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i - FOREWORD

Part of the work presented in this report is the result of a com-

bined effort between E. K. Storms and S. R. Skaggs at Los Alamos

fScientific Laboratories and Arizona State University. Carbide sample

{
fabrication and mass spectrometry has been done at Los Alamos.
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2 - SUMMARY

The work function determinations of candidate materials for low

temperature ( 1400°K) thermionics through vacuum emission tests are

discussed. Two systerQ, a vacuum emission test veh'.cle and a therm-
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ionic emission microscope are being used for emission measurements.

Some nickel and cobalt based super alloys have been preliminarily

examined.

High temperature physical properties and corrosion behavior of

some super alloy candidates are presented. The corrosion behavior of

sodium is of particular interest since topping cycles might use sodium

heat t ransfer loops.

A Marchuk tube is being designed for plasma discharge studies with

the car)ide and possibly some super alloy samples. Cesium, inert gas

and combinations are planned for the discharge studies.

A series of metal carbides and other alloys are being fabricated

and tested in a special high temperature mass spectrometer. This infor-

mation coupled with work function determinations is being evaluated in

an attempt tc learn how electron bonding occurs in transition alloys.

The results should be directly applicable to tailoring work functions of

thermionic electrodes.
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3 - HARDWARE DEVELOPMEW AND INSTRUMENTATION

3.1 Vacuum Emission Vehicle - The vacuum emission vehicle developed for

taking measurements during this program consists of absorption roughing

pumps, titanium sublimation intermediate pumping and 140 1/per sec noble

gas vac-ion pumping. Samples are heated by electron bombardment from a

high temperature counter-wound tungsten filament. Sample temperatures

are measured with a micro-optical pyrometer, viewing a 10 to 1 depth to

diameter hohlraum. The electron collector is of a plane 1/2 inch diameter

radiation cooled molybdenum electrode. A large molybdenum guard ring is

concentric with the collector, with a 10 mil spacing.

The vacuum system currently consists of a 12 inch diameter, 18 inch

high pyrex tube, which has viton gaskets for sealing at each end. Pres-

sures obtainable with this system have been consistently in the 10 -6 to

10-7 torr range. Pressures in this range have been found to be unaccept-

ably high when measuring the emission from super alloy samples. The

s	 current densities from the super alloy samples at the low temperatures in

the range from 1000°K to 1200°K have been found to be quite low, and pres-

sures in the 10 -7 to 10-6 torr range appeared to be interferrinn •,.;cn the

electrical measurements. In order to obtain pressures in the range of

10-10 Corr which we feel are essential fur emission measurements in the

low temperature range, a custom bell jar has been designed and ordered

from Varian. The bell jar is stainless steel with a 12 inch female wheeler

flange and ,;lamps which mate to the top of the existing vacuum system.

The bell jar is fitted with a sapphire window for hohlraum viewing and a

6	 rotary feed through will supply a shield to cover the sapphire window

+r^
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when readings are not being made.	 A second la rge 4 inch view port will9	 9	 9	 p ,

also be put on the bell 	 jar for viewing the inside of the system. 	 The
s

bell	 jar is due for delivery in 3 to 4 weeks.

Two vacuum emission gantries are available for a sample test.	 The

system currently being used which was shown in Figure 1 	 diss i pates heat

i

from the collector and guard ring by radiative fins. 	 One drawback with

the use of this system is that the spacing between the emitter and the

collector must be determined by first setting it at some specified value

and then determining the spacing at temperature by calculation of the

growth of various parts of the sample holder by knowledge of the temper-

ature coefficient of expansion. 	 The inter-electrode spacing information

is	 required if one is to plot the log of the current density vs. 	 the root

of the field.	 This must be done if comparisons with theoretical 	 curves

are to be used.	 The work function can be determined accurately by plot-

ting the leg of the current density vs. 	 the root of the applied voltage.

A second method of coo l ing the collector and guard ring assembly is

by active cooling with transfors; ,^r oil.	 It was	 necessary to	 install

stainless steel	 bellows between the vacuum geed throughs and the collector

r
and the guard ring.	 The stainles.; steel	 bellows were braised	 to copper

8

tubes and the system eventually developed leaks.	 It was determined that

the leaks were the result of galvanic corrosion.	 The stainless steel

S bellows have been eliminated	 in favor of copper and the leak problem has

been eliminated.

• s

When it is desirable to know the inter-electrode spacing at tempera-

=	 ture, the second system is desirable since it also has a mechanical

I
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calibrated linear motion feed through. The feed through drives the

emitter while the collector and guard ring are field in a fixed position.

The inter-electrode spacing at temperature can be determined by first

shorting the emitter to the collector and then driving the emitter away
.J

from the collector some distance which can be accurately determined

from the calibrated linear motion feed through. The emitter does not

actually have to touch the collector to establish the shorted condition.

To prevent the collector surface from touching the sample, a shimstock

of known thickness is braised to the guard ring and this is where contact

takes place.

A polycrystalline molybdenum sample which has a documented work

function of 4.48 electron volts at about 1189°K has been used as a stan-

dard sample in order to check out our system electronics. (Refs. 1, 2)

Figure 2 shows two Schottky plots for the standard polycrystalline

-ample being used in the vacuum emission vehicle. The work function. at

}	 a variety of temperatures h,..s previously been reported in the literature.

(Ref. 1) The sample was vacuum heated at 2323°K for over 16 hours to

provide for grain growth and to stabilize the structure. The results

I	 shown in Figure 2 confirm the operation of the present emission system

through the comparison with previous measurements on another system.

Problems that have arisen in attempts to measure accurately the

}	 emission from super alloys has been, first of all, that the evaporation

rates are too high at reasonable temperatures, 1200°K to 1400°K and that

at lower temperatures the current levels are so low that the measurements

^,	 are being made very nearly in the noise levels of the electronic system.
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It ha; also been determines; that the pressures obtainable with the viton

^j
gasket bell jar, pressures on the order of 10 -6 torr, are too high and

appear to be interferring with the electrical measurements when the

currents are in the i0 -8 to 10 -9 amp range.

A problem which has been encountered in the radiativeiy cooled

collector-guard ring system is that the collector and guard ring short

due to thermal distortions in the system. There is a 10 mil gap between

the emitter and collector and unless the system is perfectly aligned at

high temperatures, shorting occurs between the collector and guard ring.

The Elimination of the shorting problem is primarily one of repeated

tedious re-alignment and re-heating of the system to obtain the stable

position. A one-half inch thick, high purity alumina ring has been

inserted between the top of the guard ring and the top portion of the

collector in order to obtain a region of contact between the two. This

has eased the alignment problem without reducing our ability to null

current flow between collector and guard ring.

3.2 Thermionic Emission Microscope - A thermionic emission microscope

will be utilized when appropriate to determine the fine structure of

surfaces. The work function of individual grains within the sample can

be determined with the microscope. The system is completely bakable

and maintains the pressure at 10 -9 to 10 -10 torr. Emission micrographs

of surfaces in situate temperature are obtained from a phosphorus screen

at the end of the microscope. Qualitative measurements of emission from

which work functions can be calculated are also available through a

faraday cage.
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The electrical feed through from the p ,,wer supply to the vac-ion

pump for the microscope has become inoperable because of electrochemical

corrosion. Part of the feed through has been obtained and the system

will be made operable again when a connector is received from Varian.
M

The system should be operable again within 2 to 3 weeks.

3.3 Los Alamos Facilities - The experimental facilities available at

Los Alamos Scientific Laboratories include the ca pability for the pre-

!	 partition of pure materials having the proper c r. ,1positions. Character-

ization of these materials before and after eva!uttion is available

using chemical and neutronic division analysis by x-ray and neutron

defraction, by scanning electron microscope, and by metallographic exam-

ination. A unique mass spectrometer is located at LASL which permits the

j

	

	 measurement of vapor pressure and diffusion rates over a very wide range
v'

of temreratures.

^ ::
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4 - SUPER ALLOY EVALUATION

(A bibliography for this section appears at the end of the References.)

The goal of this part of the program has been to measure the emission

from a number of nickel and cobalt based super alloys to determine the

effective work function of these alloys through measurements in the vacuum

emission test vehicle and thermionic emission microscope. The compositions

of a number of candidates plus a few other alloys are given in Taole 1.

4.1 Mass Spectrometer Evaporation Measurements.

Two problems have been encountered in making vacuum emission measure-

ments. The first involves the very high vaporization rates of some of the

elements of which the alloys fabricated. The second involves the very low

current densities which are obtainable from these materials in the temper-

ature range of interest, 1000°K to 1400°K. The vaporization problem has

been identified and discussed by Mr. dim Morris at Lewis Research Center

at the National Thermionics Meetings and also in informal discussions.

The experience in this laboratory is that above 1200°K, very heavy depos-

its of evaporated material have been found on the collector and guard

ring. A few selected super alloys have been sent to LASL for examination

in the mass spectrometer. In this examination the samples will be held

at the ooerational temperature while an evaluation is made by mass spec-

trometry of the elements which are being evaporated and the rate at which

they are being evaperated. Incoloy 800, Hastelloy X, Haynes 25, Inconel

617 and other alloys will be examined in this manner.

The Incoloy 800 has been evaluated in the mass spectrometer. Vapor

species bEtween mass 24 and 80 were measured. In this range, Cr, Mu, Fe,



WH J

1	

C
T

' r

I

NV1-NtizLtd
HUVZ0NOCVQZOWONWQOh—UWJW_U2Or
-
+

E
—

OWr0WOF-NNOJJQL
L
-

v
i
O2fOc
_
•

a1
rAbF^-

1
1

CIS
7

^ L1•-
^
 N

L
.J

r
U

IC
^C

1 0
 

C
J
 =

41
2

H
F

-
H

- Y
L

n
 O

1
1

O
1

1
Ln

1
1

I
M

1
-
'
 
1

+
1

I
I

p
1

L
n

i
N

1
1

I
Q

O
C

D
 L

n
-0

1
!

O
 O

1

0
0

0
co

co
rn

 0
 o

p
 a

Q
J

N
L

n
L

IT
C

O
L

n

l0
r

In
117

co
K

r
I

CO
I

I
I

1
1

^
L1)

^
r

r
rte•

r
l,0

tLT

M
O

O
^

L
n

L
I

1
1

I
t

1
1

I
I

I
I

I
N

I
I

1
I

I
I

1
1

1
1

^
^

p
^

1
I

O
O

O
N

!
1

I
1

p
1

I
I

I
O

O
O

O
I

1
1

m
!

!
I

I
I

!
1

I
1

1
I

O
O

n
O

O

co
L
n

r
N

1
1

1
I

M
O

C
L

n
O

O
Kr

N
1

1

CD
r

Q
r

l0
la

LL7
LD

O
•r

M
l0

I
1

1
1

1
I

Q
1
r

1
I

Q
1

I
1

a•Q
^

I
I

I
1

I
I

I
1

I
I

I
O

N
O

M
'-

C
I

•^
^

I
1

I
1

I
I

1
1

Q
t

N
In

lfT
1

I
I

{
J

(
,

I
1

I
I

I
I

1
!

I
I

1
1

L
n

N
r

O
NOC

L
co

L
n

O
O

CO
LIT

E
I

I
!

I
I

I
1

!
O

3
1

I
C

'
M

O
O

1
1

1
1

r?'
Ln

C
O

1
1

r
oC

N
O

Ln
O

O
O

O
O

Ln
G

i
M

1
l0

L,Q
Is

1
C

n
M

p
C

(NJ
I

I
N

C
i

r
•

r
-

•--
Z

I
n

N
^

L
n

O
I
n

O
1

^
!

1
1

I
I

1
U

I
QN

bCO
C

V
O

N
1

Nr
I

^•
!

LO
!^

1
I

I

Ln
LD

b
^

L
n

L
n

O
Cr+

M
rt

Q
'

LD
!^

Z
N

C
O

N
d

t
L

n
O

c
J•

N
L

n
O

'-
C•'•1

O
N

M
M

N
Ln

LO
d

LO
Ln

L
n

LIT
110

LD
to

L
n
 
O
 
O
	

O
 
L
D
	

O

U
	

CO	
N
	

Ln	
1

'•T
 N

 C
4
	

"J L
D

 L
D
	

1	
CTS	

t^
N

 
r
 

N
	

N
 N

 N
 r

 r

O
	

L
n
	

O
L

n
 O
	

1	
O
	

O
	

O
 
N

 
I
 
M

 
1

 
I
 
I
 
1
	

I	
O
	

Q
N
	

!	
I	

I	
I	

I	
1	

I
C
D
 
r
	

r
	

O
	

O

C
 
^
 
c
o
	

1	
p
	

C
^ 	

O
 L

n
 I

 
C

"
,
 
1
	

I	
I	

1	
I	

p
	

p

O
 O
	

O
 
r
 
O

 
O
	

N
	

N

L
n
 
L
n

'
r
 
M
	

C
0
	

c
c
	

c
o
	

L
n
 
L
n
 
!
^
 
I
 
^
 
N
 
N
 
r

n
	

n
	

c
o
	

c
o

^
..^

 O
 O

a
 O

 O
	

O
 C

 0
 0
	

O
	

O
O

 O
 O

 O
 O

 O
 O

 O
 O

 O
 O

 O
 O
	

O
 O
	

O

N
^

U
Z

X

y
I

O
^,

O 11
^
•,

^
,

^
,

^
r
`

O
O

O
r
 
v

O
O

O
O

^^
D

c
o
,^

^ In
O

•—
O

O
^

Q
LnM

L
n
M

aj
v
i

u
u

C
C

CO
CO

>
N

C
 W

C
 C

J
O
	

O
L

C CO
A.)

O
O

O
d

^
 
y

y
U

I`
>

-, r
N

N
N

U
U

U
C

N
N

3
N

M
 u

"J +
-'

cu
ro

ro
It

mn
_

C
w

Q
C

z
G

++ cn
y+ N

G
---

^
S

—
_

^
.

^
.

^
z

F
-

r-
1--

3
N

N



!f^

1	

12

Ni and Cu were found to be present in the vapor. The composition of

Incoloy 800 is given in Table 1. C, Si, Ti, and Al have mass numbers
r 1

less than 24. Cu appears, apparently as an impurity. The percent of

i
,total pressure after various heating times is given at two interpolated

temperatures in Table 2. Measurements were made between 1300°K and

15470K.

Table 2. Mass Spectrometer Determination of Vapor

Composition of Incoloy 800.

Vapor Composition: % of total pressure

Initial

T°K	 Cr	 Mn	 Fe	 Ni

1200	 45	 45	 9	 -

1500	 56	 15	 2R	 -

Heated at ti 1525K for 144m

1300	 48	 31	 21	 -

1500	 45	 9	 45	 + trace Ni and Cu

Heated > 1600K for 35 h

1300	 54	 18	 25	 3

•	 1500	 50	 7	 36	 7

Evaporation at high temperatures tends to produce a surface which is richer

in Ni and poorer in Mn than the bulk mat9rial. Also the surface will be-

come richer in Fe compared to Cr. The total pressure decreases as
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evaporation proceeds. The amount of Ni being lost is lower than would be

expected relative to pure element vapor pressure charts. The Ni appears

to be bound tight in the lattice, possible partly with Al and one of the

other lighter elements. Further analyses on the other mentioned alloys

will continue in order to try to obtain more complete trends.

The spectrometer was calibrated with Fe and the resulting activities

are plotted in Figures 3 and 4. The behavior of Fe can be treated, but

the absolute activities of Mn, Cr and Ni are less certain, although the

temperature variations should be accurate. Apparently, the activity of

Fe is unity below 1430°K and drops rapidly above this temperature.

Since other components behave in a similar way, compound formation may

occur at a higher temperature, or a strongly enhanced mutual soluability

may exist.

4.'. High Temperature Properties of Some Super Alloy and Other Alloys

Thermion i c to pping of iarge power installations such as a conventional

stear. power plant will probably require the use of relatively low cost

materials. With this in mind super alloys and relatively low cost carbides

and borides are being evaluated for electrode applications. The vapor

pressu re problem was discussed in the last section. The high temperature

(1400°K) predicted for such applications also demands that the strength

and corrosion characteristics of the electrodes be suitable for long life.

A number of strength characteristics are examined in the next subsection,

4.2.1. The electrodes will probably be exposed to alkali metals, cesium

on the conve r tes side, and possibly a heat transfer medium such as sodium

on the opposite side. For economy and manufacturing convenience, it

.I=
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T,K

Figure 3. Activity v.s. Temperature for Incoloy 800 after 35
hours at 1600°K.
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Figure 4. Activity v.s. Temperature for Incoloy 800 after 35

hours at 1600°K.
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^j
	 would be desirable to have a single material for the heat transfer medium

and for the emitter. This would also be true on the collector side. In

subsection 4.2.2 the compatibility of the selected alloys will be evalu-

ated, primarily with sodium. Extensive literature is available regarding

s
the compatibility of sodium with some materials, primarily austenitic

stainless steels. These results have been obtained for the Liquid Metal

Fast Bruder Reactor programs. Stainless steels have been tentatively

0
selected for the heat transfer loops with sodium, but because of the

limited strength at predicted high temperature applications, super alloys

I
f	 are now being promoted and entered into the strength and corrosionS

experiments being conducted in a number of laboratories.

4.2.1 High Temperature Mechanical Properties

I	 Tables 3 and 4 list a number of mechanical properties for the alloys,

at 1000°K in Table 3 and 4 at 1400°K in Table 4 except where data at other

temperatures is specifically noted. Comparisons are difficult in many

cases because the conditions of data acquisition are not exact. Relative

values of strength can be seen in many cases through. Rene 41, the TAZ,

TRW, WAZ and Refractalloy 26 alloys have superior high temperature mechan-

ical properties. Some considerations such as the fabrication techniques

applicable to these materials is important for practical applications.

TAZ, WAZ and TRW alloys contain a reasonable percentage of tungsten, and

are formed by arc milt  castings. These materials along with Haynes 188

and Refractallcy 26 are difficult to machine and must be ground cr elec-

tron discharge machined in many cases. The Inconel and Hastelloy series

are more amenable to cost effective machining.

M
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The overall strength characterist 4 cs of the alloys must be matched

I
to the expectad loads in the system and designed to minimize cost. Creep

strength is very important for long term applications, and at 1400°K,

little c reep data is available for many of the materials.

4.2.2 Alkali Metal Corrosion

The alkali metal environment must be evaluated for a number of

different corrosion phenomenon,

- dissolution of containment (leaching)

- embrittlement (grain, grain boundary)

	

G:	 - mass transfer

- erosion (flow velocity dependence)

- electrochemical

	

I
	 -galvanic (dissim i lar metals)

- precipitation inducement

- stress corrosion

	

I

	
Some important parameters influencing some of the above mechanisms

are:

- maximum system temperature

	

I
	 - maximum temperature differentials

- alkali metal oxide levels (and other impurities)

- alkali metal flow velvity

- heat flux

As stated considerable information is available for some stai-Iiess

steels. A summary of some static corrosion tests in sodium is presented

in Table 5. In static systems the corrosion appears to oe limited,

t
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although the test duration of 400 hr. is not very substantial. The

sodium corrosion of austenitic stainless steel for pumped loop experi-

ments is given in Table 6. A verbal summary for 316 s.s.and for 304 s.s.

from the experiments is that they can be used up to 850°K in sodium flow,

provided that the oxygen and carbon impurity levels in the sodium are

kept low. Transfer of interstitial elements to and from sodium exposed

austenitic surfaces is possible in systems bein g considered here. When

austenitic and ferritic steels are commonly exposed to the sodium envi-

ronment migration of carbon can occur resulting in a decrease in strength

of the carbon depleted material while embrittling the carbon rich system.

In a pure 304 s.s., sodium flow system, acceptable performance appears to

be obtainable as long as the oxygen level in the sodium is maintained to

a few parts per million. 316 s.s. has characteristics similar to 304 s.s.

Table 6 provides some data from various experiments.

Table 7 provides some data from the literature for sodium corrosion

of super alloys. Except at the low temperature, 1088°K with no oT,

corrosion appears. The oxygen level was not available in these experiments

nor were the exact flow rates.

Table 8 summarizes some sodium heat pipe results from the literature.

The oxygen contents of the sodium and flow rates were again not available.

The reports indicate that in most cases, the heat p i p es did not fail. The

studies in general, do not report post test analyses to provide data on

corrosion that has taken place. Thus, it is impossible in most cases to

make any predictions for long term behavior. Since heat pipes arc impor-

tant candidates for many thermionic applications, it will be necessary

I
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Table 7. SODIUM CORROSION OF Ni and CO BASED ALLOYS

FROM LITERATURE (DATA)

(flow systems)
Y

MATERIAL	
Tmax
	 Time	 AT	 CORROSION

	°K 	 hr	 °K

Hastelloy X 1088 1000 None

Hastelloy X 1200 305 361 Hot zone attacK,	 voids

intergranular attack

Inconel 1088 1000 167 Hot zone attack, 	 2 mils

Heavy cold zone deposits

Hastelloy W 1088 1000 Ni	 deposits	 in cold zone

14
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to obtain more reliable corrosion data in order to design practical

systems for long term reliable use.

Table 9 is a summary based upon a general culmination of literature

corrosion studies and a qualitative prediction of behavior with temper-

ature, flow rate and oxygen impurities as pzrameters.

I
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5 - rARBIOE ALLOYS

A primary portion of the current work is being done in conjunction

with Los Alamos Scientific Laboratories. 	 fetal carbides, borides,

borocarbides and boronitrides have demonstrated application to very high

temperature problems. In these investigations we are attempting to de- 	 r

termine now the properties of these materials can be modified and to

what extent they can be modified. The general properties which limit

the usefulness of a high temperature material are strength, transport

properties (including the diffusion and vaporization rates), and reaction

s

rates with other materials or gases in the envi ronment. Measurements

r .:
will be made of the chemical activity and vapor pressure of the component

elements as a function of composition. A special high temperature mass

spectcometry system has been developed and tested for making these mea-

surements at Los Alamos. As special candidate electrode raterials are

fou--', property measurements will be broadened Lo include thermal conduc-

tivity, thermal expansion and thermionic emission.

The intent of this work is to find the basic relationships between

diffusioi;, --.ark function and bond energy. The materials being studied,

binary	 arnary sys	 s of the transition metal borides and carbides

will be considered for application to thermionics. The relationship

between bond energy obtained from vaporization measurements and the work

- ^
function obtained from thermionic emission will be developed. The over-

all application of these materials as ele,.trodes for ;,hermicnic energy

converters will also be dett mined.

I

1
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1

	

	 Preliminary work in Russia and Germany have shown that the class of

,i
materials to be studied have work functions which can be modified over a

wide range. This, combined with good stability at high temperatures,

opens new possibilities for the design for more efficient thermionic

diodes by combining measurements of the vaporization behavior with main-

tenance of the work function using the same samples. This provides the

unique position, not only to answer immediate practical questions, but

t	 to study the relationship oetween these basic properties.

The first sample shown in P gure 5 is a niobium carbide sample con-

taining .98 to .99 percent carbon. It was hot pressed at 2773°K in a

graphite die at 1000 psi. The sample was subsequently ground flat and

outgased in vacuum at about 1773°K. The holder shown for the sample

consists of a molybdenum base plate, a tantalum heat choke and a tanta-

lum base plate just underneath the sample disk. The tantalum base

plate will be heated by electron bombardment and the sample will then be

heated by radiation coupling to the tantalum. This sample holder was

used s pecifically so that :ample disks could be used interchangeably with

the same sample holder. ThE sample holder fits both of the existing

vacuum emission systems and also the thermionic emission micrescope.

Both vacuum emission measurements and thermionic emission measurements

in the thermionic emission mi(:roscope will be used to determine the work

	

7	 function and surface characteristics of these samples.

A series of niobium carbide, zirconium carbide and some boride alloys

are intended `or investigation during the current program. Ternary boro-

	

n	 carbides and boronitr,des will probably follow the examination of some of

the binary alloys.

a
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E - MEASUREMENT OF GASEOUS EMISSION PROPERTIES USING A MARCHUK TUBE

The electron emission properties of candidate thermionic electrode

M,	
materials will be investig-^ed in a typical Marchuk experiment. (Refs.

3 and 4.) A glass test vehicle is being designed for these tests.

Suitable emitter materials will be used as Langmuir probes in a plasma

generated by secondary electrodes.

The Marchuk technique involves a plasma immersion process whereby

materials of interest are allowed to emit thermionically into a surround-

ing plasma. Work functions may thus be measured at various plasma-gas

pressures. Typically, wire probes have been utilized, their temperatures

	

J	 being determined by pyrometry at elevated temperatures, and by tempera-

ture-resistivity correlations at low temperatures.

A tentative probe design will employ either a button-type emitter,

or a wire filament. This configuration will facilitate the use of

thermocouples for precise measurement of low temperatures.

The data obtained will be mapped onto a plot of work function

versus the ratio of the emitter temperature to the cesium reservoir

temperature. Long-term variations in alloy work functions will be inves-

tigated. It might be expected that differential thermal segregation of

individual grains and evaporation of particular alloying species might

cause long-term changes in work functions. Low pressure cesium and inert

	

`	 gases and mixtures of the two are candidates for plasma production.

0

0

r



31

1 - SUMMARY OF RESULTS

The vacuum emission devices have been operational, although the high

vapor pressures of some super alloy elements and low emission current

densities at low emitter temperatures, 1200°K - 1400°K, have indicated

i	 that further refinements be made. These have included the acquisition of
rr

a metal bell jar in order to produce hia'i vacuums, 10
-9
 torr, with an all

metal gasketed system. Some of the super alloys appear to be unsatisfac-

tory for thermionic electrodes because of high vapor emission character-

istics of some elements such as mangenese. Mass spectrometer evaluations

of some high temperature super alloys have confirmed the very high vapori-

zation results of more super alloys are determined, the vaporization trends

of the various elements will be evaluated. From these studies it might be

possible to choose or design super alloys of particular compositions which

might be suitable for thermionic electrodes.

High temperature physical properties including tensile strength,

yield strength, stress to rupture, and creep strength have been obtained

from the literature for a number of candidate super alloys. The high

temperature corrosion behavior of some of these alloys and also of a couple

of stainless steels have been obtained from the literature. An important

application for low temperature, low cult thernionics is as topping a

device for conventional steam power plants. It is probable that sodium

could be used as a heat transfer medium from the (7onbusting gases to the

thermionic element. Super alloys might be used both as a thermionic elec-

trode and also as the plumbing for the sodium heat transfer lines. A good

g	 deal of information exists in the literature in regard to compatibility of
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various stainless steels with sodium. Most of the experimental work that

is in the literature was produced for the liquid metal fast breeder reac-

tor program. The same corrosion considerations would be necessary in

utilizing sodium in thermionic topping, as would be required for the

LRIBR programs. Little information currently exists in the literature in 	 f

regard to the alkali metal compatibility with super alloys. The LFMBR

programs are now beginning to examine alkali metal - super alloy compati-

bilities because the strength of the candidate stainless steels are not

p	 sufficient for some projected LFMBR applications. It is very probable

that this information could become important to thermionics should such

materials be used for thermionic topping. At the present the most impor-
t

tant corrosion parameters appear to be the oxygen content of the sodium

and the flow rate. The mechanical properties of super alloys mu-t also

be evaluated in the sodium atmosphere. At the present little i:`'ormation

is available with regard to the behavior of super alloys of alkali metals

in general.

One niobium carhide sample has been fabricated by Los Alamos

Scientific Laboratories and is now being instrumented for vacuum emission

tests at Arizona State University. After preliminary testing is done

with this first sample, a series of closely controlled carbon alloys will

be prepared by Los Alamos and tested in the mass spectrometer both before

and after vacuum emission tests are made for work function determination.

The results of these tests will be evaluated in order to try and determin,;

the bonding characteristics of such alloys. If this is understood, it

0	 should be possible to tailor the work function of a given thermionic

0
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emitter hopefully to a given desired value. The series of other metals

including zirconium with carbon, with boron, and possibly oorocarbides

or boronitrides are intended for investigation during this program.

Plans are underway for the fabrication of the Marchuk tube in order

that cesiated emission, from the carbide samples and possibly some super

alloys can be performed at ASU. These systems have been used successfully

in the past and are fairly simple to evaluate, and hopefully can provide

a good deal of information.

1
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8 - CONT?NW.LON PLANS

i3
	

During the remainder of the current program, the primary tusks which

will be pursued are to evaluate the work functions and vaporization

characterizations of the chosen carbon, borocarbide or other alloys that

'.
	

are chosen. Activiation energies or vapor pressures will be determined

by mass spectrometry at LASL and work functions will be determined at

ASU. Vacuum work functions will be determined for all materials.

Cesiated emission of some of the alloys will be determined dependent upon

the success of fabrication of a Marchuk tube. Other physical properties

of the alloys will be determined through thermionic emission microscopy,

is
photomic roscopy, and other techniques. Super alloy or related materials

will also be continually investigated, depending upon the results of the

vaporization studies. These might also be implemented in a Marchuk tube

t	 ..

experiment.
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