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1.0 INTRODUCTION
 

Heat pipes are at a stage of development where they are often
 

indispensable elements in the optimum thermal design of spacecraft.
 

Large gains in heat-pipe performance, however, are still to be had
 

in control, as well as reliability and capacity. This report is on
 

continuing efforts in these areas by TRW Systems Group under contract
 

NAS 2-8310 with Ames Research Center. Inaddition, we are reporting the
 

results from data analysis of two successful zero-gravity flight
 

experiments that were developed on a previous contract NAS 2-5503.
 

InSection 2,we report the results of the Ames Heat Pipe
 

Experiment (AHPE), which isa variable-conductance heat-pipe/radiator
 

system launched aboard the OAO-3 spacecraft in August 1972. -All
 

available flight data were reviewed, and those from selected orbits were
 

correlated with predictions of an analytical model of the system.
 

The principal conclusion is that gas-controlled variable-conductance
 

heat pipes can perform reliably for long periods in space and effectively
 

provide temperature stabilization for spacecraft electronics. Furthermore,
 

the performance of such systems can be adequately predicted using existing
 

design tools.
 

Arterial heat pipes offer high heat-transport capacity, however
 

even a trace impurity of noncondensable gas can be trapped inan
 

arterial bubble during priming and cause the artery to fail under load.
 

This critical problem has in the past ruled out arteries for gas-loaded
 

variable-conductance heat pipes. The second zero-gravity experiment,
 

reported in Section 4, studied a solution that allows the gas to vent
 

through the arterial wall. Zero-gravity was achieved for six minutes
 

on board a sounding rocket. Two heat pipes had instrumentation inside
 

the arteries to detect the state of prime. The principal conclusion'is
 

that the solution works effectively inzero gravity as well as on earth,
 

ind the experiment provided confidence that gas-lbaded arterial heat
 

3ipes of the type tested will function reliably on spacecraft.
 

-1­
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In conjunction with the analysis of arterial priming on the sounding­
rocket experiment, a glass-walled heat pipe was used to visually investi­
gate the priming mechanism in the laboratory. This investigation, which is
 
reported in Section 5, uncovered the source of a discrepancy between the
 
actual fluid charge required for the arteries to prime and the predicted
 
charge, which was low by over 30%. A solution was found that allows the
 
arteries to prime at a much lower fluid charge.
 

Although arterial heat pipes have a high heat-transport capacity, they
 
also have stringent leveling requirements for priming, and they are gener­
ally complex to fabricate. In addition, nonarterial heat pipes are inher­
ently more reliable. Under the task reported inSection 6, a high-capacity
 
nonarterial heat pipe was developed. 
A combined theoretical and experi­
mental effort was 
first undertaken to construct a mathematical model of
 
capillary flow through a fibrous wick. 
The key to high capacity is to use
 
the model to vary the wick's porosity along its length. The computer pro­
gram GRADE was written to calculate optimum porosity variations. A half­
inch-diameter all-aluminum heat pipe with ammonia as 
the working fluid was
 
designed and tested. Its demonstrated capacity of 226 watt-m at 21 C
 
is far superior to any existing half-inch-diameter nonarterial ammonia heat
 
pipe, and the mathematical model predicts an additional 50% increase is
 
possible by a refinement of the wick's porosity variation.
 

As part of the effort to develop a high-capacity nonarterial heat pipe,
 
a task was undertaken, which is still in progress, to experimentally study
 
the pressure variation of the vapor flow since it can directly affect the
 
optimum porosity variation of the wick. The results of this study are
 
deterred to the next research report where we plan to present them with
 
the results of a theoretical study.
 

. Our task in the area of heat-pipe control, which is reported in
 
Section 3, was to develop a flight prototype variable-conductance heat pipe
 
based on modulating the vapor flow. 
In the course of the task,-we discov­
ered a 
new control mechanism that circumvents some of the limitations of
 
the existing vapor-modulated mechanism. 
Two heat pipes were fabricated.
 
The first pointed to several needed design changes, which were incorporated
 
into the second. The result is a heat pipe with high capacity (inexcess of
 
200 watt-m ) and close temperature control of the heat source (less than-

0.04C rise in temperature per watt), independent of large variations in sink
 
temperature. -2­
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2.0 	A VARIABLE-CONDUCTANCE HEAT-PIPE FLIGHT EXPERIMENT:
 
PERFORMANCE IN SPACE
 

The Ames Heat Pipe Experiment (AHPE) is a variable-conductance heat
 

pipe which was launched aboard the OAO-3 spacecraft by NASA in August
 

of 1972. AHPE is being utilized to control the temperature of the space­

craft's On-Board Processor (OBP). Variable conductance is achieved by a
 

noncondensable gas loading contained in a "hot", non-wicked reservoir.
 

AHPE was developed and fabricated by TRW under a previous contract.
 

On the current contract, the flight temperature datawereanalyzed and
 

compared to analytical predictions (see Reference 2.6). With a view of
 

achieving maximum utilization of the flight data as an aid in future appli­

cations of variable-conductance heat pipes, itwas established that the
 

following questions should be answered during the study:
 

(1)Does operation of the experiment correspond to established
 
theory, and can it be predicted with existing analytical
 
tools?
 

(2)How effective is the heat pipe in providing t~mperature
 
stability for the OBP, i.e., what temperature would be
 
expected without the heat pipe?
 

An analytical model of the heat-pipe system was first generated. 

To establish confidence in the model, itwas then used to correlate 

ground-test data where heat inputs and environmental conditions were
 

well known, and a large number of temperature measurements were available.
 

Flight data werethen collected, examined and several orbits selected for
 

correlation. Primary criteria for selection werethat the data were for a
 

full orbit and showed orbital stability, i.e., temperatures at the begin­

ning and end of the orbit were approximately equal. This allowed
 

correlation of data for an individual orbit without having data from
 

previous orbits. 	Environmental conditions for these orbits were input
 

to the analytical 	model, and the predicted heat-pipe performance was
 

compared with the 	flight data. Finally, the model was modified to
 

simulate a failed 	heat pipe, and the performance of this system compared
 

with the existing 	AHPE design to give a measure of the heat-pipe
 

effectiveness in providing temperature control.
 

-3­
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2.1 	 AHPE DESIGN DESCRIPTION
 

A complete discussion of the system design and a detailed description
 

of the AHPE hardware can be found in References 2.1 and 2.2. A summary
 

of the important design features is given below.
 

Working fluid: methanol
 

Control gas: helium (1.16 x 10- g-mole,
 

Pipe 	material: stainless steel,
 

Reservoir: Hot, non-wicked (216.3 cm3)
 

Wick 	system: Hybrid; homogeneous and filledartery
 

Maximum heat.load (design spec.): 22 watts
 

Radiator sink temperature (design values)*: .19C (max), -52C (min)
 

Control range: 14 to 20C
 

Radiator: Alzak-coated aluminum (/e= 0.17/6.75) 

Reservoir/condenser volume ratio: 10:1
 

Includes heat input to back of radiator. 

Figure 2-1-shows the AHPE as integrated into the Orbiting Astronomical 

Observatory (OAO-3). OAO-3 has 926 km , circular'orbit. The spacecraft 
is in sunligqht from 65 to 81 percent of- the time, corresponding to orbit 

planes between 00 and 550 to the ecliptic. Heat generated by the OBP 

electronics is rejected to space by an Alzak-coated .radiator mounted on 
an external face of the spacecraft. The spacecraft 'isoriented-such that 

the panel surface on Which the AHPE 'radiator is mounted is always parallel 
to'the sun-earth line. Therefore, the radiator'gets no direct solar energy 
but receives earth emission and albedorplus infrared energy emitted from 

the solar array. This solar array IR'flux is the dominant external heating 

source as can be seen from Table 2.1. 

Transfer of heat from the OBPoplatform to the radiator i§ by two
 
parallel paths. The first is direct radiation and the secohd i' through
 

the AHPE variabl6-conductance heat pipe. An experiment constraint was
 
that, for an AHPE failure, the OBP platform would not exceed 60C. This
 

required the radiative heat-transfer path in parallel with the heat pipe.
 

-4­
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Table 2.1. Incident External Heat Fluxes on AHPE Radiator
+
 

Solar Infrared 

Albedo Earth- Solar Array 

Max 49.29 57.43 159.36 

Mi 19.74 34.85 42.45
 

+Watts/m 2, Orbital Average.
 

The AHPE design is shown in Figure 2-2. Methanol was chosen
 

as the working fluid because of its superior properties for
 

control.. The control gas is He to maximize diffusion rates. It is stored
 

in the unwicked reservoir that is located inside the evaporator.
 

Stainless steel is used for the heat-pipe walls and wicks because of its
 

low thermal conductivity, which is beneficial to control performance,
 

and it is compatible with methanol.
 

The saddle for mounting the heat pipe to the OBP platform is of
 

aluminum for light weight and high conductance. As discussed in Reference
 

2.1, the-optimum characteristics for the radiator are high conductance
 

perpendicular to the condenser tube, to yield high radiator effectiveness,
 

but a low conductance in the axial direction to minimize the control
 

temperature range. This leads to the segmented radiator shown in
 

Figure 2-2. Low-conductivity fiberglass spacers are fitted between
 

high-conductivity aluminum fins. The region of the radiator nearest
 

the reservoir entrance has finer segments to locally give an even smaller
 

axial conductance. Low conductance in this region is important to
 

achieve maximum utilization of the radiator surface.
 

The back of the mainsection of,the radiator is painted black to
 

provide a heat-transfer path in parallel with the heat pipe as a back-up
 

in case of heat-pipe failure. If the heat pipe should fail, OBP dissipation
 

would be rejected totally by this path with an increased temperature
 

resulting. The back of the cold-trap region is insulated with aluminized
 

mylar to lower its effective sink temperature and thus minimize the partial
 

pressure of methanol in the gas reservoir.
 

-6­
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2.2 THERMAL MODEL
 

An analytical representation of the configuration was developed that
 

has two major elements: 1) a standard nodal-network representation and
 

2) a subroutine which calculates the variable-conductance heat-pipe
 

performance. The model is solved on the Systems Improved Numerical
 

Differencing Analyzer (SINDA) Program, Reference 2.3.
 

The nodal model of the AHPE is shown in Figure 2-3.
 

It consists of 53 nodes torepresent the radiator, heat pipe, platform,
 

OBP and boundary conditions. Two models were generated: 1) a steady­

state representation to correlate ground test data and 2) a transient
 

model to correlate flight data. A subroutine to the SINDA program was
 

written to calculate performance of the variable-conductance heat pipe
 

using the same basic formulation described in Reference 2.4. 'This
 

formulation was modified to include the effect of diffusion,which is
 

necessary in this application because sink conditions undergo a large
 

change each orbit with a corresponding variation in methanol partial
 

pressure in the cold trap at the entrance to the reservoir..
 

The partial pressure of methanol in the reservoir will attempt to equilibrate
 

with the cold-trappartial pressure by diffusion and convection. Under
 

steady-state conditions, the reservoir methanol partial pressure would
 

become equal to the cold-trap methanol partial pressure. However, under
 

the orbital transients of AHPE this assumption would not be valid and
 

diffusion dynamics must be included in the analytical model.
 

Figure 2-4.shows the manner in which the-heat pipe is modeled and
 

gives a block diagram indicating the method of solution for a transieht
 

problem. The heat pipe is divided into a number of nodes with all condenser
 

and evaporator nodes connected to a single vapor node. Initial temperatures
 

for all nodes are input to start the calculation procedure. Time is then
 

advanced, bounday temperatures are updated and the nodal network solved
 

for the new conditions. Reservoir and heat-pipe wall temperatures calculated
 

are input to the VCHP subroutine, which then calculates a new heat-pipe
 

vapor temperature. Flow of vapor into or out of the reservoir due to
 

diffusion and convection during the time step are next calculated, as
 

-8­
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well as the new reservoir vapor pressure (see Appendix A for details of
 

these calculations). A new gas length in the condenser is next calculated
 

and condenser-to-evaporator conductor values updated. If a condenser
 

node is completely blanketed by gas, its conductance to the vapor node
 

is set to zero. If the gas front is located somewhere within the boundary
 

of a particular node, the conductor value is calculated from the fraction
 

of the node which is not blanketed by gas. The evaporator temperature
 

and conductor values thus calculated are then input to the nodal-network
 

solution routine and used during the next time step.
 

2.3 CORRELATION OF GROUND PERFORMANCE TESTS
 

Thermal-performance tests were conducted to verify the predicted
 

performance of the AHPE for the fluctuations in power dissipation and­

external boundary conditions anticipated during flight. Of particular
 

interest were the control range and axial temperature profiles, the
 

minimum and maximum pipe conductances and the maximum heat-load capacity.
 

Although these tests simulated the thermal energy incident on the radiator
 

during flight, their purpose was to determine the performance of the
 

AHPE itself with well-defined thermal boundary conditions, rather than
 

attempting to simulate the complex interactions within the OAO-3/G-l
 

bay. Thus, these tests were ideal for verification of the thermal model
 

and VCHP simulation subroutine.
 

The test set-up is shown in Figure 2-5. The AHPE was mounted
 

on the vertical supports so that the centerline of the evaporator
 

was approximately 0.64 cm above the centerline of the condenser.
 

Teflon washers were used to conductively insulate the AHPE from the
 

support structures,and guard heaters were used to minimize heat losses
 

through the thermocouple leads and from the back of the evaporator. All
 

but the outboard surface of the radiator was insulated with approximately
 

20 layers of crinkled aluminized mylar. The albedo (S)and infrared
 

energy (IR)incident on the radiator during flight were simulated by a
 

shroud completely encompassing the radiator's field of view and heated
 

to an effective space temperature (Ts) defined by the equation
 

acTs4 = aS + sIR
 
-1I­
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where a and s are the s6lar absorptance and-infrared emittance of 

the Alzak radiator. The heated shroud-was lined with'open-cell honeycomb 

and painted with Cat-a-lac black to yield a shroud emittance of nearly 

unity. Power to the evaporator was supplied by four flight-type foil 

heaters bonded to the sides of the evaporator saddle. 

The test conditions were'specified to map the heat pipe's performance
 

under maximum and minimum external flux conditions. In the flight
 

configuration the inward-facing surface of the cold trap has a low­

emittance coating while the inward side of the main radiator is painted
 

black. This results, as indicated in Section 2.4, in an effective sink
 

temperature variation between -19C and -52C for the main radiator.
 

The effective sink temperature for the cold trap is lower because its
 

low emittance coating on the inward-facing surface results-in a reduced
 

heat load from the OBP platform. Calculated sink-temperature range for
 

the cold trap is -28C to -77C. During ground test for the low-sink
 

donditionthe cold-trap sink temperature was approximately the same as
 

the main-radiator temperature, i.e., -SIC. Since the difference in methanol
 

vapor-pressure between the specified sink temperatures of -77C.and -52C
 

is very small, it was judged unnecessary to simulate the lower-temperature
 

cold-trap sink. However, for the maximum sink conditions the shroud
 

temperature profile was controlled to give effective sink temperatures
 

approximating -19C and -28C for the main radiator and cold trap
 

respectively.
 

Figure 2-6 shows comparisons'between test data and analytical
 

predictions of the heat-pipe control characteristics. Good correlation
 

is achieved except at very low power levels where small heat leaks which
 

are difficult to accurately predict are dominant. Figure 2-7 shows a
 

representative comparison of analysis and test data for the condenser
 

tpmnnrature profile. Again, reasonably good agreement is in evidence.
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2.4 FLIGHT pATA'ANALYSIS, NORMAL OPERATION
 

A great deal of flight data has been accumulated over the two plus
 

years the spacecraft has been in.orbit. All availabledata was reviewed
 

and a summary of OBP platform temperatures is shown inTable 2.2.
 

Table 2.2. Summary of AHPE Orbital Data 

Orbital Average OBP 
Orbit No. % Time InSun Platform Temperature (°C) 0*(Deg.) 

420 66 19 62 

426 66 19 26 

967 66 21 30 

1592 69 21 26 

3360 66, 19 + 

4225 81 22 30 

5716 ;67- 24 51 

5801 68 21 93 

9852 79 23 27 

17336 77 21 29 
"8 = Spacecraft pitch angle. 

+,= Not available. 

The data shown in Table 2.2, representing over three years in orbit, show­

some evidence of possible minor degradation in heat-pipe performance.
 

For example, orbits 4225 and 9852, which are approximately 400 days,
 

apart, have about the same environmental conditions but the latter orbit
 

shows a 10C higher OBP platform temperature. The last data point, however,
 

after about three years is near the orbit 4225 data. Comparing temperature
 

with early data is not readily accomplished due to different orbital .condi­

tions, but any changes inheat pipe operation appear to be minor.
 

All data discussed in this section are for the nominal OBP power
 

dissipation of about .15 watts.- Sdme data sdppl'ied by NASA indicated­

higher power levels: however, those were for only short time periods
 

or for conditions not sufficiently specified to warrant presentation.
 

Data-for higher powers using the flight heaters was obtained. This
 

data is discussed-in the next section., From the data, a few orbits
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representing a broad range in environmental conditions were selected for
 

correlation with the analytical m6bel. ',Environmetal ch'Oditi'ins for
 

these orbits were input to the analytical model and the predicted heat­

pipe performance compared with the measured flight data..
 

Figures 2-8, 2-9, and 2-10 show comparisons between analytical,
 

predictions and flight data. Flight instrumentation of the radiator
 

consisted bf two thermistors, one on the heat pipe at the cold trap and
 

one at the beginning of the condenser. This latter thermistor thus
 

indicates turn-on and turn-off of the heat pipe. Tu'rn-on of the heat
 

pipe is defined as when the gas front location reaches the beginning of
 

the condenser. This condition is indicated by an increase in the reading
 

of condenser thermistor. Turn-off is defined as when the gas front
 

location recedes into the adiabatic section or evaporator and results
 

in a decrease in the condenser thermistor reading. Additionally, there
 

were two thermistors on the evaporator and one on the OBP platform.
 

All results shown are for one complete orbit where orbital stability
 

was achieved, i.e., temperatures at the beginning and end of orbit are
 

approximately equal. The comparisons indicate that the zero-g performance
 

of the heat pipe is indeed in accord with theory' There is a fairly large
 

discrepancy between analysis and data for the cold trap, the most probable
 

explanation for.which is a faulty cold-trap thermistor. Study of all flight
 

data has shown that readings from this thermistor were inconsistent and,
 

in some cases, appeared to be physically impossible. For example,,in
 

some cases the cold-trap thermistor has a higher reading than the condenser
 

thermistor which is unrealistic:
 

A number of other possibilities were explored in an attempt to
 

analytically match the flight data before it was judged highly probable
 

that the cold-trap thermistor was giving faulty readings. Assuming the
 

cold-trap thermistor readings were correct and inputting these values into
 

the analytical model, we then determined under what conditions flight
 

performance of the heat pipe could be reproduced. It was found that
 

flight performance could be fairly well matched by either assuming the
 

evaporator thermistors were reading about 20C too low or that there was
 

approximately 10 percent lesslnoncondensable gas'in the heat pipe than the
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nominal initial charge. Both of these possibilities are unlikely.
 

There are two evaporator thermistors giving consistent readihgs-which
 

are also in accord with the OBP platform thermistor. On the other hand,
 

the 10 percent reduction in noncondensable gas loading is well beyond the
 

gas loading tolerance of approximately +2%and a gas leak is inconsistent
 

with the rise in operating temperature with time discussed previously.
 

In addition, to match the cold-trap thermistor data, a significantly
 

higher external heat input would be required for the cold trap than for
 

the main radiator. However, calculated.external heating is nearly
 

uniform over the entire radiator cold-trap surface.
 

The heat pipe, in all three orbits, has a somewhat unusual turn-on
 

and turn-off performance as shown by the flight data and also reproduced
 

analytically, Figures 2-8, 2-9 and 2-10. The heat pipe undergoes a
 

turn-on turn-off cycle every orbit as indicated by the condenser temperature
 

profile which corresponds to a thermistor located at the beginning of the
 

condenser section. It is interesting to note that the turn-off of the
 

heat pipe does not coincide with a decreasing evaporator temperature nor
 

does the turn-on occur with a rising evaporator temperature as one might
 

expect of a gas-controlled heat pipe. A closer look at the results,
 

however, shows that the heat pipe's control function was not responding
 

to variations in OBP power dissipation (which was nearly constant throughout
 

the orbit), but to variations in radiator sink conditions as reflected
 

by the cold-trap temperature profile. The heat pipe turn-off coincides
 

with an increasing cold-trap temperature which results in an increase in
 

methanol partial pressure within the gas reservoir. This, in turn,
 

displaces a quantity of noncondensable gas into the condenser which shuts
 

the pipe off. Conversely, the turn-on occurs while the sink conditions
 

(cold-trap temperature) are falling. The corresponding decrease in
 

methanol partial pressure in the gas reservoir causes noncondensable
 

gas to flow from.the condenser into the reservoir, thus turning the heat
 

pipe on.
 

Turn-on turn-off characteristics of the VCHP are very sensitive to
 

the noncondensable gas loading. This is, in part, due to the fact that
 

under nominal OBP power (=15 watts) the heat pipe carries very little load
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(most is by direct radiation between platform and radiator), and hence
 

the gas front is very near the evaporator end of the condenser. Active
 

lengths of the condenser are short and a small increase in gas inventory
 

would turn the pipe completely off. For example, a one percent change in
 

gas inventory corresponds to a gas-front movement of approximately five
 

cm. In correlating the flight data it was found that a better match
 

to experimental data was achieved if a reduction of 2 percent in gas
 

loading from the nominal value was assumed. This tolerance is within the
 

accuracy to which the pipe was filled and thus is not felt to be a
 

discrepancy between analysis and flight data. When the nominal value
 

of gas loading was used in the analytical model the results indicated
 

that the pipe would never turn on.
 

Because a hot, non-wicked reservoir is utilized in this design, the
 

partial pressure of vapor in the reservoir is established by diffusion of
 

vapor through the gas tube between the reservoir and cold trap section of
 

the condenser. The ramifications of this phenomenon were studied in detail
 

and reported in an earlier publication, Reference 2.5. Reservoir working­

fluid partial pressure has a significant effect on heat-pipe control
 

characteristics since any vapor in the reservoir displaces control gas
 

into the condenser. -Under steady-state conditions, the partial pressure
 

of vapor in the reservoir would become equal to the partial pressure at the
 

end of the wicked portion of the condenser, the cold-trap region in this
 

case. However, during the OAO-3 flight, the sink temperature is changing
 

throughout the orbit and steady-state conditions are not realized.
 

Figure 2-11 shows analytical predictions of cold-trap and reservoir'
 

partial pressures for a typical full orbit. The effect of the diffusion
 

is to damp fluctuations in the reservoir vapor pressure and to cause a
 

time delay between cold-trap and reservoir vapor-pressure peaks. The 13­

minute time delay shown in Figure 2-11 reflects this diffusion phenomenon
 

as well as variations in total heat-pipe pressure due to evaporator
 

temperature changes. Clear-y, diffusion dynamics must be considered to
 

accurately predict transient performance of hot-reservoir heat pipes.
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2.5 PREDICTED PERFORMANCE WITHOUT HEAT PIPE AND AT-HIGHER POWER LEVELS
 

The analytical model was next modified to eliminate the heat-pipe function,
 

and comparisons were made with the system having an operating heat pipe.
 

Table 2.3 shows OBP platform orbital-average-temperature data compared
 

with analytical predictions with a non-operating heat pipe (all conductors
 

between vapor and condenser wall set equal to zero).
 

Table 2.3. Comparison of Results With And Without Heat Pipe
 

Orbit % Sun OBP Platform Average Temperature 

Number Time Heat Pipe (Cc) Heat Pipe (0C) 

Operative Non-Operative 

420 65.0 20 22
 

1592 69.0 21 23
 

4225 81.0 22 26
 

17350 79.0 25 44
 

17370 79.0 31 58 (Est.)
 

17387 78.0 41 71 (Est.)
 

Differences in OBP heat-sink temperatures with and without the heat pipe
 

are quite small
 

of the heat is transferred by the radiation path with very little energy
 

being carried by the heat pipe. The effect of the heat pipe is to reduce
 

fluctuations in temperature due to changing sink conditions by about 20C.
 

At higher power levels the effect of the heat pipe in stabilizing
 

OBP platform temperatures is more dramatic. Figure 2-12 shows calculated
 

control characteristics for OBP dissipations between 10 and 30 watts. The
 

heat pipe reduces the predicted temperature variation of the OBP platform
 

from a value of 180C to 40C for the same 20-watt dissipation range.
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Design goal for the heat-pipe evaporator was 17 + 3C for heat pipe 

energy rates between 2 and 20 watts for the predicted radiator sink range
 

of -52C to -19C. Of this 60C temperature range, 30C is due to the
 

variation in sink conditions. Therefore, for a given sink condition, the
 

variation in evaporator temperature for heat rates between 2 and 22 wattsi
 

should be 3°C with a maximum temperature of 20C at 22 watts and a -1gC
 

sink condition. The predictions shown in Figure 2-12 are for orbital
 

conditions near the maximum sink conditions and should thus result in an
 

evaporator temperature range of about 17C to 20C for a 2- to 22-watt
 

heat-pipe power variation. However, the actual predicted range is 21C
 

to 26C, which can be explained as follows.
 

This discrepancy is believed to be primarily due to sink-temperature
 

effects. First, the actual orbital-average sink temperature for this
 

condition as derived from flight data is approximately 9C as compared
 

to the design maximum value of -19C. This can be expected to cause an
 

increase in operating temperature since more of the heat-pipe condenser
 

must be active for a given amount of heat rejection. This requires a higher
 

evaporator temperature. Also, the higher sink temperature results in a
 

higher gas temperature and vapor pressure in the reservoir, further
 

increasing the required operating temperature for a given heat rate.
 
It is estimated that the effect of increasing the average sink temperature
 

to 9C is to raise the evaporator operating temperature to about 23C
 

at 22 watts which would only account for one-half the discrepancy.
 

Sink temperaturesspecified for design of the heat pipe were based on
 

orbital-average heat rates. Using an orbital average would also be
 

expected to result in an increased operating temperature when the system
 

operates under actual orbital fluctuations. This is because the variation­

of vapor pressure with temperature is extremely non-linear. Thus,
 

orbital-average reservoir vapor pressure will corespond to a higher
 

temperature than the orbital-average sink temperature based on environ­

mental heating. The net result will be for a higher heat-pipe evapor­

ator temperature being required when the system is exposed to the actual
 

fluctuating sink conditions. Effect of the actual variable sink condi­

tions as compared with an average value of -9C is estimated to raise
 

the evaporator operating temperature an additional 2.to 3C.
 

-26­



26263-6021-RU-00
 

2.6 FLIGHT TEST USING ON-BOARD HEATERS
 

Between orbits 14462 and 14482 on-board heaters were exercised in an
 

attempt to obtain flight data at higher powers to correlate the analytical
 

data in Figure 2-12. Results are shown in Figure 2-13. At orbit number
 

14462 the-10 watt flight heater was turned on. Up until this time, without
 

the heater, theOBP platform temperature was about 19C which correlates
 

well with the 65%-sun-time prediction of 19.7C.
 

The 10-watt increase in dissipation caused an increase in OBP'platform
 

temperature of about 6C to 25C. Steady-state conditions appeared to
 

have occurred after orbit number 14468. Referring to Figure 2-12, it
 

can be seen that the analytical prediction for a power increase of 10 watts
 
is a 50C rise in OBP platform temperature. Until orbit number 14473, it
 

could be concluded that the AHPE was operating in close agreement with
 

prediction. However, at orbit 14474 the platform and heat-pipe temperatures
 

started to rise. These temperatures were still increasing when the 20-watt
 

heater was turned on at orbit 14480 and when the test was terminated at
 

orbit 14482. When the heaters were turned off, the system recovered such
 

that platform temperatures of approximately 21C were reached after about
 

30 orbits.
 

The cause of the increase in temperatures between orbits 14473 and
 

14480 has not been explained. It does not appear to be a heat pipe
 

failure since the difference between evaporator and condenser temperatures.
 

remains fairly small., The on-board heater tests were repeated between
 

orbits 17338 and 17400. Results are shown in Figure 2-14. The data show
 

that no.high-temperature anomaly occurred as in the previous test. The
 

system was able to reject a total of approximately 44 watts (30 watts
 

heater and 14 watts OBP) and the OBP temperatures correspond closely to
 

those predicted in Figure 2-12. After the heater shutoff, the OBP temper­

ature came down to its normal operating temperature in about 22 hours.
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2.7 	 DISCUSSION AND CONCLUSIONS
 

The principal conclusions of this study are that gas-controlled,
 

variable-conductance heat pipes can perform reliably in the space environ­

ment for long periods of time (3-1/2 years to-date) and can effectively
 

provide temperature stabilization for spacecraft electronics which have
 

wide variations in power dissipations and/or thermal boundary conditions.
 

Very little (ifany) degradation in performance of the system was detected
 

during the more than two-year period for which data were evaluated.
 

Effect of the VCHP is to reduce a potential temperature variation of 360C
 

due to a heat-dissipation range of 20 watts down tol3 0C. Variation in
 

the OBP temperature due to environmental changes was only about 2'C in
 

this application.
 

Performance of the VCHP system can be accurately predicted by an
 

analytical model consisting of a nodalized network coupled with a subroutine
 

to calculate location of gas front in the condenser. Diffusion-dynamic
 

effects must be considered when calculating the gas-front location in
 

this case where a hot gas reservoir is utilized and boundary conditions
 

are changing.
 

Under normal OBP-power dissipation, the heat pipe turn-on turn-off
 

characteristics are determined by the variations in sink conditions over
 

the orbit. Turn-on of the pipe coincides with a decrease in cold-trap
 

temperature and hence a decrease in reservoir methanol vapor pressure
 

(lagging somewhat because of diffusion effects) and turn-off occurs
 

when the cold-trap temperature rises. The analytical model was able to
 

predict this phenomenon.
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3.0 DEVELOPMENT OF VAPOR MODULATION AS A CONTROL MECHANISM
 

Of the various mechanisms for achieving variable conductance of a
 

heat pipe, the one currently inwidest use is blockage of the condenser
 

with noncondensable gas. This mechanism, however, has drawbacks under
 

certain conditions often encountered in spacecraft applications. For
 

example, with a passive heat pipe, that is,without the use of a feedback­

controlled reservoir heater, close temperature control of the heat source
 

is impossible when the sink temperature varies not far below the source
 

temperature. When close control is required, active feedback control
 

must be used. In some applications, however, electrical power for the
 

reservoir heaters is unavailable. Two alternative conductance-control
 

these drawbacks.
mechanisms based on modulating the vapor flow overcome 


Although their principles of operation are basically different, both
 

mechanisms utilize a vapor-flow throttling valve activated by liquid
 

expansion in a sensor volume that i's in thermal contact with the heat
 

Thus close feedback control is achieved without electrical power.
source. 


Inaddition, the vapor-modulated control mechanisms are inherently
 

insensitive to sink temperature variations even when the sink temperature
 

approaches that of the-source. Other advantages are that no bulky gas
 

reservoirs are needed and no special design of the heat sink is required
 

to minimize axial conduction as isoften the case with gas-controlled
 

heat pipes.
 

The present contract calls for development of flight-type prototype
 

vapor-modulated heat pipes, first for a moderate-heat-load requirement of
 

approximately 20 watts, then for a high-heat-load requirement of 100 watts.
 

The following sections describe these efforts.
 

3.1 VARIABLE CONDUCTANCE BY CONTROL OF THE VAPOR FLOW RATE
 

The first of the two mechanisms for achieving variable conductance
 

by vapor-flow modulation is illustrated in Figure 3-1. Inthis configuration
 

the sensor volume isinside the evaporator and controls the temperature of
 

the vapor. A configuration with an external sensor volume that controls
 

the heat-source temperature isalso possible. The pressure difference
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that drives the flow through the valve is provided by the difference in
 

saturation pressures in the evaporator and condenser regions. The valve
 

is actuated by expansionof liquid in the sensor volyume in such a way that
 

the valve's opening is proportional to the deviation of the heat-source
 

temperature from the set-point temperature. Thus, the source seeks a tem­

perature close to the set point such that the latent-heat transport
 

through the valve exactly matches the rate of heat from the source. If,
 

for example, the source heating rate suddenly increases, at first the
 

latent-heat transport is insufficient to prevent the source from rising in
 

temperature. As it does so, the valve opens until the latent-heat transport
 

again matches the source heating rate,and the source temperature stabilizes
 

at a slightly higher level. As another example, consider the effect of a
 

sudden decrease in the sink temperature. If the flow through the valve is
 

choked, which occurs if the ratio of condenser to evaporator saturation
 

pressures is below the critical value, the decrease will not affect the
 

source temperature. If,on the other hand, the flow is not choked, then
 

the decrease in sink temperature temporarily increases the latent-heat
 

transport above the source heating rate. The result is a slight drop in
 

'source temperature, and the valve closes until the latent-heat transport
 

again matches the source rate. A water/monel heat pipe of the type de-


It demonstra­scribedwas developed on a previous, contract, Reference 3.1. 


ted good control characteristics with control range of 2.20C for large
 

variations in sink temperature and heat load.
 

The primary limitation of vapor-flow-rate control is that the maximum
 

temperature difference that can be sustained between the source and the
 

sink is set by the capillary-pressure limit of the wick. The vapor­

liquid pressure difference that the wick structure must sustain includes
 

the pressure drop across the valve in addition to the usual liquid-flow
 

pressure drop in the wick. Once the wick's limit is exceeded, vapor
 

"blows thru" where the wick penetrates the valve bulkhead. Table 3.1
 

gives the pore size of the wick required to ,preventblow-thru when the
 

condenser side is 220 K and the evaporator side is 294 K. With the
 

exception of water, the fluid/wick combinations listed have low transport
 

capacities. Unfortunately, water must be ruled out for the often occurring
 

applications where the condenser side falls below 273 K because the water
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Table 3.1. 'Fluid-Wick Combinations for vapor-riow Control 
7 WICK 

FLUID 

Ammonia 

I 
VAPOR PRESSURE 

AT 294K 
I 
6720 torr 

PORE DIAMETER TO 
PREVENT BLOW-THRU* 

11 4 1' m 

1.44 x 10- cm 

j 
I 

HEAT PIPE 
FIG. OF MERIT. 
7 

70 x 10 W/m 

FREEZING 
TEMP. 

195K 

Methanol 100.8 0.00067 37 x 175 

Water 18.97 0.01146 I 180 x 109 273 

Isopropyl Alcohol 32.88 0.00198 5.26 x 109 187 

IsobutylAlcohol 9.28 0.00688 3.03 x 109, .165 

Isoamyl Alcohol 2.50S 0.0279 2.85 x 109 156 

Octane 10.71 0.00609, 10.15 x 109 216 

Nonane 

*Evaporator Temperature 

3.46 0.0177 

=294K, Condenser Temperature 220K. 

7.47 x 10 9 219­ tQ 

, 

to 

C 

0 
0 
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.would freeze in the condenser and be unavailable for return to the
 

evaporator.
 

-Two approaches can be taken to increase capacity. First, as
 

illustrated in Figure 3-1, an artery can be used. Howe'er, entrappment of
 

an arterial bubble of residual noncondensable gas during priming is a
 

problem. Priming foils (Reference 3.2) offer a practical solution only
 

for pore sizes down to approximately 0.013 cm. For smaller pores, the
 

foil must be impractically thin. A second approach to increase capacity
 

is to make the vapor-modulated heat pipe as short as possible and use it
 

as a variable-conductance coupler between two conventional heat pipes.
 

An increased overall temperaturedrop in the full-on condition is incurred,
 

however, because of the additional evaporation and condensation processes.
 

3.2 VARIABLE CONDUCTANCE BY INDUCED WICK/GROOVE DRY-OUT
 

An alternative mechanism for achieving variable conductance by
 

vapor modulation is not limited by vapor blow-thru. Consider,the double
 

heat-pipe configuration illustrated inFigure 3-2(a). If the source temperature
 

falls slightly below the set point due to either a decrease in heat load or
 

a drop insink temperature, the valve closes and the increased pressure
 

drop is imposed on the-groove/wick structure,which then begins to empty.
 

Regions of the evaporative interface between the two pipes dry out and the
 

overall thermal resistance of the system increases. Conversely, if the
 

source temperature rises slightly above the set point, the valve opens which
 

relieves the pressure and.allows the dried-out regions to rewet. Thus,.
 

this induced dry-out mechanism establi.shes a temperature drop across the
 

interface that accounts for the temperature difference between the set
 

point and the sink.
 

Other mechanisms that have been proposed for achieving dry-out control
 

are throttling the liquid return or interrupting the wick. The vapor­

modulated induced-dry-out mechanism, however, has a crucial advantage.
 

When the valve closes and the pressure builds up, the wick structure
 

empties by the liquid flowing out of it to the other side of the bulkhead.
 

This occurs rapidly. On.the other hand, when dry-out is achieved by
 

throttling'the liquid return or interrupting thewick, the wick structure
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(b) DOUBLE-HEAT-PIPE CONFIGURATION. 
HEAT INKVLVE BLLOW
 

CONTROL-LIQUID
_SOURCEf_ 

HEAT SINKULKHEAD SENSOR VOLUME 

I io 

CIRCUMFERENTIAL
 

GROOVES WICK
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(c) TRIPLEtHEAT-PIPE CONFIGURATION. 

Figure 3-2. Vapor Modulated Heat Pipe Based on Induced Wick/Groove Dry Out 
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empties by evaporation. This takes a long time especially when the source
 

is turned down to a very low heat-rejection rate and large temperature
 

undershoots can be expected.
 

3.2.1 Design Features of the Induced-Dry-Out Mechanism
 

Although a double-heat-pipe configuration is shown in Figure 3-2(b),
 

single-and triple-pipe configurations are also possible [Figure 3-2(a)'and
 

(c)]. With the single heat pipe, the valve induces partial dry-out in the
 

evaporator which can result in a severely nonuniform temperature distribu-


On the other hand, it has the lowest overall thermal resistance with
tion. 


the valve fully open and hence, the single-pipe configuration can maintain
 

temperature control of the source for a higher sink temperature than the
 

other configurations. The multi-heat-pipe configurations have the advan­

tage of maintaining a uniform temperature distribution of the source.
 

Also, there is generally less wick to reprime after the valve opens and, 

hence, the response-is faster with less overshoot. For each configuration, 

the heat-transport capacity is limited by the wick's ability to reprime
 

under load when the valve is fully open. The three-heat-pipe configura­

tion, which consists of two conventional heat pipes coupled by a short
 

vapor-modulated variable-conductance heat pipe, has the highest capacity,
 

although also the highest open-valve thermal resistance.
 

To ensure that the grooves and wick completely dry out when the valve 

is closed, the wick is separated where it penetrates the valve bulkhead by 

a short segment of porous material of a much smaller effective pore size 

than the wick or grooves. Once blow-thru has occurred and before the nres­

sure difference across the bulkhead has reduced sufficiently for the 

grooves and wick to reprime, the capillary barrier will re-establish itself: 

3.2.2 Advantages of'the iTducdd-Dry-Out Mechanism
 

The primary advantage of the induced-dry-out over vapor-flow control
 

is that blow-thru is not a limitation and therefore there is no restriction
 

to very-low-pressure fluids. Ammonia and methanol, which both have good
 

heat-transport capabilities and low freezing points, can be used. Another
 

advantage is high thermal resistance in shut-down operation. With the
 

groove/wick structure completely dried out, the heat-leak path is down
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the tube wall'that surrounds the dried out region. The vapor-flow ,control
 

mechanism, on the other hand, leaks heat directly across the-valve
 

bulkhead. Therefore, with the dry-out mechanism, control of the source
 

temperature can be maintained for much lower source heating rates.
 

3.3 DEVELOPMENT OF A MODERATE-CAPACITY PROTOTYPE VAPOR-MODULATED HEAT PIPE
 

The first development was a prototype heat pipe for a typical
 

spacecraft application with heat loads up to 20 watts, a set-point
 

temperature of 294 K, and a sink that varies from 220 K to nearly as
 

high as the set point. The first design considered was based on vapor­

flow control. Although it was eventually abandoned, we briefly discuss it
 

here because it led to the induced dry-out mechanism. The design began
 

with a search for the best working fluid. The properties sought were:
 

o 	 Freezing point below 220 K
 

o 	 Practical wick pore size (>O.Ol cm) that will prevent
 
blow-thru in the cold-sink conditions
 

e 	Highest possible figure of merit.
 

Referring to Table 3.1, we see that nonane is the best candidate. Its
 

figure of merit-is-low, though, so a three-heat-pipe system was selected.
 

Nonane would be used only in a 20-cm-long vapor-modulated coupling section.
 

X-13 felt metal was selected as the wick, and its capacity with-nonane
 

predicted to be 7.47 watt-m (294 watt-in) per square cm of wick area. To
 

attain a capacity of 20 watts with an adequate safety margin, the cross­

sectional area was taken as 0.90 cm2. Some increase in performance is
 

attained by shunting the wick on the condenser side of the bulkhead with
 

open-ended screen tubes.
 

The capacity prediction for X-13 metal felt and nonane was verified
 

with the test of a simple circumferentially grooved, slab-wick heat pipe.
 

Although the measured axial transport of the wick agreed with theory, the
 

Clearly, the capillary limit of
circumferential grooves (40/cm) dried out. 


Much finer grooves could be fabri­the 	grooves was far lower than the wick. 


cated for the actual heat pipe, and predictions showed the performance of
 

the 	finer grooves would be marginal with the valve fully open. With the
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valve partially closed, however, the grooveswouldnot function because
 

of the increased capillary load imposed by-the pressure drop across the
 

valve. This was of concern until we-realized that the temperature drop
 

associated.with groove failure reduces thedifference in saturation
 

pressure across either side of the valve and hence contributes to the
 

reduction of latent-heat transfer through it. Thus, groove dry-out
 

enhances the control. It was then realized that vapor-flow control was
 

not needed at all if one designed for both groove and wick dry-out when
 

the valve closed. Because of nonane's marginal open-valve groove perfor
 

mance, it was decided to switch to a methanol heat pipe with the new
 

control mechanism.
 

The design of the heat pipe that was fabricated and tested is snown
 

in SK740903 (Pg.36) in Appendix B. The most important features of the
 

design, the bellows/valve subassembly and the wick feed-through, are dis­

cussed below.
 

3.3.1 The Bellows/Valve Subassembly
 

The bellows/valve subassembly is shown in SK740907 (pg-l42) and also
 

in the photograph of Figure 3-3. The bellows is welded into a can, thus the
 

control fluid is on the outside of the bellows and compresses it upon
 

expansion. The can is held in place by three posts that also serve as
 

valve guides. The valve is held in place by the conical return spring.
 

The valve stem is not connected to thebellows so in the closed position
 

the spring causes automatic alignment.
 

The sensor-volume is shown in SK750310E (pg. 153). A bellows is welded
 

into the end of it,and the extension of the bellows is adjusted with a screw
 

to provide convenient set-point adjustment. The sensor volume contains
 

2.2 cm3of control liquid. Rerfluoropentane was selected because of its
 

high coefficient of thermal expansion (2.06 x 10-3/°C). The displacement
 

AX of the valve for a temperature change AT of the-control liquid in
 

the reservoir of volume Vz is given by
 

AX/AT- = 0/(A/V + aK/A) = 0.141 mm/°C
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Figure 3-3. Bellows/Valve Subassembly and the Wick
 

Feed-Thru for the Moderate Capacity Heat Pipe. 
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where
 

0 = 2.06 x 10- 3/C at 25°C is the thermal expansion coefficient
 

A = 0.316 cm2 is the effective area of the bellows
 

K = 23.3 N/cm is the spring constant of the system and
 

a = 3.24 x 10-5 cm2/N is the compressibility at 250C. 

The pressure drop AP across the valve is derived from the model
 

depicted in Figure 3-4. The resulting expression in terms of the heat
 

transfer rate Q, latent heat hfg, vapor density p, valve diameter D,
 

valve opening AX and contraction coefficient Cc is
 

AP = h [3.1]
 

For methanol at 294 K and for a heat-transfer rate of 50 watts, we find that
 

the pressure drop is approximately 1 nm of methanol for a valve opening
 

of 0.75 mm. We take this as the fully open displacement, since 1 mm of
 

methanol is small compared to the capillary pressure generated by the wick
 

and grooves. The valve goes from completely closed to fully open when the
 

sensor-volume temperature increases 5.30C. This temperature excursion is
 

then the approximate control range of the heat pipe. The bellows is
 

protected from damage due to liquid expansion for temperatures above the
 

set point. For example, the valve opening at 30*C above the set point is
 

4.23 mm, at which point the bellows is still not bottomed out.
 

3.3.2 The Wick Feed-Thru
 

The wick feed-thru is shown in the subassembly drawing SK740910 (Pg.
 

145) and also the photograph of Figure 3-3. The capillary barrier consists
 

of two layers of 250-mesh stainless-steel screen, which is sintered between
 

two tubes. This sintered assembly is welded into a hole in the bulkhead.
 

The two ends of the wick are formed into a round cross-section and pinned
 

into the two wick clamps. The wick is cut square, pressed against the
 

capillary screen and pinned in place. A disc of X-7 stainless-steel felt
 

metal 0.254-nm thick was placed inside the wick tunnel on each side of the
 

screen when cracks in the screen were found after the wick tunnel was welded
 

into the bulkhead. -42­
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3.3.3 Test Results
 

The heat pipe was instrumented with thermocouples as shown in
 

SK750324E (Pg.135). The condenser was clamped to a cold plate with saddle
 

blocks. The evaporator and sensor volume were clamped between two aluminum
 

blocks having double saddles. Strip heaters were used on the outside of
 

these blocks. To simulate a thermal resistance between a heat pipe and the
 

equipment whose temperature is being controlled, 0.15 mm of Teflon
 

were used between the heat pipe and the heater blocks. The sensor volume,
 

on the other hand, was thermally close-coupled to the heater blocks with RTV.
 

The test demonstrated the functioning of the induced-dry-out mechanism,
 

however, the overall performance fell short of the goals. The development
 

of this heat pipe was nevertheless essential for pointing out design
 

features that must be incorporated into a high-performance version.
 

The steady-state performance is'displayed in Figure 3-5 where the 

temperature distribution along the heat pipe is shown with a 10-watt 

load and three different sink temperatures. Incurve (a), the sink is 

above the set point and the valve is fully open. The overall open-valve 

temperature drop between the vapor temperature of the input and output 

heat pipes corresponds to an average heat-transfer coefficient of 6800 watt/ 

m2 oC (1200 BTU/hr-ft2-F) for condensation and evaporation at the interface, 

which is an exceptionally good value for methanol and stainless steel. The 

heat pipe-was practically free of noncondensable gas when the data for
 

curve (a)were taken.
 

.Curves (b)and (c)show temperature distributions with the sink below
 

the set point. The valve has partially closed and the induced dry out
 

maintains the source temperature relatively stable. A portion of the over­

all temperature drop is due to noncondensable gas blockage of the condenser.
 

Gas generation is attributed to the fact that the heat pipe was not vacuum­

fired at a high temperature (980C), which is part of our normal cleaning
 

procedure for methanol/stainless-steel heat pipes. The vacuum firing was
 

eliminated sothe bellows and valve-return spring would not anneal.
 

Subsequent to testing, the heat pipe was run continuously at 38C, geieration
 

went to completionand the gas was vented from the pipe.
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A peculiar control characteristic of this heat pipe is that the source
 

temperature increases with decreasing sink temperature.. Figure 3-6
 

displays this dependence. There are thrire cdftribfftiig'factors.' -Thb
 

primary factor is that when the valve shuts down, the bellows temperatute
 

is set by conduction to approximately the vapor temperature in the output­

heat pipe. The volume of control liquid surrounding the bellows is
 

significant (approximately 0.56 cm3. Its contraction as the sink
 

temperature falls must be compensated for by expansion of control fluid
 

.in the sensor volume. The required source temperature increase is
 

approximately 0.28 C per °C drop in sink temperature, which is shown by
 

the dashed line in FigLre 3-6. The second factor is that as the sink
 

temperature is lowered,,-the figure of merit for methanol degrades which
 

results in a contribution to dry-out from the increased liquid-flow
 

pressure drop in the wick.. The third factor'is..that foY a fixed heat­

transport rate, a'decrease in the vapor temperature, and hence vapor'
 

density of the output heat pipe results in an increased pressure drop
 

across the valve. This increaseddrop is relieved by the source ris'ing"
 

in temperature and opening the valve.
 

The dependence of source temperature on heat-transport rate is 7
 

displayed in Figure-3-7. -The increase in-source temperature is greatly
 

in excess of what one would expect solely from the induced-dry-out
 

control mechanism. The liquid pressure drop in the wick, which increases
 

proportionally to the heat-transport rate, is the other contributing
 

factor. The fact that the effect is so large is because the output-heat
 

pipe is operating close to the.repriming limit of the wick.
 

To find the open-valve capacity of the output heat pipe, the
 

temperature of the source was maintained at 38C by,adjusting the sink,
 

which assures that the vilve remains open. As shown in Figure 3-8, the
 

heat input was increased in 5-watt increments until the temperature'difference
 

between the vapor in the input and output heat-pi'pes- increased-markedly
 

which defines failure of the saturated wick, The heat input was then
 

decreased in 5-watt increments until the heat pipe recovered, which did not
 

occur until the power was reducedto O10 watts. This result is in line with
 

the h,,c+av;bic hphavior of fi'brous wick§, that is, the capillary-pressure 
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limit for a wick on the verge of emptying is twice that for a wick that
 

is priming. The predicted open-valve capacity was 50 watts for the saturated
 

wick and thus 25 watts for repriming under load. The fact that the
 

measured capacities were 50% lower is attributed to the liquid flow
 

resistance of the feed-thru 'which was neglectbd in thprediction.
 

The heat pipe was generally well behaved in its transient response
 

except for a steady-state temperature oscillation that occurred only at
 

a 5-watt heat load. This is displayed in Figure 3-9 where the oscillatory
 

behavior at 5 watts and the steady behavior at 10 watts are seen. The os­

cillations result from the thermal time lag between a change in the source
 

temperature and the response of the valve as well as the time it takes for
 

the dried-out wick to reprime. For example, as the source increases in
 

temperature, the valve opens, which in turn allows the wick to reprime and
 

finally the source-temperature drops. By the time the sensor volume de­

tects the drop and closes the valve, the source has cooled below the set
 

point. The valve remains closed until the source again increases in tem­

perature, and the cycle begins again. Evidently, the parameters governing
 

oscillatory behavior allowed it only at the 5-watt level.
 

The set-point control mechanism was demonstrated to be particularly
 

effective. A §et point changed 4C per turn of the screw, which approxi­

mates the preliminary design calculation of 5C per turn.
 

3.3.4 	Conclusions and Recommendations for the Moderate-Capacity Prototypi
 

Vapor-Modulated Heat Pipe
 

The principal conclusions from the effort to develop a moderate capa­

city prototype vapor-modulated heat pipe are:
 

o The heat pipe that was fabricated and tested demonstrated the prin­
ciple of operation of the new induced-dry-out control mechanism.
 

a 	The new mechanism provides a means of avoiding the restrictions of
 
the blow-thru limit of the conventional vapor-modulation mechanism
 
and provides a much higher shut-down thermal resistance.
 

The development uncovered some secondary elements that adversely affected
 

performance. These are:
 

* 	Low capacity especiallyat low vapor-temperatures of the condenser 
heat pipe 

* Gas generation
 

@ Set-point dependence on heat load and sink conditions
 

*,Steady-state oscillations in some cases
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Design modifications to solve these problems include the use of 

a three-heat-pipe system. The vapor-modulated coupling heat pipe 
should have an optimized hydrodynamic design that includes a larger wick 
cross-section and a redesigned low-flow-resistance wick feed-thru and 
capillary barrier. The increase in capacity should allow the short
 
vapor-modulated coupling section to operate well below its hydrodynamic
 
limit. Inthis way, the liquid-flow pressure drop will not contribute
 
significantly to groove and wick dry-out, and the set point will be
 
relatively independent of heat load. To eliminate the set-point dependence
 
on sink temperature, the bellows container should be thermally coupled
 
to the input heat pipe.and isolated from the bulkhead. The liquid
 
around the bellows would then be stabilized at a relatively constant
 
temperature. Thermal oscillations would be minimized by shortening the
 
thermal lag of the sensor volume,which can be accomplished by providing
 
internal fins or reducing its diameter, and optimizing the wick hydrodyna­
mics to shorten its repriming time. These refinements as well as the switch
 
to ammonia as the working fluid are incorDorated in the development of the
 
second prototype for a high-capacity application.
 

3.4 DESIGN OF A HIGH-CAPACITY PROTOTYPE VAPOR-MODULATED HEAT PIPE
 

The high-capacity design, shown in SK75044 (pgi56 ) inAppendix C, uses
 
a short vapor-modulated heat pipe to couple two conventional heat pipes.
 
Several factors contribute to increase its capacity over the previous
 
methanol prototype. For example, the effective length of the vapor­
modulated section is 4.4 times shorterand the cross-sectional area of
 

the wick is 2.8 times larger. Inaddition, a two-step gradation in
 
porosity isused, that is,on the condenser side of the bulkhead the
 
porosity is 86% which provides low flow resistance and on the evaporator
 
side it is 76% which provides the necessary capillary pressure. The
 
switch to ammonia provides a capacity increase at 294 K of 1.84 over
 
methanol because of its higher-figure of merit. This factor isconsiderably
 
higher at low sink conditions because ammonia's figure of merit increases
 
and methanol's decreases as the temperature falls.
 

Other design features include the use of aluminum for the relatively
 
long output heat pipe to demonstrate weight-saving potential for an actual
 
application. A stainless-steel/aluminum transition joint is used just
 
outside the vapor-modulated coupler section. The use of aluminum saves
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160 grams. Aluminum could similarly be used as the material for the input
 

heat pipe. This would leave only the variable-conductance -coupler heat
 

pipe of stainless steel, which is desirable for a low shut-down heat leak.
 

For good transient response it is crucial to minimize the thermal time
 

lag of the sensor volume. This was done by designing one with a small
 

diameter (0.635 cm compared with 1.27 cm for the methanol prototype).
 

The set-point-control feature of the previous pipe was abandoned, thus in
 

an actual application final adjustment of the set point would be made
 

at the time of the functional testand the feed tube to the sensor volume
 

would then be sealed.
 

Since ammonia has a much higher vapor density than methanol, a
 

smaller diameter valve can be used, which allows a more compact design.
 

The various components were carefully arranged to fit inside a 2.54-cm­

diameter tube (compared to 2.18 cm for the moderate-capacity methanol
 

heat pipe). The wall thickness of the coupler heat pipe was reduced from
 

0.71.mm to 6.51, which, along with its smaller diameter and a longer
 

length (15.2 cm compared to 11.2 cm), reduces the shut-down conductance
 

along the tube by a factor of 0:418.
 

3.4.3 Bellows/Valve Design
 

As recommended after the test of the first prototype, the bellows
 

can has been placed on the end of the input heat pipe where its temperature
 

remains relatively stable. The valve return spring has been moved to
 

the low pressure side of the valve, which, along with the use of a shorter
 

bellows than before, allows the distance between the input and output heat
 

pipes to be minimum. Since ammonia pressure is on the inside of the
 

bellows, a strong spring is not required to overcome the bellows spring
 

constant. As the control liquid in the sensor volume contracts, the extension
 

of the bellows i's primarily due to the ammonia pressure; the return spring
 

which exerts a force of approximately 0.3 kg, is required only to seat the
 

valve after the bellows has displaced away from the valve stem. In
 

addition, the ammonia pressure is impressed on the control fluid which
 

ensures that it remains subcooled and does not vaporize. (The boiling
 

point of perfluoropentaneis only 29.3C). For the methanol heat pipe, 

the stronger 1.8 kg spring was needed to prevent vaporization.
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A bellows/valve test assembly was fabricated to test all aspects of
 

the design from fabricability to performance. The test assembly, which
 

is shown before assembly in-Figure 3-10 and after assembly in Figure 3-11,
 

is identical to the final design except that the output heat pipe and
 

half of the coupler heat pipe were deleted, and a plain tube was substituted
 

for the input heat pipe. No fabrication problems occurred. The valve
 

displacement was measured as a function of pressure difference across the
 

bellows. The results showed .00214 mm/torr and a slight pressure differ­

ence of67 torr was required to close the valve. When a bubble-point
 

test of the wick feed-thru was carried out, which is discussed in the
 

next section, the valve seal was found to be upsatisfactory. In fact,
 

unless the valve seat was wet with acetone, it would not sustain a pressure
 

difference. Examination of the valve with a microscope showed that the
 

problem was particulate contamination between the valve and the seat.
 

For the assembly of the actual heat-pipe, a high level of cleanliness was
 

maintained to prevent this problem. In addition, the bulkhead was laser
 

welded to the tube to prevent the valve seat from warping from the high
 

heat that would have resulted from a TIG weld.
 

3.4.2 The Wick Feed-Thru
 

The wick on either side of the bulkhead is separated at the bulkhead
 

by two layers of 250-mesh screen, which forms the capillary barrier.' The
 

screen is seam-welded to the bulkhead which ensures no leak path past it.
 

The wicks are inserted into the wick holders, pinned in place, trimmed
 

flush and pressed against the capillary barrier. The wick holder is
 

spot-welded on its flanges to the bulkhead.
 

The effective pore size of the capillary barrier in the test assembly
 

was found by a bubble-point test. The high-pressure side of the bulkhead
 

was pressurized with the valve closed and the wick was saturated with
 

acetone. The pressure continued to rise until the capillary barrier
 

failed and.bubbles were observed emerging from the wick. The pressure
 

at failure corresponds to. an effective capillary.pore size of 0.076 mm.
 

The pressure then fell until the capillary barrier re-established itself.
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Figure 3-10. Test Subassembly of the Ammonia Vapor-Modulated 

Heat Pipe Before Assembly.
 

Figure 3-11. Test Subassembly of the Ammonia Vapor-Modulated
 
Heat Pipe After Assembly.
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A pore size of 3.165 mm corresponds to this pressure. Both pore
 

sizes for capillary-barrier failure and re-establishment are sufficiently
 

small to ensure that the evaporator side of the bulkhead will dry out when
 

the valve closes and remain dry.
 

3.4.3 Test
 

Before the heat pipe was charged with ammonia, the sensor volume and
 

bellows can was filled with control fluid. The fluid was then pressurized 

to 1.10 x 1O3 torr, which was previously found to be the pressure at which 

the valve just began to open when the pressure on the other side of the 

Thus, the set point of the heat pipe should be the
bellows was atmospheric. 

was
temperature of the sensor volume at the time the valve to it 


closed, which was 22 C. The actual set point found during test, however,
 

was 31 C. A possible reason for this discrepancy is that a small bubble
 

of noncondensable gas was trapped in the sensor volume or bellows can.
 

When the coupler heat pipe was charged with ammonia, the high pressure
 

impressed on the control fluid compressed the bubble and it diffused
 

into the liquid. In any case, since the set point was selected arbitrarily,
 

no attempt was made to change it.
 

After the heat pipe was charged with ammonia, it was instrumented
 

according to SK75061. To simulate the thermal mass of typical electrical
 

equipment, a 1.4 kg aluminum block with tape heaters on it was used for
 

the heat source. The sensor volume was inserted into a hole drilled
 

into it.
 

3.4.3.1 Steady-State Performance
 

The steady-state performance is summarized in Figures 3-12, 3-13 and
 

3-14. Heat-transport rates of 4, 10, 50, 100, 150, and 200 watts were
 

run at sink temperatures of -54 C, -9 C and 10 C. The performance in
 

general is excellent. Figure 3-12 shows that the source temperature is
 

practically independent of sink temperature and from the low load of 4
 

watts at the lowest sink of -54 C to the maximum design load of 100 watts
 

at the high sink of 10 C, the temperature range of the source is 4.2 C.
 

Figures 3-13 and 3-14 show where the temperature drops between the source
 

and sink occur. The temperature drops of primary interest are between
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FigUr, 3-12. Steady-State Control Characteristics of the Induced-Dry-Out Heat Pipe. 
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the vapor temperature of the input heat pipe (T.C.6) and the output
 

heat pipe (T.C 7) since these drops are solely due to the variable
 

conductance coupling section. The other temperature drops are the usual
 

ones that occur with ordinary heat pipes. The vapor temperature on the
 

low pressure side of the bulkhead is given approximately by T.C.9 and 10,
 

however, these sometimes run higher than the vapor because the thermal
 

couplet are on the coupler-heat-pipe wall which is not wicked or grooved
 

on the inside. The temperature drop T6 '-T10 between the vapor in the
 

input and coupler heat pipes is feedback controlled by induced dry-out
 

to stabilize the source temperature. The temperature drop T10 -Tll
 

between the vapor of the coupler and output heat pipes also contributes
 

to control. For example, as the valve closes,and induces wick dry out
 

on the high-pressure side of the bulkhead, the liquid leaving the wick
 

flows to the other side and increases the condensation temperature drop
 

due to increased flooding of the grooves. This is seen in Figure 3-14
 

where at 100 watts, T6 - TlO increases with decreasing sink temperature.
 

As the sink rises in temperature, the valve opens and the overall
 

temperature drop across the coupler heat pipe decreases. The drop with
 

the valve fully open is of particular importance because it directly
 

affects the highest temperature of the sink for which the source temperature
 

is still controlled. The measured open-valve drop of,7.9 C with a
 

100 watts load corresponds to an average heat-transfer coefficient of
 

12000 watts/M 2-'°C for the two condensations and two evaporations that take
 

place withinthe coupler.
 

The minimum conductance for the low power case was measured by setting
 

the sink at the lowest temperature of -55.6C and adjusting the heat load
 

to the lowest setting that maintained the source above the set point.
 

Three watts were insufficient and four were required. This is an upper
 

bound for the heat leak because the source was running approximately 7C
 

above ambient and the leak through the insulation was estimated to be
 

2.4 watts. A'precise heat-leak measurement would require a thermal
 

vacuum test.
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3.4.3.2 Transient Performance-


The transient response to step changes in power and.rapidly varying
 

sink conditions is excellent with.small overshoots and no steady-state
 

oscillations. -'Figure 3-15 shows a.typical run where initially,'there was
 

no heat load-.and the sink was at -51 C.. At 15:06 a step increase in
 

heat load to 150 watts was applied. Since initially the source was below
 

the set point and the valve was closed, both the source and the input
 

heatpipe rapidly increased in temperature. When the valve opens, the
 

vapor in the input heat pipd suddenly drops in temperature which prevents
 

the source-from rising further': The response is similar for the other
 

step increases-in load except the initial spike in the vapor pressure of
 

the inputopipeais.missing because the source is not below the set point
 

when the load is appl{ed and hence the valve response is more rapid.
 

For a step decrease in load such as the reduction from 200 to 100
 

watts at 15:27 or from 100 to 10 watts at 15:48, the source is cooled below
 

the set point where the valve closes. The source then increases in
 

temperature-until it reaches the operating state, which takes longer at
 

low loads than at high loads.
 

The high degree ofindependence of source temperature on sink
 

temperature is seen where the sink was increased from -51 C-to -9.4 C
 

as rapidly aspossible. The source temperature was hardly affected.
 

3.4.4 Conclusions
 

The task to develop a spacecraft prototype vapor-modulated heatrpipe
 

was an example of how a new mechanism was conceived and how the practical
 

problems of its implementation were discovered and solved. The motivation
 

for the new induced-dry-out mechanisms was the blow-thru limit of the
 

conventional vapor-flow-control mechanism, which restricts the choice of
 

fluids to ones with unacceptably low -transport capacities or water with
 

its high freezing point. Although the first prototype based on the induced­

dry-out mechanism,failed to meet its design goal of close temperature
 

cdntrol fdr sink temperatures as low as 220 K and heat loads up to 20
 

watts, it did demonstrate the new mechanism and point to design changes
 

to overcome its deficiencies. All of these changes were incorporated into
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the high-performance prototype and the result was successful. The heat
 

pipe operated at twice the 100-watt design heat load, which corresponds
 

to a capacity in excess of 213 watt-inches. 'Thesource.temperature was
 

practically independent of sink conditions and increased with load at a
 

rate of only .0.03 tperwatt. The full-on conductance is 13 watts/°C,
 

and the full-off'conductance, while it could not be accurately-measured,
 

was less than 0.018 watts/°C.
 

There isthe potential for further improvement. For example, a
 

larger sensor volume will result ineven tighter source temperature control.
 

A longer- coupler heat pipe with optimized grooves at the heat-pipe
 

interfaces will result in higher full-on conductance. The heat pipe is
 

inherently insensitive to noncondensable gas and the off heat leak could
 

be greatly reduced if enough gas were added to block off the condenser
 

in low sink conditions. This would also allow the heat pipe to operate
 

with extremely low sink temperatures below the fluid's freezing point.
 

Since the primary temperature control is from vapor-modulation, only a
 

small amount of gas and probably no reservoir-would be required. Inits
 

present state of development, the vapor-modulated heat pipe is ready for
 

a spacecraft application when a passive feedback-controlled heat pipe
 

is required.
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4.0 SOUNDING-ROCKET HEAT-PIPE EXPERIMENT
 

Ames Research Center provided two .of the seventeen heat pipes for the
 

October 4, 1974 sounding-rocket launch of the International Heat-Pipe
 

Experiment. The payload reached an altitude of 140 miles, and accelerations
 

less than 200 micro g's were attained for almost six minutes. The two ARC
 

heat pipes, which were fabricated by TRW Systems Group, are of the same
 

type that will be used on the Communications technology Satellite and on
 
a TRW spacecraft. These heat pipes utilize arteries to attain high heat­

transfer capacity and noncondensable gas to attain variable conductance.
 

The priming of arteries without trapping a noncondensable gas bubble has
 

remained a crucial problem of heat-pipe technology, and the flight experiment
 

provided the first opportunity of a zero-gravity test of a solution to
 

this problem. The details of design, fabrication and ground test of the
 

experimental heat pipes can be found-in the final research report of the
 

previous contract, Reference 4.1. The task on the current contract is for
 

analysis of the flight data. A brief description of the experiment is
 

given here, however, the emphasis is on the flight results.
 

To prevent the-entrapment of a bubble, noncondensable gas is vented
 
from the artery through a-priming foil (Reference 4.2), which is a thin
 

foil-walled section of artery at the evaporator end with a pattern of
 

capillary-sized venting holes.. The flight-experiment test of this scheme
 

was especially challenging because of the short time available in zero
 
gravity for priming and then applying a heat load to verify that a primed
 

state was achieved. In addition, there were uncertainties as to whether the
 

so-called "pogo effect" would interfere with priming. If,at the instant
 

of rocket-engine shut-down, a surge of excess liquid arrives at the
 

evaporator before the artery primes, the evaporator end of the artery may
 
fill with liquid and .prevent venting. Our task was not only to test whether
 

or not the heat pipe primes, but also to obtain some crucial information
 

on the internal conditions of the heat pipe during the experiment. Each
 

heat pipe has one of two otherwise identical arteries instrumented at the
 

evaporator end with a miniature thermistor. Thethermistor, which is
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electrically self-heated, ismarkedly cooler-when submerged in liquid than
 

when in vapor. Thus, it detects thepresenc& or absence of liquid inthe
 

priming foil. The research heat pipes, therefore, partially overcome a
 

nagging difficulty of arterial heat pipes, that of diagnosing the cause
 

of unsuccessful priming.
 

Priming failure can have several causes; however, they generally fal
 

into one of two categories listed below.
 

1. 	Evaporatqr stress* too high for priming due to:
 

* 	insufficient fluid in the heat pipe,
 

* 	too large a residual heat load during priming,
 

* 	too large of a hydrostatic load due to adverse
 
orientation inan acceleration field.
 

2. 	Entrapment of noncondensable gas bubble due to:
 

o 	failure to vent the gas through the priming foil,
 

* 	a gas bubble at some location in the artery other
 
than the evaporator end.
 

Ifduring the priming period liquid isnot detected in the evaporator
 

end of the artery,' then-priming failure isattributed to the first category,
 

excessi've evaporator stress.' 'If,on the other hand, liquid is detected,
 

the stress was low enough for priming to take place, and a-subsequent
 

failure of the uninstrumented functional artery is attributed to the
 

second category,'entrapment of noncondensable gas.
 

The thermistor instrumentation also provides a means ot veritying
 

that a sufficient heat load is applied to test for the primed state of the
 

fundtional artery. If-the thermistor detects that liquid recedes (which it
 

should, due to a large hole cut in the instrumented artery), then the heat
 

load is sufficient to empty the functional artery if priming isunsuccessful.
 

Ifsubsequently a burnout does not occur, then the primed state of the
 

functional artery isverified.
 

We define stress as the vapor-liquid pressure-diffdrence that is
 

sustained by surface tension.
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The diagnostic logic is summarized.in Figure 4-1, where the heavy
 

line represents successful priming and verification of such.
 

4.1 DESCRIPTION OF THE HEAT PIPES
 

As shown in Figure 4-2, the heat pipes are of an arterial slab-wick
 

configuration. The two heat pipes used inthe flight experiment differ
 

only inthe details of their priming foils. For the heat pipes designated
 

X-2, the active length of the priming foil is 1.5 inches, the holes are
 

in spiral rows, and the end on the functional artery is crimped closed,
 

whereas for the heat pipe designated :X-l, the active length is 0.375
 

inches, the holes are in straight rows and the end is closed with a plug.
 

The X-2 configuration priming foil is-a design similar to that used on
 

the-Communication Technology Satellite program. X-l configuration priming
 

foil is an experimental design that represents an attempt to improve the
 

ruggedness and minimize the chance of trapping a gas bubble in the last
 

instant of priming the foil itself.
 

The instrumentation consists of a bea'd-type thermistor that Is held
 

at the apex of the conical end of a cylindrical teflon plug, which in
 

turn fits into the end'of one of te priming foils. The platinum leads
 

from the bead pass.through two holes that'run the length of the plug.
 

The plug isheld in the end of-the priming foil by a band of heat-shrink
 

tubing. The thermistor leads are connected to the prongs of an electrical
 

feed-through in the heat-pipe end cap. The electronic circuit for the
 

thermistor is particularly simple; it consists of a 3QOO-ohm resistor and
 

a 28-volt power supply in series with the thermistor. Thecircuit output
 

is the voltage across the thermistor. The output voltage isapproximately
 

3.7 volts when the arteries are primed and 1.2 volts when depriied. Sometimes, 

however, in the primed state boiling occurs at the bead, inwhich case the 

output oscillates rapidly about some mean voltage greater. than 3.5 volts., 

In.thedeeprimed state, discrete-intermediate output voltages-occur that are 

attributed to partial cooling of the thermistor bead by small liquid fillets 

around it. With sufficient evaporator stress these fillets are not 

replenished from neighborino lio6id and they evaDorate. which results in 

tfie low 1.2-volt output. 
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Figure 4-1. Summary of Diagnostic Logic for the flight Experiment.
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4.2 FLIGHT RESULTS
 

The power profile used in the experiment is shown in Figure 4-3 below:
 

100 WATTS
 
C 
-1 

0 1 2 3 4 5 6 

TIME FROM APPLICATION OF 100-WATT LOAD (MINUTES) iM-7ca 

:igure 4-3. Power Profile for the Fliaht Exoeriment.
 

During the first half minute, 100 watts were applied to move excess liquid
 

to the condenser end of the heat pipe. This amount of heat is sufficient
 

to transfer 12% of the total amount of methanol. The zero-power period
 

from t = 0.5 minutes to t = 2 minutes was for priming. During the
 

remainder of the zero-gravity period, 100 watts were again applied.
 

The data from the flight are displayed in Figures 4-4, 4-5, 4-6 and
 

4-7. In both heat pipes, the artery thermistor indicated that liquid filled
 

the evaporator end of the dummy artery just after rocket-engine shut-down.
 

Both heat pipes isothermalized after the initial 100-watt load, and the
 

final 100-watt load was successfully transported without a burnout. No
 

real-time commands were called for.
 

The artery thermistor voltage did not suddenly drop and thus indicate
 

liquid leaving the evaporator end of the instrumented artery during the
 

final 100-watt load. The gradual voltage reduction after t = 200 sec. is
 

due to the overall temperature rise. In the absence of direct indication of
 

a heat load high enough to verify a primed state of the functional artery,
 

we must rely on theoretical computer predictions. When primed, the instrumented
 

artery generates a capillary pressure set by the relatively large hole cut
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inthe priming foil. As shown in Figure 4-2, the teflon plug iscut away
 

under the hole, butit.st.ll blocks half of the artery. The effective
 

capi-llary pore diameter, therefore, istaken as half the artery diameter.
 

Figure 4-8 shows predicted zero-gravity capacity both with and without the
 

functional artery and instrumented artery primed. Curve 2 of the figure,
 

for example, gives the predicted heat load for the liquid in the instrumented
 

artery to recede provided the functional artery hat primed, while Curve 3
 

gives that load provided the functional artery has not primed. The fact
 

that the thermistor did not indicate liquid recession is attributed to
 

the functional artery being primed and the actual, 100-watt load not being
 

sufficiently in excess of Curve 2. The actual load is considerably greater
 

burnout would have occurred if the functional
than Curves 3 and 4, thus a 


artery had not primed. Note from Figure 4-8 that as:"the heat load is in­

creased, the instrumented artery fails (Curve 2)due to its large pore,
 

but the functional artery remains primed until it fails at a much'higher
 

load (Curve 1). This explains the paradox of Curve 2 with two primed
 

arteries lying below Curve 1 with one primed artery.
 

Two features of the temperature profiles of Figures 4-4 and 4-5 merit
 

discussion. First, the thermistor instrumentation indicated a temperature
 

difference of approximately 50C develops between the evaporator and adiabatic
 

regions. The temperature difference measured with thermocouples--in ground
 

test, however, was approximately l.10C,corresponding to a heat-transfer'
 
coefficient of 7380 watts/m 2-6C, which is inline with.previous experience
 

with methanol and grooved stainless-steel tubes. The large evaporator­

adiabatic temperature difference during the flight may be due to poor thermal
 

contact of the thermistors with the heat-pipe wall. That the large
 

temperature difference is not a zero-gravity effect can be ruled out because
 

the same difference was measured with the flight instrumentation in ground
 

tests;
 

-The second feature of temperature distributions isthe low condenser­

end temperature. The MULTIWICK computer program predicts that-additional
 

fluid required for priming results in a liquid slug inthe vapor spaces
 

at the condenser end. The noncondensable gas added to the pipe causes a
 

further,blockage. The low condenser-end temperature was,apparent~in.ground
 

tests as well as during the flight.
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In summary, both Ames heat pipes primed and transported 100 watts
 

during the flight. The experiment was the first zero-gravity'test of
 

arterial heat pipes that had noncondensable gas intentionally added to
 

them. The special thermistor at the evaporator end of thd arter 'infdicated
 

that priming occurred just after rocket-engine shut-downs Although 'the
 

thermistor did not indicatejliquid receding from the instrumented artery,
 

the MULTIWICK program showed that the lO0-wattiload was considerably in
 

excess of the heat-pipe capacity,if the functional artery had not -primed.
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5.0 ARTERIAL PRIMING RESEARCH WITH A GLASS HEAT PIPE
 

The purpose of the glass-heat-pipe research-was to answer some crucial
 
questions regarding a method of priming heat-pipe arteries in the presence
 

of noncondensable gas. As discussed in Section 4.0, this method was
 

successfully tested for the first time in zero gravity by the two research
 

heat pipes provided by Ames Research Center for the sounding-rocket launch
 

of 	the International Heat Pipe Experiment. Priming is,accomplished by
 

venting the noncondensable gas, which would otherwise form an arterial
 

bubble, through capillary-sized holes in a foil-walled section of the
 

artery at the evaporator end.
 

Several questions on the priming method required visual observation
 

for answers.- The most important unanswered question was why the computer­

predicted fluid charge is insufficient for the arteries to prime. The
 

glass heat pipe was used-to uncover the source of the problem and to test
 

a solution. Other questions were:
 

* Isa heat load sufficiently low for priming still high enough to
 
convect an arterial bubble along the artery and into the priming
 
foil where itwould vent?
 

* 	Can excess liquid in the vapor space arrive at the priming foil,
 
submerge itand thus prevent gas venting before the artery has
 
primed?
 

* If a bubble is prevented from venting because the foil is sub­
merged, will application of a heat load result in recession of
 
the excess liquid and venting of the bubble?
 

5.1 DESIGN AND FABRICATION OF APPARATUS
 

The glass heat pipe to be used in the experimental study was designed
 

and fabricated on the previous contract and it isdescribed inReference 5.1.
 

The main component of the apparatus 'isa 1.9- cm-O.D. (O.752-inch-I.D.)
 

1.3-cm-I.D. (O.515-inch-I.D.) glass tube, 109 cm (43 inches) long, with
 

machined stainless-steel end fittings. Research in the present program
 

was limited to methanol which isthe working fluid inthe heat pipes
 

currently 6eing built by TRW for spacecraft VCHP applications.
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The cross section of the heat pipe is shown in*Figure 5-1. The heat
 

pipe is designed to closely model the two-artery/slab-wick-heat pipes used
 

on the experimental sounding-rocket heat pipes. The artery is spot welded
 

to one side of the felt-metal slab wick and a sheathed rod heater is
 

inserted into a double layer screen-casing that is spot-welded.to the other
 

side of the wick. The unheated end of-the heater passes through and is
 

brazed into the evaporator end cap. In the condenser region, a stainlessr
 

steel cooling loop extends along the opposite side of the wick as the
 

artery. It passes through and is-brazed into the condenser end Cap. A
 

sheathed thermocouple extends into the adiabatic section so the vapor
 

temperature can be monitored.
 

5.2 EXPERIMENTAL RESULTS
 

The experimental effort was fi-rst aimed at uncovering the cause of the
 

discrepancy between computer predicted fluid charges and the larger charges
 

actually required for the heat-pipes to prime. As shown in Figure 5-2(a),
 

the foi-l-walled evaporator end of the artery-(which wecall a priming foil)
 

has spiral rows of 0.0254-cm-diameter-(0.0l0-inch-diameter) holes. The
 

foil thickness is O.00127-cm (0.0005 inches).-


Priming tests consisted of first elevating the evaporator end of the
 

glass heat pipe sufficiently so that theartery empties. A low heat load
 

was applied. Then the evaporator-end was lowered until the-screen walled
 

portion of the artery had filled with liquid.. The elevation of the evaporator
 

end relative to the condenser end was measured:with a cathetometer. The
 

evaporator end was lowered further until the foil-walled portion filled,
 

and the evaporator elevation was measured again. Figure 5-3 shows the results
 

at several heat loads. The crucial finding is that the eyaporator end must
 

be depressed 0.25-cm to fill, the priming foil after the screen-walled portion
 

has primed. Previous computer predictions of required fluid inventories for
 

priming, however, were based on the assumption that the screen-walled and
 

foil-walled portion of artery have the same capillary pressure for priming,
 

which is given by 4 x (surface tension)/Cartery diameter). While the
 

actual inside diameter of the foil region is 0.1854 cm (0.073 in.), the
 

region behaves, as far as priming is concerned, as if its inside diameter
 

were 0.244 cm (0.096 in.).
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The reason for MULTIWICK underpredicting the fluid charges for priming
 

is now clear. For example, the previously predicted minimum charge for the
 

sounding-rocket heat pipes to prime was 17.9 cm3 of methanol, which was
 

based on priming the 0.160'cm (0.063-in. - I.D. artery. MULTIWICK now
 

predicts a minimum charge of 26.9 cm3 based on.an effective inside diameter
 

of 0.244 cm (0.096 in.) for the priming foil. The actual original charge
 

of the heat pipes of 22.4 cm3was, in fact, found to be insufficient for
 

priming. When the charge was increased above the predicted minimum to
 

27.9 cm3 , the heat pipes primed reliably.
 

It was suspected that the reluctance of the priming foil to fill might
 

be due to a finite non-zero wetting angle between the methanol and the foil.
 

Oxidization is known to improve wetting especially with water. As an attempt
 

to improve the priming performance, the wick and artery were removed from
 

the glass heat pipe and oxidized by firing in air. As shown in Figure 5-4,
 

however, oxidization did not improve the performance.
 

It is now thought that the reluctance of the priming foil to fill is
 

due to its slightly larger inside diameter of (0.073-in.) compared to the
 

0.160-cm-I.D. (0.063-in.-I.D.)of the main screen-walled portion and, more
 

importantly, to the empty priming-foil holes pulling back by surface tension
 

on the advancing meniscus as it crosses them. A new priming foil, shown in
 

Fi-gure 5-2(b), was designed to partially overcome these problems. The priming
 

foilT'consists of a foil patch with a single row of holes, spot-welded inside
 

the screen-walled artery over a small window. The inside diameter of this
 

design is essentially the same as that of the artery, and there is at most
 

only one hole at any axial location alongthe priming foil to impede the
 

advancing meniscus.. Results of priming tests of this configuration, as
 

displayed in Figure 5-4, show that a hydrostatic head reduction necessary to
 

fill the priming foil is 0.09 cm. This small reluctance to prime is desirable
 

to ensure that the priming foil remains empty to vent gas until the entire
 

screen-walled artery has primed. Although the actual inside diameter of the
 

priming foil is that of the artery (0.160 cm or 0.063 in.), its effective
 

inside diameter for priming is 0.183 cm (0.072 in.).
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In addition to having improved priming.performance, the new priming
 

foil was constructed of thinner foil (0.000914 cm or 0.00036 in.) that allows
 

a smaller capillary hole size (0.0152 cm or 0.0066 in.). In comparison,
 

the foils used for the sounding-rocket heat pipes were 0.00127 cm (0.0005 in.)
 

thick with.a capillary hole size of 0.0254 cm (0.010 in.). The small holes
 

in the new design result in a 52% increase in heat-pipe capacity.
 

The next question investigated concerned convection ot arterial bubbleS.
 

A bubble was trapped in the artery by raising the condenser end of the heat
 

pipe high enough to empty the artery, and then leveling. The condenser end
 

of the artery does not have a priming foil, and hence a bubble was trapped
 

there.
 

A heat load was applied in attempt to convect the bubble to the
 

evaporator end. Several runs were made for various heat loads and initial
 

bubble sizes and locations. The results indicate that bubble convection was
 

impossible at heat loads and evaporator elevations low enough for priming.
 

Bubbles were observed to convect at heat loads greater than for priming;
 

however, when the bubbles entered the priming foil and vented, the artery
 

would empty of liquid.
 

As a consequence of these results, for actual heat-pipe operation
 

any arterial bubble that might exist would have to be cleared by applying
 

a heat load in excess of the critical priming load, but below the maximum
 

open-artery load. Then the load is reduced sufficient for priming. Another
 

approach is to purposely ignore the existence of any arterial bubble. If
 

,abubble did exist, a burnout would result the first time the heat load was
 

increased above the open-artery capacity. Powering down below the critical
 

priming load would result in successful priming because any bubbles would
 

be convected to the evaporator end.
 

The next question investigated was concerned with the possibility OT 

excess liquid in the vapor space flooding the venting holes of the priming
 

foil. The evaporator end of the deprimed heat pipe was quickly dropped to
 

level or even below level in attempt to trap a bubble by excess liquid sub­

merging the priming foil. In every attempt, however, the artery completely
 

primed before the venting holes were flooded. Failure to prime due to
 

venting-hole flooding does not appear to be a problem.
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5.3 CONCLUSIONS
 

The glass heat pipe has furthered our understanding of priming. The
 

current research effort for a methanol, slab-wick, priming-foil/artery
 

heat pipe has shown that:.
 

* 	 The priming-foil design used for the sounding-rocket experiment
 
(and CTS) primes as if its I.D. were 0.244 cm (0.096 in.)
 
instead of its actual I.D. of 0.185 cm (0.073 in.).
 

* 	 The larger effective I.D. explains the required fluid charge
 
for priming being significantly larger than previously predicted.
 

a 	 The large effective I.D. is due to holes in the priming foil
 
imposing a surface-tension retarding force on the advancing
 
meniscus.
 

* 	 By placing the priming foil with a single row of holes insidE
 
a "window" in the artery, the priming foil effective I.D.
 
is reduced to 0.183 cm (0.072 in.), which is only slightly
 
larger than the artery I.D.
 

To clear an arterial bubble that has somehow been trapped
 
somewhere along the artery other than in the priming foil, a
 
heat load in excess of the critical priming load is required.
 

a 	 Excess liquid could not block the priming-foil holes to
 
prevent venting - venting always occurred before the holes
 
were flooded.
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6:0 DEVELOPMENT OF HIGH-CAPACITY NON-ARTERIAL HEAT PIPES
 

High capacity in ambient-temperature heat pipes can be attained with
 
the use of arteries, which simultaneously provide high capillary pressure
 

and low flow resistance for the condensed liquid. Arterial heat pipes,
 

however, have several disadvantages, especially if they are also gas-loaded
 
variable-conductance heat pipes. Infact, arteries will not function at
 
all for ammonia VCHP's evidently because of pressure fluctuations that
 
occur as a result of instability of the gas front, Reference 6.1. With
 

fluids such as methanol that can be used, priming foils are required to
 

vent the noncondensable gas and rigid leveling requirements are necessary
 
during test to prime the arteries.
 

Conventional, non-arterial heat pipes are in general more reliable
 
and easier to test than arterial heat pipes; however, they have a far lower
 

capacity. A task on the current contract calls for development of a high­
capacity non-arterial heat pipe by optimally varying the porosity of the
 

wick along its length. The limited capacity of the conventional non­
arterial heat pipe is due to the fact that the two factors governing wick
 
performance, the-capillary-pressure limit and the permeability, are related
 

inversely. Thus, a decrease in the porosity of the wick will increase the
 

capillary-pressure limit but decrease the permeability. A conventional
 
wick whose porosity is uniform along its length has 6n unnecessarily high
 
capillary-pressure limit and hence an unnecessarily low permeability
 

everywhere except at the evaporator end where the limit isreached at
 

the maximum heat load. By varying the porosity,the capillary-pressure limit
 
is only as high as required to sustain the local vapor-liquid pressure
 

difference and, thus, the permeability is as high as possible everywhere
 

along the length of the wick. The potential increase in capacity depends
 

on the particular application, but it istypically greater than a factor
 
of two. A particular goal is the development of a half-inch diameter
 
all-aluminum heat pipe for use with ammonia that has a heat-transport
 

capacity inexcess of 250 watt-m. Such a heat pipe was fabricated
 
and although its measured capacity of 226 watt-m fell short of the
 
goal, the computer model predicts that with a refined porosity variation
 

more than 330 watt-m will be achieved.
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A parallel theoretical and experimental study of flow through fibrous wicks
 
was first carried out that provided the basis of the computer program GRADE
 
(Reference 6.2) for the design and analysis of graded-porosity wicks. Two
 
aluminum/ammonia heat pipes were fabricated and tested; one of which had a
 
graded-porosity wick and the other, for purposes of comparison, had a
 
uniform-porosity or homogeneous wick. 
In addition, two half-inch-diameter
 
stainless-steel cryogenic heat pipes for use with ethane or methane were
 
designed and fabricated. These are for processing and testing by ARC.
 

6.1 	 THEORETICAL AND EXPERIMENTAL STUDY OF CAPILLARY FLOW THROUGH A
 
FIBROUS WICK
 

In this section we present the results of the research on capillary flow
 
through fibrous materials such as metal felt, compressed metal fibers,
 
layers of screen mesh, etc. The theoretical model was originated on
 
another program sponsored by the Naval Air Systems Command, Contract
 
00019-72-C0340, Reference 6.3. However, it was extensively corrected and
 

expanded both theoretically and experimentally on the present program, so
 
the complete work is presented here (also see Reference 6.4).
 

In addition to developing expressions for the capillary-pressure
 
limit and permeability for a saturated wick, hysteresis in emptying and
 
filling and flow through a partially-saturated wick is also included.
 
A partial-saturation model is needed to predict heat-pipe performance when
 
there is an insufficient volume of liquid to completely fill the wick,
 
which can occur, for example, as the result of liquid contraction in a
 
heat pipe operating below its design temperature. In addition, wicks
 
operating near their capillary-pressure limit become partially saturatec
 
before failure. Not only is the permeability lowered in the partially
 
saturated region, but also the liquid given up can contribute to vapor­
space slugging and flooding of the condenser. A model of hysteresis in
 
the wick's capillary behavior for filling and emptying is needed to predic
 
the maximum heat-transfer rate under which a burned-out heat pipe will
 
recover, as well as to design wicks that can prime in a gravitational
 

field.
 

-90­



26263-6021-RU-00
 

Itwas apparent that existing models of saturated wicks were 

inadequate for extension to a theory of partial saturation. For 

example, the generally used expression given by Tien and Sun (Reference 6.5) 

for the wick's capillary-pressure limit interms of the fiber diameter 

6 , surface tension a , permeability K -and porosity s is 

[6.11
PC 4a 


The radical in this expression represents the "pore size" of the wick;
 

however, microscopic examination reveals nothing in a fibrous material
 

that even resembles a pore. For the permeability, the generally used
 

expression isthat given by Schmidt (Reference 6.6):
 
62 63
 

K = --2 [6.2] 

This expression is based on Kozeny hydraulic-diameter theory that assumes
 

a porous material resembles tortuous channels. Although this applies in
 

the low-porosity limit, for high porosities the situation is rather that
 

of flow over an aggregate of randomly distributed cylinders. Although the
 

above expressions (6.1) and (6.2) have been useful for cprrelating experi­

mental data, the assumptions on which they are based do not reflect the
 

actual geometry of fibrous materials.
 

Inthe present theory, the wick is idealized as a random distribution
 

of cylindrical fibers. Capillary pressure isgenerated by surface tension
 

acting on the individual fibers where they penetrate a vapor-liquid
 

interface, and flow resistance isgenerated by the drag on the fibers.
 

Hysteresis in capillary pressure isaccounted for by a factor H that is
 

unity ifthe wick is filling and an empirically found value greater than
 

unity ifemptying. To model partial saturation, the wick is envisioned
 

as consisting of local regions each having uniform porosity. The porosities
 

of these regions, however, are assumed to have a statistical distribution
 

with a standard deviation ad . The theoretical expressions developed
 

for a saturated wick are applied to the local regions.
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Four experiments were conducted to test the theoretical results.
 

By dimensional analysis one can show that the capillary-pressure limit
 

of a saturated wick is proportional to a16 and the permeability to 62
 

The crucial question, though, is how well the theory predicts the dependence
 

on porosity. To answer this question, the first two experiments measure
 

the capillary-pressure limit and permeability of a set of aluminum-fiber
 

wicks that were identical except for their porosities, which varied from
 

0.6 to 0.9 . The capillary-pressure experiment employed a novel tech­

nique that provides a simple method of measuring the empirical hysteresis 

constant H and porosity standard deviation ad from curves of the wick's 

weight vs its depth of submersion in liquid. The third experiment* used 

s-ray absorption to directly measure the liquid fill vs vapor-liquid pressure 

difference of a partially saturated metal-felt wick: The-same wick was 

instrumented with close-spaced pressure taps in the fourth experiment* to
 

provide the data required to measure permeability in the partially-saturated
 

state.
 

Besides providing a quantitative test for the theory, the experimental
 

results indicate that the hysteresis factor H is independent of fiber
 

diameter and porosity, and that its value is 1.96. In other words, fibrous
 

wicks generally have approximately twice the capillary-pressure limit
 

for emptying than 'for filling. Further, the porosity standard deviation
 

ad appears to be independent of fiber diameter, but proportional to one
 

minus the porosity.
 

The theoretical expressions for a saturated wick were used to optimize
 

the wick with respect to its porosity and fiber diameter. The results
 

show that for a specified capillary-pressure limit, a porosity of 0.79
 

gives the highest permeability. The corresponding fiber diameter is set
 

such that the expression for the capillary-pressure limit gives the
 

specified value. Wicks previously used in heat pipes were nftn fAr frnm
 

optimum.
 

* These experiments were carried out on the Navy-sponsored program. 
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6.1.1 	 Capillary Pressure 

The class of materials we are considering is idealized as consisting 

of long fibers with circular cross sections of diameter 6 -. Each. f.iber 

is divided into segments of length k . The centerpoints of these segments 

are assumed to be randomly distributed inspace with a number density *n 

The orientation of each segment is specified by spherical coordinate. C,) 
as shown in Figure 6-1. Two types of orientation distributions are. 

considered. For a two-dimensional distribution, which we specify by 

J=2 , all fibers lie parallel to the same plane, such as the x-z. plane, 

so we take e=O for each segment. The distribution of , however, is 

random. An example of such a material is a fibrous mat that is fabricated 

by alternately laying down and pressing fibers in layers. For a three 

dimensional distribution, which we specify by J=3 , both and e are
 
random.
 

Z
 

SIN4, 	d do
 

Y 

X0 

Figure 6-1. A Fiber Segment With Orientation (4,e) Penetrating an
 
Elemental Area of a Unit-Radius Hemisphere.
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Presently, we will need an expression for the probability that the 

orientation of a fiber segment is between o and * + d4 . For a two­

dimensional distribution, the probability is uniform and it is simply 

d/(v/2) . For a three-dimensional distribution, consider that the 

probability a segment is oriented such that it penetrates the elemental 

area of a unit-radius hemisphere is the ratio of the elemental area to the 

total area of the hemisphere, that is, (sin* do de)/2w . To obtain the 

probability that a fiber segment isoriented between o and o + d 

irrespective of o ,we integrate from e=O to 2w and obtain sino do 

The two-and three-dimensional results for the probability of orientation 

between * and 4 + d are combined in the following expression: 

[(3-J) 2/g + (J-2) sino] do [6.3]
 

We begin the calculation of the capillary-pressure limit by estimating
 

the surface-tension force acting on a single fiber that penetrates the
 

vapor-liquid interface. As shown in Figure 6-2, the z axis is normal to
 

the interface and the wetting angle is assumed to be zero.
 

Z
 

VAPOR F .
 

VAPOR-UIQUID INTERFACE ,,A ,S,, 

Figure 6-2. Fiber Penetrating a Liquid-Vapor Interface at Orientation
 

-94­



26263-6021-RU-00
 

The component force FL inthe z direction is taken as-the product of
 

the surface tension a and the circumference of the ellipse fdrmed by
 

the intersection of the fiber and the plane,-which isgiven approximately by
 

F_ + cos2 )/2 [6.4] 

We must now find the number of fibers that penetrate an area of the
 

interface with an orientation between q and 0 + dp . Consider,"as
 

shown in Figute 6-3, a large area A of the interface with a volume element
 

distance from it. The number of segments.whose
A dz located at a -z 


. Not all of these will
centerpoints lie within the volume is n A dz 


0 < cos- 1 21zl/ . Cohsider
penetrate the area, only those for which 

that the number of segments (1)whose centerpoints lie within the volume 

A dz , (2)that penetrate the interface, and (3)whose orientation is ­

from € to + d [expression (3)] is
 

d2NA = n A dz U(4*-@)[(3-J)2/ + (J-2)sin] d [6.5] 

VOLUME /FIBER SEGMENT
 
ELEMENT A DZ-


DZ 

l/2A -7 = 

?7 1z 

A LIU&ID PTkA 

:7-


Figure 6-3. Volume Element Above a Vapor-Liquid Interface.
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-
where o* = cos I 21zl/z , and U(arg) 0 if arg <pO and +1 if
 

arg > 0. The number of fibers penetrating a unit area with-orientations 
between o and o + do is obtained by integrating Equation 6.4 from
 
z = -k/2 to k/2 and then dividing the result by A , which gives
 

uN Lk-J)2/r + (J-2)sinj] ni cost do [6.6]
 

The combination nz is eliminated from Equation 6.6 in favor of the
 
porosity e and the fiber diameter a by equating the total volume taken
 

up by fibers in a unit volume to 1-s , which leads to
 

nz = 4(l-)/(r62) [6.7] 

With this result Equation 6.6 becomes
 

dN = [(3-J)2/n + (J-2)sino] 40-0) cos do [6.8]
 

The sum of the forces on those fibers penetrating a unit area of interface 
with orientations between 0 and o + do is dF = F± dN ,where 
F and dN are given-respectively by Equations 6.5 and 6.8. The 

capillary-pressure limit Pc generated by the wick is obtained by 
integrating dF from 0 = 0 to 0 = /2 , and then dividing by the 
liquid area per unit area of interface, which is easily shown to be e 

The resulting expression is 

PC = {(3-J) 8 E(V7/2, n/2) + (J-2)[2+J ln (l+v'%)J} 

x {(-)]6.9
 

where E(k, 4/2) is the complete elliptic integral of the second
 

kind, and its value is 1.3506 for k = F212.
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The above expression isappropriate for liquid fillinga wick.
 

For liquid emptying a-wick a greater capillary.pressure is generated,
 

because the interface.has the chance to recede to a favorable configuration
 

among the fibers. We account for hysteresis by introducing an empirical
 

factor H that is unity if the wick is filling and an experimentally
 

found value greater than unity if emptying, which gives Equation 6.9
 

after the expression in braces is numerically evaluated
 

PC = [3.4393(3-J) + 3.2465(J-2)] H ) a [6.10]
 

In the preceding discussion we assumed that the wick is either empty
 

or full depending on whether the pressure, difference across the Vapor­

liquid interface, which hereafter we will call capillary stress, is
 

greater or less than the wick's capillary-pressure limit. In fact, the
 

fractional fill of a wick, or saturation fraction 'S , varies continuously
 

over a range of stress. To model partial saturation, we assume that a
 

wick has a statistical distribution of local porosity, and that those local
 

regions with a relatively low porosity have gteater tendency to fil-l with
 

or hold liquid than ones with a relatively high porosity. A conceptual
 

procedure to find the porosity distribution is to sample the porosity of a
 

wick with a small control volume. The fraction of samples having porosities
 

between e and e + dE is f(e) de The mean value of the probability
 

distribution f(s) is independent of the control-volume size and is
 

equal to the overall porosity eo of the wick. The standard deviation
 

ad , however, is dependent on the control-volume size, and because of our
 

lack of knowledge of the correct value for its size, the standard deviation
 

will be an experimentally found parameter in the theory.
 

For a given value of capillary stress P , a local region is filled 

with liquid if the porosity is low enough that the capillary-pressure limit 

Pc given by Equation 6.10 is greater than P . A critical value , 

that just allows a region to be filled is obtained by solving Equation,.6.10 

for e and replacing 'Pc by P , which results in 
( I-1 

E $ + P6/0 [6,.11] 
[3.4393(3-d) + 3.2465(J-2)]H) 
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The fraction of a unit volume of wick having a porosity between E and
 
C + de is f(s) dE , and this fraction is filled with liquid only if 
<* .The amount of liquid held in this fraction is s f(e) de We
 

obtain the total amount of liquid held in the unit volume by integrating
 
this expression from E = 0 to es. The saturation fraction S(P)
 
is the ratio of the actual amount of liquid held in the unit volume at a
 
stress P to the amount 6o when it is completely filled, hence it is
 

given by
 

S(P) - 1 ef(e) de [6.12] 

A normal distribution is assumed for the porosity, which allows 
us to characterize f by two parameters, the overall porosity co and 
the standard deviation ad . Thus, we write 

f(e) = 1 e -(t-s) 2/2ad 2 [6.13] 

d
 

In terms of the standardized normal distribution
 

1
f(z) = e -z2/2 [6.14]
/2Wi­

and the standardized cumulative distribution
 
z -t 2 /2 

F(z) = [ z e dt [6.15] 

the saturation fraction S(P) given by Equation 6.12 can be
 

written as
 

S(P) = F[(6*-es)/ad] - - [(e*-)/ad] [6.16]
 

where s isgiven in terms of P by Equation 6.11. The curve of S vs
 
P has two branches depending on whether P is increasing and the wick is
 
emptying or P fs decreasing and the wick isfilling.- Inthe former case,
 
the hysteresis constant H in Equation 6.11 is taken' as the experimentally
 
found value greater than unity, and inthe latter H is unity.
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6.1.2 Capillary-Pressure Experiments
 

The apparatus for the experimental study of partial saturation is 

depicted schematically in Figure 6-4. 8-rays emitted from,a strontium-90 

source penetrate the wick and are counted by a.detector. The rate. at which 

they are absorbed by liquid in the wick is a direct measure of the 

saturation fraction. The capillary stress is controlled hydrostatically 

by raising or lowering the liquid level in the glass cylinder. The liquid 

used was methanol. The test wick was a 1.27-mm slab of metal felt with 

a porosity of 0.835 , and an average fiber diameter of 0.0216 mm. 
Microphotographs show that the fibers are in a three-dimensional random 

distribution (J=3). 

disriuton J=). 	 - 90 SOURCE -- ._.___STRONTIUM 

\ 	 ETECTO AT 
LASS ENCLOSURE 

LIQUID VOLUME sWICK MATERIAL 

GLASS CYLINDER---,4 

RERODUOIBI.ITh OF T" 
01dGINAL PAGE IS POOR 

Figure 6-4. 	8-Ray Absorption Experiment for Measuring the Saturation Fraction
 
as a Function of Capillary Stress.
 

-99­



26263-6021-RU-00
 

The data displayed in Figure 6-5 give the measured saturation
 

fraction S vs dimensionless stress T = Pd/a for both increasing and
 

decreasing stress. The solid curves are from the theory (Equation 6.16).
 

The empirical hysteresis constant H was taken as 1.955 to match the
 

point on the increasing-stress curve where S is 0.5 , and the standard
 

deviation ad was taken as 0.0301 to match the slope of'the curve at
 

that point.
 

Another experiment was designed to test the theory over a wide range
 

of porosity and to provide a simple procedure to find the empirical
 

constants H and ad for a particular wick. A long strip of wick is
 

suspended inside a glass cylinder from the weighing hook of a precision
 

balance. As shown in Figure 6-6, the wick is weighed as a function of the
 

height of its top edge above the liquid level in the cylinder. Two curves
 

are generated depending on whether the level is rising or falling. For a
 

wick of cross-sectional area A , perimeter' p , length L , and fiber
 

density pf in a liquid of density pt , the expression for the weight with 

a length x of the wick above the liquid level is 

W(x) = pfg(l-eo)LA - pkg(l-co)(L-x)A + pkgfoA S(ptgR)dR + pa
 
0 [6.17]
 

where g is the gravatitional acceleration. The physical interpretation
 

of the four terms to the right of the equal sign are, respectively, the
 

total weight of the fibers, the bouyancy of those fibers below the liquid
 

level, the weight of the liquid wicked up by capillary pressure, and the
 

surface tension acting around the wick's perimeter. The slope of the
 

curve W vs x is given by
 

W'(x) = pkgA[l-s o + soS(ptgx)]. [6.18] 
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Figure 6-6. 	 Wick-Weighing Experiment for Measurement of ,the Capillary-

Pressure Limit.
 

The saturation fraction S approaches unity as the stress approaches
 

zero, and S approaches zero as the stress becomes large. We expect
 

from Equation 6.18, therefore, the data for W vs x to approach straight
 

line asymptotes for x O and x - with slopes given by W'(x O) =
 

p~gA and W'(x+ ) = pzgA(l-c o ) . This asymptotic behavior is apparent
 

in Figure 6-7 which shows typical data for a wick with a porosity of
 

0.712 with acetone as the liquid. Of particular interest is the stress
 

in terms of hydrostatic head at which the saturation fraction is 50%.
 

This point occurs on the curve W vs x where the slope is half-way
 

between the slope of the asymptotes, and it is found geometrically as
 

shown in Figure 6-8. If we neglect the second term of Equation 6.16 on
 

the basis that ud/E0<<l, then the stress corresponding to a 50% saturation
 

fraction is also given theoretically by Equation 6.10 with e equal to
 

the wick's overall porosity e0
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Figure 6-8. 	 Geometrical Construction for Finding the Capillary Stress that
 
Gives 50% Saturation and the Parameter AW that is a Measure
 
of ad •
 

Experimental results for a set of aluminum-fiber wicks (0.127 mm fiber
 

diameter) that vary only in porosity are compared to theory in Figure 6-9.
 

The hysteresis constant H used is that found in the a-ray absorption
 

experiment with metal felt. The agreement with data for the aluminum­

fiber wicks indicates that the value for H of 1.955 is generally
 

applicable to fibrous wicks independent of their porosity and fiber
 

diameter. The theoretical curve of Tien and Sun (Reference 6.5) based on
 

Equations 6.1 and 6.2 is also presented in Figure 6-9.
 

The extent to which the curve W vs x deviates from its asymptotes
 

is a measure of the standard deviation ad. The theoretical expression
 

for the deviation AW as defined geometrically in Figure 6-8 is given by
ix
 
AW pgsoA f [1-S(ptgR)]d 	 [6.193
 

0 

If in Equation 6.16 for S we neglect the second term to the right of the
 

equal sign on the basis ad/so<< , then the following dimensionless
 

expression for AW is obtained:
 

OF THE
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AW = AW/(3.246Hi A/6) = 

I 1 1-s0 e12r2ed z [6.20] 
z2F - od C + ad

0 o/ 

The integral was evaluated numerically and the results, displayed in
 
Figure 6-10, are used to find ad from the measured value of AW.
 
Figure 6-11 displays ad vs 6 for the wicks tested by both weighing­
and s-ray absorption. The standard deviation is seen to be independent
 
of the fiber diameter and it correlates with the overall porosity by
 

the formula
 

d = 0.22(1-c°) 
 [6.21]
 

The fact that both ad and H were found experimentally to be
 
independent of fiber diameter gives credibility to the theoretical model.
 
Since both constants are dimensionless, then by dimensional analysis
 
they should be independent of the single dimensional parameter that
 
characterizes the wick in our model, the fiber diameter.
 

6.1.3 Permeability
 

Our approach to permeability, which follows that of Happel, (Reference 6.7),
 
is to calculate the drag on a single segment of fiber and then sum the
 
drags on all segments in a unit volume. In relating the drags to the
 
pressure gradiefit, however, we differ from Happel and obtain a modified
 

expression for the permeability. Consider, as shown in Figure 6-12,
 
a fiber segment inclined at an angle * to the flow direction. Beavers­
and Sparrow (Reference 6.8) have shown that the non-linear inertial 

effects on flow through a fibrous media are negligible if the Reynolds 
number based on the square root of the permeability is less than unity.
 
This is typically the case for heat-pipe operation, and therefore the
 

flow is governed by the linear Stokes equation.
 

-106­



26263-6021-RU-00
 

.14 

.12 

1 1 1 

E0 (%) 

50 

.10 

55 

60 

.08 65 

70 

1Q 

.o6 

.04 

75 

80 

85 
90 

95 

.02 -

0 0 .02 .04 

oid 

.06 .08 .10 
s-¢ 

Figure 6-10. Curves for Finding the Porosity Standard Deviation ad from 

-107- REPRODUCIBILITY OF THI 
ORIGINAL PAGE IS POOP. 

AW 



26263-6021-RU-00
 

.11 I 

.10 

.09 a 

.08 CORRELATION ad = 0.22(1-(o) _ 

Z0 .07 

. 

> .06 

" .05 

z 
.04 - ( 

I­

6 .03 -E 

O 
.02 

U9 p-RAY MEASUREMENT OF METAL FELT 
(6 = 0.00085 IN.) 

.01 
E WEIGHING MEASUREMENTS OF 

ALUMINUM-FIBER WICKS (650.0050 IN.) 

I I II" 
.50 .60 .70 .80 .90 1.0 

OVERALL POROSITY E0 7-4kA 

Figure 6-11. Experimental Measurements of the Porosity Standard Deviation.
 

-108­



26263-6021-RU-00
 

UU 

Figure 6-12. A Fiber Segment Inclined at an Angle @ to the Flow.
 

We compute the total drag as superpositions of drags due to flow components
 

parallel and perpendicular to the fiber. In both cases, however, there
 

are no solutions if the fiber is considered in an unbounded uniform flow.
 

Following Happel, we require the shear to vanish on a cylindrical surface
 

a distance b from the center of the fiber. The fractional void volume
 

of the cylinder is taken as the porosity. For flow parallel to the fiber,
 

in addition to the no-shear boundary condition, the total integrated volume
 

flow rate through the annulus is required to equal the parallel component
 

of the superficial velocity U cos @ times the cross-sectional area of
 

the cylinder. For flow perpendicular to the fiber, it is convenient to
 

assume the fiber is moving perpendicular to its axis with velocity
 

U sin 4 , and the cylindrical surface on which the shear and normal
 

velocity are required to vanish is stationary. Thus, from Happel we
 

obtain for the drag components per unit length of fiber
 

D,,= 16wpUs cosp
 

4(1-e) - (1-e) 2 - 21n(l-E) - 3
 

and
 

D1 = -4]pU sin
 

In(1-0) +1 
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The total of drag components in the flow direction on all fiber segments
 

in a unit volume with orientations between o and o + do is given by
 

dD = (D,,£cos&+Djsin) n [(3-J)2/ + (J-2)sin]d+ [6.22]
 

where the part of the expression in braces is the flow-direction 
drag
 

component on a single fiber segment, and the remainder is the number 
of
 

segments per unit volume with orientation between P and o + dp
 

(see Equation 6.3). Consider a cylindrical volume of unit length and
 

cross-sectional area that is aligned with the flow. The total drag on all
 

segments within the volume, which is calculated by integrating Equation 6.22
 

is balanced by the difference in pressure forces
from o = 0 to 7r/2 , 


acting on the liquid at each end of the cylinder, which is
 

dP 
is then obtained from the Darcy relation
 dP The permeability Ko 


dP K._ which results in
 

Ko = !62 e I 2 (5-J)
 

1 -i
2(1+j) 
ln(1-) + C2 [6.23] 

The corresponding expression derived by Happel contains an additional
 

in the second term in the braces.
factor e 


For the permeability of a partially saturated wick, we apply the
 

above expression to those local regions that have a porosity low enough
 

to remain filled. The increased tortousity of the flow paths as regions
 

empty is neglected. The resulting permeability expression is
 

K =J e 
 Ko(6,s)f(c)d[ [6.24] 

where the porosity distribution f(s) is given by Equation 6.13 and
 

the critical porosity s* is given by Equation 6.11. The integral
 

must be evaluated numerically.
 

-110­



26263-6021-RU-00
 

6.1.4 Permeability Experiments
 

The apparatus used to measure the permeability of a partially saturated
 

wick is depicted schematically in Figure 6-13. The test wick was a
 

5 cm x 15 cm slab of 1.27-mm-thick metal felt with a porosity of
 

0.835 and an average fiber diameter of 0.0216 mm. A thin 2.29 mm
 

layer of wick having a high capillary-pressure limit (0.61 porosity,
 

0.0025 fiber diameter) was sintered to the bottom of the test wick for
 

the purpose of providing a surface that remains saturated even when the
 

test wick is partially saturated. The liquid pressure profile along the
 

wick is measured by eight pressure taps spaced at 1.27 cm intervals
 

that are clamped against the saturated layer and connected to an inclined
 

manometer bank. The wick is supported only by these taps, and unlike
 

other permeability apparatus that contain the wick in a close-fitting
 

conduit, a parallel leak path is impossible. Methanol is supplied to and
 

drained from the wick by tubes connected to shallow metal reservoirs
 

clamped against the bottom of the wick at each end. The flow rate through
 

the wick is measured by collecting a sample of liquid for a known time
 

duration.
 

The pressure distribution in the wick for various upstream and
 

downstream conditions is displayed in Figure 6-14. For each curve the
 

wick was initially flooded and then the stress at eaci end was increased
 

to the desired level by lowering the supply reservoir and the drain tube.
 

If the wick remained fully saturated, the pressure distribution would be
 

linear. We see, however, that in regions of relatively high stress the
 

curves bend down, which indicates a lowering in the value of permeability
 

due to partial saturation. For a particular curve in Figure 6-14 the
 

permeability at a given stress is calculated from the mass flow rate and
 

the local pressure gradient at that stress. Results for permeability vs
 

stress are shown in Figure 6-15 along with the theoretical curve from
 

Equation 6.24. Although the qualitative shape of the theoretical and
 

experimental curves are similar, the experimental permeability drops off
 

faster with stress. One possible explanation is that we have not taken
 

into account that liquid must flow around empty regions.
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Figure 6-13. The Apparatus for Studying Permeability in a Partially Saturated Wick.
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A simple glass apparatus was fabricated to measure the permeability
 
of the set of aluminum-fiber wicks in their saturated state. As in the
 

capillary-pressure tests, the wicks have a fiber diameter of 0.005-in.
 

and differ only in their porosities. As shown in Figure 6-16 the test
 
portion of the wick is suspended between the ends of two U-shaped
 

manometers. Acetone is supplied from a reservoir that maintains a constant
 

head by means of an overflow weir and a constant inflow, and the flow
 

rate through the wick is measured by collecting a sample of liquid from
 
the drain tube. The pressure drop along the wick is kept sufficiently
 

low that the wick remains saturated.
 

The experimental results are displayed in Figure 6-17, along with
 

experimental results for metal felt of Corman (Reference 6.9) and
 

Alexander (Reference 6.10), the present theoretical results, and ,the
 

theoretical results of Schmidt (Reference 6.6). The permeability
 

normalized by the square of the fiber diameter is plotted as a function of
 

porosity. The most marked feature of Figure 6-17 isthe close agreement
 
for porosities from 0.55 to 0.80 between the theoretical permeability
 

given by Equation 6.23 and that given by Schmidt based on the Kozeny
 

hydraulic-diameter theory. For high porosity where flow interactions
 

between close-spaced fibers are minimum, the present theory isvalid,
 
whereas, for low porosity where the flow passages resemble tortuous
 

channels the Kozeny theory is valid. The agreement over an intermediate
 
range of porosity gives credibility to both theories. In addition,
 

Schmidt presents a large quantity of data for screen wicks that are
 

successfully correlated by the Kozeny theory.
 

The experimental results for the aluminum-fiber wicks generally
 

follow the theoretical curve, but lie above it. Corman's and Alexander's
 
measurements with metal felt also follow the curve, but lie below it.
 

For purposes of heat-pipe design, an empirical factor can be included
 

in the theoretical permeability Equation 6.23 to obtain good agreement
 

for a particular type of wick.
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6.1.5 Optimum Wick
 

For a simple model of a wick, full saturation is assumed, and
 

Equation 6.10 is used for the capillary-pressure limit PC and Equation
 

6.23 for the permeability K0. Since both Pc and Ko depend on
 

two wick parameters, e and a , a crucial optimization question arises ­

for a specified capillary-pressure limit, what values of porosity and fiber 

diameter provide the greatest permeability? Equation 6.10 is solved 

for 6 in terms of Pc and e , and the result is used to eliminate 

& from Equation 6.21, which gives for the permeability 

K//(3.246Ha)t
 

3 (I-P) 4e
 
8 s 	 4(l-s)-(l-E)/-21n(l-E)-3 [6.25] 

8 -l 

In(l- ) + 

The dimensionless permeability YO as a function of e isdisplayed
 

in Figure 6-18, where we see that the greatest permeability occurs at a 

porosity of 0.79 . The corresponding fiber diameter necessary to give 

the capillary-pressure limit is calculated from Equation 6.10. 

Ifone used the Kozeny expression for the permeability instead ,of the
 

present theory, then one finds, as shown in Figure 6-18, that the greatest
 

permeability is obtained in the limit sEl and 6 0 such that PC
 

given by Equation 6.10 is the specified value. Infact, the present
 

theory gives a zero permeability in this limit. As discussed previously,
 

the difference is that the Kozeny theory is not valid for high porosity
 

whereas the present theory is.
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6.2 DESIGN OF GRADED-POROSITY WICKS
 

The theoretical expressions developed in the previous section for
 

the capillary-pressure limit and permeability of fibrous wicks are the
 

basis of the computer program GRADE (Reference 6.2) that was written to
 

design and predict the performance of graded-porosity wicks. Since the
 

model for the program is being refined continuously, we will wait until
 

the final report to present the mathematical details. Here we will
 

describe in words its current state of development,and the reader can
 

refer to the User's Manual for the original version.
 

The key variable in the program is capillary stress, which is the
 

vapor-liquid pressure difference that must be supported by the wick.
 

Since in earth gravity the stress varies hydrostatically across the
 

heat pipe, to be specific we take for its value the vapor-liquid
 

pressure difference at the top of the wick. GRADE currently does'not
 

include partial saturation, so when the stress exceeds the wick's
 

capillary-pressure limit the wick is considered failed.
 

The stress at the condenser end is set so there is an incipient
 

puddle condition at-the bottom of the cross section. If this stress is
 

so low that a liquid slug forms in the lowest vapor space, then the stress
 

is increased to a point where the slug just vanishes. The mathematical
 

model for vapor-space slugging is a research problem that has not yet been
 

solved. The crude criteria currently used in GRADE is that a slug forms
 

if 4 x (surface tension)/(hydraulic diameter) exceeds the stress at
 

the top of the vapor space.
 

The program starts with the condenser-end stress as a boundary condition
 

and with an assumed value for the heat-transport rate, it numerically
 

integrates the first-order differential equation that describes the rate
 

of stress increase with distance along the pipe. The stress increases due
 

to liquid pressure drop in the wick, vapor pressure drop in the vapor
 

space, and the hydrostatic pressure drop if the heat pipe is inclined in a
 

gravitational field. In the wick-design mode, at each step of the numerical
 

integration the porosity of the wick is set at the highest value that meets
 

the following requirements:
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1) The capillary-pressure limit is not exceeded by the stress
 

2) The wick self primes under the hydrostatic load alone.
 

For the second condition, the user can specify whether he desired the wick
 

to prime at the operating inclination or level. The wick's porosity in
 

the later case will generally be higher in some region, and hence the
 

heat-transport capacity will be greater. In actual operation, however,
 

the heat pipe will have to be leveled to prime the wick before it is
 

elevated to its operating inclination.
 

After the integration is complete, the solution is checked at the
 

evaporator end to see if it meets the user specified value of the stress
 

or porosity. The user specifies a maximum value for the stress, for
 

example, so that the pumping ability of circumferential grooves is not
 

exceeded, or a minimum value for the porosity so that the wick does not
 

become exceedingly dense. GRADE repeatedly integrates the equations,
 

with values for the heat-transport rate adjusted by a binary search
 

routine, until the conditions are met at the evaporator end.
 

In addition to designing graded-porosity wicks, GRADE also designs
 

non-graded homogeneous wicks optimized for heat-transport capability in
 

terms of the fiber diameter and/or the uniform porosity.
 

6.3 DESIGN AND PERFORMANCE OF ALUMINUM/AMMONIA HEAT PIPES
 

The computer program GRADE was used to design a graded-porosity and a
 

homogeneous wick for two all-aluminum heat pipes for use with ammonia.
 

The heat pipes are 180-cm long with equal evaporator, adiabatic, and
 

condenser lengths of 60-cm. The tube for the heat pipes has an outside
 

diameter of 1.27-cm and a wall thickness of 0.889 mm, and it is circumferentially
 

threaded on the inside with 40 threads/cm. The wick is a 0.457-cm slab
 

fabricated from aluminum wire with a diameter of 0.127 mm.
 

The porosity for the actual wicks is displayed in Figure 6-Iv. ine
 

measured distribution for the graded-porosity wick was found by cutting
 

up one of six identical wicks in two-inch segments and weighing them.
 

Nondestructive porosity measurements were also made of each wick by x-raying
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and reading the film with a densitometer. Although the measurements
 

indicated that all the wicks were nearly identical, the scatter in the
 

data was too great to precisely define the porosity variations. Further
 

-development of a nondestructive test is required.
 

The computer-designed optimum porosity distribution differs from the
 

actual wick primarily because the mathematical model had been updated since
 

the wick was fabricated. The performance predictions based on the updated
 

model for both the actual and optimum porosity distributions are displayed
 

in Figure 6-20. The optimized wick was designed to self-prime and operate
 

with the evaporator end elevated 0.5 cm higher than the condenser end.
 

The same wick, when operated at higher elevations may not self-prime,
 

but because of the hysteresis in fibrous wicks, once it is primed at
 

0.5 cm or lower; it can then be raised above 0.5 cm and operated. In
 

this case, however, capillary failure of the wick is predicted at some
 

point other than the evaporator end. For operation below 0.5 cm, on
 

the other hand, failure is predicted at the evaporator end. This
 

difference is the reason for the step change in slope of the Q-vs-h
 

curve for the optimum wick.
 

The measured performance for the graded-porosity heat pipe, which is
 

also displayed in-Figure 6-20, is in reasonable agreement with the theoretical
 

predictions. The wick was initially primed by leveling the pipe prior
 

to elevating it. After a burnout occurred, the heat load was shut off to
 

allow the wick to reprime at its operating elevation. The test was then
 

repeated and no difference was found in the measured capacity. Thus, the
 

graded-porosity wick had repriming capability at least up to 3 cm.
 

As also shown in Figure 6-20, the measured performance for the heat
 

pipe with the homogeneous wick was better than predicted at the higher
 

elevations. The measured wick porosity of 0.855 is exactly the optimum.
 

Because of hysteresis, the wick did not reprime after a burnout when the
 

evaporator elevation was 2 cm or higher, which is in accord with prediction.
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The demonstrated performance increase of the graded-porosity wick over
 

the homogeneous wick was not as large as it potentially could be. Primarily,
 

the homogeneous wick was optimum, while the graded-porosity wick was
 

everywhere too dense. The measured performance increase of the graded­

porosity wick was due only to increased capillary pressure-and no, advantage
 

was gained by having in the condenser region a higher porosity, and, hence
 

a lower flow resistance than the homogeneous wick. Another factor that
 

detracted from the relative performance of the graded-porosity wick was
 

that its cross-sectional area was 13% less than that of the homogeneous
 

wick.
 

The temperature distribution along the heat pipes is shown in Figure
 

6-21 for a transport rate of 140 watts. The nonuniformity of temperature
 

along the condenser is attributed to nonuniform thermal contact with the
 

heat-sink blocks. The heat-transfer coefficients for evaporation and
 

condensation based on an average wall temperature and the inside effective
 

surface are respectively 25000 watts/m2-°C and 9000 watts/m2-°C for
 
the graded-porosity heat pipe and 27000 watts/m2- C and 6500 watts/m2-C
 

for the homogeneous-wick heat pipe.
 

The graded-porosity-wick heat .pipe that was tested had high performance,
 
for example, compared to the performance of the ATS-Faxially-grooved heat
 

pipe also displayed in Figure 6-20 (Reference 6.11). Although the goals
 

of the development task have been achieved, the computer model predicts that
 

much higher performance is possible with an updated porosity variation
 

for the wick.
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26263-6021-RU-0ORIGINAL pAGE IS POOR 

APPENDIX A: DIFFUSION FLOW ANALYSIS
 

For transient analysis of hot-gas-reservoir heat pipes, flow of
 

vapor and noncondensable gas between the reservoir and condenser by
 

diffusion are important in determining performance characteristics of
 

the system. Figure A-] shows schematically a VCHP system.
 

TR
 

Tw
 

RESERVOIR GAS TUBE CONDENSER
 

Figure-A-I. Hot reservoir VCHP.
 

Where: 

TW = Heat-pipe wick temperature at the end of the wicked 
portion of the heat pipe
 

TR = Reservoir temperature
 

PT = Total pressure inheat pipe
 

PSAT = Working fluid saturation pressure at temperature TW 

PGR Noncondensable gas partial pressure inreservoir 

PVR = Working fluid partial pressure in reservoir. 

PRECEDING PAGE BLANK NOT FILMED 
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A simplified representation of the diffusion flow of vapor has been
 

adopted to allow integration into the heat-pipe thermal model. It is assumed
 

that the gas tube is the dominant resistance to diffusion and that
 

partial pressures of working-fluid vapor and noncondensable gas'are
 

uniform throughout the reservoir. The further assumptions that diffusion
 

is one-dimensional at constant temperature and pressure over a time step
 

and that the vapor partial pressure is small compared with the total
 

pressure give for the rate of diffusion of vapor:
 

M - (PDA

RT vR- SAT )
 

Where:
 

M = Mass flow rate into the reservoir
 

D z Diffusion coefficient
 

R = Working fluid vapor gas constant
 

A = Gas tube cross-sectional area
 

T : The gas temperature.
 

In addition to-diffusion, there is a flow of working fluid vapor
 

due to changes in total pressure. If the total pressure decreases over
 

a time step:
 

-M (PT - PTAT)AM = 

PT
 

Where: 

AM = Mass flow of vapor out of reservoir 

PT = Total pressure at time T 

PTAt = Total pressure at time T + AT 

M = Amount of working fluid vapor in reservoir at time T. 
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If the total pressure increases over a time step:
 

AM (PSAT) (V) (0- PT/PTAT)

-

RTR
 

Where: 

PSAT = Working-fluid saturation pressure at the entrance to the 

reservoir at time t_+ AT 

V = Reservoir volume 

R = Working fluid gas constant. 

The mass of working-fluid vapor in the reservoir at time t + At then 

becomes: 

M+AT = M + AM + (M)(At) 

This new value of working-fluid vapor then is used to calculate the
 

partial pressure of vapor in the reservoir and used in the gas-front
 

location calculations.
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CONTENT OF APPENDIX B
 

TITLE
SKETCH NO. 


Instrumentation for VMHP
750324E 


Vapor-Modulated Heat Pipe Assembly
740903 


Tube, Grooved
741001 


740904 VMHP End Cap
 

End Caps and Fill Tube
740905 


VMHP Bulkhead
740906 


VMHP Valve Sub-Assembly
740907 


VMHP Bellows Can
740908 


740909 
 VMHP Valve
 

VMHP Wick Sub-Assembly
740910 


740911 
 VMHP Wick
 

VMHP Wick Tunnel
740912 


VMHP Wick Pin
740913 


VMHP Flat Spring
740914 


VMHP Evaporator Sub-Assembly
740915 


1003 Homogeneous Wick
 

VMHP Tube, Threaded
740916 


750310E Control Volume Parts
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CONTENT OF APPENDIX C 

SKETCH NO. TITLE 

75044 Vapor-Modulated H.P. Assembly 

75025 Bulkhead 

75027 Wick Holder 

75024 Bellows Can 

75026 Valve 

75049 End Cap VMHP 

75023 End Cap 

75039 Wick, Uniform Density 

75045 Sensor Volume 

75055 Tube For Input Heat Pipe 

75048 Ootput-Heat-Pipe Subassembly 

75051 Transition Section 

75050 Interface Section of Output Heat Pipe 

75052 Output Heat Pipe Condenser Section 

75061 VMHP Instrumentation 
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