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INTRODUCTION

The author has been engaged with familiarization and debugging of

the APAS (Automated Pre-design of Aircraft Structures) computer program

from December 1974 to July 1975. The program was developed for NASA

under contract (see ref.)as part of a large computer program to assess

the impact of fatigue and fracture criteria on the weight and cost of

transport aircraft. The program options were exercised on two transport

wings to determine the program's capability to design optimum weight

structure which meets both static strength and fatigue strength require-

ments.

The APAS Program

The APAS program is a multi-station structural synthesis procedure

developed to evaluaLe material, geometry and configuration with various

design criteria usually considered for primary structure of transnorr

aircraft. The program contains a built-in load spectrum, material

properties for nine metals and two composites, fatigue S-N data,

fatigue damage criterion, and fracture mechanics criteria. Minimum, user

inputs required are: loading conditions, initial and maximum material

gages, construction type, and number of stations along the structure to

be analyzed. Fatigue life and fail-safe strength are also required by

the program if the user wishes to include fatigue, flaw-growth, or residual

strength (fail-safe) analyses. The user may exercise the option to input

his own material (one metal or one composite), fatigue data, or fracture

mechanics criteria simply as additional data without altering the program

itself.
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The existing program optimizes the cross section (minimizes weight)

of a single-material box beam. The user inputs the initial geometry of

the cross section and the program sizes the cross section to produce

minimum gages which satisfy the stress allowables. Then, a modified

Fletcher-Powell-Davidon non-linear programming technique is used to

minimize the stress in each element while holding the weight (area) con-

stant. The cross section is then resized to produce minimum material gages.

This process is continued station by station until the entire structure

has been sized to meet static strength requirements. The structure is

then resized to meet fatigue and fracture criteria if this option has

been selected. The entire process is iterated until the design converges,

convergence being defined as two successive iterations producing a change

in weight that is within a specified tolerance. If the user has chosen

not to analyze each station along the structure, the program automatically

uses a non-linear interpolation routine to estimate the weight between

stations analyzed. A functional flow diagram of the program is shown

in figure 1.

The monolithic, riveted, or boned construction types shown in figure

2 are available as design options. material selection includes aluminum,

titanium, Inconel, boron-epoxy, and graphite-epoxy. The S-ti data for these

materials are built into the program and are derived from actual component

data or are based on coupon data where -omponent data were unavailable.

The flight profile and load spectrum incorporated in APAS is typical

of that used for fatigue and flaw growth analysis -f transport aircraft.

The flight load spectrum is composed of the following loading conditions:

1G taxi, 1G level flight, 2G vertical gust, 2G maneuver, 1G landing impact,

maximum cabin pressure, and the ground-air-ground (GAG) cycle. The
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frequency of occurrance of the loads is based on data derived from 10,000

flights of a typical transport aircraft.

Miner's linear cumulative damage rule is used as the basis for

estimating cumulative fatigue damage per flight over the life of the air-

craft. The procedure is well known and generally accepted for its

analytical simplicity.

A conservative flaw growth analysis based on the Erdogan growth

rate equation is performed to determine crack-growth lives for stiffened

panels under the influence of a fatigue load spectrum. The method is

conservative in that flaw growth retardation effects due to spectrum

loading are not included, however, a crack-growth retardation analysis

could be adled to the program. The initial crack size and _lumber of

broken stringers for the analysis can be varied. Integrally stiffened

panels are treated as uristiffened sheets with areas equal to the stiffened

panels.

The program performs a residual strength analysis to determine the

failing strength of a stiffened panel consisting of skin cracks and

broken stiffeners. Unstable crack growth is assumed to occur when the

stress intensity factor exceeds the fracture toughness of the material.

When the stress level of the most highly loaded stiffener exceeds its

ultimate tensile strength, the program assumes failure of the stiffener

and recalculates stress intensity factors of the skin to reflect this

condition.
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Program Evaluation

Two transport wings selected from existing conventional transports

(Convair 680 and DC 10) were used as inputs to test the accuracy and
r

function of the program. Here two problems were noted.	 First,	 the

resultant optimum weight can vary with the number of cross sections

synthesized along the structure. While this procedure of analyzing some

of the stations and interpolating between the remaining stations to

estimate the structural weight is efficient in terms of reduced execution

time and computer cost, the user must exercise experience and sound judgment

based on the configuration of the aircraft and the load distribution to

obtain reasonably accurate estimates. Second performance of the program in

terms of pre4icted weight relative to actual design weight is generally good

and the solutions converge toward minimum weight if the structure is composed

of a single material where E/P is constant. Howe •!er, the optimization pro-

cess becomes divergent if E/p is not constant, therefore minimum weight may not

be found for multi-material structures.

Recommendations

The program, which is debugged and operational, can be used to assist

in the preliminary design of single-material, metal primary aircraft

structures. The following are recommendations to improve accuracy and

extend the capabilities of the APAS program.

1) APAS should be modified to analyze multi-material structures

where E/p is variable and analysis of composite materials should be improved.

2) The non-linear interpolation routine should be modified or replaced

by a linear interpolation scheme to reduce the effects of the number of

stations :analyzed.

4

I



3) The present versicm of the program treats through cracks only.

Flaw types such as part-through cracks, cracks starting from holes, and

corner cracks should be added in addition to crack-growth retardation.

It is necessary to make these additions since the flaw types mentioned

occur frequently in aircraft structures and are included in damage tolerance

criteria for new aircraft. The addition of a crack-growth retardation

scheme would Provide better accuracy.

4) The built-in data for the load spectrum should be replaced by

I
a load spectrum input option.!
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