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FORMULATION AND CLOSURE OF COMPRESSIBLE

.+ TURBULENCE EQUATIONS IN THE LIGHT -

OF KINETIC THEORY

by Shunichi Tsugd and Kenshi Sagara*
Nielsen Engineering & Research, Inc.

SUMMARY
r

i
t

On the basis of a kinetic hierarchy system developed previously by _

the authors, fluid-dynamic moment equations are derived governing the inter- {s

action between turbulent and thermal fluctuations.	 Truncation of the hier-

archy under the hypothesis of "ternary" molecular chaos provides a unique

closure condition on the set of equations. 	 The (multipoint) kinetic theory

c is shown to reduce the inherent complexity of the conventional formalism

of compressible turbulence theory and to minimize arbitrariness in formu-

lating the closure condition.	 This assertion is based on two factors

I^
characteristic of kinetic theory; 	 First, all the turbulent correlation

terms appearing in ti,- averaged equations of viscous compressible flow are

expressed as expansion coefficients of a single function, viz., the two-

particle correlation in the	 24-space.	 Second, the closure condition is,

then, equivalent to deriving and solving the equation governing the two-

particle correlation.	 Actually,the first feature reflects favorably on the

fact that turbulence corrections to t'ae gasdynamic equations representing

the Reynolds stress and the turbulent heat flux, are each formed by single

terms.	 Each of the expressions remain invariant in form whether the flew

is compressible or not; such invariance is mat to be expected in the conven-

tional formalism of turbulent correlations. 	 A superficial similarity of our 2

formalism to a formalism based on the concept of mass-averaging breaks down,;

at the second point at issue where our closure equations have a unique form

without recourse to modelin-T. 	 An a posteriori way of reproducing the whole

t
set of equations (except for thermal-agitation terms) on a proper reinter-

_

pretation of the conventional fluid-dynamic equations is indicated. 	 In

fact, a bilinear transformation of fluctuating quantities shows 	 that the

two formalisms are identical with regard to terms of double correlations.

The essential difference between the two systems lies in the appearance of

higher order correlations; turbulence corrections by the kinetic theory

*Department. of Physics, University of Tokyo, Tokyo, 113 Japan. x'
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include no such terms in principle, in contrast to the triple and the quad-

ruple correlations intervening in conventional expressions of Reynolds

stress and turbulent heat flux, respectively.

1. INTRODUCTION

1.1 Macroscale and Microscale Fluctuations
in Nonequilibrium Gases

Due to its enormous number of degrees of freedom in motion at the

molecular level, a macroscopic body of a gas exhibits various kinds of

fluctuations around each "mean" value, viz., each thermodynamic variable

of the gas, such as the density, the pressure, the fluid-dynamic velocity,

etc. Roughly speaking, we can subdivide the whole fluctuation into two

classes; micorscopic and macroscopic fluctuations. The microscopic fluc-

tuation, for example, the thermal agitation, is characterized by the fact

that its relative intensity has the form of a(M) 1/2 , where SN is the

number of molecules in the body of a gas under consideration, and a is

a certain fLnetion of the thermodynamic quantities. This quantity is, then,

vanishingly small in the continuum limit where thermodynamics and fluid

mechanics are spoken of except under anomalous conditions (e.g., the entropy

or the specific volume fluctuations at phase equilibrium; a — -). On the

other hand, a feature of the macroscopic fluctuation is that its intensity

is independent of SN. Therefore, in the continuum limit, this fluctuation

alone is detectable by means of macroscopic measurements. Another feature

of the macroscopic fluctuation is that its existence is limited to the non-

equilibr;um state, whereas thermal agitations prevail. in the equilibrium

state as well as the nonequilibrium state. Among wel--known fluctuations

of the macroscopic type are fluid-dynamic turbulence, unstable phenomena

in plasmas, and the mild (low temperature) ignition of a hydrogen/oxygen

system.

In the present work we confine ourselves to a study of one of the

interactions between microscopic and macroscopic fluctuations; namely,

that between microscopic thermal fluctuations and the macroscopic fluctua-

bons due to fluid-dynamic turbulence. Our objective is to derive equations

!	 governing the interaction of the basic turbulent field with the two fluc-

tuations in the fluid-dynamic space for the case of a classical ideal gas

in first-order translational nonequilibrium
s

Particular thanks is due to Mr. Murray Tobak of NASA/Ames Research Center
for helpful comments during preparation of the manuscript.
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1.2 Differences in Generation and Propagation
of Fluctuation Correlations

The microscale and macroscale fluctuations differ not only in their

dependence on the scale of the system but also in the ways they generate

and propagate correlations. The thermal fluctuation is generated by a

spontaneous deviation from the mean value charaterizing the equilibrium

state and is dispersed by relaxation. Microscopically, the generation and

propagation of the fluctuation is via molecular co? ision, and the corre-

lation formed by this mechanism relaxes as l exp(-c2t/E), where E is a

small parameter proportional to the mean free pith, and c is the iso-

thermal speed of sound. Then the characteristic time for the relaxation

is 1:	 E/c`, a time proportional to the mean free path.

Only recently, the existence of a second mode of propagating correla-

tion has been revealed in adc.ition to the one via direct molecular colli-

sions: Correlation generated and propagated by collective motion of macro-

scopic bodies of the gas. Grad  and Sastri 3 state that in contrast to the

direct correlation propagation, which persists only for a few mean free

times, the second mode of correlation must propagate at least over a hydro-

dynamic time, judging from the fact that the correlations are shown to

obey certain "conservation" equations of two-point fluid mechanics. In

fact, decay of the second mode of velocity-velocity correlation in a gas

at rest obeys a diffusion equation  and therefore behaves like exp(-x2/Et).

This second mode, then, has the time constant t II - L2/E (where L is

a hydrodynamic length) and therefore decays mvch more slowly than the first

mode with t  - E/c 2 . This implies a striking feature of the second mode:

It must be detectable by macroscopic (fluid-dynamic) measurements. Further-

more, it has been shown  that the correlation of the second mode is even

amplified if the flows under consideration are unstable with respect to

the cleisical criteria of hydrodynamical stability. Fluctuation evolution

in a Tsla:ius boundary layer, calculated along the line of two-point kinetic

theory, has exhibited agreement with the experimental results of Schubauer-

Klebanoff. 5 Hence, we conclude that the second mode of correlation has a

certain implication as a tuioulent correlation.

4
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1.3 Description in Terms of
microscopic Density

A crucial factor of a kinetic theory in dealing with fluctuating

phenomena is the quality of statistical processing that has to be invoked

to make the problem tractable. For example, it has been shown that instan-

taneous turbulent fluctuations are wiped out  in defining the Boltzmann

function as an expectation value for the number density. Also, the thermal

fluctuations are missed  ever, in the most general formulation of the BBGKY

formalism. To avert this difficulty, it is advisable to start with an

exact distribution function where no probability concepts have yet been

invoked and where therefore every fluctuation is self-contained. To this

end, we shall start with a distribution which has been proposed in plasma

kinetic theory, 6 and has become known as the microscopic density. It is

defined by

N

f(z,t) = m
	

6 [z - z (s) (t)]
	

(1.1)

s =1

where m is the mass of a particle, and z = (•:,.? denotes a phase-space

^a
point, z (s) (t) gives the locus of the s th particle in the phase space,

S is Dirac's delta function, and the summation is over all particles N

under consideration. The microscopic density has a favorable feature in

comparison with the Liouville density function which has heretofore formed

the basis for the BBGKY hierarchy: The microscopic density is defined in

the (six-dimensional) phase space, in contrast to 6N space of the Liouville

density, and has a definite physical meaning such that the expression

^c1Av j	 f dx dvOx AV

gives the "exact" mass density at an instant t in the phase space z.

This is an immediate consequence of the fact that each integrated delta

function (1.1) is unity or zero de_jendi- on whether the given particle is

located inside or outside, respectively, the voiume Lx Av.
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In terms of this distribution, macroscopic variables are defined such

that
_ 3

	

O	 O	 {S) (t)

	

P	 f dv = m	 b[x - x	
J	

(t.2)
_	

s	
J

mi = J vif dv m E v( i) bCx - x (s) (t)1	 (1.3)
S

1

give, respectively, the density and the mass flux density which are subject

to thermal as well as turbulent fluctuations. However, the presence of the

delta function and the unknowable nature of initial values of x (s) and

	

v(s) make it difficult to solve for p and 	mi with instantaneous fluc-
tuations restored (except by numerical experiments, e.g., the Monte Carlo

method). The simplast way to make the formulation tractable is to intro-

duce a smoothing or aN:-_raging procedure whose operation on the microscopic

density yields the .zoltzmann function, or more exactly, the one-particle

distribution function of the BBC.-',Y hierarchy

0
	f = f	 (1.4)

In other words, f is the mean mass density in the phase space. Since, as

noted above, neither turbulent ncr thermal fluctuations survive the average,

all the instantaneous fluctuations must be included in

0

Af = f - f	 (1.5)

Accordingly, the density and the mass-flux density fluctuations are given,

,pectively, by

AP - p° - p = 
J 

cif dv	 (1.6)

o^	 -^

	

mi = mi - mi =	 vi Af dv	 (1.7)

5
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where p and m. are the average density and the average mass-flux density

Iobeying the (Boltzmann) formalism of the classical kinetic theory:

f dv-

mi IV 
i 
f dv- 	(1.9)

Statistical behavior of the fluctuations is spoken of only through
their correlations; for example, a tensor defined by

iNm ' >Pn	 (viva  A f A f (TV d V'
	

(1.10)

describes the average characteristics of-Othe fluctuation in the mass-flux

density at a seven-dimensional point (X,X̂ ,t). In order to calculate the

factor

00
^f Af = ff - ff

appearing in (1.10), a simple mathematical identity

N	 N

E 6[z - z (S)  (t)] E a[2^ - z(s)

SM1	 g=l

N

[z	 (t)] 6 [Z- - z s

s/s^

N

+ 6 (z - Z^) 
Z 

6 Cz - Z (s) (t

S-1

needs to be noted.

6
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Let the average, defined by (1 4),be taker over the identity; then alc'ng

-^ with definition (1.1) the following equation results:

f (z) f (z)	 fII (z,z)	 + m8 (z - z) f (z) (1.12)

0

LA where	 fII	 is 3efined by

--	 i ;1

fII (z,Z)	 = nf	 S 
C
z - z (s) (t), b rz - z (s)	 J(t) (1.13)

s#s

is called the two-particle distribution function in the BBGKY hierarchy.

Customarily, the 'l'uiction	 fII	 is decomposed further as

_ f	 (Z,z)	 f(Z) f( Z) 	 + *(z,i)
II

(1.14)

where	 is called the two-particle correlation.	 Then equation (1.11)

. reads	 in view of (1.12) and (1.13),
!	 i

1
i
1

Af(z)	 Af(z")	 s	 (z,z)	 + mb(z - z)f(Z) (1.15)

The physical meaning of each term on the right-hand aide can be seen from

(1.10) with (1.15).	 Assuming	 f to be a Maxwellian distribution, we have

f ~

AmiAm^ = 
fv

iv^ Af A^ dv dv

y
vivIayz,z)(	 dv dv	 (1.16)

+ n 6(x - x)(pa)^bik
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where n is the mean number density and a - '(RT)
1/2
 is the isothermal

speed of sound. Then the second term on the right-hand side of equation

(1.16) turns out to be the thermal agitation, 7 whereas the first term

represents the macroscopic fluvtuation correlation in nonequilibrium situ-

ations that is directly connected with the turbulent correlation. 4 Thus,

the macroscopic and microscopic fluctuations are uncoupled in (1.16), but

they will be shown to interact with each other through the equations of

fluid dynamics.

In Section 2 we summarize our methodological basis for what follows;

a hierarchy system which is based on the master Boltzmann equation instead

of Liouville's master equation of the BBGKY hierarchy. Specifically, we

discuss the one-point and two-point equations of the hierarchy which, to-

gether with the assumption of "ternary" molecular chaos, forma closed set.

In Section 3, factors causing a crucial difference from the conventional

turbulence formalism are extracted and discussed. Fluid-dynamic moment

equations out of the one-particle equation are described in Section 4 with

special reference to the coexistence of compressibility and turbulence.

Differences in several nontrivial aspects from the Chapman-Enskog I s or Grad's

classical schemes are pointed out. In Section 5, the connection of these

equations with those derived on a macroscopic basis is discussed: The two

formalisms are shown to yield the same equations in the lowest order

correlations. In Section 6, the two-particle equation which plays a central

role in the closure problem is detailed in its equivalent form of moment

equations of two-point fluid dynamics. These equations are shown to be

reconstructed except for thermal agitation terms on the basis of phenome-

nological gasdynamic equations if dependent variables are identified with

those defined in terms of microscopic density(Section 7).

2. A HIERARCHY SYSTEM ON THE "MASTER"
BOLTZMANN EQUATION

2.1 Master Boltzmann Equation e

As is well-known, Liouville's equation., the master equation of the

i

BBGKY hierarchy, has an implication as the equation of continuity in the

(6N-dimensional) r space. A parallel procedure of generating a hierarchy
i

system in the (6-dimensional) µ space t-arns out to be practicable, starting

with the equation of continuity in this space. In reference 1 such any

i

S
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equation for classical ideal gases has been shown to have the form of the

Boltzman equation in which the Boltzmann function f is replaced by the

microscopic density I defined in (1.1);

	

B(f) = (-r + v a / f - J^z^zi Cf(z)f(zj^ 	 0
\\	 ax /	 ,JJ L	 ,,JJ

(2.1)

where J is the conventional Boltzmann operator for the short-range inter-

molecular force

xi a , a>3	 (2.2)

and where z stands fc- a field particle on which the integration is

i
effected. Equation (2.1) may be called the "master" Boltzmann equation as

distinguished from its averaged version ( eq. 2.3 below) governing the

Boltzmann function.

A salient feature of the master Boltzmann equation (2.1) is that no

statistical processing such as the molecular chaos assumption nor even the

probability concept (e.g., the distribution function as an expectation

value for number density) has had to be invoked in deriving the equation.l

It is simply an exact continuity equation, in the µ space at each instant,

of _fluctuating number

az f m
_ 1? dz

Sz

of molecules in a specified volume bz. The temporal resolvability of this

equation is limited by the nature of the operator J that is unable to

resolve temporal evolution within the collision duration time T = r/a,

where r is the characteristic radius of curvature of a field particle at

molecular encounter. Therefore, T is interpreted as the time-resolvability

limit of the equation. It is vanishingly small for a rigid spherical mole-

cule (a -+ -), -nd increases as a is decreased (softer collision). we can

show that the thermal agitations survive this fluctuation-filtering action

of the operator J on condition that T be smaller than the mean collision

time. In fact, spontaneous stress fluctuations caused by thermal motion

9
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9
of a gas are shown to relax as 1 exp(- pt/µ), (p, the pressure; µ, the vis-

cosity coefficient), so that the characteristic time - T* of thermal agit.^.-

tions, T* µ/p - c/a, where a denotes the mean free path, is seen to

be of the order of the mean collision time. Then the condition T* >> T,

or equivalently k >> r (the necessary and sufficient condition for binary

molecular collision), ensures that thermal agitation will be rt 	 ►ed by
equation (2.1) for a certain class of "hard" molecular encounters including

Maxwellian molecules ( c1	 5).

2.2	 A Hierarchy System t;

In this section we present one-particle and two -particle kinetic

equations of a new hierarchy system on the basis of the master Boltzmann

r	 equation (2.1), with emphasis on the contrast with their BBGKY counterparts.

(We do not duplicate here a derivation of the equations, which is carried

out in some detail in reference 1.) 	 The equation of the lowest order, viz.,

the one-particle equation, is obtained by averaging equation (2.1);

Ia ` 	t- 'V 	 a	 f = J[ZIzl 
C
fI + *(z,z)I	 ( 2.3)

aX 	 JJ	 J

-	 where	 ( 1.14) and ( 1.12) are incorporated, and where, on the right-hand

side of (2.3), we have util..ed the fact that JC6(z - z)f,	 = 0, implying

that no effects due to thermal agitations are observed in the averaged

equation.	 In fact, this equation is exactly the same as the one-particle

-'	 equation of the BBGKY hierarchy, and has the form of the Boltzmann equation

with no molecular chaos assumption invoked.	 Evidently this equation differs

from the classical Boltzmann equation by the presence of the term 	 *	 in

the collision integral so that the equation is not closed by itself.	 We
ii

need, therefore, to address ourselves to the next equation of the hierarchy

_	 that governs the function	 *.	 This inherent difficulty of indeterminacy

is not peculiar to the one-point equation.	 The two-particle e g.:ation

includes higher-order terms as well; the three-particle distribution

function	 fill	
intervenes in the equation in an unavoidable fashion. 	 Then

a question arises:	 What is the simplest possible form of truncation rule

which retains the essential features of turbulence 	 0)?	 Two points need

to be noted here.	 First, Sastri 3 has pointed out that a truncation rule

10



fIII = G(f,f11)	 (2.4)

-, —	 ,LII(fII
,G)dz	 CLI ( f,fII)	 (2.5)

z

Where C is a constant and

0

	

LN (fN ' fN + 1) = N: I II III ,..	 (2.6-	 (	 >	 >	 >	 )	 )

MM F-

is Ithe kinetic equation of Nth BBGKY hierarchy that is exact in the sense

that the Liouville _ equati%,z is so. Condition (2.5) limi ts the choice of

G to� an extent that the arbitrariness introduced in assumption (2.4),
thereby intervening in the two-particle equation does not "contaminate the

exactness of the one-particle kinetic equation. The second point at issue

is that every G so far obtained and eligible in the sense above leads to

an identical form when truncated at the three -particle level, whereas they

differ at the four- (or more) particle level in effecting truncation. In

fact, among the truncations meeting condition (2.5) are the well-known

cumulant truncation rule  and the hypothesis of N-particle molecular chaos

N

	

= II Lf( z 
n

) = 0	 (2.7)
N 

n=1

U
where 6f has been defined by (1.5) and where terms of macroscopic corre-

lation alone are taken into account. Both rules as well as some others 
U	 are shown to yield an identical truncation rule at the three-particle stage

z ff) - fff - fp(z^,z) - fvi(z,z) - f7r(z,z) = 0	 (2.8)
fIII (z, 



t

Once the principle of the closure has been established, constructing

an equatiec, governing * is rather straightforward. The two-particle

equation is provided by	 j1d

)1 t

Lt ` ỳ
Af(z)BCf(z), + Af(z)brf(z), = 0	 (2.9)	 1

which, in view of (2.1), (2.3), and (2.8), is written in an alternative 	 E

form

Cat + v	 + v 	 (z,z) - K1z+1 zlrf(z)(z,z)J
ax 	 JJ ((

K [2+ Ii] [f (2) ^ (z}Z )
J 

= KCzl zl 
C

S (z - z) fII (z,z+)^

	

J	 JJ 	 .a

	

+ K [z+l  1 f b (z - z) f1I (z,z+)l - b (z - z)J[zl z] 
l
f fII (z,z+ )	 (2.10)

	

J (.	 J  

with the operator K defined by

	

K(z+lz)g(z,z+,...)	 J(z+ , z) Jg(z z+ 	) + g (z+ z	
)J	

(2.11)

where z+ indicates a field particle on which integration operates. If

the terms on the right-hand side of equation (2.10) are set to zero, the

equation reduces to the two-particle equation of the BBGKY hierarchy that

is homogeneous in *. In the case of a non-zero right-hand side, note that

	

the inhomogeneous terms have a common factor b(x - x), which implies that 	 -

they stand for effects due to thermal agitations. It should be stressed

that equation (2.10) is exact with regard to the terms arising from thermal

agitations: The closure approximation has been incorporated only in the

macroscopic part of the three-particle distribution function (see eq. 2.8).

Equations (2.3) and (2.10) constitute a closed set of governing equa-

tions for f and * where the effects due to thermal agitations, missing

in the BBGKY formalism, are taken into conFideration. The remaining part

of the present work is devoted to a derivation of the fluid-dynamic moment

12



equations which are correct to the first-order in Q2 (double correlation),

the mean free path e, viz., the order of magnitude of transport coeffi-

cients, and n-1 (n: the mean number density) representing the first-order

effect of thermal agitations.

3. EFFECTS OF TURBULENCE IN THE
KINETIC THEORY FORMALISM

3.1 Expansion in Hermite
Polynomials

In order to accomplish transition from.the kinetic to the fluid-dynamic

equations we expand f and 7p in a single and a double series of Hermite

polynomial ;Q, respectively, and discuss equations governing their expan-

sion ccefficients. A systematic method of moment expansion haE: its origin

in the so-called 13-moment method of Grad. 9 Since the expansion is around

the (local) Maxwellian distribution (eq. 3.3 below) expansion in three-

dimensional Hermite polynomials is considered to be most relevant. The 13-

moment expansion  for f and its two-particle counterpart  for * are the

following:

	

f(z) = fo(z) 1  + P g^2) + 
'i Xp!3)]	 (3.1)

(3,3)	 R(J,K)	 ..
*(z,z) _ (pp") 1 f (z) f (z)	 7.. k jJ)';q (k)	 (3.2)

o	 O	 J-K „	 k..
(J,K) _ (0,0)c c J ]..

with

fo (z)	 p (27rc2 )	 exp(- Z )	 (3.3)

= c 1 (v - V, )	 (3.4)

where ;P is the Hermite polynomial defined in terms of the non-dimensional

peculiar velocity ^; also p jk ,Qi) p, p, c and w are the stress deviator

tensor, the heat flux density, the density, the pressure, and the two ref-

erence velocities to be determined later. Each of these quantities except

p is to be generalized properly to include effects due to turbulence.

13
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Two remarks in connection with expression (3.1) are in order at this point

First, we postulate the turbulent mean pressure p to have the same mathe-

matical expression as it does in the laminar case regardless of its physical

relevancy,

p 3r 	 (2) + 31 f dv	 (3.5)

2	 2 _

	 fC^X

where	 ) _i i - ^i - 3 is the contracted Hermite polynomiai of the

second order. Second, we postulate also that

pi7 = 0
	 (3.6)

be retained together with the condition of vanish-'. ac. first-order terms.
(See 3.L)	 Postulate (3.5) in which (3.1) is substituted for f deter-

mines the parameter c as

c2 = A	 (3.7)

Also, expansion ( 3.1) substituted in (1.9) determines the parameter w of

(3.4) as

M.
W. i	

(3.S)
P

With regard to expansion (3.2), there are no such degrees of freedom re-

maining, so that the summation in (3.2) should span over all possible terms

including nonvanishing first-order as well as contracted second-order terms.

All of the expansion coefficients in (3.1) and (3.2) are solved in view

of the orthonormality property of the Hermite polynomials as

pig = )c a lj) f dv	 (3.9)
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Qi J 2 c 3 7Q1 3) f dv	 (3.10)

-^ p(3)	 Kt3) = S (t2 - 5)
^T 1	 IC1)]	 1 5^

R (J,K) (x ,x)	 fcJ;.e(J)cKv(K)dv dv(3.11) ^..	 k..

where

and

3.2 Instantaneous Flactuations

Expressions (1.8), (1.9), (3.5), (3.9) and (3.8) for p, mi , p ' pij,
Qi exhaust the set of 13 mean variables necessary for describing a fluid
state. To each of these variables corresponds an instantaneous fluctuation

some of which have been already given by (1.5) and (1.7). The whole set of

the instantaneous fluctuations is given by

op	 1

Mt.	 w. + c ^Q(1)

c` + 3 C 2 ( 2 ) A  dv	 (3.12)

a
Z\pij 	 c JATii

yAQl	

L2 c.,

whose form should be self-explanatory in view of the corresponding expres-

sions for the mean values.

It should be noted that all the variables appearing in equation (3.12)

have in common the characteristic of being proportional to number density.

In fluid mechanics, however, there is another class of quantities whose

members are independent of number density, for example, the velocity or the

temperature. We have learned that quantities proportional to the density

are more fundamental than those which are density-independent in the sense

that fluctuations of the former quantities are directly defined in termso f ,^.f.

15



It is sometimes required, however, to express the fluctuation formulas

with respect to the density-independent quantities. For example, laser-

doppler velocimetry picks up the velocity fluctuation rather than that of

thu mass-flux density. Similarly, some measuring devices perceive the tem-

perature fluctuation instead of the pressure fluctuation.

The density-independent quantities can be defined only indirectly.

We shall show this for the velocity and the temperature. The instantaneous
U

velocity u 	 is defined as

0
0	 m.
u i = o	 (3.13)

P

Separating this expression into average and fluctua ting parts, we have

m  = Pu i + AP Jui 	(3.14)

AM  = P ilu i + u  vp	 (3.15)

As for the temperature, it would be most natural to define this quantity as

equi-partitioned kinetic energy per molecule due to purely thermal moti.on,

namely, that excluding the turbulent energy. Then we have

2 kT = n
	

2 (vi - u i ) ` f dv	 (3.16)

where k is Boltzmann's constant and n is the fluctuating number densiiy.

Splitting this expression into average and fluctuating parts leads to

P RT + R c1P . \T = p - 3 ^, (1u i )	 (3.17)

RT Ai l, + RP AT = .\p	 (3.  1 S )

s

16



where

(R = m)

and where formulas (3.5) and (3.12) have been used.

3.3 Physical Meanings of R(J,K)

With these preliminaries on the instantaneous fluctuations, we can

show a more direct physical meaning for 
R(J,K) 

than is implied in (3.11).

As is seen from (1.15), the R's are linearly related to	 j

AA ,fit = J a(z)b(z)Af Alf dv dv	 (3.19)

namely, the fluctuation correlation between two thermodynamic quantities

A and B at physical-space points x and x. Formula (3.19) is an

immediate consequence of averaged product of c-cpression (3.12) at the dif-

ferent points z and z. Quantities Z^A ano AB stand for fluctuations

of macroscopic quantities standing on the left-hand side of (3.12), whereas

a and b stand for those counterparts appearing within parentheses on the

right-hand side. A straight-forward calculation of (3.19) in which Af ^f

is replaced with the right-hand side of (1.15) yields

Ap AP = R (0,0) + Ily 6 (x - 2)

\

Ap Aft = R^ 0 ' 1) + P-l r",^ (R 0 ' 0 ' + mm^b(x - ^)

(1,1)	 -I (0:l)	 (1,0)

Am y = Ri k
	

+ mip R k 	+ p "4 k Ri	 ( 3.20)

A -i	 A	 (0,0)	 -1	 -^	 A+ (pp) mim	 mi,	 + pb i ^)b(x - x)

,gip AP = 3 RrT' 0) + c` R (0 ' 0) + mp5 (x - x)

,Continued on next page )
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and

, M.L _	 Ri1 TY) + 3 p	 (0 2) + c`Ri l ' O) 	cep -1	 (0'0)

+ mic 26 (x - x)

The above formulas show that fluctuation correlations. in general, are com-

posed of two factors: thermodynamic fluctuations, which are characterized

by the presence of the delta function, and nonthermal, nonequilibrium fluc-

tuations R, that are connected with a nonchaotic situation 	 0)

(c.f. 1.16). On the other hand, terms on the left-hand side of (3.20) are

rewritten in terms of Au 	 and LT by the use of (3.15) and (3.18). Term-

by-term comparison of these expressions with those on the right-hand side of

(3.20), where the thermal agitation teems are neglected as of higher order,

leads to the following relationships:

(0,0)
R	 'f^P AP

R ( i'0) = p ^uiAP

R ( i' 1 ^	 pp ^u.:1u

(3.21)

R (2,0) = 3pR aT :gyp

R ( i ' 2 ) = 3 	 Au NT

3.4 Notes on the Pressure Concept in
the Presence of Turbulencc

We have introduced the average pressure p in the form of (3.5) for

t1le sake of conformity with the expansion (3.1) which refers to the pecu-

liar velocity r , defined by (3.4). In fact, from the formal point of view,

this seems to be the most natural definition of the pressure extended so as

18
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to allow ,for turbulence. According to tbLA definition, however, p	 includes

- effects due to turbulence as -well as the thermal motion of gas molecules,

-so that we can show--

Pt
P^+_

E	 1 provided that 	 p	 is to represent the instantaneous pressure including
s thermal effects alone. In order to obtain the relationship between	 p	 and

U
a

1r p	 (3.22)

^ ►-^P	 Y	 p is provided bywe proceed as follows. Ake to the correct form of

(3.18) which is exactly the fluctuating part of the ideal gas relation

p RpT = knT	 (3.23)

Since we have the definition ( 3.16) of the fluctuating temperature at hand,
0

equation (3.23) leads to the definition of p as

rL

t	 p = J(vi - ui ) 2f dv	 (3.24)

Averaging this expression and utilizing equations (3.22), (3 . 21), (3.4),
L..'

and (3.5) , we have

p = r + -L [R ( 
1

3p	 i:i
X = X

(3.25)

This relationship tells us that the quantity p defined by (3.5) includes

effects due to turbulence in addition to the " genuine" pressure r which

is defined by (3.22) and includes thermal effects alone. With this rela-

tionship, equation ( 3.17) is interpreted favorably: In fact, the equation

reads

19
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rr = pRT +P [R (2,0
	

-

LL	 x = x

(3.26)

L

fl!
uI

or

J I,

u^

ulit = pRT + R GP AT

which is nothing but equation (3.23) averaged. The difference between

rr and p, which is ascribed to random motion due to turbulence, is of

O(M2A2 ) in comparison with the pressure (where M is the characteristic

Mach number). Therefore, the difference is ne jigibly small for incompres-

sible flows, but can reach an appreciable magnitude in certain hypersonic

situations.

Correction formulas (3.25) and (3.14) tell us that the local Maxwellian,

when written in terms of the average velocity and temperature, takes the

form

M1

	
IV.'

-u	 2R

 ^ 	
p	

'	 J
f 
	 exp -

2[RT + 1̂  R (2,0) + 1. 
R(1,1)J

ll3p `	 3p `	 ] f

A 1.1 the correction factors appearing in the expression disappear for incom-

pressible flows because of non-fluctuating density [R (J ' 0) = 01 and of
vanishing Mach number R (l ' l ) /p `RT	 O(M2) << 1.

J 'J

4. TURBULENT GASDYNAMICS ON THE BASIS OF
THE CORRECTED BOLTZMA:7N EQUATION

4.1 Moment Equations

The only difference between the modified Boltzmann equation (7.3) and

the conventional one is the presence of the term * in the colli 	 n

integral. Thus, no difference is observed in the three moment equations

(of conservation) corresponding to three summational invariants as moment

functions. This situation is readily seen from the following expression

of tha general moment equation for equation (2.3) with the moment function

a(z) :

20
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L^

U

d
tJ 

of dv + T rav r f dv - r(7
6ot- + 

y r	 f dv = 2 r [[a]Cf (z) f ^z)

+ W(z,z) j dK dv dv	 (4.1)

where the notation

CIaJ'i = a(z' ) + a(z' ) - a(z) - a(z)	 (4.2)

has been introduced. In deriving expression ( 1 .1) we have assumed that

quantities appearing in the collision integral of equation (2.3) are sym-

metrical with respect to z and 2. This condition is met with -^ since

we have put x = x to secure collision encounter. The three conservation

equations corresponding to the following choices

CL = 1, v
i ,	 v2

for which we have

[C `^ = 0

are shown to have the form:

im•
+ 3

cox 
= 0	 (4.3)

t 
3

dmi	 a
it + T- 

( P "mim e + P(5 + p ig ) = 0	 (4.4)
3

6t2 p + i P 'm^l +	
C2 P

-`m 3 m + 2 p^, -'m 3 + P- mlpl3 + Q^l = 0 (4.5)
L	 2	 J	 3	 J

.r

i	 l
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These equations are formally identical to their classical counterparts  so

far as the actual forms of p ij and Qj have been left unspecified.

As has been seen above, the way in which. nonvanishing y affects the

fluid dynamic equations (4.3) through (4.5) is via p ij and Qj , whose

actual expressions are to be determined from moment equations with moment

functions W..	 and -J-Q (3) , respectively. Since these moment functions

are not summational invariants of collision, the moment equations neces-

sarily include effects due to V. After some manipulation, we have moment

equations, namely, equation (4.1) for a = aPl)̂a nd	 i3),

respectively:

api' 	 a	 m r	 2 [aQi	
aQ.	 2	 oQr^I	

mj

dt + TX p pii +	 + ox 3 a ij ĉx r
] 

+pir c^xr p

a [mi] 2	 3m	 _

+ pjr r p	 bijprs xsxs rp + p ^ , 	Jxi

_ 2 6	 a	 m r = _ §pq	 + 1 R (2 ,0) - R(1,1)

3 i j ^ p	

m pi
	 p	 ij	 i'J

1 6..R ( 2 ,0) + 16..R(1,1)

and

(4.6)

(4.7)

aQi 	 a m r 	 7	 a m i 	 2	 a m r 	 2	
a Fm[—]

-7t + ^ p Qi + 5 qr 	 p + 5 qr dxi ► + 5 qi 3xr P

	

Jp r 2	
rPl _ pir a s b +	 + J	 7 ^^J

+ RT ax + pir	 p ax (p sr psr)	 p ^^ F

_- B Q. + 1 R (3,0) _ 2R (2 ' l) + R(2'1)m	 i	 p	 i	 i	 ir,r

.M
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where B is related to the viscosity coefficient u and the heat conduc-

tivity coefficient T as

mRT
u	 6B

and	 (4.8)

,L

r	 ^

^f1

5mR`T
8B

All R's in equations (4.6) and (4.7) represent the correlations at the

same point (x = x); therefore, the relation R ( 'J,K) = R (K ' J) holds.

4.2 Generalized Navier-Stokes
and Fourier Laws

Equations (4.6) and (4.7) have elucidated, at the level of the 13-

moment approximation, the manner in which the stress and heat flux are

affected by the presence of ^,, namely, the two-particle correlation.

Neglecting the quantities of the order of transport coefficients in the

left-hand sides of equations (4.6) and (4.7), that is, reducing the level

of lescription to that of fluid dynamics, we obtain the following expres-

sions for the stress and heat flux:

p.	 _ (p. .)	 + 1 -R( 2,0) + R( l ' 1) + 1 b..R (2,0)	 1 b. .R (l i	 (4.9)
i]	 i] NS	 i]	 i,j	 3 i]	 i] r,r

and

Qi = (Qi)F + 
2p 

I-Ri3.0) + 2Ri 2 ' 1) - Rir^r )	(4.10)

L

where (pij)NS and (Qi ) F are given by the classical Navier-Stokes and

Fourier laws, respectively, as

ml + .d	 m] - ? b.	
mr

(Pij)NS -	 P'	 cixi ^-	 3 ij 7xr

23
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(4.11)and

1

-.

(Qi) F = -T	
^^ RJ

Further simplification of expressions (4.10) and (4.11) is feasible ii

we make use of the fact o that the correlations between quantities containing

a nonsummational invariant are smaller than those between summational i nvar-

iants by a factor proportional to transport coefficients E. We have, for

example,

R(2 ,0) = 3 6. R (2,0) + r(2,0)

and

r(2,0)
I	 11	 0(E)

R(2,0)I
i

With this decomposition rule and the simplifying appro::imation, equations

(4.10) and (4.11) read

I

	

+ 1	 R (1 ,1) - 1 b	 R (1 ' 1)	 (4.12)
pij	 (pij)NS	 p	 i, j	 3 ij r,r

i

Qi = (Qi) F + 61 R( 2 ' l)	 (4.13)

Substituting equation (4.12) into equation (4.4 ) with the relationship

(3.25) between ,r and p in mind, we readily see that the termF'R(l,l)

behaves just like the Reynolds strews appearing in the equation of incom-

pressible turbulent flows. The "turbulent" Navier-Stokes relation (4.12)

might look deceptively simple, however, when we are reminded that the rel y --

tion holds as well for compressible flows. In fact, we have imposed no

restriction on the compressibility in the course of the derivation. Also,

the fact that the turbulent heat transfer (the second term of 4.13)is

expressed by a single term is not to be expected in the conventional

formalism. Actually, in the conventional approach, the averaged Navier-

24



Stokes and the energy equations, in which mean and fluctuating parts are

separated, are written in the forms;

at pui + ^X. (pu i u j + rb ij + p ig ) = 0

and

11

	
IU2

at
2 

pVi .> 
+ ph	 T + ax. pu 	+ h + u ipi^ + Q 3 	= 0L

{	 with	
ij

p	 and Q. f given byi

'	 piJt = (pij ) NS + P "
u i -^u j + aiLp Au j + u i Ap jai + AP nu iCu j 	 '4.14)

and

LJ	 Q .	 _ ( Q) + 1 p u (Au ) - 1 u	 p .'u . i- u . ,Lh Gp + p Au .:^hii	 F	 2	 i	 r	 ?_ r	 i	 i	 i

+ h -^a Au i + ^p ^h vu i + 2 p (emu . ) 'pu i + 2 pu i^lp (",u ) 2
J	 J

+.L -p Cu i (Gu j ) `	 (4.15)

where h is the specific enthalpy. These expressions for pij ' anJ Qi

j
are the axact versions of those ap pearing in the textbooks -.: turbulence. 10,11

Note that the Reynolds stress includes triple correlation terms and that

!	 the turbulent heat transfer includes terms up to quadruple ccrrelation.

It is natural, then, to ask whether the two pairs of transport relations

(4.12), (1.13), (4.14), and (4.15) are ebsentially or only seemingly

different. This question is investigated in some detail in the fcllcwing

sections.
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5. RELATION BETWEEN KINETIC AND MACROSCOPIC i

FORMALISMS OF TURBULENCE EQUATIONS

-5.1 Comparison of the Two Formalisms
F

The system of equations derived above, viz., equations (4.3)	 through

(4.5)	 supplemented by	 ',4.12)	 and	 (4.13),	 is.shown	 to have an intuitive

interpretation in terms of A priori gasdynamic equations whose dependent
Lvariables are the

0	 0	 0	 0	 o
Klimontovich variables, P , u j ( = m j /P), p, defined in

-

previous sections by {f . o

o	 Vim•
L0 -	 + X^ = 0 (5.1)

J

L.	 = 0
+ Tx	 + p b.k + (p'k)NS1 = 0cat (5.2)

i

)

i.	 g
J k L	 P	 J	 J

o^	 o o 2	 00
a 1	 0 1 a 1 mkn j	 Pmk—1—__

L4 - 3t - 1 P + 2	 0 +6X 2	 oc	 + 3, - 1	 0
P k P	 P

	

+ m j (pok' NS + (Qk ) F = 0	 (5.3)
P

In the above, v is the adiabatic index and takes the value 5/3 for mona-
0	 0

tomic gases now under consideration, and (Pjk)NS and (Qk ) F are defined,
respectively, by

O°uk	 lui	 2	 Su
(P, k ) yS - -u ox. T oxk	3 ^'jk clx rr

	
(5. 4)

(Qk) FL3xk] i	 (5.5)

We shall show `hat our ki.netir turbulence equations are equivalent to the

averaqed version of egta, 4 _)n9 (5.1' through (5.3) if, in the course of
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averaging, triple or higher.-order correlations are disregarded a rd the
transport coefficients (L, and -,) which depend on the temperature are inter-

preted as material constants,and are therefore not subject to fluctuations.

No explanation is needed for the continuity equation: Simple aver-

aging of (5.1) gives (4.3). With regard to the Navier-Stokes equation,

we proceed as follows. By the turbulent Navier-Stokes :TNS) equation we

mean hereafter momentum-conservation. equation (4.4) in which p._. isi ]	 r ,.

replaced with U.e generalized Navier-Stokes relation (4.12), namely,

fot1 + ax. m—^ + 'r5, + ( p i ) NS + 1 Ri 1 ' 1)1 = 0	 (5.6)	 I1
>	 j	 t	 ,^	

k

First, we note Lhat the limitation as to the equivalence of (5.6) and (5.2)

is not existent when the flow is incompressible (p = p: a material 	 +

constant), in which case averaged equation (5.2) leads exactly to equation

(5.6) in view of relation (3.14) with Qp = 0. For compressible flows,

however, the identity is reached only conditionally because of the density	 i

variation. Then a straightforwa.r6 averaging of (5.2), written in terms of	 I

M. instead of u. yields
J	 J

i.n.s, of (5.6) + O(E .^Q) = 0 	 (5. 7)	 1

where Q stands for fluctuating quantities. It is easily checked that

the terms A 2 and t,3 include a common factor ,p, so that equation (5.6)

is exactly retrieved for incompressible flow. For compressible flows,

fidentity of the two formalisms is fulfilled only within the approximation

`	 E A2 = 0

I	 (5.8)

1	 Q3
l

If, in the course of deriving (5.7), the variable u i is used instead of

m i/p, we obtain equation (4.14). Apparently the form of (.1).6) is more

convenietrt than that of (4.14) in its invariance with respect to

1 compressibility.

1
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The same method	 Pp ^-is shown to be a	 icaule to correlate the A priori

energy equation with the energy equation of the present formalism. The

1F, tter eauation, which is equation (4.5) with turbulent Navier-Stokes and

courier laws (4.12) and (4.13) incorporated, is written as

d 3  !L1	 d 
[^,7

mi S 	 1tp-+--+-p+—i (u. )
 2 	2 p J 3x 	 2	 ^	 p	 ij NS +  [ R

- 3 5. Rr lI	 + (Q j )F' + 6n Rj l ' 2) I	 0	 (J.9)
J

The former equation, with average taken and relationships (3.20) inccrpo-

rated, reads under approximation (5.8),

91

a [	
^	 n.

	

ti 1 1 p + 2p mJ + 
aa -i 2 ^- m

j mi + y 1 F mj + p	 (pij ) NS
E

+ 1 [ R (I ' l) - 
1 

S R(1'1 	 (Q•)	 +	 4	 1 R(1'2
3 i) r,r	 J F	 3(j - 1) p j

r
	 1p-+6(^

3
	1

- 5	 r
p r,r
l R(1 ,1 ) + x 	-^ R (1 ' 1) - 	R'l2)J0

;, -	 ) ^ t`	 ^cj 	 r,r	 p (5.10)

where, in deriving the equation, 	 p has been eliminated through the use

of (3.25). This equation tells us that for a monatomic rjas (y = 5/3) the

equation reduces to equation (5.9) and further, that the factor 5/6

appearing in the generalized Fourier law (9.13) is to be interpreted as

-y/3(-y - 1) to the case cohere the gas is not monatomic.

It should be remarked that equation (5.9) (and eq. 5.10 as wall) is

written in terms of the "pseudo" pressure p, so that it is nct in Perfect

conformity with the turbulent Navier-Stokes equation (5.6) that is de,Lribed

in terms of the "genuine" pressure T and has a form easier to understand

in connection with laminar cases. The parallel expression for the energy

is feasible by introducing the internal energy per unit of Volume:
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E= 3 p = 3 ,r + 1 R (l ' 1)	 (5.11)2	 2	 2F

Then equation (5.9) takes the form

i
I

c3 1	 -^ *^ +- ` f 
i^ + - 1 (E + 7) + i (p . .)	 + 1 R(l,1)l

T2	 ,,	 J	 c3x.	 2 P 	 P	 F C i3 NS	 P i ' j

J
+ (4^) F +	 R(1'2)	 = 0	 (5.12)

This expression is apparently consistent with that of (5.6) and also with

the laminar case: It c0ns.ists of physically identifiable terms provided

-^	 that we inter pret E + a as the ent:zalpy per unit of volume. This obser-

vation allows the following inter pretation for the turbulent gas. Turbu-

lent flow of an ideal gas, in its average description, can be considered

as ar equi.ve.lent imperfect gas with thermal and caloric equations of state

given by (3.26) and (5.11), respectively.

•	 5.2 Essential Difference Bet%..•een
Cie Two Fcrmalisms

As we have seen above, the kinetic and macroscopic methods have led

to the same equations of turbulence so far as the lowest order in corre-

lation terms is concerned. However, it seems to be equally important to

stress the difference between the two formalisms with regard to the appear-

ance of higher-order correlations, because this point p-oves to be the

esscntiai feature of the kinetic-theory formalism that is not to be attained

by the conventional formalism.

First of all, let us recall that the classical turbulent corrections

to transport relations (4.14) and (4.15), which are exact within their

^...	 re:;imes, include triple and quadruple .:,_,rrel^itions, respectively. These
00 0	 00 0..

have their origin in the terms . , u i u 3 and pu iu^ in the Navier-Stokes

and the energy equations, respectively. On the other hand, TNS equation

(5.6) and turbulent energy equation (5.9), both of which are consequences

of the kinetic theory, include only double correlations R( 1 ' l) and
1,7

Ri2,1) through genera]izeJ Navier-Stokes and Fourier laws (4.12) and (4.13),

respectively. It c. 7i;: be shown easily that the one-particle equations,

29
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namely, the Navier-Stokes and the energy equations of fluid mechanics,

should not include correlations higher than double correlations, in

principle. In other words, this is true independently of the multi-par-

ticle stage at which truncation is effected. To prove this, only two facts

need be remarked. First, a general property of the BBGKY hierarchy is

that each hierarchy equation concerns only two distribution functions of

consecutive hierarchies. In fact, the equation of each hierarchy has the

form

Dfn = Jfn+l	 (5.13)

I

where D and J are certain streaming and collision operators,

respectively . For n = 1, the equation reduces to equation (2.3). The

other fact which is necessary is that triple correlation -' is directly

connected with a noareducible part of the three-particle distribution

function

VIII (z ,z ,a)	 ^^ (z)	 f (z)] L f (z)	 f 
(z)JL 

f ('-)	 1 (z),

in such a manner that

,^A i^B AC' = J a(z)b(z)c(Z)}_'
III

dv R d"

therefore, nonvanishing terms of A` are directly connected with nonvan-

ishing 
VIII, 

and do not_ appear in equation (5.13) for n = 1. Thus, we

conclude, aF- a general rule, that terms of order J' do not appear in any

of the moment equations stemming from equation (2.3). Actually, formulas

(4.12) and (4.13) do not include such terms although no approximation to

rule out higher-order correlations has been effected. These retain a level

of accuracy comparable with formulas (4.14) and (3.15) of the conventional

expressions whore triple and quadruple correlations intervene in unavoidable

fashions.

The above statement does not imply, however, that formulas (4.12) and

(4.13) are not at all affected by the form of the function 	 III (;'ssumed

or solved). It does affect them implicitly through the double correlations
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R (l X and R( 1,2) whose actual forms are to be solved from equation (5.13)i,j	 i
i	 with n. = 2, where the term	 III appears on the riaht-hand aide of the

equation.

6. CLOSURE EQUATIONS

6.1 Comparison with Conventional Closure

M. Rubesin 12 first pointed out the close similarity betareen the system

of equations (5.6) and (5.12) and a system involvin c.r mass averaging.
13

Mass averaging is an artifice which formally eliminates density fluctuations

	

t _	 from the momentum and the energy equations, thereby enabling application

	

I +	 of the modeling conventionally used in incompressible turbulent flows. In! L
the present formalism an equivalent artifice is forbidden by the structure

	

((^	 of the theory. Here, all the fluctuation terms appearing in the one-par-

	

^l^	 tick system emerge from a single function 	 as coefficients of its

expansion, and the governing equation fcr u is al_cady at hand (eq. 2.10)'.

Therefore, invoking a special kind of averaging instead of the straight-

forward one we have employed would make equations (3.25) and (3.14) over-

determined. For the same reason, it would be redundant to introduce

	

L=	 special heuristic arguments con--erning the Reynolds stress F: (1 '1 ) of
1 ^J

f	 (4.12) and the turbulent heat flux F- (1 ' 2) of (4.13), such as, for example,
i

the mixing length concept and a turbulent Prandti. number of Unity. The

evolution of these quantities hinges totally upon solution of the partial

differential equations in (x,.^,t) space derived from kinetic equation

(2.10) by the moment expansion.

In the case of incompressible flow, these equations have been worked

out in reference 4. There, the equations arc.. shown to be separable into

two groups of variables (x,t) and (fi,t), and thereafter reducible to two

Orr-Sommerfeld equations with different physical implications. The gene-

ralization now at issue is two - fo13; inclusion of compressibility which

allows for a nonvanishing R (J ' 0) and inclusion of thermal-fluctuat.i.on

effects which give rise to inhomogeneous terms in the correlation equations.

The two-particle roment equations including these generalizations are

developed in what follows.



? y

't

it

i

'	 6.2 Two-Particle Moment Equations

i

	

	
t, general expression for the moment equations of equation (2.10) has

been derived by the authors (eq. (65) of ref. 1). The kinetic equation,

after being multiplied by a moment function a(z)^3(z) and integrated with

respect to 7 and "v, is written in the form

a	 C^	 -
tj' + 3X^Pcck , + 

^X CoeE K 	eDt + (?Dt 4	 c-kJ— fi 1
j	 k	 k	 X};

?P>> vv \\\. ^	 . >V^

<<[[ ^Tja f 
(Z) V(Z,z') tt ^^ = 6 - x G

	 (6.1)

with

+ [ (Z) 
+(Z)] [

[ U(z)JJ } fII(Z
,z>

VV

(6.2)

where the following abbreviations are employea:

CZ^ v -fz .^v,	 CCZ»Ivv = 1 Z dK(zz)dv dv,

(6.3)

Z _ ^z	 `) (mk/P) Z	 6 (mk/F) Z	 D _ 3nik
At	 t + ^xk	 + (^Rk	Dt - A + I, ix 

It may be relevant to point out here that term G on the right-hand side

of equation (6.1) gives the effects clue to thermal agitations Gnd that the
term is nonvanishing unless the product	 is a summational invariant as
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well as rx and P themselves. For example, the two-point fluid-dynamic

equation describing momentum-momentum correlation is subject to an inhomo-

genaous term ascribed to thermal agitations. These situations are actually

the case in the following set of equations which exhausts the whole range

of possib_ choices of a and 0 when both are summational invariants;

'OR (0,0)	 @R 
(1,0)
	 aR(0'r)

tJt	 +	 ax	 +	 = 0	 (6.4)r	 ax r

R (1,0)	 ar(2,0)
i + a	 1,1(2,0) 

+ c2R(0'0)	 +	 is	 + 
a	 (1.1)

^t
	 axi [ 3	 ax	 ax 

R 1
' ss s

	+ R (1,0)mi + R (0 ' 0) D m1 = 0	 (6.5)s _5 
s
x _

P)
	 Dt p

4DR(1,1)
i,R + a	 1R(2,1) + c2R (0,1)	 + a r (2,1) + a	 1 R(1,2)

Jet	 ax [ 3	 Q	 £	 ax 	 is, t	 ax [3 i

+ c2R(1/0)J + 

a r (1 ' 2) + R(1'1) 
a 

Rp

	 + R (111) a	
mQ

i J	 ax	 i,SZ
	 r,Q ax

	
)	 i,r ax

s	 r p

+ (0,I) D
	

m l	
+ R(1'0) D m9
	

(6.6)= GB d(x - x)p(p. )
t Dt (—P 	 i	 Dt	 it NSP

(210)	 (0 0) ^Q
,DR	 + a	

Ir
(3,0) + 5c2R(110)1 + a R (2,1) — 2R	 s

^t	 axs 	 s	 s	 JJ	 axs	 s	 p	 axs

+	 + 2r dts R (2,0) + r (2,0) 
-

R(0,0)	
J	

a	 ms + 2R (1,0) p D mr
3	 is	 p	 pts axt p	 r	 Dt p

- 3c2 
ax 

R ( r' 0) = 0	 (6.7)

r
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.^R(2,1)
i a (3, 1)	 2	 (1,1)^	 a (22)	 (20)1	 ,	 2	 ,R	 +	 R^t	+ ax [r s,i	 + 5c R s,i	 +L	 ax.

c
[3	 ]J

I

i

i

2R(2,1)	 a
Qr

R (0 ' l)	 mi	 a+	 a	 r (2 ' 2)
is

—	 i	 + 2
p	 ax 

P,(2,1)

rs,i

_
p	 • prs

s
axr 	p

ax
s

••	 I
I
I

+	 2R (1 ' 1j
r,i

D
Dt

mr	
— 3c2	 a	 R (1,1)	 +

p	 ax 	 r,i
R(2,1)	 a	 mi

r Pax-^ •^ r

i
I + R (2,0)	 D	 mi	 — _8B	 d (x — x)	 p (Q•)	 (6.8)

i FI Dt	 p

-DR (2,2)
+ a r 2)	 2	 (1,2)1	 a	 rr	 +5c Rs (2,3)	 2	 (2,1)l+ScR

^t axs
j J+ ax	 Lr s	

sJs

R (2,2) aQs _ R (2,2)	 aQs +	 dst R (2,2) + r(2,2)
p axs p	 ax 3 st ,

s

R(0,2)

]

a	
ms	

+ 2[ 6st R (2,2)
)

+	 r(2'2)
p pst axstP 	 3 ,st

(2,0)
R

prs]

s	

+ 2R(1'2), D	
c^rAnl

(2,1)	 D+ 2R	 mr
p r	 Dt	 p r Dt	 p

p r

—	 3c 2	 a (1,2)R
^2	 a	 (2, 1)	 =	 —4B— 3c	 a	 R d(x	 —	 x) 3R (2 ' 2)	 (6.9)

1
P

ax
r

r r
3x 

with

R(J,K) = R (J,K) (x,x)	 (6.10)
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#	 In the above equations we have also employed the following expres;'_ons:

!	 (2, K)	 (2,K) _ 1	 (2,K)	
(6.11)

I	 Tij,	 R	
R

ij,	
3 d1J

r(3,IC) = R(3,K)	 (6.12)

where the moment a4 (K) corresponding to the second variable is a summa-

tional invariant. Equations (6.4) through (6.9) are reg3-ded as the evo-

lution equations for correlations R (J ' K) between summat.i-onal invariants.

`	 As the actual expressions show, these are not closed by tl^=mselves, but

include correlation terms involving the is associated with nonsummational

invariants. In deriving terms on the right-hand side, viz., terms of ther-

mal agitations, only linear terms in R or E have been retained.

In order to have a closed set of equations we need to construct equa-

tions for the r's; that is, the fluctuation correlations between the stress

tensor/heat flux vector and summational invariants. To extract the essen-

tial feature of equations governing the r's, are inductive approach seems

to be more palatable than a deductive one. For this purpose we derive

equations governing two correlations of (4.11) and (4.12) for K = 0:

(2,0)	 r
^R^t	 + ax	 i(js 0) 	 6	 r(3,0) + C 2r" ( 1' 0) ' . + R(^,0) 6.

s	 L

- 2 6..R (1,0)	 a	 (2,1)f s (0,0)	 1	 (2,0)lf	 a	 mi

	

3 iJ s	 +	 rij,s + I c R	 + 3 R	 J L ax.
ax 	 l	 J p

D (r'^_ _	 a _(Msj+ i (2,0) a mj + r (2,0) 2 mi
t ax. p	 ° d ij	 )ax	 p	 is	 -ax	 p	 Js	 ax	 p

lJ	 si	 s	 s

- 2 d. r (2,0) a mt + R (1,0) D mj	 R(1,0)41DIMi

	

3 i.j st	 ax 	 p Dt j 	p
(Continued on next page)
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(6.13)

(Concluded)

- 2 6. R (1,0) D M+ 613 R (0,0)	 + r(2,0)J

	

3 ij s	 Dt \ —Pp)  m [	 1'ij	 p lj

_ -6B 6(x - x) Ippi + r' 	 - R(iJ + 1	
3R(1'1)

J

	

 j	 j	 3 d i	 s,s

JDr(3,0)	
r	 1

i	 +	 a	

L7c2R(2,0) +
	 (2'0)6. I +	 a	 r(3,1)

^t	 axs L	 ^s	 ^sj	 3X	 i,s
s " I

+ 2c 2 R (110)a ml l + a ms - 2 6	 a (mt

J 
iF r (3,0) a msl

	

s dx	 i
	i

p^	 ax	 p	 3	 s ax `p)	 s	 ax.	 p
	s 	 t	 s

+ 2r.(3,0)	
nls/ + C

R (2,0) d. + 2R(2'0)
J

 D 

Cmŝist,	 axt p	 is	 is	 Dt p

- 10 R (l ' 0) (	 a 
^P)
m+ aQs

J
+ 5c 2 R

(0,0) ace-5c2 a R(2,0)
3p	 i	 pst axs 	axs	 ax 	 ax 	 is

+ 4m 
L
pr ( i'0 ) + 2R (0 ' 0) gl + R ( s ,0) p is] 

_ -4B 6(x-x) C2PQiR(i'0)

- 2R (2 ' 1) 
+ R(2,1)J	

(6.14)
i	 is's

These equations are simplified by imposing an order-cf-magnitude estimate

r - O(R ` ,RE)	 (6.15)

which will be proved A posteriori. In fact, retaining only terms of

O(1,R/C) and leading terms of delta function in the equations, we have
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- R ( ^ 1) + 3 d ij >^ ( S^s )	
t

- 	 m d(
►
x - x) (pij'NS (6.16)

N. Mi
I

R i
(1,0)	 cl,o>	 (l,o)

	

(2 ' 0) —	 0	 +	
a R J	

— 2 d..	
a R S

rij	 - -u ax j	p	 ax 	 p	 3 iJ axs	P

R(010)	 R(2.0)	 m	 t

	

P
	 pij	 (pij)NS +	 3p	 (pij)NS - R d (x - x) RPiJ

r^

	

(2,0)\ 	 (0,0)
(3,0) 	 a 	

3 (SLP 	 1	 2R	 Q	 (4•)_,
1	 (3/2)Rc2 ax 
	 /	 p	 1	 l r

R(1,0)

+	
P	 3 (P is ) idS	 pis	 P d (x - x) (2PQi (6.17)

These are the two-particle versions of the Navier-Stokes and the Fourier

laws generalized to include effects due to thermal agitations. These

results also assure that postulate (6.15) actually holds. it should be

remarked, however, that not all terms in equations (6.16) and (6.17) are

equally important. For example, when (6.16) is substituted for r..	 in
ID

equation (6.5), all the terms except the first on the right.-hand side of

(6.16) find respective tecros that are larger by the factor O(J ') or

O(R -1 ). On the other hand, there are no terms to compare with regard to

the first term of (6.16), therefore, this term alone should be retained.

This is also the case with euuli t ion (6.17), as well, as with the expressions

for general rî' K) and r (
i' h) . having carried out the simplification,

we are led to the following equations;

R 
i

(1 ,K)	 R
(2 K)	

,	 R(1 ,K

,	 _	 o 	 J
(1 

	 (6.18)
rij	 ?x.	 P	

+ Uxi	 r 

K)	

3 8 ij Jxs \

J

r(3,K) _ -	
C^ 

E^(2,K)\1	 (6.19)
1	 ( 3/2) Rc2 ')X i \	 J
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The connection of these expressions with the Navier-Stokes and tle Fourier

laws of transport process should be self-explanatory.

6.3 Interaction Equations

Equations (6.18) and (6.19) express fluid-dynamic correlations between

nor summational quantities in terms of those between summational invariants;

therefore, together with equations (6.4) through (6.9), they form a closed

set. For incompressible flows (r, 

FR 

materia: constant), terms including

the density fluctuation, disappear LR (J ' 0) = G]	 and the system reduc--s to

+	 a closed set of equations (6.5`, (6.5), and (6.8) for K = 1. Eliminating

r (1 ' 2) from the latter equations, we have equations gove,-ning the inter-

act4.on of turbulence with thermal agitations in incompressible flows;

jR(1'1)
— 1-'1— = U	 (6.20)

6xi

I

- VW +	 )	 R (1 ' l) +Jul R (l ' 1) -+- - ,I R(1'1)C.^t	 ]	 i,^	 -Jx,	 k,	 ox-,	 i,k

(2 1)4- 1	 d R ,	 + X R (1,2)	 __ P 1 u(x - x) (p. ;)	 {6.21)3 [Jx.	 i	 %, n	 ii NS

where u 	 is the mean velocity and is identified with 	 iai in this

situation. Equations (6.20) and (6.21) differ from the correlation equa-

tions of the previous theory  by the presence of the term with the delta

function on the right-hand side of (6.21) This term, lacking in the BB(--KY

formalism, provides the only mechanism for generating correla%ion in a

perfectly quiescent shear flow. Also, this terra, which is ascribed to the

effect of thermal agitations, is seen to be very small because of the

presence of the factor n , which is of 0(10	 j under normal Lemperature

and pressure condition. 	 Under realistic conditions, therefore, this effect

in initiating turbulence is masked by other macroscopic mechanisms, Such

as noise or free-stream turbulence. Taking the thermal motion into account

makes sense only in evaluating the maximum transition i._ynolds number :.n a
shear flow. This evaluation has been attempted for the BLasius flow only

qualitatively in reference 4, because the form cf thermal agitation effects

j
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not nnown at that stage. In this regard, e quations (G.6) and ((,_B)

of particular interest. These equations governing R(1,l){*:,:^) and
i2)	 ,a

y (x,%) which reduce for x = x to the Reynolds stress and the turbu-

lent hoat flux, respectively, quantitatively describe their nature as

mechanisms driving the shear stress and the heat flow at the m:jlecular level.

in principle, these equations allow, us to determine evolution of the

Reynolds stress and the turbulent neat transfer beginning with fluctuations

at the molecular 1°ve1 and ending witn fully developed turbulence.

7. MACROSCOPIC DERIVATION Or
CORRELATION EQU;^TIONS

A we have shown in Section 5, the one-particle equations for a com-

uress^ble	 fl,Dw which :ere originally derived on the basis of

kinetic theo rv, ccuuld be derived also from the phenomenological equations

of Huid dynamics. Th:?refore, it might well be expected that our two-point

equations, viz., equations (6.4) through (6.9) , (6.8) , and (6.19) , should

similarly be .interpreted in terms of fluid-dynamic equations (5.1) through
0 0	 0

(5.3) governing "'Lluctuating" quantities f, u, and p. we note that these

equations are c deed as deterministic only in the sense that they have

as many differen solutions as number of different choices of the initial

values I`x(s),v(s)I , (s: 	 1,..,N) at the molecular level. Therefore it

would be more realistic to categorize the equations as stochastic because

specifying 6N initial values is not practicable. Then, transition to the

deterministic scheme of gasdynamics is effected through averaging ac various

hierarchy levels, the lowest of which has led to the one-particle equations

(5.6) and (5.9). I_n order to construct the two-particle hierarch; out of

the stochastic fluid-dynamic e quations we proceed as follo^Ns: let all the

fluid-dynamic correlations be decomposed in the form

R(J,K)^m..
	 jqi.J) (x,')q(m) (x,A)d
	 (;.l)

7	 ^	 J

This expresFion being substituted in equation (6.6) we have, except for the

terms of thermal agitations,
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D^(1)
r	 (1)I da	 q.

1

qP. d+ 1	 (')	 2	 {0)1	 (2)q	 + c q	 ^1	 -- q
^3Dt CII axs	 s^

1

'	 (1)
+

m£\
1`

(0)
+

D	 mQ\^
1	 +	 (terms with	 x +—► x^qs 	 ^

ax
q Dt	 I

sJ P/ p^J

1
and i — Q	 interchanged) ^ = 0	 (7 .2 )

r J

First we note, in view of equations (7.1),	 (3.2)	 and	 (1.15),	 that

q 
i 
j .
j

(X'-) =fci 9(J)ij	 .

we have,	 then,	 from (3.12),

q(0)	
=

1'^

ci (l)

I
^mi -	 jmi	 Ail	 (7.4)

13q (2)

with these linear relations for fluctuations, equation	 (7.2)	 is -rit*_en in

an equivalent form

J,
(-/ (1)L +
	 (1 ) L.! d	 = C'	 (7.5)qi	 k	 q i	 i)

where L. has been defined by (5.2). By a imilar procedure we can show

that the whole system of correlation equation., (6.4) through (6.9) is simply
equivalent to
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7 1

Ii	 Sw3 = fwL_ + w^ Lu = 0	 (a,6; 0 tnrough	 ,)	 (7.6)

i	 with

Awo = op

_^w i = Ami -	 lmi AP	 7.7)
t

Aw = _ gyp - c` A

A set of equations L = 0 and S	 = 0, consisting of 3 and 15 indepen-
i	 t	 a

dent equations, respectively, forms a complete set to determine 20 unknowns,

namely, F. M  or wi , p, and the lotiest 15 components of the tensor R(J'K).
f

For incompressible flows the equations with component t = 4 (the energy

equation.) are deleted. On she other hand, ^ ( = cor.st.) and R 	 ( = 0)
i

are not considered as dependent variables; accordingly we have -r + 10

unknowns and the same number of eauations. 4 If ; further, the flow is homo-

geneous and isotropic, the -f irst set or equations turns out to be trivial,

whereas the second set is equivalent to the Karman-Howarth equation

describing the final stages of decay, 14
i

Summarizing, the closure problem of the c,)mpressible, shear turbulence

f	
equations reduces, under the assumption of ternary molecular chaos, to

solving equations (7.6 .1 in conjunction with (4.3) through (4.5) supplemented

by (4.12) and (4.13). These two systems are coupled through only t^No

variables R i1 ' 1j and R ( ^' 2) which intervene in the latter groups of
j ,k

equations. Despite their seeming complexity, th_ closure equations may be

solved by the method of separation of variables in (Y,t) and (t,t) as is

inferred from their rearranged form (7.6). The practicability of this

method haE been ensured in the case of incompressible flows.'
1
 Obtaining

solutions, however, is beyond the scope of the present report.

Nielstn Engineering & Research, Inc.

i
Mountain View, California

Fcbruary 1.976
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