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ABSTRACT

State feedback controllers have been researched extensively in the
last decade and computational tools have been developed for their design,
In spite of the better system performance that can be obtained with these
controllers, their application has not been widespread, This is mainly
due to insufficient practical design experience and to the scarceness
of general design guidelines in the published literature, Also, in
many high-performance applications, especially if state estimates
rather than states are used for feedback, the system is found to be

excessively sensitive to parameter variations,

The purpose of this research is to develop a better engineering
insight into the design process of state feedback controllers and to
provide a method for the reduction of their sensitivity to parameter

variations.

In this work the‘design procedure. of feedback‘controllers is des~-
cribed and the considerations for the selection of the design para-
meters are given, The frequency domain properties of single-input
single-output systems using state feedback controllers are analyzed,
and desirable phase and gain margin properties are demonstrated, Spe-
cial consideration is given to the design of controllers for tracking
systems, especially those that are designed to track polynomial

- commands,

As an application example, a controller is designed for a track-
ing telescope, The telescope has a polynomial tracking requirement and
possesses some special features such as actuator saturation and multi-
ple measurements, one of which is sampled. The resulting system has a
tfacking performance that compares favorably with a much more compli-

cated digital aided tracker,
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The problem of parameter sensitivity reduction is treated by
considering the variable parameters as random variables. A perform-
ance index is defined as a weighted sum of the state and control
covariances that stem from both the random system disturbances and the
parameter uncertainties, This performance index is minimized numeri-

cally by adjusting a set of free parameters,

A computer program implementing this method was developed and is
applied to the sensitivity reduction of several initially sensitive
tracking systems, Sensitivity reduction factors of 2-3 are typically

obtained with modest increases in output rms and control effort,
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I. INTRODUCTION

A, BACKGROUND

State feedback controllers have been researched intensively in the
1ast decade, Design methods for these controllers have been developed,
the most important among them being quadratic synthesis [BRY-1], The
application of these methods to all but the simplest systems requires
computer aid and in recent years, efficient computer programs for their

implementation have become available [BRY-3],

In applying these methods, it is observed in many cases that the
resulting systems have better performance capabilities than those that
are designed using classical frequency domain techniques, especially
for multivariable systems [BU~1]., In spite of this, the application of
state feedback to practical design problems is not yet widespread, mainly
due to the fact that this method is relatively new and designers are

therefore not familiar with its potential,

In classical frequency domain techniques, a considerable body of
design experience has accumulated over the years, Based on this exper-
ience, designers can express the system specifications in terms of the
controller structure and parameters, No comparable experience exists
for state feedback controllers and it is therefore difficult, at times,
to relate the system specifications to design parvameters such as state

and control weights,

Most of the publications on the subject of state feedback control
either treat its theoretical aspects or describe the results of specific
applications, Only few publications such as Bull's [BU-1] give some
general insight into the design process and provide practical guidelines
for the selection of the design parameters, Designers experienced in

the classical techniques are therefore reluctant to use these methods,

In attempting to apply state feedback to practical designs, the

problems of sensitivity to parameter variations may be encountered, In
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most applications of state feedback,

and not measured, High performance

feedback are typically sensitive to

The subject of sensitivity has
literature, A collection of papers

published recently by Cruz [CR-1].

almost all the states are estimated
systems using state estimates for

parameter variations,

been treated extensively in the
dealing with this subject has been

Most of the publications, however,

treat various theoretical aspects of the problem, Design papers, in
which practical methods for sensitivity reduction are described, are
relatively scarce., Some of the sensitivity reduction methods that are
applicable to quadratic synthesis designs are reviewed in Chapter IV
of this work, None of these methods, however, seems to be directly
applicable to relatively high order multiinput-output systems in which

several plant parameters may be variable, The designer is therefore
apt to compromise on a system that has lower performance but also lower
sensitivity and will thus not be able to take advantage of the full

potential of state feedback controllers,

A better engineering insight into the design process of state
feedback controllers, and a general method for their sensitivity reduc-
tion may therefore increase the applicability of these controllers to
‘ an attempt is made to treat these

realistic systems, In this thesis,

two problems,

B, THESIS OUTLINE

In Chapter II the design process of feedback controllers and state
estimators is reviewed, . Various methods for determining the state
feedback and estimator gains are given and the selection of state and

control weights for quadratic synthesis is described,

Some frequency domain properties of single-input single-output

state feedback controllers are derived., These properties show that these

controllers, especially if they are designed by quadratic synthesis,

have advantages over other methods of compensation.

The application of state feedback to systems with tracking require-

ments is also described in this chapter, The state augmentations that
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are required for tracking specific time functions are derived,

Most of the material in this chapter is taken from sources in the
literature. Some parts, however, such as the infinite gain margin
property of full state feedback controllers and the determination of
the state augmentation required for polynomial tracking, are believed

to be original,

In Chapter III, the parameter sensitivity of state estimate feed-
pback controllers is examined and illustrated by means of an example,
The system in this example is a simplified version of the Stanford
Relativity Satellite which is a satellite-mounted tracking telescope,
For this system, it is shown that the sensitivity stems from the use
of state estimates instead of states for feedback, A stability criterion,

which is expressed as a2 frequency margin, is developed for this system,

In Chapter IV, a method is derived for the sensitivity reduction of
systems represented in state variable form, The method is applicable
to multivariable systems with several variable parameters, subject to
arbitrary inputs, It is an extension of the quadratic synthesis method
and is based on a method developed by Palsson and Whittaker [PA-1] for
single-input single-output systems, A computer program implementing this
method was developed and the results of its application to two systems
are described, These systems are the simplified and full version of
the Stanford Relativity Satellite [BU—l]. Considerable sensitivity
reduction is obtained in both cases, at a modest cost in performance

and control effort.

In Chapter V, a state feedback controlier for a ground-based track-
ing ‘telescope is designed, This system was selected as an example for
the application of the design methods of Chapter 11, It has some special
features such as control through a flexible element, several measurements,
polynomial tracking requirements, and nonlinear elements, Several
variants’of the controller and estimator design are investigated and
their performances are compared, The sensitivity is reduced using the
methods»derived in Chapter IV, and a nonlinear network is introduced
~fqr'the improvement of the large signal stability, The tracking per-
formance is compared to that of an aided tracker designed for a similar
system. v
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Conclusions and a summary are given in Chapter VI,

C. CONTRIBUTIONS

The principal contributions of this thesis are as follows,

C.1 State Feedback Control

(1) Investigation of engineering properties of state feedback
controllers, Determination of state augmentations required for poly-

nomial tracking,

(2) Application of a state estimate feedback controller to a

high performance tracker,

C.2 Sensitivity Reduction

(1) Analysis of the sensitivity of state estimate feedback con-

trollers and derivation of the frequency margin stability criterion.

(2) Development of a method for the reduction of sensitivity to
parameter variations, and of a computer program for the implémentation

of this method,

(3) Application of the method to estimator design, including the re-
duced sensitivity design of the attitude control of the Stanford Relativity
Satellite,
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II, FEEDBACK CONTROLLER DESIGN

A, INTRODUCTION

In this chapter, the design of state feedback controllers for
linear systems is described and some guidelines are given for their
application to realistic systems, It is an attempt to fill a gap in
the literature between the theoretical treatments which typically deal
with the mathematical steps of designing a controller and the application
papers which typically describe specific results without discussing the

design steps and the considerations involved in the design procedure,

Familiarity with the state variable representation of systems
and its various conomical forms is assumed, This subject is treated

extensively in various texts [CA-l, sc-11].,

Only linear time invariant systems are considered, This is not
as restrictive as it may seem since the design of feedback controllers
for nonlinear systems is, in general, very complicated and therefore
in many cases an open loop controller is designed for .the nominal
trajectory and a feedback controller for the perturbations about this
trajectory [BRY-2]. The perturbation equations are linear, They may
not have constant coefficients but in many cases it is preferred to use
an average value’of the coefficients and design a constant gain con-
troller instead of the much more complex time-varying controller, If
the range of variation of the coefficients is large and the variation suf-

ficiently slow, a switchable gain controller may be used.

In the following section, B, regulator design procedures are des-
cribed, using both pole placement and quadratic synthésis, In the
quadratic synthesis procedure, the judgement of the designer is involved
mainly in the selection of state and control weights, - Some methods

‘are given for this selection based on system requirements,



In Section C, some properties of systems using state feedback
are examined., There seems to be a notion among control designers that
state feedback may have an advantage over classical design methods for
multi-input multi-output systems but that it offers no such advantage
for single-input single-output (SISO) systems, The properties described
in this Section show that in many cases, state feedback may have con-
siderable advantages over classical design techniques even for SISO

' systems,

In Section D, the more complex problems of tracking and nonzero
mean disturbances are treated and multivariable integral control is

introduced,

B, REGULATOR DESIGN

B,1 Description of the Design Procedure

The basic controller for a linear time invariant system is the
regulator, It is‘designed to keep the states of the system in an accept-
able vicinity of zero with an acceptable amount of control, while the
system is subject to random zero~mean disturbances and the measurements

are contaminated by random zero-mean noise,

The system is described by

x = Fx 4+ Gu + I'w
y = Hx + v (2.1)
where
X = étate vector (n %X 1)
F = system matrix (n X n)
u - = .control vector (m X 1)
G . = control distribution matrix (n X m)
w = state disturbance (@ X 1)
' = distﬁrbance distribution matrix (n X q)
y = output vector (P X1)



H = output matrix (p X n)

v = - measurement noise (p X 1),

The regulator design procedure consists of two steps: (1) design
of a state feedback controller, and (2) design of a state estimator,

These two design steps are performed independently,

The state feedback controller has the form
u = ~-Cx ,

In its design, all the states are assumed to be available for feedback.
The design consists in selecting the feedback gain matrix C(m X n),
Two principal methods are available for this selection: (1) pole place-

ment; = (2) quadratic synthesis,

In the first method, the system requirements, such as rise time,
overshoot, damping ratio, phase margin, etc,, are translated into desir-
able locations of the closed loop eigenvalues and the feedback gains re-
quired to obtain these eigenvalues are found. Only for SISO systems are
the gains determined uniquely by the eigenvalues, For multivariable
systems, additional constraints have to be imposed. Methods for select-

ing the gains for given eigenvalues are described in Section B,2.

In the second method, the gains are determined so as to minimize
a performance index of the form

o

cy
1

T T
S (x Ax + u Bu)dt
[¢]

where the weighting matrices A and B are determined by the designer,
The methods for selection of the weighting matrices and for determining

the gains for given weighting matrices are described in Section B, 3,

The estimator generates estimates of the non-measured: states which
are then used for feedback in the controller instead of the real states,

In many cases, especially when the system is subject to noise, all the



states required for feedback, and not just the non-measured ones, are
obtained from the estimator, The structure of the estimator and the

methods for its design are described in Section B.4,

The engineering properties of systems designed by this method are
described in Section C, The regulator as described above will keep
the states of the system in the viecinity of zero when the system is
subject to random, zero mean disturbances, If the disturbances have a
constant or slowly time-varying component, or if the output of the
system is required to follow a command input, regulator type contrcllers
may not be able to prevent output errors, State augmentation techniques
as described in Section D may in some cases.extend the regulator design

procedures to such cases,

B.2 Feedback Gain Determination by Pole Placement

In general, the system specifications will call for either a speci-
fied time response (rise time, overshoot) to inputs (or recovery from non-
zero initial conditions) or for a maximum rms level of output and control
when the system is subject to random disturbances and sensor noise of a

known ihtensity.

Typically, pole placement will be used in the first case since it
is difficult to correlate the closed loop eigenvalue location with the
resulting rms value in the outputs and the controls. TFor single
input systems, several methods exist for the determination of the gains,
If the system is in its controllable canonical form [CA-1] the feedback
gains are simply the differences between the coefficients of the open
loop characteristic equation and the required closed loop characteristic
equation [CA-1], If the system matrix has arbitrary form the gain matrix

C is obtained from the equation



c = [a-glp (2.2)

where a - 0 is the vector of the differences between the coefficients
of the open loop and the required closed loop characteristic equations,
P is the transformation matrix from the given form into the controllable
canonical form [xc = Px]. Ackerman [AC-1] has provided a formula for
finding the feedback gains without calculating the open loop character-

istic polynomial, It is

T
Cc =
q, o)
where
T o1
qQ = fo, ..., 0, 1]C¢ 7,
F = +the system dynamic matrix
a(s) = the desired closed loop characteristic polynomial,
-1
¢ = [G, FG, ..., F' 'G], is the controllability matrix.

Some algorithms for gain determination in multi-input system have
also been developed, Anderson & Luenberger [AN-1] transform the system
into a canonical form that is composed of blocks in the controller
canonical form on the diagonal and zero blocks above it, The required
closed loop eigenvalues can be obtained by adjusting the coefficients
of each block separately by the corresponding control, The arbitrariness
in the determination of the gains is resolved by engineering considera-
tions where the designer selects the controls that he prefers to apply.
Other. controls are applied only if the system is uncontrollable by those

that are preferred.
Gopinath [GO-1] describes an algorithm for determining the gains

in which the uniqueness is achieved by restraining the C- matrix to

rank 1, It then has the form



C = . [°1’ ven, C_J

where al to am represent the relative contributions of the different
controls and are determined by the designer, For multiple controls, the
designer may find it difficult to translate his physical insight into the

desirable relative ccentribution of each control.

Gain determination by pole placement has some basic deficiencies:
(1) It is convenient to define time response criteria in terms of
second, or at most, third-order models. The determination of the roots
of a higher order model that satisfies given criteria is more difficult,
For a high order system, therefore, there are two possibilities: (a)
To place all the eigenvalues of the system in the region of the required
eigenvalues (maybe by assigning double or triple eigenvalues), acceptling
the resulting uncertainty in the time response, (b) To assign all the
eigenvalues except two or three that are required for the determined
time response to regions in the s—plané that are far from the imaginary
axis and thus give faster time responses, This assures that the time
response will be dominated by the two or three slow eigenvalues. This
possibility will require higher gains and therefore may saturate the
controller for even small deflection of the states, (2) In multi—input
systems, the additional criteria imposed in ofder to obtain unique gains
may result in undesirable solutions. For high order systems, pole
‘placement therefore does not exploit fully the possibilities of sfate.
feedback controllers, In general, better designs can be obtained using

quadratic synthesis,

B.3 TFeedback Gain Determination by Quadratic Synthesis

In this method the feedback gains are selected so as to minimize
a quadratic performance index (PI), For systems which are required to

recover from non-zero initial conditions and are not subject to further
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disturbances, the PI is

oo

J = S (xTAx + uTBu)dt . (2.3)
to

For systems which are subject to random disturbances, the PI is

t
£
. 1 T T
J = %%E» e S (x Ax + u Bu)dt . (2.4)
£ f o
t
o
The second case is the more realistic one. A physical interpretation

of the PI for this case can be obtained by rewriting Eq. (2.4) as

J ~ tr[AX(o)] + tr{BU(x)] (2.5)

where
X(») = the steady state state covariance
U(w)‘ = the steady state control covariance
tr = -the trace operator,

The steady state covariance matrices exists since the system is
assumed to be stable. The PI of (2,5) is thus a weighted sum of the
state and control covariances where the weighting matrices A and B are

selected by the designer,

The quadratic synthesis design procedure consists of two steps:
(1) selection of the weighting matrices A and B; (2) determination of

the gains so as to minimize the PI for the selected weighting matrices.
These steps will now be described,

(1) Selection of the weighting matrices. The selection of the

A and B matrices constitutes the actual design in the quad-
ratic synthesis method since the determination: of the gains
after these matrices are selected is a purely computational

step. Unfortunately, no set rules exist for the selection of
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these matrices so as to obtain desired time responses or
closed loop eigenvalue locations, The selection is, in many
cases, a matter of designer experience, One of the reasons
for the scant use of state feedback in actual systems is

the lack of a sufficient body of this experience among working

designers,

In general, the design is iterative, with the weighting matrices
modified at each step so as to approach the required perform-

ance,

Some general guidelines for the initial selection and subsequent
modification of these matrices can, however, be given, The
most convenient rule for the initial selection of the weighting

matrices is probably Bryson's Rule [BRY-1], It is

1

841 T T 32 2,5 =% i £ 3
(i)
max
(2,11)
1 . ..
LT PR by =0, 13
lmax

where  xj and uj “are the maximum permissible values of
max max

the respective states and controls, For systems subject to

random disturbances, they are the rms Vaiues of the permissible

uncertainties in the states and controls,

This method wés used, émong others, by Gupta and Bryson [GUP-1]
and by Bull [BU-1] for the design of controllers, In general,
it is recommended to weight in the first iteration only the
outputs and the controls. In most cases, some éhanges in the

weights are required after their initial determination,

For multivariable systems, no general rules can be given for
the effect of these changes and in general, the selection
has to be made by trial and error, In some cases, it is

possible to decouple approximately the system and determine
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the weights or even design the controllers for the decoupled
systems, The performance of the overall coupled Sysfem has
to be verified., This method is used by Gupta and Bryson

[cup-1].

For single input systems, the effect of weight changes on the
closed loop eigenvalues can be determined byAthe root square
locus method, This method is described in detail in Appendix
d, It is based on one of the formulations of the quadratic
synthesis method due to Rynaski and Whitbeck [RY-1], Accord-
ing to this. formulation, a system designed by quadratic syn-

thesis satisfies the equation
T "
[B + Y (-s)AY(s)Ju(s) = O, (2.6)

where Y(s) = (sl - F)—lG.

For SISO systems, this equation has 2n roots that are sym-
metric about the imaginary axis, For a given A and B (a
scalar for SISO systems), the left half plane roots of this

equation are the closed loop eigenvalues of the system,

The effect of weight changes on the closed loop eigenvalue
locations is determined by fixing the control weight and all
the state weight except one, A root locus is constructed as
a function'of this weight, If all the weights are varied in
turn with different values assigned to the remaining weights,
a grid is obtained that shows the closed loop eigenvalue
locations as a function of the state weights, The method
becomes cumbersome if more than two or three states are
weighted and is totally impractical forimulti—input systems
because of thé (m-1)n extraneous roots that are introduced
where

m is the number of controls,

n 1is the state dimension,

A design example using this method is presented in Chapter V,
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The advantage of using the root square locus method instead
of arbitrary pole placement is that the non-dominant eigen-
values are not positioned arbitrarily but are located so as
to optimize the performance according to a PI such as given
by Eq. (2.3). The dominant eigenvalues have to be determined

in both cases according to the system specifications,

Another method that is applicable to SISO systems and that
does not require the separate examination of the weighting of
each state is the model performance index method, In this
method, the state and control weights are determined so that
the closed loop response of the controlled system approaches
that of a system having prescribed eigenvalues, It is essen-
tially an eigenvalue placement procedure in which only the
dominant eigenvalues and those that are required for the
cancellation of the zeros are assigned,  All others are re-
moved to regions of non-dominancy in a ' predictable way, The
method is based on Eq. (2.6), Several versions of its im-
plementation are described in the literature [SC-1, RE-1],
The version presented here is an extension of the method given

by Anderson & Moore [AN-2, Sec. 5.47.

Given the open loop transfer function of the system

m
k I{ (s + 2,)
y(g) _ i=1 _ kN(s) ) 2.7)
u(s) B n - D(s) '’
II (s + pi) '
i=1

The steps for the determination of A are (b, the scalar con-

trol weight, is assumed to be unity without loss of generality):f

(a) Define the characteristic equation of the model as

: r r-1
D _ o
<) s+ 7ys Foeee Ypo
The degree of the model must be such that r<an -m- 1,

(b) Define a polynomial
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P(s) = Dm(s)N(s) .

(c) Find a vector d such that

)
”~~
0

'

T -1
d (sI - F) g

(2.8)

o
~
n

~

or P(s).

dT adj(sl - F)g
The restriction on the dimension of DM(s) is now clear

T
since the dimension of d adj(sI - F)g8 is less than n - 1,
(d) Define

A = dd ., - (2.9)

The results of this procedure can be evaluated using Eq, (2,6)
(with scalar b), Substituting A from Eq, (2,9) into (2.6),

it is transformed into

b+ Y (-s) dd ¥(s)

It

T T -1 T -1
b+ g (-sI-F) dd” (sI-F) g

P(-s)P(s)
D(-s)D(s)

The closed loop eigenvalues for a given value of b will be

the left half plane eigenvalues of

bD(-s)D(s) + P(-s)P(s) .,

By constructing a root locus as a furction of b, conclusions

can be drawn about its influence on the closed loop eigenvalue
locations: (i) For b - o (high cost of control), the closed

loop eigenvalues become the stable open loop eigenvalues and the
mirror images about the imaginary axis of the unstable open loop
eigenvalues, (ii) For b - 0 (low cost of control): r eigenvalues
tend towards the eigenvalues of DM(s); m eigenvalﬁes tend towards
the left half plane open loop zeros and the mirror images of the

right half plane open loop zeros; n - m - r eigenvalues form a
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Butterworth configuration that recedes from the origin as b
decreases, The distance of the Butterworth eigenvalues from

the origin tends to [KW-2, Sec. 3.81]:

1

L k2 2(n-m-r) (2.10)
o ~ \b

for low b,

For sufficiently low b the closed loop response of a system
with left half plane zeros (minimum phase system) will there-
fore approach the model response, The residues of the eigen-
values that approach the zeros are small, and the n - m - r
eigenvalues of the Butterworth configuration are sufficiently
removed from the origin so as not to influence the time response.
The value of b which will assure the dominancy of the model

eigenvalues has to be determined for each system individually,

It is important to note that for systems with right half plane
zeros (non-minimum phase systems), it is, in general, not possi-
ble to approach the model response since the m eigenvalues
that approach the mirror images of the right half plane zeros
will, in general, have large residues, This is a fundamental

deficiency of non~minimum phase systems,

It is also important to bear in mind that the system will have
the desirable response only to inputs for which the numerator
of the transfer function is the same as the numerator of the
open loop transfer functions y(s)/u(s). This includes
response to set point changes but does mnot include recovery
from nonzero initial conditions or disturbances, The time
response to these latter inputs will generally contain modes
corresponding to all the eigenvalues of the system, and there-
fore, in many cases, will be much slower than the respbnse to

set point changes,
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For high order systems, it may be undesirable to attempt the
removal of the Butterworth roots from the region of dominancy,
since this may require excessive amounts of control (recall
Sec, B.2). In this case, a zero order model may be used
which is equivalent to weighting the output only, Obviously
this is the same as using the root square locus method with
output weighting only, The time response for low values of

b will, in this case, be dominated by the n - m ordered
Butterworth configuration, with m roots approaching the

m open loop zeros, The time response of Butterworth config-

urations is described in many control texts (e.g., KW-2, Sec,

3.8). The relative weighting of the output and the control
for this case may be determined by Eq. (2.10),

There is, at present, no apparent generalization of the model
PI method to multivariable systems, Anderson and Moore [AN-2]
suggest a generalization to multi-input systems: by deter-
mining the ratios of the m components of the control YVector,
an equivalent single input control is created and the method
may be applied, This is the same constraint that is given

by Gopinath [GO-1]. The resulting system, however, will not
be optimal in the sense that the same closed loop behavior can
be obtained with lower values of the control. In some cases,
it may be advantageous to sacrifice this optimality in order

to have a simpler design method.

The guidelines for the selection of the weighting matrices are

summarized below,

(a) Weight only the outputs and the controls for the initial
iteration, Note that the weight of one of the outputs
or controls can be set arbitrarily since it is only the
ratio of the state-to-control weights that is important,
The initial determination of the weights is most con-
veniently done by Bryson's rule,
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(2)

(b) For multivariable systems, little can be said about the
effect of weighting changes except that, in general, in-
creasing the ratio of output-to-control weighting will
increase the bandwidth and increasing the weighting on
states that are derivatives of the outputs will increase
the damping of the roots,

(c) For single input systems, root square locus can be used
for determining the effect of changing the weights of
the output and perhaps one or two more states. If more
states have to be weighted, the model PI can be used,

It is clear from this section that since the weight selection
is an iterative procedure, it is important to have a fast
computer program that repeatedly determines the gains and
eigenvalues for many values of the weights, Such programs

have only become available in the last few years,

Feedback gain determination, The optimal feedback gain matrix

that minimizes a PI as given in Eq. (2,3) o. (2.4) is [BRY-2]

-1
° 5 1gTs° (2.12)

where So is the positive definite steady state solution of

the Ricatti matrix equation:

: T -1 T
S = -8F -F S +8GB GS - A, (2.13)

The optimal feedback is always a full state feedback,

There exist several computational methods for calculating

the SO matrix, These methods are described by Bryson & Ho
[BRY-21, and Bull [BU-1], It seems that currently the most
efficient method for time invariant systems is the eigenvector
decomposition method, which has been implemented as a computer
program (OPTSYS) by Bryson and’Hall [BRY-3], This program
determines the optimal feedback gain matrix and the resulting
closed loop eigenvalues and eigenvectors from given F, G, A
and B matrices, Since it is a very fast and inexpensive

program, it is convenient for detérmining the state weights
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iteratively, In general, a satisfactory system will be

obtained after four to five iterations [BU—l}.

For low order SISO systems, the gains can also be found by
hand calculation using an addition to Eq. (2.6) [BRY-1],

viz.,,

[B+YT(—s)AY(s)] = [I+C(-sI~F)_1G]T B(I+C(sI-F)—1G].

For SISO systems, the unique value of C 1is found by com-
paring the coefficients of the polynomial that is formed from
the left half plane roots of the left side to those of

1 + c(sI-F) TG,

B.4 Design of Linear Estimators

As explained in Section B,1l, the design of a state feedback controller
is composed of two distinct steps: (a) controller design, and (b) state
estimator design, In this section, the design methods for the state estim-

ator will be described,

A full state estimator is a model of the system, the output of
which is compared to the system output, 'The difference between the
outputs is fed back to the estimator through a gain matrix K, For

the system (repeated from Eq. 2.1)

.

x = Fx + Gu + I'w
y = Hx + v,
the estimator has the form
$ = FR+ Gu + K(y - HX) , (2.17)

where X is the state estimate, and K is the estimator gain matrix,

From Eq. (2.5) it can be seen that the governing equation for the estimate

error x = x - ® is

Wi

= (F - KH)X + T'w - Kv, (2.18)
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The rate of decay of this error is therefore determined by the n eigen-
values of F - KH which can be determined arbitrarily by the selection
of the n X p matrix K, whenever [F, H] is observable, p is the
number of measurements, Only for p =1 will the eigenvalues determine

the components of - K uniquely,

'The design of the full state estimator consists of the selection of
the gain matrix K, Various criteria exist for the determination of K,
The principal ones are: noise filtration, rate of error decay, and
sensitivity to plant parameter variations, If the main criterion is
noise filtration, and if both the process and measurement noise are
white and Gaussian, the gains can be selected by minimizing a perform-

ance index of the form [BU-1]

1i
e t{gn t -t

tf

1 -1 T -1

J = S (WTQ w + v R “v)dt, (2.19)
f f o e

o

The estimator that is obtained by this method is a Kalman filter, This
is an optimal estimator since it generates the least squares estimate of

%, The Kalman filter gain matrix k® is [BRY-2]
k° = -p°H'R (2.20)

where P0 is the steady state positive definite solution of the

equation

. X T -
P = FP + PFrl + @ - PH R 1HP. (2.21)

P is the covariance matrix of the estimation error X, p° can be
computed by different methods which are similar to those used for solving
the Ricatti equation (2,13), Here, too, the most efficient method |
seems to be eigenvector decomposition, The program OPTSYS contains an
option for evaluating Kalman filter gains.  The estimator gains that are
obtained by this method depend on the relative magnitude of the process
and measurement noises, * Two extreme cases will now be considered,

.
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(a) Q = 0; no process noise, In this case, for stable plants, Po =0
and K°® = 0 are obtained from Eq. (2.21)., Since the system is
not disturbed, the estimate is exact and the noisy error feedback
can only contaminate it, If the initial state of the plant is
not identical to that of the estimator, the error decay rate is
determined by the plant dynamics solely,

(b) R = 0; no measurement noise, In this case, K% ©; ‘i,e,, all
the eigenvalues of F - K°H tend to - ®, which meansthat the
estimates are obtained by differentiating the output n -1
times, This differentiation can be performed since the output
contains no noise whatsoever,

From these extreme cases, it can be seen that as the measurement
noises decrease relative to the process noises, the estimate error
eigenvalues of the Kalman filter become faster, If the dominant estimate
error eigenvalues are much faster than the dominant controller eigen-
values, noise criteria cease to be important for the determination of the
estimator gains.b In this case the filtering action provided by the
estimator is not better than that provided by the controller itself, %he
estimator gains can, in this case, be determined by other criteria such

as error decay rate or parameter sensitivity.

1f error decay rate is the principal criterion, the estimator gains
may be determined by pole placement, Methods similar to those described
in Section B,l may be used for this placement, However, if a computa-
tional method for determining the Kalman filter gains is available, it
may be more convenient to determine the gains that are required for the
placement by using this method with artificial noises, The noises in
this case are merely a computational tool for the determination of the

gains,

For single output. systems, the influence of the noises on the eigen-
value locations can be determined by a root square locus procedure, In

this case the closed loop eigenvalues are the left half plane roots of

R + Z(s)QZT<—s> = 0,
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where

H(sI - F)_ll"

Z(s) =
R = +the measurement noise covariance
Q = the process noise covariance,

For multioutput systems, the eigenvalue locations as a function of
the noises have to be determinated by trial and error, The method of
artificial noises can also be used when the eigenvalues obtained from
the Kalman filter gainé are inconveniently located. An example of such
a problem is given by Bull [BU-1]. In this case the Kalman filter had
very low damping and could easily become uhstable if the filter gains
were not implemented precisely, The roots obtained by using artificial
noises are more conveniently located, The resulting system is not
optimal for the real noises but its rms values are only slightly higher
than those of the optimal systems, The property of low sensitivity
of the noise changes to estimator gains has been observed in several
systems but its generality has not been established, The determination
of estimator gains from sensitivity considerations is described in

Chapter IV,

For a system with p measurements, a full state estimator is
actually not required for the estimation of all the states, Luenberger
[LU-2] has developed the concept of the reduced order observer which has
n - p states and which, together with the p measurements, provides an
estimate of all the n plant states, A method for designing the observer
by transformation into a canonical form isvdescribed in the same paper,
Gopinath [co-1] developed a design method which does not require such a
transformation, This method is described in Appendix E, An example of

the use of such an observer is given in Chapter V,

If the measurements are noisy, the use of a reduced order observer
" instead of a full state estimator results in larger output and control
noises, This is so because the noisy measurements are fed into the

controller directly without being filtered by the estimator,
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B.5 Performance Index Evaluation

For a system of the form of Eq. (2.1), which is subject to the
white Gaussian disturbance vector, w, and for which the measurement. of
the output is contaminated by the white Gaussian noise vector, v,
the optimal controller is obtained by

(a) using the optimal feedback gain c®  from Eq., (2.12), with

the feedback obtained from an estimator, Note that the

optimal feedback is independent of the process and measure-
ment noise,

(b) using the optimal estimator gain k° from Eq. (2.20). Note
that K° is independent of the weighting matrices A and B,
This is the certainty equivalence principle [BRY-2]. The system is

optimal in the sense that it minimizes the PI of Eq. (2.5)
J’ = tr(AX) + tr(BU).

It is of interest in many cases to evaluate the consequences of using
nonoptimal K or C matrices, This can be done by comparing the result-
ing PI,

The expressions for X and U that are required for evaluating J

o
are given below, If K = K, we have

X = X+P, (2.23)
where .
T -
X = %&E Efx(t)x (t)] 1is the steady state covariance matrix of
the state
‘A ~ AT ' ) : ) .
X = 1im E[x(t)x (t)] 1is the steady state covariance matrix of
oo .
the estimate
N ~ ~T .
P = lim E[x(t)x (t)] is the steady state covariance matrix of the

& estimation error.

Equation (2,23) is valid because for an optimal estimator

B¥()X )] = 0.
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The governing equations for ¥ and P are [BRY-2]

A T T
(F - GO)R + X(F - GC) + KRK

il
o

(2.24)
and

(F = KH)P 4+ P(F - KH)T + KRK? +Q = 0, (2.25)

Note that Eqs. (2.24) and (2,25) are valid for both optimal and non-
optimal systems but for systems with nonoptimal filters, Eq. (2.23) is
not valid, For systems with an optimal filter, the covariance of the

estimate error may also be determined by Eq. (2.21),

For systems with nonoptimal filters, the state covariance is given

by
X = 4P+ lim B[O ()] . (2.26)
10

In this case, X has to be calculated by using the augmented system

x
Xp = o , (2,27)
x
for which the covariance is given by (2,28)
T T T
F,X, + X,F, + T',Qr' + K,RK} , (2.28)
wheré
[F - GC Ge ]
' = 2n 2n]
Fy = [2n X
) F - KH_
X E(xiﬂ‘)T
XA = [2n x Zn]k
‘;E(xiT) p
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I\'T
= 2 q
Ty [2n X 4]
T
0]
K, = [2n X p] .
K-
X is determined from the upper left n X n partition of XA. The
equation for U is
o T
U = CXC ., (2.29)

This equation is always valid but if Eq. (2,28) is used to find X
X may not be available, In this case
T

U = CXC

IV (2.30)

where

c, = [c, -c] m X 2n,

C. ENGINEERING PROPERTIES OF STATE FEEDBACK
CONTROLLERS

In this section, some frequency domain properties of systems with
state and state estimate feedback controllers are examined, These
properties make it possible to compare the results of this design method
to those of classical frequency domain techniques. This comparison is
most meaningful for SISO systems, which are the principal domain of

'application of the classical techniques, The eigenvalue separation
property of state estimate feedback controllers is used in this section,
This property is derived in most modern control texts [AN-2], It is
apparent from the state equation for the augmented system of Eq. (2.27),

which 1is
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=
(o}

= + au +]| w+| v, (2.3D)

~

o F-KH|| X 0 T K

M

where uo is an external input that is applied to both the plant and

the estimator,

From Eq, (2.31), the characteristic equation of the augmented system
is

A(s) = det(sI - F + KH) X det(sI - F + GC), (2,32)

This characteristic equation contains two separate groups of eigenvalues.,
(a) n eigenvalues of the controller (F - GC) that are the same as those
obtained with feedback from the states instead of from the estimates,

(b) n eigenvalues of the estimate error system (F - KH).

It is because of this separation of the eigenvalues that the con-
troller can be designed as if full state feedback were available and
the estimator can then be designed separately, Note that this property
does not depend on the method by which the estimator and feedback gains

are obtained, but only on the estimator having the structure of Eq. (2.17).

C.1 Transfer Matrices and Tracking Properties

The transfer matrices from the various inputs to the outputs ¥y

are found from Eq, (2.31), Defining

N 2 sI -F 4+ GC

M £ sI -F +KH,

the system output is obtained as
R | -1 -1
y - = HN Guo + HN "(sI - F 4+ GC 4+ KH)M Tw
(2.33)

-1 -1
+ HN GCM Kv .,

From this equation it can be seen that for inputs applied to both the
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plant and the estimator, the characteristic equation of the transfer
matrix contains the eigenvalues of the closed loop system only,
(F - GC), i.e,, for these inputs, the system behaves as if the feed-

back gains were obtained from the states and not from their estimates.

This is a remarkable property of state estimate feedback design,
It can also be seen from Eq, (2,36) that the estimate error ¥ is not
excited by the input u . For all other inputs (disturbances and
measurement noises), the characteristic equations of the transfer
matrices contain both the controller eigenvalues and the estimate

error eigenvalues,

These different transfer matrices are important for tracker design,

which is discussed in Section D,

C.2 Equivalent Compensators

For SISO systems, it is sometimes of interest to compare the struc-
ture of the state estimate feedback controller to that of compensating
networks obtained by classical design techniques. For this purpose, the
equivalent compensating networks of the state estimate feedback controller
are determined, Block diagram representations of the state estimate

feedback (SEF) controllers are given in Fig, II-1,

Figure II-la is obtained from Eq. (2.1) and (2,17), Figure II-1b
is obtained from Fig, II-la by defining

G(s) = H(sI - F)_lG © o (2.34)
H (s) = C(sI-F+ ki Lo (2.35)
Hy(s) = C(sI - F + KH)-lK . (2.36)

Figure ITI-1lc is obtained from Fig, II-1b by defining

Hc(s) = [1 +~Hu(s)]f1 . (2.37)

Using two linear algebraic relations [GA—l],

2T



=1
s (sI - F) G - H

(a) C

Li—» (sI—F+KH)_1<———K oot

u +
0 —? o G(s)
(b)
H (s)
y
Hy(s) -
uo : +
—-»O—- Hc(s) — G(s)
A-
(c)

H (s) T
y

FIG, II-1 BLOCK DIAGRAMS OF THE STATE ESTIMATE FEEDBACK
CONTROLLER,
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[T + C(sI - A)B]'1 = 1 -C(sI - A4 BC)'lB (2.38a)

1-CB = det(l - BC) . (2.38b)

Equation (2,37) can be further written as

H (s) = [1L4C(sI -F + KH)-IG]_I
-1
= 1 -C(sI -F +KH 4+ GC) "G
-1 (2.39)
= det[I - GC(sI - F + KH + GC) ]
_ det(sI - F + KH)
det (sI-F+KH4+GC)
Using
H () = O(sI-F+ ki ly - Cadi(sl - F+ KK = () 40)

det (sl - F 4+ KH)

the open loop transfer function is

€ adj(sI - F + KH)K _ ). 41
Go(8) = Jot(sT = %Ki+ GO) G(s) = H(s)&(s) . (2.41)

The eigenvalues of F - KH do not appear in this transfer function, The
compensating networks Hy(s) and Hc(s) and the open loop transfer func-
tion Go(s) can now be used to compare the design with classical frequency

domain designs,

C.3 Gain and Phase Margin

Single-input single-output (SISO) systems with full state feedback
controllers have some desirable gain and phase margin properties, ' Con-

sider the SISO system
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e
|

= Fx + ¢ Gu
o
u = -Cx

where C is a full state feedback. <, is a variable scalar (it may be
the gain of the control amplifier) with nominal value of unity, For

such a controlier

(a) The system has infinite gain margin for changes in <,
if the zeros of C(sl = F)—lG are in the left half plane,
This result remains valid if state estimate instead of state
feedback is used, The proof of this result is given in
Appendix A, The system, however, may still be conditionally
stable, ie,, a decrease in ¢, Mmay cause it to become un-

stable,

(b) If the feedback gains are found by quadratic synthesis, the

inequality
, -1
|1 -c@ur - »76] = 1 (2.42)

is satisfied [AN-2, Sec, 5.3], In fact, it can be shown
that whenever (2,42) is satisfied, some A and B matrices
can be found such that the given gains minimize a quadratic

performance index of the form (2.3).

If (2,42) is satisfied, the distance of the polar plot of
C(jwl - F)_lG' from the =~1 + jO point is at least unity,
Since C(ij-F)_lG is the open loop transfer function, the
following results are obtained [AN-2}: (1) the gain margin
to changes in c0 is infinite; (b) the phase margin is at
least 60° (This is important for determining the tolerance
of such systems to time delays); (c) conditionally stable

1
2

¢
%nom

.

systems will remain stable for c, >

As an example, the polar plot of a l/s3 plant which has an

optimal controller is shown in Fig, II-2, This system has infinite gain
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margin but is conditionally stable,

FIG. II-2 POLAR PLOT OF A %/53 PLANT WITH OPTIMAL
CONTROLLER

D, TRACKERsS. AND SYSTEMS SUBJECT TO TIME CORRELATED
DISTURBANCES

D,1 General

If a system is subject to time correlated disturbances or if it
is required to track a giﬁen reference output, some modification to the
regulator structure may be required. 1In this section, reference outputs.
and disturbances are considered which may be represented as outputs of

linear systems driven by white noise, They are given by
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x-

1l

r
(2.43)
yr = err
and
xy = Fpxp +Tp¥
- (2.44)
w = HDXD .

For such reference outputs and disturbances, the response
by augmenting the state vector and designing a controller
mented state, The required augmentations and the meaning
ment in the controller are discussed in Section D.2. The

regulator (no tracking requirements) for a system subject

may be improved
for the aug-

of the improve-

design of a
to this type

of disturbance is described by Johnson and Shelton [Jo-2].

If the intensities of v and w, are zero, a deterministic track-

ing problem or a regulator with deterministic disturbance result. Only
the class of Fr and FD matrices that cause sustained reference outputs
or disturbances are of interest in this case; it is treated in Section

D, 3.

D,.2 Stochastic Tracking and Disturbances

Consider the system of Eq., (2.1), which is required to track a2
reference output of the form of Eq; (2,43) and is subject to disturbances

of the form of Eq., (2.44).

An optimal controller can be found for the augmented system

LS|

X O THy| | x o ollo G
0= % =105 o )= O five) O]
X (0} F 3 )
Xp D X 0 FD Y 0]
- (2.,45)
. X
y, = Y-y, = [g, - Hr] + v,
; x_
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So as to minimize the performance index:

(-]

J = S [y - yr)TAl(y -y 4 u'Buldt.
o

The solution of this problem is given by Kwakernaak and Sivan [KW-2],

A partitioned Ricatti matrix is ohltained and from it the augmented feed~-

back gain matrix can be determined as

x 1. (2.47)

C is the feedback matrix from the states of the unaugmented system that
minimizes the PI
o0

T
J = S (QTAly + u Bu)dt .,
o

The optimal feedback is not changed by the tracking requirements or

the time correlated disturbance.

Cr and CD are feedforward matrices from the reference and dis—
turbance states, These states do not, of course, exist in reality
and have. to be estimated, The block diagram for this system using
estimators for the states, the disturbances, and the reference states

is shown in Fig, II-3,

In Fig, 1I-3, estimator No, 2 estimates the states X, which are

defined by
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-1
HD(SI - FD) PD

ESTIMATOR No. 1 4
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»{(sI-F_+K H_ ) K =l C - H(sI - F) G
r rr r r ~
, G
c
Al ESTIMATOR No. 2
- - X -1 llf—
| H (s1 - F)7D 4| (sI - Fy KH )7l
r r r A -

FIaG,

II-3

SYSTEM WITH FEEDFORWARD AND FEEDBACK CONTROLLERS



% F I‘HD-1 x G 0
Xu = = + u + WD
X 0
XD FD_ XD 0 PD
b
v, = [H, o]
| *p
CA - [C, CD] .

The optimal estimator gains K and Kr can be found separately since the

reference mddel and the system are not connected,

It is important to recognize that a configuration such as shown
in Fig. II-3 is not essential for accommodating disturbances given in
by Eq. (2.43) or tracking reference outputs given by Eq. (2.44), but is
is the configuration that will give the minimum of the PI of Eq. (2.46).
Physically that means that the deviations of the output from the reference
output will tend to be smaller when feedforward as per Eq. (2.47) is
used, In many cases, the reference output and the outputs of the system
are not measurable separately and only the error ye =y - yr is meas-
ured, In that case feedforward from the reference output cannot be used,
A regulator configuration may be used with the output error fed back to

the estimator, This is shown in Fig, II-4. (with the disturbance omitted),

—m!  H(sI - F)'l

* (sI - F + KD T e X

FIG, II-4 ESTIMATOR WITH OUTPUT ERROR MEASUREMENT
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The transfer matrix from Y. to y for this case will be the same

as the transfer matrix from the measurement noise v toy (Eq. 2,38).
-1 -1
y = H(sI - F + GC) "GC(sI - F + KH) Kyr , (2,48)

i,e,, in this case, the system has no way of distinguishing between the
reference output and the measurement noise since it has no information
about the reference model, In general, the output error for this con-
figuration will be greater than for the optimal configuration of Fig,

II-6,

An exception is the case of complete reducibility of the reference
output [RA-1, KR-1], This is defined as the case in which an error

state vector e = x =~ xr can be defined such that

Fe + Gu (2.49)

M
It

y = He,

For a completely reducible reference output, the error state therefore
has the same dynamicg as the system, The condition for complete reduci-
bility is that all the eigenvalues of Fr have to be among those of - F,
A state transformation may be required in order to obtain the form of
Eq. (2,49). If the reference output is completely reducible, feedback
from the error states (or their estimates): u = - Ce will minimize
the PI of Eq. (2.46). The configuration of Fig, II-4 is therefore

optimal for this case,

D,.3 Deterministic Tracking and Disturbances

1f w_ and v in Eq. (2.43) and (2.44) vanish, a deterministic
tracking problem results, This problem can be solved by state augmenta-
tion in the same way as described in the previous Section, but the re-
sulting solutions for most forms of Fr and FD matrices represent con-
trols that are optimal for specific reference outputs and disturbances

only and therefore have little general interest.
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A class of reference outputs and disturbances that is of general
interest is the class of polynomials in time., They can be considered

as outputs of models of the form

The order of the model is determined by the order of the highest polynomial
output, This output is the first state of the model. The coefficients
of the polynomial are determined by the initial conditions, This class
of reference outputs includes steps, ramps, constant accelerations, etc,
Systems that are required to track this type of reference output or are
subject to this type of disturbaice generally are required to have zero

output error at equilibrium,

The interest in this class of inputs comes from the fact that if a
system is designed for error free tracking of a polynomial reference
output, it will also track error free all polynomial reference outputs
of lower order, It is therefore adapted to an entire class of reference
outputs and not just for one specific function of time, The same is

true for polynomial disturbances,

The consideration of polynomial tracking in conjunction with state
feedback follows the classical design approach in which the type of a
system is defined as the order of polynomial that it can track with

finite error,

The following points now have to be determinedj. (a) What are
the requirements in the structure of the system such that it shall be
capable of error free tracking of a polynomial? (b) What are the addi-
tions to state feedback required in the controller in order to obtain

the error free tracking?

T The material in this part is an extension of Ch, 3,7, Ref, KW-2,
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The equilibrium condition of a system tracking a polynomial ref-
erence output is defined as the condition in which the error has vanished,

In this condition

is(t) Fxs(t) + Gus(t)

(2,50)

y_(t) Hx (t) = mt ,
s s
where xs(t) is the equilibrium solution of Eq, (2.1) for the given

reference output and m is an arbitrary vector [1 X p].

Whether such a condition can be reached depends on whether Eq. (2,50)
can be solved for us(t) for given 'y =1ntr. To determine the conditions

for the existence of us(t), Eq, (2,50) is rewritten in the form

sl -F G x 0
s
= . (2.51)
H 0 u m
S r+l
| s

A solution for us and Xs can be obtained if the matrix

is square and has full rank, This condition is fulfilled if (a) the
number of controls equals the number of outputs, and (b) the system is

controllable and observable, In this case,

m

r+1
s

u(s) = [H(sI - P et . (2.52)

If p> m (more outputs than controls), no solution exists for us. 1f
'm > p (more controls than outputs), additional outputs may be defined or
u_  can be optimized for some performance index, Holley & Bryson [HO-1]

describe such an optimization for a steady reference output,

-38~-



The conditions (a) and (b) above guarantee the existence of
us(t). However, for this control to reach an equilibrium state which is

a polynomial of time, one more condition is required., The matrix

U(s) = [H(sI - ry le]t

has to be stable, If this is not so, the equilibrium state of zero
output error is achieved but the control diverges. The additional condi-
tion can also be posed as the requirement for the open loop transfer

matrix

Y(s) = H(sI - M te

to have minimum phase which means that all the roots of the numerator

polynomial
det[H adj(sI - F)G]

are required to be in the left half plane.

It is important to bear in mind that no real system can track
indefinitely a polynomial reference output that results in polynomial
u of order greater than zero, since all controllers are subject to
saturation, Two cases are therefore of practical importance. (1) The
tracking of function of time that can be agssumed to be composed of poly-
nomial segments of such length that the controller is not séturated.

(2) the tracking of polynomials that result in constant control,

If u_ exists, an error system can be defined as

e(t) = x(t) - xs(t)
ue(t) = u(t) - us(t) (2.53)
v (8) = y(t) - v (£
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Substituting Eq., (2.53) into Eq., (2,1) and using (2,50), the error equa-

tion is obtained as

e
1l

Fe + Gu
e

(2.54)
y = He ,

This is a regulator problem for which a state feedback gain can be found

in the form

u = - Ce , (2.55)

The total control that is required for error free tracking is therefore

the sum of the error feedback and the equilibrium control
u(t) = -Ce(t) + us(t) . (2.56)

According to Eq. (2.54) the error feedback can be obtained from
an estimator that has the dynamics of the system and the output of

which is compared to the error output ye.

Zero equilibrium output error is assured if the equilibrium control
is obtained by feeding back integrals of the output error, The number
of integrations that is required can be determined by finding the number
A for which the solution of the following equation (which is obtained.
from Eq, 2.52) exists:

lim s™u_ = lim sMH(sI - F) 1G] tm —

s20 s 830 Sr+1

= const, (2.58)

By assigning a nonzero value to the Jjth component of m only,

the number of integrations nj of the jth output error is found as
n = 7\ . . (2,59)

If u, = const  is imposed in (2,57), the order of polynomials that

can be tracked with constant control is obtained,
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1
s e const , (2,58)
F

-1 -1
lim s[H(sI - F) G] " m
0

The constant control u is obtained by one integration of the output,

For SISO systems, £ is the number of roots at the origin (free
integrations) of the open loop transfer functions, Comparing this condi-
tion with the condition for complete reducibility (Eq, 2.49) it results
that for polynomial reference output, complete reducibility is equivalent

to the possibility of error free tracking with constant control,

In order to determine the gains from the error integrals, a state

vector 2z is defined such that

z = Fiz + Gi(y -y . (2,60)

The order of z is

nz=Jf_:l7\J..

The matrix F.[n x n ] is defined as
iz z ;

where



The matrix Gi[nz X q] is defined as

i AN, .
g(i,j) = O J

The equilibrium control is therefore obtained as
u = -Cz .
o

The gain matrix Co[m X nz] may now be determined by quadratic synthesis,
The system is augmented by the state 2z and the control is selected to
minimize a PI of the form

0

T T T
J = S (x'Ax + 2 Aoz + u Bu)dt . (2.61)
o

A different method for determining the integral control gains
was developed by Holley and Bryson [HO-1]., In this method the additional
roots due to the integral control are determined separately after the

system is designed,

The block diagram of the complete tracker is shown in Fig, II-5,

H(sl - B! Y

j)_

N/

(sl - F + KH).1 K \

(sl - P‘)"‘ -1

FIG, II-5 TRACKER WITH INTEGRAL CONTROL -
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In Fig, II-5 the integral control is applied to both the plant
and the estimator, The application to the estimator is not essential,
but if it is done the eigenvalue separation between the controller and
the estimator is preserved. The eigenvalues of the controller are now

those of the augmented system

|
|
|
|
%
------ 4= |+ (2.62)
{
|
|

The design of systems that are subject to polynomial disturbances is
done along the same lines, Note, however, that it is rare to have

polynomial disturbances of order higher than zero (constant disturbances),

For the sake of completeness, the development for the general case

is given below.

It is required to determine: (a) the system structure that will
permit the output error to remain zero when the system is subject to
polynomial disturbances; (b) the additions to the feedback required

in order to keep the error at zero,

The system is defined by

X = F G
b'q x + Gu + 'w (2.63)
y = HX,
where w =rntr. In the steady state
Hx = 0, (2,64)
Using (2.64) and the Laplace transform of (2.63), we obtain
-1 ' k
H(sI - F) (Guw +Tw) = 0, (2.65)

uw cah now be determined for a given w if the conditions for the
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existence of Eq, (2,52) are satisfied, For uw to be non-divergent, the

minimum phase condition also has to be satisfied, u, is then given by
-1 .-1 -1
u, = [H(sI - F) "G) "H(sI - F) Tw. (2.66)
uw can be obtained, as for polynomial reference output, by feeding back

integrals of the output error. The number of required integrations =«

is determined by solving

lim s"[H(sI - F) ta]™" H(sI - I

srTf = const, (2,67)
The controller shown in Fig., II-5 can therefore be used for this

case without change if the number of integrations is determined as the

larger of those required to track the reference output and to reject

the disturbances, If the integral control is used for cancelling dis~-

turbances only, and is applied to the estimator, a steady state error

in the estimator output results [TA-1], The system output will, however,

be maintained at zero,
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I1I, SENSITIVITY OF CONTROLLERS TO PLANT
PARAMETER VARIATIONS

A, INTRODUCTION

The design procedure of state feedback controllers and some of their
engineering properties were described in Chapter II, The controller and
estimator gains depend on the structure of the system matrices and on the
values of their parameters, If the actual values of these parameters
differ from those that were assumed in the design, some of the system
properties described in Section II-C may not be preserved, In most en-
gineering problems, the system matrices are only an approximate des-
cription of the actual system structure and the values of their parameters
are, in many cases, ill defined and may also vary in time, The sensitivity
of the controller to plant parameter perturbations is therefore of great
importance to the designer, Some aspects of this problem have been
treated extensively in the literature, using the various definitions of
sensitivity given in Section III-B, - One aspect that has received exten-
sive treatment is the sensitivity comparison of open loop and closed loop
controllers[e.g, KR~-2], especially if the loop is closed by full state
feedback or by full state estimate feedback [Kw-1],

This problem, however, is not especially relevant to the designer,
The decision to use a feedback controller instead of an open loop con-
troller is, in general, made for various reasons other than sensitivity,
The problem is then to compare the sensitivities of various types of
applicable feedback schemes, There is no general solution to this prob-

lem and each system has to be examined individually,

In the context of this work, the sénsitivity of state estimate
feedback controllers is of special interest. It is important to disting-
uish, in this respect, between state feedback and state estimate feedback

controllers . While the nominal properties of these types of controllers
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may be close, their sensitivies are generally totally different., In
most cases, the state estimate feedback (SEF) controllers will be more
sensitive but this is not a meaningful comparison since the estimates
are only used because the states are not measured, Therefore the choice
is not between state feedback and SEF controllers but between SEF con-

trollers and other applicable feedback schemes,

In Section III-C the sensitivity of a SEF controller is analyzed
and in Section III-D the sensitivities of such a controller and a classi-

cal compensation network are compared for z specific case,

B. MEASURES OF SENSITIVITY

The functionally most significant measure of sensitivity which is
also most frequently used in time domain design is trajectory sensitivity,

It is defined as the vector

dx(t)
du

g(t) = (3.1)

where |l is a scalar variable parameter [KR-3]. 1If there is more than
one variable parameter, a sensitivity vector is defined for each para-

meter,

In order to get a scalar, time independent measure of sensitivity,
the time average of a weighted square of this expression is used in
stochastic systems and its time integral in deterministic systems, These
integrals or average vaiues are then defined as sensitivity performance

indices [KR-3],

For deterministic systems

[--]

T : T
Jsp = S o (P)WWg(t)dt = tr{w ;nc(t)c (t)dt}. (3.2)
o o
For stochastic systems
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te

1 T ‘
Jge = %1300,6 S E[o (t)wo(t) lat
£ A
(3.3)
tg .
= tr{W 1im = E[O(t)c(t)]dt}
t o LPE
o

where W is an arbitrary weighting matrix, For a stable stochastic

system, the approximate value of the performance index is
]

~.

T
Jgg = tr{WE[o@o)c (m)]}, (3.4)
where ¢(=) is the steady state value of the sensitivity vector, The

governing equations for g(t) are given in Chapter IV-A,

Trajectory sensitivity and the sensitivity performance index (PI)
related to it are good measures of sensitivity but they are difficult
to evaluate and therefore a simpler measure is often required, especially
for preliminary design, One such measure is the eigenvalue sensitivity

defined as [PO-1, Sec, 32]

dA,
8. =

X -aﬁ-" ’ (3.5)

where Xk is the Kkth eigenvalue,

This measure of sensitivity is not as closely relatedvto the
system time response as the trajectory sensitivity because: (a) only
the dominant eigenvalues influence the time fesponse; (b) the time
response perturbation depends not only on perturbations of the eigenvalues
but also on those of the eigenvectors. In many cases, however, especially
when different controllers for the same system are compared, a sufficient
measure of their‘relative sensitivity can be obtained by comparing the
parameter perturbations required to induce instability. For this case,

eigenvalue sensitivites are adequate,

A numerical approximation of the eigenvalue sensitivities can be
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obtained by computing the eigenvalues of the nominal and perturbed dynamic
matrices. The QR Algorithm by Francis [FR~1] is a very efficient method
for this computation and it has been incorporated into a variety of
computer programs, among them the OPTSYS program used for optimal con-

troller design,

In frejquency domain design, transfer function sensitivity is often

used. It is defined by Bode [BO-1] as

d 4n T(s,l)

s = “adiop ! (3.6)

where

T(S,“‘) = G(Syl“l‘)
1 + G(s,Ml) H(s,l)

is the closed loop transfer function, This sensitivity measure is not

used in this work,

C. STATE ESTIMATE FEEDBACK CONTROLLERS WITH
PERTURBED PARAMETERS

Consider the system of Eq., (2,1) and (2.17) with the system matrices

perturbed as follows:

= F
F ot oF
G = G+ 5G (3.7)
H = H
ot SH .
*The dynamic equations are now
x F +8F -(G +8G)C T o) G +3G
o 0 o
= ‘ + w o+ v+ u . (3.8)
L ] O
L% K(H +5H) F -G C-KH 0 K G
o o o o o
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It is assumed here that the errors occur only in the matrices F, G, and
H over which the designer has no control, No errors are assumed in the
gain matrices K and C, If such errors exist, their influence can be

analyzed by replacing B&GC by 5(GC), and KBH by 3(KH) in Eq. (3.8).

Using the transformation

Eq. (3.8) is changed to

He

Fo+6F-(GO+6G)C (Go+5G)C

b

=
(@]
(o]

o)

+
o
[o]

e
"
!
=
oy
o]

BF-5GC-KOH F -KH +5
o o

The salient fact that can be observed from comparing Eq. (3.9)
and (2,36) is that the parameter perturbations couple the state into the
estimate error equation and therefore destroy the separation of the con-
troller and the estimate error eigenvalues, As demonstrated in III-D,
this coupling may lead to instability for even relatively small perturb-

ations if the original eigenvalues have low damping,

The characteristic equation of the perturbed system may be found

by using the expression for the determinant of block matrices [GArl, Sec,

5]
M M
1 2 1
= de’ - MM =
det ¢ y det M1 et(M4 My M2)
3 4 -1
= det - MM
det M4 e (M1 oMy M3) .
Defining
M = sl - F G C
o* %
= sl - F_ H_ - 8GC .
N s 0 + K 0 BG



The characteristic equation of (3,9) is obtained as

M-3F+8GC - Go+5G)C
D(s) = det =0 (3.10)

-~ 5F+BGC+KBH N '

which reduces to

D(s) = det NXdet[M - (sI-F +KH +G C)N-l(SF-SGC)
[e] o] (o]
(3.11)
+ (Go+5G)CN'1K5H]=o.

The influence of the parameter changes on the system eigenvalues may be
determined from Egqs. (3.9) or (3.11), Equation (3,11) can be put in the
form of a sum of terms of which one is the unperturbed characteristic
equation and the others are the coefficients of the parameter perturba-

tions, viz,,
D(s) = DO(S) + Dl(s)all F oere, + Dr(S)SMr=0- (3.12)

From this form the influence of each parameter may be evaluated by root
locus techniques, Computer programs are available for this evaluation,
The root loci may also be constructed directly from Eq. (3.9) by perturbing

the parameters and computing the eigenvalues,

D. A NUMERICAL EXAMPLE OF THE SENSITIVITY OF
STATE ESTIMATE FEEDBACK (SEF) CONTROLLERS

D.1 General
In this section a detailed numerical example is given of a state
estimate feedback {(SEF) controller for which the parameter sensitivity

problem is particularly severe, This same system is used in Chapter IV
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for an application of the sensitivity reduction method which is developed
there. This system was selected hecause it demonstrates the sensitivity
problem of the class of systems in which there is an elastic element
between the controller and the controlled element, Also, it is suffi-
ciently simple so that the underlying reasons for its sensitivity can

be perceived,

D.2 Plant Description

The plant used in this example is derived from the Stanford
Relativity Satellite, a controller for which was designed by Bull [BU-1],
This Satellite, which is shown in Fig, III-1, consists of an outer body
in which a helium filled dewar is mounted elastically, The dewar con-
tains a telescope which is also connected to it elastically, The
attitude of the telescope is controlled by means of two controllers:
an actuator between the telescope and the dewar, and a thrustor mounted
on the outer body., The actuator provides the high bandwidth precision
control for the telescope and the thrustor controls the outer body so
that the relative attitude between the three bodies remains small, The

attitude of the telescope is measured,

A dynamic model of the plant is shown in Fig, III-2, The damping
constants ba and b7 are very low and can be neglected in the analysis,
The spring constants ka and ky are poorly defined and may vary in time,
The controller gains, especially for the thrustor, may also vary in time,
but the sensitivity to these variations is low and they are therefore not
considered here, In this example, a low frequency approximation of this
plant is used., For low frequency behavior, it can be assumed that the
spring force in the spring k7 is cancelled by the control u1 so that
no net force is applied by the telescope on the dewar,

The model of the approximated system is shown in ¥Fig., III-3. Its

governing equations are

1.6 = ko + w

1 1

(3.13)

Iz(cp+6) = —kcp+u—wl+w2

The state vector x is defined as
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Using k/IB =
- 2
and k/I1 = ows

of Eq. (3.13) is obtained,

'i; K
iz 0
%, = lo

Ly L

(1

The disturbances that are acting on this sytem are [BU-1]:

1

o O
dwz 0
[e]

0 1
2
-w, O

0 O]X + V.

wi (the natural frequency of the oscillatory motion),

where 13 = (1112)/(11 + Iz), the state representation

%) (0 [0 o)

Xz (8] N 1 O y (3.14)
u

xg t 1o 0o o

I A B G

(a) d1’

thrustor noise torque acting on the outer body at an equivalent bandwidth

of 1 rad/sec. (b) aﬁ, noise torque between outer and middle body at. an

equivalent bandwidth of 1 rad/sec.

Their intensity matrix has the form

) -
.0
13
(i‘{f‘ . (f.l)z
I3 \I,
i

(3.15)

The intensities of these disturbances are mnot well known and in the actual

computation of Bull [BU-l],—the off-diagonal terms were neglected ‘and the

diagonal terms were adjusted so as to obtain desirable pole locations.. The

intensity matrix is thus considered as a pole placement device,
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In order to c¢btain the same estimator roots and sensitivity prop-

erties, this same intensity matrix is used here.

The numerical values of the system parameters and the covariance

matrix elements are thus

aw? = 19.5 sec 2
0
wi = 28 sec_2
I = 250 kg m2
2
[1.1x1o'14 0
Q = [rad sec_3] .
W
0 2.3x10” %
The measurement noise intensity is
-17 2
rn = 5,5 x 10 rad  sec,

D,.3 Contoller and Estimator Design

An optimal controller for the system was designed using the weight-

ing matrices derived from Bull [BU-1]

12x10® 0 0 0

0 5 0 0

A = 0 0  6.5%X10 0
0 0 0 6.5%X10

The control gains were found using the OPTSYS program [BRY-3], The
optimal estimator gains were found using the same program, with the
disturbance covariance matrix of Eq, (3,15) and the given measurement

noise variance,
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The optimal gains are

Q
i

[109, 270, 284, 384]

=
il

(18,7, 175, 13,9, -30,5].
The eigenvalues are: (a) controller (F - GC)

- 0.35 + 5,0j

- 0,41 + 0,41j ;
(b) estimate error (F - KH)

- 1,01 + 5,11j

- 8,33 + 8,357 .

D.4 Sensitivity Root Locus

Since there is only one significantly varying parameter (the
spring constant k), the characteristic equation of the perturbed system

can be written in the form of Eq. (3.12) as
D(s) = D,y(s) + D (s)Bk .

The eigenvalues of Do(s) are those of the optimal controller and
estimator, Dl(s) is a sixth order system with the eigenvalues:

-0,41 * 0,41j, -2,21 + 5,26], -7.47 + 7,68j., With these eigenvalues,
a root locus as a function of 8k was constructed, It is shown in

Fig, III-4, Only the regions of the root locus which are in the vicinity
of the nominal values are significant since very large parameter
perturbations are generally'not expected, For this system, the region

of k< 0 has no meaning,

The range of stability of the system is from the root locus:
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k
0,73 < §%~< 1.26; or, 18,1< k< 31,5, (3.17)

0

It is important to note that this is not the permissible operational
range since the performance will generally deteriorate before the system

becomes unstable,

While the root locus gives a good representation of the sensi-
tivity problem, it does not provide a method for its solution., It is
not obvious how the system eigenvalues have to be modified in order to
decrease the sensitivity, especially since the root locus numerator
eigenvalues are also determined by the gain matrices K and C, and

therefore will change whenever the system eigenvalues are changed,

For a SISO system, more insight can be gained into the sensitivity
problem by considering the transfer function and using frequency
domain stability criteria, In principle, this representation may also
suggest the modifications required for reducing the sensitivity but

in practice the implementation of these modifications is difficult,

D.5 Frequency Domain Analysis

From Eq, (2.41) the equivalent open loop transfer function for

a system using an estimator is

I

Gés) Gc(S) Gp(s) ;

where

Gp(s) = H(sI - F)_lG

is the plant transfer function, and

C adj[sI - F + KHIG
det|sI - F + KH + GC]

G (s)
c

is the equivalent compensator transfer function.

For the example, these transfer functions were calculated using
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the computer program XAGSA [Wi-1], They are

L0077
G (s) = —5—95————— sec2
p s (s + 25)
5 2 2
- -2
Gc(s) - 4,1 x 10 (s + 0,.37)(s 1,585 + 5,27) sec 2,

2 2 2 2
(s" + 3.4s + 5.85 )(s + 1,65 + 11,8 )

Go(jw), the open loop frequency response, is shown in Fig, ITI-5,

- Since the plant is undamped, the frequency response has three zero
crossings; i,e., three points at which the gain equals unity (points

A, B, C)., The frequency domain stability criterion for a system

with several zero crossings can be found from its polar plot, The sig-
nificant parameters for determination of stability are the phase

angles at the three zero crossings, They are shown in Fig. III-5

Dolar plots are sketched in Fig, III-6 for four different cases
of the angles ¢§ and mb, with @A < 180° in all cases. The cases

are:

(a) @, < 180°; P < 180°
(b) 0y > 180°; P < 180°
(c) 05 > 180°%; D > 180°
(d) pr< 180°; rpC > 180° .,

Case b is shown in Fig, III-5, Case a is obtained if the gain for
this system is increased., Cases c and d cannot be obtained by gain
changes. Case ¢ can be obtained by parameter variation (see below),
The exact shape of the polar plots is not important for the stability
determination as long as the quadrants of the zero crossings are pre-

served.

From Fig, III-6 it can be seen that only case b is stable,

The condition of stability for this system is therefore
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Py > 180°
(3.18)
P < 180° ,

The sensitivity to variations in wo can be determined from this

¢riterion,

Figure III-7 is an amplitude frequency plot of the region

of w= wO with part of the phase-frequency plot overlaid,

([o] o . —1160°
¢ | ¢
Swi Sw, -170°
A I ‘ ~1180° ¢
A —{190°
A ;
Ol -1200°
| | | |
3 4 5 6 7
w [sec"]

FIG, III-7 TREQUENCY RESPONSE IN THE REGION OF RESONANCE

Since the plant root at w= W has no damping, its influence on the
phase frequency plot consists 2f the addition of a phase lag of 180°
at this frequency without modifying the plot at other frequencies’
Also, the shape of the amplitude frequency plot ih the vicinity of the
frequency is determined mostly by this root. Changes in the natural
frequency of the plant will thefefore cause the amplitude plot to move

relntive to the phase plot in Fig, III-7 without changing the shape of
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the phase plot and with little change in the shape of the amplitude
plot, It can be seen from the figure that changes in wo will cause
instability as follows: decrease by 1 rad/sec - instability as per

Fig, I1I-6a; increase by 0,8 rad/sec - instability as per Fig, III-6c.

The region of stability found by this method is somewhat larger
than that found by the root locus method (Eq. 3.,16), In order to
decrease the sensitivity, the frequency margins bwL and Swu have to
be increased. This can be done by modifying the compensator roots so
that the phase slopes in the region of the zero crossing B and C are
decreased, However, decreasing the slope in the vicinity of B will
also decrease the phase margin at the first zero crossing A, An
acceptable compromise may be difficult to find and no systematic way
exists to achieve it, even for this low order system, It is therefore

obvious that more powerful methods are needed.

The bandwidth of the system is determined by the selection of the
weighting matrices A and B, Theoretically, state feedback controllers
can have infinite bandwidth but in practical systems, the desired band-
width will be limited by considerations such as saturation and noise
susceptibility, It is of interest to compare the sensitivities of
controllers with the same structure but with different bandwidths, in
order to determine whether sensitivity considerations also contribute to
the selection of the desired bandwidth. For this comparison, the weight-
ing matrices were changed and systems with two different bandwidths,
one higher and one lower than the nominal, were calculated. Q and R
were held constant, therefore keeping the estimator unchanged, The

stability regions for these systems are shown in Table III-1.

Table III-1
FREQUENCY MARGIN AS A FUNCTION OF SYSTEM BANDWIDTH

Bandwidth
- ow Sw
System (sec l) L u
Low 0.32 -1,15 +0,9
Nominal 0.8 -1,0 +0.8
1 High 1.8 -0.65 40,65
L
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An increase in sensitivity iz observed as the, bandwidth is increased,
Although this effect is not drastic, it is an additional factor that

limits the system bandwidth that is achievable in practice,

D,6 Sensitivity Conmparison of Different Controllers

In this section the sensitivity of the state estimate feedback (SEF)

controller is compared with that of two other controllers that may be
used with this plant, They are: (a) a state feedback controller;
(b) a classical network compensator. The first controller is only
realizable if all the states are measured, which, in general, is not
practical. It is used here only in order to emphasize the increase

in sensitivity due to the use of SEF instead of state feedback.

(1) State feedback, Tor this case, the characteristic equation

is the determinant of (sI -~ F - JF + GC), viz.,

c c c c

4 3 2

s + Eé s - (Eé + k)s + Eg ks + Tl ok
2 2 2 2

The root locus as a function of 8k is shown in Fig, II1I-8,
From Fig, III-8 it is clear that no sensitivity problem exists for this
case, The EEF controller for this system, while equivalent to the
state feedback controller in many aspects when the system parameters
are at their nominal values, is much more sensitive to parameter per-

turbations,

(2) Classical compensation, There is no unique compensation
q P

network for this system but any nmetwork musit have the following char-
acteristics: (i) provide - lead at the first zero crossing of the
" system (point A) so as to have arn adequate phase margin, (ii) provide

an overall phase lag greater than 180° at w = W in order to satisfy

0
the stability requirements of Eq. (3,18). The simplest network which
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has these characteristics is

(s + a)

(3.19)
(s + b)z

GC(S) = co

, b < o,

where a
In order to determine the values of the parameters c,r 2, and b,
a parameter optimization program was used in which these parameters
were adjusted so as to minimize a cost function of the form of Eq., (2.3)
with the same A and B matrices as were used for the design of the

optimal controller for this system (Eq. 3.16). The result is:

G () = 3054(s + 0.23) (3.20)

(s + 3.2)2

Both the nominal response and the sensitivity of this compensator are

compared with those of the SEF controller,

The closed loop eigenvalues of the system with the classical com-
pensator are: -0,07 + 4.85j; -0.8L % 1j; -4,85; -0.3, Note the low

damping of the first eigenvalue.

For time response comparison, the responses to a step command
and to a step disturbance were computed. These responses are shown in
Figs, III-9 and III-10. The lower damping of the natural frequency
in the classical compensator can be seen in the velocity and accelera-
tion responses, especially in the disturbance response, For sensitivity
comparison, the movement of the root at -0,07 + 4,85 as a function of
Ek/ko is shoWn‘in Fig. III,11, Al1l the other roots move towards stable
zeros and therefore cause no instability, Comparing Fig, III-11 and
Fig, II1-4, it can be seen that the classical compenswtof (CC) is much less

sensitive than the SEF compensator. The s*tability regions are

| -si/k |+ s/x
SEF -0,.27 +0,26
cC -0,52" large
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The classical compensator has very low sensitivity to increase in w,
This can be understood by considering its Bode plot, Fig, III-12, In
this plot it can be seen that the phase angle reaches 180° only below
wo, whereas for the SEPF controller, it reaches this value both below
and above this frequency (see Fig, III-5), For the classical controller,

the phase angle 9, is always less than 180°,

E, CONCLUSIONS

In this chapter the sensitivity to parameter perturbation of the
SEF controller was analyzed and demonstrated by means of an example.
In the specific example that was considered, the classical compensator
is probably a better choice than the SEF controller since its lower
sensgitivity seems more important than its less acceptable time behavior,
If, however, the full system and not just its low frequency approxima-
tion is considered, it was shown by Bull [BU—l] that such a classical
compensator will not provide adequate control unless the system bandwidth
is lowered considerably, For the required bandwidth, SEF is hard to

replace,

The sensitivity problem for this full system is, however, just
as severe as for the low frequency approximation, It is therefore
clearly desirable to have a general method for the sensitivity reduction
of SEF controllers, This method should operate in such a way that
while the sensitivity is reduced, the nominal performance is not degraded

unduly,

In Chapter IV such a method is developed,
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Iv, A DESIGN METHOD FOR MINIMIZING THE
SENSITIVITY TO PARAMETER VARIATIONS

A, INTRODUCTION

—

Several time domain methods for the minimization of the sensitivity
to parameter perturbations are described in the literature, One common

approach is to define a sensitivity vector (Eq, 3.1)

3
=D

0‘:

for which the governing equation is [LUH-l]

3
F0'+Fux+Gu+G—E

Qe
1

H du
o(0) = ox(0)
ou
where F = ég , G, = §9 .
K . 28 L

As an extension to -the regulator problem, an augmented PI can

now be formulated [ CAS-1, DA-~1]

o]

T
JA = S (x Ax + uTBu + chSG)dt ’

o

and a control that minimizes it can be found,

Two separate cases have to be considered: (a) open loop control

prAcEHING PAGE BLANK NOR FOMER s



and (b) feedback control, If the control is implemented in an open
loop fashion, au/au = 0, and the optimal control can be obtained in
a straightforward way by solving the optimal regulator problem for the
augmented system with the state vector XA? = [xT, oI], and the PI of
Eq. (4.2). This, however, is hardly a realistic approach since, in

general, feedback control will be required.

In order to determine au/ai for the feedback case the form of
the control has to be stipulated. Some authors [ CAS-1, DA-1, DO-1, BR-1]

stipulate

u = CIX + ng
and solve the optimal control problem for the augmented system,

C1 and Cz are not obtained from the solution of a Ricatti equation
since the dynamic matrix of the augmented system contains C1

[sa-1].

In addition to some theoretical questions as to the optimality
of this solution [SA—l],it is complicated to implement since the
sensitivity vector ¢ has to be obtained from a model, The order of
the system is thereby augmented, For single. input system algorithms
have been developed to augment the order by n only, even if there are
several variable parameters in the system [WI—l}. The examples given
for the use of this method are of low order and assume that the state
is available for feedback [CAS-I, DA-1, DO-1, LA-1, BR-1], No mention
is made of the influence of using the estimate instead of the state,
These examples seem to show a defiunite reduction in their trajectory
sensitivity but it is not ¢lear whether this is also true for higher
order systems, In one case of a higher order system, na conclusive
result was found [RY-2], Hendricks and D'Angelo [HE-1] use the same

augmented system but postulate a control of the form
u = Cx

and find C by parameter optimization, This method was applied to

the sensitivity minimization of a space booster with good results,
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Here too, however, all the states are assumed available and the effect
of using state estimates instead of states is not considered, This
and the following methods have the advantage over the previous methods
that the controller does not become more complicated because of the
sensitivity requirements and only the values of its parameters are
modified, Rillings and Roy [RI-1] postulate the same control but use
analog eomputer cimulation to minimize the PI, In another variant of
this method, Cassidy and Roy [cAS-1] force the control to have non-
zero feedback gains only for the measured states, This is done by
solving the inverse problem and defining the weighting matrices that
give the desiied feedback structure, From the given data, the compu-
tation times for this method seem extensively lengthy, More recently,
Stravroulakis and Sarachik [sT-11, using the same augmented system,
derive iterative governing equations for outp::s feedback or state
estimate feedback gains for both the deterministic and the stochastic
case, These equapions are formulated for a siugle variable parameter
and it is not clear3how they can be extended to multiple parameters.
The gains that are obtained by this method seem to be applicable to
practical stafe estimate feedback systems but the governingkequations

are complicated and the computational labor involved in the iterative

‘calculation may be considerable. This problem is not discussed by the

authors. Many of the references cited above and other papers that treat

various aspects of the sensitiVityaproblem were collected by Cruz in

‘a book published recently [cr-17.

A different approach is used by Palsson and Whlttaker [PA-17.
In this approach, the varlable parameters are con51dered as components
of a random vector w1th mean at the nomlnal value and known covarlance.

A performance,index:of the form

is minimized Where the average is taken over the values of the variable
parameters. The structure of the system 1s predetermlned and the mini-

mization is performed by varylng a set. of free parameters selected by
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the designer, The method as presented is applicable to sihgle—input

single-output (SISO) systems only,‘and is essentially designed to select
the parameters of classical compensators, It seeks a balance hetween
the,performance at nominal and off-nominal conditions. The relative
importance of these two conditions can be determined by the designer,
The example presented shows an appreciable reduction in sensitivity
without unduly affecting the nominal performance. = This method is nef
fsuifable for the sensitivity reduction of SEF. controllers for several
reasons: (a) The natural free parameters for i SEF controller are the
‘feedback‘and'estimator gains, However, since the control is not weighted
“in the Pl, not all the feedback gains can bekleft free since very high
or even infinite gains would result in most cases,  The selection of

the gains that remain fixed is somewhat arbitrary and may lead to un-
setisfactory‘results. (b) The restriction to SISO sYstems prevents

the selection of the estimator gains as free parameters, if the estim-
ator is a Kalman filter. th that case, at leasf two inputs -are required;
one being a disturbance, and fhe other a sensor noise (Eq. 2.36). If
those two inputs cannot be used in the desensitization, the nominal
~estimator gains will tend'toyinfinity and the estimator may lose its
filtering properties, The total number of inputs must therefore be
equal to the sum of the number .of disturbances and outputs. The
imethod'as‘presented, however, cannot be extended to multivariable sys-
tems;- (c) The controller has to be transformed into its equivalent
,vcompensating network form or alternatiVely,'the closed loop transfer .
funétion ﬁas to be found, \B0£h these operations are cumbersome and

fpresent numerical problems

In thls theSLS a sen51t1vty mlnlmlzatlon method is developed that

:1s based on the Palsson Whittaker [PA l] method but has none of the

“drawbacks- desc¢ribed above, It is appllcable to multlvarlable systems

z~,both deterministic'and'stechastlc w1thout restrlctlonfon the struc—

i'ture of the system matrlcesa Although it was motlvated by the need
' for sens1t1v1ty reductlon of: SEF controllers, it 1s appllcable to any
,system Whlch ¢an be represented 1n the form of E;. (2 1) ~The basic

o equatlons are 51m11ar to those glven by Palsson—Whlttaker but the method

",°‘of solutlon is totally dlfferent
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B, DESCRIPTION OF THE SENSITIVITY MINIMIZATION METHOD

B.,1 Problem Statement

Consider the system (repeated from 2.1)

Fx + Gu + T'w

N-
Il

(4.3)
y = Hx +v ,.

where the matrices F, G, I', and H contain parameters the values of
which are uncertain, If these parameters are considered as Gaussian
random variables, a Gaussian random vector may be formed of which they

are the components. This vector is specified by
E(z) = 2Zpy, : (4.4)

where the components of -z, are the nominal values of the parameters,

and by

El(z - 2 )(z - 2)"] (4.5)

a covariance matrix which is assumed known, Equation (4,.3) may then

be written as

¥ = F(2)x + G(z)u + T(z)w
' (4.6)
y = H(z)x + v,
x(0) =0,
‘The control is defined as
u = -Cx R C

where the values of c may be left free or defined by functional re-

 lationships to other parameters of the system, For this definition of
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u to be valid, Eq. (4.3) generally is reduired to describe an augmented
system that includes the plant and the compensations, The matrices

F, G, H, and T then have to be defined accordingly, For SEF controllers,
the augmented system is given by Eq. (2.,31). For this case, the contrél

is given as

u = [o, ¢.)[x, 8]' = [-c_, C,llx, %%,

A quadratic PI for this system is

te
1
J = 1lim =— \ E('Ax + ulBu)dt . (4.8)
tf*n tf
o]

In this expression, the expected value is taken over the probability
distributions of x and u that:are derived from both the distributiogs(
of the random process w and of the random vector  z, Note that w .is
the process noise of the augmented system, Since Ww and z are independ-

ent, the expected value of a function of x and u is

E{f(x,u)] = g £[x(w,z), ulw,z)] plx(w,2), u(w,z) ldxdy
X,U |
» (4.9)
= S Ezp(w)dw = S Ewp(z)dz s ,
w oz
where
Ez" = S g(w,z) p(z)dz

Z

is ‘the expected value over the distribution of z  and

E = S g(W,2) pw)dw
W )

‘is the expected value over the distributibn‘of w,

A free parameter vector ¢ is defined by the‘deSigner. This
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vector consists of nq parameters of the system matrices that can be
varied by the designer,

The problem is now stated as follows: Given the system of Eqgs. (4.6,
(4.7) in which the system matrices are functions of a variable parameter
vector defined by Egs, (4.4) and (4.5), determine the value of the free

parameter vector q SO that the PI of Eq. (4,8) is minimized,

B.2 Method of Solution

Using Eq. (4:7) in Eq. (4.8), the PI becomes

te
J = 1lim L E[xT(A + CTBC)x]dt
Tt t
£ £
(o]

: . T T
Since for any vector ‘v, Vv Vv = tr(vv'), this equation can be transformed

into
tr
T 1 T '
Jd =1 im — ‘
r[(A + C'BC) %*ﬁw : S E(xx )dt] . (4.10)
f £
. o
The state vector 'x may be written as
x(w,z) = xn(w,zn)-+5X(w,SZ) (4.11)

where X is the state vector obtained when the parameters have their
nominal values, and . ®x is the perturbation in the state vector due to

a perturbation Bz in the variable parameter vector,

Assuming small perturbations in =z so that a first order expan-

sion is satisfactory, substituting Eq. 4.7) into (4,6) and defining
F .= F -~ GC

C

the goverhing equations for x, and dx become
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o Fc(zn)xn + P(zn)w - (4.12a)
3x = Fc(zn)Sx + BF x  + Tw, (4,12b)
xn(O) = 0; 5x(0) = 0 ; (4.12¢)

where n, Jf
c
B, = 2 o
i=1 i
nz
ar
5 = 2 e 6Zi .
i= Z

The expected value of Eq. (4,12b) is

Ny aF Dy 51-‘ )
E(5x) = F_(z JE(®x) + Z — B(3z,x ) + Z — E(8z,W),
i=1 Zi ;_:1 Zi

8z is independent of xn~and w, and since E(dz) =0, we have

E(3z,% ) = E(bz;W) = 0, i=1, n,.
From Eq. (4.12c),
E[5x(0)] = O
and thereforé
Eléx(t)] = o. L (4.13)

The expression E(xx ) 4in the PI of Eq, (4.10) can now be eval-

uated in terms of X and Bx

i

' E(xxT) ~E[(xn + Sx)(xn + Sx)T] k

(4.14)

If

SR, T T T,
E(xnxn) + E(xnﬁx ) f’E(Sxxn) + E(Bxdx ) .
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To find the value of the second term of this expression, it can be

written according to Eq, (4,8) and using Eq, (4.13), as

Blx (w)ox (w,2)] = B {E [x (w)ox (w,2) ]

T
= Ew{xn(w)E[Bx (w,2z)]} = 0,
Similarly,
T
E[axxn] = 0,
We therefore get
E(xx') = E(xnx:) + E(oxox’) = X_ 48X, (4.15)

where Xn is the covariance matrix of the nominal state, ©x can
thus be interpreted as the addition to the covariance due to the para-

meter uncertainties. Substituting Eq, (4.15) into Eq. (4,10) yields

J = trl(A + CTBC)’%igm %?- S [xn(t) + 8%X(t) Jat
£ f o

(4.16)

1]

tr[(A + CTBC)(in + 8X) ]

where in and B5X are the time averages over all time of Xn and B8X

respectively.

For a stable system, X and 58X tend to constant values chf)
and 8X(©), Since the averaging in. Eq, (4.16) is performed over a large
time interval, it can be assumed that in-a X (@) and BX > BX(®),

The PI therefore becomes

0

72 t{fa + cTRCIIX (@) + BX()]}

(4.17)
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where

oy
It

tx[ (A + C'BC) X_(=)]

is the nominal PI, and

J tr[ (A + CTBC)BX(®)]

A

]

is the additional PI due to the parameter variations, The PI of Egq.
(4,17) can be minimized computationally by a two-step sequence: (a)

the matrices thw) and §X(®) are found for a given value of the free
parameter wector, d. The PI that corresponds to this value is then
determined, (b) the q vector is modified in a direction that de-
creases J, This sequence is repeated until the decrease in J in

one cycle is less than a predetermined value,

The two parts of this sequence are independent and computer programs

for each one can be developed separately,

B.3 The Governing Equations for Xr and 08X,

For brevity, the subscripts of xh and Xn will now be dropped.

To find X use (d)/(dt)(xxT), viz,,

T . T .T
%¥ (xx") = %X 4+ XX . (4,18)

Substituting Eq. (4,12a) into Eq. (4.18) yields

H

d T T T
Ty (xx ) (ch { Fw)x + x(F x + Tw)

(4.19)

‘ T T T T_T
= F xx 4 Twx +.Xx fz + xw.I' -,

Taking the expected value of both sides of this equation and using

the definition
E(xxT)' =X

Eq. (4.19) becomes
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kX = FX+ PE(wx') + XE + EGwrT (4,20)

But, T Fot " F(t-1)
E(xw') = E{[e =~ x(0) + S e rw(pdrlw (t)}
0
and
Elw(nw ()] = Q5(t -
E[x(0)w(t)] =o0,for t = O,
therefore
t
B(xwT) = E§° Fel =Ty (o)wT(t)ar
t
S Fo(t-7) (4,21)
=), e rQ5( t-T)dT
= 1
bl 2 1—\ Q 3
Similarly,
Bwx') = Qb . (4.22)

2
Using Eqs. (4.21) and (4,22) in Eq. (4,20), the covariance is
X = F X + XF 4+ IQl" . (4,23)
c c
Iri- the steady state, X =0 ahd the final equation. for. X, is
FX 4+ XF 4T = 0 o (4.24
REER RIS = R : (4.24) .

The governing equation for B8X can be found in a similar way;~sting

o : .T . '
%? (oxBx) = BxdX  + BxSxT, ’ , (4.252)
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and Eq. (4,12b) yields

d
L (5xBxT) = OXBX T~ + Sxx OF. + Sxw oI
[¢] C
. . (4.25b)
+ P Bxbx' + BF xbx + SPwsx. .

. T
To determine the expected value of this equation, E(dxw ) has to be

evaluated.

E(waT)

t
E(geF°t5x0-+ i)ch<t"T)[5ch(w) + SFW(T)]ST}WT(t))
- St ch( t-1) ’

" i
+ S ch(t T)EPE[W(T)WT(t)]dT

. .
oF E[x(7)w (t) ldz (4.26)

K}

]

1
'-2-51"Q .

The first integral vanishes because
T
E[x(T)w (t)] % 0 only for 7 =1t ,

Using the'definitioné of X and 85X from Eq, (4,15), the -expected value

of ‘Bq., (4,25b) can now be found,

85X = 5XFZ‘+,FcaxT + E[&0Qer ] =
. ' T T : : (4;278)
+ E[xx oF_] + E[SFCXSXT] ) R

The last term on the fight hand side of this equétion‘may be written as

: T, T
E[oF xdx ] = E [8FE (x&x )],
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since 5Fc is independent of w, Defining
T .
Y = Eu(x8x ) , (4.27b)
the last term of Eq. (4,27a) is
E[8F x6x°] = E_[oF Y] (4.28)
c 2z c y ‘

As t=eo, BX tends to the steady state value, 5%”.

The final equation for 8%” is obtained by substituting Eq.
(4.28) into Eq. (4,27a) and putting 5xn = 0, Thus

T

53X F
© c

, T | JT..T _
+ F 8K+ E [8rQal” + Y BF  + 8F ¥, = O (4.29)

To get the governing equation for Y_, the identity

T i&xT + x&iT :
(4.30)

|
W
o
%
g
I

FCXSXT + PwaT + xBxTFZ + xxTSFE + wabPT

is used, The expected value of this equation over the distribution of
w can now be found using Eq. (4.22) and Eq. (4.26), and the definition
of Eq. (4.27b). ‘

. T T T

Y = F_Y 4 YF_ 4 T'Q8I + XOF, . o (4.3D)

The steady state value of Y as t- « is given by

FY, + Y F + PQel™ + X 8F = 0 . (4532)
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The governing equations for X and BX that have been derived

in this section are rewritten

T T
FXo T XF = -her (4.33a)
T T T
F Y, + YF = -TQ& - XBF (4.33b)
T » T, Tl T
F_BX, + BXF = -E_[Brosr” + Y 8F_ + 8F Y] (4. 33¢)

These equations all have the same well known farm [e.g., GA-1]

T
AX + XA = B,
where A and B are given, Tley must be solved in the order in which
they are written because the right hand sides of the second and third
equations contain expressions found in the solution of the previous
equations,  For their actual solution, these equations must be written

in a slightly different form, Equation (4.33b) is rewritten as

T & or kaFc
. \ = - m—— - X e 6 . ®

Yw is therefore obtained in the form of a sum: X» =27 YiBZ, where

Yi is the solution of

3F
oL -x =2, © (4.35)

: T
FY '+ Y F = - m——
Fc it ie e Bzi @ azi

This équation is solved n, times with different right hand sides,

The right hand side of Eq. (4.33c) can be written as
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T T T
E_[erasr” + oF ¥, + Y 8F ]

T.
ng nz T aF (aF
. (x )
EZ[Z 2=: Oz, Q<5z.> 5z. Y +( ‘j ]6zisz (4,36)
i=1 i 3 i

J=1

T
n nz a BF T
Z gﬁ_ Q(%E.) .yzr— Y + (5—— Y > j‘vi.
j=1 i= i J J

where V is the parameter covariance matrix (see Eq, 4.5),.

™
i1

Equation (4,36) can be written in a more compact form although
this form is not used in the actual computation because of excessive

storage requirements,
ny ng T OF BF T
EZ?LQ@E— +————°Y~< Y)]Vlj
j=1 i=1{%%; azj azl Bz

' T .

(4,37)

where In is the n X n unit matrix,

o o Pop or ' ‘
Lq = |Z=@qi=—qi* —a|, [n: ;
ST F R Mt Tk TR
| 1 1 2 1 L7,
o = o EE or i [n x(np><nz)];
dz dz. | 1 O,
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BFC BFC ! S
— = == e == [n X (n xn)l;
Oz le ! ! quz :
"' -
Y
1
Y =} [(n xn)xn] ;
Yffz
- .
and where

A®B
ig the Kronecker product of ‘A and B, This product is defined for

Aln x n] and B{mXx m] as a (nX m) X (nX m) matrix having as

its ilth m'X m block:

(A®B)ij = aij B.

There are n X n  such blocks,

Equation (4,33) can now be rewritten in the form

T T

FX, +XF = -Iq : | | (4.382)
OF
T O . c
Fo¥y + Yyfe = 19 g; = %o 5. (4,38b)
i ‘
. ‘ - . : o
Fcaxoo + SXchu = -[—a: Q] [V ® In.p] (S;) ’
Lo (ver1)y- [ﬁﬁ (ve® I,),Y] . - (4.38¢)
2 n L az n ; -
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From Equation (4,33c) and (4.36) it can be seen that &X is
proportional to the parameter covariance matrix  V, i.e,, if each
element of V is multiplied by a scalar coefficient g, so is each
element of 8X, From Eq, (4.17) it is clear that the additional per-

formance index JA is then multiplied by the same coefficient,

In the problem statement the parameter covariance matrix V is
assumed known (see Eq., 4.5), Its elements are a measure of the un-
certainties in the parameters, In reality, however, these uncertain-
ties are ill defined and the matrix V is considered mainly as a de-

sign tool, It can be written as

vV = eVO

where ¢ is a scalar weighting coefficient, Equation (4.17) then

becomes

J o= J0 + JA = JO + eJAO . , - (4.39)

The coefficient e is selected by the designer for the relative weight-
ing of nominal performance vs sensitivity. The relative magnitude of
the elements of V is selected according to the importance of the

sensitivity reduction for the respective parameters,

Equations (4,38) remain valid if the system is forced by inputs
other than white’noise; If the disturbance is colored, it can be
modeled by'means of a shaping filter forced by white noise, - An aug-
mented system can then be formed con51st1ng of the states of the system
and of the shaping filter., This augmented system is excited by white

noise and Egs. (4.38) is therefore valid for it.

For deterministic systems which are required tp‘recover from non-
zero initial conditions, the white noise vector w is replaced by an
1mpu1s1ve input vector w at t = 0O wi = W S(t); The initial con- -
ditions are then represented by the equlvalent 1n1t1a1 1mpulses.
Equations (4 38) can be used unchanged if the follow1ng terms are

redefined:
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&0
X = S xx dt
o«©
o
® 7
Yoo= s xbx dt
(o]
® T
58X = g 5x8x dt .
@ o)

With these redefined terms the deterministic PI is given by Eq. (4.17).

If the system is to be optimized for some deterministic input

other than an initial impulse, this can be handled by state augmentations,

B.4 Description of the Computer Program

The computer program; PAROPT, for the minimization of the PI
of Eq, (4,7) is described in detail in Appendix B, Only its main
features are described in this section, It consists of two main
parts: (1) A search subprogram; (2) A subprogram for the solution

of Eq. (4,33) and determination of the PI from Eq. (4.17),

(1) Search subprogram. This subprogram is part of the program

library of the Computer Science Department at Stanford
University, It was developed by Gill, Murray and Pitfield
[GI-1], It iteratively sceks-the minimum value of a scalar
function F(q), where: q is a vector‘of dimension nq,

by modifying the components of q. The value of F(q) for
a -given g is an input to the subprogram. For thé current

problem, it ié;the performance index J of Eq. (4.17),

.The mode of operation of this pfogram is as fcllows; Fbr

- given in;tial valués of q and J, the‘approximate direction
of the gradient of J with réspect to the Vectpr q is
found by perturbing the components of ‘q. one at a time and

determining J for the perturbed vector.. The components
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of the approximate gradient vector are proportional to

I3 79

A Fy

The direction of the conjugate gradient [BRY-2 for definition ]

is then determined and a linear search is performed along
this direction. In general, three to four evaluations of

J are required to determine the minimum of J along a direc-
tion. At the minimum, the gradient is again found and a

new linear search direction is determined.

One iteration is defined as a gradient determination and
linear search. This iterative procedure is continued until
termination criteria are satisfied, (See Appendix B for

more details.)

(2) Subprogram for the evaluation of J, It is obvious from the

description of the search subprogram that the value of &
must be computed a large number of times. In one iteration,
nq evaluations are required for the gradient determination
and 3 to 4 for the linear search,  In an average program,
'8 to 10 iterations méy be expected and thereforé it may be
required to compute J 100 to 200 times,  For the program
to be of any practical usefulness, a very efficient method

for this computation must therefore be developed.

The principal part of this evaluation is the solutioh of

Eqgs (4.38). The same equation with different fight hand
sides is to be solved 2 + nzb times, It is to be noted,
‘however, that Eq, (4.38a) and (4.38c) have symmetric right
hand sides ang therefore symmetric solutions (Liyapunov
équations),'wheféas the right hand side of Eq. (4.38b) is not’
symmefric. Several methods are available for the solution of

~these equations. ~These methods are compared by Hagander'[HA-I]
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and Pace and Barnett [PA-1], The recommendation of Hagander
is to use a direct method (described below) for systems

of order smaller than 6 or 7, and other methods above this
order, The reason for the recommendation for a different
method for large systems, despite the better precision of
the direct method, is that the computation time of the
direct method increases as n6/3 and becomes prohibitively
large for large systems, Pace and Barnett recommend the
direct method up to order 10 approximately, The direct

method consists of transforming an equation of the form
T
AZ 4 ZA = B (4.41)

into the form

oz = —ﬁ , (4,42)

2
where z({ X 1) is the n vector of the coefficients of
2
Z, and B is the n” ‘vector of the coefficient of B,

O is obtained from A by [BE-1]
o = A®@I +1 ®A
n R ¢

For symmetric 2%, the dimension of =z need only be
4 = 3%(m + 1)n, An algorithm to obtain o for this case

is given by Bingoulac [BI-1],

For antisymmetric Z, the dimension of z is { = 3(n-1)n,
‘A transformation algorithm for this case was developed as

‘part of this program,

The method commonly used for the solution of 1inear equa-=
tions of the form of (4,42) is’ Gaussian ellmlnatlon [FO-17.

It consists of two steps (a) forward ellmlnatlon (62 /3 oper-
atlons) and  (b) back substitution (0% /2 operation), By

comparing'the'number of operations, it is obvious that to
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solve a geqeral equation of type (4.41) by the direct
method, it is advantageous to decompose the right hand

side into symmetric and antisymmetric parts and to obtain
two separate solutions, the sum of which is the required
solution, This is important for the solution of Eq.
(4.38b)., In the solution of (4.42), forward elimination is
only required if O is changed, If only B is changed,

the much less costly back-substitution is required,

In our case, for one evaluation of the PI, only one forward
elimination of order 3(n+l)n is required (for X), and one
of order %(n-l)n (for the antisymmetric part of Yl)' This
considerably reduces the average computation time for the
direct method and makes it attractive for much larger sys-
tems., Moreover, since the points at which the cost is
computed for the gradient determination correspond to only
slightly perturbed g vectors, the changes in X and 3X
that stem from these perturbations can be obtained by ex-
panding Egs. (4.38) about the nominal point and neglecting
second order terms, Equation (4,38a) at the perturbed
point is

Foafi * XlFZI =7 Fifo (4.43)
whefe the subscript 1 refers to this point, Expanding

Eq., (4.43) yields
~ , T T
(F. +DF ) (X+4DX) & (X+DX) (F_+DF ) = = Qr
c C (o] c : ; 171

“where the prefix D  indicates the changé between the nom-
inal and perturbed points, Neglecting the product (DFC)(DX),
Eq. (4.43) becomes :

T , T T L
- - = : .44
F DX + DXF_ F X - XF ;. rery (4.443)

The coefficients of the left hand side of this equation are
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the same as for Eq. (4,38a) at the nominal point., Similarly,
for = DY and D(&X),

T _ T _ (4,44b)
F_DY + DYF, = F_ ¥+ ¥y -T QBP - XBF
F D(5X) + D(8X) = -F_BX - BXF.
c cl cl
(4,44c¢)

T T
-Ez(SFclYl + Y 8F , + 5P1Q5P1)

This approximation was compared to the exact method of
evaluating the perturbed PI and no significant difference

was observed,

The evaluation of the PI and its gradient, fherefore, can

be done with only one forward elimination of order %(n + 1)n
and one of order‘ %(n - 1)n, This method was implemented in
PAROPT, which has been applied to the sensitivity reduction
of several systems, Results of its applicafion are described

in Section IV-C

The largest system to which it was applied is of 12th oxder

with 2 variable and 20 free parameters,

One iteration for this systém (gradient evaluation plus
‘linear search) required about 40 sec on an IBM 360/67
éomputer. This method therefore seems practical for even
fairly large systems. The computation time increases as the
fourth power (approximately) of the system order and is almost

independent of the number of free and variable parameters.

C., APPLICATIONS

C.1 ~ Introduction-

In this Section the application of the sensitivity:reduction
program (SRP) to two systems will be described, " The. sysfems are:

(a) low frequency approx1mat10n of the Stanford Relat1v1ty Satellite ( SRS)
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as described in Section III-D, (b) full Stanford Relativity Satellite
(per III-D),

The design considerations for the nominal optimal controllers
for these systems will not be given since they are described in detail
by Bull {BU-1] for the full system and remain valid for the low fre-
quency approximation. Since the purpose of this section is to investi-
gate the operation of the sensitivity reduction program (SRP), several
designs with different program parameters wefe made and the results
are presented in considerable defail, particularly for the first exam-
ple, The criteria that are used for the comparison of different de-
signs for the same system are:

@ Sensitivity criterion: +the range of variation of the variable

parameter for which the system is still stable (high range =
low sensitivity);

e Nominal performance criteria: output and control rms values
and the square root of the nominal PI, which is a weighted rms
value.,

Some points have to be kept in mind when using these criteria: (a)

The stability range of the variable parameters should not be construed
as defining the actual permitted range of variation of these parameters.
In general, the performance will become unacceptable for variations that
are considerably less than those that cause instability, ~(b) The rms
values of the outputs and the controls depend on the assumed covariance
matrices of the process and measufement noises, Theée covariance
matrices are generally not well known and in some cases; they are
artificiélly determined in order to get acceptably damped roots of the
estimator, Small differences (less than a factor of 2) in the rms-
values of different designs cannot, therefore, be considered as signif-
icant, The criteria that are used in this section are therefore un-

refined but can still give a valid.comparison between different deSigns.'
More precisé criteria are difficult to define, in general, al- .

though for specifiCcases they may exist, In some cases the time response-

envelope to a specific input may be restricted, or'limits may be posed

“on the phase and gain margins, It is importént to verify, whenever .
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such criteria are used, that they reflect actual system requirements and

do not pose artificial restraints on the design.

The initial point in the application of the SRP must be a stable
one for Eq. (4.33) to be valid. In the examples of this Section, the
nominal optimal point that was found without considering sensitivity
was selected as the initial point. This is not required but it is an
easy point to calculate since the weighting and covariance matrices are
also required for the SRP. The systems that are used in the SRP are the

augmented systems given by

W

Fl-GC GC x Ar 0 v
: ) (4.45)

Mo

Fl-F F-KH b4 ' -K w

where Fl ‘is the actual plant, F is the assumed plant in estimator,

At the initial point Fl = F, -The weighting matrices are the same

kas those that were used for the nominal design,

‘For the application of the program, the parameter covariance
matrix and the sensitivity coefficient ¢ have to be determined and
the free parameters have to be defined. The parameters that are con-
trolled by the designer and some or all of which can be used as free
variables are: C; the feedback gains; K, the estimator gains; and
' F, the representations of the variable parameters in‘the estimator,

The last item may require some clarification, If there are ﬁo variable
parameters, the eStimator parameters will obviously‘be selected to

be the same as the plant parameters, If, however, some plant parameters
are variable, it has been. found that the sensitivity can be decreased,
in some cases, if their representations in the estimator differ‘from
their nominal values. It is therefore desirable to include these repre-
sentations among the free parameters. The actual selection‘of the prb-

gram parameters will be diScussed for each example separately.
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Cc-2 Example 1: Low Frequency Approximation of the Stanford
Relativity Satellite (SRS)

This system was described in Chapter III-D, The augmented system
is an 8th order system for which the initial dynamic and state weight

matrices are shown in Fig, IV-1,

(1) Program parameters, The only variable parameter for this

case is the spring stiffness, k, The parameter covariance
matrix is therefore a scalar and only its product with the
sensitivity coefficient ¢ 1is important, Various values
of this product have been used in the different designs

as described below, Only the estimator gains and the vari-
able parameter representations in the estimator were used
as free parameters since it was found in preliminary runs
that the feedback gains do not vary appreciably. The
application of the SRP (sensitivity reduction program) in

this case is therefore a redesign of the estimator,

Four designs were executed with the design parameters
varied as described below, The weighting coefficients
¢ and V (a scalar in this case) define the assumed rms

value of the spring constant Kk

O, = \’ev - (4.46)

As explained in IV-B-3, this rms value does not represent
an actual expected uncertainty in the variable parameter
but is used as a desigﬁ tool for‘the relatiVe weighting of
the nominal and ‘additional performance indices, The designs
are:

Design No, 1: o-k/k 0.28 (JA/JO =1 at the initial point)

i

‘Design No, 2: g /k = 0,9 (JA/JO = 10 at the initial point)
< ! X ' i

Design No. 3: o, /k =0,9, R =0
Tk .

; Design No, 4:. Gk/k 0,9, Q = 0;
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(2)

In Designs 1 and 2, the estimator is a Kalman filter and
the SRP seeks a balance between the nominally optimal
estimator parameters and those required for minimum sensi-
tivity, In Design 3 it is assumed that there is no measure-
ment noise, The minimum nominal PI is obtained for K - =,
since for this gain, the estimate error covariance P - O
and the system behaves as if state feedback instead of state
estimate feedback were used. The estimator gains are there-
fore determined by sensitivity considerations only, Simi-
larly, in Design 4, where'no process noise is assumed, the
minimum nominal PI is obtained for K = O, Here, too, the
estimator gains are determined by sensitivity considerations

only.

Results, The values of the estimator parameters for the

different designs are given in Table IV-1l. These include

the estimator gains and the value of the spring constant

Table IV-1

; ESTIMATOR PARAMETERS OF THE
REDUCED STANFORD RELATIVITY SATELLITE (SRS) DESIGNS

, ‘Design Design : Design Design
Nominal No, 1 No., 2 No, 3 No, 4’
Ky 18,7 4,46 | 31,1 26.3 45,6
k, 175.4 | 166.2 | 162.9 | 163.7 179.5
kg 13,9 | 19.8 107.8 108.7 134,6
k, -30.5 |-111.6 -50,5 -49.6 -34,4
Assumed ; ,
Value of 25,0 26.4 22.3 22.4 31,6
k(wg) ’ f :
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”~
used in the estimator (k). The nominal performance criteria

are given in Table IV-2, These are the average, output and
control rms values that result from the process and measure-

ment noises given in Chapter III-C,

The eigenvalues are shown in Table IV-3 and in Fig. Iv-2,
The sensitivity root loci for the sensitive eigenvalue are
given in Fig, IV-3, The frequency margin for the nominal
design (from Fig. III-7) and for Design 2 are shown in
Tig, Iv-4,

Table IV-3,

The sensitivity properties are compared in

NOMINAL PERFORMANCE CRITERIA OF THE REDUCED SRS DESIGNS

(scaled to initial value)

Design Design Design Design
Nominal No, 1 No, 2 No. 3 No. 4
?gmigal)PI 1.0 1.18 1.59 1.57 1,32
o “oi
Weighted 1ms 1.0 1,09 1.26 1.25 1.15
NENEID
o] oL
*
?ﬁtgzt ;ms 1.0 1,14 1.72 1.70 1.74
8/ 9i”
{Control rms* , ;
(o /o ) 1.0 1,12 1,11 1,15 1,11
u ul -

Note: - The output and control rms values for all the designs were
“found using. the same process and -measurenent noises

(given in Sec, III-D-2)
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Table IV-3

EIGENVALUES OF THE REDUCED SRS DESIGNS

H Nominal Design No, 1 Design No, 2 Design No, 3 Design No, 4
o
4
8 -0,36 * 5,0)3 -0,38 * 4,98 -0,38 * 5,05] -0,38 * 5,05) ~0,32 £ 4,95
H .
: -0.41 * 0,41 -0,41 * 0,41 -0,41 * 0,41] -0,41 * 0,41} -0.41 * 0,43
Q
O —————————
e I s i
3 -1,02 * 5,113 -1,41 + 3,17j -1,16 * 9,19) -1,21 * 9,95j -0,7 £ 10,3)
o
g : -
ﬁ -8,33 + 8,35) -0,8 * 13,2j -27.6 -22,6 -43.2
4}
M -1,14 -1.21 -1,08
Jw (scc-l)
O  Controller Eigenvalues, all Designs
v
ESTIMATOR EIGENVALUES: // -
® Nominal pid d12
/’/’
¥ Design 1l -
® Design 2 //
7
7
-~ 110
7
d L
- 4\
e
-4 8

6
4

One eigenvalue,

of Design 2

at -2V 2

- !
o(sec ') -8 -6 -4 -2
FIG, IV-2 EIGENVALUES OF.NOMINAL AND DESENSITIZED

DESIGN OF REDUCED STANFORD RELATIVITY
SATELLITE, ‘ :
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= 41,27
Note:
1, All roots except root at -0.36 + 53
have adjacent zeros and are therefore
relatively immobile,
= +1
2, Designs 3 and 4 are not shown since
they are close to Design 2,
e = —ee Nominal
Design 1
= = —— Design 2 = +0,26
= -0,32
= -0,52
= -0,8
{ 1
1 ]

6(sec"1)f ~ ’ -2 , -1

FIG, IV-3 SENSITIVITY ROOT LOCI OF REDUCED RELATIVITY.
o SATELLITE. COMPARISON OF NOMINAL AND DE-
SENSITIZED DESIGNS. :
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SENSTITIVITY PROPERTIES~-STABILITY RANGE OF THE REDUCED SRS DESIGNS

Table IV-4

Design Design Design Design
Nominal No. 1 No, 2 No. 3 No. 4
+ Nk/k +0,26 +1,0 +1.,27 +1,6 +1,92
w2 K/ -0,27 -0.52 -0.8 -0,84 -0.8
C ot
=
&2 | Total
g5 o
e« Dk/k 0,53 1,53 1.52 2,07 2,44
(3) Evaluation of the results, (i) As expected, increasing

¢ decreases the sensitivity and increases the output and
control noise, In Design 1, the stability range is in-
creased by a factor of approximately 2,5 with an output
rms increase of 14% only, If the stability range is in-
creased by a factor of ~ 3,5 (Design 2), the output noise
increases by 72%. This design, therefore, constitutes

a considerable departure from the nominal optimum,  Due
to the somewhat artificial nature of the nominal optimum
(see IV-C-~1), this difference cannot be considered as very
significant, - A better balance between the increase in
output and control noise can probably be achieved by trial
and error, It is important to note that the differ-~

ence in stability range between Designs 1 and 2 does

not fully account for the improvement of Design 2 over 1,
In Fig, IV-3, it can be seen that in Design 2, the root
locus does nof approach the imaginary akis appreciabl&
for a range of variations of 'k that is close to the
stabilify range, Therefore, the practically acceptable
rangé of variations (e.g., |Re k| >0,2) is muchylarger

for this Design than it is for Design 1.

(ii) The lowered sensitivity of Design 2 can also be ob-
served from its frequency margin (Fig, IV-4) which is much

larger than that of the nominal system,
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(iii) The estimator eigenvalues of Designs 3 and 4,
particularly 3, are close to those of Design 2, This
indicates that the estimator gains for Design 2 are deter-

mined largely by sensitivity considerations,

(iv) The two extreme cases represented by Designs 3 and 4
indicate that for this system the estimator gains may be
determined by sensitivity considerations solely, and still

give adequate nominal performance,

(v)  Even for this simple system, it would have been
difficult to determine the minimum sensitivity eigenvalue
locations without some general method such as the one
that was used, The removél of the eigenvalue at -=1,02
+ 5,115 from the vicinity of the plant eigenvalue at
-0,36 +5,01j looks plausible; - but the movement of

the eigenvalue at =-8,33 + 8,35] 1is difficult to justify

intuitively.

C-3 Example 2: = Full Stanford Relativity Satellite (SRS)

(1) Program parameters, .The augmented system is a 12th order

system with two variable parameters--the stiffnesses of
the two springs, The variations of these stiffnesses

are unrelated and therefore the parameter covariance matrix
has only diagonal elements, The design paraméters that

have to be determined are ¢, Vi1 and v22.

Different values of these parameters are used for the
different designs (Table IV-5), The feedback gains,
estimator gains, and -assumed values of the spring constants

are used as free parameters in all cases (a total of 20

free parameters).
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(2)

The initial dynamic and weighting matrices were shown
in Fig, IV-5,

Three controllers were designed, They are described in

Table IV-5,

Table IV-5
DESIGNS FOR THE STANFORD RELATIVITY SATELLITE

Design No, 1 Gk /k7 Uk /ka
4 Q
1 0.55 0.18
2 2.5 0,81
3 5,0 0,81

The motivation for these various designs is evident from
the Table, - As explained earlier, the parameter rms values
are used as a design tool only for achieving the required

sensitivity,

Results, The final values of the free parameters for the

different designs are given in Table IV-6, The eigenvalues
are shown in Table IV~7. The nominal performance criteria

are compared in Table IV—8. The process and measurement

‘noises used for the determination of these criteria are

those used in Bull [BU-1],

The sensitivity properties are compared in Table IV-9,
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Table IV-6

FREE PARAMETERS (in MKS units) OF THE FULL SRS DESIGNS

Design |Design Design
Nominal No.l [No, 2 No., 3
iy 18391,0 18391,0 | 18391.0
o]
& Ciq 632.8 ) 631,1 631,2
g 9 c 1881.8 £ 1880, 7 1880.5
2 E | z
B4
. Ak LI 126,1 3 127,6 127.8
& © c 2285, 2 — 2285, 4 2285,5
= 15 g
o e -2001,3 =i -2001,6 | -2001.5
x4 5 :
2 c 101,4 2 99,7 99,7
=5 21
a 4 3
2 % oo 274.8 0 254.9 256,1
2 £ c 115,6 70.9 73.1
- :
8 & c 279.8 S 310.5 310.8
2 24 @
S Cys 275,6 278.1 277.9
o6 372.8 372.9 371.3
k) 24,1 23,0 24,2 43,2
k, 292,0 297,17 287,2 283.4
0
9w k, -2,2 -10,3 -10,9 -19,1
= &
g o= Kk -124.0 |-205,4 | -219,0 -224,0
B O 4 ‘
a | k 14,9 4,8 —3.6‘ -10.9
ke -26,0 -41,5 -41,5 "~ ~53.6
Plant Parameter G% 625,0 736,0 |  737.0 736.0
Representation - A9 o :
In Estimator wZ 25.0 25.8 3342 27,1
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Table IV-7

EIGENVALUES OF THE FULL STANFORD RELATIVITY SATELLITE DESIGNS

-109~-

NOMINAL DESIGN 1
RE AL I MAG. REAL INAG, -
-49.07145521 48432029403 -“2-51213571 h9-23853088
~49,07045521 -48.,32029403 -48,61518571 -45,9%3853083
—0.39369490 4.,98784394 -4,096239338h t;,00€L5133
-0.39369490 -4,98784394 -1,,00923984 24, 00€45133
-0.38514360 0.47217532 -6.81374959 7.8L625316
-0.38514360 -Ce47217532 ~6.8137L959 -7.,84€25316
=2 .42507047 25.58344618 “0.3N3GCHL6 .90512259
~2.42507047 —25.58344618 <0.34369446 -4.05512259
-8,622822177 7.12131077 -1.17923306 .15878479
'~8.62282277 -7,12131077 -1.17993306 -.15278479
-1.05210676 5.11812296 -0.34520706 0.40LSEN27
-1.05210676 -5,11812296 -0.34520706  -0.houeL027
DESIGN 2 DESIGN 3
REAL 1MAG. ) REAL IMAG.
-48410299920 49.32370542 cap 51508588 49499571576
-48]10209920  -49.32370542 -48.21998588 -49.99571576
=3,79056988 26425462200 -35,30701057 0.0
-3,79056988  —24.20442200 =2.5486401C 2188676425
=7424410743 4 204?8075 | ~2.5486401C ~21.88676425
~7.24410743 —4+30428075 —0.41573592  5.03969535
-0, 45084515 &4, 86150763 -0.4157359 = : , :
8 _ « 41573592 5,039£9535
-0.45084515 4486150763 =0, 80529691 3.78422822
~1.61314669 13,48569047 -0.80529697  —3.78422822
-1.61314669 =2,48569047 -0438388131 0.18314120
~0+38407223 0.1741999¢€, ~0.38388131 -0,18814120
—0.38407223 -0.17419996 ~1.61099022 :
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Table IV-8

NOMINAL, PERFORMANCE CRITERIA OF THE FULL SRS DESIGNS
(scaled to initial value)

Design Design Design
Nominal No, 1 No. 2 No, 3
Nominal PI 1,0 1,02 1,15 1,22

Lo /9,4

weighted rms

(VT /51 | 1o 1.01 1,07 1.1

Output rms 1.0 1.27 1.88 2.4

[ 0/%,]

Inner Control
rms 1,0 1,28 1,49 1,44

[Oul/oulij

Outer Control |~
rms

[cuz/c ] 1.0 0,99 1,02 1,02

u2i

Table IV-9
SENSITIVITY PROPERTIES OF THE FULL SRS DESIGNS

Design Design Design
Nominal No, 1 No, 2 No, 3
+ ak7/k?’ 40,71 +0,97 41,3 +3.1
o S
g o~ Aky/k -0.12 | -0.22 -0,24 -0,23
= 7 o ‘
<5
= 2]
= - Total 7
-t <] . .
= = | ak_/k 0,83 1,19 1,53 3.31
a 5 77
@ ,
=~ :
)
B
© o |+ ok /K, | +0.32 | +0.8 41,4 +1.2
= = . .
Q. - :
] & Ak 0 0.4 -0.44 0.3
< R Amb{ka -0.32 | -0, -0.4 -0, 8
E ,
2 Total i . - . ’ .
Kk 0.64 1. 1,84 ) 1,58
ok Sk, | b2 B ,
J. /3 1.0 10,76 0.7 0.65
A'CA ‘ I : : ;
nom .
ORIGINAL PAGE IS -110~ .
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(3) Evaluation of the results, (i) The increase in the output

and control rms for this example is much larger than it

was for the Example 1 (compare Tables IV-2 and iv-8),

This increase, however, is not reflected in the nominal

PI (Table IV-8), This PI is a weighted average of the

state and control rms values in which other stétes, beside
the output, are weighted, 1If the rms of some of these
states is reduced by the SRP, this reduction can balance

the increase in the output rms. A better balance between
sensitivity and nominal performance can probably be obtained

if only the output and the controls are weighted in the PI,

(ii) The range of stability is not symmetrical about the
nominal value especially for the stiff springs. All the
designs are more sensitive to the decrease of the spring
constant of this spring than to its increase. In Table
IV-6. it can be seen fhat the assumed value of this con-
stant in the estimator is higher than the nominal, It
seems, however, that for a more symmetric range, it should
be lower. The stability range of a modified design, Design
3A, was therefore found, This design has thé estimator gains
of Design 3 but the assumed value of the stiff spring con~
stant in the estimator is

wi = - 500 sec-z.

(The nominal value is wi = 625 sec_z), Thé performance
of Design 3A is shown in- Table 1IV-10. Comparing this
Design with Design 3, it can be seen that'although its
total stability range is loWer,,it‘still may be preferable
since it 1is more symmetric. There is no obvious way to
introduce’such considerations into the program but they
may lead to modifications of the program results by the
designer, ‘The nominal performance criteria are compar-

able for the two Designs,
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B e

Table IV-10 ;
PERFORMANCE OF DESIGN No. 3A .

@, = 500 sec )

Range of +0k [k +1.4
Stability v
ForAStlff -AK /k -0.48
Spring Yy oy

Total

N4 1.88

Y 7
Output rm
(%)% 2
9/ "9i]

Inner Control rms 1,04
[G> / u11
?2te;090n§rol rms 1,22
“u2 u2i

(iii) = From Table IV-6, it can be seen that the feedback
gains are changed very little by the SRP., The principal
changes are in the estimator gains; it probably

would have been possible to obtain a similar sensi~-
tivity reduction by using only the estimator parameters
as free parameters,  The same effect was also observed

‘in: Example 1,

c=4 Conclusions

(a) The method. descrlbed in this sectlon can prov1de a consider-
able reduction in the system sen51t1v1ty to parameter variations, If -
the 1n1t1a1 system is optlmal the output and control rms values will
increase due to the sen51t1v1ty reductlon. However _the nature of

the optimality of the nom1nal system has to be con51dered carefully

. since it depends on the assumed values of the process and measure-

ment noise intensities, In the examples that were examlned, the
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sensitivities were reduced by a factor of 2 to 3, while the output

rms increased approximately by a factor of 2,

(b) Both examples given in this section use state estimate
feedback controllers, In this case the free parameters are the feed-
back gains and the estimator parameters, The method, however, is by
no means limited to. such controllers, It is equally applicable to
systems with classical compensation networks or other designs that can

be represented in state variable form

(c) The computation time for a 12th order system with 20
variable parameters was four minutes on an IBM 360/67 computer,
This computation time is almost insensitive to the number of free

parameters, It is therefore recommended to define all the

parameters that are at the designer's disposition as free parameters,
at least for preliminary runs., If some parameters do not vary in

those runs, they may be fixed for subsequent runs.

(d) In applying this method, it is recommended to initially
select the parameter covariance matrix so that the additional PI(JA)
is much larger than the nominal PI(J0>. A design that is mainly deter-
mined by sensitivity considerations results, 1If the nominal properties
of this design are unsatisfactory, other designs with lower sensitivity

weightings may be executed.

The comparison between these deSigns is made conveniently by
means of the stability range and the output and control rms values, If

the ‘'system has specific performance requirements such as time response

envelope or gain and phase margin, these can also be used as comparison

criteria,

The most satisfactory design, in general, is a matter of subjective

designer preference.

-113-




V. DESIGN OF A CONTROLLER FOR A TRACKING TELESCOPE

A. INTRODUCTION

In this Chapter, the design of a controller for a tracking tele-
scope is described, It was selected to represent a commonly encountered
design problem and is a good example for the use of the design methods
of Chapter II.  The data and the requirements were obtained from various
sources, mainly by private communication; and lypify actual systems al-

though they do not necessarily represent a specific one,

Various aspects of the problem of precision pointing and tracking
have been treated in the literature and several system designé have been
described [CA-1, FI-1, JO-1, WH-1]. The detailed design of a controller
for such a system has to consider many specific aspects 6f the system
such as structural details, actuator and sensor characteristics, disturb-
ance inputs, etc. If these aspects are not considered, the system per-
formance will be degraded, especially for a mobile system which operates
in a severe and/or changing environment, The design problem is therefore

involved and is, in great part, of computational and experimental nature.

Since the principal purpdse of this chapter is to demonstrate'the
application of fhe design methods of Chapter II, a detailed design’for~a
changing environment is beyond its scope. Even for a simplified ground-
based systém, structural considerations must be neglected. The actuator
and sensor characteristics are, however, taken into account and a plausi-
ble disturbance input is assumed. - The design of the controller for this

‘f,simplified but hon-trivial system is less involved but the design methods
can easily be extended tq more complicated traéking’problems.‘ The sim-~
plified plant is described in Seétion V-B."The controller specifications
“are defined in Section V-C, and the cbntroller design is described in
Seétion‘V-D. The performance of tﬁe,controller is examined in- Section
V-E. L
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B, PLANT REPRESENTATION

B-1 Description

The plant is a ground based telescope, the purpose of which is
to track a moving object (target) in the sky., For angular freedom of
motion, the telescope is mounted in a three-gimbal structure: inner
azimuth, elevation, and outer azimuth. It has unlimited angular free-
dom in azimuth and -6° to +25° freedom in elevation, A schematic

view of the telescope is shown in Fig, V-1,

¢ inner azimuth gimbal
angle (limited to 3°)

¢ elevation gimbal angle
(1imited to -6° to 25°)

¥ outer azimuth gimbal
angle

FIG. V-1 TRACKING TELESCOPE ANGLES
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Torquers are mountz: on all three gimbals, The inner azimuth
and the elevation axes have hydraulic torquers, The outer azimuth axis
has an electric torquer, The transfer functions from torque command
to torque output for the hydraulic torquers are derived in Appendix C,
The transfer function of the electriec torquer is a pure gain, Since
the torguers are subject to saturation acceleration, limiting networks

are mounted at their inputs,

The purpose of the two azimuth gimbals is to enable the inner
azimuth torquer to operate on a lower inertia and thereby to provide the
higher accelerations required for high bandwidth tracking, The outer
azimuth gimbal then provides mainly the slewing capability, The relative

angular freedom of the inner azimuth gimbal is + 3°,

The following measurements are available: (i) the components in
azimuth and elevation of the error angle between the target line of
sight and the optical axis of the telescope are measured by detectors
mounted in parallel to the telescope axis, These measurements are
sampled at a rate of 120 meas/sec and are held in a zero order hold,
(ii) The integrals of the angular rates about the inner azimuth and
elevation axes are measured by rate integrating gyros with their input
axes along these directions, = (iii) The relative gimbal angles are meas-
ured by resolvers., Numerical data for the system are given in

Appendix D,

B-2 State Representation

The dynamic equations are .derived in Appendix F, Defining

& = & + i cos ¢ (the component of the total angular rate about the 1b

axis)
- & o : . 5.1
Ma I1 ’ ( a)
M = I>€ + I i& sin € + (I - I .=-1I )&2 sin € cos € ‘
e 371 (R I A _ (5.1b)
M. = [I sin” ¢ +(1 ; I )cosz €+ I IV + 1.0 cos €
Ty g 37 1 4 R (5.1c¢)

+ 2(I, + 1. -~ € - 108 €
(11+I2 Is)we sin € cos I,0¢ cos
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whiére M, Me,

azimuth, elevation, and outer azimuth axes, These torques consist cf

and MW are the external torques acting about the inner

the torquer outputs and disturbance torques, The moments of inertia

are defined in Appendix D,

To linearize Eq. (5.1), the following assumptions are made:
{a) The elevation angle remains small so that sin ¢~ ¢, cos g~ 1,
(b) The terms that consist of products of two angular rates and sin ¢
may be neglected, This is equivalent to assuming small deflections of

the gimbals from their required orientations.

The coefficient of ﬁ in Eq, (5,1c) can be written as

I sin2 €+ (I3 - Il) cosz e+ I

2 4

; .2
= 13 - Il + I4 + (I2 I3 + Il)sxn €

I0 + Al sinz e = 2750 4+ 160 sin2 €

(from the data of App, E),.

The linearized equations are

Ma = 1,0 (5.2a)

M = I_€ ) (5.2b)
€ 3

MW = Iow + M . (5,2¢)

To put these equations in state fofm, the torquer equation for the inner
azimuth and elevation gimbals as derivedmin Appendix C, have to be added,
Considefing Eqs. (C-8) and (C-9) of Appendix C, it can be seen that the
linéarized elevation equation (5,2b) is decoupled from ‘the azimuth
equations, The elevation control, therefore, can be tfeéted separately
from the azimuth control, Using Eqs. (5.2a) and (5.2c) and Eq. (C-8) of

Appendix C, the azimuth state equations can be written as
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are disturbance torgques and actuator noises,

(5.3)

In this linearized system, ‘@ is the total azimuth angle of the

inner gimbal, measured from some reference direction,

equation,

the angle d - ac,

(5.3) has to be augmented,

The azimuth error detector measures

To add the output

after it is sampled and held in a zero order hold,

Such a sample—and—hold‘operation introduces phase lag, and if it is not

taken into consideration in the design, a system with insufficient phase

margin may result,

A linearization of the sampler and hold is done in

Appendix G, The linearized sampler and hdld is Fepresented by an addi-

tional state equation

é 5

“4f B ~ 7,28 (@ - Q)
e (o} c’.

where fo is the sampling rate (120 samples per second).

The measurement is given by
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y = B+ 0,90 - G,c) . (5.5)

The effect of using the linearized rather than the exact representation
of the sampler is checked by simulation, Replacing the state q by
r = a in order to get fewer parameters in the state equation, the final

state equation (without disturbances) is obtained as

»-.T r~ he Wl ~ - ~ -
_ - 0!D O 7.2
5 ar, -7.26, O O , p 0o o £
o ) 0 1 o o'oolla 00 0
@ 0 0 o 1 o!o0 olf|w 0 offu 0
al = o 0 -, 0 1 bgoljajs 00 +1 0o lo. (5.6)

r - -m ! 0 O r m, O u 0
I __? _____ ? ______ ?.---fgt_-_lu; _____ ] -2- o) oo ]
¥ o 0 0 0 o!l!1 o0 v 0o o© o]
Lp_ L 0 0 o L oto ojle) Lo 1l L o
- ,
o)

- - F‘T
1 .90 0 0 0O 9
o 1.0 0 O 0 O o)
y = X - o
0 10 0 0-10 ol ¢
0o 0 0 0 0 0 1 (&
L J L
where
ml"z 2‘gwo, where w, is the natural frequency of the
hydraulic torquer, and ( its damping coefficient,
m, = o
Yy = the target error detector
Yo = the rate integrating gyro on the inne¥ azimuth axis
y, = the outer azimuth axis resolver
Yg = the outer azimuth axis rate gyro ,
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Substituting the numerical values of the entries in the F matrix (from

App. C), the open loop eigenvalues (in rad/sec) of the system are found
to be

A = -80 + 615j (torquer)
1,2 =
lS = ~-480 (sampler-hold)
14 = = 0,024
56,7 " 0 .

The parameter b3 in Eq. 5.6 represents the effect of the outer gimbal

motion‘on the inner torquer output, -If this term is neglected, X4 =0
results. Relative to the other system eigenvalues, the change in X4
is small and the term b3 therefore can be neglected, This eliminates
the coupling from the outer azimuth gimbal into the inner dzimuth
gimbal and decouples the azimuth system into two single input systems,

the controllers for which can be designed separately.

By linearizing and neglecting small terms, the coupled
system described by Eq., (5.1) has thus been decomposed into three
single input subsystems, The inner azimuth and elevation subsystems
are almost’identical‘and the controller that is designed for one oi

them will also be suitable for the other one with small numerical changes,

The inner azimuth system is shown below,

r~ oy — - g T ~ o o - ~ T
[ _ -7. o 0 00 7.2f
B ag, 7.2t 0 O B o
a ) 0 1 o olla 0 0 0 0
; 1
0ol =1o o o 1 ollw]| +{olu+]1r o s1o o
. ' Wz ‘
a 0 ) o o 1f}ja ol lo ofl 0 (5.7)
;' (o] (6] O ~m -m rfi. Lm O m 0
Lr) L R T | 8 T L R A %
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Structure of process and measurement noise 1ntensity matrices:

9 0
Q =
0
L)
(5.8)
rd 0
R =
0
g
Numerical values:
m = 160 sec-1 :
1 from App, C
m, = 385,000 sec 2 ‘
fo = 120 samples/sec 'W
—4 3
q; = 10 radz/sec
, -5 ' ;
qz =10 radz/sec3 S > from App. D
-11 2
21 =10 rad /sec
, -14 ;
ry = 2 x 10 radz/sec .
Transfer functions: ’
m N
o(s) os) ‘ 2 ‘ v
w(s) Tus) .. 2,2 : (5.92)
2" Lo s (s + MS 4 m2)

-122-



c(s)
wl(s)

1
5 (5.9Db)
S

The controller for the outer azimuth gimbal has relatively low

performance requirements and its design is straightforward,

The linearization and simplification of complex systems as shown
in this section is common in the design of controllers, It should be
attempted, whenever possible, since it simplifies the design of the
controllers to a large extent, It is important to bear in mind, however,
that as a final design step, a simulation of the full nonlinear system
should be made using the designed controllers, This simulation should
be as close as possible to the real system, including all the non-
linearities and neglected terms, Due to the limited scope of this

Chapter such a simulation will not be performed here,

C, ‘CONTROLLER SPECIFICATIONS

For a meaningful evaliation of the controller design, somé guan-
titztive specifications are required, These specifications should
rafloct performance requirements such as fracking and disturbance re-
jection, as well as hardware limitations such as component saturation. The
‘performance req&irements in this Section are based on typical requirements
of actual tracking systems. Tor such systems, tracking requirements are
often defined in terms of the permissible error when tracking a target
moving in a straight line [FI-1]. It is also customary to require that
no steady'state output error occur when constant disturbances such‘as

steady wind or unbalance torques act on the systen,

The numerical values given in the'specificationé feflect lavels
of performance'that are plausible with the assumed process and measure-
ment ﬁOises, énd with the given detector sémpling rate, The influence
of different noise level assumptions are discussed later, AAccording
to this approach, the controller épecifications are formulated as follows,

(a) Tracking, The system can track a target mdving with constant angular
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acceleration with finite steady state error, It is desirable for this
error to be less than 100 Hrad, which is the value of the detector
rms noise, for the entire acceleration range of the outer gimbal

(0.65 rad/secz). This error corresponds to an acceleration error co-
efficient of 150 Mrad/(rad/secz). This requirement is a simpTification
of the tracking requirement for a target on a straight line flyby.-

The connection between these two requirements is derived in Appendix

E.

(b) Torquer saturation, The torquer input is less than 50% of

the acceleration limit when no tracking is fequired (pointing at a
stationary target). This specification is required in order to avoid
saturation of the torquer by disturbances and measurement noise and

to retain sufficient control authority for the tracking.

(c) Large signal operation, The system remains stable for large

output errors up to 30 mrad, This requirement arises because the tor-
quers are subject to saturation (V-B-1), At large error signals,
such as may arise during acquisition, saturation instability therefore

may occur (Section V-E).

(d) Steady disturbance rejection, No steady state pointing error

occurs when steady disturbance torques are acting on the system, The
maximum transient error for such .a disturbance is

: 2
%% < 100 prad/(rad/sec ),
. where w _may be either w, or w, (Eq, 5.7). With this numerical value,
a disturbance torque of 25% of the inner azimuth torquer‘capacity‘ '

will ‘cause a maximum deflection that is of the order of the measurement

noise,

{e) Transient response. The system has 'well behaved' tracking
and disturbance transient responses ‘by. common engineering‘criteria.
The ‘tracking bandwidth is limited by the sampling rate, A bandwidth

of 25% to 50%;offthis rate is considered reasonable,
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b, DESIGN OF A CONTROLLER FOR THE INNER AZIMUTH
GIMBAL

D=1 Introduction

The design procedure for a state estimate feedback (SEF) con-
troller (Ch, II) consists of the following steps: (a) estimator
design, (b) controller design, (c) evaluation. In general, several
systems are designed in the first two steps, each one having different
state and control weights and, in some cases; different estimator gains,
The nature of the evaluation depends on the system specifications,

In general, it consists of several stages, and in each stage, some de-
signs are eliminated, In some cases, more than one design cycle is

required in order to satisfy the systen requirements,

The threé-step design procedure outlined above is fairly standard,
“The nature of each one of these steps, however, depends on the system |
specifications and on the special features of each specific gystems.
In the inner gimbal system, the following special features have to he
considered: (a) although the system is SISO it has two measurements
and different estimators can therefore be designed using various cohbi—
nations of those measurements, The various designs are described in
Sectlon V-D-2., (b) The system has to be augmented by integral control
in order to satisfy the tracking and disturbance rejection reqﬁire—
ments (requirements a and d 1in Sec, V-3). The need for this aug-
‘mentation is established in Section V=-D-2 and the controller for‘the
augmented system is designed in Section V—D—S. (c) The:evaluation has
~to.include the deteimination of stability fof large input,  This is ‘

done in Section E-1.

’ In Section D-4, the various possible designs are compared accord-
ing to. the linear performance criteria and two designs are selected
for sensitivity'comparison. This comparison is made in Section D-5
and as’a,result, a‘final system for further performance evaluation is

selected., This evaluation is described in Section E-5.
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D-2 Controller and Estimator Structure

Two measurements are available in the system: (a) target detector,
(b) gyroscope, The gyroscope can be used in one of two modes: as
a rate integrating gyro, or as a rate gyro, The dynamics of the gyro-

scope in its two modes are described in Appendix H,

The performance specifications call for (a) finite steady state
output error for constant acceleration command; (b) zero steady state
output for constant disturbances. The satisfaction of these require-
ments depends on the structure of the syStem and not on the values of
its parameters. The level of the steady state acceleration error and
the maximum transient deflection for constant disturbance depend on the

parameters,

gseveral estimator designs will be discussed in this Section, and
tlie structures of the systems incorporating them are examined, The
numerical performance criteria such as output and control noise,
maximum disturbance deflection, and steady state acceleration error
can only be evaluated after both the controller and the estimator are
designed, This evaluation is therefore deferred to Section D-4, The
discussion in this Section is limited to estimators, the order of which

is at most, equal to the order of the system,

(1) Estimator using the detector measurement only, Equations

(2.58) and (2.67) define the order ofrthe polynomial equilibrium control
required for the ‘tracking of polynomial reference outputs and rejection
of polynomial disturbances, Using these equations on the transfer
functions of Eq. (5.9) and referring to the controller specifications
(v-C), the results are: (a) a constént'aCCeleration reference output,
can be tracked w1th constant equlllbrlum4control "No integration of
the output error is therefore required in order to obtain a constant
output error for this reference output' (b) A eonstant disturbance
requlres a’ constant equlllbrlum control for zero output error, One
ntegratlon of this error is therefore requlred ‘The disturbance re-
jection spe01f1cat10n therefore determlnes the requlrement for in--

tegral control.‘ With thls control the output error is zero for a
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constant acceleration reference output, In addition to the equili-
brium control, error feedback control is required, From Chapter II-D-3
the system with this reference output is completely reducible, i.e,,
the error state has the same dynamics as the system state, It can
therefore be estimated by an estimator that uses the model of the
system, the output of which is compared to the target detector output.
This estimator can be used for generating the error feedback gains,

For zero target motion, it obviously generates the state estimates, The

state equations of this estimator are given below,

A r~ 2l r o
Af -k - - ) k 0
s‘] af -k -7.2£,-0.9k, 0 0 8) J T
a 0.9k. 1 0 ofld& K 0
@ K, -0.9k, ' 2
. A
Al = - - w 0 u
w = k3 0.9k3 0 1 0 + k3 Yy + 1
- A
2 ko - ) 1}]a Kk )
a k4 0.9k4 0 4
. A
¢ - -0,9k. 0 -m ~-m_{fr k LT
g L8 5 : U U 2
~
=
0 0 ©
94
Q = o 0.0
9y
1.0
I'=
0 o0
R = 'r 0 m
d L 2_‘ []

The' structure of a system using it 1is shoWn in Fig. V-2,

A controller using this estimator more thén‘satisfies the steady
state error requirements sincé,it’has zero acceleratioh error where only
a finite error is required, Its transient disturbance response may,k
however, not be satisfactory. ‘The‘detectof noise level is relatively

high (see App; D) and the estimator bandwidth is therefore low.
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The closed loop transfer functions from the disturbances to the
output contain in their denominators, the eigenvalues of both the con-
troller and the estimate error systems, The transient response to these
disturbances may therefore be dominated by the estimate error eigen-
values and therefore may be large and relatively slow, In order to
improve this response, the gyroscope can be used as an additional meas-
urement in one of its two modes. Estimators using this additional meas-

urement are described below,

(2) Estimator using rate integrating;gyro as measurement, As ex-

plained in (1), a system using an estimator with detector measurement
only may not have satisfactory disturbance response, This is so be-
cause the information about output errors due to disturbances is obtained
through the detector measurement only, which is relatively noisy and
therefore must be filtered by a low bandwidth filter, The gyro has a

much lower measurement noise than the detector (App. D),‘

The disturbance information obtained when the gyro is used as
an additional measurement may therefore be filtered through a faster

filter and higher stiffness to disturbance outputs may. thus be obtained.

: The output of a rate integrating gyro 'is an integral of the torques
acting about ‘its output -axis, vTheymare: (a) torquer generated torques,
T, '(b) drift torques, D, (c) torques caused by angular rates about the

input‘axis,er. Therefore,
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o = k(T + D+ uH) . (5.10)

The total output must be kept close to zero, A command must therefore
be applied to the torquer such that it generates torques that balance
the drift torques and those due to angular rates, This command may be

obtained from the detector signal ¢ such that
f(e) + D4+ uH = O (5,11)

where f(e) 1is an unspecified function of the signal ¢, 8Since, for
constant angular rate, a zero error is required, this function must

include the integral of the error and can be of the form:
= ae ' . 5,12
f(e) a,€ + a2y S e dt ( )

The gyro-detector combination is shown in Fig, V-3, 1If the
gyro is used as the sole measurement for the estimator, the gyro output
will be kept close to zero by the controller, which adjusts the value
of & so that the gyro torques are balanced, The single gyro measure-
ment can be considered L& measure a linear combination of system states
only if the target motion is viewed as noise, which is a réasonable
assumption for an unknown maneuvering target. In that case the measure-
ment is a linear combination of the state o and its two integrals, 1In
order to model this measurement correctly in the estimator, the system
model has to be augmented by -the two integrals. A seventh-order estim-
ator thus results. Since the order of the estimator is required not
to exceed the order of thé system, such an estimator cannot be used.
Ah‘estiﬁator of the order of the system is obtained by using the model
of Bg. (5,7) and congidering the gyro as a measure of the state q.
Since in reality this measuremeht also contains the error integrals, the
' estimator does not estimate the actual states and a coupled system re-
sults., The block diagram of this coupled system is shown'in Fig.vV~4;
From this figure,‘it can be‘seen that the effect of the non-modeiled
1ntegratlon is to close an outer loop around the controller from the
7zero order ‘hold output to the gyro. torquer input, Its transfer function’
is:
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This transfer function includes one integration in the gyro. Note that
the open loop transfer function of this augmented system has two roots
at the origin only after integral control has been added, Therefore,
integral control is required in order to obtain finite steady state
asceleration error., This is to be compared with the system in which the
estimator uses the detector measurement only. There, zero steady state

acceleration error is obtained with integral control,

Tt is to be noted that because of the additional measurement, the
steady state tracking and disturbance re jection properties are not
obtained from the open loop transfer function of the actuator and plant,
From Fig, V-4 it can be seen that the additional measurement has the
effect of closing an inner feedback loop. The closed loop transfer
function of this inner system is considered as the open loop t. f. for
the determination of the steady state properties. If the constants
ao and al are small (a /a much smaller than the eigenvalues of the
nominal controller), the outer loop may be neglected and the feedback
and estimator gains found by OPTSYS., The actual system eigenvalues
will be somewhat shifted from their assumed values, If, however, rela-
tively tight integral control is required in order to obtain a suffi-
ciently small acceleration error, the feedback and estimator gains and
the constants ag and ay have to be found by parameter optimization.
The augmented system shown in Fig, V—5 is used for this optlmlzatlon

Is is performed using the program PAROPT (Ch, IV-B-4) without the

sensitivity reduction option,
The weighting matrices and the covariance matrices are the same

ones that are used in OPTSYS,

Although the parameter optimization method is somewhat less con-
venient to use than the optimal controller and filter method, this,
by itself,; is not-a serious drawback of this sytem since the optlmlzatlon

is only carried out a relatlvely small number of tlmes.
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(3) Estimator with rate gyro as sensor, The transformation of a

rate integrating gyro into a rate gyro by caging it, i.e,, feeding back
its output to its torquer, is described in Appendix H, The rate gyro
is a second order system for which the natural frequency is determined
by the caging loop gain and the damping by the rate integrating gyvo
time constant, If the natural frequency is sufficiently higher than
the system natural frequencies, the gyro transfer function can be

approximated by a constant, viz,,

P~ kW, (5.13)
g

The effect of neglecting the gyro dynamics in the estimétor model is
to couple the estimator and system eigenvalues, The amount of coupling
depends on the natural frequency of the gyro, To minimize the coupling,
this frequency has to be high but this increases the gyro measurement
noise. In Appendix H these effects are discussed and a natural frequency
is selected. The conflict between high noise and coupling can be avoided
if the rate gyro is modeled in the estimator but this leads to a more

complicated estimator (7 states).

Using the approximation of Eq, (5.13), an estimator can be de-
signed using both the detector and rate gyro as measurements. = As ex-—
plained above, the addition of the rate gyro should -improve the disturb-

ance response,

Three different realizations of this estimator are considered,
(a) One full state estimator using the two measurements, The
block diagram of this estimator is shown in Fig. V-6a, - (b) One reduced
order estimator using the same measurements, Its block diagram is shown
in Fig, V-6b, Since ite design method is substantially different from
the one used for the other estimators, it is described in Appendix K,
(c) Twokseparate full state esﬁimators: e one two=state estimator for
‘¢ and B (see Fi, V-3a) using the detector as the measurement and the

rate gyro as a known input; ‘e one three-state estimator for w, -a; and

4

T ‘using the rate gyro as a measurement,
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The block diagram of this estimator is shown in Fig, V-6c. The
dynamic equations of its models are given in Fig, V-7,
B -ar  -7.2f | |8 0 0
= + W+ w
o 0 ) 107 1 1
y = [1, 0.9]x+ v
Q = rg (rate gyro noise intensity)
R = Ty (detector noise intensity)
w = gyro measurement used as input
v,w = mnoise
1

FIG, V.7a  MODEL FOR ESTIMATOR NO. 1

@ o 1 ollw 0 110
1
. |
al = {0 O 1 a{+|0 |u+ |O]O
i
. i
- - 0!
p 0 -m, -mi|p m,, | My
y = [1 0 olx+v
0 .
ql ’
Q = (see~Fig, V.Za)
0 4,
R = ;rg (rafe gyro noise intensity)

PIG, V-7b MODEL FOR ESTIMATOR NO, 2
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Because the system is SISO, the steady state tracking and disturbance
rejection properties can be studied from the equivalent transfer func-

tion representation of the estimators,

All three designs can be represented by the same transfer function,
The block diagrams of this transfer function are shown in Figs, V-8a and
V-8b, where Fig, V-8b is a simplification of Fig. V-8a, TFor the full

state estimators, cy = 0 -and Cy = 0.
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\ X
€ e
Q) s
Hy |
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y c. +{c +H:)s w 1 o
S 1< y‘y) e S e
s

FIG. V-8b

FIGS., V-8a,b  EQUIVALENT BLOCK DIAGRAMS OF SYSTEM WITH RATE
‘ GYRO AND DETECTOR MEASUREMENT. ~
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From Fig., V-8b, it is observed that the equivalent open loop

transfer function, which contains the effect of the integral control

and the rate measurement feedback, has two roots at the origin,

The

systems can therefore track a constant acceleration command with constant

control and finite tracking error,

To obtain zero tracking error for

acceleration command, one additional integration has to be added,

The effect of the gyro measurement, both when used as a rate integrating

gyro or a rate gyro, is therefore to reduce the system from type (2)

to type (1).

This disadvantage will be shown to be outweighted by the

improved transient response and disturbance rejection discussed in

Section D-4 (below),

The five designs that were described in this section cover all

the possible combinations of the measurements,
exist other designs using these same measurements,

the described designsis shown in Table V-1,

culated and the designs compared,

Table V-1

ESTIMATOR STRUCTURES

‘There may, however,
The structure of

Later, the gains are cal-

Order of Error
Free Polynomial
DESIGNATION MEASUREMENTS METHOD OF DESIGN ; REMARKS
' . Track- Disturb-
ing | ance
T
. 1
D detector " Separante design.of '
controller and 2 (o}
estimator: by OPTSYS i
. i
b1 detectlor Combined. design by : Coupling between
“and rate parameter optini- 1 0 coutrp]ler and
integrating zation : estimator roots
‘ gyro -
PR 1 detector and | .0 as type D 1 0
rate gyro
T N N
DR 2 detector and | same as type D 1 0 two separate
i rate gyro ’ estinators
DRR - detector. and parameter optimi- reduced order
" rate gyro zation (see App. J) 1 0 estimator
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D-3 State and Control Weight Selection

In this Section the determination of the state and control weights
ig described., These weights are then used in an optimal control program
for the determination of the feedback gains and closed loop eigenvalues
and eigenvectors, Several systems are designed for subsequent evalua-

tion in the next section,

The relation between the weights and the system eigenvalues is
determined by the root square locus method. This method was mentioned
in Chapter II and is described in more detail in Appendix S, It en-
ables one to determine the weights for single input systems so as to
obtain required eigenvalues, The required eigenvalues, however, have
to be determined from the given system specifications, The corres-
pondence between these specifications and the eigenvalues is not unique
since the time response also depends on the controller eigenvecteors and
on the estimate error eigensystem, A rough correspondence can, hoWever,
be determined by assuming that the controller and not the estimator
dominates the time response,  Under this assumption, the following
criteria for the eigenvalue locations can be established: (a) a high
bandwidth is desirable for low tracking error and good disturbance re-
jection, It is limited by the detector sampling rate (ug = 800 rad/sec)
and the actuator noise requirements, A bandwidth of W = 100 sec-1
seems reasonable as an initial point. (b) The actuator has a natural
damping coefficient of 0,13, Although this is ‘somewhat low, high
gains may be required in order to increase it and therefore initially

this location will be considered satisfactory.

These two criteria sum up to the requirement that the damping
of the actuator roots should not decrease and that the magnitude of the

fealvpart of the additional roots should be greater than 100 Secfl.

In the remainder‘of this section,‘the selection of weights for several
systéms will be described and candidate systems for the performance
evaluation will be determined, L ’

The open loop system for which the controller is designed is the

systém bf Eq., (5,7) augmented by an integraljstate i - such that

-138-



di

T = y = B+ 0,90 .

The requirement for this state was explained in Section D-2. 1In order
to determine which states have to be weighted, the following rule is

used [ AN-2]: to ensure stability of the closed loop system, the pair (F,D]
has to be observable, where D 1is any matrix such that DDT = A,

From this rule it is obvious that the only state that must be weighted

is the integral state i, The effects of the weighting of the states

¢ and w are also examined, A multiple—parameter root square locus is
constructed by first constructing the root square locus for the state

i, selecting a temporary weight for this state and considering the closed
loop eigenvalues obtained for this weight as denominator eigenvalues

for the ¢ root square locus, The same procedure is followed for obtain-

ing the w root square locus.

The transfer functions to the three weighted states are:

o () - igs; L 0.9m, (s ; 4f ) A iiEZ; (5.148)
uis s (s + 4f0)(s + ms 4 mz)
ms(s + 4f )
6 (s) = 82 _ 2 0 | (5.14b)
o uls) D, (s)
1
m 52(s + 4f )
wis) - 2 ‘ 0" ,
G = =
w'®? u(s) D, (s) - ! ; (5'140)

where 'Di(s)k is the characteristic polynonial obtaihed when the integral
state only is weighted with the selected weight, and ,Qa(s) is the
characteristic p01ynomia1 obtained by weighting both " i and a.k The root
square locus for the i; Q, and w. states are shown in Figs. V-9 through
V—ll.’ From these figures, the influence of increasing the weights

of the different states can be assessed as follows:
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(a) Integral state: e little effect on actuator roots; e other
roots move away from the origin with little change in damping of com-
plex roots, (b) Position: e some effect on actuator roots; e real
root approaches origin; e complex roots move away from the origin;
damping of the complex roots lincreases; (c) Rate: @ increased
bandwidth and damping of actuator roots; e real root moves away from
the origin; e complex roots initially remain at same distance from

imaginary axis with increased damping,

Roughly, therefore, the integral state weight influences primarily
the bandwidth, whereas the rate weight affects mainly the damping, The
position weight has an intermediate effect,. Using these considerations,
three designs were selected for further evaluation as shown in Table

V-2,

Table V-2
CONTROLLER DESIGNS

. a a a
Design i o4 w
No. Characteristics (sec's) (sec’4) (sec'z) Remarks
| 13 )
1 nominal (N) 2 %10 0 o - Point 2 in Fig, V~9
2 | high gaqin @6) | 2 x 10t? 0 0 Point 3 in Fig. V-9
i d i
3 ’(‘Hg})‘ amping |, o 1013 | 5 x 10° | 8 x 10" | Point 2 in Fig. v-11

The selection of Design 1 as an initial design was made by considering
its acceleration error. If state feedback, without an estimator is used,

the steady state acceleration error is:

€ rate gain

;c ~ integral state gain °

. ) -4 [ S ' :
For Design 1, this ratio is 1.2 X 10 ‘secz, or 120;Lrad/(rad/secz).
This is. less than the required accéleration,error but. an increase in

this error is to be expected if an estimator is used to obhtain the
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feedback gains (see App. K),

Design 2 has a lower acceleration error, Design 3 a higher one,
No design using integral and position weights only was. evaluated since
this represents an intermediate case between the cases that were

selected,

D-4 Estimator Design Evaluation,

The following designs were made and are evaluated in here,
(a) The controllers and estimators given in Tables V-1 and V-2
with the noises as given in App, D and H, The influence of different
noise assumption is discussed in Section E-3, (b) An additional
estimator of type DR 2 (two estimators, wne using the rate gyro meas-
urement, and the other the detector measurement). In this design
(DR 2H), the gains of the detector estimator were arbitrarily selected
at higher values in order to decrease the acceleration error, The
connection between the estimator gains and the acceleration error is

developed in Appendix K,

The gains for the controllers and the estimators (except Type
DI and DRR) were found by the optimal control program, -OPTSYS [BRY—S].
The feedback- and estimator gains for Type DI and the estimator gains
for Type DRR were found by parameter optimization using the sensitivity
minimization program, PAROPT, described in Ch, IV-B-4, without the
sensitivity reduction option, and with the same state weights‘as were
used for Design 1 in Table V-2, The eigenvalues of the controllers
are shown in Figs, V-9 to V-11, The eigenvalues of the estimators
are shown in. Fig, V-12a, The eigenvalues of the coupled system DI are
shown in’ Fig, V412b. It is observed in Fig, V-12a that the reduced
order estimator has & very slow root, This can be made plausible by
considering Eq., J-15 in App.J . Comparing this equation to Eq. (2.31),
if can be seen that in the full state estimator, the measurement noise
forces the estimate error only, whereas in the reduced order estimator,
this noise forces both the state and the estimate error through fhe
- estimator gain . K, For low output and control noises, a:. lower gain

K is therefore desirable and slower estimator roots result.‘
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The performance of various combinations of these designs was

evaluated according to three criteria:

acceleration input;

input;

For systems using the DI and DR 2 estimators, it is relatively easy

(a) steady state error for

(b) maximum deflection for step disturbance

(¢) control mean square noise,

to find the analytic expression for the acceleratinn error,

in Appencdix K.

This is done

For systems using the DR 1 estimator, the analytic

expression is complicated and the error was calculated numerically

using the design program XAGSA [ WIT-1],

estimator,

For systems using the Type D

there is no steady state acceleration error,

The disturbance deflection was found in all cases with the aid

of the XAGSA program,
of the OPTSYS program,
Table V-3

V-13 and V-14,

The control rms values were found with the aid
The results of these evaluations are given in

The time responses of some of the systems are shown in Figs.

Table V-3
PERFORMANCE COMPARISON OF CONTROLL.ER AND ESTIMATOR DESIGNS
Steady State| Muximum De- ]
Error For flection for Control Output
Acc. Input Step Disturb, | rms noise | rms noise
Design| Estimator |Controller|; . jrad urad 2
No. Type Type (rad/secz) (rad/secz) (rad/sec?) (krad)
1 D N o} 260 1.8 65
2 DR 1 N 280 145 0.54 29
3 DR X G 205 96 0,94 26
4 DR 1 HD ;590 180 0,58 30
5 DR 2 N 400 48 1,05 =
6 DR 2H N 185 48 1.8 46
7 1" DR 2H HG 130 not c¢omputed 3.3 53
8 DRR N 28000! ! 18 1.2 28
9 DI N 240 not computed 2,5 78
N = nominal HG = high gain

-147-

HD = high damping




. —8F%1-

1 e/a
600 - ¢ [

prad }

rad/sec
500+
Design 4
4001
300}
/”———-——.—‘m~~~‘~-—_—__—
. NG T T e e e e
200+ 7
. ',
7
/4 Design 3
100
i 1 i ! 1 - I} L
0.02 0.04 0.06 0.08 t (sec)

FIG, V-13

OUTPUT ERROR FOR CONSTANT ACCELERATION COMMAND



[

- grad
2
rad/sec

160

© 140

oo D@8Ag 4

120
100

80

Design 3

60

40

— Desi 6
20 esign

0.02 = 0.04 0,06 0,08 0.1 0.12 t(sec)

FIG. V-14  CONSTANT DISTURBANCE RESPONSE OF DIFFERENT
TRACKER DESIGNS.

-149--



A control rms higher than 2 rad/sec2 is considered unacceptable

since it violates the torquer saturation requirement. Other criteria

for such designs were therefore not evaluated,'

The following observations can be made from Table V-3 and Figs,
V-13 and V-14. (1) the addition of the rate measurement to the de-
tector measurement lowers both the control rms and the disturbance de-
flection (compare Designs 1 and 2), However, if causes the system to
have a finite, instead of a zero, acceleration error, (2) Increasing
the bandwidth of the system lowers acceleration error and disturbance
deflection but increases control rms (compared Designs 2 and 3), This
result is to be expected, {(3) Increasing the damping increases the
acceleration error and the disturbance deflection (compared Designs
3 and 4), The time response of the better damped system has no over-
shoot (see Fig. V-13), (4) Two partial estimators instead of one full
estimator (with the same controller) cause the system to have higher
acceleration error and control rms but lower disturbance deflection
(compare Designs 2 and 5). (5) The designs using the rate gyro as a
second measurement have generally better performance than the one using
the rate integrating gyro (DI). (6) The reduced state observer (DRR)
has a higher control noise than the full state observer with the same
controller, as is to be expected, However, it also has an unacceptably
high acceleration error, Its acceleration response is dominated by the

low eigenvalue xl = =0,56 rad/sec.

Thé ranking of the designs according to the criteria of Table V-3
is given in Tablé V-4, The designs below the dashed lines in this Table
are considered unacceptable for thé‘respective requiréments. Note that
designs with acceleration érrors of up to 200 Mradﬂrad/sec)are con-
sidered acceptable, although in Section V-C an error of 150 uradﬂiadfsecz)
is specified, This is so because this error is considered as a design
goal only and not as a rigid specification., From Table V-3 it can be
seen that-satisfying this redquirement wotild cause an unacceptably large

controller noise,
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Table V-4
RANKING OF THE DESIGNS

Acceleration )
Steady State Disturbance Control
Error Deflection rms
1 8 2
7 5, 7 4
6 3 3
3 e et o i 5
9 2 8
2 4 6, 1
v I
* 9
9
7
8

Note that in the above Table, only Designs 3 and 6 are acceptable
according to all the criteria, Designs 3 and 6 are comparable and the
selection between them will be made according to parameter sensitivity

criteria in the next Section,

Design 8, which uses the reduced order observer, is clearly un-
acceptabie as is. If; however, merits some more consideration since it
ig simpler than all the dther designs, ‘Its aéceleration erroxr may.be
decreased by shifting the observer poles but that, of courSe, will
increase its control and state noise, It is reasonable to assume thati
for paraméter sensitivity reduction, the slow eigenvaiue has to be
moved further from the imaginary axis and therefore the applications
of the sensitivity réduction program to this system may also improve

its acceleration response, This is done in the next Section also,
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D-5 Sensitivity Reduction and Final Selection

The sensitivity of Designs 3 and 6 to the variation of the hydraulic
actuator spring constant and damping coefficient is shown in Table V-5,
The region of stability is considered as the sensitivity measure, From
this Table it can be seen that both designs have low sensitivities to
damping variations, The sensitivity to stiffness reduction of Design

3 is unacceptable, whereas for Design 6, it is tolerable,

Table V-5
STABILITY REGION FOR HYDRAULIC ACTUATOR PARAMETER
VARIATIONS
Design 3 Design 6
(DR 1-HG) (DR 2H-N)
Spring + Ak/k Large Large
Constant
Range ~ Ng/k | -0,04 -0.18
' - Ab/b Large Large
Damping
Coefficient - Ab/b 0.7 -1.1
Range

The sensitivity reduction method may be applied to Design 3, ' Since

this is an optimal system, its state and control noises will increase
due to this reduétion but this is acceptable since the control noise is
well below the specified level, Design 6 is not optimal since the gains
of estimator No, 1 were selected arbitrarily., Sensitivity reduction
may, therefore, increase or decrease its control noise, ~However, a "
system with lower control noise will most probably have a higher accel=
eration error, Since both this error and the control nOise’arefclose

to their specified limits, the applicafion of the,sensitivity reduction
method to this systen ié not feasible, The result of the sensitivity -

reduction for Design 3 are given in Tables V-6 and V-7,
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Table V-6
STABILITY RANGE OF DESIGN 3

Original Desensitized

Spring + Ng/x Large + 0,31

Constant

Range - Ak/k -0,04 - 0,22

L Large
Damping + Ab/b arge g
Coefficient _ Ab/b ~0.7 ~0.65
Range
Table V-7

NOMINAL PERFORMANCE CRITERIA OF DESIGN -3

Steady State | Maximum De- E
Error For flection for Control rms: Output rms
System Acc, Input Step Disturb, Noise ! Noise
1
. 2
( Lrad 2) (—-——-———urad ) (rad/sec”) | (prad)
rad/sec rad/sec? |
i
!
Original 205 96 0.94 :, 26
- E
Desensitized 250 28 2.8 } 45
|

Comparing these Tables with Tabies V-3 and V-5, it is obvious that Design

‘6 is preferable by both nominal. and sensitivity criteria,

As explained in the previous Section, the sensitivity reduction method-
is also applied to the rednced order estimator design, No, 8, In this'case,
this method is ugsed essentially as a pole placement method, The results of

its application are given in Table V-8, From this Table it can be seen that
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the sensitivity reduction method has, as expected, congiderably decreased
the acceleration error for this case. The stability ranges of Design

6 and of the desensitized reduced order estimator, Design 8A, are compared
in Table V-9, These two designs can be seen to have comparable prop-
erties, The nominal properties of Design 6 are slightly better but

the sénsitivity of Design 8A to reduction of the spring constant is
:considerably lower, The higher sensitivity of this design to reduc-

tion of the damping coefficient is of no importance since the stability
range is more than adequate, . Since this design is also simpler, it is

selected as the final design,

Table V-8
SENSITIVITY REDUCTION OF REDUCED ORDER ESTIMATOR

1
Steady State | Maximum De- Control | Qutput
Error For flection for rms | rms Estimator
System Acc, Input Step Disturb, Noise :Noise Eigenvalues
1
'

(urnd ) ( yrad )
rad/sec? rad;sec? (rad/sec?) (urad) (rad/sec)

28000 18 1,2 28 - 0,54
Original :
~36 + 610j
195 40 2,1 43 - 110
Desensitized o - 94 4+ 606j

It is important to note that since the system is noise limited, a
‘different system may have been selected if different values were assumed
for the measurement noises and. disturbances, - In a more detailed design
ﬁrocedure, several designs are usually made using different noise levels
and one of . the considerations in the selection of -the ‘design may also

be low sensitivity to assumed noises,

In Fig, V-15, the frequency response to a tracking éommand is

=1 ;
shown, It has a bandwidth of 190 sec which is about 25% of the
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Table V-9
STABILITY RANGE COMPARISON OF TWO ESTIMATOR DESIGNS

Desensitized
Reduced Order
Design 6 Estimator
Spring + Ak/k Large Large
Constant
Range - Nk/k -0.18 -0.33
. = Ab/b Large Large
Damping
Coefficient
Range - Ab/b ~1,0 -0.7

sampling frequency, ' This is within the range of the specifications
discussed earlier (V-C), The output response to a constant acceleration

command and to a constant disturbance is zhown in Fig, V-16,

D=6 Summary

Among the Designs examined in this Section, two have the best
overall performance, with the assumed measurement and process noises:
(a) Design 6, DR 2H. A system using two separate estimators

with the gains for the first estimator determined by pole
placement,

(b) Design 8, DRR, desensitized, A system using a reduced order
estimator, The sensitivity reduction for this design was
only used as a pole placement device, '

Design 8 was finally selected, Its eigenvalues, performance criteria,
and sensitivities were given in Table V-8; its frequency and time

responses were shown in Figs, V-15 and V-16,
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E. PERFORMANCE OF THE SELECTED CONTROLLER

E~-1 General

Some aspects of the performance of the selected controller will
be examined in this Section, Its large signal operation is examined
in the next Section and a nonlinear compeusation network is introduced,.
In Section E-3 the effect of the sampler and hold linearization is
assessed, In Section E-4, the tracking performance is compared with
that of a similar system using aided tracking, and the effects of assum-

ing a lower measurement noise are evaluated,

E-2 Large Signal Operation

As described in Section V-B, an acceleration command limiter is
placed at the input to the torquer. The purpose of this limiter is to
protect the torquer from saturation, Its characteristics are shown
in Fig, V-17, It is not taken into account in the linear design of
Section V-E, the results of which are thexrzfore only valid for condi-
tions in which the control amplitude is below the limit, i,e,, for small
displacements from the equilibrium coandition, - During ﬁarget acquisition,
however, the error amplitudes may be large and the acceleration command
may exceed the limit, The stability of the system for large error sig-
rals, thereforé, has to be examined,

Gain [CO];

i

s

i |
¥ L] q

4 § - 12 16 20

FIG, V-17 " CHARACTERISTICS OF ACCELERATION LIMITER
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The block diagram of the system with the acceleration limiter
is shown in Fig. V-18, Since the control to both the plant and the
estimator passes through the limiter, the estimator estimates the states
correctly even when the limiter is operative, This is therefore the
case described in Chapts.” II-C-4 of a state estimate feedback single-
input single-output controller which has a variable control gain,

Its dynamic equation is
x = Fx + ¢ Gu,

where S is a variable scalar, In Appendix B it is shown that such

a system has an infinite gain margin for but may becciie unstable

c
0!
if cO is decreased. It is also shown that the use of state estimates
instead of the actual states for feedback has no influence on the sta-
bility considerations, and the stability analysis can therefore be made

assuming that state feedback is used.

For the inner azimuth system, it can be seen from Fig, V-17 that
for low control amplitudes cy = 1 and that it decreases with increasing
amplitudes., Instability is therefore possible, Assuming that state
feedback is used, the closed loop characteristic equation can be written

in the form

3 2
s (s + so)\s +ms o+ mz)
5,15
+ c.m_[(s+4f ) (ste +5° 4520 + 8C_ +¢.) ( )
0.2 o p a W o i
- 7.,2f (sc_ + ¢ )] =0
o y i
from which a root locus as a function of P can be constructed,
From this equation is is obvious that for small values of Cor
the system will become unstable since the open loop system (c. = 0)

0
has three roots at the origin, This is true for any set of the feed-

back gains as long as integral control is used, Without integral con-
trol, the open loop system has only two roots at the origin and there-
fore will be stable for all values of Cy*
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The CO root locus for two values of the integral control gain
is shown in Fig, V-19, The reduction of the integral gain can be seen
to increase the stability region considerably, Therefore, although the
large signal instability cannot be eliminated if integral control is used,
it can be made to occur at higher signal levels if the integral control
gain is reduced, It is therefore desirable to make the integral gain a
function of the control amplitude so that for low signals, the tight
integral control required for low tracking error is preserved,  This is
hard to implement in an analog system but if the control signal is
assumed to be roughly proportional to the error signal, the same effect
can be obtained by placing a limiter at the ingut to the integral con-
trol integrator, This is shown in Fig, V-20, The characteristics of

the limiter are:

yout = yin for yin < yf
Yout = Yy Tor vy, =y,

The value of yz has to be set higher than the error level expected
for the maximum acceleration command so as not to interfere with the
acceleration tracking capabilities, The error signal level up to which

the system remains stable has to be determined experimentally,

E-3 Effect of Sampler Linearization

The state representation of the system as derived in Section B-2
contains a linearization of the sampler and hold, The‘effect of this
linearization hasvto be determined, The block diagram of V-6c is shown
in simplified,form'in Fig., V=21, The dynamics of the. continuous system
can be represented as |

X = ch;+ ch, o x(0) = x (5,16a)

0

where 'y 1is considered as a control., The discrete equivalent of Eq,

{&,16a) is
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Xi+l = ¢xi + Fyi, x(0) = %, (5,16h)

where ¢ is the transition matrix of the continuous system, Using

Vi = Gy T 9% = Gy 7 Hxg (5.17)

Eq. (56,16b) becomes

X, = (¢-TH)x, +TQ ., x(0) = x (5.18)

i+l 0*

From this equation the time response can be found for aEi and X
This was done with the aid of the computer program SIMUL [KA—l]

that determines the state transition matrix ¢ and discrete control

distribution matrix, T, from the dynamics matrices T and G, The

same program also calculates the time response of the system,

In Fig. V-22, the true time response, computed by this method,
is compared with the one obtained from the system with the linearized
samplex and hold. The correspondence is good although the exact system
is somewhat less well damped, thus verifying that the effects of the
zero order hold for a system with the bandwidth of 1/4 ws were ade-

quately modeled. by the first order model of Appendix G,

E-4 Comparison With Aided Tracking

1, Aided tracker description. The applicétion of aided‘tracking
to a system similar to fhe bne discusséd in this chapter is described
by Fitts [F1-1]., 1In this application, the target motion information is
processed by’é digital Kalman filter in which the target is'modéled
as moving in a stréight line in inertial coordinates. The output of
the Kalman filter is a feedforward signal that is added to. the feedback
controller signal,  Several Versions of thig method are described and
results are bresented for targets~having both modeled’ and nbnmodeled
motion, These results are cémpared with those‘of a qonventiohal feed-

back system and found to be mich superior, The type of feedback system.
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that is used for comparison is not specified but presumably it is a
classical—type‘design since the acceleration error coefficients given
represent the practical limits that are achievable with such a classical
design,

In this Section the aided tracker is compared to the controller
described in Section D, The application examples by Fitts refer to a sys—
tem in which the torquer has a natural frequency that is lower than that of
the system described in this Chapter. However, from the description
of the aided tracking method, it seems that the results would be no

different if this method were applied to the system of this Chapter,

The tracking of a target having a modeled motion is examined
by Fitts by considering a straight line flyby with a peak angular accel-
2
eration of 0,5 rad/sec . Tke results are presented in the form of a rms

tracking error defined for this particular profile as

4

oo
2
= = 5.19
%y = S 6," dt ( )
1
where & is the tracking error, For this target motion, the aided

d
tracker has no constant tracking error, The error is determined by

the detector noise only. This noise is assumed to be Od = 5 Hrad,

For unmodeled target motion, the results are given in the form

of frequency response curves, Zero detector noise is assumed,

2, Comparison of feedback controller and aided tracker, Since

the controller designed above is noise limited, a meaningful comparison
“of this controller with the aided tracker can only be ﬁade if the same
detector noises are assumed for both deSigns. The comparisdn 6f the
modeled target tracking will therefore be made for two noise levels:
(a) o = 100 Hrad,'as assumed in Section V-D; (b) o = 5 Urad, as

d
assumed in the paper,

3, gq = 100 lrad. The influence of different detector noise

'1evels‘ is examined by Fitts but only'noiSe levels up to 50 [rad are

congidered., Extrapolating these results to 100 HYrad, a rms tracking ;
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noise of about 70 {rad is obtained,

For the SEF controller, the rms tracking error is caused by two
effects: (a) output noise, (b) acceleration error, The numerical
values were given in Table V-8, Using these values in Eq, (5.19), the

rms tracking error is obtained as

g = 75

az Mrad

4, oy = 5 JWrad, The rms error for the aided tracker is
Opp = 3.8 urgd,

With this detector noise level, the noise limit on our controller is
removed, The system bandwidth is now 1imited by the sampling rate.
The effect of removing the noise limit is considered below for systems
using DR 2 and D type estimators (see Table V-1), For the DR 2
system, a high gain controller is used (Design 2) and higher gains

are selected for estimator No, 1 according to the acceleration error
equation of App, K. The resulting eigenvalues are shown in Fig.

V-23. -1
Jw (sec 7)

® controller eigenvalues ® . P 600
O estimator eigenvalues
l- 500
= 400
- 300

o} =200

- 100 -

- T 1© T 80 (o2 (Sec-l)
=600 -500 =400 ~-300 =200 =100

FIG, V-23 EIGENVALUES OF HIGH BANDWIDTH SYSTEM
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The correspondence of the time response of this system with
that of the exact simulation was found to be satisfactory. Its acceler-
ation error is 70 Hradﬂrad/sec%. The rms tracking error as defined in

Eq. (5.19) is

Ope = 25 Urad,
The system using the D-type estimator has zero acceleration error (v-D-2),
It was eliminated for the high noise case because it had unsatisfactory
disturbance rejection, With the low detector noise, a higher estimator
bandwidth is obtained and the disturbance rejection is therefore im-
proved, The maximum deflection for a step disturbance is 85 uradﬂxad/seczl
This value is still higher than that obtainable when the gyro is used

as an additional measurement (see Table V-8).

The freqguency response curves for unmoceled target motion as
given by Fitts are reproduced in Fig, V-24, The two figures represent
two different algorithms, The response of the sampling rate limited

DR 2 system described above is overlaid on those curves.

Under the assumption of zero detector noise, the DR 2 system
is seen to have lower error for frequencies higher than 1 cycle in all
the cases represented in the paper, When nonzero detector noise is

considered, the aided tracker has no advantage for even lower frequencies,

5, Evaluation, For nonmodeled targets, the aided tracker is seen
to have an advantage over the high bandwidth feedback controller only

for low frequencies and if a low detector noise is assumed.

For modeled target motion, comparable errors are obtained in
both systems when a high detector noise is assumed, ~ For a low detector
‘noise, where the system is sampling-rate limited, the aided tracker has

a lower error unless some disturbance rejection stiffness is sacrificed.

For this case the aided tracker therefore has an advantége.
In summary, the high bandwidth controller that can be obtained‘by using
full state feedback can match the pérformance ofkthe aided tracker

in most cases, The aided tracker has an advantage only in the case of
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a target that can be modelled and low detector noise. This advantage

seems fo be outweighed by the added cost of the computing capability and
by the complexities of the aided tracker,
'sideratioh that most tracked targets will not follow the model, the

state feedback approach to the tracking problem seems to give a better

solution,
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F., SUMMARY

The design of a controller for the inner azimuth gimbal of a
tracking telescope was presented, The controller was designed using

state estimate feedback,

To obtain a controller for the entire system, additional controllers
for the elevation and outer azimuth gimbals are required. The eleva-
tion controller may be identical to the inner azimuth controller except
for some minor changes in the numerical values of fiw parameters due
to the different moments of inertia, The outer azimuth controller is

straightforward and may be designed by classical techniques.

The special feature of this problem is that the control is applied
through an elastic element (the hydraulic torquer), which makes it
difficult to obtain édequate damping at high bandwidths, Still, high
bandwidth is required in order to obtain a low acceleration error coef-
ficient, The ability of full state feedback to place the closed loop
eigenvalues arbitrarily enables the system to obtain the required band-
width with sufficient damping, The bandwidth and the acceleration error
coefficient are limited either by the allowable controller noises or by
the measurement sampling rate, depending on the measurement noise
levels; These are common limits for controllers designed by state
feedback, Stability considerations do not limit the bandwidth of such

controllers as they do for many classical designs,

The principal design parameters for state feedback controllers
are the state and control weights, However, important performance cri-
teria, such as the acceleratidn error coefficient, cannot be conveniently
expressed in terms of these weights and only,general trends can be es-
tablished, Several designs are therefore made and their performances

compared,

Two measurements are available and it is possible to combine them
in various ways in the estimator. The comparison between these designs
is made according to the functional design criteria, Two measurement

noise levels were considered, At the higher noise level, the system is
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noise limited, A detailed comparison between several designs was made
at this noise level, At the lower noise level the system performance
is limited by the detector sampling rate, The influence of removing

the noise limit was considered for two of the above designs,.

The principal conclusions that were reached from the evaluation

of the various designs are as follows,

1, The use of the gyroscope as a measurement, in addition to the
target detector, improved the disturbance rejection properties of the ‘
system, However, it causes the system to be changed from Type 2 to

Type 1,

2. At the high noise level the gyro rate mode is preferable to

the rate integrating mode.

3, The ultimately selected system for this noise level is a
system using a reduced order estimator. Its performance was made accept-
able by the use of the sensitivity reduction method as a pole placement

device,

4, Removing the noise limit on the bandwidth results in a decrease
by a factor of 3 in the acceleration error of a system using both the
gyro and the detector measurement. In a system using the detector measure-
ment only (which has zero acceleration error), the step disturbance re-

jection is improved by a factor of 3.

5. The representation of the sampler and hold as a linear net-
work proves to be a good approximation for the bandwidths considered,
as shown by the closeness of the time responses of the real and the linear-

ized systems.

6. The use of an aided tracker instead of a high bandwidth feed-
back controller has an advantage for a nodeled target and low detector

noise only.

In conclusion, the use of state feedback for this system results in
4 controller that has good transient response and the tracking capabili-

ties which are comparable to those of a much more complicated ajided tracker,
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VI, CONCLUSIONS

In this thesis, the sensitivity of state feedback controllers (SEF)
to parameter variations was investigated; a method was developed to
reduce sensitivity, and it was applied to the Stanford Relativity Satel-~
1ite, In addition, the design of a tracking telescope, partially

ajded by the sensitivity reduction method, was studied,

The principal conclusions in the area of parameter sensitivty

are as follows,

1, The use of state estimate feedback, instead of state feedback,

in systems in which there is a lightly damped elagtic element between

the control and the measurement, results in a considerable increase in
the sensitivity to variations of the spring stiffness, Systems of this
type are common and include structural resonance,. systems with hydraulic
actuators and others. Their sensitivity is caused by the multiple points
of nnity gain of their open loop transfer functioh and can be characterized
by means of the frequency margin of stability. If the elastic element
is sufficiently damped so that multiple points of unity gain aré avoided,

the sensitivity is considerably reduced.

2. The sensitivity reductioi method that was developed im this
thesis is an effective design tool, as demorstrated by the results of
its application to the low order approximation and the full modeél of
~the Stanford Relativity Satellite. The range of stability was typically in-
creased by a factor of 2 to 3., For originally optimal systems, the out-

put error and the control effort were thereby increased by a factor of = 2,

3. An efficientvcompuﬂational algorithm of the sensitivity reduc-
tion method is essential for thie method to be applicabie to fairly large
systems. - Considerable effort was therefore expended in the development

of such an algorithm. The resulting computer program has reasonably
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low computation times, The sensitivity reduction of a 12th order system

requires four minutes approximately on an IBM 360/67 computer,

4, Sensitivity criteria may be a useful tool for the design of
estimators, This is demonstrated by the use of the sensitivity reduc-
tion method for the design of a reduced order estimator for the track-

ing telescope,

The follbwing conclusions were derived from the design of the con-

troller for afiarge tracking telescope.

1., The use of .a state estimate feedback controller for this sys-
tem gives it a tracking capability that is cdmparable to that obtained

by using a much more complicated aided tracker,

2, Since arbitrary pole placement is made possible by the use of
full state feedbaék, there is no stability limit to the system bandwidth.
The 1limit is instead determined éither by the allowable control level
or by the target detector sampling rate. Of these two limits, the one

that is effective depends on the level of the noise inputs,

3, Two measurements are available and different estimator designs
are possible using various combinations of thése measurements, The
relative merits of‘these estimators cannot be determined a priori and
they are therefore compared according to the performance specifications.
For noiseé limited Systems, the optimﬁm balance is sought between low
controller noise on one hand, and low tracking error and good disturbance
rejection on the other hand, wifh acceptable parameter sensitivity as

an additional criterion,

A reduced order estimator using as measurements, the target de-

“ tector and the gyro in its caged mode was finally selected for this

case,

For the sample rate limited system, the‘estimator,selection is

‘more arbitrary,

4,  The .use of a'Saturatiﬁg controller, together withrintegral :

.control in an inertia—type plant'(l/sz), causes an unavoidable large
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signal instability. This instability occurs at larger signals if the

input to the integral control integrator is limited,

5, The modeling of the sampler and zero order hold by a linear
network is justified in the considered range of bandwidths (up to

about 40% of the sampling rate).

In summary, state estimate feedback is found to be an attractive
design technique for high performance controllers, Its practical

applicability is enhanced by the use of the sensitivity reduction method,
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APPENDIX A

GAIN MARGIN OF STATE FEEDBACK CONTROLLERS

Consider a  single input system

: = G
X Fx + c0 u

u = =Cx

where C is a full state feedback gain matrix, and y is a variable
scalar parameter, the nominal value of which is unity, The system will
have infinite gain margin to changes in <y if the roots of the numerator
of C(sI - F)_lG are in the left half plane, This is also true if

state estimate feedback instead of state feedback is used,

Proof

l, State Feedback

The closed loop characteristic equation of the system is

il

det(sI -~ F + cch) det(sI -~ F) det[ I + co(sI - F)’lscj

)]

det(sI - F) [1 + cOC(sI - F)'lG]

det(sI = F) + coC adj(sI - F)G ,

As c increases, m roots of the system tend towards the m roots

of C Adj(sI - F)G and the others depart in n - m asymptotic direc-

tions, . It will now be shown that

and that therefore only one root departs on an asymptote, along the

PRECEDING PAGE BLANK NOT FILMED
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negative real axis,

The diagonal elements of adj(sI - F) are monic polynomials ’
of degree n -'1 in s, This is so because the minors of these elements
are the determinants of (n-1) x (n-1) matrices with s in all their
diagonal elements, Therefore, even if G has only one nonzero element
the vector Adj(sI - F)G will have at least one element of order
n -1 and since C has no zero elements, C adj(sl - F)G 1is a
polynomial of degree n - 1, If the roots of C adj(sI - F)G are in
the left half plane, all the roots will therefore remain stable as c

0
incredses, QED,

2, 'State Estimate Feedback

In this case the closed loop characteristic eqﬁation is

det(sI - F + cOGC) det(sI - F + KH)

= [det(sl - F) + ¢.C adj(sI - F)G] det(sI - F + KH).

0

The estimator roots are therefore unaffected by changes in s and the

proof remains valid,
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APPENDIX B

PROGRAM PAROPT

1. General

This Appendix contains a partial l1isting of the program PAROPT and its
operating instructions, The listing includes all the subroutines that were
developed for the program, For the subroutines that were obtained from
the Program Library of the Computer Science Department at Stanford Unlver51ty,
only the description is given in the listing. Subroutines from the IBM
Library (GMPROD and GMTRAN) are not listed. Sufficient comment lines have

been introduced to make the program self explanatory.

2, Operating Instructions

a, Range of the program

Order of system: 12

Number of variable parameters: 95
Number of free parameters: 30
Number of controls: 3

b. . Input. The program is stored in compiled form. The input to the
program consists of two parts: (1) subroutine SETUP, (2) Data

and options.

(1) Subroutine SETUP. This subroutine defines the relationship
' between the parameters (fixed, free, and,variable), the
coefficients of the system matrices, and the control gains.,

It has to be written for each system that is being optimized.

The input to this subroutine consists of the current values -
of the free parameter vector, The output consists of the

F, F, and C matrices (see Eqs. 4,3 and 4.9). The subroutine
is compiled and adjoined "to the compiled program.- The
program can then be run with different data sets. A sample

subroutine SETUP, with the job control language that is
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required in order to load it on the IBM 360/67 computer of
Stanford University is shown in Fig, B-1., M405, PAROPT on
line 39 is the name of the load module that is created.

This can be changed to any name selected by the user,

It is recommended that this subroutine be made as general
as possible so that different sets of parameters can be

defined as frse cx variable without changing the subroutine.

Data and options. The data cards are:

Card 1: System description: N; NS, Nz, NP, NC, NW
N Order of system
NS Number of variable parameters
NZ Number of free parameters
NP Number. of fixed parameters
NC  Number of controls
NW  Number of disturbances

Format: 513

Card 2: Options: NFLAG, NPRINT, NCO. All these para-

meters are either O or 1,

NFLAG = O, Only initial conditions are required.

NPRINT = O. Only condensed information is printed about
-the PI, gradient, and values of the free parameters at
each step of the search,

" NCO = 0: - C is not a function of the free parameters.

Format: 313

Card 3:- EPS,  TOL, DIS

EPS The relative weight of the additional cost. If
' EPS < 10-%, 86X 1is not evaluated and only the
nominal PI minimization problem is solved.

TOL. A measure of the relative precision of the final
values of the free parameters, Recommended initial

value: 10'4.'

DIS Use 10™%

Format: . 3E12,5
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1. //PAROPT1 J0R 'vyns,3n1,1,,3', "HADASS!

2, J/STEPL EXEC FORTHCL, PARM.FORT="0PT=2"
3. J/FEORT,SVS N DD
4, SURROVUTINE SETUR(Z,4,R,C)
5. VAPLIGYT REAL*S (A-H,0-7)
6. . DIMENS OR 7(30),A(12,12),0(12,5),0(3,12) .
7. cornoi/rPartty Q12,12),R(5,5),Y(5,5),AR(3),P(30),S(10),EPS
8, nn 10 t=1,6 :
9. po 10 J=1,6
19, 10 ACY,3)=0,
11, .h0 20 1=1,5
12, 20 A(H,1+1)=1,
13, S1=5(1)
14, AC3,1)==(1)%51
15, A(3,2)==P(2)%51~-51
16. A(3,3)=-P(3)*S1-5(2)
17, no 30 ¥=1,3
18, 30 -A(3,1+3)=P(1)«S1
19, ACL,k)==2(1)
20, A(S,4)==2(2)
21. A(G,2)="(5)=-S(1)
22, A(6,3)=7(5)=5(2)
23, A(G,4)=~2(3)
2L, A(B,5)==2(4)
25, . A(6,6)=-2(5)
26. nn. 4n 1=1,6
27, no 40 J=1,2
28, 4n  8(1,4)=0,
29, B(3,1)=51
30, R(6,1)=51
31. no 50 1=1,3
32. 50 B(1+3,2)==2(1)
33. pn 6N 1=1,3
34, c(1,1)=rP(1)
3S. 60 £(1,1+43)==P(})
36. RETURN
37. ERD
38. /*
39. J/LKED, SYSLIND - DD NSHANME=MENS, PAPADPT, UNLIME=SER=SYS1A, UNIT=231L,
Lo, 1/ N1SP=(1EY, KEEP), SPACE=(TPK,(2,3,1))
k1, J/LKED QDD NSUALE=U05, PAROPT, VOLUNE=SER=8YS16, U1 T=231k,
42, -y NISP=(NLD,KEER) ' .
b3, [/LEED,SYSIN DD # '
Ly, ‘ {HECLURE O(PAROR).
45, CENTRY. HAIN
b6, CNANME PARNP

L7, /* : ‘ ’ : .

FIG, B-1 SAMPLE OF SUBROUTINE SETUP FOR SIXTH ORDER SYSTEM
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Cards 4 and on.

a. Fixed, variable, and free parameters in this order. Six
parameters to a card, Each set starts on a new card,

b. The state weight matrix. Read by rows, six numbers to
a row,

c. Control weight vector, For this program the control
weight matrix is constrained to diagonal form and there-
fore only the NC diagonal elements are read,

d. The covariance matrix of the variable parametefs. Read
by rows. Six numbers to a row.

‘e, -The covariance matrix of the disturbances, Read by
rows, Six numbers to a row,

Format: 6E12,5

A sample data set w1th the JCL required to run it on the IBM
360/67 computer is shown in Fig, B-2, M405, PAROPT on line

2 is ts be changed to the name selected when loading the ~sub-~
routine SETUP, :

(c) Output. For NFLAG = 0, the printout consists of the initial
dynamics, weight, and covariance matrices, initial eigen-
values, and initial nominal and additional PI, For NFLAG =
the printout contains, in addition, search information, as
well as final values for the free parameters.

4]

A typical printout for NPRINT =1 is shown in Fig., B-3, _For
each cost evaluation, the nominal (J ), additional (Jp), and
total PI (J + eJA) are printed out as well as the values of
the free parameters The total PI is given as a fraction of
its initial value, At the end of each iteration, more de-
tpiled information is printed out,

(3) ‘Suggestions for the use of the program,

(a) Execute an initial run with NFLAG = 0 in ordér‘to find the
initial relative values of the nominal and additional PI,

(b) . Initially select the weighting coefficient, '€, and the para-
meter covariance matrix so that S e 10 J4 A design that
is mainly determined by sensitivity con51deratlon results, If
its nominal properties are unsatlsfactory, execute additional
runs with lower e,

(c) . Limit the time of the run according to the general guldellnes
given in Section IV-C-4, Even if this causes the run to stop
before it is finished, the resulting design may be satisfac~
tory since toward the end the program may become less e£f1c1ent



1. //PAROPT2 40O% 1405, 301,1,,5", *IIAPASS®

20 77J03LIB DN RSKAME=MKOS. PAROPT, VOLHESSER=SVYS16, UNI Te2318,
3. 1 N15Ps(NLD, PASS) .
4. J/STEP1  EXEC PGMaPARNP ~
5. J/ETOBENOL DD SYSOITA
5 J/FTOSFO01 DD«
7. 6 2 5 3 1 2
BT . ° 1 1.908-4 1.00E-6
= 5. . JONE=~ 1_0NE-
E% 29 : 10, 47 661 1,216
3 1. b .3

w6 12, .88 R -.068 Y .3

Eg Eg 13, L2 -

' 1%,

= 5 e

7 16.

2 5

v g; 18, .

- 19. 1

ey 20, .16 ,na

‘ 53 21, 1. 1.

= 22. /e -

FIG, B-2 SAMPLE OF DATA FOR SIXTH CRDER SYSTEM

1
[
Lo ]
?

" Results of 1 {0.“‘-?,5"5370"25766" as
n

0e54T¢05276226£6770 03

0. 9495198503206340 00

PI evaluatio 0. 1ASE£01099£19750 Q¢ 04175232690369384D 03 0. 15646589668445040 02
y ~0.3675015172553930 02 0,262204346G863246D 02
N.102585876925271D 0% 0.5476052755605030 03 0494951985023R0430 00
free 0s 1US5S641099€19750 02 0.1752325690355293n 03 0,1545666%66795516D 02
parameters =0.377901517265393n €2 0,2622043698463246D 02 .
0132585876024506D 05 0547605275625554R0 03 Le949519850R5T726 7D 0O
0+13554C109941975n 02 0.1752326903550R3D 03 0. 15466667°666455040.02
=0.,307901517116381D, 02 0426220426G8432546N 02

; 0.13258527£9337830 05
3~ 0.1855451099619750 02
o

0.54760527£7849180 03

0.9495198513723950 00

8.1752326903550830 03 0.1565666966566504D 02

-0.3079015172553930 02/ 0.26220436§9922530 02 .

STATUS AT TTERATION N 1 o + €J, (relative)
CURPENT SCLUTION GRAD IENT

. DIRECTION OF SEARCH
0,1855421N99619750 02

0a1752326703550930 03
Os 154668 G54£6£5504D 02
=04307901517265393D 02
0,206220436'99432460 02

0.1€3£202535033230-02  -0,1731953101371570-91
0.4331729374325950-02 ~(0.233683326642598N-01
=0+3562291931803000~01 0.,213257603691459n 00
N.56122468581199¢50-02  —0.3903200790824450-01
0.4070217069238420~01 0.9217989013351290-01

APPROXT4ATE MININUM VALUE OF F: 0.949519850765886D. ©O ALPHA: C.3874359310D0 02
NUMRE R OF FUNCYIDN EVALUATICNS: 16
FIG, B-3 TYPICAL PRINTOUT OF PROGRAM PAROPT




[aEke¥ntaXy OO0

AACeNa 000 O0n

510
511
513
512
355

156
387

LISTING OF PROGRAM PAROPT

PRNGRAM PARMPT

IMPLICTT REALXR{A-H.N=Z)

LNGIC AL pPRINT, RRIFF

NIMENSION 2130)

COMMIL Ny NSs NPy NWy NC Gy NC O

COMMDN/ PARNMY/ Q(12.12).F(S.S),V(G.S).OR(3),DAP(BO).SI(IG).EPS,DIS
CCMMON /CRITFR/ ETA, TOL SYEPMX, DFPS

COMMON /LOGICL/. BRIEF, PRINT, UNITL

EXTFERIAL CNST,STARPTR

EORMAT(H12)

FORMAT (AF12.5)

FROOMAT(412)

FNRMAT({2F1245) .

FORMAT( 0%, "ORPDER OF SYSTEM=* , 12,7 ,' VARTABLE PARAMETERS=",124/y’°
1FPER PARAPETFRS='.I?./o"F°S=',F7.3)

FORMATL G, CINTTIAL COST NANLY RECUTRFD® )

EPAMAT{ ! ¢,6X%,"NCO=1,12)

N IS THE ORDER 0OF THE SYSTEM

NS IS THF MUMBEP. OF THF VARTABLF PARAMETERS
NZ 1S THE HUMBFR 0OF FRFE PARAMF TERS

MNP IS THE NUMBER OF FIYED PARAMETERS

NC IS THE NUMBRP NF CCNTROLS

NW 1S THE NUMAER OF DISTURBANCES

READ(S¢510) My NSy NZw KP, NC o - NW

IF MFLAG=0 ONLY INITIAL CONDITICNS ARE REQUIRED
1£ NPRQINT=0 SEARCH PRINTOUT IS CONDENSFD
1€ NCDO=0 C 1S NOT A FUNCTION 0OF THE FRFE PARAMETERS

READ(5 513) MFLAGy NPRINT, NCO oNXOF

EPS TS THE PELATIVE WEIGHTING ON THE ADDUTIONAL COSY
TOL IS THE PELATIVE PRECISION OF THE FINAL VALUES OF
' THE FREFE PAPAMETEFS
DIS 1S THE RFLATIVE PFRTUFAATION CF THE VAR1 ABLE PARAMETERS

READ(S,512) FPS, TOL, DIS
pAR- FIXED PARAMETESRS
S| - VARIAALE PARAMETFERS
7 - FOFE PARAMETERS
READE S, 511V (PAR(L) T=1,NP)
RFAD(S (SLIMISTUTIY), I=1,4NS)
READ(S, F11HIZLT) o1 =1, M2)

Q0 — THE STATE WEIGHT MATRIX
- QR= -THE CONTROL WEIGHT VECTOR
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(2 XeNel

100
110

R = THFE COVARTAMNCF MATRIX NF THE VARTARLE PARAMETERS
V = THE CNVAITAMCE MATRIX IF THFE NISTURBAMCES

READIS,,S11Y (LT,
FRADIS,S1LYICQRITY
READ(S S11Y0UIO( ],
READIS SLI VLWV Ty '
WRITE(A 4355 )NgNSoNZE
WRITE(&4357) HCO
IFINFLAGL.FQe 113D TO 223
WRITE[£,354)
TFINPRINT ,FQ.N) GO TO ING
PRINT=, TRUE
BFIFF=.FALSFE,
GO TO 110
PRIMT=4,FALSE,
BRIEF=,TRUF,
CALL DIMITICOST NZ,Z)
IF(NFLAG.FQ.DIGO TO 600
NLDTM=MZ%(NZ~1)/2
CALL MINMZF(NZ, 2, NLRIM, COST, STARTR)
STOP
END

' !
=1 WNS)yI=1,NS)
=1 WY el =1, W)
PS

J
s
J
J

ORIGINAL PAGE IS

OF POOR QUALITY
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A CSURYNYTINFE RETUPNING THE VALUF OF YHE PI AT THE
POTHT DEFINED BY THE VECTOR Z, :

o o o 1 0 o e "0 i v b = 0 P e S e L T VM S e SR T " - - — o 4R = A o - o o S '
|

SUBRDUTINE DINITY {
{

THIS SURPPUYTIME WRITES THE INITTAL DATA AMD CALCULATFS THE !
INETIAL PI AMD FIGENVALUSS USING SURNETING CNST {
|

INPUT TO SURROUTIME DINIT |
|

N2 :  THF NUMBER OF FREE PARAMETERS {
z : THE FRIEF PARAMETER VYECTOR i
FUN : {
|

|

J

T 0 T 1 T e e e e Ut o e ety e i o A &Y i T 2 i i e e . o W 48, e e e B e o o

SUBROUTINE DIMIT(FUNGNZ,2)
IMPLTICITY RFAL%8 (A-H,N=7)
DIMENSION A(12412),8012,5)47030),C{3,12)
COMMIR N NS ND MY, MC,LNCPR
COMMON/ZRODTS/CR{12),C1{12)
COMMAN/PARM Y/ QU290 120 3R S48, VIS,5)eQPE3) 4 PAR(30),ST(19), EPS,DIS
COMMON/TQ/FEPT,APT
COMMON/MONES /MNQE
COMMON/EVAL /NEVAL
201 FORMAT (0, / /42Xy *THE INITIAL DYNAMICS MATRIXeee')
208 FORMAT( Y01, // 42X+ *THE DISTUPRAMECE DISTRIBUTINM MATR IXsao')
216 FCOMAT(YO0, //430K, P INITIAL COST 4y /7»10X,0 BASIC COST*, 11X, *ANDITION
LAL COST',12X,*TOTAL CQOST*)
202 FORMAT('0,4X,3(1PD?5.15))
204 FORMAT (0%, //,30X, YINITIAL p@ﬂTS'y/lpZOXg{RFAL'924X,'IMAG.')
2LE FORMAT('Q',/ /42 Xe ' THF DISTUFRANCE COVAR TANCE MATRIXeeo!)
2C6H FORMAT(2( 13X ,F14,2)) : ‘ ,
4R0 FORMATUNDY /732Xy Y THE PARPAMETER COVARTAMCE MATRIXsoe!)
1C0 FORPMAT('Cy/ /42Xy *THE STATE WETGHT eeat)
161 FORMAT(IN,/ /42Xy *THE CCMTROL WEIGHTess ')
CALL SETUP(Z, A 4By C )
WRITE(6,201)
CALL MATOUTI(AZL12412,N,N)
WEITE(6,100)
CALL MATOQUTIOQ, 12y 12y Ny NI
WEITE(E,101) :
WRITE (42023 (QMT) 41 =1,NC)
WRITE(A,208)
CALL ™MATOUT(3, Y2, 5, N, NW )
ARITE(6,216)
CALL MATOUTIV,5,45,NW,NW)
WRITE(64400)"
CCALL MATOUT(R,5 ¢S yNSyNS )
NEVAL=0
II"][\F:O
CALL FUN INZy 2, F )
CHWRITF£,224)
WPLTE (6420 21FPL AP, F
WRTTELF,2C4)
WEITE(S,206) (CRUETYyCT (1Y, T=14N)
RETUIN
=ND
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SUBROQUTINF COST

THIS SUBRZQUTIME CALCULATES THE COST USING SUBRNTINE DERIV
FOP THE CALCULAYTION OF X ANC NXe

INPUT TO SUBRNUTIME COST:

NZ t  THE NJMBER OF FREE PARAMFTERS
YA : THE FREE PARAMFTER VFCTCR

QUTPUT FROM SUBRQUTINE COST

Pl : THE VALUE OF THE Pl AT THE POIMT DEFIMED BY THE
VECTDR Zo

SUBROUTINE COSTI(NZ, 7,4 PI)
IMPLICIT REALXB(A-H,O=~1)
DIMENSION Z030) oXX{12412),0X1012,12),R2(12,5),Q1(22,12),
1C(3,12)
COMMON Ny NS NPy MWy NCyNCD
COMMON/PARM/ QL 12412) yR {5,519y V(5,y5),0R(2),PAR(30),ST(LC),EPS,DIS
COMMON/TQ/FPIL,APY )
COMMON/EVAL /NEVAL
CNOMMNN/MDDES /MNDE
COMMDN/STORE/GX(12412),60X(12412),GY(12,412,5),GYYI12,12,5)
220 FORMAT('0%¢/ /42Xy *THE STATF COVARTANCE MATRIX®)
CALL DERIVIXXDX,Z4+CyEESTY)
FPI=0,
APl =0, .
TFINEVAL.GT4 0o ANDeNCDWEQeQCIGD TO 41
DO 54 1=1,N
DO 5S4 J=1,N
56 Ql{1,J)=0.
NO. 55 U=1,N
DO 55 J=1,N
DD 55 K=1,NC
55 QL(Ted)=CUlKyTIECLKyI)*QRIKI+QUT 4 J)
41 TF(NEVALLGT.OIGN TO 150
Fl=1.1
WRITE(6,4220)
CALL MATOJT(XX5129129NyN)
150-D0 S0 J=1,N.
DO 50 -K=1,N .
FPI=FPI+N1(K4J) XXX {JyK
TF (EPSeLEL1aN=-5)G0N. TN 50
API=API’01{K'J)*DX(J'K,
50 CONTINUE ' ,
GO TO &0
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650 FPI=1,N6%FP]
API=0,
€0 PI=FPI+EPSHAP]
IFINEVAL.GT.0)GD TO 68
FO=pPT1 :
GO TN 65
68 PI=PI/FO
IFIMODEoFQele DR.PL.GTLF1)GO TO 65
Fl=p1
un 66 I=1,4N
DO 66 J=1,N
GX{1yd0=XX(1 ,J)
GOX(Tyd)=DX(14d)
GX{dyI)=GX{I 4J)
&6 GOX{Jdy 1)=GDX(14J)
' DO 67 [=1,4N
DD €7 Jd=1,4N N
D0 67 K=1,NS T
67 GYY( T4 JsKI¥=GY(I4d,K)
A5 WRITE(A,20B)FPL,APE,P T
208 FORMAT(3{£X,D25415))
WRITE(642120(201),1=1,M2)
212 FORMAT(2(6X4D25415))
NEVAL=NEVAL+1
RETURN
END
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SUREDUTINF DERIV

THIS SURSNUTINE IFTERMINFS THF VALUES JF X AND DX FOR A
GIVEN 7 VECTOR,

INPUT TO SUBRDJTINE DERIV:
4 t THF FREF PARAMETED VECTNR,
OUTPUT FROM SUBROUTINE DERTV:

THE NOMINAL COVAPIANCE MATRIX,

XX :
DX ¢ THE ADDITIONAL COVAPTANCE MATRIX,
c : THE CONTRNOL GAIN MATRIX,

- - e W - e WD AP T W A S - - - e W M e W B - L " T A M P B -

SUBRAUTINE NECTVIXXyNXyZyCo%*)

IMPLICIY REALX](A-H,N=Z)

DIMENSION XX({12412)90X{12412)98112,5),8BVI12,5),BT(5,12),A(12,12),
181012, 12),BLlE1245)4CE3,12),C{24125,DA0T2,412),DR(12,5),NAT(12,12},
2ULE TS 78)oIPSITB)yCAU12412) 4DAXTIT12,12),ULLITR,78),1PS1(T78),
ANE(TR),COVETS ), YU 12,12),70230),D(12),IMT(12),GA012,12);
LGAX{L12,12) ‘

COMMON MyMS GNP, NG yNC,MNCD

COMMAN/DPARM/ Q(12412) 43R (5,51, VIS45)yQR{IZY,PAR(3C)ySII1C),EPS,DIS

COMMON/ROOTS/CWRI12),CWICL12)

COMMIN/MGDES 7M00DE

COMMON/STORE/GX (12,121 ,60X{12,12)9GY(12912+5),,GYY{12,12,5)
CALL SETUP(Z2,Ay,0,C)

[FIMONELEQ«1 GO TO 201

MODE=C- THE INITIAL VALUE OF THE PI OP THE PI ALONG A LINEAR
SEARCH PNINT 'IS EVAI UATED, ,

MODE=1~TH® PI IS EVALUATED FNR GRADIENT DETERMINATION
PERTUBATION EQUATIONS AP E USED.

DN 110 I=1yN
nn 110 J=1,N
GAl{T+J)=allyd)
110 ALC L J1=A0T,J) "

EIGENVALUF DETESMINATIOM. USED TO DETERMINE STABILITY OF
SELECTEN POINT, o

aao0n

CELL BALAMC {12, M,y Al, LO, IHI, D)
CALL FLMHES (124 Ny LOy IHIH Al, INT ) :
CALL HOR (129 Ny LDy IHIy Aly, CHWRy CWI, TERR )
0N 299 1=1,N

200 CONTINUE -
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FVALUATION OF THE RIGHT HAND SIDE JF THE EQUATION
(1} AxXXEXX XA T ==BaV¥R Y,
THE RIGHT HAND SIDE IS TEMPORARILY STNRED IN XX

201 CALL GMPRNDI{B,V ¢yBVMyNGNGy12,4%)
CALL GMTRAN(R,BT,N,NGy12,5)
CALL GMPRODIBVIBT o XXsMNyNGIN 41245}
IF(MODELEQIIGO TO 202

EVALUATION OF THE ADDED TERMS OF THE RIGHT HAND SIDE OF
THE PERTURBATION EQUATION

{2) AXXX4XX*AV==BXV*BY-A%XGX-GX*A?,

WHERE GX IS THE COVAPIANCE MATRIX AT THE NOMINAL POINT AND
XX 1S THE PERTURBATION OF THE COVARIANCE MATRIX DUF TO THF
PERTURBATION OF Z.

CALL GMPROD(AIGXyGAX ¢MeNeMN,y12,12)
DD 203 I=1,N
ND 203 J=1,N
XXAT o d)=XXUT g JV4GAX( 14 J)+GAX(S 1)
203 XXCJe II=XX{L o )
CALL SCOVAGA 3 XX UL,QE4COV,1PS,2)
DO 204 I=1,4N )
DD 204 J=1,N
XXET o d)=XXET 9 J)+GX {19 J)
20¢ XX{Jy1)=XX{Y,J)
GO TO 205
202 CALL SCOVIGA XX UL QEJCCV,IPS,1)
205 DO 5 I=14N
DO 5 J=14N
g DX(T1yJ)=0.
IFIEPSaLTeleD=6)G0 TN 100

EVALUATION OF DA/DS(I) AND DB/DS(I)e

D0 9 M=1,NS
DST=D1S*S1(M)
SID=ST(M)
SI{MY=ST{M)+DST
CALL: SETUP{Z,A1,81,4C1)
SIH{MYy=sS1D
DN 30 I=14N
DO.1ID J=1.N .
10 DALT, =LA T4 J)=A(T4J))/DS!T
Nne 29 K=1 N6 .
20 DB(T1,KI=(RL(I4kKI=-B(I,K)I/DNST
20  CONTINUE )
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208
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210

207

54

EVALUATION DF THE RIGHT HAND SIDE QF THE SYMMETRIC EFQUATION
(3) AXY +YXA = -BRYR(DB/DSL TN )I=XX*(DAZISCE))

CALL GMTRAN(DByATyNyNGy12,45)
CALL GMPRODIARV, BT 4 AL+ Ny NGy Ny1245)
CALL GMTRANIDA,DAT NyNy12,12)
CALL GMPROD(XXs DAT yDAXyNeMNoNy12,12)
N0 49 1=14N
DO 40 J=T1.N
CQUIyJ)=DAX{T,J)+DAX{I, T)+AL(T,J)+A (I, 1)
CQUd, T =CRUT )
IFIMMNDELEQeD1G0 TN 207

EVALUATION OF THE ADDITIONAL TERMS OF THE SYMMETRIC
PERTURBATIAN FQUATTON

{4) AXDY+DYRA1=—AXGY=GYXA'=BXVX (DR/DS{IY)-GX*(DA/DS(T))

WHERE GY IS THE VALUF OF Y AT THE NOMINAL POINT AND
DY IS THE PERTURBATION IN Y DUE TO THE PERTURBATION IN Z,

DO 208 I=1,N

DO 208 J=1,¥

GAX(T441=0e

N3 209 1=1,V

DO 209 J=1,4N

DD 209 K=1,N

GAX(T, J)—A(l.K)*GYY(K,JvM)+GYY(!qK MIRA{JyK)+GAX( T, )
DO 210 T=1,N

DN 210 Jd=1,N

CQ([.J)—CQ(I'J)+GAX(I'J’+GAX(JoI)

SOLUTION OF THE SYMMETRIC EQUATION (3).

CALL SCOV(A,LQ,ULy QE,COV,IPS,2)
DO 50 - 1=1.N

DA 50 J=1,4N

YE1,d)=CO(T,J)
EVALUATTON OF THE RIGHT SINE OF THE ANTISYMMETRIC EQUATION(3),

N1=N=)
DO 60 T=1yN1

Il=T+1

DO 60 d=T14N

COULydV=DAX (T, Jl+A1(ivJ)-WAX(J'I)-A1(J n
[FIMONEs EQ.0)1G0O TD 60

VEVAtUATION nE THC ACDITLONAL TERMS OF THE ANTYSYHMETR!C
‘OUAT'DN(’&.

eeg'x

ﬂ(ﬁ@&gk *g%{b
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60

211
212

70

214
213

216

215

80

. B85

CQUI o JI=CRUI IV +CAX(T,4,J)=GAX(J, 1)
CONT TNUE
IF(MONFeENRL0IG0O TN 211

SOLUTION OF THE ANTISYMMETRIC EQUATION (4).

CaLlL SCOVA(A,CQ,ULY1,QE,CCV,1PS1,2)
GO TO 212

SOLUTION OF THE ANTISYMMETRTIC EQUATION(3).

CALL SCOVA(A,CQ ULLyQF,COV,IPS1 M)}
DO 7C 1=1,MN
N0 TN - d=1,N
YU od)=(CQUI JY+Y(I4d)) /2.
IFIMMDEL,FRLLIGO TO 213
DN 214 I=1,N
DO 214 J=1,N
GY( T yJyMI=YITy4)
GO Tn 215
DO 216 I'=1 4N
DN 216 J=1,N
YOI o dd=Y{Td b +GYY( Ty JyM)

EVALUAT ION OF THE RIGHT HAND SIDE NF THE FQUATION
(5) A*DX+DX%A *=—SIGMA(DAT(M)+AL(MY%R{ M, M) ), M=14NS

WHERE
DAT(M)=(DA/DS(M)) %Y
AL(MY=(D3/DSIMIIXVE(DB/DS(M))?
NS IS THE NUMBER 0OF VARTABLE PARAMETERS,

CALL GMPROD(DA,YyDATy Ny NyNy12,12)
CALL SYMPRD(DRyVyAl,NGyNs12,5)
DO 8] I=14N-
DO 8D J=T,N ‘
DAT(T J)=DAT( 1y J)+DAT I, 1)
DAT(J»1)=DAT (14 J)
DO 8% 1=1,N
DO B85 J=14N
OXULed) =(DATI T JY#ALL T o I YER(M,M)+DXL Ty I}
CONTINUF
TF (MDNDE-FQ.TIGO TN 221

EVALUATION OF THFE ACDITIONAL TERMS OF THE RIGHT HAND SIDE
OF THEZ PERTUIRATION EQUATION

{5) A*DDX*DUX*A'='SIGMA(DAY(M)*AI(M)ta(MQM))-A*GOX‘GOX*A'
M=14NS ’

WHE2F GDX IS THE VALUE NF DX AT. THF VO“INAL‘POINTo
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217

221
218
220

720
100

CALL GMPROD(A,GDXy GAX NNy My 12,120
07 217 I=1,N

D7 217 d=1,N
DX(T3J)=DX T3 J)+GAXC T4 3) #GAX (1)

SOLUTION OF EQUATIONS(RY OR (6],

CALL SENVIANX UL ,Q54CCV,1PS,2)
IFIMMDEFERSDIGE TO 10D
NN 220 I=1,N
DO 22% J=1,N
DX{T14)=0X({1 oJ)+GOX(I,J)
GO 10 100
RETURM 1
RETURN
END
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SUBROUTINE S0V
THIS SUBROUTINE SCLVES THE EQUATION
AXX+XHA V=0

WITH SYMMETRIC G.
THE FQUATIOM IS TRANSFQARMED [NTQO THE FORM

VaZ=R

WHE RE

~

IS THF (N+1)%N VFCTOR OF THF ELEMEMTS OF X,

IS THE (N#)])aN VECTOR OF THE FLEMENTS OF G,

IS OBTAINED FROM A PY THE TRANSFARMATION OF THIS
SUBROUTINE,

-

INPUT TN SUBRAUTINE SCOV:

2] ¢ THE MATRIX G
AVCN : THE MATRIX A
MODE ¢ MODF=1-V 'S COMPUTED(EVAL UATINN OF XX)

MODF>1~THE STORED V 1S USEDIEVALUATION OF Y AND DX)

OUTPUT. FROM SHBROUTINE SCOV:

uL $ THE LU TRANSFORMATION NF THE V MATRIX

Qe : THE VEITDR .8

cayv ¢ THE VEITOR 2

Q ! THE MATPIX X.NOTE THAT THE MATIIX G IS NOT PRFSERVED,

SURRIUT INF SCIVIAVCN, O, UL, 0E,CNV, IPS.M“CF)
THMPLICIT REAL®B(A-H,0-7)

DIMENSTION AVCM{12, l?).Q(’?.lZ’anV(78),0=(78).
LOLATE, 78 L (L1291 2)1PSLTE)

COAMON /YMAT/V(T8, 78)

COMMON Ny NS NPy MGy NCyNCD

MENxENe1) /2

K =10

ON-2) I'= 14N

Dro20 0 J = TN

K = K&l
QF LK) ==0(T1 4d)
Lilsd) = K

20 Ltdsl) =K
IFAMINE 4206 2069 TP 90

D0 2T = 1M
D03 Y=o LM
NN

20 VU)o
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50
90

[y

an A0 1

= 1,N
PR LN Jos LN
WG 40 K o= 14N
VIL{T K g L CJdyKY )
A 52 1 = 1,N
DN SN g = LM

= AVEN(Tad ) 4VELUT oK) oL Ld pK))

V(L(!;I’yJ)'—")o)qﬁ‘V(L(!p!)vJ,
CALL LINSY2(MOYE Wy TR 05, 0NV ULy TIPS DIGITS 6141,8162,8143)

K = 0

Nne R0 T = 14N
g9 J = LN
K.= K+l

AT ed) =COVIK)
MIHT) = QCT,J)
G TY 185
WRITE(&,151)
GN IO 185
ARITE(E,15R2)
GN TO 1585
WRITE(A,)53)
5G TO 1R85

FORMAT( PRk MATR IX WITH A POW OF ALL ZFPQ ELEMENTS FOUND? )

FORMAY (*x%%%2F0G. PIVAT ELEMENT FOQUND?)
FORMATY PxdnsMAX TMUM NUMBER DF TTSFATIONS REACHED IN IMPROVE')

CONTIMUE
RETURN
END
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SUBROUTINE SCCVA
THIS SUBRCUTINE SCLVES THE EQUATION
AXX+X%AS=C

WITH ANTISYMMETRIC G
THE EQUATION 1S TRANSFORNMED INTC THE FORM

V¥Z2=8
WHERE
2 IS THE (N=1)*N VECTOR CF THE ELEMENTS OF X,
B IS THE (N—~1)*N. VECTOR OF THE ELEMENTS COF G
£ IS CHTAINED FROM & BY THE TRANSFORMATION OF THIS
SLBRCUTINE.
INPUT TO SUBROUTINE SCCVA:

THE VATRIX G

cQ :
A : THE PMATRIX A
M 2 M=1-V IS CCMPLTED(FIRST VARIABLE PARAMETER)

M>1-THE STOREC V IS USED{OTHER VARIABLE PARAMETERS)

OUTPUT FROM SUBRCUTINE SCOVA:

Ut : THE LU TRANSFCRMATICN GF THE V MATRIX

QE ¢ THE VECTOR B

cov : THE VECTCR Z

cQ ¢ THE MATRIX X.NOTE THAT THE MATRIX G-IS NOT PRESERVED,

SURPOUT INE SCOVALA,CQeUL ¢QF4COAV,IPSyM)
IMPLICIT RFEALESUA=H,N=Z)
DIMENSTON A(17.12).c0(12.12).UL(78 T78),1PS(78)Y,

1QE(TRY, COVLTR)

COUMMON N yNS 8Py NG o NC o NC O

comwaw/vaT/v<7a.7s)

MN=N#E( M=11/2, '

DO T 1=1,MN

NO 77 J=1 MM

V(In.’)=O.

S K=0
N1 =N=1
DO RC T=14N1
I1=T1+1
D083 J=114MN
K=K+1
NEKY==CY( T D)
MONE=1
1F{MesCGTL1IGD T 100
N1=N~1
N 1S L=y MY
DO 10 J=14N)
VEEgdy=aLT1¢1 4 d¢1)

VUL D=V le DY eatYy, 1y
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20

40
60

160
110

9

141
k142
143
151
152

152
155

NO 6] K=2,N1
J1=(K=1)%(2&N=CV /2
Kl=Ke)

NK=N=K

=0

DO 3D 1=1,K1

DN 20 J=1,NK
VIKL+L y J1 4 ) == 1 ¢ J#K)
VIKI+L ¢ Jed1led)=ALT oK)
VIJI+J K140 ) =~A0J+Ky 1)
V(J1+Js K14l +J)=8{K,T)
CONT INtF

L=LeN-T~-1

CONTINUF

DO 50 1=1,NK

DO 49 J=1yNK
VIJT#T, 31 +Jh=Al T +Kyd +K)
VIJ1+ T4 141D =80 Ky KI+V D14 4 14 ])

CONTINUE

GO TN 110

MODE=2

CALL LINSY2 (MODE MN, Vc78o0F'CCVoULolPS.Dl 1TS £141,8162,6142)
K=0

Ni=N-1

D0 90 I=1,N1

11=7+1 .

DO 90 J=I1,N

K=K+l

COUT,J)=C0aVIK)

CQ(I,y11=0

CQUJy 1) ==CQIUT,J)

CQ(N,P' )=Oc

GO TD 155

WETTF(5.151)

GO TD 15%

WRITE(64152)

GO 10D 155

WRITEZ (4/,153)

G0 T2 . 18%

FORMAT( &%k MATRIX WITH A RCOW 0OF ALL ZFPW ELEMENTS FCUN§'$
EORMAT( 0x%x%2F3N PIVOT CLEMENT FOUNN")

'FDRMAT('**#*MAXlMUM MUMBER 0OF TTERATIONS RFACHTD IN IMpROVEL)

CONTTMNUF

RETURN

END
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IN v

19

SUBROUTINE MATIUY
THIS SUBRCUTINE WP ITFS THE MATRIX A

INPUT TN SUBROJTINFE MATOUT:

A ¢ THE MATRIX Af1x%xJ)
NOY ¢ THE MUMAFE OF ROWS IN THE STOYIAGE ARRAY OF A,
ND2 ¢ THE MNUMRER NF COLUYNS IN THE STORAGE ARRAY 0F A,

SUBRIUTINE MATIUT(ANDY ZJND2,yI,J)
NIVMENSINN A(NDL yND2)

DOUBLE PRECISIOMN A

FORMAT(EH) PPV TIRXy&HCOL o9 1391X))
FORMAT (14,4X,1PTN1 6.8 )

DO 10 JJ=14d,7

J7=JJ+6

IF(JToGTed) JT=J
WRITE(A WLV (JKWIK=JIyJIT)

DO 10 11=1,1

WRITELG 2 )T {ALT T UK,y IK=JJydT)
RETURN

END
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10

40

SUBROUTINE SYMPRD
THIS SUBFGUTINE FINDS THE PRODUCY
C=AxB*At

[NPUT TO SURROUTINE SYMPRO:

A : THE MATRIX A(N%EM)

8 : THE MATRIX B{MxM)

I1 : ThHE NUMBER OF ROWS IN THE STORAGE ARRAY OF A

{2 . THE NUMRBER (F COLUMNS IN THE STCRAGE ARRAY OF A

QUTPIT FRCM SUIROUTINE SYMPRD:

C : THE MATRIX CUN%*N)

——-—_---_——---———-—-—----—--.——-—-.—.——-—--—- -

SUBROUTINE SYMPRNCAB CoMyNsT1412)
[MOLICIT PRFAL*8(A~H,0-2)

DIMENSTMN AUTLoM) o BEI29M)4C(TLoN),D(12,12)
NO 10 I=1,N :

no 10 J=l,N

T yd) =00

C("J)=Oo

, 14N
DA 20 J=l4M
M

D(I.J)=h(!.K)*B(K.J)oD([,J)
nn 4% 1=1eN )

Ne 40 J=TN

NN 40 K=1,4 :
C(I,J1=0(XyK?*&(J.K)OC(I,J)
D030 1=2+N ‘
ITN=Ir1

DT 30 J=1,IN

C(IQJ)=F,(Jyl‘

NETURMN .

END :
ORyg |
OF Nay; p,
% Pogg ggAlGE s
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SUBROUT INE LINSY2(MADE, Ny A, 1DIMy By Xy LUy IPSy DIGITS g% 4% %)
PROGRAMMER: Se Ra DUTRNW, JR,
COMPUTER SCIEVCE DEPAR TMENT, STANFQORD UMIVFRSITY
CONVERTED FOR USS WITH THE WATFNR COMPILER FEARUARY 1970
MICHAEL MALCCLM, CNMPUTER SCIENCE DEPARTMENT, STANFOROD

2EFERENCES: BASZD ON THE SINGLE PRECISION REAL LINEAR SYSTEM
PACKAGE WRITYEN BY JOHN We WELCH NDF SLAC, WHICH IS
[N TUIN, AN ADAPTATION OF THE METHODS DESCRIBECQ IN
FORSYTHE AMD MOLFR, "COMPUTER SOLUTION OF LINEAR
ALGEBRAIC SYSTEMSY, PRENTICE HALL, 1947

IMDEX OF DOUBLE PRECISION LINFAR SYSTEMS PACKAGE:

© INTEGER MODE, N, IDIM, IPS(N)
REAL*3 ALIDIM,NI, LUCIDIMND}y BINDy X(M)
REAL DIGITS
YSES SUBROUT INFS DECMP2, SOLVE2, AND IMPRV2 (IF REQUESTED) TO
FIND THE SOLUTION TO THE LINFAR SYSTEMS AxX=8, THE MATPIX LU
(AND TPS) WILL CONTAIN THE NECOMPOSITION QF A,
THE SOLUTINN IS TO CCURLE PRECISION ACCURACY,

MODE = 1t DECOMPOSE A, DG NAT IMPRIVE THE SOLUTION Xa
MONE = 2: ASSUMFE LU CONTAINS THE DEZCMPASITION,

NY NOT IMPROVE X.
MaDE = DECOMPDSFE A AND IMPROVE THE SOLUTION Xe

32
MODE = 62 ASSUME LU CONTAINS THE DECCMPOSITION AND IMPROVE X.
EXTERNAL DEVMP?v SOLVE2y IMPRV2
SUBROUT INE DECMP2 (N, &, IDIMy LUy IPS, *,*)
INTEGER Ny, IDIM, IPS(N) ;
REAL%#8 A{IDIMyN)y LUCIDIMyN), DMAX1l, DABS
DECOMPNSE THE N3N MATRIX A4 TNTQ TRIAMGULAR L & U SO THAT
L=t) = A, IPS IS THE ROW PTVOT VECTOR.
MATRIX A WILL BF OVEPWRITTEN RY {U IFf A AND LU ARE
NDECLARED TO BE THE SAME MATRIX IN T4HE CALL OF DECMP2,
RETURN 1 FDR ALL ZRRO ELEMFNTS IN A ROWe
RETURN 2 FOR ZERO PIVOT,

SUBROUTINF SOLVE?2 (N, LUy IDIM, By Xy [PS)
INTEGER Ny IDIM, IPS(M)
REAL®A LUCTIDIMgN), BINDy XIN)
SILVES A%X=3 USING LU FRNY SUBROUTINE DECMP2.
FIPST SOLVES THE TRTANGULAR LINEAR SYSTEM LY =8
AND THEN SNLVES THE SYSTEM U%X =Y, L
TPS IS THF W INTERCHANGS VFCTOR FROM DECMP2.

- -y - - 1t "~ " T " W W e Y Ay . M VS D . g o s
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ve 10 2/6/72

2 Ea T

SURROUTINT = NPIYT (A o B)

rPPYT, 1PTATL AN) THE FOLLOWING ALDCK PATA SUBPPNGRAM

£2¢€ (JSEN TIGETHF S0OR ACCUMULATIMG EUCLIDEAN INMER PROMICTS
OF DOUALF PRICISINAN VECTGOS, THEY MAY ALSO BE USED FCR
CALCULATING OTHFR EXTENDED SUMMATICNS.

PROGRAMMER:  5OPDON GULLAHORM
STANFORD UNIVERSITY
ANGUST 1962

EEVISED BY:  MITHAEL MALCOLM
COMPUYTER SCIENCF NEPAP TMENTY
STANFO2N UMIVFRSITY
16 NOVEMRER 1669

PEFERCMCE: “AN A_GIPITHM FCR FLOATING PAINT ACCUMULATION
0OF SJMS WITH SMALL PELATIVE EFRORM
COMMJNTICATICONS OF THE ACM,VOL 14 NO 11,NM0V.1971

THE SUM 1S ACCUMJLATED IN AN AIRAY @, WHICH IS -IN THE
LABELLED COMMNY 'QPACCC*.

THS SUBRNUTINES DPERATE AS FOLLAWS:

ALOCK PNATA ¢ -IMITIALIZFS THE ACCUMJLATOR *RY T 1FRD,
THE SLOCK DATA SUBPRJIGIAM OPERATES AS A
DATA STATEMENT. THE USEP SHOULD NOT ATTEMPT
TO CALL IT

DPPUT(A,B) ¢ ADDS THE PRCOUCT A% TI THE ACCUMULATIR

[PTOTLIX) ¢ COMPUTES THE TOTAL 0OF THE PRNDUCTS  IN THE
ACCHMUL ATOR AND ASSIGMS THIS VALUF TO X,
1PTINTL THEN RESETS THE’ACCU“JLATORS TO 7ERQe

IF NO QVERFLOWS IR UNNERFLCWS OCCUF, THE FINAL PFSULT 1S GUAR-
AHTEED TO WAVE 12 SIGHIFICAMTY NIGITS. IF EYTHECS A 0P B IS SYALLER
Lenn( =524 FAPNUFNT ONDERFLON TS LIKFLY TC OCCUP IN

SEOAPATING THE HINGH AHND LOW CROFR PARTS 0OF A OR 3,

STMILARLY . UMDFERFLAW MAY CCCUR IF 1A#A]l < 10%%=50,

A0 AAOANACONAACNO0NaANO00N0ANO0NNNaAa0A000

ORIGINAT! PAGE IS
OF POOR QUALITY,
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SUBRDUTINE BALANC(NY, Ny AyLNW, 1GH,y SCALE)

TMTEGER T oJ Kol oMy Ny JJyNM, [ GHLOW TEXC
REAL®E A(NMN), SCALE(N)

REALNP CyF fiyRy S, R2,RADIX

RFAL#*R DARS

LOGICAL NOCONY

THIS SUBRQJTINE IS A TFEANSLATIQON OF THE ALGOL PROCEDUIE BALANCE,
NUM, MATH, 173, 292-304(1959) BY PLALFTT AMD RFINSCH,
HANDBNOK FOR AJTU. COMPey VCLoII-LINEAR ALGERRA, 215-326(1971).

THIS SUPRNUTINE BALANCES A RFAL MATRIX AND [SOLATES
EIGENVALUES WHENEVER POSSIBLE.

AN INPUT:

NM MUST BE SET TN THE ROW DIMENSION OF THWI-DIMENSINNAL
ARRAY PARAMETERPS AS DECLAKED IN T4E CALLING PROGRAM
DIVENSION STATEMENTS

N IS THE ORDER 0F THF MATRIX;

A CONTAINS THE INPUT MATRIX TN BE BALANCED.

ON OUTPUT:

A COMTAINS THE BALANCED MATRIX;

LOW AND IGH ARE TWQ INTEGERS SUCH THAT A(T,d)
IS EQUAL TO ZERQ IF

(1) I IS GREATER THAN J AND
(2) J=lraoeerLOW=1 OR I=IGHFLseeesN3

STALE CONTAI NS INFORMATION DETERMINING THE
PERNUT&TIONS AND SCAL ING FACTORS USED.

SUPPOSE THAT THF PRINCIPAL SUBMATRIX [N ROWS LOW THRNHGH -IGH
HAS REEN BALANCED, THAT P{J) DFNDTES THE INDSX INTERCHANGED
WITH J DUFINMG THE PERMUTATION STEP, AND THAT THE FLEMFNTS

OF THF DIAGONAL MATRIX USED ARE DENOTED BY DU L,J)e - THEN

SCALE(J) = D(J)' K FOR J = 1.0,00,L3W"’1
= D(Jed)y o Jo= LOW’..."VGH 3
=PI J = IGH+Y yes ey Ne .

THE ORDER IN WAICH THE INTERCHANGES ARE MADE IS N TO 1GH+1,
THEN 1 TQ LOW=1, : '

NOTE THAT .1 IS RETURNED FCR YGH IF IGH 1S 2ER0 FORMALLY.

THE ALGOL PROCEDUFE EXC CONTAINED TN RALANCE ACPEARS IM
BALANC IN LINE, (NOTE THAT THE ALGCL POLES OF INEMTIFIERS
Kyl HAVF BEEN REVERSED,.) ' S

QUESTIOMS AND = WMMENTS SHOULD BE DIRECTED TO R. Se GAZ8IW,
APPLIED YATHFMATICS DIVISION, ARGONME NATIONAL LABNRATNPY
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SURROUTINE FLMHES (NM,N,LOW, IGHy 4, INT)

INTEGER 1,JsMyN LA ZNM,TGH KP1,LOW,MM1,MP1
REAL*B A(NM,N)

REAL*E X4 Y

REAL®8 DABS

INTEGER [NT{ IGH)

THIS SURROUTINE IS A TRANSLATINN OF THE ALGOL PROCEDURE ELMHES,
NUM, MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON,
HANDRQOK FOR AJTO. COMPe, VOL. TI-LINEAR ALGEBRA, 339-358(1971).

GIVEN A FEAL GENERAL MATRIX, THIS SUBRIUT INE
REDUZFS A SUBMAT2IX SITUATED IN POWS AND COLUMNS
LOW THROUGH 1G4 TO UPPER HESSENRERG FORM BY
STABILIZED ELEMSNTARY SIMILARITY TRANSFORMATIDNS.

ON INPUT?

NM MUST BE SET TO THE ROW DIMENSION OF TW)-DIMENSIJVAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PRCGRAM
DIMENSION STATEMENT;

N IS THE ORDER OF THE MATRIX:

LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
CUBROUTINE BALANC. IF BALANC -AS NOT BEEN USED,
SET LOW=1, IGH=N3;

A CONTAINS THE INPUT MATRIXe

ON QUTPUT:

A CONTAINS THE HESSENRERG MATR IXe THE MULTIPLIERS
WHICH WESE USED IN THE SEQUCTION AFE STORED IN THE
REMAINING TRIANGLE UNDER THE HESSZNRERG MATRIX:

INT CONTAINS INFORMATION ON THE POWS AND COLUMNS
INTEPCHANSED IN THE REDUCT 1ONe ~
OMLY ELEMENTS LOW THROUGH TGH ARE USED.

QUEST IONS AND COMMENTS SHOULD BE DIPECTED TO B, Se GRRROW,
APPLTIED MATHEMATICS DIVISION, ARGONME MAT IONAL LABDRATORY

ORIGRIAT; PAGE IS
OF POOR QU
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SURRIUTINE HRAA(NMyNyLCWe IGH 4o WRoe W14 [ERR)

INTEGFR T odoKeloMyNeENy LL g MMeNAGNM o IGHy IT Sy LOW,MP2, ENM2, TERR
REAL%®O H{NM M)y RIINY W (N) . :
REAL®R PyQyR ST oW oXyYy22y MACHEP

REAL™R NSCRT,DABS,NSIGHN

INTEGF® MINO

LNGICAL NOTLAS

THIS SUBSCUTINT IS A TRANSLATION OF THF ALGOL PROCEDURE HQR,
NU¥, MATH, 14, 219-231{1970) BY MARTIN, PETERS, AND WILKINSCN,
HANDYPOGK FNR AJTO, COMPey VOLe TI-LINEAR ALGEBRA, 359-3T71(1971).

- THIS SUBRNUTINS FINDS THE EIGFNV. YUFS JF A REAL
UPPER HESSENRERN MATRIX BY THE QR METHODe

i

leXalaleXaNelaNe}
. T

ON INPUT:

NM MUST Bf SET TO THE ROW DIMENSION COF TWI-DIMFNSIONAL
ARRAY PARAMETERS AS DECLAFRED. IN THE CALLING PROGRAM
CIMENSION STATEMENTS

N IS THE DRIER 0OF THE MATRIXS

LNW AND IGH A& INTEGERS DETERMINED BY THE BALANCING
SUBFOUTINE  BALANC. IF BALANC H4AS NOT BEFN USED,
SET LOW=1, IGH=N3

H CUNTAINS THE UPPER HESSENBERG MAT2IX. INFORMATION ABOUT
THE TRANSFNRMATIONS USED IN THE 2EDUCTICN TO HESSENBERG
FORM BY ELMHES OR ORTHES, TF PERFORMED, IS STORED
IM THE REMAINING TRIANGLE UNDER THE HESSENBFRG MATRIX.

ON QUTPUT

H HAS BEEN DESTROYED., THEPEFORE, IT MUST BE SAVED
BEFORE CALLING HGR IF SUBSEQUENT CALCULATION AND
BACK TRANSFORMATION OF EIGENVECTDQS 1S TO BF PERFORMEDS

WR AND WI CONMTAIM THE REAL AND- IMAGINARY PARTS, :
FESPFECTIVELY, OF THE FIGFNVALUES. THF EIGFMVALUES
ARE UNMORDERED EXCEPT THAT COMPLEX CONJUGATE PATIRS
NF VALUES APPEAR CCONSECUTIVELY WITH THE EIGENVALUE
HAVING THT POSITIVE IMAGIMARPY PAPT FIRST: IF AN
FERIR EXIT 1S MADE, THE ETGENVALUES SHOULD BE CNRRECT
FLR INDICES TERR+lveweoN;

IFRE 1S 'SET TOD
CIERD FOR NORMAL RETURN,
J If THE J-TH EIGENVALUE 'HAS NOT BEEN
DETERMINED AFTEPR 30 ITERATIONS,

" QUESTTICHNS AND S OMMENTS SHNULD RF DIPECTED TO Re Se GAPBNW,
APPLIEC MATHEMATICS DIVISION, ARGONNE NATIONAL LABNRATORY

r‘;nnnnnnnnnnnnnnﬁﬁnnnnnﬁnnﬁﬁﬁnnr\nnnnnnhnn

- A o o - . - - - - —— -
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DPIVING RCUTINT FNI UNCONSTRATNED qINI“lZATION WITHAUT DECIVATIVES

SURROUTIME MINMZZ( N, NLDIM, FUN, START )
IMPLICIT REALE8 ( A-H, L, 0O~ )}

LOGICAL PR IEF s CONV

COMMON /JRITFP/ FTa, TOL, SYFPMX

COMMOM  /LOGICL/ QP ITEF

DIMENS IOV X{20), D(20), L{450}, H(3D)
EXTERNAL FUM, START '

————— 900 i > - e . S e e Y A o o WA e T S - A D A% W G Wy A W T o W S W W A W WD e 420 R e

THIS SUBRNUTINE USES SUBROUTINE CNMD}F TO MINIMIZE A FUNCTION
Of N VARTABLES, WITHOUT USING DERIVATIVES,. L

THE CALLING PPIGRAM MUST DECLARE EXTERNAL .THE SURFOUTINFS FQUI-
VALENT TO FUN AND START. THE CALL IS THEN OF THE FOPM
CALL MINMZE( N, NLDIM, FUN, START ),

PROGRAMMER 3 NAVID SAUNDERS, STANFDORD) UNIVERSITY.
LAST UPDATED:  APRIL, 1973,

OTHER ROUTINES REQUIRED: ;
: QNMDIF, LINMSCH, = MCDCHL,y APROXG,
NYTPUTy FUNy START, .

STORAGE FOR AR AYS ~ X, D (DIMENSION N) AND L (DIMENSIAN NLNIM=
N {N=-1)/7) MAY. ARE SUPPLIFD BY THE CALLER, HOWFVER, IT.WAS CON-
SIDFRED CLEANER TO NDIMENSINN ABSOLUTELY ANY LOCAL ARRAYS IN THE
OTHER SUBRQUTINES, NO MULTI-DIMFNSIONAL ARRAYS ARE USED SO THE
USER HAS ONLY TO GIVE ALL LOCAL ARRAYS ABSOLUTE DIMENSTCONS OF
(AT LEAST)Y Ny WITH ONE EXCEPTINN? ’

MONDCHL USES A2RAY S WITH DIMENSION N+l

THE USER MUST PROVINE HIS CWM -EQUIVALRENTS NF THE 2 SURFOQUTINES
FUN  AMD START  SUPPLIED HERE AS TLLUSTRATION.

e e e e s i e e 4

COMPTLERS: WATFIV  OF  0S/360 FORTRAN H (NPT=2 RECAMMENDED)

e W\fﬁ
5@ %@R k»'mlma
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S et bl e bt e bt ettt ettt

nc\r\ncwr\ncwrsn(ﬁr\ncqr\n(wr\ncﬂrwn(wr\ntirsncﬂtﬁntﬂrxn Ao O0O

SURROUTINE QNMITFE( Ny, NLPIM, Fy Xy Ly Dy He CONV, FUN )

ITMPLICTT REAL%S
LOGICAL

comMaN /CRITEP/
COMMNN /NUMBR S/
COMMIN  /COUNTS/
COMMIN /TOTALS/
COMMIN /LOGEICLY/
DIMENSIAON
DIMENS ION
EXTERNAL

{A=H, Ly 0=-Z2.)

UNITL, PRINT, RPIFF, COINV, SUCCES
FTA, TPL, STEPMX, DEPS
NUMF

NFEVAL, TCOUNT

NFTNTL, NITERS

BRIFF, PRINT, UNITL

X{NY , LINLNIMY, DINY, 4\
GK30)y GKPLSI1(30), W(3Q),
FUN

Pt30), PPL30)

- -

o e o o . a0 9 s e ko e e S SO

THI'S SUBRAUTINE ATTEMPTS UNCONSTRAINED FUMCTION MINIMIZATION,
JSING A REVISED DUAST-NFWTGN “ETHOD WITHOUT DERIVATIVES,

IT 1S A TRANSLATION 0OF THF ALGOL PROCENIRE QNMDIFF IN THE PE-
ONRT BELIW, TN WHICH THE USER ‘IS REFEIRED: ' '

BIMPLEMENTATION OF TWO REVISED: QUASI-NEWTON
ALGOR ITHMS FOR UNGONSTRAINED OPTIMIZATION."
BY GILL, MUFRAY, ANN PITFIELD (APRIL 1972).
{62 PORT DNAC 11 OF THE NPLy LONDING)

REFERENCE:

THE ROUTINE SEEKS THE POINT X AT WHICH THE TWICE CONYINUOUSLY
DIEEERENTIABLE FUNCTIOM F(X) ATTAINS ITS LEAST VALUF, IDEALLY
THE VARTAPLES SHOULND BE SCALEN SO THAT THF HESSIAN MATRIX CF
SECOND DERIVATIVES AT THE SOLUTION [S APPROXIMATELY ROW-FQUI-
LIBFATED, WITH THE FUNCTION MULTIPLIED BY A SCALAR SHCH THAT
IT ACHIFVES A MAXIMUM VALUE OF UNITY WITHIN A UMIT SPHERE A-
ROYND THE MINI¥UM, I T MAY NIT BE POSSIBLE TO FULFILL - EITHER
DF THFSF REQUIIEMENTS. )

GIVFM AN INITIAL APPROXIMATION TO THE MINTMUM AND AN ESTIMATE
(LOWER BOUMD)Y JF THE MINIMUM VALUE, THE RNUTINE CALCULATES A
LOWER FUMCTION VALUE AT FACH TTFRATICMe  WHEN THF COMVFP GENCE
CRITER I8 APE SATISFIED, THE ROUTINE GIVES THE ESTIMATFD POSI-
TION (-F THE MINTMUM, THE FINAL FUNCTICN VALUS, AND THE FINAL
CHNLESKY FACTORIZATION OF THE APPROXIMATE HESSIAMN MATRIX,

THE PADAMETEDS AND COMYON VARTABLES OF SUBRNUTINE QMMDIF  AFE
IMITIALIZED IN SUPRIUTINE START, _A DFSCRIPTION OF THESE IS
GIVEN NOW: ;

INPUT TO SURPAUTINE QNMDIF:

N THE NUMAER NE VARTARLES X{1) DF THE FUMNCTICN FiX)a

FUN

THE POTAUT DEFINEC BY VECTOR X(1), THE CALL IS QF - THE
, FOR™ CALL FUNE Ny Xy F )
F A CLOAS ACUMD FOR THE MINIMUY MALUE 0F THE  FUNCTTNON,
X : o

AN CIMITIAL-SSTIMATE QF THE SOLUTTONG
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OO ACOOA0OT0AN0AO00NONRO0D0O

AOADOACO OO0 NANONO00N0AN

Ly D :
H H
NDEPS :
FTA :
TOL :
STFPMY ¢
CUNTTL 2
ORINT =

RRIEF =

NITEQS:
[oRaL} AVAR-

e e = i oo o s o o o T o s o e A S e € 00 S W o e o e @ o e i o

YETNTL:

APRAYS WHIGH HILL NCPMALLY NOT #F IMITIALIZEN BY THE
USER {ANT SFFR UUNTTL" BELOW),

A 1%M ARAY CONTAIMNING THF INTEFVALS FOR DIFFERFNCIMG
FIX) ALONG EACH NF THE CONPDINATE DIRECTIONS. TYPICAL
VALHE FNR THE HIIT) IS NSQFTL DEPS N

THE PELATIVE MACHINE PPECISION,

THE TRUMIMATIOMN CRITECIOM FOR THE LIMFAR SEARCH, 17
SHOULN HAVE & VALUE IN THF RAN3GF. 0O TO 1. THE CLOSER
TN 7FP [T 1S, THE GRFATER THE MUMARER OF EVALUATIORS
IF THE FUKRCTICN THAT WILL BE PERFORMFD, WHILE  THE
CLOSER TN 1 [T 1S, THE GREATFP THE MYMAER OF ITERA-
TIONS LIKELY. ETA = 0.1 IS SUGGESTED TN STAFT WITH.
THE CVERALL TERMINATION CRITERICN (NORM OF THE GRADI-
SNT). A TYPIGAL VALUE IS 1C-6¢ (A GROD-ESTIMATE IS
APPRAXIMATELY DSQPT( DEPS. )y 3JT THIS CAN BF  P2FLAXED
{ INCRFASFD) IF FEWER SIGMIFICAMT FIGURES ARE  ACCEPT-
ABRLF. ) ‘ .

AM UPPZ® BCUND QN THE STFP ALLIWER ALOMNG A DICECTICN

"NF SFARSH,  THI S CAM RE USEN T) PREVEMT  OVESRFLOW  IN

IN THE COMPUTATION, IF AN APPIOXIMATE SCLUTICM [SN*T
KNIWN, AND OVEEFLOW TN COMPUTING THE FUNCTIOM . IS UM-
LIKELY, THEM. STFPMX CAN RE SEY VFRY L2RGE (1D11l, SAY)
SO THAT IT WILL NOT INFLUENCF THE  ALGORITHM AT ALL.
IF THE SOLUTION IS KNOWM TN BE WITHIN A CERTAIN RANGE
OF THE INITIAL ESTIMATE, THEN STFPMX CAN BE  SUITABLY
LOWERED o

A LOGIZAL VARIABLE WHICH SHOUL) BF SET TO TRUE UMLESS
AM APPINXIMATION NTHER THAN THE UNIT MATRIX IS - KNOWN
EOR THE HESSIAN MATREX 0OF SECIND DERIVATIVES OF F(X)e

TR UMITL 1S TRUE, THE UMTT ¥ATIIX IS SUPPLIED BY "~ THE
SURGOYT IME,y ELSE IT IS ASSUMEN THAT AN LOL' FACTORIZ-

ATION 18- GIVER [N THR ARZAYS L AND D,

SET THIS LNGICAL. VARTAGLE TO TIUE IF COMPLETE QUTPUT
1S DESIFFN. AFTER FVERY ITFFATION.

SET THIS TO TRUF [F MNRE COMCISF OUTPUT 1S PRFFERRFR,

FULL TNEARMATION FRQY THE FIMAL TTERATION™ TS -STILL

oAy INEN EVEN IF PRINT IS FALSE.

QUTPUT FROM SUBRDUTINE GNMDIF:

THE TATAL NUMRFR QF FUNCTION EVALUATIONMS USFN,

THE TATAL MUMAER DNF LINFAR SEASCHES PFRFNEMEN,

A LOGICAL VARTARLE SET TN TRUE IF TEOMINATION  ACCUFS
AITH THE CONVFFGENCE CRITERIA SATISFIEN, AND FALSF IF
A LOWER ODINT CANNOT £F FOUND ALDAG A PAFTICULAT DIP-
ECTION NF SEARCH, : ‘

ALSD DUTPUT ARZ FIMAL VALUES FOR ‘Fy Xy Do AND Lo
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APPENDIX C

HYDRAULIC TORQUER DYNAMICS

A schematic of the torquer is shown in Fig, C-1, It consists of

two parts:
(a) A hydraulic rotary actuator mounted on the gimbal,

(p) A two-stage electrohydraulic valve that controls the fluid
flow to the actuator., Electrohydraulic valves of this type
are described in the literature (e.g., GUI-l). The output
torque of the actuator is proportional to the differential
pressure across its vanes.’

The first stage of the electrohydraulic valve is a nozzle and flapper
driven by a d-c torque motor. Its output differential pressure,

Pgy ~ Pegs 1s proportional to the torque motor current,

The second stage is a two~orifice spool that is displaced by the
applied and feedback differential pressures. The fluid flow to the

actuator is proportional to the displacement,

The dynamic equations of the torquer are given below. For the

spool,
: m# = pA -pA - bk , (c-1)
where
X, :' spool displacement
] ’ m,o= spool mass
b, = ‘pcl"pcz’ the comménd differentialypressure
P = Py~ Py the feedbéckvdifferenfialkpressure
Al’ Az, = the areas of applicatién’of the command‘ahd feedback pressures’
b = viscous friction costiicient,
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TORQUER |[+«—1

Pey p. P, Py P, Pey
AL
o
AT D L
2 1 X

i

FIG, C-1 SCHEMATIC OF THE HYDRAULIC TORQUER
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Assuming a first order lag between the flow rate and the displace-

ment, we get

. 1
4 = ¢, X - = q, (c-2)

where

q load flow rate

C

]

1 proportionality constant.

Neglecting the mass of the spool in Eq. (C-l) and assuming Al = A2 = A

(required for P =p, in the steady state), the final equation for the

spool is
§ = K(p_ -p)-—aq (c-3)
A*Tc T
v
where Ac
K o
A~ b °
For the actuator,
5> = = (q - kp - D,8)
p = v a -k 4875 - (c-2)
where
B = bulk modules of the fluid
ve = volume of ‘the actuator chamber
ko= leakage coefficient across the vanes
DA = chamber volumekchange per unit angular displacement
g = relative angular displacement between the stationary and

‘moving parts of the actuator.

Equations (C-3) and(C—4) are the state equations for the torquer

with p and g as states, They are réwritten below
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p - —-V— kL
= [=]
q = kA

B "B D
ve p 0 Ve A .
+ p + o
1 c
-_-r— q kA 0 0

The transfer functions from pc and § to the output p:
B
o kA( /Ve) NI(S)
P, 2 (B 1 B (L D(s)
s+ {— Kk 4+ =—)s + —|— + k
v L T v \r A
e v, e\'v
B, oA
v T NZ(S)
P e v - .
& D(s) D(s)
Numerical values:
B ; .5 1b
o 2,75 % .10 5
e in
5
~4 - in
kL 5X 10 5 5es
in5
kA‘ 1,4 — 5
1b sec
1 24 sec
-T—* sec
v
D, 0.3 in°/rad
A * ‘
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l‘U

Pe s 2 0,26s 1

(620) 620

6
p 2 x10 o
- s i
© 5 2 0,26s inz
+1
<620> 620

The damping of this second order system depends mainly on the leakage
across the vanes and therefore cannot be determined precisely. The
natural frequency is proportionalyto the bulk modulus which may vary

considerably with environmental conditions.

To use the torquer dynamic equations in the system, it is convenient
to replace the command and output pressures by command and output accel-
erations. The relationship is ‘

oA
P T

a = (c-7)

where

a acceleration
I = load moment of inertia.

Substituting (C-7) into (C-S) and (0—4), we get the state equations

2
, D
3 - Bk B a 0 A
v L v I : I
= e . e = uc - 8 .
. k,I 1 q~ kI .
q —_— .- . B
DA TV o DA,
For the inner azimuth gimbal (I = I, =680 in-lb-sec Vs
. ' 1 -4
a -137 121 |a 0 1,3x 10
. = ' + . ‘ u - B g .
a 3200 24| |q {3200] ° 0
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2
For the elevation gimbal (I = I, = 20 in-1b-sec )

a -137 90 a 0

& 4300 24| |q 4300

where ¢ and & are defined in Figure V-1,

-213-
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APPENDIX D

NUMERICAL DATA FOR THE TRACKING TELESCOPE

Moments of Inertia*

Telescope plus inner azimuth gimbal about 1b axis:

I, = 680 in-lb-sec?,

Telescope plus inner azimuth and elevation gimbals about
axis:

I2 = 400 in-lb—secz,

Telescope plus inner azimuth and elevation gimbals about
or 1lb axes:
2

I3 = 920 in-lb-sec  ,

Outer azimuth gimbal about 1i axis:

1, = 2500 in-1b-sec® ,

Acceleration Limits

2
Inner azimuth: 4 rad/sec

- Elevation: 3,5 rad/sec2

Outer azimuth:  0.65 rad/secz,

Measurements

'(a) Target detector

, , ; -1
Noise: 100 prad rms at 2000 sec

-1 2 ;
rd = 10 ,1 rad - sec

See Fig, V-1 for definition of axes,

=214~
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(b) Gyro

Time constant: 1,5 msec
Gain : 2,5

~1
Noise: 5 urad rms at 3000 sec

rg: 2 % 10714 rad? sec

4, Disturbances

Disturbance torques on inner gimbal:

1

g 0.1 rad/secz at 200 sec-1

T

3
10 rad2/sec

9
Torquer noise (1% of full scale output)

-1
0.04 rad/sec’ at 300 sec

10-.5 radz/sec3 .

N

a9
5, Angular Limits

Pmax = I

€ = —60" + 25°
max

¥, unlimited,
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APPENDIX E

STRAIGHT LINE FLYBY

The geometry of a straight line flyby is shown in Fig, E-1 below,

\

FIG. E-1 GEOMETRY OF A STRAIGHT LINE FLYBY

We have

tan 8 = — = T

where .t  1is measured from the time of passage at 0.

G = Y_.C_O_E_G. — —gcosze :.Y._.L_
P 1 4+ 7
2 2
3
6 = 2 XE cos 8 sin 8 = 2 XE' T 55
R R a1+ 9
2
6 = 0.65y—§at 1:&:*_.
max R ] JS

6 as a function of ¢ is shown in Fig. E-2.

The maximum angular acceleration in aximuth that the system can
dccommodate before the torquer of the outer azimuth gimbalrséturates

' 2 N
is 0,65 rad/sec . PFor this acceleration we obtain
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FIG,

E-2

STRAIGHT LINE FLYBY IN POLAR COORDINATES



= 0,58,

The rate of change of the acceleration is low relative to the expected
system bandwidth, If a Type 2 (constant acceleration error) system
is specified, the error will therefore be approximately proportional
to the instantaneous acceleration, The acceptable error at the point
of maximum acceleration (7 = 1//5) can therefore be specified as the
maximum error for a constant angular acceleration command, This

error should be of the order of the measurement noise,
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APPENDIX F

SYSTEM DYNAMIC EQUATIONS

The dynamic equations of the system are found in this Appendix
using the Lagrangian method, Referring to Fig, V-1, and to the moments

of inertia defined in Appendix D, the kinetic energy of the system is

1 . . 2 l '2 2
- = = - €
T 5 Il<¢ + ¥ cos €) + 2(13 Il)w cos + (F-1)
1 2 1 .2 1 *2
= € = ; + = .
+ 2‘13 + > Y sin € + 5 I4w

The potential energy is V =0; ., L =T,

The moments about the gimbal axes are given by

w oo 49or_or

dt 3 o9
M o 4. 9T _orf
€ dt d¢ e
- LT
Voooaedp oy

X
3 = ¢
¥ :
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2

&

= (I - I+ Il)\[}2 cos ¢ sin ¢ - Il(é + @ cos e)f sin ¢

i

Il(gp +11.r cos g)cos ¢ + (13 - Il)q} 0052 € + 12\[} sinz € + 14{;

Yy 2y

Defining o = b + & cos € as the total rate about the inner

azimuth axis, the moment equations are:

Mcp = Ila
M = I &+ I1.0f sin e~-(I_ + I, -1 )'2 cos in
& = 35+ 10&1; ‘ € 9 1 3‘1’ € S €
Moo= [, -1 YeosZe + I.sin‘e 4 I W + I.G cos ¢
v 37 1 2 4 1
+ 2(Il - I+ Iz)ﬁé cos € sin € - Il&% sin ¢ ,
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APPENDIX G

LINEARIZATION OF THE ZERO ORDER HOLD (ZOH)

The transfer function of the ZOH (zero order hold) is [ 0G-1]
Gh(s) = — (G-1)

The Laplace transform of the sampled signal x (t) is [0G-1]

x*¥(s) = % E x(s + J’wok) . , (G-2)

K=-

If most of the incoming signal energy is in frequencies below the

sampling frequency, x*(s) can be approximated by

x*x(s) = % x(s). » ' (G43)

Combining Eqs., (G-1) and (G-3), the transfer function for the sampler
and hold is

-Ts -
G () = 22— - 1=°
S Ts a
where
o = Ts = 288 (G-4)
W : ;
0 .
Using ’
..« 1 of2 -0/ 2
sin h -2- = -é' (’e e ) ,
(G—4)5may be. rewritten as
sinh & :
T2 <o/ :
G(s) = 2.e / . ; : , (G~5)
of2 '
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Two approximations to Gsh(s)

will now be examined

(a) Approximation of e® in Eq. (G-4) by
e—a oy l—:—gig ;
1+ 0/2
o -a/2 .
(b) ~Approximation of e in Eq, (G-5) by
e—oMz 1 - af4
1+ /4
The transfer functions for these approximations are
1
G (s) =
a s
1
+()JO
Sinhis_l—zti-
wo 2w0
Gb(s) = s ns °
W b+ 2w
0

For ‘s = juw,

given in Tahle G-1.

Table G-1
Exact Approx, a Approx. b
s W ;
sin —
OJO : 1 ‘ .
A e ‘r————;aﬂg Exant
0 0
-1 ' -1 W
@ bis I tan %9 2 tan oo
Yo 0 : “¥o
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(G-7)

the amplitudes and phases for these approximations are



Numerical values for the amplitudes and phases at

guencies are given in Table G-2,

Table G-2

different fre-

A o (*)
w_ Exact | Approx.|Approx, Approx. |Approx,
Yo a b Exact| a b
0.125] 0,974 0,93 0,974 22,5| 21.4 22,2
0.25 | 0.9 0.787 | 0.9 45,0| 38,0 42,8
0.5 0,63 0.53 0.63 90,0| 57.5 76,0

From Table G-~2 it. can be seen that if approximation . b is used with

a fixed gain of 0,9,

to the exact system up to w = 0,25 w_,’

0
this approximation can be written as

4f - s

0
Gb(s) =0

where fo is the sampling frequency,

-9 4f0 + 8

The transfer function for

the amplitude and phase correspond quite closely

(G-8)

The block diagram of this transfer function is shown in Fig, G-1,

Its state representation is obtained from the block diagram as

™
Il

0

B+ 0.9 - 0,90

<.
Il
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e

i

o -Q
4f
c 1.8 + £ B y
+ s
-1
FIG, G-1

BLOCK DIAGRAM OF THE ZERO ORDER HOLD LINEARIZATION
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APPENDIX H

GYRO DYNAMICS

The dynamic equation of a rate integrating gyro (RIG), which

represents the sum of the moments about its output axis, is

J§0 = - céo + Hwi +'kTLT

where

60; = output axis deflection

¢ = damping coefficient about the output axis

H = -angular momentum of the gyro

Qi = rangular rate about the input axis

kT = torquer scale factor

iT = torquer current.

J = 1inertia about the output axis,

For a typical RIG (e,g., Honeywell GG 334), the numerical values of

the parameters are

H = 5 x10% gm—cmz/sec
cC. = 2X 104 gm—cmZ/sec
J = 30 gm-cm2

]

237 gm—cmZASecz ma),

kr

The transfer function of the gyro is therefore

: Uk g

1 H T ,

% c <E 177 1) :
s(s + 3) i
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With the given values of the parameters

1
6 = —— | 1660 W, + 7,9 1],
Y s(s + 660)[ i ]
If c/J is much larger than the system bandwidth, the transfer function

from the input axis rate to the output axis deflection is approximately

Go(s)

. () ~7s°
1

m

If the torquer current is made proportional to the output angle,
i = —HkAQO ’
the gyro becomes a rate gyro,  For this case,
JGO = —ceo - HkAkTGO + Hwi ,

and the transfer function is

GO(S)

. (s)
1

H
J

The output angle is considered as a measure of the input axis rate,

The steady state scale factor is

In préctice, the torquef current and not the output axis angle is meas-

ured,

-In control applications'the'dyhamics of the rate gyro is often

neglected and the output'angleVis‘considered as a direct measurement
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of the input rate, viz,,

1
9 (s) = (N (S) .
0 kAkT i

The influence of this neglection is to couple the system and gyro
eigenvalues with the coupling becoming less pronounced as the gain

of the rate gyro is increased,

For the system using the reduced order estimator, a root locus
as a function of the gyro gain is shown in Fig, H-=1 for values of this gain
. 6 8 -
[(H/J)kAij ranging from 10 to 10 sec 2, which corresponds to gyro

-1 . 7 -2
natural frequencies of 103 to 104 sec , For gains above 10 sec

6

1

the root movement is hardly perceptible and even for [(H/J)kAkT]'z 10

it is not excessive,

The influence of this gain on the rate gyro output noise will now
be considered, The gyro pickoff noise is considered as having an rms of
5 urad at 3000 sec—l (see Appendix D), The gyro with its pickoff
noise may therefore be represented by the block diagram in Fig., H-2,
From this block diagram, the state equation of the gyro and its pickoff

noise can be represented in state form as

- - - -
A I e |
1 T 1 T
x2 = 0 0 1 x2 0 v
}.( . l‘li -E - E X o
Ls_J LJ J J_‘ L.3.¢ L-J
y = W0y = k, k, 0]x,
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-1
jw(sec )
H : -
kg = 3 kAkT i ;
o) kg X ‘
6 o
8 k =10
g
~1400
—1 200
- ©- © -1
=400 -200 o(sec )

FIG, H-1 ROOT LOCUS AS A FUNCTION OF THE RATE GYRO GAIN
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where k = kAkT. The output noise as a function of k can be ob-

tained from this representation using

FX + XFT = PQPT
where
X = the state covariance matrix
Q = the covariance matrix of the white noise v (see Fig, H-2),
and

E(yz) = kz[E(xf) + E(xlxz) + E(xg)] .

The output rms noise as a function of k is shown in Fig. H-3. The

noise can be seen to increase approximately linearly with the gain.

v -+ _1_ x]..
—-—-}‘ } -l T
+
-1 |
) : — + ‘ W
R 1| *s |1 + - 0
I s e
+
-£
J

FI1G, H-2 BLOCK DIAGRAM OF RATE GYRO WITH NOISE
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Considering the eigenvalue coupling as shown in Fig, H-1, the gain

was selected,

9, [mrad/sec]

501~ °

40—

30—

20—

104

» 1 | | . |
2 4 3 8 10 |
' kg % 1078 (sec™?)

FIG. H-3 RATE GYRO RMS NOISE AS A FUNCTION OF THE GYRO FEEDBACK
GAIN, - o :
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APPENDIX &

THE ROOT SQUARE LOCUS METHOD FOR DETERMINING STATE WEIGHTS

The closed loop eigenvalues for a system designed by quadratic

synthesis are the left half plane eigenvalues of (Eq. 2,6)

B+ Y(-s)A¥(s) = O, o ($-1)

where
¥(s) = (sI - F) " la

is the transfer matrix from the control to the state:
x(s) = ¥(s)u(s) .
For single input systems, Eq. (d-1) can be written as
b+ tr[AY (-s)¥(s)] . ($-2)

For a matrix A with diagonal terms only, this equation becomes

n

1e Xy ey (e) (4-3)
~where N.(s)
y{s) = —
(s)

"is the transfer function from u to Xi’
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If the ratios aii/b are fixed for all i # k, the root locus

as a function of akk/b can be found, by writing Eq, (§-3) as

a_ .
| D(=s) D(s) + 20 —= ¥, (-8)¥,(s)
ifk
a
KK & o)y -
+ 3 Yk( s)Yk(s) = 0
or, as
kK
Dl(-S)Dl(s) = —TYR(—S)YK(S) . I-4)

The eigenvalues of the left and the right hand side are symmetric

about both the real and the imaginary axis,
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APPENDIX J

REDUCED ORDER OBSERVER

The concept of the reduced order observer was introduced by Luen-~
berger [LU-1]; According to this concept, the state of a system can be
observed by an observer of order n - m where n is the dimension of

the system and m. the number of measurements,

Various approaches are available for the actual design of the
observer, The approach used here is based on a design method proposed

by Gopinath [GO—l].

Consider the observable system:

»
il

0 FOXO + GOu + I‘Ow

(J-1a)

y ‘= Hox + Vv o,

A state transformation is performed such that the state vector has the

form
b'q
r
X = ————
X
n
and ‘
y = x_ +V. ‘ (J-1b)

In this representation, only the partial state vector X, has to

be observed since 'xﬁ is measured directly,

The dynamic equation of the transformed system can be put‘in‘the

form
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from which the equations for X, and X are
¥ = Fx +Bx +Gu+Tw (J-3a)
r rr rn T r

% = Hx +Fx 4+ Gu+IDw., (J-3Db)
n rr n n n n

From Eq. (J-3b), a ''measurement" for the state xr can be defined as

Ve = ¥-Fy-Gu = Hx +v (J-4)

where
v = ITw4v-Fv, (J-5)
r n n

An observer for X, using this '"'measurement" has the form

¥ = FX +B y+gu+K(y -H ). (I1-6)
r rr r r  rr rr
Substituting for Y, from Eq, (J-4), the equation of the observer be-

comes

L]
A~
X
r

(F ~-KH)X + (B-KF)y+ (G-KG)lu+XKy¥, @-7)
r rr r r 1™mn 1‘1‘11 I" o

In practice, it is of course not feasible to differentiate the

measurement y - and therefore a new state variable is defined as
6 = X-Ky. ' (I-8)
l" I" . y .
The dynamic equation for 6 is

6 = (F ~-KH)R+ (B -KF)y+ (G -KG)u (3-9)
r rr.r Ir rn Tr r n

or
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o = -K_H K F X - 7-

6 (Fr . r)e + [Br n + (F, rHr)Kr]y + (Gr Kan)u. (3-10a)
The estimates obtained from Eqs, (J-8) and (J-9) can be used in a con-
troller for generating the feedback from the nonmeasured states, The
control then has the form

= - -C -
u Crxr yy. ’ (J-10b)

A block diagram of a controller using such an estimator is shown in

Fig, J-1,

PLANT
e o e o e
| B
|
; ! G f : H Jl
| |
| |
F |
l |
u L ——————————— — i
uO +-\t
— N e Ll
T -
r--- - - = 7]
| | I
“C, : _gr B K., l
' |
| |
| o
| |
| B
l - Fl‘-KrHr l
| |
l |
1 ol G K G l
' |
o e e e v -

ESTIMATOR
FIG, J-1 CONTROLLER WITH REDUCED ORDER OBSERVER
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The error state equation can be obtained by substracting Eq. (J-6) from

(J-3a), and using (J-la). It is

¥ = (F -KH)% -Bv-Kv +T_w. (3-11)
r r rr r r rr r

Substituting for v. from Eq., (J-5a),
L K ~ - N 5 _ . _
X (Fr rnr)xr (Br Kan)v + (Pr Kan)w KV . (3-12)

In order to avoid the use of Vv, a new state variable is defined as

g =% +Kv.,
r r r
Its dynamic equation is
§=F- 8 - - - .
r (P -kH) -[B -KF +(F -KH)K]Iv (J-13)
N _ ,
‘ <Pr ‘Kan)w ¢
The control equation, (J-10a), can now be rewritten as
u = ~Cx +C8 - - , =
rr Crer nyn (CrKr * Cy)y : (7-14)

Substituting Eq. (J-14) in (J=3a), and adding (J-13), the dynamic equa-

tions for the augmented system are obtained, They are

8 £~ 1 ~ ~ o)
x-} F-cgC ' B-GC | GC -1 xT r :-M1
r b S S o | rn rr o r r N
I e B e I e B e dr==-| | @ (3-15)
X e - | ™ i VM
hn = Hr Gncr i F Gncn | Gncr x + T A E 5
[} ] v
e | | TTTemT T ) Setntutdetuiatd S -l N ottt s Sl v
8 0 b 0 P -K H 9 Pk 1-M
L) L i Vi) ) Lrorrn
where ‘ :
M, = G
1 r(chr + cy)
M = G {C :
2 n( rKr * Cy> 7
M, = B _-KF +(F - K H)K .
rn r rr-r
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To apply this method to the inner gimbal system as represented in Fig,

V-2a, the detector measurement ¢ must be defined as a state,

From Appendix G,

®
)]

B+ 0,9 (J-17a)
P = -afp - 7.2f Q. (3-17b)

Differentiating (J-17a), inserting (J-17b), and using o = w,  the state

equation for ¢ is

e = —4f0€ - 3.6f0a + 0,9w , (J"'18)
Using
T
x = [a, a, r]
T
xn = [e, w]

the dynamic equation, (J-2), can be written in the explicit form

r - r ' = r T - ™ - 1
a (4] o o | 4] 1 a o o o
[}
[}
4 0 0 1.} o O a 0 o © v
i (7-19)
B TR T Wi U N R B Y Bt R :
1 w
€ -3,6f 0 0 | -4f 0.9 € 0 0 -0 2
o : [+]
o] Lo 1. ok o o Lo LoJ b o

From this equation, the augmented state equation can be set up.  The
estimator gain matrix X  is then found by parameter optimization, using

the PAROPT program,  The resulting K matrix is

-0.139 : 1.03x10 "
| | n »
kK = | 1.46x10? i -8,75x10% | .
_ !
-5,05x10" | 2,73x10° |
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The observer eigenvalues are: - 36 + 610j, -0.54, Note the very

low real eigenvalue,

These results were used in Chapter V-D-4 for comparative evalu-

ation,
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APPENDIX K

DETERMINATION OF ACCELERATION ERROR

In this Appendix, the acceleration errors are determined for two
types of systems; (1) Type DR I, (2) Type DR H2, The errors are deter-
mined by computing the value of the integral state i for a constant
rate command, This is equal to the value of the state ¢ = di/dt for
a constant acceleration command, For a constant rate command, ¢ = 0

(Type II system),

1, Type DR I

No control is required for constant rate and the sum of the inputs

to the gyro must therefore be zero, From Fig, V-4 this sum is

u = i W = 0,
bH ao + a€ + e

Since € =0 and W= w
c

This is also the value of the error ¢ for a constant acceleration

command and the acceleration error coefficient is therefore

2. Type DR H2 (Fig, V-6¢)

The sum of the controls that are obtained from the nonzero estimator

states and the integral control must-be zero,

From Fig, V~7b, it is obvious that for constant
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5P

From Fig, V-7a, the state equation for estimator 1 is

) k 0

M)

-4f -k, - -
o ¥y 7.2fo 0,9kl

A
—k2 —0.9k2 c k 1

Qe

For € = 0, the steady state transfer functions from E and & to

w  can be found, They are

7.2fO + 0,9k

~ 1
B
3.6f _k
02
5 ) 4f0 + kl |
k .
3.6f0 9
The total control, therefore, is
”~ A ”~
= 0 = A+ c P +cO+cW
u c,i+ BB o @
c (7, 0.9k, ) - c_ (4f +k 3.6f k ¢
_ B( 2% + 1) o o+1)+ 6% k¢
= C. .1 + .
o 3.6 £ k
0o 2

The value of e for a constant acceleration command (equal to i

for a constant rate command) is therefore

66(7.2f0+0.9k1) - ca(4f0+k1),+ 3.6f0k2cw

3.6f0k2ci

For stability of the characteristic equation of (1), kz > 0,
In general, c6 < 0, " and the three terms in the‘numerator are there-
fore additive, Low ;kl can be seen to decrease the error but it
also décreases the damping of the characteristic équationbof (1) and

causes. a higher control noise,
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For other estimators, the error coefficients can be found in a
similar way but since there are many nonzero states in the estimator,

the expressions become complicated,
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AN-1

AN-2

BI-1

BO-1

BR~-1

BRY~-1

BRY~2
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