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ABSTRACT

An analytical technique for the prediction of the effects of
r.gid baffles on the stability of liquid propellant combustors is
presented. This analysis employs both two and three didensional coz~
bustcr models characterized by concentrated combustion sources at the
chamber injector and a constaat .iach number nozzle. An eigeanfun-tion-
matching method is used o solve the linearized partial differential
equations describing the unsteady flow field for both models. Boundary
layer corrections to this unsteady fliow are used in . mechanical energy
dissipation model to evaluate viscous and turbulence effects within
the flow. An integrol s:tability reiationship iz then employed to pre-
dict che decay rate of the oscillations.

Results of this analysis agree qualitatively with experimental
observations and show that sufficient dissipation exists to indicate
that the proper mechanism of baffle damping is a fluid dynamic loss.
1lhe response of the dissipation model to varying baffle blade length,
mean flow Mich number, oscillation amplitude, baffie configuration

and oscillation mode is examined.
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Section I -
INTRODUCTION

A complex sequence of chemical and physical processes takes place
during combustion and under certajn conditions can couple with the
associated fluid dynamics tc produce oscillations in the thermodynamic
~variables ;nd velocity flow field. Random, small amplitude fluctua-
tions charact:rized by the presence of turbulence are typical of this
flow. A distinct oscillatory behavior, in addition to the turbulerce,
may ‘also be present. These oscillations are organized with a distinct
frequency and can possess an ‘amplitvde which:grOWS with time. This
type of unsteady behavior is termed combustion instability.

High frequency instability or resonant combustion produces several
. detrimental effects and is of major concern in liquid propellant rocket
cowbustion chamber design. These instabilities have ifrequencies
typically between 1000 to 15,900 hertz and have been measured at ampli-
tudes between 10 vo 1,0007percent of steady state values. Wall com-
patability poses a problem with thie occurence of this phenomena due to
iacreased strecs and heat transfer rates. These effects can then lead
to rupture and thermal failure of the chamber wa;ls. Other secondary
prchlems arise from destruction cf controls and safety devices nlaced
internally within the chamber, decreased performance, uacontrolled im-
pulse and variation in thrust vector.

As engine development has progressed, combustor designs have re-
quired Increased performance characteristics and have utilized more
energetic propellants with injectors designed to promote more efficient

combustion. Thesc influences tend to eiacourage the occutrrence of



coicbustion irstability. Instead of altering these combustion charac-
teristics, wichanical damring devices have been used to improve stabll-
ity. Two such devices have beer succesezfully used to suppress
instabilite.

One cf these devices is the acoustic linmer. 1:i is a series of
Helmholtz resonators or cir.umferentfai slots that are piaced or ma-
chined on the periphery of the chamber. Jet losses are responsible
for the damping that is produced 1l - these devices. Experimental veri-
fication of 'his mechanism has been establishedl and a strong thneoreti-
cal basis for design of these devices has been established in several
combustion instability analyse:.2’3 Bowever, designers are reluctant
to use this mechanical damping device because it creates local hot
spots on the chamber walls and heat transfer becomes an important coon-
sideration.

The other device that is used is termed a baffie. 1t is a series
of blades attached tc the Ilanjector surface protrading axially down the
chamber. This device was first proposed in 19544 and was for sone
time regarded as the panacea ro the combustion instability problen.
Su“ficient oxperimental verification of the stability impr vement of
combustcrs with baffles has been produced, however total reliability
of this device has been limited since a few combustors have failed to
gair stability improvemeat with the addition of a baffle. A itheoreti-
cal treatment of baffle damping .s needed to avoid these anomalies and
ate in dezign. Unfortunately, no satisfactory theory exists and design
of the bafflie has remained a black art which utilizes saveral empirical
rules that may cr may not be applied effectively in a particular. engine

configrration.



Several baffle configurations have beei coaceived by designers
(refer to Figure 1) particularly with respect to blade arrangement and
blade shape. Hcwever, utilizing these designs reguires espensive zad
tiné.cénsuning full scrle tests. Heat transfer aspeccs of these de-
vices are also of importance but becausc ths baffle is ar iatermal

device separable from the combustor wails these ccrsideraticas aren®:

crirical as far as the structural integrity of the chamber is concerned.
Before discussing the theoretical attempts to model 10~ preblea,
the relevant experimcutal observations will be examined. First, ir is
observed thar stability is likely to improve with the ¢dditfon of the
baffie. Fur‘-hermore, an increase ia biade length generally increases

the stability of the chazber. Care with respect te this rule m=ust be

taken since a baffle can be too short or rro 1ong.3 Figure 2 gepic:ic ‘
experimenta]l measurements of decay rate for varicus baffle blade
1engths.6 This decay rate is representctive of the cscillations with-
in a baffled combustor experiencing flow or combustion cond:tions thii
would produce neutrally stable oscillaticas in the chamber wizhcuc
baffles. Two separate flows, cold flow (flow without combusiion or
mean flow) and hot flow conditions are examined in Figure ? and show
similar stabilit behavior.

Secondly, it is observed that the addition of a baffle to a2
chamber depresses the preferred frequencies of the cscillations within
the chamber. The frequency becomes even smaller with an increase in
blade iength (refer to Ffgure 3). In conjunction with these resuirts it
is noted that baffle conriguration has a minor influence in the probien,
(several baffle configurarions are depicted i Figures 2 and 3), pro-

viding that _he configurazicn does not coincide with the tangentiai



velocity nodzs downstream of the baffle. For exaxple, an eveniy
spaced three blcded baffie has little iafiuence on damping a third _
trvansverse mode oscillation because  he velocity wodal lines (in the
circamferencial diréction) are coincident with the baffl= biades and
the'resultiﬁg wa > désc%iption withiu the baffle compartmenis and main
chaszber are idactical.

Ceid flow acoustic tests conducted at NASA Lewis by Hieber7 have
produced further ;nformation about baffle dauwping. Test chaxbers coo—
é;rucceé without combustion and nozzie fnfluences indicate the damping
mechanisz is 3 fluid dynamic loss which can be irdependent of combus-
tion- and nozzie effecis. Tuis result is ziso Aisplayed in the similar
suability trends in the ccii flow tests a2nd hot firing tests given in
Figures 2 and 3. From this siudy 2t 1s <slso concluded that the ifa-
crease in surface ares and the asssciatxd viscous loss (as predicted by
an idealized :hesry)a is insufficieat o account for t- 2 energy loss.
In fact, decay rite measurZements are an order of magnitude larger than
prediczed by theorr.

A comprehensive theoretical trgatment of bééflé daﬁgicg'has becn
fruitless in previous investlga;ions. Several aaalytical modais have
failed because of oversimplification of iﬁerprailez. One such study
performed by Reardon’ sizplifies the gecmetry =f the pwobles xnd re-
quires oniy one dimensionzl cscillatiosns ir the haffle cavinies UhiChl
iateract witr three dimensfonal osciilations downstres® of che baffle.
The infiuences of coabrstion, wz2le and mean . :ow effects sre treated
and a d:zcezy rate -sicuiation is made. Frequency prediction with this
model is in ayreemant with experimental observaticr, however, results

from this study inilcate a mechanism for the oaffle damping thsat is



totally dependent upon another loss producing device {i.e. a nozzie)
in the system. Thils conclusion doesn't account for damping in the
pure acoustic flow sitcation which has beer observed in Wieber's work
mentioned earlier. Also the stabhility predictiovms are underestimated
ané do not suaow the proper trends-

A second mode! that was considered for anmalytic treatmeant has been
suggested by Sirignano and Sttahle.10 This model employs a uistorted
injector surface (resembling a particular baffle coufiguration) and
treats 2 surface perturbation problem. The egquation gcverning the re-
sulting flow field are given and am asymptotic represeataticn of the
solution is cbtained. However, since no epergy loss or gain considera-
tions are wmade, stapility predicticn wizh this solution is futile.

The firal analvsis tc be discussed is a model cevised by Oberg,
et. al.ll This study treats three dimensicnal oscillaticas everywhere
in the baffled chamber. An inviscid flow with the influences of cun-
centrated combustion, nozzle and mean flow is studied using a varia-
tional Green's functicn method. Separate sojuti'ns are exnanded within
the baffle compartments and matched wiih the solution downstrezm of the
baffle. Pressure and axial velocity are approximately matched at the
interface connecting these regions and produce the complete solution.
Owing te the variational method, these matching conditions are approxi-
mated and in certain cases are grossly represented. Hewever, frequency
trends are properly predicted and the acoustic flow fie:d iIs in agree-
ment with experimental observation. This solution alse predicts a
strong flow ar und the bafile tips which is in agreemen: with experi-
mental n~bservaticn. The major tailure of this theery is its improper

stability prediction of baffled chambers. The solution predicts a



pressure rise at the injector end of the chamber and a pressure loss
at the nczzle. Using the Rayleigh criterionl2 (see also Chapter V) a
jestabilizing influence for the baffles is then indicated. In other
words, more energ? can be added at the injector and the nozzla ex-
tracts less energy whick results in an uanstable flow.

In reviewirg the forementioned theories, it is apparent that wave
2lteration is nut the mechanism of baffle damping, failing as indicated
by the Rayleigh criterion. A second damping mechanism has also been
considered and 15 a change in combustion characteristics. However,
Wieber's experimental evidence indicates this ~annot be the only wmech-
anism. Concentrating the combustion at the injector overemphasizes
the energy input in the flow. An investigation of distributing the
combuscion shows that it is insufficient to relax the combustion energy
input and baffles stilil cause an overall destabiliziag influence.

A thizd possible mechanism is suggested from Oberg's work and
Wieber's exserimental results. Since a strong flow near the baffle
blade tips is indirited in Oberg's solutionm, viscous ard turbulence
losses may -roduce sufficient energ, dissipatior to overcome the
driving effect of wave alteration. This fluid dynamic less is un-
accounted for in Wieber's attemp: to expiain his experimental results,
since it occurs locally at the tips of the baffle blades and departs
from idealized theory. In fact, this dissipation mechanism has been
neglected in all previous thecries.

The inciusion and estimation of this fluid dynamic loss is the
purpese of this analysis. An eigenfunction-matching method, which
parallels Oberg's sclution is used to represent the unsteady core flow.

An exact match, in contrast to Oberg's varia:ional approximation,



produces the desired soiution. Boundary layer correctioms in the
batfle tip region arc added ro the solution and applied to a mechanical
energy dissipction model. Zesults from this study show the importance

of this energy loss aechanisa.



Section I1

THEOKY--TWO DIMENSIONAL ChAMEZR SOLUTION

Owing to the mathematical complexity of tais problem, a simpliti~
cation of ccmbustor geometry to a two dimencional rectangulzr chamlter
is mada. Tais choice of geometry is used purely as a diagnostic tool
for the more realistic three dimensional flow, and as such predicts
gross stability trends. However, this model clearly shows the mathe-
matical fcrndations of tlhe problem of interest and application to the
three dimersionil chamber is merelv a mathematical extension. This
analysis folliows in the next chapter.

The baffles enter the prodlem as discontinuities which rigidly
protrude axially downstream of the injecicr end of the chamber. The
charber is then split into multiple evenly spaced rectangular compart-
nents vhicﬁ are termipatzd at the baffle ends by a single wain chamber
{ref2r to Figure 4).

Combuszion and nozzle influerces enter the probler as gain-loss
boundary conditions. The combustion is assumed to be coucentrated at
the injector face. Support for this assumption is based upon experi-
mentai observatioa that the majiority of the combustion processes are
completed very near the injector of the chamber.13 This model for the
combustion also overestimates the energy input to the iiow and thus
represents the worst condition for stability.la The unsieady mcdel for
combustion mass generation vsed here is assumed to be only pressure de-
pendent according to the Croccr n-T time lag cheory.15

On the opposite end of the chamber is a "short”, quasi-steady

aoczzle. Due to the restrictive nature of the flow within this nozzle



a constant Mach number condition exists at its entrance.16 The choice
of this loss boundary condition has a secondary imporéance in this
problem because the nozzle produces a minor damping influece.

Periodic oscillations are treated for a thermally and calorically
perfect gaseous flow. The cuoncentrated combustion assumption peimits
the gas dynamic flow field to be represented as a single comstituent,
product gas with no heat transfer or diffusion processes taking place.
The ccre flow within *l.e chawmber is characterized by a constant Mach
number steady flow and is devoid of molecular viscosity and turbulence
effects. Consequently it is consistent to assume a veiocity potential
exists for the core main flow. Corrections to these assumptions are
made by making boundary layer adjustments at the apprvpriate surfaces.

One final assumption is nade with regard to this solation.
Entropy variations a—e neglected in this analysis. This assumption is
consistent with the small overall influence they produce cn the
problem.17

Before mathematically describing the preceeding flow, a non-
dimensionalization of the thermodynemic variables and the velocity
field with respect to the steady state values is made. Because of the
concentratec combustion assumption, the steady state thermodynamic
variables and gas velocity are spatial’ly independent and are represent-
ed as constants.

The nondimensicnal conservation equz-ions governing the flow are
given in the following relationships. The conservaticn of mass has the

form:

QQ -+ -+x
Dc o¥+q = 0
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where p and E are the densitv and gas velocity. These quantities are
nondimensionalized as:

p=olp

q=q/a
where ;* is the dimensional steadv state speed of scund. The indepernd-

ent variables z, y and t are nondimensionalized as:

* %
y=y /R

® %
z= 2z /R

x~% %
t==:ta /R

*

In this two dimensional chamber R rzfers to a characteristic length
*

along y -

The momentum equation is:

715,
< |-

o) +2%p=0

where P is the nondimensional pressure given as P = P*IF* and vy is the
ratio of the specific heats.

The final relationship is the homeatropic condition:
P= pY

The velocity potential assummtion allows the velocity field te
have the following representation:

a=V9

The state variables a-e then rerresented as power series expansions

in an amplitude parameter (g), i.e.
o=3d+¢€d + 0(e?)

P =

=

' 2
+ €P + 0(e9)



11

With these expansions a first order linearization of the conser-

vation equations is made which yields the following equations:

P =vp
vt - 0L 2 | 2 370 (1)
at? azat 3z2
P’ =-y[—t +'H—-Q] (2)

Since standing wave solutions are examined in this analysis it is
consistent to assume exponential time dependence of the percurbatioms.
Therefore the perturbed pressure and velocity potential have the forms:

P' = P@®el® and ¢' = o@)e

iwt
where w = w, + i) is the complex frequency and A is the decay rate.
Substitution of this time dependence transforns equations 1 and 2 into

the following forms:

v2¢+m¢-21wna¢+nz g;d’ (3
P=- 1'{1w¢ + M %%] (&)

The gain-loss boundary conditions at the injector and nozzle
entrance surfaces are formalated, respectivaly, with the aid of Crocco's
n~T time lag theory and the 'short" nozzle approximation. The combus-

tion boundary condition is mathematically expressed 2s:

a = n{P'(t) -p' (- f)}

oY

B8

.il + Q( = M n(1-e" 19Ty Pi (5)
Yo 'z=0
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where n is the interaction index, (a measure of the amplitude depend-
ence of the mass generation on the pressu-e), ard T is the sensitive
time lag, (a time phasing of the mass generation with the pressure).

Typical values for n and T take the following tanges:18

*

0.14 < T < 0.20 millisecs

A

0.6 <n <0.8

The "short" nozzle (constant entrance Mach number) approximation
allows a loss boundary condition which is expressed mathematically as:

9z 2y

rz=L

(6)

z=L

On the remaining surfaces of the chamber and on the baffle blade
surfaces hard wall boundary conditions are used. This is expressed by
a zero normal component of velocity.

With the partial differential equation for the first order veloc-
ity potential snd the linesarized boundar;, conditions a sclution is then
obtained. Buocause ci the discontinuous geometry of rhe problem, a
separation of variables solution can not be Jdirectly obtsined and a
more sophisticatzd method is necessary. 7This method calls for separate
solutions in the baffle c:vities and the main chamber. A matching of
these solutions is made at an artifical interface between tiiese regions
thus producing the complete solution.

The solution within the baffle cavities (O.i z f_zB) is found by
separation of variables and utilizes the injector and har.i wall

boundary conditions. This solutio. takes the form:

eiBI’Bz eiBz,Bz

e + ¢,
o = E A; cOSmIINy (7)
m=0

iB;, 2 iBZ, Zz
L e BB + CB e B BJ




bk

where N is tbe'totairnunber of baffle cavities andfu 1sréﬁ intesér
which definns a particular baffle compartnent for ‘gzl <y < ulx
{refer t6~F1gure 4). The constants B; g , B2 3 and cB are defined
by the differential equation aed the boundary»conditioné} (These con¥‘
stants are epriciﬁly cefined in the Appcndix.)

Within the main chamber (zB_g_z < L) the perturbed velocity

potential tckes the form

e BB, cGL) o 12 (1) (8
o = E B_ COSumy ~ S - g
— elBr.c(zpl) c, elB2,c (3 L)J
L
where Bl c ° B2 c and Cc 2.:2 constants definad by the differential
b ]

equation .nd the nozzle bourdary condition. (These constants are given
in the Appendix.)

The complete solution is trhea obtained by determining the proper
set of {A: }and {Bm} . The continuity of axial velocity and velocity
potential at the main chamber-baffle compartment interface produce the
conditions necessary for the specification of the eigenfunction
coefficients.

With the aid 5f the orthogonality properties of the sgries the

following matching equations are obtained:

u/N
. COSumNy COSmyy dy
LI 2 : , JQu-1)/N
Al B /N 9)
m'=0
COS*MnNy dy
(u-1)/N

and
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(ﬂx . hin,c(zB"I‘) + 1, , C_ e#z,c(zs--L)
B '( A’ - 2 o
m -
eiBl,c&zB-L) + qc eiBz,c\zB.L) .J

-
- " FE.Y i
a*=l pé , Z

‘;-¥ 1B{1§ e BB + IQQB-CB e Q&B B.I> 7

) > X
=0l e 1,BB + CB e z,Bz'B J

q ’
,'u N

N | cosa'my cosmmNy dy
}E:‘F Je=0mN : o
> | 1 - - (10)

u=1

:f';_ v Coszm"ny d'y

rrtion 9 is the representation of the matching of velocity po-
tential aced Equation 10 is the matching of axial velocity at z=zB. It
is recognired that the solution to this problem satisfies a homogeneous
differential equation with homogeneous boundary conditions and as such
peses an eigenvalue problem. Since the amplitude is arbitrary in this
solution, a normalization to a particular mode within the main chamber
is made. This gives an additfonal relationship that is used to com-
pute the eigenvalue (frequency). Mathematically this 1s expressed as:
Bﬁ= 1
or

L) 4 in, ¢ Bz (z3L)
1,¢c -,C C

eiBl iBZ ,C(ZB-L)

(3 =
,c'zB L) + CC e

L iB, .z . iB, .z
Z[iBl,B e ,B'B + 132’3 ('B e »B B X

mxo(L eiB: 5%p 4 Ch o182 3%



u/N

N | COSEny COSsmNy dy
Z A Ju-D/N
u=l ,,}, ' (11)

j 021y dy

Jo

whgte o refers to the éominatingvtransverse mode in the ;ain chanber.

‘7A suécessive approximation technique is used to solve Eguations 9,

10 and 11. The_firét’app:pxima;ion chosen for this method uses the un-
b;ffled chamher. velocity poreéFial solution, i.e. Bm = Gm’& . With
this approximation a calculation of the bafile compattmeng coefficients
{Aﬁj}is made using‘Equation 9. These coefficients, in turn, are used
to recalculate the main chamber coefficieats {Bm}.from Equation 10 arnd
the eigenvalue Equation ii. The ptccedure is then repeated until con-
vergence is obtaired. This iteration scheme converges very qi ickly

and produces frequency pradictions which have less than 5% differences
after approxrimately 5 iterations.

In investigating the convergence of this solution, the “tching -
relationships are “hecked by examining tle velocity potential and axial
velocity predictions at the interface (z=zB}. Figures .nd 6 show
these plots for a two and three compartment baffle configuratic . With
the use of Cesaro summation of the series uxpansions, reasonable agree-
ment is obtained to assure correctness of the mathematics. These
figures also indicate large velc ries at the baffle bilade tips (z=zB).
At these regions the eigenfunction expansions faill to accurately
represent the flow field.

It {s then necessary to characterize the velocity field near the

baff’le blade t.ips. To treat this problem a polar coordinate system is
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- sé(up at the biade tips and ao expansion of the velocity poteatial is
':'ntajred (refer te Figure 7 for che coordinate system).
-~ The partial differential equation describing the unsteady flow
T oeacr tke tigs , Equation 3, is transformed into the following equatioe:
T2 3 % - 2 .
(320,138 ,123%) | .20 25 [S_hg@i -
L—_gt'-\-i. ol ¢ z

Cosa&] + M2 [Cosza (%%!-4-% %§-+1 -aig)—:"qsh(

N

The dlade boundary conditions are represented as

3% . 13¢ sga (L3720 _1 39
+§ )+sm2a(l;3§30-§23(!

28 =0
23l 4=0, 22

if a proper ordering of the solution is lade.with respect to an

asymptotic form, 1i.e.
¢ = ;sA(u) +k

where 0 < [ << 1 and s > 0, it is found that the mean flow corrections
(right hand side of above partial differential equation) are of the
orders O(ZM) and O(M?). Also the w?9 term on the oppesite side of the
equation is a term of O(c‘;z). These terms are very small and are

reglected to produce the asymptotic solutions:

& onsa/2 + k + 0(7) (12)
g <<1

¢=ayg

This solution indicates tl sing _.r behavior of the velocity

field, i.e. 3¢/37 ~= and 1/7 J¢/3x =, T >0 . The constants a and k are
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deterained by matching this asymptotic solution at some Cc with the
outer eigenfunction expansions. Proper choice of Cc is made so that
the remainder terms of Equaticn 12 are negligible and a region of
proper matching of the outer expansions is realized.

Since only two match points are needed for this inner solution,
the asymantotic expansion and the outer series expansiorns for the range
;;ﬂcirtiing the blade tip ave checked for coasistency. Figure 8 shows
th;é'co-patfsbn. The velocity potential is well represented by this
) asy-p(h- c expaaston varticelarly for #/2 < a < 3w/2 . The differences
‘at the otﬁerjparts.of *he range;ate ilnediately accounted for by recog-
1 :ing‘thatithe series expansions have outer boundary conditions.

This, however, is oot o§ w3 icr ;oocern (as will be explained later)

stoce the regiun of 1nte;est is 2 <a<3n/2.
with this representation of the sftbpg flow néa; the baffle tivs,
4 calcuiazion of euergy dissipation duz tc. molecuiar viscosity and

curbulence is thex made. Beoundary isyer corrections un the velocity

are necessary.rrfhis correction for a laminar, pericdic flow is given
19

as: U, 0)=T(a=5,2) ("2 (13)
/2u
o (1+1) w/2y
vhere G(n=6,t) is the periodic outer flow transverse velocity and n is
the normal coupenent to che boundary surface (refer to Figure 9).

An estinate of the mechanical ecergy dissipation withis the bound-

ary layer voJume is then calculatel fiom the following integral:zU

- IBU 3_1 ' )
Bags = [ u, \ar\ drds =y \I t¥(n=¢,t) ds (i4)

vB.L.
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Steady flow corrections are neglected in this calculation since
these corrections are an order ~f magnitude smaller than the unsteady
flow velocities. This is also consistent with the neglect of dissipa-
tion on the chamber walls.

A tiwe average of the above reiationship will thea physically
represent an average cuaantity of mechanical energy that is transformed
irresversible into heat.

With the presence of combustion a highiy turbulent flow situation
wmust bc realized and the existence of turbulence produces more energy
dissipation.21 To account for. this dissipation, the Boussinesq approx-
imatictc is retained which uses a stress-strain lav fo~ the time aver-

" aged turbulent flow. A "turbulent viscosity" vhich s  function of
the local flow conditions is then necessary for the model. Many rela-
ticnsﬁips exist for this parasmeter, each having limted applicability?z
These relationships require a steady flow (avart from the turbuleant
fluctnations) far from the boundary surface. Models lucorporating
unsteady outer flow are nonexistent and must tc created from existing
steady flow theories. An effective viscosity model created by
Spaldin323 ic used fer this analysis. This model is chosen because of
{ts simplicity and its quali:ative accuracy with respect to other com—

- L
bustion flow prob}.er-s.2 This wmodel is represeanted as:

* .
u - *2/3 -*.*2 . '*2 ‘!’

eff « p (nF JF + B, JO )
wher< the F and 0 subscript refer to the fuel and cxidizer quantities.
In order to be consistent with the single comporent gas assumption of

this problem, the fuel ard oxidizecr velocities are assumed to be uni-

* x
form with the yrvduct gas velocity, i.e. UF = Uo = U then the
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equation reduces to:

x
ueff

*
vhere |U | 1s a r.m.s. value of speed in the entire turbulent field.

. %, %
«9 U]

An incorporation ~f the pericdic flow velocity in.o the medel is

: *
then made by time avcraging the r.m.s. |0 | to give the final form of

;ieff: - N -
2, 20T 3 X

Yett = Stard {" e 1i5)

Geocaetrical corrections to this ejuation are neSleqted since they -
have @ weak dependence in the model. Spalding suggests a proportion-

ality constant (C ) of rthe 2rdex 0(0.03).

turd
This modesl is ther used to calcilate the turbulent dissipation.

By assuming that the turbulect velocity profiles are similar to the

laminar predictioas given by Equation 13, th~ following fntegral rzia-

tion for the dissipation :s obtained:25

T = tH T
Eais [ vy et g 6)
S5 2

The importance of tue exactness of the turbulent velocity prof‘le is
secondary since a glcbal, integral guantity is evaluated. However, it
is experimentally observed that turbulent profiles are steeper ir shape
than the laminar flow profiles and consequently this dissipation cal-
culation could be underestimated.

Cne flnal correction is necessary for the dissipation calculatior.
A physically impossible infinitely thin baffle blacde will create an in-
finite amount of energy loss because o. the singular behavior of the

velceity at the tip. A baffle blade of finite thickness will therefore

be used in this problem.
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To correct for this thickness a neighboring streamline is wsed to
represent the baffle surfaces. This eliminates a reworaing of the
solation to correct for the baffle shjsé‘siﬁ;é the normal component of
velocity vanishes along a streamline. Figure 10 shows a stroamline
piot of the fiow withir a baffled chamber with no mean flow. Near the
tips of the blades the streazlipes are wvelli represeanted by
b= ;” ,sg_g:;{_tiz paréicularl_v for £ << 1 and */2 <a < 38/2 . Tms
raggé é&éines the geometry of thz blade tips. This streamfunction ix
;;igjneﬂ':o sescribe ioe rest offéhe baffle blade surface but because
the ;;iocity decreasses substantially away from the blade tips this sur-

face description ¥3 of secoendary imporcance in the dissipation calcula-

tion. Mathemacically this surface is represented as:
% stpal2 = (174)*

where T is the blade thickness.

A calculation of the tip loss is now available uslag Equations 12,
15 and 16. Rather -aan correcting boundary <>nditions to account for
this dissipation, as is done in acoustic theory, a more direct method
of stability prediction is appiied. Aun integral time average of the
energy aquation, derived by Cantrell aund Hart,26 is used toc estimate
the zlotal stability of the flow within the combustor. Stability
behavior (a calculation of decay rate of the perturbations) is examined
by accounting for the energy inputs or extractions at the various sur-

Jaces ¢f the chamher. Mathematically this telationskip, correct to

0(53}. is stated as:
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v2 > >t e
n([{% +-121q°q +mp}w
¥
(f > P'2 & >
- ?{Pq +; Hek}' ds (17)
S

vhere A 1s the decay rate that is of the order 0(g).

Evaluating the r.h.s. over the baffie surfaces results in 2 term
zepresenting the mechanical caergy extracted at the surface. This can
directly be equated to the dissipation integral Equation 16. By
applying the appropriate boundary conditions the Cantrell and Hart

integral relationshkip has the final form:

2
Sinj) S

I‘_— o ' >t 3V
N R o VAT | TR g
¥

A={‘ [n_w&oo_s«j)_ PP’ dSinj + / @r_’_gds

The first term in the numerator represents the energy sdded to the
unsteady flow by the combustion, the second term the eneryy fxtracted
by the nozzle, and the third term the energy loss created by the strong
flow surrounding the baffle blade tips.

Stability calculations using this mathematical analysis are coded
in Fortran and evaluated using a CDC 6400 computer. Inputs to the
progsam include combustor geometry, baffle configuration, mes flow
Mach number and oscillation mode character. Some aspects of ti2 com—

putation problem are discussed later.
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Section 1II1

THEORY--THREE DIMENSIONAL CHAMBER

A more realistic description of the prob.em of interest is made
by discarding the tw: dimensional gecmetry assumption and treating a
three dimersional cylindrical comhustion chamber. Thz baffles enter
the geometry ir a similar mann:r by dividing the injector end of the
chamber into equal angle sector compartments (refer to Figure 11).

Since the same parrizl diffé?ential equation and boundary con-
ditions are applied %o this problem, the extention to the three
dimensional problem req:.ires dovbly infinite eigenfunctiou expansions

in the main cliamber and baffle compairtments. These expansions ure as

follows:
© oo e1Bl c(z-L) + eiB2 c(z-L)
c c . ? i
¢ = E E B b4 (r,G){—— - - -1 (19)
—t £ fe = eiBl,c(zB L) +C eiBz’c\zB L),
e=c =1 . c
and
s ot B eiB‘,Bz +Cy eiBz,Bz
¢ = E Ai ¥ (r,e){ } (20)
Z m  m iB, .z JiB, .z
0 -1 e !,B°B+ Cy e 2,BB
where

B _ 1 B
¥o4r.9) = cosme Jpy(Ae F)
2 2 N Tou

Within the main chamber two types of soluticn are possible. The

standing wave solution is made by specifing:

(o

c ay = -
Wim(r") €0Sm? Jm(kmr)
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The traveling wave solution is given by:

¥ (r,0) = R 3050

The constants Bx,s, BZ,B, CB, Bx,c, Bz’c and (:c are given explicitly
in the Appendix.

The matching relationships and eigenvalue equation that are

necessary in obtaining a complete solution take the following forms:

® © / / m("e) \Y .(r,e) rdrd®
M ZZ B v ' 2-“—91-1)
m'=0 &‘. =]
/ ‘i‘ (r,B) rdrd€
2_(;-1 0

and
{ 1B, e'®,c(ZgL) 4 43, c, 1B, <z }
ﬂhn ] 2 v =
£m iBl’ (zB L) + cc iBZ,c(zB L)
© 1B, _z iB

1BB+C e 2, B%B

T B ,.C
/ / Yzm(r,e) Yi.mv(rﬂ) rdrd®
21 (-1)J0
W=l [ [ S v (r,€) ‘{’ ' v(r,e) rdrdf
L m
0 J¢0

) 2 g2
ZZ 1!’.l B e 1 BB + iBZLB CB e BB .
1B iB

or



iB

}:Z e“l,nzn + 1B, C. e 2,B°B }

=0 =1" ¢ 1B, BzB + CB einl,BzB

l [ h(r 8) ‘Ph(t 8) rdrd?
fr(u-l)
/ [ vﬁ;(r,e) vi;a(r,e) rdrdo

where m and £ respectively specifies the dominating transverse and

(5 |

radial modes in the main chamber.

An initial approximation to the preceeding equatior sets is sim-

ilar to the two dimensional chamber problem and is given by

Bop = 6m,m 8p 7
The same iteration scheme described in the previouvs chapter is then
used to obtain higher approximations.

Figure 12 shows a comparison of the matching of the velocity po-
tential and the axial velocity at the baffle compartment-main chamber
interface. Reaasonable agreement of the matchings 3is predicted by the
baffle compartment solution as compared to the main chamber solution
indicates the correctress of the solution method. Also indicated is
the singular behavior of the velocity field at ~: z baffle tips.

An asymptotic expansion is used to describe the velocity potential

near the tips with the allowance of radial dependence of the parameters
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a and k in Equation 12. With this solution the energy dissipation
given by Equation 16 18 used with the Cantrell-Hart stability Equation
Ié to predict decay rate.

A Fortran program is used to analyze the results of the calcula-
tions with the inputs of combustor geometry, baffle configuration, mean
flow Mach number, and main chamber m:de character. Computatiown is more
lengthy in the three dimensional problem and requires 20 times the
computer time required for the two aimensional chamber problem. The
next section gives some details concerning the computational problems

involved.
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Section IV
COMPUTER SOLUTION

Several aspects of the computer evaluation of the preceeding
solutions merit further explahation. First, convergence of the solu-
tion with respect to approximating the infinite series expansions and
the iteration method used to calculate these expansions is discussed.
A major concern in this solution is the accuracy of the velccity po-
tential representation.

In the two dimencional chapber solution, the number of terms used
to approximate the infinite series is not a critical problem because
the solution is represented as a single series expansion that requires
relatively little computing time. T;pically a 30 term expansion in the
baffle compartments and main chamber produced sufficient agreement of
the match of the velocity potential at the baffle compartment-main
chamber interface. This uumber of *erms is also sufficient for the
match of the baffle compartment series solution to the asymptccic solu-
tion near the biade tips. Iucreasing the number of terms has only a
slight effect on the overall model predictions, decreasing the number
of terms causes orly a modest reduction in computer time required.

Compared with the two dimensional chamber solution, the three
dimensional cylindrical chamber solution is more complex. The compli-
cations of calculating the solution arise from the double infinite
Fourier-Eessel expansions by which the solution is represented. The
number of terms used to approximat: these infinite expansions 1is very
critical and drastically influences computing time and storage.

Improved convergence and the elimination of Gibbs phkenomena has been
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attained using Cesaro summation.Z7 The .use of this technique allows -a
redvction in the number of terms retalued in the expaaslons and com-
puting time is consequently reduced. Figure 13 shows a_comparison of
the baffle compartment and mainichamber series soluitions of the axial
velocity at the baffle-main chamber interface (z*zb). These 1¢ term
expansions (summed without the Cesaro technique) are grossly matched.
Figure 14 shows the improvement of the matching '.-ith che appl icaticp of
Cesarc summation to the series solutions. -

The second aspect cf convergeace is concefded with the 1ter§t10n
scheme used to solve the matching relationships and the eigenvalue
equation. This is not a major problea because the sucresstive
approximation technique converges very guickly. Typically after 5
iterations the frequency predictions differ between successivs itera-
tions by less than 5Z. However, the eigenvalue equation h?s multiple
solutions so care must be taken ipr choosing the proper initiszl
frequency.

ir: arrivicg at the solvutions several integral quantities . e
numerically evaluated using an improved quadrature metiiod. Eloven
quadrature modes evaluacc the dissipation integral with sufficient
accuracy. \nother integra. - antity is evaluated using eleven cuadra-
ture nodes and appears irn the cylindrical chamber matching relatior-

shinrs:
/ J_@: o o €) J G per) rdr
o 2 2

A marrix of these integrals is evaluated numerically and represents a

major part of the computing and storage of the rorputer program. For
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large values of ) and A ¢ more quadrature modes must be used

£,oN/2 2',m
to assure proper convergence of the solution.

Typical computa;ion times for a particular baffle configuration
(and consequently one wp and A) are 60 seconds for the two dimensional
chamber solution with 30 term expansions and 1000 seconds for the three
dimensional chamber solution which uses 10x10 Fourier-Bessel expansion

for the sclution. Better optimiration and storage could possibly

reduce these computing requirements.
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Section V
RESULTS

Previous investigations based on wave alteratijon as the possible
~mechanism for the damping produced by baffles have failed to correctly

predict stability trends. These studies have all neglected viscous
and turiulence effects-in the flow. The ircorporation of these effects_
is of major importance in this proble: and is necessary to desc:i&a the
stability behavior of baffled combus tors.

Before discussing resalts frcn the presant model which uses me-
chanical energy dissipation as a damping mechanism, the shortcomings of
previous analytical attempts will be clarified. A wel: establisued
criterion stated by Lord Rayleigh clearly indicates why wave 3.teration
may cause a destabilizing behavior ia baffled combuswors. The sease of
the criterion is giver ty Rayleigh’'s statement, "If heas be glven to
the air at the moment of greatest ceondemsation, or bz taken from it at
the moment of greatest rarefraction the vibration is encouraged."lz A
mathematical fcrmulation cf this statem=at has been made by Cantrell
and Hart and is given by Equation 17 in Section TI. Applyving the

appronriate cuundary canditicns on the injector surface, S and on

ini’
vhe nozzle entrance surfaca, Snoz’ alilows an integral imequality which
can ve used to predict the glokal stability of the perturbed contined
flow. By referencing the combustinrn parameter n and ; to those of an
unbaffled neutrally stahle combgstor this iuequality is reduced to a
function of onlvy the perturbed pressure distributions on the surfaces
Sinj and Snoz' (In this reference chamber oscillations neither grow

- decay with time because energy is acded or extracted it the same
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pressure level.) Formally, the inequality requires that for unstable

<[ P'? 4s > ></ P'2 gs
inj - A no
3 3
noz

inj

escillations:

In other words, if mor2 energy is added due to the combustion than is
extracted b§ thz no.zle the flow is uastable. The equality sign indi-
cates neutral stability behavior of the flow.

Figure 15 shows the pressure distribution for a baffled and un—
bafflad combustor at the wnozzie (z=L)land injector (z=0) ends of the
chamber. Without a baffle the combustor is neutrally stable and shows
‘dentical pressure distributions over injector and nozzle surfaces.
Placement of a bzffie in a chamber rosulcs in a pressure amplitude rise
at the injecror surface and a pressure amplitude loss at the nozzle.
Consequently, the flow hecomes unstable.

It is this pressure wave alteratiom which has resulted in earlier
investigaticns predicting a destabilizing influence for baffles. Oriv
with the consideraticn of mechanical energv dissipation will tke sta-
bilizing influence of baffles become apparent. Scme results for the
present mcdel which includes this dissipative influence will now be

discussed.

Two Dimensional Chamber Results

Linear stability predictions are examined first in a two dimen-
slonal combustor modeled as a rectangular chamber with a leagth L=1.5.
First transverse mode oscillations are studied and are assumed to dom-

snate the solution within th. main chamter. (First transverse mode
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refers to a standing oscillation in the y direction that hes a half-
cycle between y=0 and y=1.) The parameters n ard T required for the
unsteady combustion model are assigned the values p=(y+l)/&y and T=1.
These choices are made so that a neutrally stable ucbaffled combustor
is referenced (i.e. with no baffles the chamber is aeutrally stabie).

For the dissipation modzl a value for the tntbnleét zceificient

L d
cturb = 0.034 is used and is Fhe value suggested by Spalding.23 Also
a nondimensional thi-~kness which is typical of actual baffle configura-
tions of T=0.05 1s chosen for the baffle blades.

Before examining tue stability trends, the effects of Llade length
on the noraalized frecuency, (frequency of the baffled chamber/frequen-
cy of the urbaffied chamber), are examined. Figure 16 shews that the
frequency decreases when a baffle is added to a chamber. Furthermore,
an increase in blade length further depresses the freguency. This
vrediction is in agreement with the experimental data provided by
Aetojet—General.e Mean flow corrections to this frequency as predicted
bv the model are shown in Figure 17 It is seen that the normalized
frequency is reduced with an increase in mean flow Mach number.

The principal result of these calculations is the prediction of
combustor stability. DPecay ratzs are calculated for various baffle
blade lengths and chamber conditions. Decay in decivel/cycle is de-
fined as follows:

P’ (t) ]

Decay in decibels/cycle = 20 1°gxo[ T+ Zﬂ/ur)

Witk (he exponential time dependence of the oscillations in this prou-
lem this definition reduces to:
Decav in decibrls/cvcle = 54.575 l/uh

where A 1s the decay rate and w, 1s the frequency.
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Figure 18 shows decay pradictions for a iwo compartment baffle
configuration in a two dimensfonsl combustor with wc mean flow {pure
acoustic flow). Two wave aaplitudes (c)ﬁare exakined and are shovn to
bracket the qualitative stabiliiy trends as reported (i experimental
observations (again from Aerojet-Geanerzl data). With an iecrease in
amplitude the combustor stability is improved. This improvement is
attributed to tae increased kinetic energy of the flow which increases
the turbulant viscosity nea:r the blade tips.

With the ad4ition of coubusticn and nozzle influences ia the flow,
the flow field must contair mean flow corrections. These influences
increase the energy densitfes of the fiow and conseqientlr increase the
sechanical energy dissipation. However, the addition of combustior -
cteases the energy iuput intc the flow and lessens the global stabilficy
of the flow. Figure 19 shows the stability trends for a -ombustor ex-
periencing oscillations with amplitude £ = 0.1 for various mean flow
M2ch numbers. Even with the combusticn input, sufiicient cdissipation
oxists to stabilize the chamber nroviding that the baffle tlades are
long enough. The effectiveness of increasing the blade lszngth of the
baffle is reduces as the mean flow Mach number is increased, providing
the wave amplftude stays constant. Beyona a blade length zp = 0.1 the
nozzle victually loses all ite damping ability because the pressure
oscillations are distorted so that a pressure node at the noz:ile
entrance occurs. Consequently, only the bvaffle tip dissipation remains
to counteract the energy inpur at che injector. It can %e seen in
Figure 19 tiuat for large Mich numters 2 »-ffie can destabilize a com~
bustor because the increazsed energy due to the combustisn overpowers the

energy loss at the blade tips. This may be an explanaticn for the
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experimental observation that baffles can be too short and actually
destabilize the combustor. However, it mus* be recognized that the
concentrated combustion model overpredicts the energy input to the com
bustor and in doing so may be responsible for the destab®lizing be-
havior. Also with an increase ian combustion input iato the chamber an
increase in wave amplitude (£) can be expeéted. This Mach number de-
rendence in £ is negiected in the results of Figure 19 and consequeatly
the dissipation is underestimated for large Mach rumbers.

Statility trends for several vaffle ronfigurations are shown in
Figure 20. Baffle coanfiguration is seen to have a secondary infiueunce
in the problem. Adding more compartments to a cociiguration decreases
the tip velecities énd also increases the surface area. These in-
fluences counterbalance each ather'gnd proGguce small changes in sta-
biliity character of baf<le configuration. There is an advantage of
large compartmznt configurctions, however, since wore modes can be
effectively damped with mary compartments. For example, a two compart-
ment baffle is onlv eifective in damping odd numbared transverse modes
vhereas a five compartrent baifle is effective in dampling ali modes ex-
cepc those wnich are gulciples of five.

Figure 21 shows the effectiveness of a two compartment baffle con-
tiguration in camping the {irst anc thira transverse mode in the =ain
ctamber (wave ampilitude £ = 0.1). The third transversy¢ mode charzIter-
izes a staanding oscillation whi~h has three haif-cvcles betwewn y = C
and v = 1. Figure 21 displaye the fact that a baffie which damps the
tirst transverse wode also damps the third transverse mode. The
decibel rating of decav/cycle is misleadin2 in tnis figure becazuse vthe

frequency sciles are different. (The frequency of the third transverse
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mode is about three times that of the first tran_verse mode.) A more
representative stability plot is giv;Q in ¥iccze 22 and 458 a plot of
decay race (}) for various blade lengths. This figure indicates the

similar behavior of the two cuans.

Three Dimensional Caa~er Results

Cf greater- gructical interest are the stasilizy predictions fof
the three dimevsional cylindrical chamber modei used in this work. A
par;iculéé;;h;nber vith a length to radi@s rvario of L/R = 1.5 is
exzstqed; A three bladed, evenly spaced baffle configvration with
blade tgickﬂass T = 0.05 1s input iantc the dissipaticn mrdiel for tye
terbulent viscosity. ‘Lhree ditensicnal first tramnsverse mode osciila-
t.ons in the main chamber are studied with an ursteady combustion input
which use n = {(v#i)/4y and 1= ﬂllii . Again a neutrally stuble un-
baffled combustor is referenced with these parameters.

The frequency predictions of the three dimension2]l solution par-
allel those of the two dimensionzl solution and are in agreement with
experinmental data. These results are showan in Figure 23.

Decay rate predictions are shown i~ Figure 24 for a combustor with
no mear flow and no cowburtfon or nozzle influences. Two wave ampli-
tudes, (¢ = 0.1 and € = 0.2) are snowe in this tigure and indicate the
stabilizing behavior of baffles. bBecause of the additionai rzdial de-
pendence in the three dimensiornal checmber solucion the baffie tip
velocities are not a2s large as those p~edicted In the two dimensicnal
chamber solution. Corsequently, the dissipation is overestimated in the
twc dimensional chamber soiuvtion relative to the wore rea'istic three

dimensional chamber case.
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Figure 25 shows the stability prediction of a cylirdrical ccu-
bustor which has a mean flow (M = 0.1), ccabustion and nozzle influ-
ences and is experiencing oscillations with amplitude € = 0.1. Twoe
types of csciilation are possible for this combustor: standing and
traveling wave oscillations. Without dissipation influences, it is
seen that these solutions produce the same destabiiizing ianfluence for
the Laffle (as predicted by the Rayleigh criterion). With the inclu-~
sfon of mechaniczl emergy dissipation in the model, these results are
reversed and show a stabilizing influence for the baffle. It is seen
that the traveling wave solution is most affected by the presence of
the baffle and oroduces decay rates that are four times those of the
standing wave solutior. This is a critical result because the travel-
ing wave is most common and is the most destructive. It is also
apparent that the phasing betweer the oscillations in the main chamber
and the standing wave oscillations in the baffle cavities produce dif-
ferent stability results. This observation is also nade in Wieber's
experimental rgsults.7

Mean flow cerrections to decav rate are showit in Figure 26. These
predictions agree with the tw2 dimensicr2l chamber solutions and indi-
cate that a particular baffle blade lesgth becomes less effective with
an increase in mean ficw Mach number, providing ¢ i{s coustant. Again
the Mach number dependence of ¢ has Leen neglected from this result and
as such underpredicts the dissipation for large Mach numbers.

The sensitivity of turbulenc viscosity model to the selection
of Cturb is the fInal parameter examined ic this studv. Figure 27
shcws that an increase in Cturb gives an increase In decav rate. This

patameter has been treated as having secondary importance since only
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qualitative results can at this time be predicted. More reliable
turbulence dzta is necessary to assure the proper model for the tur-

bulent viscosity or a proper value of eurd’
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Section VI
CONCLUSIONS

A theoretical study of the stability of flows within combustion
chambers with evenly spaced baffle configurations was presented. For the
first time, a stabilizing influence for baffles has been properly pre-
dicted in an analytical model which incorporates the irfluences of a
concentraied combustion source at the injector, a “short" nozzle ter-
minz2ting the chamber, and mechanical energy dissipation at the baffle
blade tips. Two separate combustion chamber geometries are examined
with this model and produce the following results:

1. The addition of a baffle to a combustor in many situations

will improve the stability of a chamber.

2, A fluid dvnamic loss created by thc effects of viscosity
and turbulence produce tne damping mechanism of the baffle.
This erergy dissipation occurs locally at the baffle blade
tips.

3. Without the effects of mechanical energy dissipation, wave
alteratioa prcduced by the addition of a baffle :to a com
bustor cause a destabilizing influence.

4. The baffle is most eifective in damping the traveling
transverse modes of oscillation.

5. An improvement in combustor stability is generally achieved
with an increase in baffle blade leugth.

6. Longer baffles mav be recuired for combustors which coatain

an increased mean flow.
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The addition of a baffle to a combustion chamber depresses
the oscillation frequency.
Baffle configuration has a secondary influence on the

stability of the chamber.
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Figure 10. A streamline plot of the unsteady flow within
a baffled combustor (first transverse mode

in the main chamber).



Baffle

6 Injector

Figure 11. The geometry cf the three dimensionzl bafflied
chamber.



54

!////’\\\\\x__,,—maln chamber

solution

J}affle compartment

‘" sg}gtlon

f ]
/3 2w/3 2w

Chamber conditions
L/R=1.5; M=0.0; zb=0.
First Transverse mode

baffle compartment
—— solution

main chamber
solution

1.0-
-
o
bt
c 0-5"
o
Fs ]
2
o 0.0
3
-d
o
3 -0.54
>
‘1.04
0.50 4
2 0.25 1
oy
[ 4]
o
—f
Q
S
-
L]
E;

Figure 12.

Axial velocity and velocity potential at the main
chamber-baffle compartment interface ‘and r=l.),
in a cylindrical chamber with a three compartment
baffle of blade length zB=0.3.



2.0

N "nd"\

Q ! \

d main chamber \J/ \

I P

N .0 solution "
O (10 term

© expansicn)

Sy

2 e |
) . U. y
3 0. .67 1.0
~

)

>
H -
©
o~

>
b

Figure 13.

ss

baffle compartment
solution
‘10 term exransion)

The comparison of the solutions of axial velocity at the main

chamber-baffle compartmentn interface using the series expansions
summed without Cesaro summation.



52.07

'*.
".

N
" \
) baffle compartmentt
© 1.0 solution
3
o (10 term \
- expansion) \
Q D
S
o y
>
G \
." \‘ |
a \

main chamber solution

[}

|

\
k (10 term expansion)
\

\)
'
\
\
]
+
]
[
]

Figure 14. The comparison of the solutions of axial velocity at the main

chamber-baffle compartments inturface using Cesaro summation
of the series expansions.

9¢



57

./
sz
'/
3. 0. /
2.0+ /
Pressure at the ]
nozzle entranc
of baffled chaqber
1.0+
/
0.0 il ,
1.0

Perturbed Pressure

-1.0 1 . Pressure at
// ndzzle and injector

off unbaffled chamber
-2.0 1 //

// Pressure at the
njedtor end of baffled

-3.0 4 // chamber

Figure 13. The profiles cf the perturbed pressure at the
nozzle and injector ends of a baffled and
unbaffled chamber.



Normalized Frequen~y

0.8‘-

0.64 o
Predictions of Two —~—
dimensional chanber
L=1.5; M=0.0;Two compartment baffle
0.4"‘
-0~ Acoustic tasts
0.2 —e— hot flow tests
0.0 ‘ - - .
0.1 0.2 0.3 .4 0.5 0.6 077

Baffle Blade Length

Figure 16. Prediction of the frequency deprcsnion va., baffle biade lenpth in a
Two dimensicrnal chamber.



Ncrmalized Frequency

0.4 .

0.0

Mean flow Mach no.=0.23}

Chamber'conditiona
L=1.5: Two compartment baffle
Tirst Transverse 1no0de

Figure 17.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Baffle Blade Length

Mean flow Mach number correcticns to the frequency vs. baffle blade
length.

6S



Decay in decibels/cycle

~
(&]
:

v
o
1

[ ]
.
wn

0.0

Q Acoustic tests

5'0.1 '/ o

N\
o

/ O \ )
c o1
) o , em0,
TI'T oz a3 014 0.5 0.6 0.7 0.8

paffle Blade Length

Figure 18. Decay in decibels/cycle vs. baffle blade length in a chamber which
has vo combustion, nnzzle or mean flow effects for various wave
ampiitudos.



Decay in decipels/cycle

1.0 1

3.0

Wave amplitude € =0.1

P

Mach no.=0.1 . P o

L
-~

Mach no.=0.2 ~\\~”’,

—C”i:;c Ll

v v v

6-1-.0.2  C.3  0.4.-°0.5 0.6 0.7 0.4

\“~~~____.u—” Baffle Blade Length

Jd

Tigurn 19. Mean flow, combuntion aad nozzle influences on the
predlction of decay In decibels/cycle vs. baffle
blade lenjth.

9



[ %]

0

<o
aad

v
‘0
311 5- ”-———'-.-—-_-"‘--~ -
N e .
- . . .
g /..-—"“"-_.
.
'g 1.06" -/ 2 compartmehts
/
° /
. 10 compartments
5 / ’// P
s, 0.59 ’ ,/'
3 /// pid 5 compartments
0.0 == , - . )

T

1 k)
01 o0.2 0.3 0.4 0.5 0.6 0.7 0.8
Baffle Blade Length

Figure :0. The effect of number of baffle compartments on the damping
in decibele/cycle vs. baffle blade length.

[4]



vcle

P

R

-~

cay in decibels/c

2.0 +
1st Transverse mcdn ™ J°
1.5 J
3rd Transverse de ,
/,,
’
Pl 38 ,”
/, \\s_,._.— -
S
V4
4
A J A ] L m

Y .
0.3 0.4 0.5 0.6 0.7
Baffle Blade Length

Figure 21. The predictions of damping in decibela/cycle vs. baffle
blade length for various oscillation modes in the main
chamber.

€9



Decay rate~- )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.¢
Baffle Llade Length

Figure 22 The decay rate (A) vs. baffla blude lengtn for the first and

third transverse mode in the main chamber.



1.0 QOO

e
@
0.8 - Eg \~\~‘--~\§§
D
) ®
)
%0.6 4 Chamber conditions o)
E L/R=1.5; M=0,0
o First Transverse node e
0.4
ol
F
g 0.2
0.0

L L v 1§

¥ T
0.1 0.2 0.3 0.4 0.5 0.6 0.

qd

Baffle Blade Length

Figure 7. Normalized frey.u2ncy ve. baffle blade length in a three

uimensional chamber. ’

s9



.0
10 .

Decay in decibels/cycle

7.5-1

5.0-‘

Mean flow Mach no, M=0.1l

€=0.1

T T ] ¥ L] L L

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Baffle Blade length

Figure 24. The effect of wave amplitude on the pradiction of docay

in decibels/cycle vs. baffle blade leng'

99



in decibels/cycle

Deca?

103%

2.5
0.0

-2.5-

67

Traveling wave

Standiny wave

-50 0"

L)

0.1 V- S 0.4 0.5 0.6 0.7
) ) ‘JL;‘"s‘\\gaffle Blade Lerngth
\‘
\.\

Solutions without dissipation

Figure 25. 7The standing wave and traveling wave predictions

of decay in decibels/cycle vs. baffle blade length.



Decay in decibels/cycle

3.0

2,04

1.07 o
- ey ‘Kr
"~
0.0
1§ 1
0.1 0.2
Mean Flow Mach Ruuber
Figure 26. Mean flow Mach number correctiocns on decay

in decibeis/cycle vs baffle biade length
{wave amplitude =0.1).



Decay in decibels/cycle

5.0 -y

Cturb'O

05

9.1 0.2 0.3

Figure 27. The effezt of the turbulence coefficient (Cturb) on the stability

predictions.

0.4 0.5 0.6 0.7

Baffie Blade Length

69






A-1

APPENDIX A

The set of constants which appear in Equation 7, 8, 19 and 20 are
defined by the partial differential equation and the appropriate
boundary conditions. For the two dimensional chamber these constants
are defined as:

Baffle compartment -~ Two Cimensional Chauaber

. L Jm—’nz + (M2 - 1) ((@mN)? - w?)
a -wu?

Bx’B

o oyful s 0f - 1) (@)® w?)
5B -

B, p+ 4 [ - e - 2] @+ Bl,B)]

C, = -|—*

B, y + M [m@ - STy _ 1] (w+ By g

Main Chamber - Twe Dimensional Combustor

B =M +Jm2u2 + M2 - 1) (@m)? - w?)
e a - u)

_ uM -sznz + (M2 - 1) ((@m)? - w?)
fe a - M3

. - -[ B, . * MGy - 1) (w+ Bz’c)/Z ]

B, . +MGy-1) ( + Bz’c)lz

L

For the three dimensional cylindrical chamber these ccastants are

represented as:

PRECEDING PAGE BLANK NOT FILMFD
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Baffle compartment - Three Dimensional cher: -

2
oM + ﬁ2u2+ M2 - 13 (Agm-wz)
BI_B= -2 <
: (i1 -M9)
M- g0 -1 Gy -
Bz B‘ ’ ~”
’ 1 - M9
) T, v °
. - 1314'£+_-1[yu(1-e1 ) - 1] (w+B1,B)
B -iwT
B, g *MImQ-e) - 1] w+3B, )

Main chamber - Three Di-.ensional Combust ¢

i+ JoRH o - 1) O, - ud)

Q - M?)

Bl,c

WM - VKZMZ + M2 -1) (XE; - w?)

B =
2, A
:C ¢ - M%)

2

B, c + My - 1) (w+ Bl’c)/z ]

)
n
|
| ——

B, (+My-1) (w+B, )/2

]
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Appeadix B

COMPUTER PROGRAMS

The computer programs used to calculate the frequency (i) and the

decay rate (A1) =f wscillat®cns for baffled cosbustors modeled with the

irfiveaces of gain/loss ead-wall boundary conditiomns, mean flow, and

baffle Lip en=rgy dissepalion are givea in this section. These pro..ams

are codec in Fortran IV using coxplcx avitnematic. Two pr. grams are

written feor the two-dimensional clamber (TWDB) and the threc dimensional

cvlindrical chamber (BAFFLZ). Terminating cach program is 2 sampie output.

The

T

11.

Two Dimeasional Chamber - Computer Programs TWD3

input paraunsters to this program are devinedl as-

MC - Maximum number of series terms used tc represeat the soiu-
tion in the main chamber.

M3 - MzaxiImum number of series terms used to represect the colu-
tion in the baffle compartments.

ALENGTH - Nondimensional chamber length (Lx/R%).

ZB - Nondisensional baffie blade length (ZB*IR*).

T - Noudimensionai paffle biad- thickness (T*/R*).

MUB - Total mimber of ev-aly spaced baffie compartmeats.

GAMMA - Ratic of specific :ats.

ErSIION - Uscillation wave amplitud..

«MACH - Steady statle rean llow Mac. number.

MHAT - The transverse mcde nuaber of the dominating term in

the maia chamber solutioen.

IDM: ~ Maximem number o) irerttions of the successive approxi-

ma’ ion of the solution.
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Other initialized parameters (mot read in the program as data):

1. VISC*- Nondimensiocal molecular viscosity (i */ p*a*R%).

2. CTURB - Coefficient in Spalding's effective turbulent viscosi:y

i del.

3. A - Interaction iodex parameter of T_occe's time-lag model of

unsteady cumbqstivn

4. TAU - Time lag of Crocco's time lag model.

The input data for program TWDB is read oa three cards znc¢ has the

foliowing fermad:

Columns

Card 1 .1-5
6-10
11-15
16-20

Card 2 . 1-10
11-20
21-30
31-40

Cazd 3 1-5
6-15

16-25

= -Variable

uC
M3
IDMAX
MHAT
. ALENGTH
AMACH
GAMMA
E;SILON
MUB
ZB

T

<

Ivpe
TNTEGER
INTEGFR
INTEGER
INTEGER
ECIMAL
DECIMAL
JECIMAL
DECIMAL
INTECER
DECIMAL

DECIMAL

A listigg of the program aruy a 'sample output is rontained on the

{ollcwing pages.
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Three Dimensional Cylindrical Chamber-Program BAFFLE

The input parameters to this program are def ned as:

1. MC - Maximm number of Fourier series turns in the ®ain
cnamber solution.

2. LC - Maximum number of Bessel terms in the main chamber soluticn.

1. MB - Maximum p:mber of Fourier terms in the baffle compartment
soution. -

.

4. LB - Maximum number of Bessel terms in the taffle compa-tment

solution.

3. ALENGTHd - Crmbustor length o radius ratio (L*/R%).

p

6. < - Nondimensional baffle blade length (Z3%/R*).
7. T - Sondimensional baffie blade rhickaess (T*/3*).
8. MUbL - Number cf evenly spaced baffle cavities.
9. GAMMA - Ratlo of specific heats. )
10, EPSILON - dscillation wave amplizude
1i. AMaCH - Steady state mean flow Mach number.
12, MHAT - DPominsting traasverse mode of the oscillation in the
3ain chamber.
i32. LHAT - Doninating radial mode of the oscillaticn in che main
;'naml'-.-t;.
1. IDMAX - Maximum nusb.r of it.rations of the successive approexi-
mations of the sclution.
Jther initialized narameters which are not input as data:
1. VIS§ - Moleculer vis;;sit; (Lv*f?};}R*)
2. CTUR3 - Lcefficient ir Spélding's effective turtulent viscosity

model.



B=4

3. AN -~ Interaction imdex.

4. TAU - Time lag

5. MX - Variable which determines the type of osciilation tc be
coasidered. MX = 0 will specify a standing wave soluticn and
MX = 1 wil! yield a traveling wave sciutica.

The input data for program BAFFLE is r2ad on three data cards:

Columas Variable TIype

Card 1 1-5 MC INTEGER
6-1C HE IXTEGER

11-i5 H3 INTEGER

16-20 L5 INTEGER

2i-25 1DMAX INTEGFX

25-30 MRAT INTEGER

3i1-2> LHAT INTEGER

Lard 2. -1 ALTNGTH DECIMAL
11-2¢ AMACH SECIMAL

21-30 GAMMA DECIMAL

31-40 EPSILON DECIMAL

Card 3 i-3 it INTEGER
6-15 ZB DFCIMAL

16-25 T DECIMAL

A listing arnd a sample ocutput is ¢ ataired in the fellewiay pages.






PANGRAYF TuDB( INPUT+QUTPLT +TAFES=Z INPUT , TAPC6=0UTPUT)
COMPLEX SiIME oo ALAM] JUSKIABL 2 AB2 ,CH- EB83+SUMYC ] 48MUy
TALAMA ¢ CES2C31C22¢ECH] o+t CR2¢CCC1BSY s LCSeBE]1>832+EB1E82¢8CC+G1+0,
20MEG] o AL INJ o ALNOZ e BADE s SUMZ s SUMLY 9 SUM2 VL2 o VL 30 AU A +OMEGWBX
OIMENSION TTE (0. 3Ce10) eBNULI0IvAMUI30+)0) ew (1) eZ112ea(10)+Clay
DATA(N{I2 a1 ol 7.02129101837556+¢.057516658311264.+.09340039827825,
1.12052016961432.,.1304249006562841.14149370652875¢.13642490095626.
2:120550159961@324.09340039827825+.0576166583112490.02129102837552/
DATALZ(Y) o 1=1elid/«0079575199525B¢.0%691007703067,.12291663€ 1458,
1230765 344G4716+.36018479341911+¢.500000090050000.:39515206550d9%«
2769236555535 284%+.8170233632B5424+.95308Y52295933..95206260047427
Ceead INPUIS [NCLUDE NO. UF SERISS TEKMS-MC AND MB.COMBUSTOK
Cceosr NONDIPENSIONAL LENGIH-ALENGTHJBAFFLE BLADE LEWNGTH-78,
gooee BuFFLE GLADE THICKNLSS-T.h0. OF BAFFLE COMPARTMENTS-HUD.
Co®®*se RATIC TF SFECIFIC MLATS-GAMMAGJAVE AMPLITULE~EPSILON,
Cceo»s NEAN FLOW MACH ND.- AMACKN, TANSVEKSE MCDE CraARACTER-MNBALl.
Cree® aAND PAZINUM NO. OF ITERATIONS GF SUCCESSIVE APFHOX. OF SERIES
PEAULS-140) CevBe IUMAX HRAY
146 YORMATI&]IS)
REAC(S ¢4 s ALENCTH AHACH GAMMAJEPSTLON
1el FORA, (4105}
KEAD {5+ 021MU3 28T
1ac FCAMAT(IG.2fF10.5)
xC=x8=28
Coeses THESE FARAMLYERS ARt FOR THE DISSIPAYI /N CALC.
CIURE=(0.034
visC=1.06-0>
DISFv=sCnrT IvISC)
DISFI=SQURT (ZTURES
Ceoce UNSTEALY COXBUSTION INPUT PARAMETE®S N AND TAU Awg DEFINED
AN (CAFPEA«L ) /4. 70AMNA
TAU=].
wWRITE(€,%00)
wxITE(€,4400!
wniTE(EeaD]
0! FONAT (®QTHE FOLLO%ING CALC. ARE MaDE FOR A 2-D CHAMBEX®)
aRITE (€.a0O)
dARITE (€000}
©0C FORMAT(®0®, SO(]Ir®))
WRITE (€ .402)
402 FORM2LT (®0The CHAMBEN mAS THE FOLLOWI ¥G CONFIG.®)
WRATE(C4403) ALENGTN AMACHGAMMA
02 FONMAT(®O0LINGTH=¢,Fl0%¢IXe® MEAN FLOw MAGCH NO=*,F10.5¢
13Ke 7 «® RATIO OF SPLLIFIC mEATS=9.7i (0.5)
WRITE (€o: 04} HUB 287
04 FORMAT (30Tt BAFFLE CONSISTS OF ®,135.® COMPARTMENTS wlTs LENOGTHeE,
IF1CeSe7e¢ ANDC BLADE THICKNESS®F]10.%)
wRITE (€ aa0S) MMAT EPSILON
0S FORMAT (*0Twt OSCILLATION CONSJST (OF 8 COMINATING®.[3.® TRANSVERSE
1 MODE®sse® AND 1S OF wAve AMPLITUCL “eG2l.]6)
wWRITE (€437} VISC
337 FONMAT (*2MOLECULAR VISCUSITY=®,G>].164)
wRITE(Ee<0?) CTURS
%07 FORNRAT (oQEFPECTIVE TURBULENT VISC COEF .=®,021.16"
wRIIE(E+n08"
408 FOMMAT (oInt FREQUENCY JTERATIUNS ARE AS FOLLCESe)
DU 100 Ryu=]amug
Ofchy,
OR2=MuE
v3=CR/CR2
v2={0R~1.),U%2

AL PAGE IS
PRECEDING PAGE BLANK NOT FILAKD -2 rOUR QUALITY,



GO 130 NMSTaK=] M8
00 100 M=].MC
B1=3.14159265359®{ (MSTAR=) ., ) *MB=-(K=],))
B8I=31%E]}
IF(80.LT.1.0€-06) GOTO 101
#2=3.164155265359% ({MSTAR=] . 2MUBe (M=],.))
BASI=(SIN(Bl®V])-SINIBI®VZ2) )}/ (2.%3])
BAS2=1SINIB2%V])~-SIN(B2*V2))/(2.°82)
FIE(MSTARMiMU) =3AS] *»BAS?
60Y0 100

11 EP=1.
lF ‘".Ec.l’ tp=2.
TTIE("STAR M eMYy)=EP/ L2 .2°MyB)

100 CONTIME

955 CONTINLE

560 CONTINLE

Cesee FI4ST -CUESS OF FREQUENCY

OMES=MF 1% (3,16159265359-2,+73)
00 300 M=} M2

300 BMUIN)I=CHPLXL0,0,0.0)
MU (PHAT ] ) =0iPLXV ey C)
#0:3141539263356
Cl=CrPLX(0.0:1.0}
MS=MrAT o]
QU] )=CFPLX( _.40.0)
0272)=CMFPLX(0.041.0)
0(3,=CPPLX .100000’
Q&) =C¥PLX(Q0.Ce>1.D)
10=0

85 CONTINLE
JEL3Z0.1
SUMX=CPFPLX(0.0,0.0)
AN AN® (] -CEXP{-CI®GHMEC  TAy) 1 =] o 7GR MUA
ALAMT==GAMMASC | *ONEG®ARACH®ANN/ (] o ~CAMMASAMACHOANACKH® ANN)
EPnzla
IF (Mr21.EQ.Q) LikzPe
IF(1S.ER,Q) TOT1X 500
EPS=2e
D0 S02 MST=1.§
OR= (MST~,.'-~1opyq
GSK=CME GPONEGOABACHCAMACH s (AMACHSAMLC - +] ) ® (DRVUP~OME e QMED)
#SK=CSCRT (85« ’ ’
AB1 = IQOVEGSAMACH+ASK 7 (] s —aRACHO®AMNACHK)
AU = (OFEGOAMACH=ESK) /() e ~ANMACH®AMACH)
CH=={CleaBl-ALAP] )7 (CIvA2-ALAM])
EBY=CEXP(Ci%a*28)
Eb2=CEXP(C'® 52%21)
EU3I=CICIaBI®ER] sCNPAU2*EB2) /7 (EY) o LmeEy2)
SUMY=CYPLR(0.0.0.0)
00 S03 M=].NC
IF (M.EC.MS) GITO SOJ
1UMz0.0
00 Sie Myuz=]eMysd

504 TUMZTUF e TTE (RST ¢ MSIMUIOTTE (MST oM ny)
SUMYSLAY Gy (M) 2TUN

S0) CONTINLE
SHME=SLME ko *M B EBI*SUMY VEPH/EPS

S0¢ LPS=l.

Suv CONTIMLE

22> IN=O

21% CONTINLE



551

550

“10

CQQQO

ANN=ANS® () ,~CEXP(~-CI®GMEGeTAY) I =] . 7GAMMA
ALAMI=~CAMMASC [ SCMEGOAMACKSANN/ (1 . *GAMMA® ANACH® AMACH®ANN)
ABzAMA( N (GAMMA=? 1 /72,
ALAMAZ =7 Jo0uEGOSQ 2 (| 4 *AMACHOAS )
CHS=CSCRT (CMEGEOMEGTAMACH® AMACH (AMA HEAKATH~-] . 12 I KHATONHAT®*P P ]~
1OMEGEOvE 3} ) )
Cb1=(CFEGOAMAUHSCES) 7 1] ~AMACK-AMASE)
CB2=(CFEGHANACH=-TYS) 72} . ~AMACI1%AMACH)
ECBI=CEXP(CI*CRI®{2U-ALENGT-Y)
FLB2=CERE (Ti*THEZR (T O-ALENG TR :
nlze(CIeCRI-ALAMH I/ (CISCRZ-ALARY)
BSV=CI®(CBIoECi] +CH2°CCCOoECrH2) /(L +CCLoECB2)
SUMY=CHP{ X (0eGeGo0)
EP5=2.
DY S55) k=] .MA
OR=(n~-]1 2P loNyE
CCS=CSCHT (ONEGSCMECOAMALHEAMATH (ARACHSARACH=] ! ® (TROCR~OREG® IKEG?
1}
6B1=(CFEGOAMACHCCS)/ (] o-aMALHSAYZ(CPr)
BB2=:0*EHSAMACK-CCI1/ (] o -aM2(nvAMACH)
EB1=CEXF (C1v8B)*24d}
Tu2=CEXP (C]®°3k2*28}
BCC=-{L JeaBI-aLAMIIZiCI2aR2-ALAN])
TYM=20.0
00 551 My=l:#yd
TUMZYUR o (TTEIM S MiI} )00
SU“Y=SLHV~«-°HUE‘TUV?CI'(SBR'EBItBBE'ECC*EBZ:/EFSIQPHI(tSl-ECC'Eﬁz
n
EPS=1ie.
G =HSV~SUMY=SuMX
6=CAESG))
OMEGL=CMES ~
nEF =0
in=1
6010 2<%

" IF (G.LY.REF) GGIC 223
c8

IFtInNLT.ai STTO 2

oM G=CrEG])

DEL=0EL /2.

Je (DELLYo}oE~-03) GUTO 313
in=1

GOY 25

INsoiNel

» OMEU=QOMEGI-U{IN)»DEL

GOI0 2i5S

CONTINMLE

10=iC1.

witlTE (€valt) (T.CHEO

FOPRNAL (20 TERATIGN ®el3ee® COMPLER FREG.=©,2G2)el%)
1r (104CY.I0MAX) GOTU 900

ITIRATION Cr wmaln Chavupw SERIES COEF,

ALINU=2L AN

ALNCZ=BLAMN

EPP=2e

0D 200 MP=]eM(

IF (MF.EG.™M5?! GOTC 200

QRz(#F=].)eP]
BASE=OFPECOCMEGeAMALH O AMACHe (AMACKHOANACH=-],)® (QR*OR-CHEG2IMEG)
QASE=CSCHT (UASE)
CBI(LUMEGRAMACH*3ASE) /(] .~AMACHOEMACH)

’ZVJiPAGQ;;
- FO0P QUALTS



CH2= (0P O*ANACH-BASE) £(] . ~AMACHCAMACH]
CCC= - (CI-CBL1~ALNDZIZ(ZI*CR2-ALNO2)
ECB)=CERP(CI®CEL® (IB~ALENGTH))
ECB2-CEXPICI®CB2* (208~-ALENGTH))
CUS=CI®(CBI*ECBi+~CB2*CCC2ECB2) 7 (LLBY«(CCCOECA3)
SUMY=CMPLX (0.0,6.0)
SUMX=CPPLX{0.04u.0)
(Pf:Z.
CO 01 MST=1l.MB
OR=(MGi~1..*PleMyB
BASE=CCQRT (UMEGONMELEAMACH®AMACH {LMAL MO AMACH~] « } ¢ (OR®OR-OMEGIREG
1)
BBL=(CPEGPAMACHSSASE ) 7 (]} . ~AMACHEANACH)
BE2=(OPEG®AMACH-BASL I/ (] .~AMLCHOAMACH)
BCC=- (K 1*6BI-ALINJSIZ(CI*852- AL INYy
EB)1=CEXP (CI°B81*28)
EB2=CERP(CI®BB2*Z8}
TUM=0,0
00 202 Mu=1+MUE
202 TUMSTUM (TTLIMST sMP oMUY I 002 :
BASE=Cle(B2]1°EB] «88B2¢8CI*ER2I 7(EB) -RTCC*ER2)
SUMKX=SLMX 4 YHMUG*BASE e TUM,/EPS/EPP/CBS
SUM2=2CPPLX(0.0.0.0)
DO 203 M=z] ML
IF (M. EC.MP) GOTO 20D
10“:0-0
0 2064 Mu=1+MUD
204 TUMSTUN e TTE(MSToRP oMU CTTE (MST g Meny)
SUMZ=SLMZ2 +gMy (M) e TUN
202 (ONTINLE
SUMY=SLHBY«SUMZ 84 , *MUL*BASE 7EPS/EFF /(8BS
201 EPS=].
BMURP I CUMY/ (| e ~3UMK]
200 EPP=],
450TO &S
G600 CONTIMLE
whlTE(¢.6]1%)
P1S FORMAT (*DTht MATZIX GF ToE MAIN CHaMAFR FQURIER COEF ,=*)
00 91] M=) .mC
aRITELE+3)0I P (M)
Q19 FURMAT(® ¢ 13,5 *,2021.14)
211 COlVINLE
DO v01 MU=z} eMya
00 90} M=) M4
SUMX=CFFLX(08.0.0.0)
00 902 MP=}eM(
Q0f SUMY=SULMXBMUIMPIITTE (MM ML)
tr=le.
lF(N-EQ.l) tp=2.
BASEX=EP/ (2.°MyB)
ORz=Mp-Me],
gNR1 =88
SUMK=GLMXOON/CR]
G0l AMU(* MU=t ntx/7825EX
00 913 mMu=! eMyi
wx lTL (€ e9l6) My
0O 12 M=z M
Siz wrlTEKC 10 . APy MMy
Glas CONTIMLE
9l6 FORMAT (e 1nt MATNIX OF FOURIEFR COLF. FOR THE BAFFLE COMP.®013)
SEL CONT NLE

v



MUBX=MLE~]
00 778 Myu=)MyBX
SUM] =SLM2=CMPLX(3:0+0.0)
Yl=Mu/¥FUB~-T
¥Y2=MU/FPUB.T
DO 779 M=) MG
vL1l=(M=] ) *P]eMUR
VLZ2=AML (M ML) *COS(VL]I®*Y])
VL3=AM_ (M, MU+]1)*COS(VL1I®Y2)
SLH]=SLNL.vL?

715 SUMZ2=SLM2eVL3
ALMU) S (SUM2=SUM] ) /SURT (2.°T)

778 CONTINLE

Ceoss DISSIPATION LALCULATION

OM=REAL (OFEWL)
AMULT=CAMMASORT(OM  /72.) /2.
SUM=0.0
TE=ACOS (287 (2BT))
D0 339 Myu=1.MUBX
ASX=CAES (A (MU))
ABX=ABXxeABX
B=EPSILONCEFSILON®ABXCT/4,
SUMI=0.0
DO 336 I=1.11
LYA=TE/2.:2C1)2(PI-TE) /2.
v1=SIN(ETA)

33€ SUMI=SLM]« (LISFVDISFTe ((AMACH*AMACKH+BoV]®V]I*®0,.2S5) )W (])sV]
SUM]=AExeSuUM]I*(PI-TE) /2.

335 SUM=SUFeSuMl
SUM=AMLL T eSUM
OMG=REAM_(OMLG)

Cceeee DECAY FATE CALCULATION

dINI=0.0
SJ”"=°0°
Ep".:Z .
DO BZ) M=)sMs
OK=Pl®(M~],2omMyB
YSK=CSTHY (OMEGSCHEG®AMACHOAMACH (AMACHSAMACH=] 1 ® (OR®OF~0VFECGPOMEG)
)3
AB)=(OPEGCAMACHeBSK) - (] o ~AMACH®AMACK)
AB2= (OMEGCAMALH=3SK) /(] ,~AACH> AMAL )
CH==(Cleapi-aLar]i/(Cleagp-ALAM])
BASE=CEXP T v 3] e28) «CU*CEXP(C1%AB2*728)
BAS=CAES (FASE)
BAS-EACeAg
HBl=tleeCMr®, ~0~£G~AMACnOCI'(Adl-AEe':nl
BASKR=C*BStbol)
BA_R=HASRCHASROCAMMAS AP,
SUMul=0.,0
UO 822 I=1.11
Cra=za*2(1
BIK=CF P(CI®ABI°FTA) «CHeCEFP(CI%AR2e TA)
BSiz=CAES (HSK)
Bu2=C1%0 S1®CEXP(C] AR L TAYsCMO*AR IO a ((C]OoAR2% TA
USr=Tarmae (C[OOMEGTES AMACH®BBZ)
85 zCAES (BSK)
HS2USTCE /7 /OAMMACSGARMASONGEOM 551 *BS)/2.

€22 SUMwi=SyuMw, vB8Ser (I cb/tiey

RAM=u .0 .
0 823 MLz1eMULE
RAM] =LABS (AMU (MeMU) )
ﬂ?"'ﬁﬁ’
S8 et 8¢
LA



823 RAM=RAN ¢RAMICRAM]
HBINI=BINI+RAMOBASR®*LPM/BAS/FLOAT (MUB) /2.
SUMY1=SUMY ] ¢RAM*EPMeSUMK] /T LOAT (MUB) /2.

421 EPH:]-
B8NZ21=0.0
SUMUL=C.0
EPH=2-
00 84) M=].MC
0R=Pl. (M=]1,)
BK=CSGRT (OMLGSOMECSAMACHE®AMACH (AMACH® ANACH=] .} ® (OR®OR-OMEG®OMEG) )
CB1=(OFEGCAMACHBK) /(] « ~AMACH®AMACH)
CB82=(OF{GOAMACH-BK) /(] .~AMACH®AM .TH)
CN==(CleCR)-ALAMN) 7 (CI®CB2~-ALAMN)
BASE=CEXP(CL*CB1°(28-ALENGTH) ) +CM*CEXP(CI*CB2* (28-ALENGTHN))
BAS=CABS (RASE)
BAS=BAZ°BAS
BBI=(1e+CM)I*LIoCMEG*AMACH®CI® (CB] +CHeCE2?
BASR=CABS(8B1)
BASR=BASKeBASROGAMNACGAMMA
SUMV]=0.0
DO 842 I=1.11
ETA=2B¢ (ALENGTH-2ZB)*Z(1)
BSK=CEXP(CI®CR]IP (ETA-ALENGT™) )} oCMeCEXP (C1*CB2* (ETA-ALENGTH))
8S1=CAES (BSK) : )
882=C'*(CB1*CEXP(CI®CB)I® (ETA-ALENGTR) ) «CMe(B2*CEXP (T I*Cu2*(
1ETA-ALENGTHI D) i
BSKN=CAVWMAS (LIoOMEG®YSK+AMACH®RBE)
ANZB=ANFACH® (] . +CAMMA) /2. /3AMMA
B85 =CAES(BSK)
BS=BS*ES/2_./GAMMA+GAMMACIMGOGMGT"ES]*H8S1/2.

AL SUMV]I=SUMV] *BSeow () ®? (ALENGTH=-2B) 7pAS
RAM}=CABS(BMU(M))
tNZI=BNZ21+RAMIORAM] *EACSReEPM/BAS/2.
SUMUL=SUMU] *RAM] *RAM] ®5UMY ] *EPM/ 2.

84) tPM=],
BINIR=EIN|/2.
UNZIR=ENZIs2.
FNzAN® (] .~CUS(OMNG*TAU) ) *AMACH
SINYR=TNIYBINIR
BNZ I&=ANZEOEBNZ IR
SUKIN=ENZ2 IR-BINIR«SUM
wRITE(€.30) BINIH-BNZIRSUM

30 FOFRMAT (®0COMB. IN2UT2¢G13.60® NOZ2LE EXT.=®,Gl_.64® DISS!.=®%.13,6

n

SUMY1=SUMU] *+SUMY |

DECYRT=SUMIN/SY® )

wRITE(€4125) DECYNT

FONMAT (®*QDECAY RATE=®,621.'4)

DECTH=2C4,5722CECYRT/UMED

wnITE(€«13C: DECTS

120 FORMAT(20DEC2Y IN OLCIBELS /CYCLE=*4G2l 14!
ENC

-
Y
¥,



00:...0.0000.;0..9.0..0-..,QQQQQOC?OOO.QOOGQOQGOQO
SOt enrt00as0r000rcncrcncntsstccttcastattttsne
THE FOLLOWING CALC. AKE MADE FOR A 2-0 CHAMBER
.ooo-.c..oonc..oooooccioeo;o....oaootoo....goouoo-
0000000000004 600000s00200000000000000000000000000
THE CHAMBER FAS THE FCLLOWING CONF 16,

LEMGTHE  1.50000 PEAN FLCW MACH NO.= «10000
RATIO GF SPECIFIC MEATS:  [.20000

THE BAFFLE CONSISTS OF 2 COMPAMTMENTS wiITH LENGTH™ «50000
AND BLADE THICKNESS «05000

THE OSCILLATICN CONSISY OF A OOMINATING | TRANSVERSE MQDS
AND IS OF wAVE AMPLITLDE +10000000000000

MOLECUL2AR Vv*SCOSITy= 1.00000000000000€~05
EFFECTIVE TUREULENT VISC COEF.= 3.40000000000000€-02

THE FREQUENCY JTERRTICNS AKE aS FOLLOwS

ITERLTION 1 COMPLEX FREO.= 2.2150301535900 --10000000000000

ITERATION 2 COMPLEX FRECe: 2.1322176535899 -$.6874999999999a€ -02
TTERATION 3 COMPLEX ©REles  2.1322176535899 ~9.53126999999y958 -02
ITERKATION & COMPLEX FhzCez 2,1322176535899 =9.53126999999Y995E -2
ITERATION S COMPLEX FREC.= 2.13221¢0°15899 =2.53126999999995€ -0 2

1TERATION © COMPLER FREGexz 2.13221765358%9 =5.53126999999995€ -02

THE MATRIX OF ThE MBIN C-amBER FOURIER COEF .=
-q-lB:SIBSZGOOIeEE*!3-6.7&0««669772959E°13
1.000C00000000° d.
~1.763831665688513£-113 2.07«27610893762[*15
~e143994%6070026¢ “C.%33194386376026~C2
1e5¢21576$7950%+2E~13 2.«055712657«656&‘15
6.476527008655228-02 9.813539716847TA6E ~04
=1.63788450646l]lat-]4 1.86517204975374E~10
'3.6«42781‘0@!37ht-02-5.«a3a2b0263y~55F-0~
1.04963976600668E-]3 11896586536 Y889E~1Y
2+604813010365¢8E-¢p 3.52786437%93921F~06
1.034999%42891z8E-]a Ce622359611995957¢~) 7
°l.908701755l683l£-02-2.5952567555b&60§*06
B.60915805470482E-14 7.«6808«~978i95»:~16
1e67322147%3007% -02 1.88508491048378E ~04
15 2+3R8S10€0512% 13-4 1.29009362515302E~16
16 1 1B011761629963E-02-1.4861384582658 7E~0%
17 8.01183309931482E-]4 5.398795022035606E~}6
18 9.721161127287608-03 1.20663046794359E~04
15 e 26604540008253E-14-2,P1729502458109E~17
v -8-i8k67~550~6538‘-03-’-003960£oln>ub7t-06
2l 7.66575,8205135%E-}4 ©e099372953%655TE~16
22 Te01347203]594283t-p) £Ee5)1780C36]192249E~nS

-~
QOD®NEVE WN

o b
S WN -

23 3.694B5€84008604E-16-6,29007446962373F =17 . pAGE BB
2% -6.09790744876750£-03-7. 3636 9756559321€~05 ORIGINAL ALITY
25 6.960090€1366568E-14 3.11362732556593F )6 POO QU

26 5.3672578;925653E-03 6.4]654063C5668~05 OF

r44 J.anl1«5?zzeeJaJ(-la-s.37«339c013~705£-l?
28 =he17410e50681150E-03-5,671057159274}]9E~05
23 6.8R74320/1773¢%k-)a Ceb0159649266692E~]16
I 4.295625564094603i-03. 5.06210293289180E~0S



THE MATRIX OF FOURIER COEFe FOR THL BAFFLE TOMP, 1
«6854430007623819 1.62391806379855S5E=-04
2 «26663215104316 =2.33152094624%53F-0)
3 ~B8.82565783269649E-02-3.02888984718084E-04
& 4.6R612639313255E-02 2.99682129160404E-04
S =2.98208912488234€-02-2.3090031864944334E-04
6 2.0934702805¢132E-02 1.7324886%023724E-04
7 =156393908730201E-02-1:41065424280438E-04
8 1.22010143941971E-02 1.)164)7908163099C-06
9 ~9.83215206970046E-03-9.488462172510626E-05
10 8.13012518280803E-03 8.023209233320A9E-05
11 =6+87153021073458€~03-6.90662608458939E-05
12 S.92633513098945E-03 6.95151277191485E~(S
13 ~5.22006054323712E~03-5.40763933505575€~-05
14 &.7222875556130S€E~03 #.96181907242946€E-05
15 =6.477187€0309154E~03~4.77976219416034E-05
16 S.073407083746RTE~03 5.56210275253824E-35
17 =3.19512679211673E~03-3.41496429522524E~05
18 2.39547€29513930E~03 2.530902829804R7E-05
19 ~1.8696565]1645250€~03-1.9605881Tb04472E-0S -
20 1.48370029882282t-03 1.5473B393824547E~05
21 =11856626952763%4E~03-1.23135682138742E-05
22 9468535843081542E-06 9.81782585020513E-06
23 ~7.560315574)89564€-04-2.80378L-9546353E~06
2% S5.97429549892687E-06 6.1%2536425028793E~-06
25 ~4.652565E2012087€~06-4.73820655126821%E-06
26  3.54093115956486E-04 3.63363633599.05€E-006
21 =2.59889421222452E-04-2.6629534106534E-06
28  1.79549378008782E-04 1.83744206)7546S0E-06
29 ~1.106619€8356252E~04~1.1312202¢53279RBE-06
30 5,132095$70342602€-0S 5.241105382829482E-07

THE MATRIX OF FOURIER COEF. FOR Tt BAFFLE COMP, 2
-e6R44 3000753912 ~1.62391862154354E~0%
-e26663215104372 2.331520%4424992€-03
8.82565783270670E~02 3.008889E4723000€ -0

~4+6R6126392155718-02~2.996821291505R0F =04
2.98208912488162E-02 2.30500284946768E-04

~209364702805%803E~-G2-1.762488~9023313E~0«
145639350872506cE-02 1.41045424281379€-06
=1.22010141943236E-02~1.164]17900162771E-04
9.8321520697141€E-N3 9.4884621726279BE-05
~8.130125%5182v2072E-03-8.02320923329967F~CS
64871530Z21060429E-03 6.90662608467374E-05
~5.92633513108556E-03-6.051%2277189363E~65
5.22076054389227E-03 Y.40768933512022E~0S

4 e?22281655693650L-03-4.9618190724)181€~05
Goe7T71876€03047€3E-0] %.7767821942:214E~05

~5.07340708385765E-03-5.56210275251643E~0S
3e19512€79201223E-03 3.41496429524552E~0%

~2+39567629523654E-03-2.53090282978556E~05
1.B6965€51836170€-03 1.96058817666213E~CS
~1+6483700c9890584E-03-1.54738393522458E~05
1:185662€9669947E~03 1.23135682140125F~-05

«Q,43535843]1406348E-06-9,81782585007161€-06
7560319573624 758 =04 ?.80378546557840E-06

~5.9742954994 3938 -04~6.152536424998734E-06
4 4652565869660 7E~04 4.7820656127075BE -0b

=3¢54063115993520€-0%"3.63343633592227€E-06
2+596883642119364SE -0 2.6629536)1051607€~06

] e 76549306803} 3365-06-1.83746206]175%0334F~06
1.1066156836)5928 046 ).13122625330407E-06

~5¢13209G706)658€EE-05-5,2411053082733596E~-07

—
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COME. INPUT .611352 NOZZLE EXYe= S.7331136-03 LISSIex 780698
DECAY RATE= S.9309577c0}7785€-C2

OECAY 1IN OECIBELS /CYCLE= 2.281357¢875101



PROGRAY BAFFLE (INPUT QUTPUT ¢ TAPES=INPUT+ TAPEA=OUTPUT)

COMPLEX OMEG e AMUBMUANN)ALAMI 3C1 QAL AMN,CBS:CB14CB2ECBL1+ECR2
1CCC+BSY+BASEVCCS+BBleBEWEBL2EB2yBCC,BASELl ¢G1oOMEG] ¢ ALIMNJISALNOZ,
2BASE s SUMX 4 SUMG, SUMF s 5SK e AB1 9 AB2»CM o BK .

COMPLEX RAS*SB

OIMENSION TT1(10+,10+12)

DIMENSION Q(4)

ODIMENSION TTE(10+10912)+EBN(1Ce30)+ANC(10+10)+8N1L19410+90)

DIMENSION wi(ll)eZ2(11)

DIMENSION W1 (31).21(3))

COMMON/BLEKA/Z/MC oL CoMBy LBy ZBoALENGTHoAMU(10C+¢10012) ¢BMU(104510)

COMMCN/BLKD/0ISFVYILISF T TeGAMMA, TMAX

COMMCN/BLKF/BBES (1010 9CRES(10410)

DATA(W(IY0o.=19113/7.021291018375544.u57816€658321264,4.0934003982782S.

1.120520169614324+.13542490095628+.14149370892875+.13642490095628.
2.120520169614324.69340039827825+.05761665831124% (21291G1R37554/
DATA(ZII} o1=141107e00795731995258+404651007703067..12291663671458,
1.23076534494716+,36013476341911:.50000000000000+.6358152065803%.
Ce7692345655052844.37108336328542+.953089922969334+.9920426004742,
DATA(WI (1) o1=1+161/0.00265%873S7+40.0075039737+00127304237. -z
10.0176731804¢0.027294°757.0.02674C7623+0.0310047839,+0, OJAQEaﬁGOKA
20.038424R404¢0.001540251440.044282221540.0465632991,+0. 68321)-1'-_
30.0455€67994+0.0503849228.,0.0506650035/ T

DATA(ZI(I)+1=1616'/0.00099885C7+0.006n037410+0+.0161304622 L

-10.0313633038+0.05126773384,0.0758967083+0.1067907493,+0. 137791,3.52

78
rects
Cecee
Cecae

Cec2e
Cesoe
Cecos
Ceone
cesse
Cavae
200
201
2P

129

407
408
430

409
4))

20.174561629440.21451391384,0.2574550£82+0.3029243265+¢043504099G554, -
30.39964029530+0.4494282665,0.57 :
00 78 1=1.15

wl(lel€d=w1(l6-1)

2 (l1+1€1=1,~21¢16-1}

THE VARIABLE Mx DETERMINZS [F A STANDING wAVE OR TRAVE! ING wAVE

SOLUTICN 1S 10 BFE USED. Mx=0 WILL GIVE THE STANDING WA 'E AND 'X=

1 WILL GIVE THE TRAVELING WAVE ©0000020000000008C0000000000000003¢C 000
M=

MXx=0

INPUTS INCLUDE NOo. OF FOURIER-BESSEL SERIES TERMS-MC.{_CeMEC AND LB,
COMBUSTOR LENGT= TO RADIUS-ALENGTF EAFFLE BLADE LENGT:i-ZE.BAFFLE
BLADE ThICKNESS~-TeNU, OF BAFFLE COMFARTMENTS-MUBWRATIO OF SPECIFIC
HEATS-JAMMA ,WAVE AMPLITUCE-EPSILON,YEAN FLOW MACH NO.-AMACH:TRANS-
VERSE MODE CHARACTQR-MHAT,RADIAL MOCE ChARACTOR-LHAT.AND MA) [MUM
NO. OF ITERATIONS OF THE LUCCESSLIVE APFPROX, OF SERICS -IDMAX
REAU(S»200) MCoLCoMBsLBy IDMAXsMRAT JLHAT

FORMAT (7]S)

READ(S+201?! ALENGTHeAMACH.GAMMALEPSILON

FURMAT (4F10.5)

READ(S+2021 MUB«Z2BsT

FCRMAT (1S+24 10.5)

WRITE (64120}

TORMAT (®]1 THE FOLLOWING CALCULATIONS ARE PURELY FOR DIAGNOSTIC
IFURPOSES?e/¢® LARGER MATRIX SIZE SHMOULC BRE USED FOR COM#~L ATION®)
WRITE (€4405)

WHhITE(€4495)

IFIMX.EQ.Q) «07.,408

WRITE (€4409)

GOVC H.‘o ; 1,,
WRITL1€4611) Gm P\‘ "
Crx"INLE ,_u Q

% iTE(£,405) GF‘?

wRITE (€4405)
FORMAT (20THE FOLLOWING JaLC.af YOP STANDING WAVESe)
FORMAY (®0THE FOLLOWING CALC. AF: FGR TRAVELING WAVES®)



40S FORMAT (®Q0e,75(1k#*)) i
Cevoe THESE FARAMFTERS ARE FOR THE DISSIPATICN CALC.
CTURR=0.05
VI5C=1.E-0S
DISFV=SGRYIVISC!
DISFT=SQORT(CTURB)
CALL RCGT(MC.LCe2+CTBES)
CALL RCOT(MBLB,MUBVE3ES)
ceee® UNSTEALY COMBUSTION- INPUT PARAMETERS N AND TAU ARE OFEFINED
OR=MrAT
RLMDA=CRBES (MhATe; JLHAT)
AN=(GAFMAL] o) /4o /GAMHA
TAU=3,.16415G265359/7RLMLA
WRITE(€E4555)
S5 FORMAT (#0THE CYLINDRICAL CHAMPER iiAS THE FOLLOWING CONFIG.*)
wRITE (€45%6) ALENGTH AMACHGAMMA )
69¢€ FORMAT (20 THE LENGTH TO RADIUS=®.F (0,5+3Xe?® MEAN FLOW MACH NO,.=*®,
1710.5473X4/74® RATIO OF SPECIFIC HEATS=0,F10.5)
WRITE\®$557) LHAT MHATEPSILON :
SST FORMAT (20 THE WAVE CHARACTOR 1S %.i3+0 RADIAL MODE®,3X4134% TRANSYV
1 MODE®,/,c AND IS OF WAVE AMPLITUDE® G2} .1%)
WRITE (¢ .:S60) MUB 267 .
S60 FORMAY(e0THE BAFFLE CONSISTS OF ®,15,8 COMFARTMENTS WITH LENGTH®,
1F10.Se/9c AND BLADE THICKNESS®eF10.5)
WRIVE (€4559) VISC
5SS rORMAT (¢g “OLFCULAR VISCOSITY=®*,CG2l.14)
wWRITE(&+225) CTURSB
T34 FORMAT(?20EFFECTIVE TURBULENT VISC. COEF.=%,G21.14
PI=3.14159265359
OR2=MUP
DO 100 ryu=1.MuB8
NR=MU
VI=2.92.1415926535990R/0R2
V2=2.%2.14159265359%(0R~1.) "UR2
D0 100 MSTAK=] ME
DO 100 M=1.MC
Bl=(NSTAR=]1:)oMUB/2~(M=].)
BO=81¢E1
B2=(MSTAR-1.)oMLB/2,¢(M=",)
BASI=(SIN(Bl®V])-SIN(B]®V2))/(2.2C])
BAS2= (S IN(B22V11=-SIN(Q2%V2) )}/ (2.vB2})
BAS3=((0S(B.°V1)=COS(BI>V21)/(2.°81)
BASL - {(CS182eV]})=-COS(822V2))1/(2,.,2°2)
IF(Mr=G.0) BASI=3AS4=0.0
TTE(MSTARMeMU) =BAS] «BAS?
TTI(MSTARWMMU)=85AS3-RAS,
GOTO 10
10). Cp:l.
IF("‘-ECOI) EP:Z’ .
TTE(MSTARWMeMU)=EP®3,14159265359/4UB
TTI(MSTARMyMU)Y =040
100 CONTINLE -
DO 102 ~=1.MB
OR=(M=1,)°1;,8/2. _
00 103 L=1.l8
B1-d4B8E S (M.LiY,E-10
R2=8BESs{AL (OR.B])
BN(M,L)=P]eEPeg2eR2° (] .~0R®0R/8)/5]1)/MUB
103 CONTINLE



™
yki

10¢c EP=0.S
£P=l .
DO 843 M=) MC
OR=M-1}.
DO 15% L=1,LC
Br=CEBES (M,L)+] . E~]0
82=BESSCAL (OR.51)
AMC (ML) =PI°EFP=B2°B82%(1.-0R*0R/B1/81)
1S5S CChTINLE
1F(¥x.EC.Q) EP=0.S
863 CONTIME
Coe®e THE FOLLOKING MATRIX OF INTEGRALS OF PRONUCTS OF BESSEL FUNCTIONS
Ces®® QEPRESENT A MAJOR AMOUNT OF COMPUTING TIME- FOR A PARTICULAR SAFFLE
Cec®e CONFIG. ZATION THESE VALUES NEED B COVYPUTED ONLY ONCE AND STORED
NQ=MCeLC
00 156 N=1.MO
D0 156 M=) .MB
00 156 L=1,L8
15€ AN] (Mol WN)=0.0
D0 70 M=] MC
MG=M-}
ORC=mG
DO 72 ¥P=1.M8
ORB=(4F-1.)"MyBs2.
DO 72 L=1.LC
RLM1=CEES (M+l)
ALS=BESSCAL (JRCFPLM]1/2.)
NC=L+LC*MC
DO 72 LP=]1,LE
RLM2=BEES (MF.LP)
AL6=2FSSCAL (ORBLRLM2/2.)
SUM=93.0
D3 74 1=1.31
ALX=21(I"
ALX] =RLXSH M]e2,
ALX2=AL X3FLM2e2,
IFtORC,.GF .S 45D, 3L X1.LT.0RCY GOTO 300
AL3=8ESSTAL (ORC.HLM]ZALX)
GCTIC 201
300 Al 3zALSe((2%4Lx)€20RC)
301 CGNTINLE
IF(OGR.GE .S« AND AL X2.L T 0%8) GOTO 302
ALG=BESSL AL (OB sRLM2®ALX)
GOIC 302
302 AL4-B_E€®{ (2.2 Xx)**0RA)
303 CONTINLE
74 SUM=SUFM<-ALX®w](])>AL3®ALS
BN] (NP LPNC)=SUM
Tz CONTINLE
70 CONTINLE

10=0

MG=-MrAT .}

NC=LFrAT+LCOMMAT E IS

DO 84S M=)  MC ORIGmAIJ PAG

00 84S L=].LC R Q UATm
84S ANU(M L3 2CPPLR(G.0¢C00) OF POO

Cl=CMPLX(0+C0s1.0)
00 840 MU=1+MUB
DO 840 Mz].MA
D0 840 L=1.L19
840 AMU(M L MUISITTE(MoMSoHU)«CTIOTTI (MyMS, M) )eSN] (ML NC),



CQC.I

L]
(VA
=]

222
215

881

80O

224

2<¢:

FIRST CUESS OF FREQUENCY
OMEG=CMPLX(1.040.0}

CONTINLE

NC=LFRAT s COMNhAT

DEL=0.1

MS=MFAT+)

P1=3.14159265359

0t1)=CFPLX(G.0+1.0)
0(2'=CPPLXI‘1.0v0.0)

Q(3:=CFPLX(1.0.0.0)

Q&) ={FPLX(0.0+1.0)

IN=0

CcONEINLE

ANNZEN® (] . ~CEXP(~-CICOMEGeTAY) )~ 1 .7GAMMA
ALAMI=-GAMMASCIOGMEGE  MACH®ANN/ (1., +*GAVMASAMACH®AMACHS®ANN]
AB‘—'AHAC"§ ((:A-U"A-l P 12.
ALAMA=-CI*OMEGSAR/ (] . «AMA, {*AB)}
CRS=CSCRT (OMEG®CMEG®AMACH 2u A7 "o (AMACH®AMACH=1.)® (RLMDASRLMOA-
10MEGe0VEG))
CB1=(CFEGOAMACH+ZBS)/ (1 .-AMACH®AMACK)
CB2=(CYEGSAMACH-CBS)/ (1 .~AMACH®AMACH)
ECB1=CEXP (CI®(CB1-CB2)*(2B-ALENGTH)})
ECE2=CPMPLX(]1.0+0.0)
CCC==(I1eCR1-ALAVWN) ./ (CI°CB2-ALAMN)
BSV=C1*+CR1%ECB)+CH2°CCC*ECB2)/ (ECBl+CCC*ECB2)
BASEV=(MPLX(0.0+0.0)

00 800 M=1.MB

CR=(¥-1.)eMyArs2.

00 800 L=1,LA

RLMDAB=RBIAFS(M,L?

CCS=CSCRT {OMEGOCMEG®AMACH®AMACH (AMACH®AMLACH=] ) ® (RLMCAHORLMDAB-
10MEGECVEG) )

831 =(CHMECeAMACHCCS) 71 .~AMACH®ANACH)
BB2=(C¥ECcAMACH-CCS)/ {1 .-AMACH®AMACH)
E82=CEXF(CI% (KB2-FBL1)*28)
FBI=CYELX(]1«040.0)
B8CC=-(CI°kR1-ALAMI)/(CIe882-ALANK])
BASE]=CPPLX (0.0-0.0)

DO &€] Mu=l.RyB
BASEI=EASEL1*AMU (M LoHUIS(TTE(MIMS MUI-CI*TTI(MIHS 2My))
BASEL=EASEL®3N] (ML NC?

SUMX=(EE1¢EB] +RB2°E82°BCC)/(EB1*BCC*ER2)
BASEV=EASEV*RBASE|°Cle (B6]1°€8) +882°E8228BCC)/(ER]1 *BCC*EB2)

CNTINLE

RASEV=EASEV/EMC NS LFAT)

G1=8SV-EBASEY

G=CAEBSiG})

1IF(InLEL0) GOYO 2264

OMEGL1=CMEG

REF =G

IN=1

GUTO 2¢5

1F(G.LV.REF) GOTN 223

1F(INLY 6} GCTIO 228

OMEG=C*EG]

DEL=CEL/2.

TF(DEL.LT.1.E-04) GOTO 310

InN=)

G010 225

IN=INe]

OMEG=0FFGC;QUIN)DEL



6010 215
Ccec®a THIS ITERATED vALUE OF FROUENCY ONLY “NCLUDES THE WAVE ALTERATION
Con®® EFFECTS OF THE BAFFLE AND COINSEGUENTLY PREDICTS A GROWTHh RATE
Coeee INLRCY DISSIPATICN HASNT REEN INTROCUCED at THIS POINT IN THE PROG.
310 WRITE (€4230) [DeGMrL °
&4]C FORMAT(®QiXZRATICN®s]11,® COMPLEX FREQ.=%,2G21.14)
Coe®® TLRATICN OF MAIN CiiAMBER COEFS.
AL INu=8LAM] '
ALNOZ =8 AMN
D0 859 MSi=1eMC
MSQ=MS1-)
OR1=KST-].,
00 811 LST=1.LC
IF (NST.EQ.MS.ANC.LST.EQ.LHATY GOTO 8]1)
NCl=zLST-LCtMST~1.)
PLEZZL1=CRES(MST,LLST) .
BASE=QFMEGCOOMEGOAMACHOAMACH (AMACHSAMACH=],)*( RLMDALeRL MDA~
J10MEGSCMEG)
RBASE=CSCRT (BASE)
CB1=(C¥FCoaMACHBASE) /(] .~AMACHTAMACH)
C92: OFEGPAMACH-R3SE) /(] . -AMACH®AMACH)
CCC=~(C1*CB1-2LNGZ) /7 {CI*CR2-ALNO2Z)
ECB1=CEXP(CI®(CE]1-CB2)®(Z5~-ALENGT®)}
E£CB2=CFPLX(1.0.0.0)
CBS=CI®(CE1*FCR)+CB2*CCC*ECB2) /7 (ECBLl+CC®ECS2)
BASEC=AMC(MST,LST)
00 814 M=),ugd
OR=(M-1.)cwLR/2,
DO Bl4 L=1.LR
RLM=FRES {¥.L)
CCS=CSCRT (CMEGOCMEGTAVACH®AMACH» {AMACH®AMACH=1.)* (RLMOR M-
10MEGECMEG?)
BBl=(OMEGCAMACHCCS) /() . -2“YACH®AMACK)
BB2=(CNEGOARACH-CCS)/ (] .~AMACH®AMACH)
EBI=CMFLX{()e04040}
EHZ=CEXP(CI®(PR2-RY¥]1)*78)
BCC=-(CI°RRl-ALINJY}/Z7(CIoBR2-ALINN
BASE=Cl® (RB12FfB]1+382°F82°aCC)/(EB} +ACC*EB2)
SUMG=CMFLX(0.0.,0.0)
DO 817 MuU=1.MUB
317 SUMG=SLFMGsAMU (M L MU (TTEMMST MUI=-CIOTTI (MM, ,MU))
SUMG=SLMGo8aN] (M, +NC})?
814 SUMX=SUMX+SUMGEEASE
BMU(NST oLST )Y =S MX/784 .{57C8S
811 CONTI~LE
B80S COMTINLE
BMU(MS JLhAT) =CMPLX(14040.0}

i0=1C+1

DO 9&C ¥=;.™9 )

OR=(M -].}eMuR/2, ANAL QAGBB
= AL SARNE

D0 960 L=].LR iGN Quma

00 970 MU=]eMUR oF PUV

SUMF=CMPLX(D.0-C.M)

00 971 MP=z]e¥:

00 S71 LP=1+LC

NC=LFeLCo (MP=].) .

SUMF =SUMF « BMU (MP JLP)OBN] (Mo JNCI®(TTE (MNP ML) *CIOTTI (M MP oMUY )
971 CONTINLE
970 AMU(S oL o) TSUMF /AN (ML)
960 CONTINLE



IFCIC.LT.IOMAX)Y GOTO 8S1
WRITE(£,909)
909 FORMAT(*0ThHE FOURIER-BESSEL COEFS, FOR MAIN CHAMBER®)
DO 911 M=1.MC
WRITE(€+9)10) M, {BAU{M,sL} st .=1LC)
911 CONTINLE
910 FORMAT(® @#,13,¢ €,10610.2.,/¢10G10.3)
DO 912 IQ=1.4UR
wRITE(€.913)10
913 FORMAT (*gTHE FOURIER-BESSEL COEFS. FOR BAFFLE COMPARTMENT®.]13)
00 914 M=].MH
WRITE(€+910) M, (AMU(M.L+]10}),L=19L8B)
914 CONTINLE ’
9:& CONTIN.E
Ceosa STARILITY CALC,
OMG=REAL (OMEG)
BIN‘!:ooo
SUMY1=0.0
D0 821 M=) .M8
OR=(M=-1.}2KUB/2,
DO 821 L=1.L8
RIM=8BES (ML)
BEK=LSCHRT (OMEGOCMEG®ANACHOAMACH (AMACH®AMACH=-] ) ® (RLM*RLM~
10MECeCFEG))
AB81=(OMEGEAMACHRSK] /7 (] e ~AMACH®ANACH]
AB2= (CFEGCAMACH-BSK) /(] . ~AMACH®AMACK)
CM==-({CIeAR]~AL INJ}Z{(CI®AB2-ALINJ)
BASE=CEXP(CI1°AB)e28) +CHeCEXP(CI®AB2*ZR)
BAS=CLES (RASE)
BAS=EA<egAS
BB1=(1e+CM:oCYaCOMEG-AMACH®CI® (AB) +2B2&CM)
BASR=CA8S (881}
BASR=BJISKIBASKeCANMASGAMMA
SuMwi=0.0
DO 822 1=1.11
ETA=26°2(1)
BSK=CEXF (CI®AB]|®ETA) +CM>CEXP(CI®ABC2ETA)
8S1=CAES (BSK) :
BB2=CI* (AR]1®CEXP(CI®AGI®ETA)+CM®AB2SCEXP(CI%AB2"ETA)
BSK=CAVMMA® (CI°0OMEC®*BSK«ANACKH®AR2)
8S =CAES(BSK)
BS=BS°ES/2..,GCAMMA+GAMMACONGOOMNG®BS]) #RS) /2.
827 SUMW]=SUNMW]*RS*w{[}*2B/BAS
RAH=°-°
DO 823 MU=1.MyuB
RAM] =C2BS (AMU (ML +MU))
A2 RAM=RANM RAM]®RAM]
GINI=BIN]+RAMOQASR®BN (M, ) /BAS
821 SUMYLI=SUMY] *RAMESUMW] 28BN (M,L)
BNRZI=0.0
SUMU1=0.0
D0 B84] M=].MC
03?:)‘.-].
DO R&4) L=1.LC
RLM=CRES(M,L)
BK=CSCRT (OMEGSOMEG 'AMACHOAMACH (ANAC'1®AMACH~],) ®* (RLM®R_ M-
10MEGOCFEG))
CBl=(CMEGOAMACHBK) /(] ,~AMACH®AMACH)
CB2=(0OFEGOAMACH-BK)}/(]1.-AMACHSAMACH)
CH=~(CIeCRI-ALAMN)Z(Ci%CHB2-ALAMN)
HASE=CEXPICI®(CB1-CB2) o (2R-ALENGTH)) oCH



BAS=CAES (RASE)
BAS=-EASegAS
BASER=CEXP (~CI*CB2® (2B-ALENGTH) )
BBS=CAES (RASESB)
BBS=BBSegRS .
BBI=(1++CM)*CI*CMEG*AMACH®C]I* (CB) +CMe(C52)
BASR=CARBS (RB1)
BASR=EASReAASRECAMMA®GAMMA
SUMV1=C.0
DO 842 I=1.11
ETA=Z8¢ (ALENGTH-2B)®2(])
ASK=CEXP(CI*(CRL1-CB2)® (ETA~-ALENGTH)) «CM
8S)=CAES (RSK)
BB2=CI®*(CAL*CEXP(CI®(CB]1-CB2)* (ETA-ALENGTH) ) «CH®*CB2)
BSK=CAVMA® (CI°OMEC*BSK+AMACH®RB2)
8S =CAES (BSK)
B85=BS%ES/2./GAMNA+GAMMASQUGEOMG®*BS]*RG] /2,
BASER=CEXP (-C1°CB2%(ZB-ETA))
B8CS=CABS({BASEB)
’8CS=8C<e8CS

842 SUMVI=SUMV]*BCSRS®W (1) e (ALENGTh-28)/8AS
RAMI=CASS (BMU(M.L))
ANZI=8BA2]+RAM] cRAM]1 “BASR®ANC (M,L)*BRS/BAS

841 SUMU]=SUMU] *RAM]eRAM] SAMC (M,L) *SUuMV]
=172,
CALL VCISP{OMGMUBJEPSILONAMACH,SUM)
eINIR=EIN]I/2.
BNZIR=ENZ21/2.
FN=AN® (] ., ~COS(OMG®TAU) ) AMACH
ANZB=AFACH® (] .+CAMMA) /2, /GAMMA
BINIR=FNeRINIR
r 2ZIR=ENZROBNZ IR
SUMIAN=ENZIR-3INIReSUM
WRITE(€+30) BINIR.BNZIR,SUM

30 FORMAT(e0COMA., INPUT®,613.6¢® NOZZLE EXTe=®9G13e64% DISSI.=%*4G13.6
1)
SUMY]1=SLMy]L *SUMY]

ceess DECAY RATE CALC.

DECYRT=SuMIN/SUNMY]
WRITE(€+125) DECYRY

12S FORMAT(*QDECAY RATE=°,G21.14)
DECTR=54.575°0ECYRT/OMEG
WRITE(€4+130) DECTS

130 FORMAT(eQDECAY IN OECIBELS/CYCLE=#,G21.16
END
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SUBROUTINE VOISP (OMEG+MUBEPSTLON,AMACH VALUE)

COMPLEX A,AM(U,8M,SUN,SUMX

OIMENSION A(12,%'1)

DIMENSION Willl)ect1))
COMMCN/7BLKA/MCoLCoMBILBeZBALENGTHAMY{104,10+12) +8MUC10+10?
COMHON/BLKD/DISFY OISFToTGAMMATMAX

COMMCN/BLKF/BPES(10+10) +CRES(10010)
DATA(W(I)41=1411)7.021291018375544+.05761665831124,+.0934003982782S.,
1.120520169614324.13642496095628¢.24149370892R75+.13642690095628,
2+12052016961432+.09340039R27825+.05761665831124+.02129101837554/
DATA(Z2(]I)41=341117.00795731995258+.064691007703067..12291663671458,
1.23076%344947164+.36018479341911+.500000000000009.63901520658089,
2.7692345655052844.87708336328542+.95308992296933+.99204260047427
OISSIFATION CALCULATION [S AS FOLLOWS

PI=3.14159265259

SMALLEST vALLUE FQR RADMIN=MyBeY/P]

RADMIN=MyBeT/P]

00 331 I=1.411

R=RACMIN+ (1«.~-RADMIN)*Z(])

TMAX=T/R

00 331 HyU=1.MU8

THETAX=2.eP1oMyU/FLOAT (MUB) « TMAKX

THETA =2.5PloMys/FLOAT (MUB) -TMAX

TH=2.°F1oMy/FLOAY (MUB)

AL=MB*L8

SUMX=CFPLX(0.0.0.0)

SUM=CMFLX(0040.0)

00 332 M=].MR

OR=M~-1,)eMUR/2,

DO 32 L=1.L8

V=BBES (ML)

v2=BESSCAL(OR,Vv/2.)

V=V*R

vi=ve2.

IF(OR.CE.5S.AND.V3.LT.OR) GOTO 300

VI=BESSCAL (OR,V)

GOTO 1301

V1=V2®((R®2.)¢2TR)

CONTINLE

MUx=My+*1

IF (My.EQ.MuB) MUX=1

SUMX=SLMx+ANMyU (M, ,MUX) oY) *COS(OR®*THETAX)

SUH=SUF + ANU (ML +MU)2V]1°COS{OR*THETA)

A(MUL 1) = (SUMX=SUM) /SART (2.°T)

CONTINLE

AMULT>CAMMA®SORT (OMEG/24) 72

SUM=CMFLX(V¢040.01}

00 339 J=-1.11

TE=ACOSiZB/(2B+T1))

00 339 Myu=1+MUS

AX=CABS (A(MU<J))

AX=AXeAX

B=EPSILCNeEPSILON®AX/T/4,

SUMI=0.0

D0 336 I=1.11

ETA=TE/2.+2(1)e(PI-TE) /2,

V1=SIN(EYA)

SUMI=SLM]I+ (DISFV-DISFT®((AMACH®AMACH+poyley] e, 25) )8y (])/V]
SUMI=S{M[oaxe (P]-TE) /2,

SUM=SUMeuUMIew(J) 9 (]l .-RADMIN)

VALUE =AMyL TeSUM

RE TURN

END
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FUNCTICN BFSSCAL (ORe+ALX)

THIS SUBPROGRAM CALCULATES THE VALUE OF THE RESSEL FUNCTION Of
INTECEF AND HALF INTEGER ORDER-OR WITH ARGUMENT -aLX

M=0R

A3J=(OR-M)* (OR~-M)

IF(A3.CT.0.001) GOTO 100

IF (ALX.GE.3.0) GOTO 101

AL2=ALX®ALX/3./3.

AL4=ALc®AL?

AL6=ALc®ALSG

ALB=AL4SALSG

ALIO=ALB*AL?2

AL12=AL62ALS

BASEL1=1.0-2:2499Q997%AL2+] .2656208%AL4-0.3163866%AL6+0.0444479°A B~
10.0035444°4L10+0.00021002AL 22
BASEZ=0:5-0:.56249985%A1L2+0.21093573°%A1L4-0.03954289%AL6+0.004433]15*
1AL8-0.C0031761<AL10~0.00001109°AL12

BASE2=ALX*BASE?

GOTC 200

ALI=3.7A0X

AL2=ALICAL]

ALJ3=ALZ=AL]

AL&4=ALc*AL2

ALS=ALZeAl 2

ALG6=AL2®AL)]
F1=0.7578R456-0:00000077AL1-C.0055274*AL2-0.00009512%AL 3
10.00137237°4L4~0.00072R805°2ALS+0.02014476%AL6
THETA]=ALX~0.78539816-0,04156397°AL1-0.000C3954%AL2+0.00262573
1AL3-C.€0056125°%A1 4~0.00029333°AL5+0.0n013558°AL6
F2=0.25788456¢0.000001S6%AL1*0.0165S6A7%AL2+0.000)17105%AL3~
10.00245511°AL4L+0.001)3553°2ALS~-0.00020033%AL6
THETA2:=ALX~2.3561G445¢0.1249°951.%AL1+0.000056S50®AL 2-0.00637879°AL2
100.000743aath400-0007°824'ALS-0.00029166¢AL6

Bl1=ALX%20.5S

BASE1=F s *COS(THETAl) /81

BASEZ=F292COS(THETA2) /8]

IF{M.EC.Q) GOTO 201

IF(M.EC.]1) 292.20)

BESSCAL=BASE])

RE TURN

BESSCAL=RASE?2

RETURN

CONTINLE

M]l=M-1

DO 204 M2=1.M)

BASE3=Z.°M2°BASE2/ALX-BASE]

BASE1=FASE?

BASE2=E2£SE]

CONTINLE

BESLCAL :3ASE2

RE TURN

COMTINLE

BASE=(2.0/3.1415926/ALX)neQ,

BASE1=C"5(ALx)eRASE

BASE2=CSIN(ALX)SRASE

IF(M.EC.0) 220.223

BESSCAL-RASE?

RE TURN

M]=M

DO 224 M2=]+M}

AM3=M2-n,5



BASE3=C .°AM3°BASE2/ALX-BASE]}
BASE1=EASE?
BASE2=EASE]
224 CON:iINLE
BESSCAL =BASE?2
RETURN
END

SUBROUT INE ROOT (MXsLXoMUB,4R
DIMENSION RT(10.10)
DO 120 M=) Mx
OR=MUB® (M~-1.)/2.
OR3=0R**0,.31333
RT(H-“=0-0
IF(M.EC.]1) COTO 140
RT(Ms1)=0R+0.8086165°0R3+¢0.67249/70R3I-0.05097/0R*0.0094%0R3I/ O "0
140 CONTINLE
DO 121 L=2,Lx
Z=RT(MyL=-1)+3.1415926535
DIR=1
DEL=0.1 B
REF=CR°BESSCAL(OR'Z'/Z'BCSSCAL(OR‘I'Z)
100 2=2+CEL®DIR
REF)=CR*BESSCAL(QR+2)/Z-BESSCAL(OR*1,2)
V=REF;/REF
1F(V.G1.0) GQTO 100
DEL=CEL/2.
DIR=-CIR
REF=REF)
GO0T0 100
10S RT(M.L)=2Z
121 CONTINLE
120 CONTINLE
QETURN
END



THE FOLLOWING CALCULATIONS ARE PURELY FOR DIAGMUSTIC PURPOSES
LARGER MATRIX SIZE S»CuLD BE USED FOR CONPYTATION

0000000000000 0000%4060080800R00CR0RRRERERRRRRETEEElECE0cETRRPCUOEB0a000000000
9000000800208 0000000800000 08000008830008008320880803800g8200080000000s00a0ssass
THE FOLLOWING CALC.ARE FOR STANCING wAVES

2008800000000 CRA000CP0ERR00ESEIERRICNENRC000E000E08000QLTRUCR @O as00TRsS

Ge0R0I08200008 0089008000088 000000000000C0CGLECRNERRRCR, P0R00EDORT0Ca00eBR000%S

THE CYLINDRICAL CHAMBER HAS THE FOLLOWING CONFIG,.

THE LENGTH TC RADIUSE 1.50000 MEAN FLOW MACH NO,= «10000
RATIO OF SPECIFIC nEATS= ).20000
THE WAVE CHARACTOR IS 1 RAQlAL MOOE 1 TRANSV MODE
AND 1S OF wAVE AMPLITLOE .10000000000000

THE BATFLE CONSISIS OF 3 CCMPARTHMENTS WITH LENCTH «50C00
AND BLADE THICK4ESS «106CQ

MOLECULAR VvISCOSITY= 1.00000000000000E-0S

EFFECTIVE TURBULENT VvISC, ¢CEfF.= S.00000000000000E-02

ITERAYION 0 COMPLEX FREQ.= 1.665406249999y =1.61328124959956E-02
JTERATION 1 COMPLEX FREN.= 1.5850624999999 -S5.253906249%9991E-02
ITERATION 2 COMPLEX FREQ.= 1.6240234374999 ~3.964843749°998RE-02
ITERATION 3 COMPLEX FREQe= 1.6086031245649 ~4.86328124999982E-02
ITERATION 4 COMPLEX FRED.= 1.6154256874999 ~4427734374999980E-02

THE FOURIFR-PESSEL CCEFS. FOR MiJN CHAMBER

1 -6.066F-16 1.052E-15 2.C24E-16 1.0G3E-14
2 1.00 0. 133 1.0176-02
3 -.245 ~3e4G54E~32-9.036E-02~2.355F-03
4 =2.233E-13-7.329€-16-5.G05E~14~4.997€~-15
S «121 7.641E-03 5.256E-02~1.791€-03
THE FQURIER-uESSEL CCEFS, FOR SAFFLE COMPARTIMENT |}
| 222 2+955E-03-9.514E-02 S.4276-04%
2 «540 -3.071€-02 .109 8.315F-03
3 -.200 =1«045E-02-8,3R2E~02~4.65GF-03
4 «209 1«123€-02 Q.7776-02 6.5S3CE-0%
S =B¢901F-0C-64.35€E-03-4¢616E£~02-1.0866-02
THE FOURIER-CEQSEL CCEFS, FOR RAFFLE COMPARTMENT 2
1 -.443  -5.911€-03 190  ~1.085£-03 e
2 -1.814F-12 4.B3RE-15-3.641E~14=1.521FE-15 e =Ty
3 4O 2.091€-¢2 .1¢8 9.319€-03 - - ;ngl
4 =2.7616-12 8.218E-15-1.151€~13 9.,925€E-16 e
S «178 B8.712€-03 9.2326-02 2.172E-03
THE FOURIER-BESSEL CLEFS, FORP BaFfLE CCMPARTMENT 3
1 «222 2¢9350-03-9.514E-02 S.427F =04
2 =.540 3,671 -02 -+109 ~8.315€-03
3 -.200 ~1.045F-02-R+3APF-02-4.659F-03
4 =.209 ~1.123E-02-2.777F-02-6.5930F~04
S *5.901€-02-4,356F-03-4:.616E-02~1.086F-03
CCMB. INPUT 108318 KOZ2ZLE EXVe= J.177977€E-02 DISSI.= ,418200

DFCA RATE= +20505835299336

CELAY IN DECIEELS/CYCLE= 7.€577917121102



