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: SKYLAB REFRIGERATION SYSTEM
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, SUMMARY
?

The on-orbit performance of the Skylab Refrigeration System components
!i is presented. Flight anomalies are analyzed and performance of the newly

developed components is described.

Nine months of orbit data proved the practicality of the leak-free coolant

: system design. Flight-proven application of a thermal capacitor and develop-

ment test results of the first all-mechanical, low-temperature mixing valve

f represent a significant advance in single-phase, tow-temperature coolant

loop design. System flight data suggest that additional instrumentation and

: fluid filters could have prevented system orbit performance anomalies.

J,

INTR ODU CTION

:r$

• The Skylab Orbital Workshop (OWS) Module contained a refrigeration

system (RS) that was designed to maintain 0.248m 3 (8.75 ft3) of frozen food

at a temperature of 250 K + 5.5 K (-10°F _- 10°F), freeze and maintain daily

'" urine specimens (IZZ ml/crewman) at 254 K (_2.5*F), chill daily micturition

(4 liters/cre_m_n) to less than 288.2 K (59°F), and chil. water, medical

supplies, ana biological specimens to Z77 K ± 3,3 K ('$9± 6°F). Temperature

control v.,asinitiated 40 days before the launch of Skylab I (April 17, 1974)

and was maintained until the end of the last mission 307 days later

• (February P, 1974).

The spatial location of RS equipment is shown in figure I. A food

freezer-chiller, located in the wardroom, and a water chiller, located in the

wardroom table, are shown. The Bioanalysis Lab contained the urine freezer

and chiller. _fhe forward area (second f]oor) contained the food storage

freezer, the RS pumps, and electronic control modules. The RS radiator

and an insulated thermal control assembly that housed the thermal capacitors,

flow control valves, and ground cooling heat exchangers were located on the

aft end of the OWS.

•_ The RS fluid schematic is shown in figure Z. Heat-transport and temper-

ature control were accomplished by controlling the flow of a single-phase

liquid coolant (Coolanol 15) through freezers and chillers. The heat picked

/ up by the flowing coolant was either rejected (1) to :he space environment
: through the zinc-oxide coated 7.8m 2 (84 ft2) radiator, (Z) to the grour:l cooling

heat exchanger during ground operation, or (3) to the thermal capacitor
i
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during periods when the radiator or g.ound cooling heat exchangers were not
operating (during launch and transient thermal orbit operation). Dual
redundant coolant loops were employed to preclude a single system coolant

: leak thatwould res-ltin the loss of RS cooling capability(reference I).

Extensive knowledge and experience was obtained during the design of this
low-temperature 244 K (-20*F), single-phase, liquid-coolantrefrigeration
system. The purpose of thispaper is to present the design failures, suc-
cesses, and recommendations resulting from flightexperience, with the hope
that future designs will not follow paths leading to failure but rather follow the
paths to success. This paper is limited to the following four design areas:

I. Design of leak-free coolant systems.

2. Design o'fthermal capacitors and their usage in thermal feedback
control sy._tems.

3. Design of a thermostatically actuated, mechanical flow-control valve
for low-temperature mixing.

4. Flight anomalies of flow and pressure control components and
possible remedies.

DESIGN OF LEAK-FREE COOLANT SYSTEMS

No detectable leakage of coolant, from either the primary or backup OWS
RS cooling loops, showed in 307 days of ground and flightdata (reference l).
In contrast, a similar redundant system on the Skylab leaked coolant from both
loops and had to be refilledin flight. Neither the cause nor visibleevidence

- of leaked coolant was found; however, the leaks were attributedto mechanical
_ connections. The KS leak data show that itis possible to design a leak-free

system. The suggestion is made thatthis leak-free performance resutted
from the use of high quatityfluidfittingsand the applicationof stringenttest
criteria.

Design Philosophy and Hardware

The following discussion outlinesthe philosophy and hardware used in the
RS design.

I. Minimize allr,nechanicallyseparable connectors by brazing system
coolant connections.

2. Where separable connections are required, use high-quality MC
(Marshall Center) specificationsfor tube fittings,flares, O-rings,
and K-seals.
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3. Leak test oraze fittings to I x 10 -6 sccs He at 930.69 kPa (135 psig)

and leak test mechanically separable connectors to I x 10-5 sccs as
determined by mass spectrometer quantitative analysis.

4. Retorque B-nut connectors after pressure cycling to minimize the
possibility of torque relaxation.

A typicat braze union is shown in figure 3. The union was made of 340L
CRES cond A, The braze material was 8Z-percent gold and 18-percent nickel
and was held in the braze union bulbuntil melted out. A prime consideration
was the effect of the melting temperature on components as a result of the
required fitting brazing temperatcre of 1,311 K (l,900"F) for 35 sec. Testing
revealed that the MC2665 fluorosilicone rubber seal reached 394.3 K (Z50*F)
during the braze operation; the seal can maintain its effectiveness to 505.4 K
(450°F).

Mechanically separable connections to off-the-shelf hardware and to
removeable equipment were made using either the braze adapter shown in
figure 3, which was sealed with a fluorosilicone packing or a teflon-coated
meta1-K seal, or anMC flare tube connector shown in figure 4.

Leak testing of each coolant loop was accomplished using 930.69 kPa
(135 psig) helium to a level of 10 -5 sccs per joint. Care was taken to ensure
that joints leak-checkedwith gas were dry and free of capillary liquid which
could block potential leak paths. The system was also leak-checked by a
pressure decay test with a decay of -0. 124 kPa/hr (0.5 in HzO/hr) allowable,
using 930.69 kPa (135 psig) helium.

The RS contained a total of 413 joints of which 253 were braze fittings,
llZ were O-rings or K-seals and 48 were MC flare fittings.

Leak Prediction

Symbols

P = pressure

V G = maximum gas volume when accumulators are empty

K B = effective metal bellow_ spring rate

X ° = bellows preload

A = effective bellows piston areaB

MG - mass of accumulator gas charge

R G = gas constant

. T G = absolute gas temperature

: VA = volume of coolant in accumulator
117
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V S = volume of coolant in one system loop with accumulator empty

M L = mass of liquid coolant loaded into system

T-L = average coolant temperature

PL = density of liquid coolant

C i = mass weighting constants

= pressure error

Sub script

L = liquid coolant

G = accumulator gas

B = metal bellows

S = per coolant loop

The prediction of flight coolant leakage was a mission data requirement.
It is a paradox that leak-tight systems may not allow for the prediction of an
unacceptable leak rate because of low gains on the measured parameters
necessary to predict leakage.

8PL 8VA )i.e., low a-_A or tow_--_L

For example, the random error on the RS pressure measurements were
such that 66 days were required to determine if a temperature-corrected pres-
sure was actually a leak.

The off-the-shelf coolaut accumulators did not incorporate a direct reading
volume indicator. Thus, the volume of coolant had to be indirectly determined
frown the pressure on the coolant and the temperature of the accumulator gas.
Pressure was maintained on the liquid coolant by a spring-loaded metal
bellows and a non-condensing I_-ZZ gas (figure 5).

The leak calculation procedure was to determine what the pressure on the
coolant should be. This calculated pressure was then compared with the
actual flight pressure and a pressure error number generated:

PFLIGHT PC : _ (I)
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The pressure on the coolant is described by

K S V A MGRGT G

PC = KsXo + A Z + VG VA (Z)
p

"metal pressure due pressure due
bellows to bellows to accum-

preload compression ulator gas

All leak detection schemes must assess the average coolant temperature
to determine the volume of the coolant in the system and hence the amount of
coolant that should be in the accumulator. The average coolant temperature
is found from:

n

T L - _. C i T. (3)
i=l I

Ci's are mass-weighting constants. The RS coolant volume was divided
into 16 isothermal nodes representeJ by combinations of flighttemperature
transducers (figure 5).

The volume of coolant in the accumulator was found from:

v -vs (4)
a - P(TL)

The leak calculationprocedure is as follows:

I. Determine the average coolant temperature from equation (3).

Z. Calculate the volume that should be in the accumulator from

equation (4).

3. Calculate the coolant pressure using equation (Z).

4. Calculate the pressure error using equation (I).

The mission leak-prediction results are shown in figure 6, with pressure
error plotted against the day of the year (DOY).

Data evaluations were started on DOY 134 (May 14, 1973). The average
value of the pressure error (_)of Z0.5 kPa (Z.967 psig) was a systematic
error thatwas probably due to variations in metal bellows spring constants
KS, the magnitude of the gas charge MG, and uncertainty in coolant fillmass

, ML.

The lower bound of measurement tolerance was established by adding the
pressure transducer least biterror 2.14 kPa (0.31psi_) to the transducer
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([ repeatability 2.07 kPa (0.3 psig). The allowable system leakage 197 cm3/year

(12 in. 3/year) was equivalent to a pressure decay of 0. 0517 kPa/day

{0.0075 psig/day). Figure 6 shows that no coolant leakage was detectable.

As a result of the difficulty in measuring system leakage, it is recom-
mended that future systems either incorporate a high-gain accumulator (large
_P/DVA} or incorporate volume-indicating instrumentation and provide suf-
ficient temperature instrumentation to determine the average liquid temper-
ature. Depending upon margins, the evaluation of possible leaks could be
substantially reduced from the 66-day Skylab RS limit.

DESIGN AND USAGE OF THERMAL CAPACITORS

The RSused aphase-changing heat _ink (thermal capacitor) as a heat
storage device. Heat was transported t, _nd from the liquid coolant that
flowed through it at a constant rate oi 56.7 kg/hr (125 lb/hr).

The phase-change material (PCM) was Unc!,_cane (Cll H24), a polymorphic
odd-numbered paraffin with a liquid/solid c__s1¢_ point at 247. 60 K (-14"F) and
a crystal structure change at 2_ r.5 K (-34°F) (reference 2). At 247.60 K,
the capacitor stored 36.68 cat/gr (66Btu/lb); at 236. 5 K it stored an additional
10.01 cal/gr (18Btu/lb).

Design of Capacitors

The thermal capacitor was fabricated in three identical segments and
plumbed in series as shown in figure 2. The construction of each segment is
shown in figure 7 and consisted of:

1. A plate fin coldplate which transported '.,eat between the coolant and
the coldplate surface.

2. A PCM chamber which contained and allowed for expansion and con-
traction of the PCM, and transferred heat between the coldplate and
the PCM.

3. A PCM that changes phase at 247.6 K {-14°F).

The PCM chamber was a special hex cell or honeycomb design. The
hex cells were 0.3175 cm (1/8 in) across the fiats and E.54 cm (1 in) tall with
O.OlS-cm- (O.O06-in) thick aluminum foil walls (figure 7C). Small cell size
was desired to increase the effective thermal conductance to the PCM. Each

hex cell was filled 80 percent with PCM and 20-percent air for ullage, (fig-
ure 7B). The ends of the hex cells were bonded to aluminum sheets, one end
to the coldplate surface and the other to a thin sheet of aluminum.

The design captured a discrete expansion (ullage) volume into each celt.

This was required because the wax volume increased 8 percent when melted.
The original design did not capture the ullage but simply allowed for a _:
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20-percent expansion in a chamber with open cell tops. When this original
unit was slightly tilted and melted, the wax chambers ruptured. In zero
gravity this same effect would result due to the Marangoni effect which
observes that liquid will tend to flow towards regions of high surface tension
(low temperature) (reference 2).

Capacitor Use in Thermal Feedback Control System

The thermal capacitor (TC) provided a means to filter cyclic inlet tem-
peratures from the space radiator of 244.26 K + 15 K (-20 ± 27°F) to a cyclic
amplitude of 242 K ± 4.4 K (-24°F ± 8°F) at the outlet of the third segment
(figure 8).

P

The capacitor also provided deadband for the feedback controller. A
temperature sensor located on the coolant tube downstream of the first
capacitor segment (figure 2) was used to control the radiator bypass valve

: and maintain the two downstream thermal capacitor segments in a frozen
state.

When the TC control temperature sensor reached 248.26 K (-12.8°F),
indicating that the first segment had melted, the coolant flow was diverted to
the radiator and the capacitor refrozen. Cooling was terminated when this
same TC sensor reached 236.21 K (-34.5°F) at which time coolant flow was
bypassed around the radiator and the first segment would then begin to melt
again. This deadband resulted in a 93-minute limit cycle. The system
response, (figure 8), shows the coolant temperature out of the third TC

segment was maintained at less than 247.59 K (-[4°F), the PCM fusion
point.

Designers of future systems should consider liquid-coupled thermal L
capacitors as flight qualified components. Their effective use can greatly
reduce the required radiating area and make possible the design of low-
temperature refrigeration systems. In addition, capacitors provide sub-

stantiai temperature filtering; they also provide their own controller deadband.

The large thermal expansion and low thermal conductivity PCM's require a
design of small hexagonal cells 0.32 cm by 2.54 cm(1/8-inby l-in) to increase
the thermal conductance to the wax and with captured ullage to minimize the
PCM expansion yield path to ullage.

:, LOW-TEMPERATURE FLOW CONTROL VALVE DEVELOPMENT :

A thermostatically actuated flow control valve was developed to propor-
tionally control flow through the radiator and thermal capacitor as shown in
figure 9B. Proportional flow control was selected to meet an original require-
ment to limit frozen food temperature cycle amplitude. Flow and temperature
instability showed up at the component test level; the proportional control
valve was replaced with a binary flow control system and consequential_Iywas
not part of the RS. However, the oscillation (instability) problems were
solved by degaining the valve area]stroke function at the hot port. Completion
on this modification was too late to meet the Skylab launcb schedule.
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Degaining increased the stroke required to close the hot port and resulted
in an increase in the valve control temperature bandwidth from 244. Z6 + 1.66 K
(-20"_ 3°F) to 247 K± 3.3 K (-15± 6¢F). Although this performance did not
meet the tolerance limits originally specified, this is the first flight-type,
thermally-actuated valve to be developed for this low-temperature operating
band. The low temperature flow control valve ;-s shown in figure 9A. The
total dry weight was Z. 19 kg (4.84 lb), the length 25.4 cm (10.0 in), and the
diameter 4.8 cm (I. 89 in). This design functioned as follows:

An actuation medium, consisting of silicone fluid (DC-200) doped with
(Z0 percent by volume) copper flake to improve thermal conductivity, was
contained within an internally and externally finned actuator housing. The
actuation medium linearly expanded and contracted, on heating and cooling
respectively, as a function of the valve coolant mix temperature. This
medium volume change was amplified and converted to a linear stroke by
moving abellows-sealedpiston. The piston was connected to a slotted sleeve
that masked and controlled the hot and cold coolant fluid passage openings.
The fully open hot to fully open cold piston travel was 0. 0889 cm (0. 035 in).
This travel took place between a Z44.26 K (-20°F) to 247. 59 K (- 14"F) change

: in the actuation medium temperature. Over-temperature protection was pro-
vided by a second over-travel piston sealed by an over-travel bellows. This
piston moved off its mechanical stops after the slotted sleeve had moved to

• the far left limiting position. Over-temperature protection to 32Z.03 K
(+IZ0°F) was provided.

Early problems developed during valve testing. The actuation bellows
squirmed, causing a shift in the temperature control band. The problem was
solved b) a hardware change using a close tolerance teflon guide cylinder
for the bellows.

The valve also exhibited a temperature control instability with an
amplitude of 8.33 K (15°F) and a period of 24 seconds. Instability was found
to be a function of the radiator pressure drop and the difference in the hot and
cold port temperatures. In the above case, instability occurred when the
cold port temperature was Z10.9 K (-80°F), the hot port was 250.37 K (-9°F),
and the radiator pressure drop was Z75.76 kPa (40 psid). This pressure drop
had to be balanced by the hot-port, slotted-sleeve opening. The problem was

' the high area change to stroke gain at bypass port closure. The solutionwas
to degain the bypass port by taking more valve stroke to change the port area
from fullopen to fullclosed. The resultingperformance is shown in figure I0
(reference 3), The condition being run was a simulated radiator temperature
change at a high radiator pressure drop of 344.7 kPa (50 vsid);minimum
radiator temperature was Z10.9 K (-80°F); and the bypass temperature was
Z66.48 K (+20°F). As a result of this valve development, the following design
recommendations are made:

I. Define port "load lines" early (pressure drop versus flow character-
istics). Ifthe evolving design is in such an unpredictable state
(finalradiator size not known), then a valve installationas shown
in figure 9C should be considered. The maximum pressure drop
imbalance is controlled by the design of the regenerator heat

,. exchanger only. This approach was used successfully for the chiller
valve shown in figure Z. When selected, the regenerator heat
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exchanger approach allows the flow control valve development to
proceed independent of the final radiator design.

Z. Component-level testing should realistically simulate the flight
system characteristics and should include the following:

Test conditions, that force the valve to perform its control function
at the end of its stroke (at port closure}, should be selected for
stability analysis. For example: the coldest bypass port temper-
ature Z49.8Z K (-10°F), the coldest radiator port temperature
g10.93 K (-80°F), and the highest radiator pressure drop 310. Z3 kPa

(45 psid) all combine to force the valve to flow control on the bypass
port.

Testing should also include conditions that simulate the inlet port
temperature design limits; this may reveal a fluid mixing instability.

For example: this valve was tested with a bypass port temperature
of Z66.48 K (+Z0°F) and a radiator port temperature of 205.37 K
(-90"F).

Testing should include the simulation of expected inlet temperature
and pressure ramps to determine valve mix temperature tracking
limi t s.

Data required for valve math modeling are:

1. Actuator stroke versus temperature (note bellows actuators usually
have a hysteresis which provides deadband).

Z. Port orifice coefficients versus stroke.

; 3. Actuator thermal time constant and effective capacitance.

FLIGHT ANOMALIES OF FLIGHT FLOW AND

PR ESSUR E CONTRO L COMPONENT S

The RS binary radiator flow control system functioned normally as shown
in figure 8 until anomalous performance was observed on DOY 173. The
expected and actual flight performance of the thermal capacitor outlet tem-
perature and the coolant system differential pressures are shown in figure 11.

Desc ription of Anomaly

At approximately 17:02:03 GMT, the system differential pressure
decreased 34.47 kPa (5 paid}, at a time when a switch to radiator flow was
expected, due to a g48.26 K (-lg. 8"F) thermal capacitor control sensor
signal. The expected differential pressure was 39Z. 96 kPa (57 psid) which
indicated that warm fluid was being diverted through a viscous radiator. The
low differential pressure of 220.6 kPa (3Z psid) and thermal capacitor inlet
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temperature of 255.37 K (0*F) suggested that total flow was not flowing
through the radiator and that a splitflow (radiatorand/or bypass legs
path A and B, figure 2) was occurring.

The complete melt of the thermal capacitor occurred approximately
2 hours after the anomaly and an automatic switch to the backup coolant
loop, caused by a food temperature sensor exceeding 255.93 K (+I'F),
resulted in even worse performance. Apparently the secondary loop was
also bypassing coolant flow around the radiator.

The potentialleak paths are shown in figure 2. A leak through path B
is caused by coolant flow past the bypass port poppet of the radiator bypass
valve (RBV). Subsequent investigationindicated thata 25_ particle, iftrapped
in the poppet seat, could cause the observed leak. Path A is through the
radiator reliefvalve which could have lodged open due to contamination. Con-
tinuous cycling of the RBV by ground controllersmay have been the cause for
performance improvement since the RS primary loop returned to an accept-
able split-flow performance mode (approximately 50 hours after the anomaly)
and continued to function until the end of the last mission (February 8, 1974).
The binary flow control system was disabled and the RBV left in the radiator
flow position at that time.

Probable Causes and Recommendations

This anomalous performance might be prevented in future designs if
the following two recommendations are implemented.

The firstrecommendation is to provide for particle filteringupstream
of allvalves that are contamination sensitive, and especially ifthey are
located downstream of brazed heat exchangers. The brazed plate fin
regenerator heat exchanger shown in figure 2 was a likelycandidate for
particle generation. This was assumed since vibrations and zero gravity
could coincide to loosen and allow braze particles to enter the coolant flow
stream. Better cleaning practices may reduce the number of particles
generated but the judgement is that brazed heat exchangers will always
be a potentialsource of particles large enough to cause a valve malfunction
of the type observed.

The second recommendation is to provide a simple flow-sensitive reed
switch to be located at points A and B (figure2) and set to indicate flows
above the allowable leakage values (inthis case flows > 0.91 Ks/Hr
(_>2Ib/hr). This would allow for the positive ground checkout of the full
radiator flow function. In retrospect, ground checkout procedures and
existing instrumentation did not allow for the accurate determination of the
fullradiator flow condition when the RBV was commanded to the radiator
flow position. Accurate assessment of the fullbypass positionwas accom-
plished by noting the thermal capacitor inlettemperature when the ground
cooling heat exchanger was operating. A partialflow of 259.26 K (+7*F)
coolant to the radiator would have resulted in (1)condensation on the radiator
surface and (2)a thermal capacitor inlettemperature higher than the coolant
temperature out of the ground-cooling heat exchanger. The assessment of
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the full radiator flow could not be determined in the same manner. Rather,

itwas determined by changes in system differential pressure between

radiator and bypasa RBV positions.

_ CONCLUDING REMARKS '

Designers of future coolant systems should carefully evaluate cleaned

heat exchangers as potential contamination sources and provide for coolant

particle filtration. In addition, allowance should be made in the system for

the incorporation of instrumentation, such as the flow-actuated reed switches,

to verify required fulland no-flow conditions.
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Figure10. RadiatorControlValvePerformanceMaximumHot PortD,fferantialPresmm
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Figure 11. Refrigeration System Performance Anomaly
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