INFRARED EMISSION SPECTRA FROM OPERATING ELASTOHYDRODYNAMIC SLIDING CONTACTS

by

James L. Lauer
SUN OIL COMPANY

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
NAS3-18531
Abstract

Infrared emission spectra from an operating EHD sliding contact were obtained through a diamond window for an aromatic polymer solute present in equal concentration in four different fluids. Three different temperature ranges, three different loads, and three different speeds for every load were examined. Very sensitive Fourier spectrophotometric (interferometric) techniques were employed. Band intensities and band intensity ratios — though for the same spectral bands — were, nevertheless, found to depend both on the operating parameters and on the fluid. Fluid film and metal surface temperatures were calculated from the spectra and their dependence on the mechanical parameters plotted. The difference between these temperatures could be plotted against shear rate on one curve for all fluids. However, at the same shear rate the difference between bulk fluid temperature and diamond window temperature was much higher for one of the fluids, a traction fluid, than for the others.
FOREWORD.

The work reported here is the second phase in a program of applying infrared spectroscopy to EHD contacts. In the first phase it was shown that infrared emission spectra could be obtained from the very small fluid volumes in a high pressure diamond cell. The present work demonstrates the feasibility of infrared emission spectroscopy of the extremely thin fluid films in operating contacts through a diamond window. As a first step information on temperatures in the Hertzian region was obtained for a variety of operating conditions. Subsequent phases of this work will deal with temperature distributions, molecular alignment and, above all, with chemical and physical changes of fluids under the most severe stresses.

While our work on four specific fluids selected by NASA-Lewis Research Center under Contract NAS-3-18531 forms the core of this report, our basic research supported by the Air Force Office of Scientific Research under Contract F44620-74-C-0038 is also discussed. The entire effort was carried out by Mr. M. E. Peterkin and myself between July 1974 and August 1975.

We are happy to acknowledge support from our untiring machinist, Mr. T. R. Smith and the help of discussions with Messrs. Robert L. Johnson and William R. Jones, Jr., of NASA-Lewis, Professor W. O. Winer of Georgia Institute of Technology, and Professor E. J. Rosenbaum of Drexel University. We also wish to thank Mr. Spichiger of the Zurich, Switzerland, Office of SKF, for his promotion of this work at SKF headquarters, which led to the donation of test bearing balls. We are very grateful to SKF, Sweden, for these special bearing balls.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>2. TEST FLUIDS</td>
<td>3</td>
</tr>
<tr>
<td>3. TEST APPARATUS</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Mechanical Section</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Entrance Optics for Emission Spectroscopy</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Interferometer Modification</td>
<td>6</td>
</tr>
<tr>
<td>3.4 Alignment</td>
<td>7</td>
</tr>
<tr>
<td>3.5 Control of Chopper Blade Temperature and Emissivity</td>
<td>8</td>
</tr>
<tr>
<td>4. EHD CONTACT TEMPERATURES BY I.R. EMISSION SPECTROSCOPY</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Thermal Emission for Semi-transparent Films on Metallic Surfaces Through Transport Windows</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Lubricant Film Thicknesses</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Reduction of Emission Spectral Data to Temperature</td>
<td>17</td>
</tr>
<tr>
<td>4.3.1 Ball Surface Temperatures</td>
<td>18</td>
</tr>
<tr>
<td>4.3.2 Fluid Film Temperatures</td>
<td>18</td>
</tr>
<tr>
<td>5. EXPERIMENTAL CONDITIONS</td>
<td>19</td>
</tr>
<tr>
<td>5.1 Interferometer Settings</td>
<td>19</td>
</tr>
<tr>
<td>5.2 Ball/Plate Parameters. General Comments</td>
<td>20</td>
</tr>
<tr>
<td>6. RESULTS</td>
<td>21</td>
</tr>
<tr>
<td>6.1 Contact Region Temperatures</td>
<td>21</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1</td>
<td>Diamond Temperature (t_D) vs. Shear Rate</td>
<td>23</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Diamond Temperature Rise (\Delta t_D) vs. Shear Rate, Speed and Load</td>
<td>23</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Ball Surface Temperature Rise (\Delta t_2) vs. Shear Rate</td>
<td>24</td>
</tr>
<tr>
<td>6.2</td>
<td>Band Strength Ratios</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>DISCUSSION</td>
<td>26</td>
</tr>
<tr>
<td>8.</td>
<td>CONCLUSIONS</td>
<td>27</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>List of Symbols Used</td>
<td>29</td>
</tr>
<tr>
<td>TABLES</td>
<td>(see separate list)</td>
<td>32</td>
</tr>
<tr>
<td>FIGURES</td>
<td>(see separate list)</td>
<td>42</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Properties of Fluids</td>
<td>32</td>
</tr>
<tr>
<td>II</td>
<td>Mechanical Constants of Ball and Window</td>
<td>33</td>
</tr>
<tr>
<td>III</td>
<td>Operating Parameters</td>
<td>34</td>
</tr>
<tr>
<td>IVa</td>
<td>Experimental and Calculated Data - Fluid #1 (Diluted Naphthenic Mineral Oil (N-1))</td>
<td>35</td>
</tr>
<tr>
<td>IVb</td>
<td>Experimental and Calculated Data - Fluid #2 (Diluted Pentaerythritol Ester)</td>
<td>36</td>
</tr>
<tr>
<td>IVc</td>
<td>Experimental and Calculated Data - Fluid #3 (Diluted Synthetic Paraffin)</td>
<td>37</td>
</tr>
<tr>
<td>IVd</td>
<td>Experimental and Calculated Data - Fluid #4 (Diluted Sun Traction Fluid)</td>
<td>38</td>
</tr>
<tr>
<td>V</td>
<td>Film Thicknesses, Shear Rates, Temperatures, and Temperature Differences for the Four Fluids Averaged over Speeds and Loads</td>
<td>39</td>
</tr>
<tr>
<td>VI</td>
<td>Effect of Increases of Speed and Load on Various Δt's</td>
<td>40</td>
</tr>
<tr>
<td>VII</td>
<td>Averaged and (Maximum) Δt's and tD (in°C)</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure	Page
1 Routine Infrared Spectrum of Polymethyl Styrene Fluid | 42
2 Two Infrared-Active Vibrational Modes of Polymethylstyrene | 43
3 EHD Apparatus and Interferometer Attachment for Emission Measurements | 44
4 Interferogram of Fluid #4 for Essentially Balanced Sample and Reference Radiation | 45
5 Spectrum of Fluid #4 Derived from Interferogram Shown Above | 45
6 Effect of Moving Contact Zone Across Focal Plane of Beck Lens | 46
7 Effect of Restrictor Size on Direction of Emission Peak. Fluid 2- Ester | 47
8 Radiation from an EHD Contact | 48
9 Radiation from a Diamond Anvil Cell | 49
10 Ball Surface Temperature Calibration at 660 cm⁻¹ | 50
11 Ball Surface Temperature Calibration at 810 cm⁻¹ | 51
12 Fluid #1 Constant Low Load cm⁻¹ Increasing Speed | 52
13 Fluid #1 Constant Med Load cm⁻¹ Increasing Speed | 53
14 Fluid #1 Constant High Load cm⁻¹ Increasing Speed | 54
15 EHD Contact Temperatures | 55
16 Diamond Temperature vs. Shear Rate for Fluid #1, Naphthenic Hydrocarbon Oil | 56
17 Diamond Temperature vs. Shear Rate for Fluid #2, Ester | 57
18 Diamond Temperature vs. Shear Rate for Fluid #3, Synthetic Paraffin | 58
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Diamond Temperature vs. Shear Rate for Fluid #4, Traction Fluid</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>Diamond Temperature Rise vs. Shear Rate for Fluid #1, Naphthenic Hydrocarbon Oil</td>
<td>60</td>
</tr>
<tr>
<td>21</td>
<td>Diamond Temperature Rise vs. Shear Rate for Fluid #2, Ester</td>
<td>61</td>
</tr>
<tr>
<td>22</td>
<td>Diamond Temperature Rise vs. Shear Rate for Fluid #3, Synthetic Paraffin</td>
<td>62</td>
</tr>
<tr>
<td>23</td>
<td>Diamond Temperature Rise vs. Shear Rate for Fluid #4, Traction Fluid</td>
<td>63</td>
</tr>
<tr>
<td>24</td>
<td>Diamond Temperature Rise Averaged over Speed and Load vs. Averaged Shear Rate</td>
<td>64</td>
</tr>
<tr>
<td>25</td>
<td>Diamond Temperature Rise Averaged over Speed and Load vs. Speed at Constant Load</td>
<td>65</td>
</tr>
<tr>
<td>26</td>
<td>Diamond Temperature Rise Averaged over Speed and Load vs. Load at Constant Speed</td>
<td>66</td>
</tr>
<tr>
<td>27</td>
<td>Metal Surface Temperature Rise vs. Shear Rate for Fluid #1, Naphthenic Hydrocarbon Oil</td>
<td>67</td>
</tr>
<tr>
<td>28</td>
<td>Metal Surface Temperature Rise vs. Shear Rate for Fluid #2, Ester</td>
<td>68</td>
</tr>
<tr>
<td>29</td>
<td>Metal Surface Temperature Rise vs. Shear Rate for Fluid #3, Synthetic Paraffin</td>
<td>69</td>
</tr>
<tr>
<td>30</td>
<td>Metal Surface Temperature Rise vs. Shear Rate for Fluid #4, Traction Fluid</td>
<td>70</td>
</tr>
<tr>
<td>31</td>
<td>Metal Surface Temperature Rise vs. Averaged Over Speed and Load vs. Averaged Shear Rate</td>
<td>71</td>
</tr>
<tr>
<td>32</td>
<td>Fluid Film Temperature Rise vs. Shear Rate for Fluid #1, Naphthenic Hydrocarbon Oil</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>Fluid Film Temperature Rise vs. Shear Rate for Fluid #2, Ester</td>
<td>73</td>
</tr>
<tr>
<td>34</td>
<td>Fluid Film Temperature Rise vs. Shear Rate for Fluid #3, Synthetic Paraffin</td>
<td>74</td>
</tr>
<tr>
<td>35</td>
<td>Fluid Film Temperature Rise vs. Shear Rate for Fluid #4, Traction Fluid</td>
<td>75</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>36</td>
<td>Fluid Film Temperature rise Averaged Over Speed and Load vs. Averaged Shear Rate</td>
<td>76</td>
</tr>
<tr>
<td>37</td>
<td>Film/Metal Surface Temperature Difference vs. Shear Rate for Fluid #1, Naphthenic Hydrocarbon Oil</td>
<td>77</td>
</tr>
<tr>
<td>38</td>
<td>Film/Metal Surface Temperature Difference vs. Shear Rate for Fluid #2, Ester</td>
<td>78</td>
</tr>
<tr>
<td>39</td>
<td>Film/Metal Surface Temperature Difference vs. Shear Rate for Fluid #3, Synthetic Paraffin</td>
<td>79</td>
</tr>
<tr>
<td>40</td>
<td>Film/Metal Surface Temperature Difference vs. Shear Rate for Fluid #4, Traction Fluid</td>
<td>80</td>
</tr>
<tr>
<td>41</td>
<td>Film/Metal Surface Temperature Difference vs. Averaged Over Speed and Load vs. Averaged Shear Rate</td>
<td>81</td>
</tr>
<tr>
<td>42</td>
<td>Fluid Film Temperature Rise vs. Shear Rate for All Fluids</td>
<td>82</td>
</tr>
<tr>
<td>43</td>
<td>Film/Metal Surface Temperature Difference vs. Shear Rate for all Fluids</td>
<td>83</td>
</tr>
<tr>
<td>44</td>
<td>Average Temperature Differences Compared for the Four Fluids.</td>
<td>84</td>
</tr>
</tbody>
</table>
SUMMARY

Infrared emission spectra were obtained from both the lubricant and the metallic surface of an operating elasto-hydrodynamic sliding contact. For this purpose a device resembling an inverted Four-Ball Tester was constructed, which permitted the application of different loads to a test ball rotating about a horizontal axis above a diamond window in the bottom of a cup filled with test fluid at a controlled temperature (20-50°C). The radiation from the entire Hertzian region which passed through the window was collected by an all-reflecting microscope objective lens and analyzed by an infrared Fourier spectrometer (interferometer) over the 630-730 wavenumber region.

Four representative fluids, (1) a naphthenic mineral oil, (2) a pentaerythritol ester, (3) a synthetic paraffin, and (4) a cycloaliphatic traction fluid, were examined at three different loads and three different sliding velocities. Every fluid was diluted 33% by polymethylstyrene so that the same 700 and 760 cm\(^{-1}\) bands could be examined. These fluid infrared bands stood out over the continuous background of graybody radiation from the metal surface. By appropriate calibrations the intensities of the 700 cm\(^{-1}\) band and the background intensities in the spectra could be related to the fluid and ball surface temperatures. The temperature registered by a thermocouple attached to the diamond window was considered the Hertzian inlet temperature.

The analysis of the data is incomplete and subject to revision in the light of further related work. However, these observations already stand out: (i) For equal shear rates the difference between diamond temperature and bulk fluid temperature was considerably larger for the traction fluid than for the others while (ii) the difference between diamond and metal surface temperature was generally least for the ester fluid; (iii) the fluid film temperature was barely higher than the diamond temperature for the synthetic paraffin for which the film thicknesses were relatively quite high -- and hence the shear rates relatively low -- but for the other fluids the film temperature generally decreased with increasing shear rate; and (iv) a plot of the difference between fluid film and metal surface temperature versus shear rate was very nearly one parabola for all the fluids, the temperature difference increasing with shear rate at low shear rates and decreasing with shear rate at higher shear rates.

In some instances, the ratios of the 700/760 cm\(^{-1}\) band intensities changes markedly with change of load, possibly indicating a change of physical state or molecular alignment.
1. **INTRODUCTION**

When, late in 1973, we embarked on a program of applying infrared -- primarily emission -- spectroscopy to elastohydrodynamic (EHD) contacts, we set ourselves as objectives the determination of fluid temperatures, metal surface temperatures, and of changes of fluid composition and state under various operating conditions. While infrared emission spectra of dielectrics generally consist of discrete bands, which are characteristic of the composition and state of the material, those of metallic surfaces are continuous, "graybody", and generally depend only on temperature. Composites of these spectra are, therefore, easily separated. From the accumulated data useful deductions regarding the effects of EHD processes on the fluids, especially those leading to bearing failure, were considered to be likely results.

We realized, of course, from the start, that major hurdles would have to be overcome before we could hope to arrive at meaningful information. We had background in infrared Fourier spectroscopy, the most sensitive procedure of obtaining infrared spectra, and had gathered and analyzed absorption spectra of fluids contained in the small volumes of high pressure diamond cells. But Fourier infrared emission spectroscopy, the only procedure that appeared to hold much promise in the study of operating EHD bearing contacts, had never been applied to such small samples, and dynamic conditions introduce into the spectroscopy the additional complications of even thinner fluid films and the graybody radiation from moving metal surfaces whose temperature is different from the film temperature. Though calculations based on the available theory showed that our experimental objectives were entirely possible, we decided to work up to them in stages and thereby provide a sound basis for our eventual conclusions. Our report to NASA a year ago described work proving our ability to obtain emission spectra under static conditions from contact regions simulated in the diamond cell. Now we reached the stage where we can produce emission spectra from operating contacts and derive fluid film and boundary surface temperatures from them. We are very confident that later stages will bring us closer to an understanding of the interactions of EHD processes in the metal and fluid parts of the contact region.

The work reported here was supported both by The National Aeronautics and Space Administration under Contract NAS-3-18531 and by the Air Force Office of Scientific Research under Contract F44620-74-C-0038. The latter contract provided for the basic research (apparatus and procedures), which made the work on the NASA fluids possible.
2. TEST FLUIDS

The basic test fluids were selected and supplied by NASA. Fluids of pertinent properties (especially viscosity) as different as possible were chosen. Because of our limitations of sensitivity, spectral range, and time, every fluid was diluted 2/3 to 1/3 by volume with polymethylstyrene (Monsanto Fluid 276 V-2). The differences between the fluids were thereby reduced, but the advantage of having the same two exceedingly intense and non-interfered infrared bands as indicators in every spectrum certainly made up for this loss. The same calibration spectra could be used throughout this work.

Polymethylstyrene may not be necessary in the future because of our advances in technique. Infrared bands of the fluids themselves will become available to us for analysis.

Viscosities and densities of fluids used in this investigation were determined by standard procedures at two temperatures and are listed in Table I. These data provided the basic information for the film thicknesses calculated during the course of our data reduction process.

A routine infrared absorption spectrum obtained for one of the fluids, which is essentially merely the spectrum of the polymethylstyrene indicator fluid, is shown in Figure 1. In the spectral region used for the emission spectra from EHD contacts (630-930 cm\(^{-1}\)) only two bands are outstanding, one at about 700 cm\(^{-1}\) and the other at about 760 cm\(^{-1}\). These are the characteristic vibration bands of a monosubstituted aromatic ring. The former vibration is described as every other sextant of the ring going up out of the plane while the intervening sextants go down; a large change in dipole moment is thereby produced, resulting in a very strong band. The latter vibration is also very strong in monosubstituted aromatics; it is the derivative of the in-phase out-of-plane vibration of the six adjacent hydrogens in benzene (which gives rise to the extremely strong 671 cm\(^{-1}\) benzene "umbrella" vibration) and corresponds to out-of-plane wagging of five adjacent hydrogens with respect to the ring substituent considered more or less stationary (Figure 2). This wagging mode is very sensitive to the molecular environment (temperature, liquid or glassy state) and therefore a potentially useful probe for it. On the other hand, the 700 cm\(^{-1}\) band strength is nearly unaffected by the molecular environment and, therefore, a good temperature indicator.

Polymethylstyrene has a molecular weight in the lubricating oil range and is soluble in all the test fluids. It does not interfere with the trends for which the test fluids were selected.

3. TEST APPARATUS

3.1 MECHANICAL SECTION

Since one of the ultimate objectives of our study is an understanding of the processes leading to bearing failure and failure
is more likely to occur in sliding contacts, our test apparatus was constructed for sliding contacts. (At some later time rolling contacts should also be examined.) A ball-on-plate is the simplest contrivance to obtain such a contact; we adapted Professor Winer's version, which is essentially a Four-Ball-Machine with the test ball being rotated about a horizontal (instead of the usual vertical) axis (Figure 3). However, while Winer locates his contact at a sapphire window in a plane above the ball, we had to place it below the ball at a diamond window in the bottom of the cup containing the test fluid, in order to introduce the transmitted radiation into our interferometer over the shortest possible distance. Otherwise, a long optical lever arm would have been required, which would have amplified any mechanical instabilities. Indeed, only by extensive precautions (e.g. sponged rubber supports) to mechanically isolate the EHD apparatus from the interferometer could the necessary radiometric sensitivity be achieved. Placing the contact in the fluid reservoir cup causes interactions between the fluid flow in the reservoir and in the contact zone. Thus the only practical way to remove the heat generated in the contacts was to insert an aluminum coil containing cooling water into the cup itself. Winer's method of circulating the test fluid through a heat exchanger caused our contact temperatures and/or film thicknesses to become unstable.

The temperature of the water circulating through the coil was controlled by two constant temperature baths to provide three basic temperature levels for every test fluid. For calibration purposes (the test ball stationary), the entire assembly can be heated by circulating warm water through the coil. Then the test fluid functions merely as a heat transfer medium.

Basically then, our EHD unit is an upside-down Four Ball Machine, in which the test ball is rotated about a horizontal axis to form a sliding contact at a diamond window mounted in the bottom plate of a cup containing the test fluid.

The essential parts of our EHD apparatus (items 1 to 18) and the interferometer entrance optics are shown in Figure 3. It will be noted that the two units are mechanically isolated (the spectrometer is supported only at its center by several layers of sponge rubber.

The load is applied to the test ball by a lever arm (not shown) resting on the top of it on three point contacts, symmetrically located on three coplanar steel balls in such a way that the resultant load is directed perpendicularly downward through the center of the test ball. On suggestion of Professor Winer, these three contacts were padded by small sapphire discs to increase the contact areas and thereby reduce the danger of scoring the test ball. Applying the load to the test ball from above also fixes its position on the diamond window of the primary EHD contact in the cup. The shaft turning the ball is deliberately kept flexible. Fine adjustment screws
allow the diamond window to be placed tangentially to the
ball. Another set of adjustment screws moves the entire
cup assembly in the focal plane of the objective lens of the
interferometer entrance optics, and permits location of the
contact on the optic axis.

At least three temperatures in the fluid cup were con-
tinuously monitored during every experiment: (a) the temperature
at the diamond window by a thermocouple touching it within
the mounting cement, (b) the temperature at the ball by a
thermocouple loosely touching it, and (c) the temperature
at a relatively quiescent location within the fluid. The
constancy of these temperatures to better than 0.2°C during
a spectral scan (about 20-25 minutes) was essential. Because
of the extremely high thermal conductivity of the diamond
window (a specially ground 4 mm diameter, 2 mm thick disc of
natural Type II A diamond chosen for near perfect infrared
transparency and oriented so as to minimize stress in the
direction of sliding), the temperature recorded at (a) was
assumed to be equal to -- or at least closely parallel to --
the fluid inlet temperature at the Hertzian contact. Changes
of rotational speed or load were reflected instantly by changes
of this temperature. Temperature (b) rather than temperature
(c) was chosen as the best measure of the bulk fluid temperature
because the many temperature gradients and currents in the main
body of the cup made precise relocation of the thermocouple
at (c) impossible.

The largest readily available stainless steel ball (440C,
diameter 0.0572m) was chosen so as to provide a large Hertzian
contact region for analysis. Only minor changes of the loading
lever -- mainly the location of the three stationary loading
(0.025 mm diameter) balls -- will be necessary to accommodate
the even larger steel balls (440C, diameter 0.680m), which
SKF (Sweden) recently donated to us for this program. The
latter balls have a certified roughness of less than 0.01 μm
(or 100Å), which is just about 10% of the smallest fluid film
thickness calculated. However, the balls used in this study
could according to SKF, be up to five times rougher.

The pertinent mechanical properties of ball and window
are listed in Table II.

3.2 ENTRANCE OPTICS FOR EMISSION SPECTROSCOPY

Since essentially the same interferometer entrance
optics were described in our earlier report, it is not
necessary to go into many details here. The essentials are
also shown in Figure 3. An important element is a Beck lens
(it is called a "lens" even though it has no refracting
elements, because it functions like one), which gathers the
radiation emitted by the contact zone and transmitted by the
diamond window. All of the work reported here was done with
a 15X lens. The Beck lens forms a real image of the contact
region (the field of view of this lens equals the area of
the contact region under our smallest load) at the focus
of the collimating mirror and this image is the effective
source for the interferometer (or Fourier spectrometer). The
area of the collimating mirror filled by this "source" is,
however, only a fraction of the total mirror area. By contrast,
the aperture effective for radiation from the chopper blade,
located just downstream of the "source" is the full mirror
area. The electronic circuitry of our Beckman-RIIC FS-720
Fourier Spectrometer is so constructed that only the difference
of the radiant flux falling on the detector window at half­
cycle intervals is amplified. By restricting the aperture of
the chopper radiation, though the insertion of "restrictors"
into the collimated beam, the graybody radiation emitted in
the EHD region by the surface of the test ball can, therefore,
be balanced by radiant flux of nearly equal magnitude coming
from the chopper blade. The chopper is thus an effective
temperature reference and was thermostatted by a jet of nitrogen.

Another image of the contact region is projected in the
interferometer absorption cell compartment in front of the
detector. A diaphragm was placed there to limit both the
portion of the contact area and of the chopper blade seen by
the detector.

The exitance (radiant power emitted) of the chopper blade
which is detected, is, therefore, the effective reference of
radiant energy in our experiments. By balancing this exitance
against that of the ball surface in the contact region at the
chopper frequency of 15 cycles per second, emission spectra of
fluid films only 0.1 μm thick and less than 100°C have been
recorded.

3.3 INTERFEROMETER MODIFICATIONS

Although the same basic Beckman-RIIC FS-720 Fourier
Interferometer was used in this work as in our earlier studies,
so much of it was changed that not much more than the original
shell remained. Already some time ago we extended the frequency
range from 50-400 cm⁻¹ to 50-1100 cm⁻¹ by changes in the
triggering circuitry (reading at 4 μm retardation intervals
instead of 8 μm intervals) and by adapting a thinner Mylar beam­
splitter (2.5 μm thick)³. However, to make this work possible,
(a) the Golay detector was replaced by a ten times more sensi­
tive one with solid state circuitry (bringing us close to the
theoretical limit for thermal detectors), (b) the original phase­
sensitive amplifier was replaced by a modern Ithaco Model 391A
Lock-In Amplifier, and (c) the digitizer and punch circuitry,
which transforms our signals into punched paper tape data points,
was replaced by a new Novatronics unit with a range of +3999 to
-39999, giving us a dynamic range of 16 bits (our previous
range of 0-399 was inadequate to detect the extremely small
emission signals from the bearing fluid in presence of the
overwhelming graybody radiation from the ball surface.
To make full use of the new parts, the computer programs were improved considerably. Figures 4 and 5 illustrate the power of these programs. The interferogram of Figure 5 represents the recorded signal of an actual sample run in the form of a scan of interferometer mirror displacement versus amplitude. No particular regularities can be discerned in this record and it looks like random noise only. In fact, not even the center burst, the maximum or stationary phase, which is characteristic of every interferogram, is very apparent since this interferogram was obtained at near balance of chopper blade and EHD ball surface irradiance of the Golay detector. Nevertheless our data processing package was able to extract the respectable spectrum of Figure 5. It shows the emission bands of polymethylstyrene at 700 and 760 cm\(^{-1}\) as well as the absorption band of the Mylar beamsplitter at 730 cm\(^{-1}\). This absorption band is present in all our spectra and can be confusing when the fluid spectrum has a band nearby. We will replace the beamsplitter soon by germanium which does not absorb in this region.

The interferometer optics of the FS-720 was realigned for proper interfacing to the new entrance optics. An inexpensive low-power laser was most helpful in this endeavor.

3.4 ALIGNMENT

While the methods used for obtaining interferograms and spectra were essentially the same as those used in our earlier work on emission spectra under static conditions\(^1\), the nature of the new work required some special considerations. Above all, it was necessary to exercise extreme care to make certain that the optical alignment was proper -- no mean task since the Hertzian region is not visible. The procedure finally adopted for aligning the EHD contact region on the optic axis of the interferometer entrance optics and at the focus of the Beck objective lens (Figure 3) was the following:

(i) The "Four-Ball Section" was turned upside down so that the diamond window faces up. A tiny amount of a liquid was placed into the conjunction of window and test ball. An optical microscope of low power was placed above the window. With a reasonably strong lamp reflecting light at the window, it was not difficult to see the conjunction region from the outline of the droplet. The fine adjustment screws on the window mounting plate were used to center the conjunction region on the diamond window.

(ii) Since the position of the test ball on the window was now defined by the three coplanar holding balls at the bottom of the loading platform, the assembly could be turned over. The ball was removed, and some diluted black paint was applied to the diamond window. When the test ball was put back, paint from the contact region was transferred to the ball and a small round opening was found on the window precisely at the position of the conjunction.
(iii) The assembly (without the ball) was placed above the Beck lens and the diamond window was illuminated by a strong light bulb. With the second set of adjustment screws the enlarged image of the hole in the paint was oriented at the "proper" position in the image plane of the interferometer cell compartment ahead of the detector. The up-and-down adjustment on the Beck lens holder was then used to focus the image exactly (the ragged edges became sharply outlined).

(iv) The paint was removed from the window and the cup filled with the fluid to be studied.

The diaphragm in the image plane of the cell compartment was mentioned before. For all the experiments described here later, it was opened to correspond to the Hertzian area under smallest load. For this purpose a mask with the correct diameter hole was placed over the diamond window. Some experiments were done in which both the diaphragm opening and its position were varied under EHD operating conditions. However, for this work the diaphragm remained unchanged. The proper position of the diamond window on the optic axis of the Beck lens could also be determined with the mechanical section in operation by varying the cup adjustment screws. When the minimum was reached for both the X and the Y adjustment (Figure 6), the contact region was on the axis. The asymmetry of the plot of Figure 6 for the inlet and outlet regions should be noted.

Future work will be designed to study different portions of the Hertzian contact region. At this time we know from a number of observations that further reduction of the radiating area results in somewhat higher calculated film temperatures. This is just as one would expect.

3.5 CONTROL OF CHOPPER BLADE TEMPERATURE AND EMISSIVITY

The Beckman RIIC FS-720 Interferometer uses a chopper-modulated amplifying system in conjunction with a Golay detector. As was mentioned earlier, the amplified signal is "locked-in" so as to represent the difference of radiant power incident on the detector from the source and the blade, which are 180° apart in phase. Under normal operating conditions, i.e. for absorption spectrophotometry, the source is the hot quartz envelope of a mercury arc in front of the chopper so that the radiation from the chopper blade is negligible by comparison. The chopper wheel is turned by a constant speed motor next to it to provide a chopping frequency of 15 Hz. Heat is transferred from the motor to the chopper blade by conduction through the shaft and by radiation (the blade is deliberately painted black), so that its normal operating temperature is slightly above ambient. However, even though the temperature rise is very small, a large area of the blade is seen by the collimator so that -- under our conditions of very high sensitivity -- the total radiant power from the blade is
not at all negligible compared to that from our weak source (i.e. the EHD region). Indeed, it is often greater than the latter, thereby giving rise to an "inverted" interferogram. Reducing the effective blade area by insertion of "restrictors" (masks with precisely dimensioned holes) into the collimated beam, may then "rectify" the inverted interferogram. The reason for this is the rather small spread of the source beam by the Beck lens (it uses only the central section of the collimating mirror) so that the restrictor -- provided its hole is not so small that part of the source beam is also cut off -- changes the ratio of radiant power between source and blade. Since the part of the source beam that originates from the ball surface in the contact region is graybody in nature just as the radiant emission from the blade and since ball and blade temperatures are not too different, it is possible to balance these two sources and effectively monitor the radiant emission from the fluid alone. In practice, an exact balance is not desirable, for the radiation emitted by the fluid alone is so weak compared to random noise that the center burst of the interferogram is difficult to locate (its location on an interferogram provides the primary reference for the computation of spectra). Hence it seemed best to operate near a minimum center burst, which can be either positive or negative in the interferogram. If it is positive, the computation of the spectra by the Fourier transformation was straightforward, but if negative, the interferogram had to be inverted first to conform with computer processing. In that case spectral emission bands of the fluid look like absorption bands, but the absorption band of the beamsplitter (Mylar) remains as an absorption band.

To illustrate these considerations, Figure 7 is shown, representing spectra obtained under the identical operating conditions except for differences of restrictor size. The correspondence of the 700 and 760 cm\(^{-1}\) apparent absorption bands to emission bands is evident, while the 730 cm\(^{-1}\) Mylar absorption band has remained as an absorption band. Since baseline band areas are used (vide infra) as measures of band intensity, it does not matter whether the peaks are maxima or minima; only the absolute values count. On the other hand, when spectral amplitudes at particular frequencies are compared, e.g. in the determination of ball surface temperatures (vide infra) amplitudes of inverted spectra must be assigned a minus sign for consistency.

Since the chopper blade radiation is thus an effective reference source for all the spectral runs, it must remain constant or known. Throughout this work a jet of ice-cooled nitrogen at constant flow velocity was directed at the blade. The nitrogen was then used to flush the entire interferometer. It was also necessary to replace the black blade surface by shiny aluminum to reduce the emissivity. No run was started before the chopper assembly had reached equilibrium temperature.
One of three restrictors (masks of different apertures) was used to balance the graybody radiations as closely as possible to maximize fluid band areas in the spectra.

The use of an extended reference source, such as the chopper blade, in an interferometer may be questioned, for it produces a distribution of retardations. We do not believe this matter is serious because the graybody spectrum at our frequencies and temperatures is almost flat. For this reason it is not difficult to balance graybody emissions at somewhat different temperatures. A more serious defect, we think, is the location of the chopper downstream of the Beck lens, making us vulnerable to possible changes of stray radiation or temperature in the entire interferometer entrance optics. We tried to minimize this potential source of error by shielding (e.g. the aluminum reflector, item 15 in Figure 3). To solve this problem in the future and to gain much more flexibility in the temperature balance and control, a small reflecting chopper (vibrating tuning fork) was designed to be placed directly below the diamond window. Radiation from a source of variable intensity will be reflected by the chopper blade and used to balance the graybody radiation from the ball; in this way both source and reference radiations will follow the same optical path. This modification, now on order, will eliminate many other questions and problems as well.

4. EHD CONTACT TEMPERATURES BY I.R. EMISSION SPECTROSCOPY

Once we became convinced that we could obtain reproducible "dynamic" emission spectra from the fluid in an EHD contact region -- the most crucial step of the program -- we had to develop effective procedures for extracting the most information from these spectra. As mentioned earlier, the 700 cm$^{-1}$ band of our polymethylstyrene indicator fluid should be nearly unaffected by the physical conditions in the EHD region; its strength should, therefore, be a good measure of fluid film temperature. The ball's surface temperature in the EHD region should be inferable from its graybody radiation at frequencies not overlapped by film radiation. Our present spectra are averages over most of the Hertzian contact region because of our lens and diaphragm settings (different sections of the Hertzian region will be explored later) and the temperatures inferred from the spectra are, therefore, also average temperatures. Although this report deals primarily with these temperatures, their determination is only one aim of this investigation. Molecular orientation, changes of composition and state, are other objectives. However, the deduction of consistent fluid and metal surface temperatures in the contact region is a necessary first and important step. This work is, we believe, the first to be published in which contact region temperatures are compared for different fluids under different operating conditions.

Before we could arrive at film and ball temperatures from our spectra, a theoretical analysis of thermal emission from semi-transparent films sandwiched between metal surfaces and windows had to be made. Its results are more general than needed for our purposes so that they could be useful elsewhere.
4.1 THERMAL EMISSION FROM SEMITRANSPARENT FILMS ON METALLIC SURFACES THROUGH TRANSPARENT WINDOWS

In all the work reported on infrared emission spectroscopy from thin layers of materials on metal surfaces equality of the temperatures of the layer and the metal was assumed. Low, for example, studied the emission spectra of oleic acid spread on aluminum in this way. Inverted peaks in his spectra are indicative of a temperature gradient through his thicker films, but these were considered artifacts to be avoided. In EHD contact regions, the fluid film temperature must be assumed, under steady operating conditions, to be always different from the surface temperature of the sliding ball and from the temperature of the diamond window as well. McMahon's widely quoted equations of his paper on "Thermal Radiation from Partially Transparent Reflecting Bodies" apply to thick (wavelengths small compared to thickness) slabs with equal boundary conditions on both surfaces. Our situation is that of thin radiating films bounded by different materials at different temperatures. A separate analysis of our case is therefore required.

If an accepted mathematical model of the EHD situation were available for a few standard fluids, the spectra of these fluids could be employed for apparatus calibrations and a calculation of fluid temperatures from their spectra would be simple. Such a model is still lacking, although excellent effort in this direction is underway. Our approach has, therefore, been to use fluid emission spectra obtained with the diamond anvil cell under static conditions for calibration. The physical differences between a real EHD contact and one simulated with the diamond cell under static conditions for calibration. The main difficulties are (a) the absence of shear under static conditions (b) the near impossibility of producing fluid films statically as thin as those sheared (0.1-0.5 \(\mu \)m), (c) providing for equivalent film boundaries (diamond vs. metal), and (d) different heat transfer characteristics. The following sections will describe a model approaching these requirements. It is based on the radiation transfer theories developed by the astrophysicists for estimating temperatures in stellar atmospheres. However, drastic simplifications could be made.

Since our Hertzian contact consists essentially of a flat plate of dielectric, the fluid, sandwiched between a flat metal surface (the flattened portion of a ball surface) and a diamond window, the schematic diagram of Figure 8 will represent the situation. Following a more detailed analysis made by Viskanta, Hommert and Groninger of a similar situation encountered with a heated glass sheet, the starting equation is the steady-state radiative transfer equation for a plane layer of a non-scattering, semi-transparent dielectric (the fluid film in our case) in local thermodynamic equilibrium. With azimuthal symmetry and -- for the moment -- restriction to one-dimensional radiation transfer and one spectral frequency, this equation is

ORIGINAL PAGE IS OF POOR QUALITY.
\[
\frac{dI(y)}{dy} = -k \left[n^2 I_B(t) - I(y) \right]
\]

(1)

where \(I(y), k, n, \) and \(I_B\) are respectively the monochromatic intensity (radiance), spectral absorption coefficient*, index of refraction, and Planck blackbody function at absolute temperature \(t\), all at wavenumber \(v\). It is convenient to separate \(I(y)\) into two contributions: the intensity in the forward direction (increasing negative \(y\)), \(I^+(y)\), and that in the negative direction, \(I^-(y)\). By solving Eq. (1) in the standard way, using the appropriate boundary conditions, the outwardly emerging intensity at wavenumber \(v\) turns out to be proportional to

\[
I^+(0) = A + B, \text{ with } A = (1-R_1) (1-R_1 R_2 T^2)^{-1} (1-R_2) T_B M \quad \text{and} \\
B = (1-R_1) (1-R_1 R_2 T^2)^{-1} (1-T_2) (1+R_2 T) B_F
\]

(2)

where \(R_1\) and \(R_2\) are the reflectivities** at the two boundaries, \(T = \exp(-kh)\) is the transmissivity through the fluid, \(h\) is the fluid film thickness, \(B_M\) and \(B_F\) are \(I_B(t_M)\) and \(I_B(t_F)\), i.e. the Planck radiation functions evaluated for the metal surface and average film temperatures respectively. Equation (2) corresponds to Eq. (18) of the article by Viskanta, Hommert and Groninger6.

It is evident that equations (2) could have been derived from first principles without formally solving Eq. (1), for \(A\) is evidently the radiant intensity emerging from the fluid as a result of radiation from the metal surface, which is transmitted through the two interfaces and attenuated on its way and \(B\) is the radiant intensity of sources within the fluid radiating in the positive and negative \(y\) direction, which are transmitted through interface 1 with or without reflection at interface 2 after appropriate attenuation. For both \(A\) and \(B\) the multiple reflection factor \((1-R_1 R_2 T^2)^{-1}\) takes an infinite number of bounces at both interfaces into account. This factor comes out naturally from the integration of Eq. (1), but could easily be missed in a direct accounting procedure of propagating rays. However, the main advantage of Eq. (1) over first principles methods of solution is its solvability for both a distribution of angles (here totally neglected) and temperatures along \(y\) (or rays at angles with \(y\)). The solution given by Eq. (2) assumes an average temperature throughout the thickness of the fluid film. By measuring an intensity proportional to \(I^+(0)\) for several frequencies, and preferably for several angles with respect to the \(y\) direction, an estimate of the temperature distribution could be obtained.

*assumed to be independent of \(t\)

**assumed independent of temperature
Emission band intensities of the fluid measured by a baseline method, i.e. by subtracting the background graybody radiation of the metal surface (Figure 7), do not include that part of the metal surface radiation which is absorbed by the fluid film. However, they do include that part which undergoes multiple reflections within the film.

Subtracting the reflected portion \((T=1)\) from \(A\) in Eq. (2) gives

\[
A' = (1-R_1) \left(1-R_1 R_2 T^2\right)^{-1} (1-R_2) (T-1) B_M
\]

so that the effective intensity \(I^+\text{eff}\) is

\[
I^+\text{eff} = A' + B
\]

and the effective emissivity of the fluid film is proportional to

\[
E_F(\text{eff}) = \frac{A' + B}{B_F} = (1-R_1) \left(1-R_1 R_2 T^2\right)^{-1} (1-T) \left[1+R_2 T - (1-R_2)\frac{B_M}{B_F}\right]
\]

where, according to Planck's law

\[
\frac{B_M}{B_F} = e \frac{C_2}{\lambda T_F} - 1
\]

\[
\frac{C_2}{\lambda T_M} - 1
\]

for \(B_M/B_F <<\), \((1-R_2)\)

\(B_M/B_F\) is neglected in Eq. 5

Here \(T_F\) and \(T_M\) are the absolute film and metal surface temperatures, \(\lambda\) is the absorption band wavelength in meters and \(C_2 = 0.014388\ \text{mK}\), the universal radiation constant. The baseline band intensity is proportional to

\[
I^+\text{eff} = E_F\text{eff} B_F
\]
In the high pressure diamond anvil cell, schematically shown in Figure 9, the fluid film is sandwiched between two diamond windows and the entire setup is isothermal. The outwardly emerging intensity is proportional to

\[I^+(0) = \frac{(1-R_1)(1-T)}{1-R_1T} B_F = E_D B_F \] (8)

an equation readily derived from Eq. 2 by setting \(B_M = 0 \) and \(R_1 = R_2 \).

A calibration of band intensity in the diamond cell versus temperature (it is not necessary to compute \(B_F \) explicitly) for a fluid layer of known thickness will thus yield \(E_D \), from which \(E_{\text{Feff}} \) can be calculated when \(R_2 \), \(B_M/B_F \), and \(h \) are known (say from separate experiments). Once \(E_{\text{Feff}} \) is known, the temperature of the EHD film can be determined from the corresponding emission band intensity of an EHD film.

The effect of the front diamond window on the emission of the fluid film has been assumed to amount to an attenuation factor equal for both the diamond cell and the contact film so that calibration takes care of it automatically. If the reflected portion of the emerging radiation at the front diamond surface returns into the fluid and re-emerges to a significant extent, this argument may not be strictly true. However, the difference due to this assumption will be much less than our various experimental errors. It also seems unlikely that thermal radiation from the fluid film could be coherent enough to cause significant interference phenomena; none were observed in our work.

Perhaps the neglect (in the work reported here) of the last term in Eq. (5), viz. \((1-R_2) \frac{B_M}{B_F} \), in temperature calculations is a more serious error than the foregoing. It can be accounted for computationally by a loop-type correcting procedure, since knowledge of \(B_M/B_F \) must precede the determination of \(B_F \) from Eq. (7). Omitting the term is equivalent to assuming \((1-R_2) \frac{B_M}{B_F} \) small compared to \(1+R_2T \). Typically for \(R_2 = 0.72 \), \(T = 0.5 \), \(t_M = 50^\circ C \) and \(t_F = 80^\circ C \), this amounts to an \(E_{\text{Feff}} \) that is 16% too small. Our present radiometrically deduced temperatures could thus be too low, especially for thick films absorbing considerable radiation (small \(T \)). This problem will be attended to later, when better film thickness values (\(h \)) and calibration data will be available to us.
4.2 LUBRICANT FILM THICKNESSES

The best way to obtain fluid film thicknesses in Hertzian contacts under various conditions of linear speed, load, and fluid inlet temperatures appears to be optical interferometry. This procedure has been used by Cameron and coworkers \(^7\) and by Winer and coworkers \(^8\) and is readily adaptable to our own apparatus and experimental conditions. It will be carried out later for all our fluids under our standard experimental conditions. To correlate our present data, film thicknesses were calculated from viscosity and density measurements by well-established empirical equations.

Wedeven's equation \(^9\), which is applicable to our experimental conditions, is

\[
h = 1.73R \left(\frac{\alpha \eta u}{R} \right) \left(\frac{w}{E'R^2} \right)^{-21/21}
\]

(9)

where \(h\) is the film thickness, \(R\) the reduced radius of contact, which is the ball radius in our case, \(\eta\) the ambient viscosity of the lubricant, \(u\) the combined surface velocity, which is one-half the ball's surface velocity in our case, \(w\) the load on the bearing contact, \(E'\) is the reduced elastic modulus defined by

\[
\frac{1}{E'} = \frac{1}{2} \left(\frac{1-\sigma_1^2}{E_1} + \frac{1-\sigma_2^2}{E_2} \right)
\]

(10)

and \(\alpha\) is the pressure/viscosity coefficient.

For the fluid compositions used in this work kinematic viscosities \(\nu_1\) and \(\nu_2\), were obtained by standard methods at the same two temperatures (\(t_1\) and \(t_2\)). Densities were obtained at standard temperatures and spot checks showed that the empirical equation

\[
d(t) = d(t_3) - (t_3-t) \times 0.00065
\]

(11)

was a good approximation to the density at any temperature \(t\). In Eq. (9) the parameters characterizing the fluid are \(\alpha\) and \(\eta\) and they must be known at the Hertzian inlet temperature to permit the computation of \(h\).

The kinematic viscosity at any temperature between \(t_1\) and \(t_2\) can be found with considerable confidence for all of our fluids by making use of the ASTM viscosity charts or, equivalently, by the Walther formula \(^{10}\).
\[\log\log(v_1+a) = b + c \log t_1 \]

or \[\log\log(v_2+a) = b + c \log t_2 \]

whence

\[c = \log \left[\frac{\log(v_1+a)/\log(v_2+a)}{\log(t_1/t_2)} \right] \]

and

\[b = \log\log(v_1+a) - c \log t \]

so that, in general,

\[v(t) = 10^{q-a} \]

where \[q = 10^b \cdot t^c \]

and, following Cameron10, \(a = 0.6 \)

The viscosity \(\eta \) is obtained by multiplying the kinematic viscosity by the density, viz.

\[\eta = \nu \cdot d \]

For the calculation of the pressure-viscosity coefficient the data and formulations of Jones, Johnson, Winer, and Sanborn11 were used. To make maximum use of the available experimental data, i.e. the viscosities, a viscosity-pressure index \(Z \) was chosen from this report by linear interpolation for the chemical types composing our fluids. The \(Z \) values are quite characteristic of chemical type and are nearly independent of temperature or vary very little about a temperature in the middle between \(t_1 \) and \(t_2 \). The slope of the tangent to \(\log \eta \) as a function of pressure at atmospheric pressure, designated as \(\alpha_{ot} \), can be calculated from \(Z \) and \(\eta_0 \), the viscosity at ambient pressure,

\[\log \alpha_{ot} = \log Z + H_0 - 2.9388 \]

where

\[H_0 = \log (\log \eta_0 + 1.2) \]

The so-called "reciprocal asymptotic isoviscous pressure \(\alpha^* \) takes into account all variations of viscosity with pressure over the entire pressure range and it is therefore the least
dependent of all the (pressure-viscosity) parameters on measurement techniques. However, in the absence of experimental data on viscosity at elevated pressures it is also very difficult to evaluate. Therefore aot is believed to be a better choice of pressure-viscosity coefficient under our circumstances.

The relations of this section have been incorporated into a (Fortran IV) computer program. Because the measured viscosities and some of the empirical equations employ the customary cgs system of units, a number of statements were introduced into the program to translate them into S.I. units.

Tables I, II, and III contain the fundamental data used in the computer calculations. Tables IV provide the film thicknesses \(h \) for all the four fluids as a function of Hertzian inlet temperature. As mentioned previously, the temperature registered by our thermocouple next to the diamond window was considered to be this temperature. Indeed, part of the diamond window, about 10% of its area, is in the contact region, but its contribution to the overall temperature measured should be small, especially in view of the excellent thermal conductivity of diamond. If the temperature registered by the thermocouple near the ball were taken as the inlet temperature, the thicknesses \(h \) would come out to be appreciably higher. Our fluid film temperatures would then come out lower, for we would attribute the radiant power measured to a larger radiating volume. All this uncertainty will be removed when measured film thicknesses will become available to us.

4.3 REDUCTION OF EMISSION SPECTRAL DATA TO TEMPERATURES

The procedures for obtaining film and ball surface temperatures will now be detailed. For the reasons discussed in Section 2, the film temperatures were based on the intensities of the 700 cm\(^{-1}\) band of polymethylstyrene. The ball surface temperatures were based on the spectral responses at 660 and 810 cm\(^{-1}\). At these frequencies the fluids have no infrared bands so that the responses are entirely graybody.

For the following discussions, two definitions are needed:

(i) Spectral response, \(r \), is defined at a wavenumber, \(v \), as the fraction of the maximum signal -- assigned a value of unity -- (which almost invariably occurred at the same frequency recorded between 630 and 930 cm\(^{-1}\)) multiplied by (a) the greatest unnormalized amplitude computed in our standard way and (b) the amplifier gain factor.

(ii) Band strength, \(P \), is defined as the base line band area measured in a spectrum in units of spectral response times wavenumber.
The procedure of drawing baselines is admittedly arbitrary, but with consistent criteria it is quite reproducible. In our case, we drew average lines on both sides of the band to be measured in such a way that they would meet near the wavenumber of the band peak. Often a shoulder in the band contour indicated the location of the baseline quite naturally. Our procedure is illustrated by the baselines drawn in Figure 7.

4.3.1 Ball Surface Temperatures

Simple calibration experiments are sufficient to determine the ball surface temperatures from the spectra in all cases. All that was needed experimentally was to record spectra under our standard conditions for the stationary ball while the fluid in the cup was kept at a constant elevated temperature by circulating warm water through the coil. Figures 10 and 11 show the spectral responses for our three standard restrictors. All these curves, which are very similar, are straight lines within our limits of error (±2°C). They cross zero near 38°C; at this temperature the ball surface happens to send the same radiant flux to the detector as the chopper blade.

From these curves and corresponding spectral responses for the EHD runs, ball surface temperatures could be estimated to within ±2°C.

4.3.2 Fluid Film Temperature

An attempt was made to obtain the necessary calibrations from contact region spectra at zero rotational speed in a way analogous to the calibrations for the ball temperature. For this purpose the ball was held in the fluid-filled cup in such a way above the diamond window as to just make contact. Under these conditions the film thickness was taken as the distance between the circumference of the ball and its tangent, the flat plate formed by the diamond window, averaged over the diameter of the instrument's field of view. However, this idea failed when it proved to be impossible to locate the ball at the precise tangent position. Accordingly a high-pressure diamond anvil cell was aligned in place of the ball/plate apparatus and emission spectra were recorded under known conditions. The interferometer was not changed for these measurements except for substitution of restrictors; in particular, the diaphragm in the cell compartment was left unaltered. Since it is impossible to measure fluid films in the diamond cell of thicknesses comparable to those encountered in EHD experiments, emission spectra were obtained with a 25 μm spacer for a 10% solution of polymethylstyrene in one of the test fluids. The 700 cm⁻¹ base line band areas were measured as shown in Figure 7 and converted to band strengths, PD₇₀₀. These PD₇₀₀'s were found to be a function of the temperature according to the empirical equation.

\[p^D_{700} = a e^{bt} \]

(19)
where a and b are empirical constants (a=0.2627, b=0.0668) and t is the temperature. It turned out, as expected, that the plots were almost independent of restrictor size. Absorption spectra were also obtained under analogous conditions and a mean absorption coefficient of $k = 2000 \text{ cm}^{-1}$ was determined for the 700 cm$^{-1}$ band area. The emissivity for the diamond cell was calculated according to Eq. (8), using a reflectivity of $R_1=0.04432$ for the diamond/fluid interface. This value was computed from the Fresnel equation for normal incidence using $n = 2.23$ for the refractive index of diamond at 700 cm$^{-1}$ and $n=1.5$ for the mean refractive index of the fluids in the temperature range considered.

Emissivities for the fluid films in the contact region were calculated by Eq. (5) for the same polymethylstyrene band at 700 cm$^{-1}$ for a range of thicknesses h. For the reflectivity of the metal/fluid interface Winer's value of $R_2=0.72$ was chosen while the same value of $R_1=0.04432$ was used for the diamond/fluid interface as before for the diamond cell. A table of E_F/E_D versus h was computed. With the help of this table E_F/E_D values corresponding to any experimental film thickness could be found which, when divided into the experimental bandstrengths P_{700}, would yield P_D700 bandstrengths, i.e. bandstrengths for the diamond cell equivalent to those observed from the contact region. The empirical equation, Eq. (19), in the tabular form was then used to calculate average film temperatures.

It should be noted that the h used in Eq. (19) was only one-third of the actual (computed) film thickness. The reason is, of course, that the polymethylstyrene diluent responsible for the 700 cm$^{-1}$ band was present in a dilution of one-third. Furthermore, it was noted that changes in R_1 even as great of a factor of two would not affect the ratio E_F/E_D very much. Thus temperature variations and even anomalous dispersion of refractive index would not seem to be important. This advantage is, of course, based on our use of the same diluent for all the fluids.

5. EXPERIMENTAL CONDITIONS

5.1 INTERFEROMETER SETTINGS

Since the EHD contact region is an extremely weak radiation source, the operating conditions of the interferometer were selected with great care and kept constant throughout this work. The amplifier time constant was 1.25 seconds corresponding to a bandwidth of 0.1 Hz, and the retardation rate (twice the speed of the movable interferometer mirror) was about 1 um/s. About 1000 samples were read per run, at retardation intervals of 4 um, so that the time per run was about 20 minutes. The maximum optical path difference from the position of stationary
phase was only about 1000 points x 4 μm/point or 4000 μm = 4 mm, corresponding to a theoretical resolution (the reciprocal of this value) of 2.5 cm\(^{-1}\). However, by the technique of "zero filling" (assuming zero readings for sampling points beyond the actual range of mirror travel), which we used to the fullest possible extent, one can gain about a factor of two in effective resolution at the expense of higher computer cost -- as we showed some time ago\(^{15}\) and as Griffith recently confirmed\(^{14}\) -- so that we estimate our resolution of bands in the spectra to be about 1 cm\(^{-1}\). Our spectra were calculated at 0.6 cm\(^{-1}\) intervals; however, a shift in band peak position of less than 1 cm\(^{-1}\) is probably not significant. No apodization function was used and every spectrum was truncated ("boxcar" method) at precisely the same number of points to maintain the same resolution throughout this work. The uniformity of resolution thus achieved makes it possible to compare band intensities of different runs. Only the 630 to 930 cm\(^{-1}\) spectral region was calculated and plotted. Extensive mathematical filtering was employed.

Our balance of spectral resolution and running time proved to be a good compromise for this study. Instrumentation now under construction should permit improvement of both factors.

The amplifier gain was set at 30 or 40 db. The Ithaco 391A amplifier permitted zero suppression by 1000%, which was essential, especially for recording inverted interferograms. Under these conditions the 700 cm\(^{-1}\) band could still be measured reasonably well in films 0.1 μm thick (or 0.03 μm in terms of polymethylstyrene alone) at temperatures as low as 300°K. A thickness of 0.03 μm (or 300 Å) corresponds to only about ten molecular diameters. The (10-20% of the actual film thickness in this case). Gribov\(^{15}\) estimated the band intensity of the 1100 cm\(^{-1}\) C-F band to be about ten times that of the 700 cm\(^{-1}\) aromatic band and that of the 1700 cm\(^{-1}\) C=O band to be about 20 times that. The blackbody spectral radiance at 300 to 3500K does not change appreciably between 700 and 1700 cm\(^{-1}\). A 100 Å layer of a C=O containing molecule, e.g. an ester or a carboxylic acid salt should, therefore, be detectable with our interferometer and detector (provided the wavelength range is extended).

5.2 BALL/PLATE PARAMETERS. GENERAL COMMENTS

Table III lists the experimental conditions used for the four fluids. Three rotational speeds, loads, and bath temperatures were used to make the results representative of actual bearing conditions within the constraints of our apparatus. The bath temperatures are those of the circulating water reservoir, not those of the fluid reservoir. As explained earlier, the fluid temperatures were monitored by three thermocouples, one at the diamond window (t\(_D\), assumed representative of the inlet temperature), one at the ball surface (t\(_B\)) and one at a quiescent spot in the cup. Temperature t\(_B\) was considered to be most representative of the bulk fluid temperature. Space limitations in the fluid cup (the cooling coil could not be
changed) made it impossible to keep the fluid temperatures precisely constant under the various load and speed conditions. At least 27 experiments were, therefore, run per fluid. For one of the fluids, however, Fluid No. 2 (ester) (Table I), every experiment was repeated with each of the three restrictors in the reference beam to observe their relevance, for a total of at least 81 experiments. As a result of this work only one of the three restrictors was used for a particular tF range, viz. the 0.75 in. size for tF <30°C, 1.00 in. for 30°C < tF < 40°C, and 1.5" for tF > 40°C, and only the spectra corresponding to this decision were evaluated further. Duplicates were also run when necessary. In addition, there were the calibration runs. The results analyzed in the following section therefore derive from more than 250 valid spectra, which took at least 500 hours just to collect, to compute and to plot. No valid spectrum could be obtained unless all the fluid temperatures monitored by the thermocouples were kept constant for half an hour to within about 0.2°C. These estimates do not take into account the necessary cleaning times and the inevitable equipment maintenance and down times.

We do not believe that a different interferometer would have reduced the time needed for our experiments by a significant amount since weak radiation sources can be measured properly only in long observation times and a large fraction of the working time was consumed in reaching steady operating conditions.

Figures 12 to 14 show representative spectra for the "most typical" fluid, Fluid No. 1 (naphthenic mineral oil) of Table I. This fluid came out to be near average in the subsequent temperature analyses. All the spectra were obtained for the middle bath temperature. Restrictors were different for them, depending on the criteria just stated. The effects of pressure and velocity changes on the 700 and 760 cm⁻¹ bands are illustrated. Since all the spectra were normalized, only relative band strengths can be compared. Evidently both emission bands are well-defined, but only the strength of the 700 cm⁻¹ was used for film temperature determination. Variations of intensity ratio between the two bands are undoubtedly significant and will be subjected to further study. They are briefly discussed in a following section.

Since film thickness enters into the expressions for film temperature (tF) the sensitivity of the latter to errors of film thickness (h) is important. Fortunately the influence of h on tF in our range of t and h is not very great. A 10% error in h corresponds to an error of less than 2°C near 80°C film temperature. Estimating h too high produces an estimate of t which is too low.

6. RESULTS

6.1 CONTACT REGION TEMPERATURES

This report concentrates on fluid film and ball surface emission temperatures from the contact region as they were
obtained from the infrared emission spectra. These temperatures as well as other measured parameters such as the temperature at the diamond window, are listed for every fluid in Table IV with the operating parameters such as film thicknesses, emission band strengths, the temperatures of the water bath supplying cooling water for the coil immersed in the test fluid surrounding the ball/plate contact, the ball speeds and loads. From the measured parameters temperature differences and shear velocities were calculated and these are also shown in Table IV. These temperatures and temperature differences are defined as follows:

\[t_F = \text{fluid film temperature in °C, derived from infrared spectra} \]
\[t_D = \text{diamond window temperature in °C, also considered as the Hertzian inlet temperature, measured by a thermocouple at the window} \]
\[t_B = \text{bulk fluid temperature in °C, measured by a thermocouple} \]
\[t_M = \text{ball surface temperature in °C, derived from infrared spectra} \]

From these definitions, the following temperature differences are derived:

\[\Delta t_1 = t_F - t_D \]
\[\Delta t_2 = t_M - t_D \]
\[\Delta t_3 = t_D - t_B \]
\[\Delta t_4 = t_F - t_M \]

Figure 15 shows these quantities graphically.

The data of Tables IV constitute the main experimental data of this report. The emissivity ratios, \(E_F/E_D \), for the fluid films in the contact region compared to fluid layers in the diamond anvil cell used for the temperature calibration are listed for completeness to make it possible to check the calculations in particular instances.

When comparing results for the different fluids listed in Tables IV, the reader should be aware that the three temperature ranges (water bath temperatures controlling the cooling in the fluid cup and thereby the fluid viscosity ranges) were not the same for all the fluids, although at least two temperatures overlapped. Thus, for example, the water bath temperatures for Fluid #1 (Naphtheneic Mineral Oil) were 0, 15 and 28°C, but they were 0, 15, and 40°C for Fluid #2 (Ester). The reason for this
inconsistency is our original plan for four temperature ranges which had to be abandoned for lack of time. It is, therefore, not possible to average all the data to compare the fluids, but it is possible to average them for a particular bath temperature, since the other parameters, load and speed, were the same. Such averages were calculated in Table V.

To facilitate comparisons between the fluids, all the temperature data as well as the averages for the temperature ranges were plotted versus shear rate separately for the individual fluids and for all fluids on one plot in Figures 16 to 40. The tables and plots will now be discussed.

6.1.1 Diamond Temperature (t_D) versus Shear Rate

These temperatures were continuously recorded during every experiment. As soon as speed and loads were changed with any fluid, a new diamond temperature was established almost immediately (within seconds). These temperatures were found to be very characteristic of a given fluid. Figures 16-19 show that the diamond temperatures (t_D) increased with shear rate (U/h) for all fluids in a near-linear fashion. A slight decrease of slope is noticeable for the highest shear rates. Fluid #3 (Synthetic Paraffin) exhibits the steepest slope and it is also the most viscous of all the fluids and has the highest film thicknesses (h). The slopes are essentially the same for all the other fluids, but the temperatures (t_D) are generally higher for Fluid #4 (Traction Fluid).

Since the diamond temperatures (t_D) were considered to be the inlet temperatures and thus our reference levels, the relations just noted should be kept in mind for the following discussions.

6.1.2 Diamond Temperature Rise ($Δt_3$) versus Shear Rate, Speed and Load

The difference between the bulk fluid temperature and the diamond temperature ($Δt_3$) was plotted against shear rate in Figures 20-24. This temperature difference was thought to be a measure of the balance between the energy input represented by the shear rate and the energy removal, primarily by the cooling coil, while the diamond temperature itself (t_D), which was discussed in the preceding section, was considered to be a more direct indication of the energy input by itself. Not surprisingly, since the points do represent a balance condition, the scatter of the points is large. The general trend is still for $Δt_3$ to increase with U/h of the three fluids for which comparable shear rates were possible (all but Fluid #3, the synthetic paraffin). Fluid #4, the traction fluid, had the highest $Δt_3$. This behavior is also evident by comparing $Δt_3$ for this fluid at any of the water temperatures in Table V.

The differences between the fluids with respect to $Δt_3$ are shown in a different way in Figures 25 and 26, containing plots of $Δt_3$ vs. speed at two constant loads and vs. load at two constant speeds for all fluids at 0°C water bath temperature.
In all cases the sequence of the \(\Delta t_3 \)'s remains the same, with the highest values for Fluid #4 (Traction Fluid) and the lowest for Fluid #3 (Synthetic Paraffin). All the plots for Fluid #4 are essentially straight lines of positive slope, while those for the other fluids have diminishing slopes for the higher loads or speeds. The \(\Delta t_3 \)'s for Fluid #1 (Naphthenic Hydrocarbon Oil) and even more so for Fluid #2 (Ester) exhibit negative slopes for increasing speeds at the (low) 11 kg load. Evidently cooling due to increased ball speed becomes more important there for these fluids than heating by viscous shear in the fluid film, but for Fluid #4 the heat input always easily overcomes the losses.

6.1.3 Ball Surface Temperature Rise (\(\Delta t_2 \)) versus Shear Rate

It may appear surprising that the ball surface temperature \(t_M \) was nearly always lower than the diamond temperature \(t_D \) (\(\Delta t_2 = t_M - t_D < 0 \)). For it will be recalled that \(t_D \) is not the temperature of the diamond surface at the contact -- which could conceivably be just below the high fluid film temperature but more nearly an average temperature of the diamond window, since diamond is a most excellent heat conductor and the contact area, as mentioned, is only a small portion of the total diamond face. Indeed, \(t_D \) is likely to be even less than the average window temperature because the thermocouple junction measuring it is located in the mounting cement rather than in the window itself. On the other hand, \(t_M \) is measured by radiation from the Hertzian area only. The explanation seems clear from the general tendency of \(\Delta t_2 \) to decrease with increasing shear rate (Figures 27-31). At high shear rates, cooling of the ball surface by the reservoir fluid is more efficient than heating by the sheared fluid. Note that the averaged \(\Delta t_2 \) increases with shear rate (Figure 31) for Fluid #3 (Synthetic Paraffin).

The slopes of the \(\Delta t_2 \) vs. \(U/h \) curves for the different fluids are also suggestive. Fluid #3 (Synthetic Paraffin) has the highest viscosity, the lowest density (Table I) and the lowest thermal conductivity of the fluids and it shows the largest decrease of \(\Delta t_2 \) with increasing shear rate. Fluid #2 (Ester) has the highest density and thermal conductivity and it shows the least change of \(\Delta t_2 \) with shear rate. Again the heat transfer mechanism is indicated.

6.1.4 Film Temperature Rise (\(\Delta t_1 \) and \(\Delta t_4 \)) versus Shear Rate

In Figures 32-36, the difference between the film temperature \(t_F \) and the diamond temperature \(t_D \) (considered the Hertzian inlet temperature) and in Figures 37-41 the difference between the film temperature \(t_F \) and the metal surface temperature \(t_M \) were plotted against shear rate (\(\Delta t_1 \) and \(\Delta t_4 \) respectively). All these temperature differences are positive, showing that heat is generated in the fluid film as it passes the contact region. In some instances the trends are toward larger \(\Delta t_1 \) or \(\Delta t_4 \) with increasing shear rate, in others the trends are opposite.
Such opposing trends were noted even for the same fluid, depending on the operating conditions.

Figures 42 & 43 show that all the separate plots can be put on common curves, one for Δt_1 vs. U/h, the other for Δt_4 vs. U/h. The scatter of the points is large, especially toward the high shear rates -- where the film thicknesses are very small -- but the general shapes of the curves are clear. They are parabolas with apices corresponding to a shear rate near 6×10^6 sec$^{-1}$ for maximum Δt_1 and Δt_4. Evidently our experimental conditions were such that the balance of heat generated by shear in the fluid and heat lost through the solid surfaces was maintained there at the highest temperature.

The result that common curves of Δt_1 or Δt_4 vs. U/h (Mr. William R. Jones, Jr., of NASA-Lewis, suggested this type of plot) can be drawn for all the fluids does not mean that the nature of the fluid is unimportant. It was shown in the preceding sections that the absolute values of t_D were quite different for the fluids and, in particular, highest for Fluid #4 (Traction Fluid). However, the physical phenomena are certainly the same for all the fluids.

6.2 BAND STRENGTH RATIOS

Comparison of the spectra shown in Figures 12 to 14 is a good starting point for an analysis of the state of the fluid in the contact zone. The bands peaking near 700 and 760 cm$^{-1}$ are the only ones concerning us now. The base lines have been drawn in so that relative band strengths can be compared at a glance. As a preliminary aside it will be noted that the spectrum for the lowest load (11 kg) and speed (240 RPM) is inverted: Radiation flux from this film was effectively less than radiation from the chopper blade. However, closer examination will reveal that in this spectrum the intensity of the 760 cm$^{-1}$ band exceeded that of the 700 cm$^{-1}$ band. When the load is further increased to 19.5 kg at the same speed, the corresponding spectrum shows the band strengths to be about equal and when the load is further increased to 28.5 kg, the strength of the 700 cm$^{-1}$ band is relatively greater. Equal band strength is shown for the other spectra at 11 kg load.

Corresponding comparisons for the other fluids also show trends. A detailed analysis of the band strength ratios is not yet completed.

One reason for the relative band strength changes can be film thickness changes. The absorption coefficients for the two bands are different. If this were the only reason, film thicknesses could be directly determined from the band ratios. The largest thickness changes occur, however, for changes of speed and not load, hence the trend mentioned for the 11 kg series is likely to have another reason.
An intriguing possibility is improved molecular alignment in the contact with increasing load. If the direction of the change in dipole moment, which produces the band, is thereby turned into the plane of the ball surface, the band intensity should go up. Changes of bandwidth and structure could correlate with such a picture. Infrared polarization spectra would be useful to have to substantiate this mechanism, if possible.

Evidently more work is needed in this area.

7. DISCUSSION

The pattern shown by the data is consistent with a mechanism in which heat is generated by shearing of the fluid in the contact region and removed by the solid surfaces and cooling in the reservoir. Especially Figures 37-41 are instructive; the differences between the fluid film and ball or diamond surface temperatures fall on common curves when plotted against shear rate. Figure 44 and Tables VI and VII permit a quick overview of all the trends.

A very interesting finding is the high average Δt₃ and especially Δt₅ (diamond temperature increase above ambient fluid temperature) for Fluid #4 (Traction Fluid), which is very clearly shown in Figure 24, in which average Δt₅ is plotted against shear rate. That high traction would generate more heat is, on reflection, not unexpected, but the occurrence of the phenomenon even in our diluted fluid was surprising. Since shear rate already takes film thickness -- and hence a measure of viscosity -- into account, a factor besides viscosity must be responsible.

One way to explain traction and some of these phenomena might be that discussed by Johnson¹⁷, viz. solid grains are formed in the inlet zone as the fluid becomes highly compressed. The grains are then pushed into the contact where they are already beginning to relax. This picture is consistent with heat generation in the inlet zone. However, no real evidence of solidification has emerged from our spectra (although our analysis is still incomplete). Another way would be analogous to that applied under certain conditions to polyphenyl ether by Hirst, et al¹⁸, viz. the fluid becomes "elastic" under stress. By this mechanism the heat generated in the inlet zone is caused by the squeezing out of a film in a preferred direction and bunching is likely to occur in the outlet zone. The film in the contact zone is thinner than predicted from the viscosity relations; indeed, viscosity has lost much of its meaning. Such a model would be consistent with the observed band intensity ratio changes under increased load. Our work planned for the near future includes testing for polarization effects in the contact emission spectra; if observed, for Fluid 4 in particular, they might lead to a preferred model. On the other hand, the ester fluid (Fluid #2) would have less orientation in the bulk of the contact area, because its affinity for the metal surfaces makes for easier flow.
Band intensity ratios, especially if caused by polarization in the contact region might also be correlatable with a model of a flow of "sticks" within a flow of spheres. As long as the sticks are aligned in the direction of flow, their "viscosity", if you will, is low, but crosswise they are difficult to move. As the bundles move down the Hertzian region, their alignment changes. Our projected spatially resolved spectra of the region might clarify these ideas.

In any case, the film thickness measurements planned for the immediate future might have a very important bearing on the direction of our future work.

A preliminary comparison between our temperatures and those calculated and experimentally inferred by A. W. Crook9 was made. Considering the differences of technique, the discrepancies are not bad. Crook's assumptions for energy balance in the contact zone were basically (i) all heat generated by viscous friction within the fluid and (ii) all heat lost to the solid surfaces by conduction only. Cameron20 improved on Crook's equations by substituting more modern and better relations for the viscosity/temperature and viscosity/pressure relationships. His final equation (in our notation)

\[
\frac{T_F}{n_F} = U^2 \cdot \frac{M+1}{8K} + \frac{T_M}{n_0}
\]

(20)

where \(U \) is the sliding velocity, \(m \) is an adjustable empirical parameter (between 2 and 3) and \(K \) the thermal conductivity of the fluid, can be reconciled with our data, at least in a general way. This examination is not complete.

8. CONCLUSIONS

The most important result of this work is the successful demonstration that good infrared emission spectra from fluid films in EHD contact regions can be obtained and that these spectra show differences depending on the operating parameters and on the type of fluid used.

Temperatures of the fluid films and the metal surface in the contact region can be determined from these spectra. For the former temperatures, knowledge of the film thicknesses is also required. Since proper thicknesses were not available, admittedly inadequate values calculated from low shear viscosities were used and the resulting temperatures still came out reasonable. They are always higher than the metal surface temperatures, depend on the nature of the fluid and vary with the operational parameters in a consistent manner.
One mechanism of heat generation and loss appears to obtain for all the fluids -- one plot of film temperature rise against shear rate can generally accommodate all the fluids. However, the base level, i.e. the diamond temperature (or the inlet temperature by our assumptions) was significantly higher for one of the fluids (Traction Fluid).

Work is underway on a unifying model to reconcile the temperature variations.

Infrared spectroscopy is likely to become a very valuable tool for EHD studies. In the present work EHD conditions likely to cause failure were diligently avoided, since the emphasis was on laying the groundwork. However, the principal advantage of the technique is its sensitivity to chemical and structural changes of the fluid molecules. Since the EHD films are so thin, we established that the time scale of the experiments is adequate to observe new chemical entities even if they are formed on the solid boundaries and have to diffuse from there. Much of our future effort will be in this area. Immediate targets will also include spatially resolved spectra of traverses of the Hertzian region and the determination of molecular orientation in contacts from band intensity ratios and polarized infrared spectra.
APPENDIX A

List of Symbols

A
A'
B
$B_F = I_B(t_F)$
$B_M = I_B(t_M)$

$C_2 = 0.014388$ mK

E_1

E_2

E_D

$E_F^{(eff)}$

$E' = \frac{1}{2} \left(\frac{1 - \sigma_1^2}{E_1} + \frac{1 - \sigma_2^2}{E_2} \right)$

H_0

I

$I_B(t)$

I^{+}_{eff}

$I^+(y)$

$I^-(y)$

p^{700}

p^D^{700}

radiation intensity, as defined by Eq. (2)
radiation intensity defined by Eq. (3)
radiation intensity, as defined by Eq. (2)
blackbody radiance at fluid film temperature t_F
blackbody radiance at metal surface temperature t_M
radiation constant
Young's modulus of steel
Young's modulus of diamond
emissivity of fluid in diamond-anvil cell
effective fluid film emissivity
reduced elastic modulus
quantity defined by Eq. (18)
monochromatic radiation intensity
blackbody radiation intensity at temperature t and wave-number ν
radiation intensity defined by Eq. (4)
monochromatic radiation intensity in the forward direction
monochromatic radiation intensity in the backward direction
film band intensity at 700 cm$^{-1}$
fluid band intensity at 700 cm$^{-1}$ measured in diamond cell
List of Symbols (Cont'd)

R \quad \text{ball radius, generally the reduced radius of contact}

R_1 \quad \text{monochromatic reflectivity at fluid/diamond interface}

R_2 \quad \text{monochromatic reflectivity at fluid/ball interface}

T=\exp(-kh) \quad \text{fluid transmittance at wavenumber } v

Z \quad \text{viscosity /pressure index}

a \quad \text{empirical constant in Eq. (12)}

\alpha \quad \text{pressure coefficient of viscosity}

\alpha^* \quad \text{reciprocal asymptotic isoviscous pressure}

\alpha_{ot} \quad \text{slope of tangent to log } \eta \text{ as a function of pressure}
List of Symbols (Cont'd)

η absolute viscosity

λ wavelength

$\nu(t)$ kinematic viscosity

σ_1 Poisson ratio of steel constituting the ball

σ_2 Poisson ratio of diamond
<table>
<thead>
<tr>
<th>Fluid</th>
<th>Density 20° kg/m³</th>
<th>Density 38°C kg/m³</th>
<th>Density 99°C kg/m³</th>
<th>Kinematic Viscosity 38°C centistokes</th>
<th>Kinematic Viscosity 99°C centistokes</th>
<th>Absolute Viscosity 38°C N·sec/m²</th>
<th>Absolute Viscosity 99°C N·sec/m²</th>
<th>Viscosity-Pressure Index Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluted Naphthenic Mineral Oil (N-1)</td>
<td>952.8</td>
<td>941.1</td>
<td>901.4</td>
<td>43.9</td>
<td>4.77</td>
<td>0.0413</td>
<td>0.00430</td>
<td>0.63</td>
</tr>
<tr>
<td>Diluted Pentaerythritol Ester</td>
<td>997.3</td>
<td>985.6</td>
<td>945.9</td>
<td>42.2</td>
<td>6.01</td>
<td>0.0416</td>
<td>0.00568</td>
<td>0.50</td>
</tr>
<tr>
<td>Diluted Synthetic Paraffin</td>
<td>904.0</td>
<td>892.3</td>
<td>852.6</td>
<td>291.1</td>
<td>24.4</td>
<td>0.2597</td>
<td>0.02080</td>
<td>0.48</td>
</tr>
<tr>
<td>Diluted Cycloaliphatic Traction Fluid</td>
<td>925.2</td>
<td>913.4</td>
<td>873.7</td>
<td>48.2</td>
<td>5.31</td>
<td>0.0440</td>
<td>0.00463</td>
<td>0.72</td>
</tr>
</tbody>
</table>
TABLE II
Mechanical Constants of Ball and Window

<table>
<thead>
<tr>
<th></th>
<th>Young's Modulus N/m²</th>
<th>Poisson's Ratio</th>
<th>Radius m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball (440 C Steel)</td>
<td>0.200 x 10¹²</td>
<td>0.29</td>
<td>0.0286</td>
</tr>
<tr>
<td>Diamond</td>
<td>1.05 x 10¹²</td>
<td>0.177</td>
<td></td>
</tr>
<tr>
<td>Reduced Elastic Modulus</td>
<td>0.364 x 10¹²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{2}{E'} = \frac{1-\sigma_1^2}{E_1} + \frac{1-\sigma_2^2}{E_2}
\]
<table>
<thead>
<tr>
<th>Loads</th>
<th>kg</th>
<th>N</th>
<th>Hertzian Radius</th>
<th>m</th>
<th>Average Hertzian Pressure</th>
<th>N/m²</th>
<th>Max. Hertzian Pressure</th>
<th>N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>110.0</td>
<td>107.9</td>
<td>2.334×10^{-4}</td>
<td></td>
<td>6.301×10^8</td>
<td></td>
<td>0.9451×10^9</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>191.2</td>
<td>191.2</td>
<td>2.825×10^{-4}</td>
<td></td>
<td>7.626×10^8</td>
<td></td>
<td>1.1439×10^9</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>279.4</td>
<td>279.4</td>
<td>3.206×10^{-4}</td>
<td></td>
<td>8.654×10^8</td>
<td></td>
<td>1.2980×10^9</td>
<td></td>
</tr>
</tbody>
</table>
Table IVa

Experimental and Calculated Data

Fluid #1 (Diluted Naphthenic Mineral Oil (N-1))

<table>
<thead>
<tr>
<th>Water Temp °C</th>
<th>Load kg</th>
<th>Speed RPM</th>
<th>θ₀</th>
<th>θ₀</th>
<th>θ₀</th>
<th>θ₀</th>
<th>P₀</th>
<th>P₀/P₀</th>
<th>μ₀</th>
<th>μ₀</th>
<th>Δt₁</th>
<th>Δt₂</th>
<th>Δt₃</th>
<th>Δt₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>240</td>
<td>26.5</td>
<td>35.5</td>
<td>35.8</td>
<td>2.99</td>
<td>.065</td>
<td>77.3</td>
<td>0.225</td>
<td>-3.2</td>
<td>41.8</td>
<td>0.3</td>
<td>9.0</td>
<td>41.3</td>
</tr>
<tr>
<td>19.5</td>
<td>240</td>
<td>28.5</td>
<td>40.0</td>
<td>38.2</td>
<td>6.03</td>
<td>.052</td>
<td>91.1</td>
<td>0.181</td>
<td>4.0</td>
<td>31.1</td>
<td>-1.8</td>
<td>11.0</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>240</td>
<td>31.4</td>
<td>43.9</td>
<td>39.3</td>
<td>6.61</td>
<td>.042</td>
<td>95.7</td>
<td>0.163</td>
<td>5.0</td>
<td>30.7</td>
<td>-5.7</td>
<td>14.0</td>
<td>56.4</td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>240</td>
<td>36.3</td>
<td>51.5</td>
<td>40.0</td>
<td>7.11</td>
<td>.042</td>
<td>96.8</td>
<td>0.165</td>
<td>7.4</td>
<td>45.3</td>
<td>-11.3</td>
<td>17.2</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>240</td>
<td>37.3</td>
<td>55.5</td>
<td>44.7</td>
<td>6.64</td>
<td>.044</td>
<td>98.7</td>
<td>0.153</td>
<td>9.4</td>
<td>43.2</td>
<td>-10.3</td>
<td>18.0</td>
<td>54.0</td>
<td></td>
</tr>
</tbody>
</table>

15

<table>
<thead>
<tr>
<th>Water Temp °C</th>
<th>Load kg</th>
<th>Speed RPM</th>
<th>θ₀</th>
<th>θ₀</th>
<th>θ₀</th>
<th>θ₀</th>
<th>P₀</th>
<th>P₀/P₀</th>
<th>μ₀</th>
<th>μ₀</th>
<th>Δt₁</th>
<th>Δt₂</th>
<th>Δt₃</th>
<th>Δt₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>11</td>
<td>240</td>
<td>59.5</td>
<td>37</td>
<td>35.6</td>
<td>1.97</td>
<td>.062</td>
<td>76.3</td>
<td>0.214</td>
<td>3.4</td>
<td>39.3</td>
<td>-1.4</td>
<td>7.5</td>
<td>38.7</td>
</tr>
<tr>
<td>19.5</td>
<td>240</td>
<td>32.5</td>
<td>43.7</td>
<td>37.3</td>
<td>8.16</td>
<td>.076</td>
<td>90.4</td>
<td>0.256</td>
<td>5.6</td>
<td>46.4</td>
<td>-6.7</td>
<td>12.0</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>240</td>
<td>36.0</td>
<td>48.1</td>
<td>41.3</td>
<td>9.50</td>
<td>.050</td>
<td>98.5</td>
<td>0.172</td>
<td>6.3</td>
<td>50.5</td>
<td>-6.7</td>
<td>13.5</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>240</td>
<td>36.5</td>
<td>54.6</td>
<td>46.5</td>
<td>6.27</td>
<td>.039</td>
<td>96.0</td>
<td>0.154</td>
<td>8.1</td>
<td>42.0</td>
<td>-7.4</td>
<td>15.5</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>240</td>
<td>40.0</td>
<td>59.4</td>
<td>50.4</td>
<td>9.56</td>
<td>.040</td>
<td>101.0</td>
<td>0.158</td>
<td>10.4</td>
<td>42.8</td>
<td>-8.6</td>
<td>18.5</td>
<td>61.4</td>
<td></td>
</tr>
</tbody>
</table>

28

<table>
<thead>
<tr>
<th>Water Temp °C</th>
<th>Load kg</th>
<th>Speed RPM</th>
<th>θ₀</th>
<th>θ₀</th>
<th>θ₀</th>
<th>θ₀</th>
<th>P₀</th>
<th>P₀/P₀</th>
<th>μ₀</th>
<th>μ₀</th>
<th>Δt₁</th>
<th>Δt₂</th>
<th>Δt₃</th>
<th>Δt₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>11</td>
<td>240</td>
<td>37</td>
<td>44</td>
<td>42.2</td>
<td>5.66</td>
<td>.065</td>
<td>93.1</td>
<td>0.156</td>
<td>4.6</td>
<td>49.1</td>
<td>-1.8</td>
<td>7.5</td>
<td>50.9</td>
</tr>
<tr>
<td>19.5</td>
<td>240</td>
<td>38.5</td>
<td>50.5</td>
<td>48.4</td>
<td>6.25</td>
<td>.056</td>
<td>91.0</td>
<td>0.193</td>
<td>7.5</td>
<td>40.5</td>
<td>-2.1</td>
<td>12.0</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>240</td>
<td>44.0</td>
<td>55.4</td>
<td>52.0</td>
<td>9.22</td>
<td>.030</td>
<td>106.1</td>
<td>0.101</td>
<td>15.0</td>
<td>42.1</td>
<td>-3.4</td>
<td>17.0</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>240</td>
<td>44.5</td>
<td>55.9</td>
<td>55.3</td>
<td>8.22</td>
<td>.030</td>
<td>106.1</td>
<td>0.101</td>
<td>15.7</td>
<td>42.1</td>
<td>-3.4</td>
<td>17.0</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>240</td>
<td>48.5</td>
<td>65.1</td>
<td>61.5</td>
<td>6.07</td>
<td>.033</td>
<td>98.0</td>
<td>0.113</td>
<td>12.7</td>
<td>33.0</td>
<td>-3.5</td>
<td>17.0</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>Water Temp (^{°C})</td>
<td>Load (\text{kg})</td>
<td>Speed (\text{RPM})</td>
<td>(t_f^{°C})</td>
<td>(t_p^{°C})</td>
<td>(t_H^{°C})</td>
<td>(t_{700})</td>
<td>(\frac{t_f - t_p}{t_{700}})</td>
<td>(\Delta t_1)</td>
<td>(\Delta t_2)</td>
<td>(\Delta t_3)</td>
<td>(\Delta t_4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>240</td>
<td>21</td>
<td>26.5</td>
<td>26.3</td>
<td>.90</td>
<td>.080</td>
<td>55.3</td>
<td>.278</td>
<td>2.6</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>21</td>
<td>26</td>
<td>25.3</td>
<td>1.08</td>
<td>.111</td>
<td>54.0</td>
<td>.389</td>
<td>2.8</td>
<td>28.0</td>
<td>-0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>240</td>
<td>23.5</td>
<td>34</td>
<td>33.6</td>
<td>3.37</td>
<td>.057</td>
<td>80.6</td>
<td>.199</td>
<td>3.6</td>
<td>43.6</td>
<td>-0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>24.5</td>
<td>35</td>
<td>30.0</td>
<td>2.72</td>
<td>.074</td>
<td>73.9</td>
<td>.236</td>
<td>4.2</td>
<td>38.9</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>240</td>
<td>26</td>
<td>36</td>
<td>33.3</td>
<td>3.01</td>
<td>.086</td>
<td>73.2</td>
<td>.301</td>
<td>4.8</td>
<td>37.2</td>
<td>-1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>28</td>
<td>45</td>
<td>39.2</td>
<td>2.49</td>
<td>.050</td>
<td>78.5</td>
<td>.171</td>
<td>6.3</td>
<td>33.5</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>480</td>
<td>29.5</td>
<td>46</td>
<td>41.4</td>
<td>3.76</td>
<td>.059</td>
<td>82.2</td>
<td>.203</td>
<td>7.1</td>
<td>36.2</td>
<td>-4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15	11	240	31.5	38	36.8	7.40	.050	94.8	.176	4.1	56.8
	360	32.5	45	42.8	6.50	.052	92.2	.179	6.0	47.2	-2.2
	480	35.5	43	42.0	12.25	.068	97.7	.237	6.1	56.7	-1
19.5	240	25	46	45.0	4.27	.037	91.0	.125	5.7	45.0	-1
	360	24.5	46.5	40.3	9.37	.067	99.2	.162	6.7	52.7	-4.2
	480	35.5	48.5	43.0	10.64	.054	99.0	.186	7.7	50.5	-5.5
28.5	240	36.5	52.5	30.1	6.96	.029	101.9	.098	7.3	49.4	-2.4
	360	39	55	47.6	7.41	.035	99.7	.122	8.9	44.7	-7.4
	480	38	55	51.2	9.60	.044	100.6	.150	9.6	45.6	-3.8

40	11	240	45	50	57.6	3.30	.033	88.9	.113	6.4	38.9
	360	45	52	55.6	4.17	.041	89.2	.141	7.7	37.2	3.6
	480	46	56	60.7	4.13	.067	87.0	.162	8.9	32.0	6.7
19.5	240	45	35	45.0	0.88	.027	72.1	.093	7.7	17.1	-9.2
	360	46.5	58.5	65.9	4.13	.032	92.7	.110	9.8	34.2	5.4
	480	46	59.5	62.3	4.65	.038	91.9	.131	11.0	48.4	2.8
28.5	240	47	60	56.9	3.26	.023	94.1	.079	9.1	36.1	-1.1
	360	46	62.5	62.0	5.20	.028	98.2	.086	11.3	33.7	-0.5
	480	46.5	65	65.7	1.71	.032	79.5	.112	12.9	14.5	0.7

TABLE IVb

Experimental and Calculated Data

Fluid #2 (Diluted Pentaerythritol Ester)
Table IVa

Experimental and Calculated Data

Fluid #3 (Diluted Synthetic Paraffin)

| Water Temp
Load (kg)	Speed (RPM)	t_{D} (°C)	t_{O} (°C)	t_{H} (°C)	P_{700}	t_{F}/t_{D}	t_{F} (°C)	A_{B}	U/ν (sec$^{-1}$)	$t_{F}-t_{D}$ (°C)	$t_{H}-t_{D}$ (°C)	$t_{D}-t_{O}$ (°C)	A_{F}				
0	11	260	23.5	27	30.3	1.05	.351	36.4	1.301	0.6	9.4	3.3	3.5	6.1			
17	11	260	30.0	34	35.9	2.02	.250	51.3	0.897	0.8	17.3	1.9	4	15.4			
29	11	260	36.5	40	41.0	2.90	.191	60.7	1.682	1.1	20.7	1	3.5	19.7			
	360	37.5	43	42.5	45.7	5.72	.221	68.7	0.796	1.4	25.7	-0.5	5.5	26.2			
	480	38.5	44.5	42.6	45.9	5.97	.170	73.3	0.804	1.6	31.9	-1.9	6	37.8			
	19.5	260	42	49	51.0	5.88	.185	75.6	0.895	1.6	26.4	1.6	7	28.0			
	360	41.5	52.8	47.8	53.5	7.00	.165	78.4	1.311	2.1	25.5	4.7	11	30.2			
	480	45	54	46.7	53.5	5.97	.170	73.2	0.604	2.4	15.2	8.1	9	27.3			
	28.5	260	46	58	61.0	9.07	.090	89.0	3.111	2.3	31.0	-11.3	12	42.3			
	360	48.6	62	51.0	53.5	11.57	.103	62.4	3.359	3.0	28.6	11	14	39.6			
	480	40	64	53.5	9.36	.117	85.6	4.111	3.5	21.6	10.5	13	32.1				
Water Temp °C	Load kg	Speed RPM	\(t_1 \) °C	\(t_2 \) °C	\(t_3 \) °C	\(t_4 \) °C	\(P \) W	\(P/P_0 \)	\(P_{t1} \) W	\(P_{t2} \) W	\(P_{t3} \) W	\(P_{t4} \) W	\(V/\text{h} \)	\(\Delta t_1 \)	\(\Delta t_2 \)	\(\Delta t_3 \)	\(\Delta t_4 \)
-------------	--------	----------	------------	------------	------------	------------	--------	--------	------------	------------	------------	------------	--------	--------	--------	--------	
0	11	250	28.3	38	36.0	3.63	0.068	80.3	0.237	3.0	42.3	-2	9.5	46.3			
19.5	260	31.5	44.5	60.2	9.31	0.050	98.2	0.170	4.2	47.3	7.2	15.5	54.5				
28.5	240	34.5	51	41.3	9.35	0.038	102.2	1.131	5.3	31.2	-7.7	16.5	60.9				
39	260	34.5	41.1	41.7	3.38	0.049	82.9	0.167	4.3	36.9	-4.3	11.5	41.2				
19.5	260	34.5	51.5	47.5	2.91	0.038	86.9	0.129	5.6	33.6	-1.2	17.9	37.4				
28.5	240	38	57	53.9	7.13	0.031	102.2	1.05	6.9	45.2	-3.1	25.5	46.5				
39	260	31.5	44.3	49.8	6.42	0.050	92.4	0.175	4.1	48.1	5.3	9	42.8				
19.5	260	38.5	51	52.3	7.37	0.039	98.4	0.146	5.9	47.4	-1.1	12	48.5				
20.5	240	42.5	59	51.7	9.98	0.029	92.3	0.086	7.1	38.3	-7.3	16.5	45.1				
39	360	65.6	65.1	12.86	0.031	100.2	1.05	10.3	36.2	-10.9	21	45.1					
480	45.6	68.5	60.3	7.18	0.035	99.4	0.121	11.9	31.4	-7.7	23	39.1					
Table V

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Water Temp</th>
<th>(\frac{t_0}{t_0})</th>
<th>(\frac{t_D}{t_0})</th>
<th>(\frac{t_H}{t_0})</th>
<th>(\frac{t_F}{t_0})</th>
<th>(\frac{h}{10^6})</th>
<th>(\Delta t_1)</th>
<th>(\Delta t_2)</th>
<th>(\Delta t_3)</th>
<th>(\Delta t_4)</th>
<th>(\Delta t_1)</th>
<th>(\Delta t_2)</th>
<th>(\Delta t_3)</th>
<th>(\Delta t_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, Diluted Naphthenic Mineral Oil (N-1)</td>
<td>0</td>
<td>32.4</td>
<td>43.4</td>
<td>33.7</td>
<td>87.2</td>
<td>0.217</td>
<td>5.4</td>
<td>-6.2</td>
<td>12.9</td>
<td>50.7</td>
<td>2.80</td>
<td>8.24</td>
<td>9.39</td>
<td>-1.15</td>
</tr>
<tr>
<td>2, Diluted Pentacerythritol Ester</td>
<td>24.6</td>
<td>35.0</td>
<td>32.3</td>
<td>71.8</td>
<td>0.268</td>
<td>4.4</td>
<td>47.2</td>
<td>-2.7</td>
<td>10.4</td>
<td>39.5</td>
<td>2.79</td>
<td>10.72</td>
<td>8.98</td>
<td>-0.61</td>
</tr>
<tr>
<td>3, Diluted Synthetic Paraffin</td>
<td>28.7</td>
<td>36.7</td>
<td>33.7</td>
<td>58.4</td>
<td>1.110</td>
<td>1.1</td>
<td>21.7</td>
<td>-3.0</td>
<td>8.0</td>
<td>24.7</td>
<td>8.68</td>
<td>13.7</td>
<td>22.5</td>
<td>-2.78</td>
</tr>
<tr>
<td>4, Diluted Sun Traction Fluid</td>
<td>33.6</td>
<td>49.5</td>
<td>42.3</td>
<td>93.8</td>
<td>0.195</td>
<td>5.9</td>
<td>60.2</td>
<td>-7.2</td>
<td>15.9</td>
<td>51.3</td>
<td>3.10</td>
<td>10.15</td>
<td>8.68</td>
<td>-1.21</td>
</tr>
<tr>
<td>1, Diluted Naphthenic Mineral Oil (N-1)</td>
<td>15</td>
<td>35.6</td>
<td>47.3</td>
<td>41.2</td>
<td>93.3</td>
<td>0.180</td>
<td>6.3</td>
<td>6.1</td>
<td>12.7</td>
<td>52.1</td>
<td>2.29</td>
<td>7.30</td>
<td>8.27</td>
<td>-0.97</td>
</tr>
<tr>
<td>2, Diluted Pentacerythritol Ester</td>
<td>35.6</td>
<td>47.7</td>
<td>44.3</td>
<td>97.3</td>
<td>0.159</td>
<td>6.9</td>
<td>49.6</td>
<td>-3.4</td>
<td>12.1</td>
<td>33.9</td>
<td>1.92</td>
<td>7.19</td>
<td>7.68</td>
<td>-0.69</td>
</tr>
<tr>
<td>3, Diluted Synthetic Paraffin</td>
<td>38.2</td>
<td>44.1</td>
<td>39.0</td>
<td>63.7</td>
<td>0.785</td>
<td>1.5</td>
<td>19.6</td>
<td>-4.1</td>
<td>8.9</td>
<td>24.7</td>
<td>6.59</td>
<td>13.1</td>
<td>16.5</td>
<td>-2.73</td>
</tr>
<tr>
<td>4, Diluted Sun Traction Fluid</td>
<td>30.6</td>
<td>49.5</td>
<td>42.3</td>
<td>93.8</td>
<td>0.195</td>
<td>5.9</td>
<td>60.2</td>
<td>-7.2</td>
<td>15.9</td>
<td>51.3</td>
<td>3.10</td>
<td>10.15</td>
<td>8.68</td>
<td>-1.21</td>
</tr>
<tr>
<td>1, Diluted Naphthenic Mineral Oil (N-1)</td>
<td>20</td>
<td>42.3</td>
<td>54.3</td>
<td>52.0</td>
<td>98.1</td>
<td>0.137</td>
<td>8.2</td>
<td>43.8</td>
<td>-2.3</td>
<td>12.0</td>
<td>46.1</td>
<td>1.44</td>
<td>5.34</td>
<td>5.62</td>
</tr>
<tr>
<td>2, Diluted Pentacerythritol Ester</td>
<td>42.7</td>
<td>51.9</td>
<td>46.5</td>
<td>78.0</td>
<td>0.558</td>
<td>2.1</td>
<td>26.1</td>
<td>-5.4</td>
<td>9.2</td>
<td>31.5</td>
<td>5.13</td>
<td>12.4</td>
<td>15.0</td>
<td>-2.57</td>
</tr>
<tr>
<td>3, Diluted Synthetic Paraffin</td>
<td>37.1</td>
<td>56.3</td>
<td>56.2</td>
<td>96.5</td>
<td>0.147</td>
<td>7.6</td>
<td>40.2</td>
<td>-2.1</td>
<td>19.2</td>
<td>42.3</td>
<td>2.82</td>
<td>5.29</td>
<td>5.57</td>
<td>-0.28</td>
</tr>
<tr>
<td>4, Diluted Sun Traction Fluid</td>
<td>40.6</td>
<td>56.9</td>
<td>56.2</td>
<td>97.5</td>
<td>0.145</td>
<td>7.7</td>
<td>40.6</td>
<td>-2.7</td>
<td>16.3</td>
<td>43.3</td>
<td>2.36</td>
<td>5.27</td>
<td>5.62</td>
<td>-0.35</td>
</tr>
</tbody>
</table>
TABLE VI

Effect of Increases of Speed and Load on Various Δt's (a)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Δt_1</th>
<th>Δt_2</th>
<th>Δt_3</th>
<th>Δt_4</th>
<th>Film Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (Naphthenic Mineral Oil)</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Small</td>
</tr>
<tr>
<td>#2 (Ester)</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Small</td>
</tr>
<tr>
<td>#3 (Synthetic Paraffin)</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Small</td>
</tr>
<tr>
<td>#4 (Traction)</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>Small</td>
</tr>
</tbody>
</table>

Notes: (a) $\Delta t_1 = t_F - t_D$, $\Delta t_2 = t_M - t_D$, $\Delta t_3 = t_D - t_B$, $\Delta t_4 = t_F - t_M$, where t_F, t_D, t_M, and t_B are the fluid film, diamond (inlet), ball surface, and bulk fluid temperatures respectively

(b) Change-1: Effect of increased load at constant speed

(c) Change-2: Effect of increased speed at constant load
<table>
<thead>
<tr>
<th>Fluid</th>
<th>(\Delta t_1) (b)</th>
<th>(\Delta t_2) (b)</th>
<th>(\Delta t_3) (b)</th>
<th>(\Delta t_4) (b)</th>
<th>(t_D) (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (Naphthenic Mineral Oil)</td>
<td>44.8 (51.8)</td>
<td>-4.9 (0.3)</td>
<td>12.5 (18.5)</td>
<td>49.6 (61.4)</td>
<td>48.3 (65)</td>
</tr>
<tr>
<td>#2 (Ester)</td>
<td>45.7 (56.8)</td>
<td>-2.3 (3.2)</td>
<td>11.4 (17.7)</td>
<td>44.5 (58.9)</td>
<td>45.1 (70.0)</td>
</tr>
<tr>
<td>#3 (Synthetic Paraffin)</td>
<td>22.5 (35.9)</td>
<td>-4.2 (4.3)</td>
<td>8.7 (15.5)</td>
<td>35.9 (42.3)</td>
<td>39.7 (64.4)</td>
</tr>
<tr>
<td>#4 (Traction)</td>
<td>50.2 (51.2)</td>
<td>-4.7 (-0.6)</td>
<td>17.6 (27.5)</td>
<td>46.9 (60.9)</td>
<td>52.9 (68.9)</td>
</tr>
</tbody>
</table>

Notes: (a) \(\Delta t_1 = t_F - t_D\), \(\Delta t_2 = t_M - t_D\), \(\Delta t_3 = t_B - t_M\), \(\Delta t_4 = t_F - t_B\), where \(t_F\), \(t_D\), \(t_M\), and \(t_B\) are the fluid film, diamond (inlet), ball surface, and bulk fluid temperatures respectively.

(b) The averages are for the same set of cooling water temperatures. Whenever a set was unavailable, interpolated values were used.
Figure 1
Routine Infrared Spectrum of Polymethyl Styrene Fluid
WAGGING MODE
760 cm^{-1}

$+ = \text{Motion into Paper Plane}$
$- = \text{Motion out of Paper Plane}$

CH OUT OF PLANE
DEFORMATION MODE
700 cm^{-1}

FIGURE 2
TWO INFRARED-ACTIVE VIBRATIONAL MODES OF POLYMETHYLSYRENE
FIGURE 3 EMISSION APPARATUS AND INTERFEROMETER ATTACHMENT FOR EMISSION MEASUREMENTS

1. FLUID CUP
2. FLUID
3. DIAMOND HOLDER
4. DIAMOND WINDOW
5. CONTACT REGION
6. ROTATING BALL
7. HOLDER
8. DIAMOND HOLDER x/y ADJUSTMENT SCREW
9. FLUID CUP x/y ADJUSTMENT SCREW
10. FLEXIBLE SHAFT
11. MOTOR DRIVE
12. COOLING WATER OUT
13. COOLING WATER IN
14. INTERFEROMETER SOURCE COMPARTMENT COVER
15. ALUMINUM REFLECTOR
16. BECK LENS SUPPORT
17. BEARING TABLE SURFACE
18. BEARING TABLE SUPPORT
19. BECK LENS
20. CHOPPER BLADE
21. ADAPTER TUBE FOR EMISSION SPECTRA
22. CHOPPER MOTOR
23. INTERFEROMETER COLLIMATING MIRROR
24. GAS COOLER
25. REAL IMAGE OF CONTACT REGION
26. GAS NOZZLE
27. INFRARED TRANSPARENT WINDOW
FIGURE 4 - INTERFEROGRAM OF FLUID #4 FOR ESSENTIALLY BALANCED SAMPLE AND REFERENCE RADIATION

FIGURE 5 - SPECTRUM OF FLUID 4 DERIVED FROM INTERFEROGRAM SHOWN ABOVE
FIGURE 6
EFFECT OF MOVING CONTACT ZONE ACROSS FOCAL PLANE OF BECK LENS
FIGURE 7 - EFFECT OF RESTRICTOR SIZE ON DIRECTION OF EMISSION PEAK. Fluid 2 480 RPM 28.5 KG Bath at 24.5°C
FIGURE 8
RADIATION FROM AN E.H.D. CONTACT
FIGURE 9
RADIATION FROM A DIAMOND ANVIL CELL
FIGURE 10 - BALL SURFACE TEMPERATURE CALIBRATION

AT 660 cm⁻¹

* = MIN LOAD
+ = 11 KG LOAD
x = 28.5 KG LOAD

* , + , x = .75” RESTRICTOR
○ , ⊙ , ⊙ = 1.0” RESTRICTOR
□ , ⊕ , × = 1.5” RESTRICTOR
FIGURE 11 - BALL SURFACE TEMPERATURE CALIBRATION
AT 810 cm⁻¹
FIGURE 12 - FLUID 1 CONSTANT LOW LOAD INCREASING SPEED
FIGURE 13 - FLUID 1 CONSTANT MED LOAD INCREASING SPEED
FIGURE 14 - FLUID 1 CONSTANT HIGH LOAD INCREASING SPEED
FIGURE 15 - EHD CONTACT TEMPERATURES
Figure 16

Fluid No. 1
(Naphthenic Hydrocarbon Oil)
Figure 17

Temperature vs. shear rate for Fluid No. 2 (Ester)
FIGURE 19

\[
\begin{align*}
\text{(Fluid No. 4) (Traction Fluid)} \\
\text{Shear rate (sec}^{-1} \cdot 10^6) \\
\end{align*}
\]
\[\Delta + 3 \text{ vs Shear Rate} \]

Fig. 20

FLUID NO. 1
(Naphthenic Mineral Oil)

Shear Rate (sec\(^{-1} \times 10^6\))
Δt^3 VS SHEAR RATE

FIGURE 22

Δt^3

(t_D-t_B)

FLUID NO. 3
(Synthetic Paraffin)

Shear rate (sec^{-1} \times 10^6)
Figure 23

DOUBLE POINT Δt3 VS SHEAR RATE

Δt3 (τ_D - τ_B)

°C

Shear Rate (sec^-1 x 10^6)

FLUID NO. 4
(Traction Fluid)
FIGURE 24

Δt_3 AVERAGED OVER SPEED AND LOAD

VS AVERAGED SHEAR RATE

Fluid #1 (mineral oil)
Fluid #2 (ester)
Fluid #3 (synthetic paraffin)
Fluid #4 (fraction)
FIGURE 25

At3 VS SPEED @ CONST. LOAD

Fluid #4 (traction)
Fluid #1 (mineral oil)
Fluid #2 (ester)
Fluid #3 (synthetic paraffin)

Fluid No. 1 2 3 4
Fluid #1 (mineral oil)
Fluid #2 (ester)
Fluid #3 (synthetic paraffin)

Sliding speed (m/s) 65
0.54

Temperature (°C)

Load (kg)

28 kg
22 kg
11 kg

Fluid No. 1 2 3 4
Fluid #1 (mineral oil)
Fluid #2 (ester)
Fluid #3 (synthetic paraffin)
At3 vs Load @ Const. Speed

Figure 26

Fluid #1 (mineral oil)
Fluid #2 (ester)
Fluid #3 (synthetic paraffin)
Fluid #4 (traction)

Load (kg)

Fluid No. 1 2 3 4

Fluid No. 1 2 3 4

Load (kg)
Δt² vs Shear Rate

Figure 28

Fluid No. 2

Shear rate (sec⁻¹ x 10⁶)
\[\Delta t^2 \text{ vs shear rate} \]

Figure 29

Shear rate (sec\(^{-1}\) \(\times 10^6\))

Fluid No. 3
Δt_2 VS SHEAR RATE.

Figure 30

Δt_2 vs. $t_M - t_D$

FLUID NO. 4

Shear rate $(\text{sec}^{-1} \times 10^6)$
Figure 31

Δt_2 AVERAGED OVER SPEED AND LOAD

VS AVERAGED SHEAR RATE

Shear rate ($\text{sec}^{-1} \times 10^6$)

Δt_2

$(t_M - t_D)$ °C

Fluid #1 (mineral oil)
Fluid #2 (ester)
Fluid #3 (synthetic paraffin)
Fluid #4 (traction)

General Trend
FIGURE 32.

Δt_1 VS SHEAR RATE

Fluid #1.
Figure 33

\[\Delta t_1 = (t_F - t_D) \]

\[\text{Shear rate (sec}^{-1} \cdot 10^6) \]

Fluid No. 2
Ati VS SHEAR RATE

FIGURE 35

Shear rate (sec\(^{-1}\) \times 10^6)
FIGURE 36

Δt_1 AVERAGED OVER SPEED AND LOAD

VS AVERAGED SHEAR RATE

Fluid #4 (traction)

Fluid #1 (mineral oil)

Fluid #2 (ester)

Fluid #3 (synthetic paraffin)

General trend

Δt_1

$\left(t_F - t_D \right)^\circ C$

Shear rate (sec$^{-1} \cdot 10^6$)

76
Δt₄ vs shear rate

Figure 37

Fluid #1 (Naphthenic Mineral Oil)
\[\Delta t_4 \text{ vs Shear Rate} \]

Figure 39

Fluid #3 (Synthetic Paraffin)

Shear rate (sec\(^{-1}\) \(\times 10^6\))
At4 vs Shear Rate

Figure 40

FLUID NO. 4

Shear rate (sec\(^{-1}\) \times 10^6)
\[\Delta t4 \text{ AVERAGED OVER SPEED AND LOAD VS AVERAGED SHEAR RATE} \]

Figure 41

- **\(\Delta t4 \)**
- **(t_{E} - t_{M})**
- **\(^{\circ}C \)**

Fluid #1 (mineral oil)

Fluid #2 (ester)

Fluid #3 (synthetic paraffin)

Shear rate \((\text{sec}^{-1} \cdot 10^6) \)
FIGURE 42

Δt_1 VS SHEAR RATE FOR ALL FLUIDS

$\Delta t_1 = (t_F - t_n)$

$^\circ C$

Shear rate ($\text{sec}^{-1} \times 10^6$)

Fluid #1
Fluid #2
Fluid #3
Fluid #4

82
FIGURE 43

Δt_4 vs Shear Rate for All Fluids

Fluid #4

Fluid #2

Fluid #3

Fluid #1

Shear rate (sec$^{-1}$ x 106)
Figure 44: Average temperature differences compared for the four fluids.
REFERENCES

DISTRIBUTION LIST

CR-134973 NASA Contract NAS 3-18531

<table>
<thead>
<tr>
<th>ADDRESSEE</th>
<th>NUMBER OF COPIES</th>
</tr>
</thead>
</table>
| NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attn: Contract Section A, MS 500-206
Technology Utilization Office, MS 3-19 | 1
Library, MS 60-3
Report Control Office, MS 5-5
N. T. Musial, MS 500-118
A. Ginsburg, MS 5-3
J. H. Weeks, MS 5-3 | 1
W. R. Jones, MS 23-2
W. R. Loomis, MS 23-2
L. D. Wedeven, MS 23-2
H. E. Sliney, MS 23-2
W. J. Anderson, MS 23-2
E. V. Zaretsky, MS 6-1
G. J. Weden, MS 5-3 | 10
| |
| NASA Headquarters
Washington, DC 20546
Attn: N. F. Rekos (RLC)
J. Maltz (RWM) | 1
| |
| NASA Scientific and Technical Information Facility
P. O. Box 33
College Park, MD 20740
Attn: Acquisitions Branch | 30
| |
| Air Force Aero Propulsion Laboratory
Wright Patterson AFB, OH 45433
Attn: Howard Jones, APFL/SFL
J. F. Dill, APFL/SFL | 1
| |
| Air Force Materials Laboratory
Wright Patterson AFB, OH 45433
Attn: Major L. Fehrenbacher, AFML/MBT
C. E. Snyder, Jr., AFML/MBT
G. J. Morris, AFML/MBT
F. Brooks, AFML/MBT | 1
| |
| Office of Naval Research
Code 411
Arlington, VA 22217
Attn: Lt. R. Miller | 1
| |

87
<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>NUMBER OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battelle Memorial Institute</td>
<td>1</td>
</tr>
<tr>
<td>Columbus Laboratories</td>
<td></td>
</tr>
<tr>
<td>505 King Avenue</td>
<td></td>
</tr>
<tr>
<td>Columbus, OH 43201</td>
<td></td>
</tr>
<tr>
<td>Attn: C. M. Allen</td>
<td></td>
</tr>
<tr>
<td>Chevron Research Company</td>
<td></td>
</tr>
<tr>
<td>576 Standard Avenue</td>
<td></td>
</tr>
<tr>
<td>Richmond, CA 94802</td>
<td></td>
</tr>
<tr>
<td>Attn: D. Godfrey</td>
<td></td>
</tr>
<tr>
<td>Exxon Research & Engineering Company</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 51</td>
<td></td>
</tr>
<tr>
<td>Linden, NJ 07036</td>
<td></td>
</tr>
<tr>
<td>Attn: A. Beerbower</td>
<td></td>
</tr>
<tr>
<td>Midwest Research Institute</td>
<td></td>
</tr>
<tr>
<td>425 Volker Blvd.</td>
<td></td>
</tr>
<tr>
<td>Kansas City, MO 64110</td>
<td></td>
</tr>
<tr>
<td>Attn: V. Hopkins</td>
<td></td>
</tr>
<tr>
<td>Mobil Research & Development Corp.</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 1025</td>
<td></td>
</tr>
<tr>
<td>Princeton, NJ 08540</td>
<td></td>
</tr>
<tr>
<td>Attn: C. N. Rowe</td>
<td></td>
</tr>
<tr>
<td>P. E. Fowles</td>
<td></td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 28510</td>
<td></td>
</tr>
<tr>
<td>San Antonio, TX 78284</td>
<td></td>
</tr>
<tr>
<td>Attn: P. M. Ku</td>
<td></td>
</tr>
<tr>
<td>Trans-Sonics, Inc.</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 326</td>
<td></td>
</tr>
<tr>
<td>Lexington, MA 02173</td>
<td></td>
</tr>
<tr>
<td>Attn: V. C. Westcott</td>
<td></td>
</tr>
<tr>
<td>Carnegie-Mellon University</td>
<td></td>
</tr>
<tr>
<td>Dept. of Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Schenley Park</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, PA 15213</td>
<td></td>
</tr>
<tr>
<td>Attn: T. Fort, Jr.</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania State University</td>
<td></td>
</tr>
<tr>
<td>Dept. of Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>University Park, PA 16802</td>
<td></td>
</tr>
<tr>
<td>Attn: E. E. Klaus</td>
<td></td>
</tr>
<tr>
<td>Mr. E. E. Bisson</td>
<td></td>
</tr>
<tr>
<td>20786 Eastwood Avenue</td>
<td></td>
</tr>
<tr>
<td>Fairview Park, OH 44126</td>
<td></td>
</tr>
</tbody>
</table>
Northwestern University
The Technology Institute
Evanston, IL 60201
Attn: H. S. Cheng

Texaco Research Center
Research & Technical Department
Fundamental Research Station
Beacon, NY 12508
Attn: R. Fein

University of Virginia
Thornton Hall
Charlottesville, VA 22091
Attn: J. J. Kauzlarich
W. Jamison

University of Michigan
Dept. of Mechanical Engineering
Ann Arbor, MI 48105
Attn: K. Ludeme

Georgia Institute of Technology
School of Mechanical Engineering
Atlanta, GA 30332
Attn: W. O. Winer
D. M. Sanborn

Imperial College
Dept. of Mechanical Engineering
Exhibition Road
London SW7 2BX
England
Attn: A. Cameron

National Engineering Laboratory
East Kilbride, Glasgow
Great Britain
Attn: D. Scott

Mr. Robert L. Johnson
4503 W. 224 Street
Fairview Park, OH 44126

89