocal of tlie volume compliance or "capac- 
itance" of the aorta: 

28. 

The integral, Equation 27, is thus seen to be simply the pressure developed 
by static inflation of the tube as a windkessel. 

When the origin is shifted to take account of the delay in onset of the 
pressure [ t - ( z / c )  -0 or t+(x/c)  - (2L/c) =0] and when Equation 26 is 
applied to the downgoing and upgoing waves independently, the formula 

P = P&ik& + 4w 29. 

will show the steepening of the pulse along the length. Figure 16 illustrates 

994 



BLOOD FLOW 

INFLATION OF AN ELASTIC TUBE 

FIG. 16. First-order correction of windkessel theory for tube of finite length. 

an application of the corrected windkessel theory to the inflation of an elastic 
tube of finite length with no outflow. 

To take account of outflow at the proximal and distal ends,reflection 
coefficients R‘ and R may be introduced into Equation 25. Thus 

30. 

where Zz is the distal terminating impedance and Z, is the characteristic im- 
pedance of the aorta. Equation 25 now becomes 

31. 

Equations 25 and 31 are analogous to equations for electromagnetic 
waves in transmission lines and are most conveniently treated by Heaviside’s 
method (25). Using Heaviside’s method we may write 

f ( t  - At) = e-AtDf(t) 32. 

where D is the differential operator a/&. The right-hand side of Equation 32 
is termed the “shift operator.” The “repeat operator” is 
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while 

With these rules Equation 31 becomes 

A similar analysis yields for the velocity u 

33. 

34. 

35. 

36. 

where u=u(x, t )  and f @ =pcu(O, t ) .  The flow and pressure in arteries are 
often analyzed by Fourier’s series. In this case the terms of the series will in- 
volve 

fn(t) = A,,eint 37. 

The substitution of in for D in Equation 35 will then yield the “coiqplex 
impedance” as a function of frequency [see (25)]. 

Expansion of Equation 36 for small values of L/c  yields again the wind- 
kessel theory with a correction for transient wave reflections. In this case the 
formula incorporates the effect of an exponentially-decaying outflow through 
the peripheral resistances by virtue of the reflection coefficients k and k‘. 

The above treatment is frankly heuristic and by no means complete. 
Thus we have assumed that the impedance of the aortic branches is purely 
resistive. A more precise treatment would incorporate reactive components 
in the reflection coefficients k and k’, and, of course, more branching arteries. 
A considerable improvement in accuracy might be achieved by treating the 
main branching arteries as s m ~ l l  windkessels interposed between the aorta 
and the terminal capillary resistances. Taking, for example, a carotid artery 
(26) gives as the wave velocity 1800 cm/sec, or about 3 times that in the 
aorta. Assuming a length of 20 cm and a heart rate of bO/min, we find the 
carotid artery is about 1/70 of a wave in length. Evidently, even the larger 
branching arteries may be treated approximately as lumped capacitors. The 
capacitance will be given by 

or about 0.6 cc change in volume for 100 mm change in pressure. Such a 
branching artery may terminate in a resistance of 8000 (cgs) and the “RC” 
time constant will then be approximately 0.04 sec. Evidently the capacitance 
of the branching arteries, though small, is great enough to  modify the shapes 
of the reflected pulses significantly. 
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More detailed treatment of arterial flow leads rapidly to a great increase 
in analytical complexity. Thus, Womersley (17) has calculated the im- 
pedance and reflection at a branching artery on the basis of time-dependent 
viscous flow. The actual impedance a t  a branch of the larger arteries will be 
determined primarily, however, by smaller branching arteries farther down. 
Hence, Womersley’s analysis must be continued for several stages to obtain 
the true impedance a t  a branch. For such detailed calculations, the electrical 
analogue [see (27)] becomes useful. In this connection Jager, Westerhof & 
Noordergraaf (28) have succeeded in devising an electrical circuit to ap- 
proximate Womersley’s formula. 
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ROBERT T. JONES 

In this article certain hemodynamic phenomena that arise in connection 
with the use of artificial blood pumping devices will be reviewed. Among these 
are: 1) flows produced by collapsing bulbs, 2) the impedance presented by 
the aorta, 3) limiting velocities and instability of flow in elastic vessels, 4) 
effectiveness of valveless arterio-arterial pumps, and 5 )  wave reflection 
phenomena and instabilities associated with the intra-aortic balloon pump. 

* * * 
Maintenance of life by an artificial blood pump is an everyday occurrence 

in most large hospitals. The pump-oxygenator which takes over the function 
of both the heart and the lungs during surgery seems, however, to be limited 
in use to a maximum of several hours. Beyond this time one looks for certain 
symptoms which are taken as evidence of changes in the physiological 
constituents of the blood, that is, loss of red blood cells (hemolysis) and 
platelets as well as denaturation of protein components. In spite of this 
deficiency the pump-oxygenator is considered adequate for most surgical 
procedures, though not suited in its present form to chronic support of a 
weakened or failing heart. 

Pending the development of an ideal total heart replacement, there have 
been numerous attempts to provide partial assistance to the heart (see re- 
ferences) for periods longer than the few hours available with the pump 
oxygenator. These have generally taken the form of pumps to assist the left 
ventricle, since left ventricular function is most critical and evidently most 
often deficient. 
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Several types of left ventricular assist pumps are illustrated in Fig. 1. 
In Fig. la the pump is equipped with inflow and outflow valves and is placed 
in parallel with the ventricle (atrio-arterial pump) where it may divert all or 
part of the flow around the left heart. By contrast, pumps placed in series 
with the ventricle may not significantly alter the flow but may be expected to 
relieve all or part of the systemic pressure from the heart. It is interesting that 
the series pump may accomplish this function even without valves if it is 
properly phased with the pulsatile outflow from the ventricle. The centrifugal 
pump described by Dorman et a1 (1969) operates by magnetic coupling 
through the intact skin and, of course, requires no valves. 

( A )  THORACIC AUXILIARY VENTRICLE 

( 8 )  AUXILIARY VENTRICLE IN DESCENDING AORTA I 

(C) INTRA-AORTIC BALLOON PUMP 

Fig.1: Heart assist devices 

In order to understand the operation of such devices, it is first of all neces- 
sary to gain at least a crude understanding of the function of the left ventricle 
and the aorta in mechanical terms. 

Our first curiosity here is in the flow produced by a collapsing or squeezing 
bulb since both the natural and the artificial ventricles operate in this fashion. 
As has been shown (Jones, 1969) potential flows of the type 

(1) Wx, Y ,  Z, t )  = ax2 + Byz + yz2 

provide perhaps the simplest starting point for mathematical modeling of the 
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bulb flows. Here @ is the velocity potential, x, y, z are Cartesian coordinates 
and a, j?, y are constants or functions of the time such that 

Such flows are trivial solutions of the Navier-Stokes equations and, of 
course, of Laplace’s equation. If x, y and z are taken as the initial coordinates 
of a particle of fluid (or of the boundary) we have 

for the Lagrangian coordinates. The Lagrangian coordinates are thus related 
to the initial coordinates by simple affine transformations. Plane surfaces 
remain plane and a bulb of initially arbitrary shape undergoes distortions tha! 
can be represented by stretching its coordinates in different directions while 
preserving a constant volume. 

Figure 2 shows streamlines emanating from a collapsing bulb together, 
with pressures calculated by the foregoing method on the assumption of 
frictionless flow. The motion of the liquid in a bulb does not completely 
determine the pressures, but there remains an arbitrary function of the time to 
be determined by the impedance into which the bulb works, that is, the 
relation between pressure and flow in the aorta. 

In a typical case the diastolic pressure in the aorta will be 70-80 mm H g  
and the ejection of blood from the ventricle will raise this pressure by 60-70 
mm. Pressures arising from dynamic motions within the bulb, however, are 
of the order of 3 4  mm only. Thus it seems that very little of the effort of the 
heart is directed against the inertia of the blood but appears initially in elastic 
distension of the arteries ; later to be dissipated in frictional resistance through 
the capillaries. 

Examination of the heart cavity shows a surface far from streamlined 
form, with deep furrows (trabeculae) and tendons to support the mitral valve. 
Similarly, the architecture of the aortic system shows little disposition toward 
flow dynamics as ordinarily understood. Branching arteries often show no 
preference for the flow direction. Here again we find but a small fraction of 
the pressure in kinetic form; pu2/2 is of the order of a few millimeters. 

In prosthetic heart pumps streamlining does not play an important role in 
the purely mechanical function, though the flow does seem most important 
in relation to clotting. The clotting phenomenon is at present a dominant 
factor in the success or failure of artificial heart devices including prosthetic 
valves and assist pumps. Though beyond the scope of the present discussion, 
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Fig. 2: Streamlines and pressures in collapsing bulb. 
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the relation between clotting and flow has become a major item of research 
at our laboratory and elsewhere. 

Nearly all current heart assist pumps operate by pneumatically driven 
plastic bulbs. In our experience we have found it essential that the bulb not 
change its volume by stretching but rather by folding. The 
a change of extrinsic geometry without altering the intrins 
surface. The solution appears by reflection of the convex s 
that progressively larger areas of the surface change from convex to concave, 
along a singular curve determined by the intersection of the plane. In practice 
the bulb has finite thickness and the surface bends to a finite radius along this 
curve. In spite of the concentration of bending strain, bulbs of silicone rubber 
have very satisfactory fatigue life in this mode of deformation. 

Such bulbs are occasionally made by fitting initially flat sheets of fabric 
and silicone rubber over a convex form. Here one encounters a problem well 
known to tailors and known to mathematicians from the properties of the 
Tschebyschev net. It seems that such a net (as a handkerchief) can be fitted 
over a convex surface whose integrated solid angle does not exceed 2d. 

The function of the aorta and the major vessels as an elastic compliance is 
well characterized by the simplest theory of aortic impedance known as the 
“windkessel” theory (Taylor, 1965). Here the aorta acts simply as a lumped 
capacitance, and if the peripheral resistance is linear, one obtains an ex- 
ponential decay of pressure following ejection of a volume of blood from the 
heart. 

Figure 3 illustrates our attempt to make a direct physical model of the aor- 
tic system. In medical circles such devices are known by the term “mock 
circulation.” We have found such a model useful in studying and isolating 
the purely mechanical effects of cardiac assist devices. The model aorta 
is made of silicone elastomer with compliance determined so as to lie within 
the physiological range. The substitute ventricle is made of the same material 
and is placed in an air tight box so that it can be actuated pneumatically 
by a linkage and piston drive as shown. Figure 4 shows the type of pressure 
pulse produced by our model compared with natural pulses taken from a 
textbook on physiology. 

With such a model one has control of various parameters such as source 
impedance of the heart, cardiac output, wave speed and diameter of the aorta, 
and peripheral resistance. In addition, since the aorta is transparent, we have 
been able to observe visually the action of the intra-aortic balloon pump. 

Fortunately, because of the high Reynolds number of the flow in the larger 
arteries, one is not required to duplicate the detailed rheological properties 
of the blood in such experiments. A rough calculation will show that the 
unsteady laminar boundary layer on the inner wall of the aorta has time 
to grow to a thickness of only about one millimeter during the heart beat. 
Separation vortices of the order of a centimeter in diameter may be expected 
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Fig. 3: Aortic circulation model. 

to persist for two or more heart beats. It should be borne in mind, however, 
that the dynamic pressure associated with the flow is small compared with 
the actual pressure. Hence, flow irregularities do not normally have a great 
influence on the mechanical performance of heart assist pumps. They may, 
however, influence the behavior of artificial valves and, of course, the 
formation of thrombi. 

In our early effort at Avco Everett Research Laboratory, we sought to 
develop and perfect the Kantrowitz auxiliary ventricle, illustrated in Fig. lb. 
This device comprises a simple compliant pumping chamber which is fitted 
inside a more rigid plastic case. The space between the bulb and the case com- 
municates by a small gas tube through a percutaneous connector to the con- 
trol system outside the body. The bulb can then be alternately compressed and 
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LEFT VENTRICULAR PRESSURE LEFT VENTRICULAR PRESSURE 

PROXIMAL AORTIC PRESSURE 
111l 
PROXIMAL AORTIC PRESSURE 

3 time . recondr 
- 

DISTAL PRESSURE DISTAL PRESSURE 

MECHANICAL PULSE NATURAL PULSE 
(Adaped from “A Primer of Grdiac 

Gt heteriut ton’’ 1965) 

Fig. 4: Comparison of pulses produced by model with physiologic pulse. 

expanded by pneumatic pressure from an external power source. Since the 
blood pumping chamber has no valves, it is necessary that its stroke be syn- 
chronized and properly phased with the action of the heart. This synchroni- 
zation was accomplished with the aid of electrocardiac signals obtained from 
electrodes attached to the heart muscle. By withdrawing blood from the aorta 
prior to systole the pressure required for ejection by the heart can be reduced, 
thus lessening the effort of the heart. After the ejection from the natural 
heart is complete and the aortic valve is closed, the blood withdrawn into the 
auxiliary ventricle can be pumped back into the aorta, raising the pressure 
and supplying energy for the systemic circulation. This technique has the ad- 
vantage of creating higher pressures in the aorta during diastole and hence 
the possibility of increased coronary perfusion (in practice the coronary flow 
has in some cases been observed to diminish, perhaps because the assisted 
heart requires less). If we suppose, for example, that the stroke volume of the 
artificial ventricle Q, is as great as the output stroke of the natural ventricle 
Q, then it is clear that the pressure rise during systole may be suppressed and 
the pressures in the natural ventricle need hardly exceed diastolic pressure. 
This special situation requires that the withdrawal stroke of the AV imitate 
the ejection stroke of the natural ventricle in reverse. In practice somewhat 
better results are obtained by reducing the pressure in the aorta prior to 
systole, permitting the aortic valve to open at a lower pressure and reducing 
the pressure during isometric contraction. 
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The intra-aortic balloon pump (Fig. IC), functions by a similar principle 
(Moulopoulos et al, 1962) since inflation and deflation of the balloon affects 
aortic pressures in much the same way as injection and withdrawal of a cor- 
responding quantity of blood. The balloon pump has the advantage that it 
can be inserted through a femoral artery under local anesthesia. In this case 
electric signals for timing are obtained from skin electrodes. 

The reduction of outflow pressure during systole may, of course, permit 
the heart to eject a greater flow quantity. Hence, the auxiliary ventricle (or 
the balloon pump) may increase the cardiac output as well as effect a reduc- 
tion in left ventricular pressure. The precise division of effort between flow 
and pressure will depend on what may be termed the “source-impedance’’ 
of the heart. Animal experiments with such pumps indicate that a healthy 
heart has a very high source impedance (is flow-limited). The primary effect 
of the auxiliary pump then appears as a reduction of pressure in the left 
ventricle. However, experience with human patients in cardiac distress in- 
dicates that the weakened heart may be pressure limited. In such cases the 
arterio-arterial pump will act primarily to increase the cardiac output. 

Because of its dependence on pathology, it seems unlikely that any 
universal relation for cardiac impedance can be found. However, the reduo 
tion of ventricular pressure and the increase of flow can be combined linearly 
into a quantity which may be thought of as total effectiveness and which can 
be simply related to the stroke volume of the pump and to the unassisted 
aortic pulse (Jones et al, 1968). This cycle analysis of the arterio-arterial pump 
is based on the windkessel theory of aortic impedance. Figure 5 illustrates 
the essential idea of the cycle analysis. Here the pump injects its stroke 

EFFECTIVENESS OF PU 

Q=Qb(l-e-ATz) 

: Analysis of arterio-arterial pump. 
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volume into the aorta which distends as a windkessel. The pressure increment 
so produced then decays exponentially as the volume flows out through the 
peripheral resistances. All of the added volume would ultimately find its way 
into the periphery if enough time were available. However, the pump must 
withdraw volume and lower the pressure in the aorta prior to the next heart 
beat. It must therefore withdraw a portion of the blood previously injected, 
namely the fraction 

, 

where Iz  = I/RC. R is the peripheral resistance and C the aortic compliance 
or capacitance. Q, is the stroke volume of the pump and td is the diastolic 
interval. The complete analysis, which entails the assumption that operation 
of the pump does not change systolic or diastolic intervals, leads to the for- 
mula 

The quantity (1 - e-lrd) may be conveniently replaced by the quantity 
(Pi - PJP, where PI and Pz are systolic and diastolic pressures with the 
unaided heart. In this form it is evident that the operation of such valveless 
pumps depends on the pulsatile character of the aortic pressure. In order 
to obtain an upper bound for the effectiveness, it has been assumed that 
the pump displaces its volume Q, instantaneously. Other variations of the 
stroke Q, as a function of the time will require a convolution of Q, with 
the decay factor e-”. 

The use of the windkessel theory for aortic impedance corresponds to an 
assumption that the arterio-arterial pump will be equally effective at any 
position along the aorta. Experiments with animals and with our artificial 
circulation model tend to support this assumption provided the timing of the 
pump cycle is adjusted to account for the delay in wave propagation. 

Figure 6 shows the result of an experiment made in the circulation model 
to check this assumption. Here the pumping effect of an intra-aortic balloon 
placed in the descending thoracic aorta is compared with the effect of an 
auxiliary ventricle placed near the heart. In each case the same stroke volume 
was used, but the timing of the balloon was advanced slightly. The curves on 
the left of the chart recordings show the rather large aortic pressure produced 
by the pump during diastole. Near the center of each diagram the chart speed 
was reduced, compressing the pulses. The rise in left ventricular pressure when 
the pumps were turned off is clearly evident here and is approximately the 
same for the balloon and the AV. During the compressed portions of the re- 
cords an integrating circuit was switched on to record mean aortic pressures. 
The mean pressures are an indication of the flow, and it will be noted that each 

1009 



FLUID DYNAMICS OF HEART ASSIST DEVICES 

PUMP ON f PUMP OFF 
I t 

LEFT VENTRICULAR PRESSURE 

PROXIMAL AORTIC PRESSURE 

DISTAL AORTIC PRESSURE 

LEFT VENTRICULAR PRESSURE 

-M 
PROXIMAL AORTIC PRESSURE 

DISTAL AORTIC PRESSLJRF 

Fig. 6: Comparative effects of balloon pump and a- ventricle. 

pump increased the cardiac output by the same amount. In spite of the ob- 
struction presented by the balloon in the aorta, the distal mean pressure is 
very effectively increased. 

The action of the arterio-arterial pump will evidently depend not only 
on the source impedance of the heart, but also on the complex impedance 
presented by the aortic system. The impedance of the aorta is, of course, 
complicated by the phenomenon of pulse wave propagation. (McDonald, 
1960; Young, 1808, 1809; Womersley; 1956 Anliker and Maxwell, 1966). 
The elastic tube, except for reflections, presents a characteristic resistive 
impedance. With an injection velocity u the pressure developed is 

dp = guc 
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where c is the wave propagation velocity of the order of 500-1000 cmlsec. 
The flow quantity will be uA where A is the cross-sectional area of the artery. 
The characteristic impedance is then 

For a wave speed of 600 cm/sec and an area A of 4 sq cm, we obtain 

(10) 2, = 150 (cgs) 

Estimates of the capillary resistance associated with the various outlets may 
be made from data on mean pressures and flow to various organs given in 
physiology textbooks. Values of peripheral resistance vary over a wide range, 
especially in pathologic conditions such as shock. However, it is significant 
that the values are an order of magnitude greater than either the pulse 
impedance or the frictional resistance of the aorta. Hence, we may suppose 
that the pulse wave will be strongly reflected by large resistances which are: 
rather closely coupled through the main branching arteries. Furthermore, 
since the time for a pulse wave to traverse the length of the aorta is short 
compared with the duration of the heart beat one can expect the pressure and 
flow to be dominated by multiple reflections from the periphery during a 
single heart beat. 

The foregoing characteristics of the aortic system lead us to what might be 
termed a “slender windkessel” theory of aortic impedance. Clearly, if an 
elastic tube of finite length is inflated sufficiently slowly it will behave simply 
as a compliance. With more rapid inflation waves and their reflections from 
the ends will become prominent (Fig. 7). The important parameter here is 
the characteristic time for reflection along the length of the tube, &/e, compared 
with the time scale of the inflation process. By expanding the wave reflection 
formulas in ascending powers of &/e, one obtains, first of all, the result of the 
windkessel theory followed by a succession of terms which correct the wind- 
kessel theory for the finite length of the aorta (Jones, 1969). Curiously, the 
first correction does not involve the length of the windkessel at all but merely 
takes account of the fact that the windkessel is an elastic tube. By considering 
one of the two families of characteristics, there is obtained 

Thus the first correcting term is simply 1/2 the characteristic pressure, puc. 
Figure 7 illustrates the process of inflation of an elastic tube for the case of a 
stepwise inflow velocity u(t) and shows the nature of the correction. Applying 
this calculation to the aorta, one should take account of outflow at the re- 
flection sites. Such outflow leads to progressive diminution of the reflected 
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P 

TIME 

Fig. 7: Inflation of an elongated windkessel. 

pulses by a fixed fraction (reflection coefficient K )  and thence to an exponential 
decay of aortic pressure. The windkessel theory (Pwk) shows this behavior 
by a convolution of the inflow pulse with the factor e-". However, since it 
depends on the integral curve of the inflow pulse, Pwk shows too slow an 
initial rise of pressure. This behavior is illustrated in Fig. 8. 

A method of arterio-arterial pumping not illustrated in Fig. 1 consists 
of withdrawing blood directly through cannulae inserted in the femoral 
arteries and reinjecting the same blood during diastole. While the effect of 
distance from the heart is rather small in the case of the balloon or the 
abdominal ventricle, such effects will certainly be larger here. In particular, 
the taper of the artery will be significant since the femoral vessels may be only 
6 mm in diameter while the aorta near the heart is approximately 20-25 mm. 

The pulse wave phenomenon in a tapered elastic tube leads, in the case of 
constant wave speed, to an equation similar in form to that employed in the 
analysis of acoustic horns. A treatment of the exponentially tapered tube has 
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Superpition of reflected waves 
in proximal ond distal awta 

Fig. 8: Superposition of reflected waves in proximal and distal aorta. 

been given (Evans, 1960). A transformation which yields a one-parameter 
family of solutions in which the wave speed and the tube diameter vary 
together is described by McMahon et a1 (1969). 

Perhaps the simplest treatment is that employing the spherical wave 
equation as suggested by Thomas Young (1808, 1809) for a straight conical 
taper. Here the velocity potential will have the well-known form 

where R is the distance from the virtual apex of the aorta. Figure 9 shows a 
calculation on this basis which illustrates the transformation between pressure 
and flow effected by a conically tapered elastic tube. Here we have assumed 
that a quantity AQ = 10 cc is withdrawn from the narrow (6 mm) end of the 
conical tube, following the pressure and velocity variations shown. At the 
upper, wider end of the tube the pressure pulse is much reduced, although 
the flow quantity temporarily withdrawn has increased to 40 cc. 

Pulsatile pumping by direct withdrawal and injection through a small 
artery must evidently be restricted to certain levels of pressure and velocity 
in order to avoid blood damage. The flow velocity is in any case limited to 
values less than the pulse wave velocity. In the balloon pump the fluid with- 
drawn can be a light gas such as helium, enabling greater volumes to be 
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Fig. 9: Transmission of pulse in tapered artery. 

pumped. The balloon, however, has its own peculiar instability which we 
have termed “bubble trapping.” The origin of this phenomenon becomes 
evident when we attempt to calculate the flow and pressure produced by an 
expanding cylindrical balloon in a circular tube. For this purpose we use the 
potential 

which satisfies the boundary condition for a cylinder expanding within a fixed 
cylinder of radius r, = m. Calculation shows a parabolic pressure dis- 
tribution along the length of the expanding cylinder with pressures at the 
center as much as 100 mm higher than the pressures at the ends. An ordinary 
limp balloon cannot, of course, support such pressure gradients, and the 

1014 



ROBERT T. JONES 

inflating gas simply rushes toward the ends of the balloon inflating them first 
and sealing off the aorta. As Professor Shapiro of M. I. T. has pointed 
out, any manner of expelling blood from the space around the balloon must 
involve such a falling pressure gradient and will lead to bubble trapping unless 
corrective measures are taken. 

Figure 10 shows the bubble trapping phenomenon as it appears in our 
Avco circulation model. The blood trapped between the ends of the balloon 
is, of course, not effective in the pumping cycle, and the aorta in this region 
may be subjected to high pressures of the order of the drive pressure. 

One method we have found successful in limiting this phenomenon is to 
divide the balloon along its length into a number of compartments, inflating 
the compartments selectively through orifices of different size. Figure 11 

PRESSURE 
m m H s  

Fig. 10: Bubble trapping phenomenon. 
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Fig. 11: Calculated pressures with controlled balloon inflation. 

shows pressures calculated for such a controlled balloon in an elastic artery. 
Here it has been assumed that the pulse wave velocity is not modified by the 
presence of the balloon, an assumption permissable only if uncontrolled 
movements of the gas along the length of the balloon are effectively impeded. 
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A SIMPLE VIOLIN OSCILLATOR 

Robert T. Jones 

For acous t ic  tests t h e  v i o l i n  may be dr iven  l a t e r a l l y  at  t h e  bridge by a 
s m a l l  speaker of t h e  type  commonly found i n  pocket t r a n s i s t o r  rad ios .  
reduce t h e  r a d i a t i o n  from t h e  speaker i t s e i f  I remove t h e  cone, leaving t h e  
s m a l l  voice c o i l  supported by t h e  corrugated diaphragm under the cone. 
narrow (half inch diameter) s t i f f  paper (IBM card paper) cone is then made 
and cemented t o  t h e  voice  c o i l  p ro jec t ing  forward. A t  t h e  t i p  of t h i s  cone 
a narrow s t r i p  of f i b e r  is  cemented. 
add i t iona l  half  inch o r  so and can be in se r t ed  under one of t h e  s t r i n g s  (A o r  D) 
at t h e  top of t h e  bridge. A l l  of t h i s  is made poss ib le  by a marvelous 
substance known as " f ive  minute epoxy.'' 
secured t o  its mount by a type of "double-sticky" tape  known i n  model a i rp l ane  
shops as "servo-mounting" tape. 
s t r i n g  and t h e  bridge and t h e  dr iv ing  cur ren t  from t h e  o s c i l l a t o r  turned on 
i t  w i l l  normally be found t h a t  t h e  voice  c o i l  is  off center. 
corrected by s m a l l  adjustments of pos i t i on ,  but i t  is  e s s e n t i a l  t h a t  such 
adjustments be permitted by t h e  mounting. I use t h e  type of mounting used 
by machinists i n  s e t t i n g  up a d i a l  gauge (see photograph) though fhe re  are 
o the r  p o s s i b i l i t i e s .  

To 

A 

The f i b e r  s t r i p  extends forward an 

The f l a t  base of t h e  speaker is  

With t h e  f i b e r  s t r i p  clamped between t h e  

This  is  e a s i l y  

I n  order t o  record t h e  dr iv ing  f o r c e  I place a four 
ohm r e s i s t o r  i n  series wi th  t h e  voice 
c o i l  and measure the vol tage  drop. 
Though these  speakers cos t  only a 
d o l l a r  o r  two, it seems s a f e  t o  assume 
t h a t  Faraday's l a w s  s t i l l  apply, and 
t h a t  t h e  magnetism is of t h e  same 
q u a l i t y  as would be  obtained i n  a 
more expensive arrangement. 

sweep vol tage  of an  oscil loscope. 
tu rn ing  t h e  frequency down t o  one o r  
two cycles per second one can obta in  
an impulsive o r  "de l ta  function" 
input.  For pure tone exc i t a t ion ,  a 
Hewlett-Packard audio o s c i l l a t o r  is  
employed and t h e  sound is picked up 
by a G.R. sound level meter. 

Figures 1 and 2 show sound level 
peaks i n  t h e  range above 74 db from 
two v i o l i n s ,  one I made i n  1956 and 
t h e  o ther  more recent ly .  The tests 
w e r e  made i n  a r a t h e r  reverberant 
room, making it necessary t o  i n t e r p r e t  
t h e  higher frequencies more o r  less 
s t a t i s t i c a l l y .  These v i o l i n s  were 
made following e a r l y  recommendations 
of Prof. Saunders and M r s .  Hutchins, 
and they have l a r g e  amplitudes i n  
t h e  low frequency range. 

For saw too th  e x c i t a t i o n  I use t h e  
By 
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Response t o  pure tone excitation 
G.R. Sound Level Meter 

Although both v io l in s  have a powerful tone and easy response, t he  f i r s t  
one is  judged not acceptable because of too much emphasis i n  the  bass region 
and because of a "nasal" quali ty.  It w i l l  be noted t h a t  i n  t h i s  case the  
overtone peaks are highest i n  the  1500 cylce region, corresponding t o  the  
observation by Meinel (J. Acous, SOC. her . ,  vol. 29,July 1957) t ha t  overtones 
i n  t h i s  range produce a nasal  quali ty.  

In  order t o  test Meinel's statement more spec i f ica l ly ,  I arranged t o  m i x  

My son and daughter, who have considerable musical experience 
the  tones from two audio osc i l l a to r s  and played them through an ordinary 
loudspeaker. 
and who did not know the expected outcome of the  experiment, de f in i t e ly  
preferred 500 plus 2000 Hz t o  the  combination 500 plus 1500. 

Actually (as mentioned f o r  example by M6ckel i n  D i e  Kunst des Geigenbaues) 
the nasal  range is probably between 1350 and 1700 Hz. My tests i n  which 
various d is tor ted  wave shapes w e r e  played through a loudspeaker both with 
and without an LC f i l t e r  centered i n  t h i s  range tend t o  confirm th is  im- 
pression. 

It w i l l  be noted tha t  the  second v i o l i n  has accentuated overtones i n  t h e  
2000 t o  3000 Hz range, the  main body resonance is  a t  450 Hz, and t h e  air 
resonance peak is somewhat lower i n  amplitude. This v i o l i n  is preferred 
by musicians who have t r i e d  both. 
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Production and in te rpre ta t ion  of Chladni pa t te rns  - To ca lcu la te  t he  sound 
rad ia t ion  from a v i o l i n  one would l i k e  t o  know the  v ibra t ion  amplitude as 
a function of posi t ion over t he  top and bottom surfaces. The holographic 
technique permits t h i s ,  but not everyone has access t o  such equipment. 
Gross pat terns  of t h e  v ibra t ion  modes can be obtained very simply however 
by t h e  old-fashioned Chladni method. The f a c t  t h a t  t he  v i o l i n  p l a t e s  are 
curved introduces some d i f f i c u l t y  and most powders w i l l  be influenced too 
much by gravity.  
which seems t o  have j u s t  t he  ri:;ht amount of "stickiness" and w i l l  flow 
u p h i l l  away from a vibrat ing arca. 

The p ic tures  shown were taken with the  a id  of pumice powder 

A t  390 Hz, it w i l l  be 
noted t h a t  a port ion of 
t h e  back p l a t e  opposite 
t h e  bass bar is  vibrat ing.  
This v ibra t ion  is evident- 
l y  being communicated 
through the  r i b s  and is  
doubtless j u s t  i n  phase 
with the  v ibra t ion  of 
t he  top.* Following John 
Schelleng's 'analysis 
( N e w s l e t t e r  No. 16,Nov. 
1971) it can be seen t h a t  
t h i s  motion of the back 
p l a t e ,  f a r  from adding t o  
the  sound, w i l l  ac tua l ly  
subtract  from it ,  s ince 
i t  subt rac ts  from the  
volume changes of the 
v io l in .  The pa t te rn  a t  
1300 Hz is  remarkably 
symmetrical. It is  tempt- 
ing t o  associate  the per- 
fec t ion  of v i sua l  symmetry 
i n  these v ibra t ion  pat- 
t e rns  with acoustic per- 
fec t ion  of the v io l in .  

A l i t t l e  thought w i l l  show however t h a t  t he  sound rad ia t ion  might w e l l  be en- 
hanced i f  t he  Chladni pa t t e rn  were not so symmetrical. 

*This statement tu rns  out t o  be incorrect .  The v ibra t ion  of the  back a t  
390 Hz is i n  opposite phase t o  tha t  of t h e  top. 
appearing i n  the  photo does contr ibute  volume changes and is responsible f o r  
a s igni f icant  portion of t he  output a t  390 Hz. 

The v ibra t ion  of t he  area 
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FOUNDED BY FREDERICK A. SAUNDERS 

112 Essex Avenue 
Montclair, New Jersey 07042 
June 28, 1973 

Dr. Robert T. Jones 
25005 La Loma Drive 
Los Altos H i l l s ,  California94022 

Dear D r .  Jones: 

Many thanks for the clarification of your tes t ing 
method. 
day when he was here. 

John Bchelleng and I discussed it the other 

Would you be interested i n  my sending your a r t i c l e  
and the photo t o  Dr. Fryxell as a possible publicatioq 
i n  our next Newsletter. 
interested. 

Z think ~llll" members would be 

Just one question. Do you have any infomation 

Also, how f ine  
on the amount of power it takes t o  get Chladni figures 
as yuu i l l u s t r a t e  w i t h  pumice powder. 
is the powder? 

With all good wishes, and do keep i n  touch. 

Carleen M. Hutchins 

President, A. Stewart Hegeman 
Vice-presidents, Virginia Apgar 

Lothar Cremer 

Treasurer, Dugald McGilvray 
Editor, Robert E. Fryxell 
Music Director, Frank Lewin 

Permanent Secretary, 
Carleen M. Hutchins 
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