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SUMMARY

Results of a study towards the development of flutter modules applicable
to automated structural design of advanced aircraft configurations, such as a
supersonic transport, are presented. In this study automated structural
design is restricted to automated sizing of the elements of a given structural
model. It includes a flutter optimization procedure; i.e., a procedure for
arriving at a structure with minimum mass for satisfying flutter constraints.
Methods of solving the flutter equation and computing the generalized aero-
dynamic force coefficients in the repetitive analysis environment of a flutter
optimization procedure have been studied and recommended approaches are pre-
sented. Five approaches to flutter optimization are explained in detail and
compared. An approach to flutter optimization incorporating some of the
methods discussed is presented. Problems related to flutter optimization in
a realistic design environment are discussed and an integrated approach to
the entire flutter task is presented. Recommendations for further investiga-
tions are made. Results of numerical evaluations, applying the five methods
of flutter optimization to the same design task, are presented.
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modalized aerodynamics matrix
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basic aerodynamics influence coefficients (function of k
and Mach nunber) defined by equation (5.13)

amplitudes of successive cycles
arbitrary constant (equations (7.16), (8.1))
elements of a basic

ratio between mi and Pi : m. = C.P, ;

i i i
resizing column (equation (6.53))
reference chord

flutter determinant

viscous damping matrix

matrix relating control system displacements to structural
displacements

interpolation and differentiation matrix relating slopes at
downwash collocation points to displacements at structural
nodes (Section 5.3) '

interpolation matrix relating translations at downwash
collocation points to displacements at structural nodes
(Section 5.3)

equivalent airspeed

bending stiffness
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combination of modal displacement matrices (equation (5.14))
general modes of displacément

structural damping, 2%

torsional stiffness

interpolation matrix relating displacements at lumped aero-
dynamic load points to displacements at structural nodes
(Section 5.3)

transfer function of automatic control system (function of p)
column matrix of displacements at aerodynamic load points

constraint quantity (equation (6.43))

unmodalized aerodynamics matrix (function of k and Mach
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aerodynamic lifting pressure distribution mode
modal degrees of freedom (modal participation coefficients)
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flutter equation
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STUDY OF FLUTTER RELATED COMPUTATIONAL
PROCEDURES FOR MINIMUM WEIGHT STRUCTURAL
SIZING OF ADVANCED ATIRCRAFT
R. F. O'Connell, H. J. Hassig and N. A. Radovcich
Lockheed-California Company

Burbank, Californis

1. INTRODUCTION

1.1 General

One of the factors contributing to the profitability of an airplane is its
payload/range capability. Given certain safety and performance requirements,
there is a direct trade-off between structural weight and payload, and it is
the ideal of each airplane designer to reduce structural weight. Although the
ideal minimum weight design may be expensive to produce, overshadowing any
payload/range gains, it provides a good starting point for a practicable
design and a good basis for comparing different designs.

Structural weight minimization, of course, is not a new idea. It is one
of the airplane designer's most critical tasks. It now has come to the fore-
front as a result of two developments.

First, it has become evident to the structural design engineer that the
combination of finite element modeling, high speed computer capacity, and
mathematical techniques makes it practicable to do detailed structural
synthesis aimed at minimizing weight.

Second, the need for a comprehensive and detailed approach to structural
design optimization has significantly increased with the advent of the super-
sonic transport. This follows from the fact that for a supersonic transport
the return in terms of payload/range per pound of structural weight saved is
considerably larger than for a subsonic transport. For instance, a one per-
cent structural weight saving on a typical subsonic transport might result in
an increased payload capability of one to two percent; on an arrow wing super-
sonic transport, recently studied by the Lockheed-California Company, a one
percent structural weight saving resulted in a four percent increase in pay-
load capability for the design range.

The subject of this report is flutter optimization; i.e., structural
weight minimization with flutter constraints. The need for a systematic,
possibly automated, approach to flutter optimization also has increased sig-
nificantly. Subsonic transports, as they are known, and transonic transports,



as shown in artist's sketches, can be represented by simple, beam-type
structural models that are satisfactory for optimization with flutter con-
straints. Flutter optimization for such designs can be done, and has been
done, with available methods. The supersonic transports that are flying and
those being studied, however, all have 1lifting surfaces that cannot be repre-
sented satisfactorily by simple beam-type structural models. This fact alone
makes the task of flutter optimization an order of magnitude more complicated.

Although ad hoc approaches to flutter optimization still could lead to a
satisfactorily optimized supersonic design, refined methods that take full
advantage of the capabilities of the present computers, in regard to automation
as well as interaction with the engineer, become attractive and possibly
mandatory. This is especially true in view of the rapidly increasing capa-
bility for fast analysis and synthesis in the areas of structural modeling and
analysis, stress optimization, and performance analysis supported by improved
configuration control. Flutter optimization must keep abreast of these devel-
opments. A balanced improvement in capability in all disciplines will make
possible, within a practicable time span, true in-depth comparisons between a
large number of candidate desiguns.

The preceding paragraphs present generally well known justification for
a concerted effort in improving methods of structural optimization with flut-
ter constraints. Work performed during the subject study is part of such an

effort.

Work towards the goal of a generally available automated or semi-automated
structural optimization system, that includes items such as optimization for
stress, flutter and controllability, multiple flutter speed and modal damping
constraints, is still in a state of development. The present study has con-
tributed to this goal in the following areas. Methods of computing the aero-
dynamics parameters to be used in a flutter optimization program have been
compared in detail with respect to characteristics which are independent of a
specific aerodynamics theory. A method for efficiently and reliably solving
the flutter equation for roots of interest in a flutter optimization module
has been developed. Five methods of flutter optimization have been compared
in detail and the mechanics of the optimization process have been examined;
numerical examples with all five methods have been generated for the same
aircraft design. Recommendations for further study and for the design of a
flutter optimization module have been made.

The principal results of this study are presented in this report. Back-
ground discussions and supporting material are presented in a companion report

(Reference 1).



1.2 Objectives of Study

The objectives of this study are:

1. To survey and evaluate methods of representing unsteady aerodynamics
parameters and make recommendations for a general, accurate and efficient
formulation that minimizes the computational effort during the optimiza-
tion process. The assessment of aerodynamics theories, however, falls
outside the scope of this study.

2. To survey and evaluate methods of determining the flutter characteristics
and make recommendations for a method that is reliable and efficient, and
suitable for the optimization process.

3. To evaluate and compare a number of methods of structural optimization
with flutter constraints and make recommendations for Ifurther evaluation
in a realistic design environment.

L. To make preliminary recommendations for the design of a flutter
optimization module.

2. OVERVIEW OF THE FLUTTER OPTIMIZATION TASK

Structural optimization with flutter constraints is both an extension of
the structural optimization task related to strength and an extension of the
flutter analysis task. Being an extension of two tasks that traditionally are
considered to belong to different disciplines, flutter optimization must take
into account requirements of both disciplines. Structural optimization
requires that a structural model is used that incorporates sufficient struc-
tural detail, in terms of distribution of structural material, to aid the
designer in defining hardware. Similarly the flutter analysis that is incor-
porated in the optimization process must be of an accuracy comparable to that
used outside of flutter optimization. The latter refers to methods of
representing the unsteady aerodynamics and methods of solving the flutter
equation, since the more detailed a structural model is, the more accurate,
from an idealized theoretical point of view, is the flutter analysis. From a
practical point of vieéw, structural sizing for strength requires more detail
in the structural model than is required for adeguate prediction of flutter
characteristics.

Thus, the flutter optimization task starts with the definition of the
structural model. This is one of the most crucial aspects of flutter optimiza-
tioh, and it involves a serious conflict between simplicity of approach and
computer cost. Present computer technology, or methods of structural analysis,
or both,may not permit a structural model with sufficient detail for a stress
analysis to be used in flutter optimization; computer cost could be exorbitant
due to the repetition of operations during the design process. Section 7.1



deals with this problem in more detail. Suffice here that associated with the
choice of structural model is the selection of a practicable number of degrees
of freedom for the vibration analysis that has to provide the modes for the
modal reduction of the flutter equation, which is usually required to limit
computer cost. If the degrees of freedom for the vibration analysis are a
subset of the degrees of freedom of the structural model, complications arise
if a nonlinear relationship between the stiffness matrix and the design
variables results (see Section 7.1).

Without serious restriction on scope or accuracy of the analysis the mass
matrix can be assumed to be a linear function of design variables. It is the
sum of a basic matrix and as many elementary matrices as there are design
variables associated with a mass change, each proportional to a design
variable.

During the flutter optimization there is repeated need for determining
roots of the flutter equation, each time that a structure that has undergone
a resizing since the previous solution of the flutter equation. For many, if
not all, of these solutions a remodalization is necessary based on vibration
modes of the current configuration. It is found that for the optimization
process to provide reliable, converged results, consistent with the capability
of the structural model, more modal degrees of freedom are required in the
flutter equation than for a routine flutter analysis (see Section 4).

Incorporation of state-of-the-art level aerodynamics in the flutter
optimization process does not provide significant problems beyond those
encountered in the usual flutter analysis. For a given external geometry the
basic aerodynamics formulation is invariant with structural changes. The
repetitive formation of generalized aerodynamic forces for successive, updated
modalization of the flutter equation is simple and relatively inexpensive.

In view of the cbjectives and the scope of the present program, this
report devotes major sections to important aspects of the flutter optimization
procedure. Section 3 deals with the solution of the flutter equation. Sec-
tion L4 deals with modalization. Section 5 presents part of considerable work
devoted to the aerodynamics, with the remainder being presented in Reference 1.
In Section 6, methods of optimization for flutter, evaluated during this study,
are discussed. Numerical results obtained by applying these methods to a
simplified optimization task are presented in Appendix A.

Against the background provided by these sections, Section T presents
discussions of several additional problems and considerations that need to be
studied in order to choose a rational approach for formulating a flutter
optimization module.

In Section 8, computational aspects of the complete flutter task are
delineated. This task includes flutter analysis as well as structural syn-
thesis of a design that satisfies the flutter requirements.

Section 9 summarizes the conclusions of the present study and presents
recommendations for future work.



3. SOLUTION OF THE FLUTTER EQUATION

3.1 The Generalized Flutter Equation

When using the k method the flutter equation can be written as:

f e - o] (s)o0

One of several possible methods of soiving this equation is to determine the
1
characteristic value A =-};€§L for several values of the reduced frequency

'

k= keeping all other quantities in the equation constant (Reference 2).

V E]
In the p-k method the flutter equation is
V2 2 1 2
5[] o+ s 1] - 207 [ac0] {a}- (3.2)
c
and solutions p=(Y+i)k are sought for selected combinations of values of
V and p (Reference 3). The p-k method formulation is convenient for the

inclusion of viscous damping and control system transfer functions. This is
accomplished by writing:

[_Vé [M] p2 +% [D] p + (1+ig) [K] -—]Z;pV2[A(ik)] —EHj(p)[Dj] {q} =0 (3.3)

where Hj(p), Jj=1,2.., represents transfer functions of the control system
and [Dj] relates the control system displacements to the structural dis-
" placements; [D] is a viscous damping matrix (Reference 3).

A further generalization of the flutter equation can be made by making
the stiffness matrix and the inertia matrix functions of design variables

m. which is the standard procedure for structural optimization. In addi-
tion, other gquantities, such as [?] s [Dj] , as well as transfer function

coefficients in Hj(p), may be made functions of design variables.



Equation (3.3) implies that the determinant of the square matrix on the
left hand side is zero and thus, in a very general form, the characteristic
equation corresponding to the flutter equation can be written as:

5.[(Y+i)k,g,v,p,mi} = 0; (3.4)

D is called the flutter determinant. For arbitrary values of the variables
it has a complex value. Thus equation (3.4) represents two equations and, in
principle, can be solved for two unknowns for given values of the other
variables.

Letting 7Y=0 and solving for g and V corresponds to the traditional
k method of solving the flutter equation. Solving for Y and k corres-—
ponds to the p~k method. Letting V=0 and solving for k and V leads
directly to the flutter speed for a given value of the structural damping, g.

Solving equation (3.4) for k and one of the design variables, assuming
all other variables fixed, is a new use of the flutter equation. It is called
Incremented Flutter Analysis (References 4 and 1), applications of which are
included in Sections 6.2.3 and 6.6.

3.2 Types of Solution Sought

A flutter analysis in the traditional sense is the determination of the
flutter characteristics of a given structure. It includes the calculation
of any flutter speed that may occur at speeds up to or somewhat beyond a
speed corresponding to the required flutter margin. It also includes the
gaining of insight in the variation of fregquency and aerodynamic damping at
speeds below the flutter speed for several in-flight vibration modes of
interest. Consequently,sufficient modal solutions are obtained for the con-
struction of f-g~V diagrams (Figure 3-1) for several flight conditions.

A procedure for structural optimization with flutter constraints will
most likely start with such a survey-type analysis. However, during the
process of repeated resizing, leading to the optimum design, there is no need
for determining complete f-g-V diagrams at each resizing; only point solu-
tions are required. Point solutions found in the literature are of two types:
1) directly solving for the flutter speed (the combination k,V in equa-
tion (3.4)), and 2) determining the value of one design variable necessary to

satisfy a given flutter speed constraint (the combination k, m'j in equa-

tion (3.4) where mj is one of the design variables mi).
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One additional type of point solution has been formulated during this
contract, resulting in the determination of the minimum damping point of an
in-flight mode. Such a point, if it exists, is of interest if the minimum
damping point lies within the speed range considered. The associated mode is
called a hump mode (See Figure 3-1). This point solution requires the solution
of equation (3.4) and the equation

Y=o | | (3.5)

0409
<

for the three unknowns k, ¥ and V. Details of the formulation are given in
Section 3.L4. No numerical evaluation of the method has been made thus far.

The following section deals mainly with methods of obtaining point
solutions for the flutter speed. It should be kept in mind that when such
solutions are needed in an optimization program a solution for a similar
structural configuration is usually avallable as a first approximation to the
required solution.

3.3 Methods of Obtaining Point Solutions

Several methods for obtaining point solutions have been considered and
evaluated to various depths. Their apparent efficiency, in terms of computa-
tional effort, is an important part of the evaluation. However, the degree
of certainty with which a desired solution can be found is even more
important.

The latter consideration refers to convergence problems and to problems.
associated with relating modal solutions at one value of V or k +to modal
solutions at another value of V or k.

The results of evaluations of the following methods are presented:

Bhatia method (Reference 5)

Phoa - Boeing method (Reference 6)

Lockheed's Program 165 (p-k method, Reference 3)
Desmarais-Bennett method (Reference 7)

Two Dimensional Regula Falsi and Newton Raphson (Reference 8)

3.3.1 Bhatia Method - In Reference 5 Bhatia presents a method of solving
directly for the flutter speed. Numerical evaluations of the method have
been performed using data from the arrow wing study that Lockheed has con-
ducted under contract NAS1-12288.

In Bhatia's method, which is based on the k-method approach, the struc-
tural damping, g, required for neutral stability is computed as a function

of 1/k =?;¥- by means of a Laguerre type extrapolation. It is an iterative



method that is initiated by choosing a trial value 1/k and computing the
associated value of g and its first and second derivative with respect to
1/k. The Laguerre extrapolation leads to a first approximation of the value
of 1/k for which g=0.. The process is repeated for this new value of 1/k
until convergence is reached.

The method as presently programmed uses only aerodynamic matrices at
preselected values of k, requiring a large number of preselected k values.
The method also requires inputting the first and second derivatives of all
serodynamics matrices with réspect to 1/k. The method could be improved by
using interpolation with respect to k to determine the aerodynamics matrix
and its derivatives at arbitrary values of k  from matrices given at a
moderate number of preselected k values. Care must be taken that the
interpolated results are defined uniquely over the range of k of interest
for a particular solution to prevent the solution from oscillating between
two values ("hunting").

Numerical evaluations were performed as part of this study. Difficul-
ties were encountered in tracking the proper mode and in converging on the
lower flutter speed of a hump mode. There is uncertainty whether the program
can be modified such that the proper modal solution is always obtained.

At each step in the iteration towards the solution a characteristic
value problem must be solved. This may prove to be costly in terms of CPU
time.

3.3.2 Phoa Method - In Reference 6, Phoa presents a formulation of the
flutter equation from a controls theory point of view. Although it is
recognized that controls theory could prove to be of assistance in inter-
preting the flutter phenomenon, in the case of Reference 6 it leads to an
equation that is essentially the same as equation (3.4). Phoa's method, based
on the k-method approach, is in use at the Boeing Company. Discussions with
Boeing personnel indicate that in the actual application the equation

{p(w,v). -1} = D(w,V) = -1 1is solved for V and w.

The solution is accomplished in two steps. Constant velocity lines in
the complex plane representing D(w,V) are intersected with the real axis.
The values of the real parts at the intersections, as a function of the
velocity, are used to determine an estimate of the velocity for which the
real part of D(w,V) equals =~1. In an iterative process the accuracy of
the solution is improved.

In numerical evaluation of this approach it was shown that the constant
velocity lines may have two intersections with the real D(w,V) axis; this
can be a source of problems (Figure 3-2).

The method is a sequence of two interpolations requiring many determinant
evaluations. It is expected that very few, possibly not more than two or
three, steps in the iteration process are required.
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3.3.3 Lockheed Program 165 -~ Program 165 of Lockheed's Flutter and Matrix
Algebra System (FAMAS) is based on the p-k method approach. It is designed
to generate many point solutions, associated with in-flight modes, so that com-
plete f—g—V diagrams can be constructed. The program solves equetion (3,3)
for p=(Y+i)k given an initial trial solution. For determining the flutter
speed, Y 1is evaluated at several values of the velocity. Flutter occurs at
the speed for which 7=0. '

The program has been used successfully in nonautomated numerical evalua-
tions during this contract. Automation should be relatively simple and could
be based on the following steps. At the estimated flutter speed an estimated
frequency is used to start the process. Both are obtained from the solution
for a previous structural configuration. Determinant iteration (see
Reference 3) will lead to the actual value of Y at the estimated flutter
speed. At a slightly perturbed velocity, using the damping and frequency
already found as trials, VY 1is again evaluated. The two pairs of V and ¥
values thus found are used to initiate a One-Dimensional Regula Falsi pro-
cedure that leads to a value of V for which 7VY=0. The approach is expected
to be quite efficient, except for the problem of assuring that subsequent

solutions belong to the same in-flight mode.

3.3.4 Desmarais-Bennett Method - Reference T presents a fast and economical
automated procedure to generate f-g-V diagrams, including the proper con-
nection of point solutions of the flutter equation. The procedure is based
on the k-method approach.

Reference T shows that the method is quite powerful in properly con-
necting point solutions. The sample cases in Reference T, however, are
obtained by partial deflation of the flutter determinant after each modal
solution is found. Thus using this method would require solving for more
roots than are of interest if only the flutter speed is required. Or,
alternatively, if only the root of interest is determined, there is uncer-
tainty whether the method will be as successful in following modal solutions
as shown in Reference T.

Application of this method to directly solving for the flutter speed
could be programmed according to the following procedure.

The known solution for a base configuration is considered a reasonable
estimate of the solution for a slightly modified configuration. Two k
values, closely spaced according to the Desmarais-Bennett approach, are
chosen such that flutter is expected to occur at a lower k <value. Modal
solutions at these two k +values are obtained. The repeated sequence of
linear extrapolation to the next k value and the Laguerre iteration
described in Reference T is performed for the mode that is expected to give
the flutter crossing and one or more additional modes on each side of this

"mode in the frequency spectrum. The additional modes are included to assure
that a flutter crossing is obtained, in the event that an error in judgment
is made in selecting the prime candidate mode for a flutter crossing.
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The preceding conceptual evaluation defines the problems that need to be
resolved when adjusting the Desmarais—Bennett method for use in a flutter
optimization program and no numerical evaluation was considered necessary.

3.3.5 Two-Dimensional Regula Falsi - The concept of solving the two equations
implied by equation (3.k4) for two unknowns is not new. However, using this
concept for directly solving the flutter equation for the flutter speed is
relatively new. The need for such a solution arose with the advent of struc-
tural optimization with flutter speed constraints and, to the knowledge of
the present authors, the first published record of solving dlrectly for the
flutter speed is Reference 9.

In that Reference the Newton-Raphson approach is used in two dimensions
to determine flutter speed and, as a byproduct, flutter frequency. The
Newton-Raphson approach is based on determining the value of a function and
its derivatives for an initial set of trial values and extrapolating linearly
to an estimate of the solution. In Reference 9, the derivatives are deter-~
mined by a finite difference technigque. The Two~Dimensional Regula Falsi
approach uses three trial sets of the unknowns to construct two planes. The
common point between those planes and the plane D(w,V)=0 defines the next
estimate of the solution.

Table 3-1 compares the essential characteristic of the two methods. In
the Newton-Raphson method with analytical evaluation of the derivatives, the
formation of two derivative matrices is time consuming. In &ll1 methods the
determinant evaluations are the most time consuming. Other operations,
related to solving two linear eguations with two unknowns, are trivial. Pro-
visions to assure convergence are comparable for the two methods. Numerical
experience with the Two-Dimensional Regula Falsi has indicated that problems
with convergence on a solution are more easily solved than with the Newton-
Raphson approach. It is concluded that the Two-Dimensional Regula Falsi
approach is the more preferable one of the two.

It should be noted that both methods can be used for combinations of
unknowns other than frequency and flutter speed. The Two-Dimensional Regula
Falsi has been used successfully for solving for the value of one design
variable, required to meet a given flutter speed, and the associated frequency.
The method dces not require the computation of derivatives. No interpolation
or extrapolation of converged solutions is required, unless nonconvergence is
encountered and an intermediate configuration is analyzed to assist in obtain-
ing a better initial estimate of the solution for the configuration for which
the original nonconvergence occurred. Finally, the solution sought is a
combination of real values of the unknowns, rather than a series of complex
modal solutions associated with in-flight modes. The equivalent of converging
on the wrong mode, as may occur in seeking modal solutions, usually leads to
nonconvergence, and a recovery procedure that 1s described in Reference 1.
Thus mode switching to a non-~flutter mode does not occur or, at worst , leads
to nonconvergence. The chance of converging on the wrong flutter speed and
frequency would seem to be quite small in view of the relatively small number
of solutions within the region of interest of the unknowns. It has never
occurred in the many test cases that have been run during this study.

12



TABLE 3-1.

COMPARISON OF NEWTON-RAPHSON METHOD AND

TWO-DIMENSIONAL REGULA FALSI METHOD

Newton-Raphson o
Analytical Finite Dimensional
Operation Derivatives | Differences |Regula PFalsi
Number of initial estimates 1 1 3
Interpolation of aerodynamics Yes Yes Yes
matrix required?
Derivative of aerodynamics Yes No No
matrix required?
Formation of derivative matrices Yes Trivial No
required?
Number of complex Value of 1 3 3
determinant First | determinant
evaluations per step
iterative step Derivative 2 0 0
Each Value of 1 3 1
fol- determinant
lowing
step Derivative 2 0 0

3.3.6 Conclusion - On the basis of overall engineering evaluation, supported
by numerical experience with all methods except the Desmarais~Bennett and
Newton-Raphson approach, the Two-Dimensional Regula Falsi approach was con-
sidered most promising and chosen for further development (see Reference 1).

3.4 Minimum Damping in Hump Mode

Sufficient modal damping within the speed envelope can be assured by

requiring sufficient damping
required flutter speed or by
in so far as it occurs below

or larger than a given value.

To initiate exploration

minimum damping in a hump mode was formulated.

in all modes at "all" speeds below the minimum’
requiring that the minimum damping in each mode,
the minimum required flutter speed, is equal to

of the latter approach a method to determine the
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The point of minimum damping in the hump mode is defined by the condition

é;§==0, where 7Y defines the real part of the flutter root, p=(¥+i)k, in

terms of the reduced frequency k.
logarithmic increment: ’

The quantity 7 is a form of the’

a
- ._J:. _.Il_'".i .
_ Y = szn ] (3.6)

where an and a 41 are amplitudes of successive cycles.

An expression for Y

p~k method formulation of the flutter equation (equa~-
V:

oY is found as follows.

Consider the
tion (3.2)) and take the derivative with respect to

[0 57+ 2 2 5 32 - v ] - £ [wcaw] 3]}
c

c

+ [XZ—[M] p° + (1+ig) [K] - %Pvz [A(ik)]] {%} =0 (3.7)
c

Choose a velocity Vl for which g% is estimated to be equal to zero.

The solution of the flutter equation at Vl is: p = P> {q} = [ql} and the

characteristic vector of the transposed equation: r} = {rl . Substituting

this solution into equation (3.7) gives:
2

"27\:[; l.rl_l [M] {ql} P+ 2 Y?_I.rlJ [M] {ql} b, g

c

- lel-rlJ [A(ik)] {ql} +-;-le2 I_rlJ [A'(ikl)] {ql}% =0 (3.8)

t{s = e =
where A (lkl) 91 A( lk) evaluated at k kl.

With p = (Y+i)k:
(3.9)

9p _ 9Y .y 9k
Vo oav kit () 5y

1k



. Substituting equation (3.9) into equation (3.8) leads to a complex equa-

tion, and thus two equations in the two unknowns k4 and 9k from which %)
ov oV av 1

can be determined..

The process can be repeated for V2, leading to (%%) . A one-
. 2

dimensional Regula Falsi approach will lead to the value of V for which

oY _

5V 0.

In the above approach two characteristic value problems must be solved

. 9
for determining the first iterated value of V for 5%-= 0. Each following

step requires solution of one characteristic value problem.

It should be noted that damping versus speed curves may be rather flat
and for practical purposes a converged value of Y may not define a converged
value of V. This causes no problem since the most likely application of
these procedures is in connection with an inequality constraint such as:

Y (3.10)

hump top Vmax allowed

Determining the minimum damping in a hump mode can re combined with
solving for the value of a design variable satisfying the constraint:

(3.11)

<l

hump top - ymax allowed =

For V = vy and Y =Y, equation (3.7) is solved for k and the value

of the design variable m,. Then equations (3.9) and (3.8) are used to compute

9y
v

is initiated by repeating the process for another chosen value V =V

as before. In general N4 # 0. and a one-dimensional Regula Falsi process

ov

x
Numerical evaluation of the approaches outlined could not be accomplished
within the scope of this study.
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3.5 Recommendation

The two-dimensional Regula Falsi procedure is recommended for inclusion
in the Flutter Optimization Module for providing point solutions of the
flutter equation.. The procedure is more direct than any of the other pro-
cedures considered. It aims at roots of the flutter equations, either flutter
speed and frequency or design variable and frequency, of which for every
flight condition there are considerably fewer present than there are in-flight
modes represented in the problem formulation. As a result, convergence on the
wrong root would seem to be less likely than when modal solutions are sought.
That the same procedure can be used for solving for different pairs of
unknowns is considered an added advantage. In addition, it is equally appli-
cable to the p-, the k- and the p-k method of formulating the flutter
equation. A preliminary program is available that has shown good convergence
behavior under a wide variety of input data. '

Since it seems likely that the capability of directly solving for the

point for which Y - 0 will be a factor in developing methods of flutter

oV

optimization, numerical test cases should be conducted to evaluate the methods
related to determining the minimum damping in the hump mode. The results may
influence the development of methods of optimization that take into account
damping constraints. '

4. MODALIZATION

4.1 General

Modalization is the reduction of the number of degrees of freedom by
establishing modes of displacement in which the original degrees of freedom
(usually point displacements) have a fixed relation to each other.

Let {z(l)} define a relation between the discrete structural displace-

ments z. The arbitrary column matrix of displacements {z} can then be

approximated by linear combination of several linearly independent columns

{Z(i)_} :
()= [} . )] 0o
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or in short notation:
{z} = [zHa} | (4.2)
The modalized flutter equation is:

[E]T %Z—[M] p° + (1+ig)[¥] - 1/2pv®[a(1x)] [E]{q} =0 (4.3)

“'Modalization is desirable whenever the total number of initial degrees of
freedom is sc large that solving the unmodalized equation becomes uneconomical,
and is necessary if the number of initial degrees of freedom exceeds the
capacity of the available computer program to solve the original characteris-
tic value problem. Since, in general, the flutter equation is solved more
frequently than the vibration equation and, in addition, the flutter equation
must admit complex numbers, modalization is usually associated with the
flutter equation. However, when using all the structural displacements of a
detailed finite element structural model as degrees of freedom, modalization
may be desirable or necessary for the vibration analysis as well.

In any discussion of modalization, the type of modes and the number of
modes to be used must be considered. When used in an optimization procedure,
the question of "updating" must be considered. Updating in this context
means the adjustment of the modes after resizing the structural elements in
the course of the optimization procedure. These three aspects of modalization
will be discussed separately in the following sections.

4.2 Types of Modes

Before the advent of the high-speed computer, modalization (e.g.,
Rayleigh~Ritz method) was required even for vibration analyses. Relatively
few and simple modes were used. With the increasing capacity of computers,
the need for modalizing the vibration equation has all but disappeared. Thus,
present practice is to determine natural vibration modes of the entire airplane
from an unmodalized vibration equation and to use a certain number of modes,
associated with the lower range of natural frequencies, to reduce the order of
the flutter equation. For special investigations, such as the inclusion of
actual control-surface-actuator impedances, or the entire automatic control
system, additional control surface modes may be necessary.

In several instances in the literature (e.g., Reference 10), the use of

component modes has been described. Component modes define the relations
between discrete displacements of airplane components such as the wing or
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fuselage, and are obtained by a vibration analysis in which only displacements
of a particular component are used as degrees of freedom. Complications arise
when the connections between components involve many structural displacements.
Reference 11 shows, with a simple beam as an example, that the unjudicious

use of component modes can give inaccurate results for even the lowest fre-
quency of the entire body. The use of component modes is only recommended

for the determination of natural vibration modes of the complete vehicle,

and then only if it is necessary to reduce the order of the vibration

equations.

Analytical modes, such as defined by polynomials and modes corresponding
to static deflections, would obviate the need for repetitive vibration analyses
during the optimization process if they are used as fixed modes. However,
usually a considerably larger number of such modes is required, for the same
accuracy of the flutter solution, than when vibration modes are used. No
advantages off-setting that disadvantage have been encountered.

Specifically, analytical modes have been suggested for efficient genera-
tion of generalized aerodynamic force coefficients, as discussed in Section 5.
The use of analytical modes may permit the analytical integration of the
product of deflection and pressure modes. It makes it possible to compute
invariant generalized aerodynamic force coefficients that can be combined
linearly to form generalized aerodynamic forces for any arbitrary mode. To
take advantage of this feature, however, the number of analytical modes must
be large, since it must be adequate for a large number of stiffness and
inertia distributions. The analytical modes thus can serve as reference modes
that are the degrees of freedom for all vibration analyses from which a
smaller number of vibration modes is obtained for use in flutter calculations.
However, a large number of vibration modes of a basic configuration also can
be used as reference modes and one would expect that fewer reference modes
are needed if they are vitration modes than if they are analytical modes.

It was thought that using the (complex) flutter mode of a base configura-
tion might reduce the number of modes required for an adequate flutter solution
of a modified configuration. Some preliminary work during this study was
done, but was not carried far enough for any conclusion to be drawn.

4.3 Number of Modes

The number of modes used in the flutter equation is of importance for the
accuracy of the -computed flutter speed and flutter speed derivatives with
respect to design variables. At present there seems to be no readily available
general criterion for determining the number of modes needed for a desired
accuracy.

When trying to economize by restricting the number of modes to be used in
flutter calculations, there is a need to frequently check whether the number of

18



modes is sufficient for accurate prediction of the flutter speed for arbitrary
configurations. Thus there is an advantage in using flutter analysis pro-
cedures that allow a large number of modes even if that raises the cost of
each individual flutter solution.

It has been pointed out in Reference 12, and it was confirmed by limited
numericel analysis during this study, that more modes are needed for accurately
computing flutter speed derivatives than for computing flutter speeds.

In deciding on the number of modes the computer environment may be an
important factor to be judged by the analyst in addition to the accuracy
required. Even the method of computer cost appropriation may influence the
decision.

4.4 Updating of Modes

As resizing steps accumulate during the optimization process, the vibra-
tion modes of the initial configuration become less suited to accurately
represent the revised structure. Ideally, therefore, after each resizing step
a new vibration analysis should determine new modes for modalizing the flutter
equation. The need for such updating is closely related to the number of '
modes used and the type and magnitude of structural changes incurred by the
resizing. The use of a large number of modes tends to reduce the need for
frequent updating. However, insufficient updating can cause the resizing
steps to follow a zig-zag path that, in the extreme, may not converge.

The physical explanation for this is the following. Let the optimization
procedure indicate a local stiffening as the optimum resizing for resizing
step J. Then the vibration modes for step j+1 would show a decrease in local
deformation. If the vibration modes for step j are used for step j+1l, the
excess local deformation tends to reinforce and overestimate the beneficial
effect of that local stiffening. Thus,in the absence of modal updating,
material tends to be added where the first resizing step, with the modes used,
indicates where it is most beneficial.

Modal updating must not be confused with making the modal matrix a func-
tion of the design variables. This aspect of modalizing was recently intro-
duced by Reference 12 and it is formulated in Reference 1. Determining each
resizing step under the assumption of constant modes (i.e., independent of the
design variables), but using updated modes at each resizing step, may under-
estimate the amount of material to be added locally for a certain amount of
stiffening in a particular step, but it is not expected to cause an erratic or
nonconvergent resizing path.

As important as the frequency of updating is on the efficiency of the

optimization procedure, the number of modes used to do the final flutter
analysis is more important from a general point of view since it provides the
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final check on the optimization procedure. In the opinion of the present
investigators, a check flutter analysis using a proven sufficient number of
vibration modes of the final configuration should conclude any optimization
process. If flutter requirements are not met, then a new optimization process
can be initiated and, probably, more modes or more frequent updating, or

both, should be used.

4.5 Recommendations

In view of experience during the present study, and as a result of
experience with flutter analyses of actual airplane designs, the present
investigators recommend the following:

1. A flutter module should provide the option of inputting arbitrary initial
modelizing matrices or of generating initial modalizing matrices based
on a vibration analysis of the initial configuration.

2. The number of vibration modes to be used for the flutter calculations
should be an input option.

3. The frequency of updating the vibration modes should be an input option.

k. An option should be included to provide the analyst with information to
determine whether his choice of number of modes and frequency of updating
has led to satisfactory flutter characteristics. B8Such information might
be provided by a vibration and flutter analysis of the final configura-
tion with more modes than were used throughout the resizing process,

a check on whether the optimality criteria for flutter are satisfied,
or other check procedures.

5. AERODYNAMICS

5.1 Introduction

One of the objectives of this study is to develop general, efficient and
accurate computational procedures for evaluating the unsteady aerodynamic
parameters necessary for use in a flutter optimization module, without, how-
ever, evaluating aerodynamics theories.

The procedure should be general. That is, it should be applicable to
all present, and hopefully future, theoretical formulations of unsteady
aerodynamics.
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The procedure should be efficient. 1In the context of application in a
flutter optimization module, this implies a minimum of computational operations
required to recompute the generalized aerodynamic force coefficients each
time a modal updating occurs.

The procedure should be accurate. This implies it should be able to
accommodate the most sophisticated formulations of the aerodynamics, such
that the aerodynamics used in the flutter optimization module have the same
accuracy as the aerodynamics used in a flutter analysis module.

In the following section general background for a matrix formulation
that allows a procedure satisfying these requirements is presented. It is
followed by the definition of the formulation and a discussion of how the
dimensions of the matrices, the method of interpolation for modal deflections
and arbitrary values of the reduced frequency k, and the number of reduced
frequency intervals to be considered determine the sequence of operations
that is most efficient. Conclusions and recommendations regarding the aero-
dynamics subroutine in a flutter optimization module are presented.

5.2 General

The elements of the matrix of generalized aerodynamic force coefficients
are defired by:

ny = e pytey) ax ay (5.1)

Here pj(x,y) is the lifting pressure distribution associated with an

angle-of-attack distribution, aj(x,y), which is defined by:

of, (x,y)

aj(x,y) = %lsfj(x,y) + —-Jax— ay (5.2)

0 . .
and 5&- terms in the case of harnmonic

which expresses aJ as the sum of %%

motion with reduced frequency k in a mode defined by fj(x,y).

Expressed in the form of equation (5.1), the evaluation of Ai requires

J

evaluation of the surface integral each time new modes fi are used. In the
usual flutter investigation meny different sets of modes are used, corre-

sponding to different weight and stiffness distributions. In addition it is
expected that frequent remodalization is required in an optimization procedure.
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Thus it is advantageous to develop a method in which the generalized aerody-
namic force coefficients are formed from a mode-independent part that contains
as many of the numerical operations as possible, and a relatively simple
mode-dependent part.

Four different approaches are recognized in separating mode-independent
operations from mode-dependent operations. One method relies entirely on
analytical evaluation of the surface integral (Equation (5.1)). A second
method formulates a numerical evaluation of the surface integral leading,
effectively, to "lumped" aerodynamic forces at a grid of integration points.
In a third method pressure distribution modes are analytically integrated
over small areas and combined into elementary aerodynamic forces directly
comparable to, and treated as, inertial forces. The fourth method recognized
is based on a finite element approach, the basic formulation of which has no
reference to pressure distributions over the entire surface.

The first three methods are usually thought of as stemming from the
kernel function approach of Reference 13. In it the pressure distribution

pJ(x,y) is assumed to be a linear combination of pressure distribution modes
J .
p (x,y):
n n
Pj(x,y) = Eaj P (x,y) (5.3)

The pressure mode coefficients a? are determined from a boundary
condition requiring that the normalized induced velocity distribution result-

ing from the pressure distribution equals the angle-~of-attack distribution at
a set of downwash collocation points:

() - b o
Combining equations (5.3) and (5.4) leads to
b - B

where the elements of matrix [PKI] are the integrals of the product of
pressure distribution mode and an aerodynamic kernel.

The columns of [?n] are linearly independent pressure distribution

modes.
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5.2.1 Analytical Integration - When pj(x,y) is a linear combination of

pressure distribution modes pn(x,y), analytical modal functions fk(x,y)
. n

can be selected such that the integrals .[ffkﬂx,y) p (x,y) dx dy can be

evaluated analytically. Generalized aerodynamic force coefficients in terms
of modal coordinates can then be formed. The analytical modes can be used’
as arbitrary modes to modalize the flutter equation, or a mode-dependent
transformation between the analytical modes and the actual modes is used to
express the generalized aerodynamic force coefficients in terms of the actual

modal coordinates.

5.2.2 Numerical Integration of the Product of Displacement and Pressure -
Reference 12 defines an approach to separating mode-independent operations
from mode-dependent operations in which the surface integral of equation (5.1)
is evaluated numerically. A Gaussian integration procedure is suggested to

evaluate the integral. The pressure pj(x,y) and the deflection hi(x,y)

are evaluated at integration points defined by the Gaussian procedure.
Weighting factors in the form of a row matrix, LWF » make it possible to

write:
[/Li(x,y) p,(x,y) ax dy =~ [WFJ {hi pj} (5.6)

The right hand side of equation (5.6) can be written as:

\
WF| {h, p.t = [|WF]| |h, 1 = [hJ [WF]{} (5.7)
R R I | E R IR | R
The interchange of the row and diagonal matrix in the latter part of the
combined equation (5.7) makes it possible to separate the mode-dependent
operations from the mode-independent operations.
‘The column matrix {WF-pj} is a set of lumped aerodynamic forces. The

deflections hi can be expressed in terms of the deflections zs at the

structural nodes by the relation.

{nen} = [8] {=) (5.8)

A variation of this method is obtained if instead of the pressure
distribution the velocity potential distribution ¢3(x,y) due to an
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angle-of-attack distribution ai(x,y) is used. With the familiar linearized

relation between pressure and velocity potential:

p = -2(%-:’%+ ik‘P) (5.9)

equation (5.1) becomes:

o9
= =29 - _'j
Ay 21k/ffi @, ax dy 2[/1‘1 5= dx dy  (5.10)

It can be shown that with the help of numerical techniques equation (5;10).

can be written as:
Ay = I_hiJ [ik [WF] + [WFD]] {tpj} (5.11)

where [WFJ performs numerically the first integration in equation (5.10) and
[WFD]. performs the differentiation and integration in the second term of that
equation. Equation (5.11) is a triple matrix product, similar to equa-

tion (5.7). in which the center matrix is mode independent. For additional
details see Reference 1.

5.2.3 Numerical Integration of the Pressures - When pj(x,y) is a linear

combination of pressure distribution modes pn(x,y), the integral
J]rpn(x,y) dx dy can be evaluated over small areas, often referred to as
aerodynamic boxes, into which the surface is divided. By evaluating
Ifx p(x,y) dx dy and ffy pn(x,y) dx dy over the same areas, lumped

aerodynamic forces can be determined in magnitude and location. The modal
displacement at the location of each lumped force (i.e., for each aerodynamic

box and each pn(x,y)) can be expressed in terms of the structural degrees

of freedom. Thus the product of each lumped force and its modal displacement
can be formed. Summation over the aerodynamic boxes and the pressure dis-

tribution modes participating in pj(x,y) leads to Aij'

5.2.4 Finite Element Approach - In a finite element approach, lumped aerody-

namic forces corresponding to {WF-pj} (see equation (5.7)) are expressed

2k



directly in terms of angle—of-éttack distributions {aj} under appropriate

simplifying assumptions. The generalized aerodynamic force coefficients are
formed as in Section 5.2.2.

5.3 Basic Formulation

Whatever the approach, or whatéver aerodynamic theory is chesen, the
generalized aerodynamic force coefficients in terms of modal coordinates
can bé expressed as the product of five matrices of which only the first and
last are mode-dependent:

] - B B B

The matrix [AIC] = [AIC(k)], a function of the reduced frequency
==%?i and the Mach number, is the core of the aerodynamics and is independent
of mode shape. Its elements are basic aerodynamic influence coefficients

defining lumped aerodynamic forces {Za} at an aerodynamic force grid in

terms of the angles of attack at downwash collocation points:

{za} = [AIC(k)] {a} (5.13)

[W] = [W(k)] = [tDX] + ik[DZj] relates the angles of attack to the structural
displacements {z} . It is independent of mode shape.

The matrix [H]T is independent of k and of mode shape, and distributes
lumped aerodynemic forces and moments over the structural coordinates.

In the case that the approach of Section 5.2.1 is followed, [AIC] is

the matrix of generalized aerodynamic force coefficients in terms of the
analytical modes; [H] and [W are equated to

L -1 T
[F] = [fe(x,y)] [fﬂ(x,y)] [fg(x,y)] (5.1k4)
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where columns of [fé(x,y)] are the fixed analytical modes. The métrix .[F]

is independent of k and of the actual mode shapes used to reduce the order
of the flutter equation.

The operations performed by [W] and [#]T mey be included in [AIC].
Equation (5.12) then reduces to the product of three matrices.

The matrix [E] contains the modal columns in terms of the structural
deflections {z}.

. T . . ;-_...
The matrices [AIC], [H] and [W] are constant during an optimization
procedure., They will be used many times during the design process of an air-
plane with a given external configuration. It is therefore advantageous to
form these matrices in a special aerodynamics computer program.
Fach time during an optimization procedure that a remodalization takes

place, [éij] must be recomputed. Depending on the dimensions of the matrices

in equation (5.12),it may be more efficient to compute the triple matrix

[H_AW] - [H]T [axc] [w] (5.15)

in the aerodynamics program, or to perform one or both of the multiplications
[Z]T[#]T and [W][E] in the optimization program.

In the following sections factors are discussed that must be considered -
in determining which approach to numerically evaluating [Aij] according to

equation (5.12) is most efficient.

5.4 Factors Affecting The Efficiency of The Numerical Evaluation of The
Matrix of Generalized Aerodynamic Force Coefficients

It is believed that the formulation

[n,] = [ ] ] (5.16)
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which follows from combining equations (5.12) and (5.15), is widely used in
industry. Detailed study of the formulation of equation (5.12), which
directly follows from Reference 12, however, indicates that there are condi-

tions under which it is more efficient to compute [E]T[H]T and/or '[W][E]

in the fluttef optimization module. Extensive comparisons have been made
and are discussed in detail in Reference 1. In the following the factors
affecting these comparisons are discussed and major conclusions are presented.

5.4.1 Matrix Population - When métrices are sparsely populated, or populated
in well defined blocks, proper programming can take advantage of this. '

In equation (5.12) the matrices [W] and [H] may be sparsely populated.
These matrices perform an interpolation and |W] , in addition, determines
streamwise slopes at collocation points. In the case of simple interpolation
(linear or low degree polynomial), each row in [WJ expresses the angle of
attack at a downwash collocation point in terms of several surrounding struc-
tural coordinates. Similarly, each row of [H] expresses the deflection at
an integration point in terms of several surrounding structural coordinates.
Thus each row in [W] and [H} contains relatively few, say <20, nonzero
elements; for linear interpolation each row contains four nonzero elements.
In the case of interpolation by the surface spline method, the matrices W
and [H] "are fully populated, at least in the blocks that cover the aero-
dynamic surfaces.

Without specific stipulations, equation (5.16) implies that the order of
the matrix [HAW] equals the number of structural coordinates. There may
be a considerable number of structural coordinates that do not carry an aero-
dynamic load. They correspond to zero elements in [HAW]. It is not expected
that the fraction of nonzero elements will be high enough to justify treating
[HAW] es a sparse matrix. However, by proper ordering of the structural
coordinates, the nonzero elements in [HAW] may be concentrated in one or
more blocks. Then the aerodynamics program may form [HAW] based on aerody-
namic load carrying structural coordinates only. Correspondingly, the flutter
optimization module must eliminate structural coordinates that carry no aero-
dynamic load from the modalizing matrix [E]

5.4.2 Interpolation for Arbitrary k Value - It is generally accepted that
when the generalized aerodynamic force coefficients are determined for a

discrete set of values, k,, of the reduced freguency, [Aij(kﬂ)] inter-
polation is adequate for approximating [Aij(k)] at arbitrary values of k.

Two methods of interpolation are considered: cubic polynomial and cubic
spline,
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can lead to "hunting" (oscillation between k +values in adjacent intervals).

Therefore it is recommended to define [A]!_J.(k)] by:

[Aij(k)] = ﬁZi)l@Q,z(k)[A;Lj(k!Z )] (5.20)

vhere [A:!L,j(kﬂ )] is the derivative of [Aij(k)] evaluated at k=k,. )
[A:;.j(kﬂ)] is an input to the interpolation subroutine. Thus the difference

between equations (5.19) and (5.20) is that in equation (5.19) differentiation
occurs after the polynomial fit and in equation (5.20) it occurs before the

polynomial fit. The formation of [Aij(kﬁ )] in the flutter optimization
module is based on equation (5.12), equation (5.16) or any variant that is
chosen as being most appropriate. The derivative [AIC'(k)] or [HAW '"(k)] is

needed and should be calculated outside the flutter optimization module by
any method that gives adequate accuracy.

To define [Ai,j(k)] and [A]!_J.(k)] in one k interval, four matrices
[AIC(kB )] and four matrices [AIC'(k!Z )] » or four of each of the matrices
[Haw(k)] and [HAW'(k)] must be input into the flutter optimization module.
1f [Azc(k)] and [AIC'(k)] are input, [Aij(k)] follows from equation (5.12).

t 1 3 -
[Aij(k)] is given by:

0] - B o] - TG )

If k moves to an adjacent interval only two of the input matrices, one
for the aerodynamics coefficients and one for their derivatives, need be
replaced.

It should be noted that, in effect, each k interval has its own

associated polynomials for the value of [Aij(k)] and its derivative. -

The cubic spline method also defines different cubic polynomials for
each k interval. The coefficients for the polynomial, however, are derived
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from matrices defined for all k values kg, £=1,2 . . . n. They follow
from the assumption of continuity of derivatives over the complete range of
k values. The resultant expression, e.g., for [AIC(k)], is:
[ucifd(k)] =[AICQO] + [AICBl](k-kB) + [Mcﬂz](k;kg)z * [AICBB](k-kB)B (5.22)
: !
The matrices [}Icﬂé] to [AIC£3] should be formed outside the flutter

optimization module.

Then:
[AfJ (k)] = [Axgo] +[Axgl] (k-kp) + [Axez] (k-k,)? + [AXB] (k-kp)3 +

[AZQO] ik + [Azn] 1k(kk)) + [AZB2] ik(k—kg)e + [Azm] ik(k—ke)3
where
[AXQO] = [Z]T[H]T[AIC Bo] [DX] ['z'] etc., (5.24)
[AZIZO] [z]T[H]T[AIceo] [DZ] [2] ete., | | (5.25)

Because of the implied continuity of the derivatives, it is proper to
differentiate equation (5.23) directly and thus no additional matrices for
the derivative need to be formed.

(5.23)

and

To define [Aij(k{] and [Aij(k)] in one k interval if the aerody-
namips input is [AICEO] to [AIC£3] requires eight coefficient matrices.
Switching k to any other interval requires replacing all eight matrices.

If the basic aerodynamics input is in the form of [HAWQO] to [HAWQB]’
then only four coefficient matrices are needed for each k interval.

5.4.3 Number of k Intervals - Let the basic aerodynamics input into the

flutter optimization module be [HAW(kg)]; the number of k intervals to be

considered is f£ .
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For the cubic polynomial,Lagrange's interpolation formula is considered
to be most efficient since it expresses [Aij(k{] directly in terms of its

value [Aij(kzil at discrete values kp , £=1, 2, 3, e
L £ '
[25;0)] = z 2(0) [, (xy)] (5.17)

where le(k) is defined by:

(k=k,.) (k-k.) (k-k,)
43 (k) 2 3 N

= (5.18)
1 (kl—kz) (kl—k (kl-k£7

3)
and cyclic substitution leads to <132,<133 and th.
The interpolation formula (5.17) is used only for the interval k< k<<k3.

For the interval k3< k<:kh the index { must be increased by one and for

kl<:k'<:k2 the index must be lowered by one.

Since most methods of optimization require the computation of the deriv-
ative of the aerodynamics matrix with respect to k, the formation of the

derivative, [Aij(k)]’ must be considered.

Differentiating equation (5.17) with respect to k 1leads to an
expression:

[Aij(k)] = élﬁlz(k)[Aij(ke)] (5.19)

that is based on the same aerodynamic matrices as equation (5.17). This
approach, however, combined with the re-indexing of kﬂ as k moves to an
adjacent interval, leads to jumps in the value of [Aij(ki] at all values

k=k,. Apart from considerations of accuracy, this is undesirable since it

£
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If cubic polynomial interpolation is used, (£+3) matrices [HAW(kQ)]
.

and [HAW'(kﬂ)] must be input and pre- and postmultiplied by [z] and
[EJ to form the .2(2+3) matrices [Aij(kﬂ)] and [Aij(kﬂ)] needed in
Lagrange's interpolation formula.

If cubic spline interpolation is used, u4f matrices EHAWQO] to [HAW?B]
must be input and pre- and postmultiplied by [?]T and [?] to form Ui
coefficient matrices [AZO] to [AB3]'

Under otherwise equal circumstances, polynomial interpolation is more
efficient if

2(8+3) < by or 2>3 (5.26)
This condition is wvalid for other sequences of operations to form
[Aij(k)] according to equation (5.12). However, there are also sequences

for which £ 2 4 or £ =5 is required for cubic polynomial interpolation
to be more efficient than cubic spline interpolation.

The number of intervals that should be used is difficult to predict.
If only one flutter constraint is active, k may stay within a rather small
range during the entire optimization process and that range may lie completely
within one k interval. Obviously only aerodynamic matrices applicable to
that one k interval need be computed. In general, however, several k
intervals are required.

5.4.4 Sequence of Multiplications - Defining one computational operation as

one multiplication and one addition, the numbers of such operations required

inside the flutter optimization module for different sequences of multiplica-
tions in equation (5.12) have been determined and compared.

The following options'have been considered; the numerals indicate the
sequence of multiplication.
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Hl:

HZ2:

H3:

Hh:

HS5:

0 R i e

GRS RIEY
1l 2
=
———
() - B ) )
1 =z
=
I ———

[AIC]~ [W] = [Aw] is computed outside the flutter optimization

module

] B [0 B )

() = - ] [¥] [2] (5.30)

[H]T [%IC] [w] = Eﬂwﬂ is computed outside the flutter module

ud - BT (] [

The number of computational operations is independent of sequence of

multiplications in H5.
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Formulas defining the number of numerical operations have been derived
and are reported in Reference 1. No option stands out as clearly superior
or inferior to all others, but some comments are offered in Section 5.5.

5.4.5 Form of Inputting the Angle-of-Attack Generating Matrix - In the pre-
vious section the options are defined as if one complex matrix [W(k)] was
input for each value of k. Suboptions of the options that require inputting
[W] can be obtained by considering the definition of [W].

[wx)] = [[DX] + ik[DZ]] (5.32)

Thus in options Hl, H2 and H4 an "a" and a "b" version can be recognized.

In the "a" version [W(k)] is input for several k values. In the "b"
versi