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ABSTRACT

The effects of environmental perturbations on the attitude of a
slow tumbling earch~oriented satellite are investigated. The environ-
mental perturbations considered were aerodynamic drag, gravity-gradient,
solar radiation pressure, and magnetic torques. The Fuler attitude
equations were solved numerically for the Skylab spacecraft. Results
are presented for both teorque-free motion and for cases in which
aerodynamic and gravity~gradient torques are acting in a slow tumble
mode. Simulations show gravity-gradient effects on satellite momentum
to be cyclic and to increase the precession rate of the angular momentum
vector about the radius vector. This also tends to align the minor axis
along the radius vector. Aerodynanmic drag initially decreases angular
momentum, slowly precesses the momentum vector about the radius vector,
and finally drives the satellite into an unstable mode. Combined
gravity=gradient and aerodynamic torques reduce angular momentum and
energy, and induce a steady precession rate of the momentum vector about

the radius vector.
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CHAPTER I

INTRODUCTION

With the coming of the space shuttle the opportunity for retrieving
and repairing satellites will become feasible. With retrieval capability,
future satellites may be designed with docking ports to be used by a
retrieval device for attaching to the satéllite. To design these
devices and the location of docking ports on the satellite, the final
attitude state of the passive satellite must be determined.

The research in this thesis involves a numerical study of the
general attitude motion for an asymmetric satellite due to environmental
perturbations. These perturbations included gravity-gradient, aerodynamic
drag, solar radiation pressure, and magnetic torques.

The general analytic solution to Euler's moment equations are

(1)

elliptical functions for the torque free case. General solutions to
Euler's equations with complicated torque functions do not exist and
soluﬁions are primarily numerical. Some solutions have been obtained by
linearization for special cases. Here the equations could not be
linearized to study detailed motion. However, Euler's moment equations
were solved numerically using a fourth order Runge-Kutta and an Adams-
Bashforth predictor-corrector integration technique. The dynamical
state of interest was a slow tumble mode, defined as small angular rates
about the three bbdy axes. Initial conditions are explained in Appendix
A. The satellite was considered to be a rigid body with no control
system functioning.

The asymmetric satellite studied in this research was the Skylab

gpacecraft. Its attitude control system is assumed to be shut down.




L agadd

Linearization of the equation of motion was possible in order to study
stability under effects of gravity-gradient and aerodynamic drag.(z’B’A)
This stapility analysis has indicated the spacecraft to be unstable in

the presence of gravity-gradient with aerodynamic torques.

{2y



CHAPTER I1I

COORDINATE SYSTEMS

This section describes the coordinate systems used in determining
the position and attitude of the satellite., The inertial coordinate
system is shown in Figure 1 with its origin at the Earth's center. ZI
lies in the equatorial plane pointing in a positive direction away from
the center of the earth along the vernal equinox. YI is perpendicular
to the equatorial plane and positive northward. XI is in a direction

forming a positive right handed coordinate system. The inertial

coordinate system will be denoted as

W

=i

L1, =

(
I I D

ot

I

The relationship of the apparent motion of the sun about the earth

is shown in Figure 2. The unit vector from the earth to the sun in the

geocentric inertial coordinate system is

Ls = sin BS cos 1_ iI + sin 65 sin is N + cos es kI (2)
‘where
_ 360
% = 365.26 Pap 3)

DAE is the number of days after vernal equinox. is is the inclination
of the ecliptic plane to the equatorial plane of the earth (obliquity
of the ecliptice).

The relationship between the orbital and inertial coordinate

system is shown in Figure 3. The transformation from inertial to

orbital coordinate system is defined by three rotationms.




Equatorial Plane

Earth Center

To Vernal Equinox

Figure 1. Geocentric Inertial Coordinate System.



Figure 2. Geocentric Inertial and Sun Coordinate Systems.




Orbit Plane

Equatorial Plane

Equatorial Plane

Orbital Position
‘ of Satellite

Figure 3. TInertial and Orbital Coordinate System.
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Figure 3.

Inertial and Orbital Coordinate System

Orbit Plane

Equatorial Plane

(continued).
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The orbital coordinate system will be denoted by:

From Figure 3, the following transformation exists:

o
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(6)

From transformations (4) and (6) the transformation from inertial to

the orbital coordinate system becomes

(L]

o>l

where

B8 is the right ascension of the orbit ascending node.

(5)

regression rate is assumed constant,
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where P is the satellite orbital period in hours. i is the satellite
orbit inclination with respect to the equatorial plane, and ¢ is the
satellite true anomaly; its initial displacement is measured from the
ascending node for a circular orbit.

The body coordinate system is located at the center of mass of
the satellite along its principal moments of inertia. The rotation
- from the orbital to the body coordinate system is illustrated in

Figure 4. The order of transformation is defined as

X Y zZ
o o o
| ‘ l
Y Y v
X Yy 2
| | o | (10)
1 i i
X ) Zy
¢ # #
Y
X S &y
The three Euler rotations are
A. Rotation about the 20 axis :
—-' — - = p—- -1
Xl cos Y sin ¢ 0 X
Yl = -sin ' cos Y 0 Yo (10-4)
Zl 0 0 1 Zo
- - J - - L. -
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(a) Rotation of Angle V¥
X
2y
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(b) Rotation of Angle ©
¢ -
Yb
’ ~7
9 2
(c) Rotation of Angle ¢

Figure 4. Euler Rotations.
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B. R?tafion abouE the ?1 axis i o

22 cos © 0 -sin © il

T, = 0 1 0 ' (10-B)

z, sin 8 0 cos 21
C. Rota;ion about the iz axis - -

X 1 0 0 }‘(27

?b = 0 cos ¢ sin ¢ ?2 (10-C)

Zb 0 ~-sin ¢ cos ¢ 22

L - - - -

The transformation from orbital to the body coordinate system can be

expressed as

(cosBcosy) (cosbsiny) (-sinb)
[L]b+o = |(sin¢sinbcosyP~-cosdsiny) (sinPsinbsiny+cosdcos?) (sindcosf)
(cosdsinBcosy+singsiny) (cosdsinbsiny~sindcosy) (cosdcosb)
J
B . ' (11)
where
o - -
% %o
¥, = (Ll ¥ , | (11-4)
Zb Z0

The above transformations are basic in determining the attitude
and. position of the satellite. All rotations are defined positive by
the right handed rotation rule. Any other transformations required are

developed as needed.

REPRODUCIBILITY OF THE
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CHAPTER III

DYNAMIC ANALYSIS

The motion of a satellite about its center of mass is described

(1)

by Euler's moment equations which for the principal axes are

A® +ww (C-B) =M

X Yy z X

2 + - = 2
B wy wxwz (A-0C) My (12)
Cw +wuw (B-A) =M

z Xy z

A, B, and C are the principal moments of inertia about the x, y, and z
body axes, respectively. Wos my, and wz are the satellite angular
velocities. Mx"My’ and Mz are the perturbing moments such as gravity-
gradient torque.

Euler angular rates &, é, $ describe the motion of the satellite
with respect to a referenqe'coofdinate system which in this reﬁort is

the orbital coordinate system. Euler angular rates can be expressed as

a function of the body angular velocities and the Euler angles.

o) =’wx + (mysin¢ + wzcos¢) tan ©
8 = wy cos¢’—‘wzsin¢ ‘ (13)
) = (mysin¢ + wzcos¢)'sec 9

The body angular velocities can also be written in terms of Euler rates.

W = é - yi sin ©

w = 9 cosd + ¥ cos 8 sin o | ' (14)
W = & cos® cos¢ - 8 sin o0
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Equation (12) can be expressed as

M_($,0,¥)
: s X C-B
w,ooo= X mywz ( 1)
M ($,0,1) -
; D AN A-C.
wy % wxwz ( B ) (15)
. M_(4,8,¥) _
wz = _.E._C...___._.. - wxwy (_B..Eé.)

Knowing the perturbing moments as a function of the Euler angles

equations (12) and (13) can be solved numerically. These equations

describe the attitude motion and orientation of an asymmetric satellite.
The angular momentum, h and energy, T of the satellite are

computed from

= _ . T . -

h walb Bwygb szkb (16)
Slay 24Lp, 2.1¢ 2

T = 3 Amx< +3 Bwy + 3 sz (17)

The position of the angular momentum vector in the orbital coordinate
sysﬁem with respect to the orbit radius vector and velocity vector
tangent is shown in Figure 5. The angle § is the angle between the
radius vector of the earth and the satellite momentum vector.

h
§ = cos_l q550 0° <68 < 18¢° (18-A)

hz is the Z angular momentum component in the orbital coordinate system.
The angle A defines the angle between the angular momentum projection

onto the X0 Y, plane and the orbital velocity vector tangent.




Orbit Normal

Orbit Radius Vector

Figure 5. Nutation and Precession Angles in the

Orbit Coordinate System.
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h
A= tan ¥ & 0° < A < 360° (18-B)
y [o]

hx and hy are the x and y angular momentum components in the orbital
coordinate system, respectively. & and A will be noted as the nutation
and precession angles in the orbital coordinate system.

The position of the minor axis with respect to the radius vector

will be noted as the nadir angle,n. The nadir angle is defined as

n=%+6 (19)
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CHAPTER IV

ENVIRONMENTAL PERTURBATION MODELS

Gravity-Gradient

-

Gravity-gradient torque is one of the major environmental

(6) The

perturbations for asymmetric satellites in near earth orbits.
gravity;gradient effect is a function of altitude, mass distribution,
and the sa:ellite orientation. Here the gravity torque model assumes a
spherical earth neglecting anomalies due to its asymmetric mass
distribution.

Under the assumption of a spherical earth, the gravity force
field can be expressed as

= _-ud

dF,, = l‘-jﬂ‘- P (20)
r

and the gravity~gradient torque as

(dM)G = 0 x dF, (21)

Figure 6 illustrates the coordinate system used in this derivation. p

is the vector from the satellite center of mass to the mass element dm.

p = XIb + y}b +.ZEb (22)
Subscript b indicates the satellite body coordinate system. r is the
satellite radius vector from the geocenter to the mass element dm.

From Figure 6 the satellite radius vector R can be written as
R=-RE (23)

Transforming equation (23) to the satellite body coordinate system

using equation (11), the radius vector can be expressed as

AT RN L
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\sts Element (dm)

Satellite Center
of Mass

Figure 6. Coordinate System Used in Gravity-Gradient

Torque Derivations.
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§b =R sinb ib - R sin$¢ cosb 3b - R cos¢ cosh Eb (24)
Noting that r = R + 0 equation (21) becomes
@, =bx -5 +5 ] | (25)
r
With the following approximations:
£ = R% | 1+2R;°] (26)
R
el 2oy -2 (27)
R
r R
1 Rp
r R ' R
p/R << 1 (29)
Equation (25) becomes
o= 11-E2 Fx®+5) 1 dn (30)
R’ R

Since the coordinate system is located at the satellite center of mass

the products of inertia are zero

I 0 dm=0 (31)

I =1 =TI =0 (32)
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Integrating equation (30) results in the following equation for the i
gravity-gradient torque
M = 3 [sin2¢ c0526 (C-B)'{b + sin26 cos$ (C-A)J :
G gg3 b ;
+ sin20 sin (A-B)K ] . (33) !
Equation (33) describes the gravity-gradient effect in satellite body {
coordinate system.
The gravity-gradient torque in the orbital coordinate system can
be found by transforming equation (33) to the orbital coordinate system
using the inverse of equation (11). The resulting torque equations in
the orbital coordinate system are : i
(mx)0 =[(A-B)sin26 siny + (B-C) {sin28 siny cos2¢ + sin2¢ cos® cosy}] }Eg E
2R
(m )° =[(B~A) sin28 cosy +(C-B) {cosz¢ sin20 cosy - sin2é cos6 siny}] 223 ;;
y 2R .
m) =0 | | (34)
z2 0 ‘ 2
(mx)o, (my)o, and (mz)o are the x, v, and z gravity-gradient components i
in the orbital coordinate system. f
Aerodynamic Drag ';
Aerodynamic drag is a major perturbation for near earth satellites é

with altitudes of 800 km or less. Drag is a function of atmospheric
density, angle of attack, satellite velocity and satellite shape. For

complex satellite structures the satellite is divided into components of
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spheres, flat plates, and cylinders. ‘The center of pressure and
moment arms for each component are computed. The total torque is
computed from the sum of the components. For complex satellites
shading of one component by another from the free stream flow may
occur. This effect must be taken into account for an accurate drag
model. Reference (7) describes a computer technique for modeling the
shadow effect. The amount of one element shading another is a function
of the orientation of the spacecraft with respect to the free stream
velocity.

The aerodynamic torque can be'éxpressed as

N Vi

aM, = T P, x dF == (35)
A | i#l i a 1

<

Py is the distance from the center of mass to the center of pressure.
V is the relative velocity vector. dFa is the aerodynamic force.
_1 2

dFa 5 CD Py V" cos

Ty 954 SR (36)

pa is atmospheric density. CD is thé‘agrodynamic drag coefficient.‘V
is the velocity at the surface element felative to incident stream. Yy
is the angle of attack of element dS. Equation (36) is the basic
aerodynamic force equation. Reference (8) discusses aefodyﬁamic force
using normal and tangéntial momentum tfansfer coefficients to replace the
drag coefficient,

For this report tﬁe aerodynamic drag‘model was developed by NASA(Q)
for the Skylab vehicle. The drég‘model fér‘Skylab was derived from data

based on free molecular flow theory with a Knudsen number greater than

10. Three drag moment coefficients (cx, cy, cz) as depicted in Figure 7

LRSS DRI . I &

e

b g




Satellite's Center
of Mass

|
{

b
i
E
:

A

Figure 7. Aerodynamic Moment Coefficients in Satellite Body Coordinate Systém.
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were computed for a number of orientations as a function of the angles

(@, ). A Fourier series curve fit formula for c_, c _, ¢ was
a’ "a X'y e
derived from the above data as a function of the angles o and ¢a.

c o cy, and c, are the roll moment coefficient, pitching moment

coefficient, and yaw moment coefficient, respectively. aa and ¢a are

the angle of attack and roll angle, respectively, as defined in Figure 7.

The resulting Fourier drag coefficient equaticns are

Ao(¢a) m
C(da,¢a) =5 +i§1 [Ai(¢a) cos ia_ + Bi(¢a)51n 1&3]
where
2aio 2
Ai(¢a) - +jil [aaij cosj¢ + baij 51n3¢a]

(for j = 2, 4, 6, and i =1, 3)

bio
B ¢. = e+ 5 a COS'¢ + b
i( a) 2 [ i3 J a

. sinjd 1
=1 bij a

bij

(for 5 =1, 3, 5, and i = 1, 3)

a . and b,. are coefficients from Appendix B. The vehicle moment

ij ij

equations are computed from

Mx = qu Aref Dfef
My = cyq Aref Dref
Mz - zq ref ref

where

(37)

(38-4)

(38-B)

(39)
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A and Dre are reference Area and Diameter of Skylab respectively,

ref f

and are listed in Appendix C.

The roll angle ¢a and angle of attack aa were computed from

\'4
- -1 . v o
¢, = tan [Vz]b 0 <¢, <360 (40)
and
-1 Vx o
aa = cos [Vm]b 0 < aa < 180 (41)

as shown in Figure 7. Assuming a circular orbit for Skylab, where Vo

is the orbital velocity,

Expressing the velocity Vo in body coordinates results in Vx’ Vy, and

Vz as required in equations (40) and (41)

Vx = Vo cosB cosy ib
Vy =V, [sin} sin6 cos¥ - cos¢d siny] Eb ) (42)
Vz = Vo [cost sinb cosy + sing siny] kb

Appendix B lists the aerodynamic coefficients from Reference (9)
used in computing the aerodynamic drag torques. The drag coefficients
in Appendix B are based on Skylab with the auxiliaryfthermal_shield, ATM
solar arrays, and orbital workshop solar panel No. 1 deploye& as shown
in Figure 8.

The atmospheric density was calculated from the 1970 Jacchia
atmosphere model described in reference (10). The following is a list

of the effects causing atmospheric density variations used in the model:
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Figure 8.

Skylab's Configuration for Aerodynamic Drag Model.
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(a) varia;iOns with an 11.5 year solar cycle

(b) variatiéns with'daily changes in solar activity

(¢) diurnal variations

(d) wvariations with geomagnetic activity

(e) semiannual variations

(f) seasonal-latitudinal vériétions of the lower thermosphere

(g) seasonal-latitudinal vériétion of heliumb
The inputs are the sun and satellite right ascension and declination,
number of days from January 1, 1970 and vehicle's altitude (km) above
the surface of the earth. The output is the atmospheric demsity (kg/m3)
at thé altitude of the satellite. The model calculates atmospheric
densities for altitudes of 125 km to 700 km with a maximum error of 5%

when compared to tabulated density values.

Magnetic Torque Model

Magnetic torques are caused by the interaction between the earth
magnetic field and the satellite magnetic components. The earth

magnetic field potential can be represented by a series of solid

(11),(12)

spherical harmonics. The magnetic field potential camn be

expressed as

N=8 K=N
- - RN+l _K 4 K
v R I z (R ) [gN cos KAM hN

K
sin KA 1 p. (cos 9,,) (43)
™ N=1 k=0 meow "

The spherical magnetic force components are

N=8 K=N .
- R N+2 K , K ... d X
eg Nzl KEO (Re) [gN coshAM + hN 51nLkM] %6 Py (cos GM) (44)
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N=8 K=N
- R .N+2 <K K . K K
ey z E (R ) - [-gN 51nKAM + hN cosKAM] Py (coseM)
N=1 R=0 “e
(45)
N=8 K=N
Er = I I =(N+1) (%—-—)N."2 [glé cosKXM + h: sinkKA] pll; (coseM)
N=1 K=0 e
(46)
where:

Ee, 'é>\, and Er are the magnetic spherical force components in a
geocentric coordinate reference with respect to the Greenwich time line
as shown in Figure 9. AM is the east longitude from the Greenwich line
and GM is the colatitude. R is the satellite orbit radius and Re the
the earth radius.

The function p§ (cos(GM)) is defined as

1e1ou2 K
e (N-K) 1 (1-v)™ 1/2 ¢ (2 4N

Py(¥) = 2§N![ (NE) | ] 2 () (47)
viere
V- = cos GM
€ = 1 for K = 0 48)
~€K =2 forK>1

(11)

The epoch time for this model is 1965. Since the magnetic

| field varies with time, thg coefficients g§ and h§ are functions of time

K .\ _ K 'K
Cy (t) = Cy (t)) + Cy (49)
Reference 12 lists the magnetic coefficients g§ and h§ at epoch 1965

\ s *K v
- with associated sz2cular coefficients gN and hﬁ'
. A

o R N BT NN, 5.



Figure 9. Coordinate System for the Earth's

Magnetic Field Model.
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The earth's magnetic field components can be transformed to a

geocentric Greenwich coordinate system with Z

Greenwich line as shown in Figure 9 by

e

—

X
ey = [L]G+S
e
2
where
-
cos AM
Loy =
-sin AM
.

-coseM cosA

o4

(LA
D

{2 ]

-goseM 31nAM

.sineM

M

G passing through the

The Greenwich geocentfic coordinate system is related to the

geocentric inertial coordinate system by

-~

X
¥ = [Llg
1Z
L J
where
-
cos A
o
Ll =
sin A
o

L.

e
X

e
y

e
z

(50)
sineM sin}\M
cosSM (51)
sin9M cos}\M
(52)
-sinA
o
0 (53)
cos\
o
-~
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Ao is defined as Ai + Qet. Xi is the initial angle of the
Greenwich line from the vernal equinox. Qe is the earth rotation rate.

The magnetic torque is computed from

Mm =MXB (54)

where M and B are the satellite magnetic moment and the earth magnetic

field vector, respectively.,

Solar Radiation Pressure

Solar radiation torques‘are‘due t; the incoming solar radiation
flux of the sun. The solar torques are functions of the distance from
the sun, satellite surface geometry, and surface refiectivity. Only
direct radiation from the sun is considered. Earth and atmospﬁeric
reflected radiation along with the satellite radiation are ignored. In
this paper the secular and periodic terms are separated by aQeraging one
orbit, assuming a constant inertial solar radiation force.

The physical medel used is similar to the model in reference
(13). Figure 10 shows the geometr& of tﬁé model. The solar radiation
force is due to the reflected and‘absorbed components of the incoming
sun radiation flux |

| aF_ = dF, + dF | (55-A)
where Fi and Fr are the absorbed and reflected solar radiation forces,

respectively. Assuming secular reflection, angles Yl and are equal.

'\{2
Y=Y =Y (55-B)
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Solar Flux

Figure 10. Geometry for the Solar Radiation

Physical Model.
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From Figure 10, e, is in the opposite direction of the incoming radiation

1

flux vector. n is defined as the unit vector normal to the surface

element dA. The incident force component can be written as

dFi = - (Sr + SA) ?S dA e1 (56)
where
SA = gatellite surface absorption coefficient
Sr = gatellite surface reflection coefficient
Ps = solar radiation pressure
dA = element area
The reflected force component is
QFr‘= - SrPSdA e, (57)

where EZ is. defined in Figure 10. From equations 56 and 57 the total
solar radiation force is
dFs = - PSdA [(Sr + SA) el + Sr e

] (58)

The total solar radiation force can be expressed in terms of the

incoming flux vector'(él) and the surface normal vector (E).

dF = - PdA [(S, + 258) cosy n45,n + (e, Xn)] (59)

The solar force components expressed in geocentric inertial

components are

F = «F sin 6 cos i

X s s s
Fy = -Fs sin es sin i, (60)
F = -F cos 8

2z s s
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Since the initial secular trends were of interest, the periodic and
secular terms were separated whenever possible. TFor the solar
radiation force the inertial force components were assumed constant
over one orbit. The inertial components were transformed to the
orbital reference coordinate system and averaged over an orbit as a
function of true anomaly. o1
- o1 -
Favg = o7 I Fs da (61)
0
¥ F
X X
Fy =L Fy (62)
F F
z z
= T o0 - 41
becomes o
F F
X X
F = [L_ ] F (63)
y oL vg | Y '
Fz F_
L o ¢ J I
where _
(cosa cosi cosB - sina sinR) 0
[Lo+I] = sini cosB -cosi
avg
(-sino cosi cosf - cosd sinB) 0
(-cosq cosi sinB - sino cosB)
-sini sinB , (64)

(sina cosi sinf - cosa cosB)

‘ “,
E e E 2
SE s PO R TR .
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Equation (64) assumes i, Fx’ Fy, and Fz are constant over one orbit.
The ascending node was not assumed constant. As the orbit inclination
approaches 90 degrees, B approaches zero. Therefore, if B is assumed

constant the transformation, equation (64), after averaging becomes

- -
0 0 0
[Lo+I] = |sini cosB -cosi -sini sinf (65)
avg
0 O 0

To predict accurately long term effects the apparent motion of the
sum needs to be included. In this study we were concerned with iniﬁial
secular effects in determining the trends of the satellite attitude
motion. The apparent motion of the sum was assumed constant.

After averaging the solar forces, the orbital force components
were transformed to the body reference coordinates. The final averaged

force components, therefore, can be expressed in matrix notation as

F F
X X

F = [ 1L .1 F g (66)
y b-o o~>1 avg y

irz ?z

- dyp - 4q

The solar torques are computed from the cross-product
_ N o ‘
= X
dMS .E (pi dFS) (67)
i=1
where pi is the distance between the center of mass and center of
pressure of the satellite. N is the number of satellite components.

The shadow model is used to determine the points at which the

satellite enters and leaves the earth shadow by assuming the projection




R T

of the shadow to be a cylinder. The model is shown in Figure 11 and
assumes the earth, sun, and satellite to be coplanar.
fs is the unit vector from the earth to the sdn.

L. = sinf® cosi i
s s

g + slnes sini_ j; + cosBs kI (68)

I
From Figure 11 the angle D can be defined as
S

cos D = ——'r— : (69)

For cos D > 0, the satellite is in sunlight; for cos D < 0 the satellite
is in the shadow of the earth. Also from Figure 1l angle E can be
written as

sin E = Ré/r - (70)

Considering Figure (11) geometry the following condition exists;
if (D + E) < 180%; satellite is in sunlight
if (D + E) > 1800; satellite is in earth's shadow
The identity

sin (D + E) = sin D cos E + sin E cos D ° (71)

was used in the computer program for this test.
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Satellite

To Sun ¥

1 Geocenter Earth's Shadow

Figure 11. Geometry for the Shadow Model.
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CHAPTER V

APPLICATION TO SKYLAB

The Euler moment equations discussed in Cbapter IIT were solved
numerically using an IBM 370/168 computer for the»Skylab spacecraft,
The equations were solved using a fourth-order Runge-Kutta method‘and
a fourth~order modified Adams-Bashforth prédigtor corrector method with

(14) The fourﬁh order Runge-Kutta

a constant intggration step size.
method was use& to compute the starting values for the Adams-Bashforth
predictor—cdrrector. After the starting values were computed the
predictor~corrector algorithim was used to integrate the equations of
motion.

The Euler's moment equations were solved for the slow tumbling
Skylab spacecraft using initial condiﬁidns in Appendix A. The slow
tumble case simulates a slow spin approximately about the major axis. .
The slow tumbleée was solved for the torque-free motion, gravity-gradient,
aerodynamic drag, solar radiation pressure, and gravity-gradient with
aerody ‘¢ torque. Results from each perturbation are discussed in
Chaptei VI.

Sinée‘the solution of quer's attitude equations used excessive
computer iime only the initial effect of the perturbations on the
spacecraft were simulated. The torque=free motion is discussed first,

followed by the environmental effects.

The magnetic effects were not studied since data was not ' &

gt

available on the magnetic residual moments of Skylab; they were assumed
to be negligible. Solar radiation effects were simulated and found to

be negligible compared to aerodynamic drag and gravity-gradient torques.
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CHAPTER VI

SIMULATION RESULTS

Torque-Free Results

Since the general torque-free solution to Euler's attitude
equations are elliptic functions, equation (12) was solved numerically
to determine the force-free motion in the orbital and satellite
coordinate system for Skylab, using the‘initial conditions in Appendix
A. The motion in the orbital coordinate system of the satellite
angular momentum vector is represented in Figure 12 for approximately
five orbits; ' The nutation and precession angles are defined by
equation (18). The rapid motion at 40, 90, -and 140 minutes is caused
by the singularity of the Euler Angle 6. As 0 approaches 90 degrees
the Euler rates (&,@) become larger as shown by equation (13). This
causes the angular momentum to be transferred from either x or y to the
y or x axis inducing a large angular momentum precessioﬁ rate for a
short duration. At ﬁ = 180 minutes the precession angle changes
direction and the angular momentum vector passes above the orbit plane
(nutation angle > 900). The nutétién angle varies from 70 to 116
degraes and the p;ecession angle varies from 40 to 326 degrees. Figure
12 illustrates the motion of the angular momentum vector in the orbital
coordinate systeﬁ. |

The nadir angle (A) represents the angular motion of the minor (x)
axis with respect to the orbit radius vector. Figure 13 illustrates the
nadir angle for the slow tumble torque free solution. From Figure 13

the nadir angle oscillates between 0 and 180 degrees. The nadir angle
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period is approximately two orbits. The angular momentum and energy

for the slow tumble case were 4227 kg'mZ/s and 2.37 kg'mzlsz-

Gravity-Gradient Results

The result of the gravity-gradient torque on the nadir angle is
illustrated in Figure 14 which shows that the nadir angle is bound
between 0 and 40 degrees. Comparing Figures 13 and 14 the gravity- r
gradient torque tends to align the minor axis along the orbit radius |
vector. From inspection of equation (33) an equilibrium position (zero
torque) state exists when the minor axis is aligned along the orbit
radius vector. This state occurs when the nadir angle is 0 or 180
degrees (8 = +90°). Another equilibrium position exists when all
principal axes are aligned along the orbital coordinate system axes.

As shown by equation (33) any misalignment of the principal axes from
the orbital coordinate system induces a torque. Once a misalignment
occurs gravity-gradient torques will attempt to orient the satellite
toward an equilibrium state. Comparing the torque-free solution in
Figure 13 énd the gravity-gradient solution in Figure 14, the amplitude
of the nadir angle oscillation is reduced from 180 degrees for the
torque—freg case to 40 degreés for the gravity-gradient case. The nadif
angle period of oscillation decreases from 184 minutes to 66 minutes.
Thus, by bounding the amplitude of the nadir angle oscillations gravity-

gradient torque causes the frequency of the oscillations to increase.

Figure 15 illustrates the gravity-gradient effect on Skylab's

S e gkt Dt e 0 T D

energy and angular momentum. Gravity-gradients cause the energy and

sec e g
A e d

angular momentum to become cyclic with a period of 34.1 minutes or

approximately .36 of an orbital pericd. From the initial conditions the

O en i A
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spacecraft was near a zero-torque (6 = -800) position initially. As
the spacecraft moves from the initial position gravity-gradient torgques
attempt to restore it, decreasing the angular momentum and energy. As
a result angulay momentum and energy are maximum when the satellite
nadir angle is minimum and vice versa. Figures 14 and 15 illustrate
this effect.

The motion of the angular momentum vector in the orbital coordinate
system is shown in Figure 16. The gravity-gradient torque causes the
preceésion aﬁglé and rate to become periodic with an approximate period
of fifty minutes. The singularity due to Euler angle 6 = 0 degrees in
the torque-free case no longer occurs since the Euler angle 6 is bound
between -45 and -90 degrees. The precession angle represents the change
of angular momentum in the orbital coordinate system ifi the orbit
normal-velocity vector plane. Examination of the gravity-gradient
torque equations in the orbital coordinate system,equations (34), for a
symmetric satellite about the minor axis (Béc) indicates why the regular
precession occurs. Making the assumption (B=C) for Skylab the gravity-

gradient torque equations in the orbital coordinate system become

(M) = sin20 siny (4-C) 3u/28>
(M), = sin20 cosy (C-A) 3u/2r3 (72)
(Mz)o =0

Mx and M‘ are the torque components in the orbit normal-velocity vector
plane and are functions of 6 and ¥. Since 9 is bound between -40 and
-90 degrees the Euler angle i controls the direction of the precession.
The nutation angle represents the motion of the angular momentum
vector with respect to the orbit radius vector. Since the z gravity-

gradient torque component in the orbital coordinate system is zero the

.
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the nutation angle reflects the change in the total angular momentum
magnitude. The nutation angle is shown in Figure 16.

Cravity-gradient causes the angular momentum and energy to
become cyclic, attempts to align the minor axis along the orbit radius
vector, and causes a regular precession of the angular momentum about

the orbit radius vector.

Aerodynamic. Drag Results

The aerodynamic torque equations are complex and difficqlt to
examine analytically. However, by examining the trends of various
spacecraft attitude parameters, valuable insight into thée problem can
be gained.

Figure‘i7 illustrates the motion of the minor axis with respect to
the orbit radius vector. As compared with the torque-free case, Figure‘
13, aerodynamic torques tend to damp out the oscillations and drive the
minor axis perpendicular to the orbit radius vector. Since the free
streamline velbcity vector is approximately parallel to thé orbit velo-
city vector, aerodynamic drag would orient the spacecraft toward a
position of minimum reéistance. From Figure 17 this positioﬁ would
appear to occur when the minor axis is in the orbit normal vélocity
vector plane. This can be illustrated by examining the nadir angle.

The nadir angle amplitude continues to decrease in magﬁitudé until 310
minutes and is oscillating about the velocity vector tangent (madir angle
of 90%.

Figure 18 iilustrates the change in angular momeﬁtum and energy.
As shown the‘angular momentum and energy decrease until approximately
310 minutes. After this time the angular momentum‘and energy begin to

increase.
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An explanétion for the above trends can be found by examining
the change in angular momentum in the spacecraft body coordinate
system. Figure 19 illustrates the angular momentum change for the
major axis (B) and the intermediate axis (C). The angular momentum
change for the minor axis (A) was very small. As shown in Figure 19
initially the spacecraft was principally spinning about the majot axis.
As time progressed the aerodynamic effect caused the angular momentum
to shift from the major axis to the intermediate axis until the space--
craft was essentially spinning about the intermediate axis at approxi-

(5)

mately 310 minutes. From attitude dynamics a spacecraft spinning
about the intermediate axis with a perturbation is in an unstable
mode. Reference 15 illustrates why an unstable mode exists for motion
about the intermediate axis with a perturbation. After reaching this
unstable mode the spacecraft quickly changes its momentum state and
within an orbit is spinning about the major axis. It is interesting to
note that the spacecraft is spinning about the major axis in the |
direction opposite‘to its initial one. This change in angular momentum
state causes the nadir angle, angular momentum, and energy to increase.
The aerodynamic drag effect‘on tﬁe position of the angular
momentum vector in the orbital coordinate system is illustrated in
Figure 20. As compared to the torque-free solution, the oscillatory
motion of the nutation angle ié damped out and the momentum vector tends {
to align along the radius vector. The nutation angle continues to
decrease until’approximately'310 minutes. As the minor axis is being
forced to become paréllél to the orbit's veloecity vector tangent the

momentum is being transferred from the major to intermediate axis as

shown in Figure 19 and explains the reason for the decrease. The
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intermediate axis is oriented in thé general direction of the orbit's
radius vector. As a result the nutation angle decreases until the
angular momentum is transferred back to the principal axis. As the
angular momentum is transferred back to the major axis the nutation
angle increases. The aerodynamic effect on the precession angle is to
cause it to precess slowly about the orbit radius vector as shown in

Figure 20.

Combined Effects o. Gravity-Gradient and Aerodynamic Torques

The combined effect of aerodynamic and gravity-gradient torques omn
the energy and angular momentum is illustrated in Figure 21. Since
gravity-gradient is larger than éergdynamic drag the cyclic motion due
to gravity-gradient is predominant. The periodic type motion of the
angular momentﬁm and ehergy resulting from gravity-gradient becomes a
random type OScillapion due to the damping effect of aerodynamic drag.
The aerodynamic torque reduces the amplitude of the gravity-gradient
induced oscillations. Initially the amplitude of oscillations varied
between 600 and 4200 kg'mz/s;~as time progressed the amplitudes varied
between éiOO and 4200 kg?mz/s. The lower limit of the gravity-gradient
oscillatién was affected more severely. This was due to the aerodynamic
effect of aligning the minor axis along the velocity vector.

Comparing the nédiﬁ angle of gravity-gradient (Figure 14) and
gravity-gradient with aefodynamic drag (Figure 21) dillustrates the
aerodynamic effect. Aerodynamic drag reduces the amplitude of oscilla-
fion of the angular momentum and nadir angle which were induced by the
gravity-gradient torque. This torque tends to align the minor axis

along the radius vector. The aerodynamic torque attempts to align the
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minor axis along the orbit velocity vector tangent perpendicular to

the orbit radius. The combined effect of gravity-gradient and
aerodynamic torque is to cause the minor axis to oscillate between

the radius vector and orbit velocity vectgr tangent as illustrated in
Figure 22. Since the gravity-gradient torque is larger than aerodynamic,
its effect.is predominant. This causes the minof axis to oscillate
nearer the orbit radius vector between 25 and 30 degrees.

- Since the gravity-gradient torque component in the orbit radius
vector is zero the change in nﬁtdtion angle illustrated in Figure 23 is
due to the aerodynamic torque. The effect of‘the aerodynamic torque is
to maintain the angular momentum vector below the orbit velocity vector-
orbit normal plane.  The precession angle as shown in Figure 23 has a
period of approximately 46 minutes. This is similar to gravity-gfadient
effect shdwn in Figure 14. The difference is aerodynémic torque
eliminates the change in the precession angle direction. As a result
thé combined effect of gravity-gradient torque with aerodynamic drag is
to cause the angular momentum vector to precess regularly about orbit

radius vector pointing down the radius vector.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

An investigation of environmental perturbations for an asymmetric
slow tumbling satellite has been presented. Environmental perturbation
sources considered were gravity-gradient, aerodynamic drag, solar
radiation pressure and magnetic field interactions. For the Skylab
spacecraft results assuming gravity-gradient and aerodynamic torques
were presented. Solar radiation pressure and magnetic torques were
small and neglected.

Gravity-gradient torque causes the nadir angle to become bounded
about the orbit radius vector and causes the energy, angular momentum,
and precession angle to become cyclic. Aerodynamic drag initially
decreased the angular momentum, energy, and nadir angle and drives the
spacecraft into an unstable mode by transferring angular momentum from
the major axis to the intermediate axis. Aerodynamic drag also induces
slow‘précéssion rate about the orbit radius vector and causes the
nutation angle to decrease. The combined effects of gravity-gradient
with aerodynamic torques were to cause the gravity-gradient induced
oscillation amplitudes to decrease and the periodic motion to become
random type oscillations. Gravity-gradient torques were greater than
aerodynamic drag and its effect was predominant.

For long term predictions of satellite tumbling motion, analytical
techniques must be lnvestigated. - Computer simulation for this type of
motion becomes very expensive since small time intervals are required to

solve the nonlinear equations of motion. TFuture models of tumbling




spacecraft should include energy dissipation models to account for

internal energy dissipation.
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APPENDIX A

Initial Conditions for the Slow Tumble Mode

A, Slow Tumble Orientation

The Skylab spacecraft was assumed to be in the following attitude

P = 1.07 degrees
6 = =79.96 degrees
¢ = 12.85 degrees

This was the attitude Skylab was believed to be in when it became
passive. For the slow spin case a negative angular velocity equal in

magnitude to the orbital rate about the orbit normal was assumed.

i

w
Q

+.00112256 radians/second

O = w3
(o] OJO

Using the transforﬁations and Figure (4) the required initial
Euler rates can be computed.

= 0.0

De -0
]

w_ cos
o v

wo sin P cos ©

Assuming wo is the negative of the orbital rate the initial Euler rates

for the flow tumble case are

¥ = 0.0
§ = -.0011229 radians/second
é = -3,656 x 10_6 radians/second

¥
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APPENDIX B

Skylab's Aerodynamic Drag Moment Coefficients

-1.289
-0.004
0.442
0.009
-0.037
0.199
-0.044
~-0.049

-0.958
-0.096
0.269
0.055
0.166
4,210
0.155
-0.467

0.018
0.078

0,053
0.943
0.025
-0.162

0.135
0.009
~-0.073
-0.022
-5.146
-0.017
0.779
-0.012

~0.067
~-0.055
0.006
0.031
-0.140
0.022
0.072
0.004

-0.071
~0.0635
0.047
0.042
1.136
~0.016
-0.210
0.005

-0.195
-0.011
0.084
0.015
0.011
0.120
-0.007
-0.021

-0.266
-0.026
0.207
0.014
~-0.014
0.454
0.003
~-0.134

-0.038
0.013
0.058

-0.016
0.024
0.430
0.009

-0.099
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23 % 24 %6
A b5 bg
cy (pitching moment coefficient)
-0.009 0.080 0.007 -0.037
0.022 ~0.005 0.011
0.000 -0.076 -0.011 0.003
-0.036 0.007 -0.020
0.350 0.01¢ -0.010 -0.007
0.002 ~-0.06 0.009
0.123 0.0035 -0.032 -0.001
0.001 0.032 -0.001
c, (yawing moment coefficient)
| 0.019 0.016 - -0.006 0.012
-0.054 0.018 -0.009
-0.007 -0.032 0.006 -0.014
0.068 -0.027 . 0.012
0.280 ~-0.042  -0.074 0.046
-0.052 ~0.055 0.003
-0.069 -0.015 0.032 0.004
-0.010 0.003 -0.001
. (rolling mement coefficient)
0.009 -0.012  -0.001 0.006
=0.017 0.002 -0.011
~0.009 0.018 0.005 -0.016
0.028 -0.000 0.018
0.250 -0.005 -0.039 -0.007
0.005 -0.052 -0.005
-0.055 -0.005 0.019 -0.003
0.000 0.007 ~0.002
REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR
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APPENDIX C

Skylab's Orbit and Satellite Parameters
Orbital Parameters

Orbit Inclination = 50 degrees

Eccentricity = 0

Altitude = 435.5 kilometers

Right Ascension of Ascending Node = 233.2 degrees
Orbital Period = 93.23 minutes

Earth's gravitational constant = 3.986 ¥ 105 kilometerB/
second

Earth's mean radius ~ 6378.0 kilometers
Satellite Parameters

Principal Moment of Inertias

7.93321 x lO5 kilograms - meter 2

T =

X%
Iyy = 3.767828 x 106 kilograms - meter 2
Izz = 3,694680 x 106 kilograms -~ meter 2

Aerodynamic Reference Area
Surface Reference Area = 79.46 meter2

Reference Diameter = 10.058 meter



