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PREFACE

- This dnvestigation uses the sensors of the Skylab Earth_Respurces
Experiment Package to measure stratospheric aerosols. The data was acquired
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when the Skylab veh1c1e was in the Solar Inertial mode and the Sensors were

vxew1ng the limb of ‘the earth with the sun behind the sensors.

The investigation was d651gned to produce altitude profiles of
aerosol attenuation coefficients for several wavelengths. The analysis
tecnniques were also developed to invert the data for particle size
distributions and number densities; however, the actual data ana1ys1s d1d
not reach that level due to unexpected comp11cat1ons d1scovered in the
data which had to be treated.

There were several contributors to this investigation beyond the
PrincipaT Investigator and the Co-Investigator. We acknowledge and
appreciate the efforts of Nancy Polky who performed much of the actual
' imp]emehtation of the analysis techniques. We also appreciate the
assistance of Dr. Bob Curran of NASA Goddard Space Flight Center who shared
his software to read and calibrate the S191 data, and Dr. David E. Pitts
who shared his software to calculate the effects of refraction. Ken Wahlin
also assisted during the last few months of the investigation. We extend
special appreciation to Bi1l Johnson of Lockheed Electronics Company who -
.on several occasions provided us with information not contained in the
supplied documentation.
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- 1.0 * INTRODUCTION

‘The aerosol content of the atmosphere is related to the volcanic eruptions,
industrial pollution, aircraft pollution, explosfons on the surface of the
earth, and perhaps other sources. Atmospheric scientists have long been
interested in the distribution of aerosols in the atmosphere. This is re-
flacted in the vast literature that has grown up on the subject and in the
considerable efforts that have been made to determine aerosol distribution
including hundreds of aircrafit, rocket, and balloon f1ights and many ground-
based studies using searchlights and lasers. Some of this was motivated by
the purely scientific objective of understanding our atmosphere. However,
much of it was also motivated by a desire to make practical'applications of
this knowledge in astronomy, meteorology, and other fields. One of the more
recent areas of interest is in remote sensing. Models based on the rather
sparse data available give an aerosol optical depth of about 0.05 above 20 km.
An aerosol level four times this has been shown to cause error of several per-
cent in the classification of ERTS data. It is quite likely that aerosol
levels could vary by factors much largzr than four. Thus there is considerabie
~interest, both from a purely scientific standpoint and from a practical applica-
" tions standpoint in aerosol distributions in the atmosphere.

The main objective of this experiment was to obtain quantitative measure-
ments of the brightness of the earth's Timb and to use these to study the
distribution of aerosols in the atmosphere.

~Techniques were developed to use Timb measurements {by $190, S191, and
S192) to obtain aerosol attenuation coefficients, number densities and particle
size distributions as a function of altitude. They are described in Section
2.0, These methods were appTied'to $190, "S191, and 5192 data. Because of
time and data quality Timitations, it was decided to concentrate on obtaining
aerosol .attenyation coefficients rather than attempt the more complicated
analysis required to obtain number densities and particle size distributions.
The results are described in Section 4.0. ‘
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2.0 APPROACH

2.1 ANALYSIS TECHNIQUES

In analyzing the data the first task was to remove the noise insofar as
possible. The techniques used to do this .are described in Section 2.1.5.
After this was done the data was analyzed using two general techniques:

(1) comparing the measured 1imb brightness curves with simulated Timb bright-
ness curves calculated for varfous atmospheric models, and (2) inverting the
data to obtain a vertical profile of the attenuation coefficients. The tech-

- niques for doing this are developed in this section. We also include in this

section a description of a technique for inverting the data to obtain particle
number densities and size distributions (Section 2.1.3). However, this
technique was not used in the data amalysis for the reasons given above.

2.1.1 Simulated Limb Brightness Curves

In this paragraph we derive a mathematical expréssion for the Timb bright-
ness cveve that will allow us to simulate the brightness that would be observed
by the Skylab sensors. .This curve will, of course, depend on the aerosol
distribution assumed for the atmosphere. ATl required data had a scattering
angle of near 180°. The error caused by assuming the measurements to be 180°

‘were expected to be small, and the task of modeling the slant path for non-

180° scattering was compliex by comparison. Al1 models were therefore computed
for 180% backscatter. We carry out calculations for a pure Rayleigh scattering

' atﬁosphere'and for two aerosol distributions found by Eiterman.l’z Each point

on a limb brightness curve corresponds to a line of sight through the atmos- -

. phere {or. sensor pointing vector) which traverses various levels in the

atmqsphere down to some minimum altitude x. Such a line of sight is the
line 0'C shown in Figure 1, where 0' is the position of the sensor. Here we

;_aSsUme-O'C is a straight ‘1ine. - In fact it is slightly curVed“due't0 

refraction in the atmosphere, This effect is considered in Section 2.1.6. In
Figure 1, the point A is the point of closest approach to the earth's surface

and poirit B is some other point on the Tine of sight, a distance +% from A.

Distances on the other side of A are negative. The altitude at point B is

o x.t.z. The radius of the earth is Rp. This is the mean radius of the earth
~as defined in NASA documentation.

L b i 1t b et s et - rnanrine o
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In order to compute the radiance at 0' measured by a sensor pointed in
the direction 0'A we calculate the contribution of each point B along the
line of sight and add all these contributions. Only first order scattering
will be included and it is assumed that the incident solar radiation is
parallel to 0'C, i.e., we consider the case of pure backscattering. Point B
is illuminated by an incident solar irradiance of

~f B(u) du

I0 e 2
where Io'is the solar irradiance at the top of the atmosphere and ((u)
is the atmospheric volume extinction coefficient (units km_]). The integral
is alang the path B 0' and the upper limit is actually the distance AO'. How-
ever, since B(J) is comp]ete]y neg11g1bTe (1 e.. equal to zero in our models)
for attitudes corresponding to the point 0' and above, we have replaced the
upper limit by «.  We shall assume that absorption is zero so 8 is equal to
the scattering coefficient.

The proportion of this incident irradiance that is scattered back towards
the point 0' is given by the value of the scattering diagram or phase function
P(G) for 6 = 180°. For a more complete discussion of extinction coefficients
" and phase functions, see Chandrasekhar.® We shall write P or P(z, 180%) to
show it is a Function of ¢ as we]l The radiance I P(2., 6=180°) e 'fmﬁ(u) du
scattered towards 0' from the p01nt B is attenuated on the path BO' by
factor e /7 8{u) d . Integrating over all points B along the path we obtain
the f0110w1ng expression for the radiance along this path |

B(X) =1, s~ P(%, 180°) 8(2) exp (-2 f Blu) du) dz (1)

-0

Equat1on 1 can be simplified if it is assumed that P(%, 180) is independent of
position in the atmosphere (i.e., independent of % and x). In that case one
can easily show that '

I, P .
B(x) = —5— [1 - exp (-2 /7 8(2) dR] (2)
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In what follows we shall assume that B{%2) depends only on altitude in thé
atmosphere. In that case B(-2) = Bg(2) so that

72 B(2) do = 2/ (1) ds. - (3)
O 0
From Fﬁgure 1
%= (Rp +x + 2)* - (Rg + )2 = 2% + 2(Rg +x)z. (4)
o (z + Rp + x) '
dg' = e dZ (5)
v/zi+2(RE+x)z :

Now g(L) is zero for all values of £ except those corresponding to small
vaiues of x + z, i.e., values for which

L <o RE..
X << RE
Therefore we can replace d% in Equation (3) by

dl%ﬂ‘-d—-z— . (6)

“Vz

The integral of Equation (3) can then be written

) a3 7 nz 00 228 a0) 2 )

vz Vex Ve

Thus we finally obtain the following expression for Timb brightness:

CIp " | |
800 = 5 [1 - el-4fF £ 6(2) 45 (5)

This is the expreésionvthatvwas used to calculate most of our simulated
1imb brightness curves.
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2.1.2 Inversion of Limb Brightness Curves

The Weyl fractional integral4 of order ¢ of ¢ is defined by

h(e(£), x, ¢) = ﬂfﬁ){“’ o (g) (£-x)*") dar

It can be shown that the Weyl fractional integral and the Fourier transforn
are related by the expression

-1

Fe ' {&(x); t} = ? (sgn t) exp (r i ¢/2) Fe | {h(e{E).x,¢); tt

where the inverse Fourier transform of f(x) is

2ﬁ1xt

Fe™! {f(x); t} =_f flx)e = F(t)

Then

#(x) = Fe [t (sgn t) exp (wie/2) Fe™! (h (8(%),x,0)3t}

From Equation (8)

X

1 Px)
: g . @ R
tn IDP(xieZBixi} = 2/eR S “Gégl'dq

Let

F(x) = —— s~ £la) 4

F(%J X /q-x

which is the Weyl fractional integral of order 1/2 of B. Combining these

last two expression yields

[ I,P(x) ‘
F(X) = 1 ]
F(%J»Zvﬁﬁ' F P(x) 2B(x)

and

B(x) = Fe {t'[/2 (sgn t) exp (r1/4 ] [F x}; t], x}
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This gxpression serves to invert the 1imb brightness profiie, B, which is
contained in F(x) to find the altitude profile of attenuation coefficients.
Note that the wavelength dependence of the_coefficients is contained only in
the brightness signature, therefore the resulting profile is for a single
wavelength, and must be repeated to determine wavelength dependence.

The function P(x) was found by evaluating Equation (3) with
and without P(x) using values of B from a model of the stratosphere. A
‘ratio of these results was then used to determine the function P(x) as it
is removed from the integral (mean value theorem). It was found that the
P(x) did not significantly vary with changes in the model. The error caused
by the use of the function derived from the model on the measured data we
therefore accepted as inconsequential.
2.1.3 Inversion of Intensities for Number Density and Particle Sjze

Distributions

Scattering of radiation by aerosols which have a distribution of sizes
can be represented by a Fredholm integral equation of the first kind assuming
all of the particles have the same index of refraction. Using the Phillips-
Twoomey inversion method5’6 the following development allows scattering by
particies differing in index of refraction. Inverting the measured radiation
from such a set of scatterers requires simultaneous integral equations for
unknown size distributions with an independent measurement for each equation.

Each size distribution then describes all of the particles having a common
index of refraction.

Let the single integral equation be represented by

g(x) = gb K(x,y) Fly) dy - (9)

where g(x} is the measured radiation, f(y) is the aeroso? size distribution,
and the kerne; is the scattering function. Constraints are then imposed on

the error, €, inherent in the measurement of g(x), and the unknown function

f(y), such as

2
i

£ g; < e, some chosen constant (10)
1 .
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gbwwwﬁdy=Mn (1)

where F'(y) is the second or third derivative of F{y).

A trial sotution, P(y), may also be‘used,_
b : 2 . .
(f(y) - P(y))© dy = min A (12)

Through some suitable quadrature the integrals become matrices, and an expres-
sion is obtained which incorporates the constraints through Lagrangian
multipliers. The problem then is to minimize the expression

(6 - AF)T (6 - AF) + v, (BF)T (BF) + v, (F-p)T (F-p)

where A = wK, w being the guadrature weights and AT is the transpose of A.
~The matrix B is determined by the numerical approximation te Equation (11).
Matrix differentiation with respect to F yields '

AT (AF - @) + vy HF + vy, (F-P) = 0

where BT B = H, and solving for F yields the solution

= (AT A+ v He )™ (AT 6+ vy P) (13)

When two sets of'partic1es which differ by index of refraction, each
having an independent size distribution, are interspersed in a volume, the
‘measured intensities scattered from the volume are due to the combined scat-
tering of each set. If the 1ntens1t1es add T1near1y, which is the case for
- the scattering of light from an incoherent source, the prob]em of finding
‘-the unknown size distributions can be expressed in two simultaneous integral
equations.

K(x,y) Vo) ay e %0 B e ()

b 11
Q(X) a
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g(X) = fb 21K(x,y) f(y) dy + fb 22K(x,') Zf (¥) dy

s

In these equations superscripts are used to represent different functions.
Again the g(x) functions are the measured radiation., the kernels are the

~scattering functions and the f functions are the unknown particle size

distributions differing in index of refraction. As before, the equat1ons
will be constrained through imposed 1imits on the inherent errors in the
measured values and on. the behavior of the unknowns in direct analogy to the
solution of the single integral equation. A matrix expression is obtained,

-(16 _11A1 12 2F) ( _n 1" 12 2

A A°F) +

Y](]B1F)T (]B}F) + YZ(ZBZF)T(ZBEF) + Y3(1F _ 1P)T (1F - ]P)+Y4(2F—2P)T(2F-2P)

1

which is minimizzd with respect to the unknowns F and 2F yielding two

simultaneous equations.

- | 155 e (T Tpy =
VAT VIt 12020, Tgy 4 2147 (21 e 4 22520 20)+y BB Fiya((F-'P) =

A'F+22p% %5 + Y, %81 25 ZF 4 Y4( F2p) = 0

igl 1B) yielding

P\ (VAT T 21T 20y oy Ty g 1TAT 12

.
12y 4 21,7 22

A

1

11

AT_]G + Z}AT 26 +

12,T 1o, 24T 26 + v, I
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-The method is quickly generalized to n equations with n unknowns 'The:
11m1tat1ons are the same as those for solving the single equatIOn with the
additional requirement that measurements and hence the kernels be 1ndependent
functions. " The genera] express1on to be minimized is

[ =

CoN N
(e - 2 3Ty (de- 5 J1A Ry + z ly (’B1F)T ('8’ F)+u (TF- P) (ir-Tp)

Jj=1 i=] j=1

© Differentiation with réespect to‘each of the'ﬁnkhowns yfers

oy T L] Jig i F) +y K T Kp Ke + u ((F-Kp) - T dg = ggker, 2,0
J i=

or

ol AT Iy S 1) 8| e = KT 1 4 uy P

i | J

K=1,2,...N (16)

where KH = KBT KB.

Comparison with Equation (13}, the solution for the inversion of the single
integral equation, shows that a similarity in the form of the solutions is
maintained. ~Equation (15) becomes an example of the expansion of Equations (16)
necessary to obtain the solutions, in this case two solutions from two simul-
taneous equat1ons

Respective number density is obtafhed_from the solutions for size
distributions by integrating over all sizes,

N = rP{a)da

So]ut1ons can a]so be ver1f1ed by ca1cu]at1ng attenuat1on coefficients .

With the expression

B(A) = T .- (s a) f{a)da where

sCa

C is the scatter1ng cross section for a spher1ca1 particie of radius a.

sca

Again f(a) is the particle s1ze_d1str1butjon. This expression can also

10
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serve to invert the attenuation coefficients to obtain the size
distribution.

"2.1.4 Location of the Field of View

Locating the sensor field of view was a major task. The Skylab

ephemeris and ancillary data did not give an accurate enough determination

for our purposes. From NASA Document PHO-TR524 Rev. A, page B-1, location
of the intersection point of the sensor pointing vector and the earth

‘el1ipsoid was accurate to within 5.5 ¥Xm. _ tolerance when the sensor was

pointing vertically downward. Extending the tolerance from a distance of
435 Km (orbital altitude) to 2400 Km (distance to the 1imb) gives a possible
ervor of about 30 Kkm. Attempts were made to simply translate the field of
View determined by Skybet, but all were unsatisfactory. Not only was. the
field of view unknown, but also the change in field of view between data

points was unknown, as the following demonstrates:

Let SPV' be the sensor pointing vector in ECT', a coordinate system
very close to ECT, the Earth Centered True coordinate system, and let Spy
be the senSof pointing'vector in £ECT. SC is the spacecraft vector in ECT.
If A is a 3X3 matrix which accounts for the error in SPV, then

A sBy =SBy

~If @ is the angle between the spacecraft vector and the sensor pointing

vector emanating from the spacecraft

o sPy - oSt (R - sPv)--3C
cos [SPv| « |3¢| |& - SPv'| {3c]

defining h = spacecraft altitude
R = radius of the earth
X = altitude, or ciosest approach of the pointing vector.
0 : o .
X
-~ _
ho
R Figure 2. Location of Field of View
from SKYBET Ephemeris Data

[}
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X = (R+h) sin 6 - R
= (R+h) sin {cos™' (A - sBy) - - §C} .
. _ |ﬂ . Sﬁvxl leI .
X, - X; = (R+h) (sin {cos™! (A2 SPNI) - - SC,
| | & - spvil |sCl

o (B - sbug) - - Sc
sin {cos -’ ™
_]K'-'spvél | sC}

which shows that the difference in aititude is not a Tinear relationship
'with the difference in sensor pointing vectors. Even if SPVT and SPWE'are -
close the unknown transformation matrix A which contains the pointing errors
cannot be removed. It is simple to show with the above relationship the’

1% deviation from unﬁty on the diagonal of A with Very small (< 1%) off-
diagonal contributions will produce the expected 30 Km error tolerance.

It was for this reason that Skybet data was not suitable to use for .
field-of-view location. ' |

2.1.4.7 $192 Field of View

We now derive an expression for the altitude of the sensor pointing
vector for §132. (This expression was derived by Dr. F. E. Alzofon of
Lockﬁeed Electronics Co.) Each point on a S$192 scan of the Timb corresponds
to a line of sight through the atmosphere (or sensor pointing vector) which
traverses various levels in the atmosphere down to a minimum altitude x.

The situation is shown in Figure 3. Here 0 is the center of the earth and
Skylab is located at 0'. The axis of 5192 is pointed in a direction x' |
and the instrument is scanning in a cone as shown. The angular change

- from one data point to the next is Ad =~ 0.094 degree. O'P is a specific

sensor painting vector corresponding to a specific data point on a scan.

~In order to interpret the data we need to know the minimum altitude r

measured from the center of the earth for this (and every other) sensor
pointing vector. For the purpose of this discussion we will ignore the
effects of refraction. They will be discussed in Section 2.7.6.

12
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counterclockwise
from sensor
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1
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Figure 3. §192-~Exuct Location of Field of View, A

In order to calculate r we first define two coordinate systems centered
“at points 0 and 0' with axes as shown. The axes in the two coordinate systems.
are parallel to each other. -In the coordinate system centered at 0, the
equation of the line O'P is given by

' - X - X Y-y zZ - Z
. 1. 1. 1

where X1 Y7o and z, are the coordinates of the point 0' and are given by

N E

o)
i 2]=d |
i" - and 1, mand n are the direction cosines of the 1ine 0'P. To determine 1, m

and n, we consider Figure 4. Clearly

L L e ' REPRODUCIBILITY OF THE
t... ... ORIGINAL PAGE IS POOR
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Figure 4. S$192--Exact Location of Field of View, B

Cos o

1 =
m = sin a sin ¢
n =

sin o cos ¢

The equation of the sphere of radius r is

a2yl f

Solving Equations (17)7and (20) together we obtain
2

Ay-+By+C=20

14
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where A =1+ a + b2
B=2x, a+2db
C=x7+d?- 12 ()
a=1/tana sin ¢
b=1/ tan ¢

- Now Equation (21) has two solutions corresponding to the two points in which

a line intersects a sphere. However, we are concerned with the case where
these two points are the same point, j.e., where the Tine is tangent to the
sphere. In this case -

BZ - 4AC = 0 (23)

Substituting Equations {22) in (23) we obtain

r= \/Rg'- (x cos @ + d sin o cos ¢)2

~ where Xy T - ‘/Roz - dz_

The attitude of the sensor pointing vector is given by r - RE'

A slightly different (and simpler) approximation to the above exact
expression which does not depend on d (see F1gure 3) can be obtained in the

| following manner.

~ For 5192 the altitude increment is dependent on the position of the scan
' ' relative to the earth. This can be represented as
'the ang]e of intersection, n1, between the scan arc
and the earth's surface. A1l altitude increments

AXs can be determined fram the ny and known charac-
teristics of the scan arc. The arc between two

_ . adjacent po1nts subtends an angle of o = 116. 259/
fwgure Py 51gzd-A1t1tude1239 pts. The arc between the f1rst point and any

Increment from Geometry point i subtends an angle of

- of Comical Scan

= (i-1) (116.25°)/1239
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To.éxprESs n; in terms of Ny and Bi it is seen in Figure 6 that Ny = g ~f , or
S (1 ) 0
N = m -1y (116.257)

Therefore the change in increment is

Axi - S sin n;

conical scan line

Figure 6. $192--Intersection of Conical Scan with the Earth's Surface

where S is the center-to-center spac1ng between polnts i and i+ 1, §is the
product of the angle subtended by the arc between two adaacent points and the -
distance from the sensor. The angle (.157894 milliradians) is a sensor
-characteristic: the distance from the sensor is.a function of the altitude

but almost a constant; a distance of 2400 Km was used. S then equals. .378
kilometers. For the cases where the arc reaches a maximum altitude and begins

16



A et 155000 -4

Research & Engineering Division §
BOEING AEROSPACE COMPANY f \‘w

decreasing in altitude, that is, at the maximum, the tangent of the arc is

- parallel to the tangent to the earth;'n] can be determined since the orienta-

tion of the scan is known. For the cases where such a maximum cannot be
identified in the data, ny must be allowed to vary as the data is compared
to the model thereby determ1n1ng the unknown constants through a least-
squares fit of the two curves.

2.1.4.2 S191 Field of View

The observation angle and the observation altitude for S191 was derivéd

_cosz.(sin Y cos B)

o
]

><
n

R0 sin 8 - Re

-ds follows:

The angle B is defined as the angle between the sun vector and its

projection into the orbital plane. The angle vy is defined as the sun

elevation angie at the spacécraft subsatellite point. The ang1e Y is also
the ang]e between the sun vector and its progect1on into the orbit's tangent
plane at the spacecraft.

Some -assumptions were necessary. The sun vector was not parallel to the

EREP axis vector by a small angle less than four degrees. For this deriva~
“tion the two vectors were assumed parallel. Also the S191 vector is treated

as equal to the EREP vector for this derivation of increment change between
observation angles; the actual location was not the issue. Location was
included in the derivation of scattering angle.

Where 0 is the observation angle relative to the radius of orbit,
from Figure 7,

~|DB] = R, cos (90 - v}
- TRty
|AB| = |DB|/cos B.

REPPODUCBEITY OF THE
' ORIG]NAL PAGE IS POOR
17
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_ Therefore,
8] = R, sin y/cos 8 " F .
IAD| = |AB| sin B. '

Ry sin y sin g/cos B.

|oc} = R, sin (90 - v)
- A
. . _ - RU -COS:Y. _ _ . )
and VIAClz = IAD]2 + ]DC]2 Figure 7 ¢
_ S191--Location of Field of View
then IACI2 = Rg sin st1n 8 4 Rg cos? Y.
| % cestp %
2 _ 2 2 _
Also |AC|“ = |BA}“ + |BC|“ - 2|AB|[BC}| cos ©
where [BC] = R.

Solving for COS‘G and substituting the above relationships will yié1d
cos 6 = sin y cos B, .

In this relationship R is nearly a constant and y is a function of time
due to spacecraft orbital motion. Let L and M be the positions of the space- -
craft at times Ty and Ty representing the acquisition times of two adjacent
data points. The times are clearly related to the sensor scan rate by

Ty =Ty + (et )
scan rate

1

T] + .925 sec

The angle, o, defined by the extended earth radii passing through L and M

~respectively, is determined by the product of the orbital rate and the
“inverse of the scan rate.

18
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Figure 8 'S191--Changé of Field of View -

‘If"point N is defined by the intersection of their respective orbit
tangent planes with the orbital plane and S?M and S;L are parallel
projections of sun vectors into the orbital plane, then

Yo =Y - ¢

The initial observation angle 81, is related to the initial estimate of
lowest observed altitude, Rmin’ by

=]
6, = sin

(Re * Ryin)/R)

As previously shown 8 and vy are related by

'sin y cos B = cos &

then . SRR (e sin'I.(cos e]/cos 3)
and = - : 0y = cos™! (sin y; cos g)
and Xy = RD'S'IH B.i - R,

i e

_ where_xi_is the altitude of point 1.
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2.1.4.3 S190A Field of View

The field of view of S190A as described in NASA PHO-TR524 is 21.24° x
21.24° which is about 900 Km at the earth's 1imb 2400 Km distant
(2 [2400]tan 2l.24 24 ). The data frame is 57 x 57 mm. Using a micro-
densitomaeter w1th a sensing aperture of 20 y, each data point records .316

Km { = 20u % 900 Km) at the earth's limb. If data points are recorded
57X10 T

every 20u, center to center spac1ng is a150 .316 Km.

‘The S190A densitometer scans were aligned to be approximately normal to
the earth. If the alignment were in error up to 200, the altitude increment
would be between .30 ¥m and .32 Km.

2.1.5 Noise Reduction

Noise elements identified and treated consisted of a Gaussian or random
noise, a high frequency noise, a low frequency noise, and a coherent noise
generally known as "herringbone" noise.

The random noise was to be expected. Nevertheless the random nature of

“the noise was verified by constructing noise histograms and verifying their

characteristic Gaussian shapes. The histograms were not exactly Gaussian
due to the contributions of coherent noise and aerosol layer effects, however,
the curves approximated the Gaussian shape well.

The random noise was obtained for histogramming by fititing the measure-

‘ments on the 1imb with a sixth order polynomial and finding the deviations

from the polynomial. This removed the effects of amplitude. Using a

~polynomial approximation, however, does not account for the "bumps" caused

by aerosol layers, therefore the Gaussian shape of the histograms should
have a small distortion as they did.

~The random noise was reduced by averaging twenty-five adjacent scans.
The number of scans to zverage was arrived at by censidering the advantage

- of using more scans (the standard deviation decreases as the inverse of the

square root of the number of scans) versus the rate of Field of view shift
across pixels. The shift rate was found by determining the average apparent

- point of earth-atmosphere interface. Two such po1nts were found 2692 scans

apart. With a change in the pixel number of 300, the rate becomes about
+11 pixels per scan, or 2.8 pixels per 25 scans.

20
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A low pass Fourier filter was applied to the result of averaging. The
filter was designed to suppress high'frequency noise egquivalent to a period
on the Timb of less than about 2 Km. The filter was applied to deviations
of the data {average curve) from a sixth order polynomial least squares
approximation to the data. Figure 9 shows the typical result; the
"herringbone” noise reported by NASA becomes obvious. The frequency

- measured in this data appears to be about 10 KHz. The Fourier filter was

therefore modified to suppress this noise, which reduces the effective
resolution to about 2.2 Km on the Timb.

~ After the data had been Fourier filtered it was apparent that we were
not successful in removing all coherent noise. A twenty-five point convolu-

- tion filter was therefore applied to the data in the time domain rather than

Fourier transform the data again to be filtered in the frequency domain.

~ This filter remaved much of the noise; however, some lower frequency

noise remained. For this reason the sixth order polynomial fit of the data
was analyzed in addition to the filtered data; this gives a general level of
aerosol ;ontent.

The Tow frequency noise was suspected when it was noted that the least
squares sixth order polynomial approximation to the data showed a shift in
amplitude>between several adjacent scans. A 17 cycles/sec noise was re-
ported by NASA personnel. With a scan rate of 94.8 scans/sec we searched
for a noise with & period of approximately 5. 5 scans/cycle.

The frequency and amplitude were determined by plotting a selected point
on a scan as a- function of scan. A twenty point curve was thus derived, for
example the value of data point 500 could be plotted for scans 200 through
220. Several such curves were obtained by repeating the procedure for

- different points on the scan. To emphasize differences and to minimize

effects of amplitude, the Towest value on each twenty point curve was sub-
tracted from the respective curves. The plots for each set of scans were then '
averaged to obtain a repkesentative curve for that set. Plots were obtained

" both from the port1on of the scan covering the Timb and from the portion
. of the scan recordi. , dark space. The Timb plots are important simply be-

cause that is the data being analyzed for aerosol effects; it is preferable
not to extrapo]ate resuTts from other data 1nto this data.. The dark space

- plots are va]uab]e since 1dea11y they record no external energy; any

: _.2]
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Figure 9. S192--Pass 47, Tape 934527, Scans 350-374, Band 3.
Deviations from Polynomial Fit After Fourier Filtering

REPRODUCIBILITY OF THE
ORIGINAL PACE IS POOR
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fluctuation from scan to scan should be due to the sensor alone thereby
making the variations more apparent. For the limb plots the value plotted
was obtained from the polynomial approx1mat10n of the data; for the dark

- space plots the value plotted was obtained from a stra1ght Tine approximatien
of the data. This was necessary since the Gaussian noise wou1d camouflage
the per1od1c noise being sought.

Figures 10 through 12 are representative of the low frequency plots for
the 1imb. Figure 13 is representative of the plots derived from dark space. :
A comparison shows that they are consistent both in amplitude and in ;, ' ;|
frequency. Both sets reveal a frequency of about 5.8 scans/cyc]e or 16. 3 v .
cycles/sec

The low frequency noise was therefore determ1ned The résu}t‘on each
scan is an additive constant which is unknown, but related scan to scan. '
However, the ahove procedure to suppress random noise averages twenty-five
adjacent scans which covers about four cycles. Therefbre, only an unknown,
.. additive constant remains. This constant is determined by a solution of
an'overdetermined set of Equatiohs during the scaling process. A more
complete description of the scaling process is found in Section 3.1.2.

- 2.1.6  Refraction

Refraction was included in the scaling of the data by assigning the , i
appropriate observation altitude to each measured point. The model remained o }
that which would be observed without refraction; the location of data points i
were distributed to remove the effects of refraction. !

To. deveTop the proper reTat1onsh1ps ‘the increment change in ohservation.
angle on the vertical was first determined; this increment is not that incre-
ment inherent in the design of the instrument as described in Section 2.1.4.
Since we are seeking to describe an eguivalent sensor which observes a path
normal to the earth one need not consider what is observed but simply the
" observation chahattéristics.f.The'geometric:pélationship:oﬁ:Figure-14:yie]ds_~

i i o e e e i et
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Scan L
S192--Pass 61, Tape 932867, Bamgt1.

Low Frequency

Scan to Scan Noise for Four Points on the Limb

1

Scan

S192--Pass 61, Tape 932867, Band 1.

Low Frequency’
Scan to Scan Noise for Fqur Points on the Limb
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Figure 12.5192--Pass 61, Tape 932857, Band 3. Low Fr¥quency
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- Figure 14, Observat1on Angle at the Sensor for a Stra1ght L1ne Path

Thus for $192, an. a1t1tude provided by the der1vat1on of Sectzon 2.1.4. 5192
can be converted to an equivalent observat1on angle 8. For S191 Section -
2.1.4. 3191 derives the observation angle directly. Knowing the observation
angle, one can obtain the altitude viewed by tracing the refracted light
‘path through the atmosphere. The data point acquired at the given observa-
tion angle is then assigned the obtained altitude, the complete set of

which defines the 1imb brightness profile with the effects of refraction

' remOVéd.- This profile 15 then compared to the model for scaling and calibra-
tion of the data as defined in Section 3.1.2. | ' |

- To trace the refracted 1ight path the atmospheric refraction model as
implemented by Dr. David E. Pitts of NASA and documented in NASA TMX-58033,
"A Madel Atmosphere for Earth Resources App1ications"7 was used.  For a
 path Teaving altitude X at an angle vy from the earth's normal, this program
uses the "law of sines" to find ¢', the angle between the path and the
~earth's normal at an altitude Z above X. The program considers the atmos-
phere as a number of layers and iterétes through them until the 1ight path
emerges from the final Tayer. The geometry is illustrated in Figure 15, the
relationship for refraction is.

o' = sin” (O r’ s1n g

The indices of refraction n‘ andln“, of the respective 1ayérs'Were computed
Vw1th1n the same program Because refraction was only a small effect, any
'1naccurac1es caused by appr0x1mated input parameters would be “insignificant.
Therefore, one set of temperature and pressure as a function of altitude
were used throughout be1ng prGV1ded by the u.s. Standard Atmosphere, 1962 8
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Figure 15,
' Refract1on Through the Layers of the Atmosphere

Because this 1nve$tigation observes the lowest altitude at avtangent
(y = n/2) a table of altitude versus emerging angle was derived by assigning'
an altitude and initiating v to be m/2 and iterating through the atmosphere
to obtain the emerging angle. Because essentially no refraction occurs above
20 Km iteration was terminated there. The emerging angle, ¢', was related
- to the observation angle, , at the spacecraft by the expression

-1

8 = sin (Rg * 20)_sin.¢'/R0

as can be seen by Figure 16 is the "law of sines".

i The program was verified by using another expression derived by Baum

. .. and Code which derives the amount of refraction occuring as Tight passes:

j through a planetary atmosphere having exponentially decreasing density as
altitude 1ncreases:

ZnR )1/2

by = (n'-1) exp |(R' = Ry)/H
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where n' is the refractive index at X', a veference altitude for which n' is
known (R* = R, + X'). X, = R' - R, is the altitude of closest approach
to the planet; Re is again the radius of the earth. A scale height, H, of

8 Km was used.

 The Pitts 'program ca]cul'ates"q;‘ and.'a' . the Baum and Code expression
calculates ¢, shown in Figure 17. It can be seen that

o' = w/2 + ¢/2 - «.

Comparisdn of the results of the two agfee to better than 1% which is as
accurate as ti2 value used for the scale height narameter.

Figure 18
Observation Angle at the Sensor for a Refracted Path
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2.2 DATA ACQUISITICON

This investigation used data from S190A, S191, and $192. A1l data was
acquired with the Skylab vehicle in the solar inertial mode as opposed to the
Z-tocal-Vertical mode This pos1t1ons the spacecraft such that the sensors’
po1nt1ng vector v1ews the earth's Timb twice per orbit. Each of these two
~ 1imb passes provides a complete Timb data set. v

2.2.1 The S190A Data

The S190A sensor consists of six 70 mm lenses mounted in a single
camera body. It produces film imagery of a scene in six spectra1 regions.
The regions and film types are listed in Table 1.

Table 1. 7190A Spectral Bands

‘Spectral Region . o - Film _Type

.5 - .6 um B/ S0~022
6~ .7  B/W S0-022
.7 - .8 IR B/W EK2424
.8 -.9 IR B/W EK2424
.5 - .88 IR Color EK2443
4

-7  High Resoiution Co]or 80—356

The S]QOA camera bank was used because it prov1ded maximum spatial
resolutxon and m1n1mum geometr1c d1st0rt1on of the 1mage

2.2.2 The 5191 Data

The $191 spectrometer was used to acquire high spectral resolution
data within its field of view of one milliradian (about 2.4 km in altitude
at the earth's ]imb) Radiance data from the first filter wheel was used..

" This data includes wavelengths from 0. 38 um to 2.5 ym and has a wave]ength—
dependent spectral resolution of approximately 0.08 A. We did not use the
5191 data in. the infrared bands and the first, or lowest, wavelength bands =
since it was reported that this data had errors dya to off-axis rejection
problem. An éTgofithm was developed to ;orkect for this effect but we were
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unable to acquire data corrected by this algorithm.

Approx1mate]y one spectral scan was acquired per second. In solar
inertial wode the orbital motion of the satellite caused the line of sight
of S191 to traverse the altitude at the earth's 1imb. The data was there-
fore acquired by fixing the sensor pointing angle relative to the spacecraft
and a110w1ng the spacecraft motion to produce the altitude scan. At one
spectral scan per second the Tine of sight traversed about 2.4 Kn in-
altitude when the motion of the sensor line of sight was normal to the

‘earth and in the orb1ta1 plane. For a 11ne of sight off of the orbital

plane at an angle of about 440, 1t traversed about 1.7 Km per spectra] scan.

- The S191 spectrometer recorded three compiete scans through the Timb
for each complete limb data set. This was to obtain data in the same ap-
proximate region of the earth for three angles of 1imb observation relative

~to the direction of the incident solar radiation, all near 180° backscatter.

The sensor was pointed just below the horizon of the spacecraft to cause

the field of view to scan upward through the atmosphere. At intervals of
(35/cos B) seconds the VTS*was manually reset to bélow the horizon and the
process was repeated. The angle, B, is that angle defined by the inter-
section of the sun to earth center Tine and the proaect1on of this Tine on the »
orbital plane. The ¥irst scan was initiated when the spacecraft was about ,
33% from the terminator on the daylight side and repeated until the vehicle

was about 13° from the terminator. These guidelines were derived from the
fact that near 33° from the terminator the 1imb becomes visible with the VTS

_about 10 forward at 13° from the terminator the Timb is seen behind the

spacecraft at ang]es greater than 10°, It is during this per1od at-a time .
where the spacecraft position in orbit is 3.25° before the terminator,
that the S192 scanner initiated its data acqu151t1on for approximately
five seconds. At least three frames of S190A were exposed dur1ng th1s

'bpefiod also.

L 2.2.3 The 5192 Data |

The third sensor of EREP used in th1s 1nvest1gat1on was the multi-

'i'_spectra1 con1cal scanner 5192, ‘Data was recorded s1mu1taneous1y in thirteen
,spectra] bands with wavelength between .41 yu and 12.5 u as shown in Table 2.
~The conical scan has an angle of revolution, a, of 5032°.. Exper1ment

data is acqu1red in the front 1160 15', the rema1n1ng port10n of the scan
gy
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Table 2. S192 Spectral Bands

&an_i- Spectral Range (um)
1 41 - .46
2 .86 - .51
3 .52 - .56
4 .56 ~ .61
5 .62 - .67
6 .68 - .76
7 .78 - .88
8 .98 - 1.08
9 1.09 - 1.19

10 1.2 =123
1 1.55 - 1.75
12 2.1 -2.35

13 10.2 - 12.5

~ being assigned to housekeeping data. One conical scan was recorded approxi-
mately every-.01'setond, therefore the effect produced by motion of the
spacecraft during one scan was negligible. The scanner was allowed to
record several thousand 1imb scans as it passed through the Timb. This data
provided a horizontal distribution of stratospheric characteristics as wel’
as sufficient data to reduce system noise effects.

2.3 DESCRIPTION -OF ACQUIRED DATA

Analysis of the S190A data was done for Frame 175 of Pass 47 taken on

" September 18, 1973 at 44 minutes 8 seconds after midnight, GMT. Three micro-

densitometer scans were taken from the frame. The first was taken one-

half inch from the left edge of the frame, the second was taken.in the mid-

dle of the frame, and the third was measured one-half jinch from the right

~ edga of the frame, Table 3 Tists the variable information for these three
Only one S191 scan was'analyzed.' This was the first data take of Pass

47 ‘taken on September 18, 1973. The scan covered from 44 minutes 19 seconds

through 44 minutes 52 seconds after midnight, GMT. The sun elevation
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“angle at subsatellite point on earth was 2.63% and the data was acquired
at 43°N, 104%. | | -
Eight sets of scans were analyzed from the S192 data. Table 4 sum-
marizes the variable information of these scans., The five sets of scans
from Pass 47 were taken on September 18, 1973, 44 minutes after midnight,
GMT. - | | |
The three sets of scans from Pass 61 were taken on December 5, 1973,
16 hours and 45 minutes after midnight.

_Table 3. SY90A - Pass 47, Frame 175

Latitude Longitude Sun~angle
Left AN - 10s% 2.31°
Middie 45° N 103° | 2,219

Right 42° N 103° u 2.16°

Table 4. S192

Pass Tape No. Scans Time (sec)* Lat-Long** Sun—ahg1é

47 934527  350-374  10.80 . 43%N-104% 2,580
47 934527  600-624  13.44 43%-108%  2.49°
a7 934528  100-124  15.67 43°N-104% 2.21°
47 934528 300-324  17.78  43%-104%  2.09°
47 934528  614-638  21.10 42°8-103% 2.00°
61 . 932867 - 100-124  41.12 45°5-33°E 4.49°
61 932867  600-624  46.44 45%5-38% - 4230

61 932857  120-144  69.54 45%5-36°F 3.08°

*number of seconds after stated times the scans took place
**¥position on the earth where the earth's tangent is parallel to
_ the sensor line of sight at its closest approach (point a of
figure 14) - el
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3.0 DATA ANALYSIS

3.1 THE $192 DATA

The first step in analyzing the $192 data was to remove the noise
insofar as possible using the techniques described in Section 2.1.5. This
involved the following steps:

(1) Put data in engineering units using the calibration constants
supplied on the data tape header record.

(2) Average 25 adjacent scans.

(3} Fit the exponential of a 6th order polynomial to the result
of step (2).

(4) Find the difference betwean the results of (2) ahd (3).
(5) Apply a Fourier filter to the results of (4).
(6) Apb?y é convo1ﬁtion filter to the results of (5).
__(7) Add the results of (6) to the fit found in (3) for a smoothed

data scan.

In some of the S192 scans the maximum altitude was Tow enough that. one
could determine at what point in the scan it occurred. In other cases the

scan extended so far inta deep space that this could not be done. These

two cases are treated somewhat differentiy.

3.1.1 Position in Scan of Maximum Altitude Known

In.this casé a re]atiﬁe altitude scale can be obtéined using the
methods of Section 2.71.4. However, an absolute scale cannot be directly

" determined because the absolute value for the maximum altitude is not known.

We attempted to determine the absolute scale by comparing the

- measured curve with a simulated curve calculated from Equation (8} of
~Section 2.1.1. By varying the altitude of the first point a least squares

fit between the measured curve and the model curve was found as a function

of starting altitude. The fit was found only in the last half of the

curves, i.e., the higher altitudes, where the aerosol contribution is
minimal and the measured data should be very close to the simulated data.
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"In such a comparison of curves, one expects £o require some adjustment
of the brightness as well as the altitude because there are uncertainties
in both the measured data and the model. We assumed variations of the
form S; = a T; + b where the S, are the model values and the T; are the
measured data values. For each choice of starting altitude, a and b
are obtained through a least squares solution of an overdetermined set of
gquations. Scan points used for Si and Ti were chosen to weight the second
half of the curves. Only every tenth point was included from the first half
of the curves. Every point was included from the second haif. It was hoped
that a would be very close to one, and b close to zero. In that case, .
one would have sume confidence in the absolute altitudes obtained.

The inversion of the data was carried out in two ways. The first was
to simply invert the measured data using the information of Section 2.1.2.
Only the relative altitudes, which were known, are required for this. This
leads to an altitude profile for g whose relative scale is known but whose
absolute position in space is not known. This can be determined approxi-
mately by relating it to the absolute altitude scale determined by the
procedure described above or by comparing this profile to the one in the
Elterman model,

The second data inversion technique involved inverting the data after
it had been transformed using the coefiicients a and b determined above.
The process was the same except that the data had been scaled with a and b.

3.1.2 Position in Scan of Maximum ATtitude Not Known

In the case where no peak is present, the analysis is complicated by
the fact that there is no direct method for determining even the relative
altitudes.

In this case the data curve was also fit to the model by finding the
least squares solution to the overdetermined set of linear equations,
a ti'+ b = S5, where ti-is the measured brightness and S, is the model
brightness at the same altitude.

The altitudes were assigned using an iterative process which varies
both with the assignment of an altitude to the first data point and with the
assignment of the increment between the first two altitudes. As shown
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earlier the first increment determines all subsequent intervals. An initial
estimate of altitude was made based on the point of max i mum sTope of the
curve. The point of maximum siope of the data is assumed to be at the same
altitude as the model. This assumption could be in error by 3 Km but it
serves well as a first estimate. By a]?owing the data to converge on d

best fit the unknown constants are determined. An obvious shortcoming of

- this technique is the severe dependency on the model. In an attempt to

bracket the results the two E1terman]’2 models of 1964 and 1968 were used as,
respectively, a low and a high aerosol conten: stratosphere.

3.2 THE 5191 DATA

The first step in analyzing the S191 data was to average several
adjacent intensity values within a spectral scan. Although this decreases
spectral resolution it was necessary in order to reduce the random noise
within each data value caused by low irradiance. Table 5 gives the
spectral bands created in this way

‘Relative altitude increments were determined as deseribed in
Section 2.71.4; the absolute aTtitudes were not known. In the same manner
as was described in Section 3.1.1 for $792, the data was compared to a
simulated curve calculated from Equation (8) of Section 2.1.1 in order to
determine absolute altitudes. Again it was hoped that the scaling constants
determined by the Teast squares solution of the comparison would only
slightly modify the calibration provided with ths data by NASA.

Table 5. S191 Spectral Bands

Band Spectral Range (um) Average Wavelength (um)

1 46 - .50 .48
2 .51 - .55 .53

3 .56 - .60 , .58

4 .61 - .66 .. .63
5 .66 - .70 ' : .68

6 .71 - .75 .73
7 .76 - .80 T
8 .81 - .85 .83

9 .86 - .90 .88
10 . .915 ~ 945 e
n .9 - .99 - .975
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3.3 THE S190A DATA
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£

Calibration of film densities is done by constructing a denSity'vs. Tog
‘exposure curve from a calibration step wedge. These curves are given for
each roll of original film. We have duplicate film, so certa1n steps must
be taken to construct this curve.

Koty ot

Lsimmen

Py

Machine calibration step wedges and the density measured at each step
| by PTD*are supp11ed There is a separate step wedge for each of the three -
duplicate film types. Using the densities that we measured on these step
- wedges, and-those-supp]ied,;avméchine cross-calibration curve was: con-
structed for each duplicate film type With these turvas densities
measured by PTD can be converted to equ1vaTent densities which we would
have measured with our densitometer. ' ' '

[EERT Y
| S TP

!

Fa

I

We were supplied with the densities measured by PTD on the step wedge
for each duplicate roll of film. Using the machine cross-calibration curve,
these densities were converted to the dens1t1es which we would have
measured. Because each step on a duplicate step wedge corresponds to the
-same Tlog exposure increment as the same step on the original step wedge,
109 exposure values for the densities we measure can be found by a user
_dup]icate density Vs, or1g}na1 ]og exposure curve.

o

[———— :
!

i , The or1g1na] log exposure at each step is found from the log exposure
at the first step of the wedge plus the Tog exposure increment for each

- step. The 10g exposure at the first step is supp11ed in the Sensitometric -
Data Package. These values must be adjusted for conversion from the
Wratten filter, used in the construct10n of the step wedges to the f11ght
'type filter. These adaustment factors are aliso supp11ed in the

] Sensitometric Data Package. The Tog exposure increments were supp11ed by

s Harold Lockwood of Technicolor Graphic Services, Inc.

Htmmmte &

i Log exposure is first converted to exposure, then exposure is converted
. .. to radiance values by the following equation

E-af2. 1977
TTT't_

R =

radiance incident at the Tens in watt/cm2
_ exposure in ergs/cm2
*Photograph1c Technology D1v1s1on - NASA JSC

3

£
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F = f-stop number
T = optical system transmission
t = duration of exposure in seconds

Sensitivity is lost in the film dupiication process. Figures 18 through 21
show the original and duplicate characteristic curves for Rolls 43, 44, 47
and 48 (Stations 1, 2, 5 and 6) of Pass 47. The loss of sensitivity is
readily observable from these curves. As many as 10 density levels {steps
of the step wedge) with a.change .in density of 1 on the original film
produce constant density on the duplicate film. Only 7 steps of the step
wedge or +1,05 log exposure units lie within the linear portion of the curve.

The S190A data was measured as duplicate film déhsity with a 400 x 20 pm
~aperture densitometer oriented with iength tangent to the earth.

In addition to the convolution filter inherent in using a 400 x 20 um
aperture, the values were further fiitered with a fourteen point convolution
filter. This was necessary because the film grain noise still dominated
the density f]uctuations.

As with the other sensors, the absolute altitudes and altitude increment
were unknown. In the manner described in Section 3.1.1, the data was best
fit to a model brightness curve by iterating on starting altitude and
increment, to determine altitudes, scaled brightness values and attenuation
coefficient profiles.
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........... o

Roll 43-24

Tog exposure weseseneess  Original film

e quplicate film
Figure 18 S190A--Pass 47, D-log E Curves for Original and
Duplicate Film. Roll 43-24.

Roll 44-22

[SETE SRRETIARE SRRSAS: SHE
Tog exposure

Figure 19.5190A--Pass 47, D-log E Curves for Original and
Duplicate Film., Roll 44-22
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Figure 20 S190A--Pass 47,
Duplicate Film.

log exposure

D-log Curves
Roll 47-32.

Figure 21.5190A--Pass 47, D-log E Curves for
Duplicate Film. Rol] 48-32,

i
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4.0 RESULTS

5192 Resuits

- One of the more interesting results was observed in the $192 data
(pages 49 through 82). A peak was apparent in the lower altitudes that
was not present in the shorter wavelengths and grew with increasing wave-
Tength beginning with band 7 (.825 wm). Figures on pages 49 through 72
are the radiance values in mi]?iwatts/cmz-um~str from pass 61.  Each has
been averaged over- twenty-five scans to remove most of the random noise.
However, it is apparent that some random noise still remains. The first
twelve charts are from scans 100-124; the second twelve charts are from
scans 600-624 showing the continuance for several kilometers. Pages 73
through 82 show a similar peak from pass 47. These ten charts were scaled
to an inaccurate model which therefore nullifies the radiance and altitude
values shown. . However, the charts serve to illustrate the similar wave-
tength dependent peak. Judging from the altitude values obtained from the
scaling process previously described {and illustrated below) one can
estimate the altitude of the peaks to be around 11 Km. There were cirrus
clouds present in the S190A imagery. We therefore suggest that the peak
could be a cirrus cloud at about 36,000 ft. The wavelength dependence 1is
due to the Timb view. The blue portions of the incident 1ight are scattered
out of the incident path. The cloud scatters red light which is further
reddened through its path out of the atmosphere. Hence the sensor detects
only the longer wavelength radiation. The shorter wavelength radiation
effectively does not reach the lower Tevel at which the cloud .is seen.

The charts of pages 83 through 87 are the attenuation coefficients for
ten 5192 wavelengths obtained by inverting data from pass 61. The relative
altitude increment was determined by'knowledge of the relative position of
the highest point in the scan arc as was described earlier. The data was

" not scaled in intensity or altitude. The results are therefore valuable .

to identify relative values and fluctuations in the attenuation coefficients.
Comparlson w1th var1ous mode1s or previous results wou]d be necessary to as-
sign a1t1tudes however ass1gnment can be done by comparison with the fol-
lowing charts To scale them accurate1y in this way would require an
additional least squares curve matching which was not performed A

genera1 1nterpretat1on is also possible simply by not1ng the attenuat1on
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coefficient values and the relative variations. These variations may'be
due to sensor noise or to aerosol variations. We were unable to complete
a study of these possibilities due to other complications. '

The charts of pages 88 through 189 contain the results of scaling

" and inverting the S192 data for passes 47 and 61 using the variable altitude
and increment scheme as previously discussed. The data is presented

by pass, for the two models. Each result is represented as three charts:
(1) the Timb brightness measurement as scaled with the model used to

scale, (2) the attenuation coefficients obtained by inverting the brightness
with the model for a Rayleigh atmosphere (no aerasols) and with the model
attenuation coefficients (the first and last 5 points should be disregarded
due to deviations inherent in the Fourier inversion process), and (3) a ratio
of the aerosol and Rayleigh coefficients to accentuate layers.

Table 7 shows the additive and multiplicative scale factors applied
to the data. Since one would expect the multiplicative factor, a, to be
near unity if the NASA provided calibration were close, only those results
which used factors close to unity are presented here. One would also expect
that the additive bias, b, would be small compared to the data. The actual
criteria used to select the best results were as follows: |

1) .95 <a< i

2) b<0and .5< [b] < 1.5

deep space value —
3) a good agreement in brightness values between the model and the
measurements for the upper half of the curve.

~ Awong things apparent in the data is a layer centered at 40 Km about
10 Km deep, a tayer at 35 Km of approximately the same depth and one at from
20 to 25 Km fram 5 to 10 Km deep.

The 40 Km layer is apparent in the p1ots'on pages 90, 99, 102 111, 120,
135 and 156. Of these scans, all but those on pages 102 and 120 meet the
criteria established above. The plot on 120 meets the criteria except that
|bl/deep space value = .35, stightly smaller than allowed. All of these
plots are for bands 1 or 2. I ’

Pages on which the 35 Km layer can be seen are 93, 105, 108, 114, 117,
126, 132, 141, 144, 150, 153 and 153. Only the scans on pages 153 and 159
meet the criteria, and the fit for the data on page 159 (seen on page 157)
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is suspicious because of the large deviation in the first half of the curve

- from the model and previous results.

It seems that the apparent layers seen at 35 Km and 40 Km represent a
s1ng1e layer which is located in the 1nvers1on process at different altitudes

~due to inaccurate scaling. Because Five of seven scans that placed the layer

at 40 Km meet the above criteria and a sixth (No. 120) aTmost does but only
two of twelve that placed it at 35 Km meet the criteria, we conclude that

: 40 Km is most 1ikely the correct altitude of the layer.

We acquire more confidence in the 40 Km results when we note that in
pairs the charts represent the same data scaled to the two models; that is,
Charts 90 and 11%, Charts 99 and 120, and Charts 135 and 156 are the results
of scaling and inverting three data sets to the 1964 and 1968 models
respectively. The first two sets are band 1 from pass 47 at two different
locations (different scan numbers). The third data set is band 2 from
pass 61 which, of course, is a third location. The numerical results between
models remain significantly different. Within each model the results for the
40- Km layer are consistent: the 1964 model places the attenuation coefficient
rat1o of aerosol to Ray]elgh at .13 the 1964 places the value at .23.

In reviewing the 20 Km Tayer one must account for the inherent error

in the first few points caused by the 1nversion'proceés. With this in mind,

atmost all of the S192 charts indicate a large 20 Km Tayer exists. Again,
where we restrict our attention to those which satisfy the above criteria for

‘a successful scale, charts 90, 99, 111, 135, and 156 emerge. And again we

will include chart 120 which almost satisfies it. As before, Charts 90 and

- 111 vepresent the results using models 1964 and 1968 respectively, as.do

Charts 97 and 120 and Charts 135 and 156, for the same measured data. Each
of the pair of charts represent a different Tocation (scan number or pass).
The numerical results are model dependent but consistent within each model:
the 1964 model finds the attenuation coefficient ratio (aerosol:Rayleigh)

to’'be about .1; the 1968 model finds it to be between..75 and 1.0.

S191 Results

_ The S191 was a much more sensitive instrument than the $192 but
apparently 1ts'absd1ute radiometric calibration was less accurate. Hence,
the criteria for se]ect1ng the best S191 sca11ng and 1nvers10n results were
changed from the S192 criteria as follows: '
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1) .75 < a < 1.25

2) a good agreement in brightness values between the model and the
measurements for the upper two thirds of the curve

3) No defined restriction on the bias value, b, because a deep space
value was not obtained.

Where the S192 instrument was sensitive in the Tower wavelengths to about 45
Km, the S191 instrument was sensitive to about 70 Km. Hence, we could re-
quire that a iarger portion of the brightneés curve match the model since
the model is less infiuenced by aerosol changes in these regions. Also, the
restrictions on the multiplicative scale factor, a, was relaxed as a result
of the documentation stating that S$191 radiometric values could be in

error by 15%. The only restriction on the bias va]ue, b, was that it be
small in comparison to the data values.

Aerosol layers are apparent in many bands at about 20, 40, 50, 60, and
67 Km. Those at 20 and 40 Km are consistent with the $192 results. Charts
160-201 contain S191 charts of the results. A1l show several layers con-
sistent among themselves. Charts 162, 165, 174, and 183 are those which
satisfy the above criteria. Table 6 summarizes the information on these
charts showing for each chart the location of an aerosol layer and the value
of the attenuation coefficient ratio (aerosol:Rayleigh) at that location.

Within the 1964 model (No. 162, 165, and 174} is an indication of the
wavelength dependence of the layer, and hence its aerosol size. However,
one must be careful not to conclude too much from such few data points.

It would be valuable to extract more points from the S191 data in the future
- to-better derive conclusions. From the information in tabie 6 we note that
layers at 40, 50, and 55 Km are more responsive to the longer wavelengths
shown while layers at 59 and 66 Km are most respons1ve around .53 u falling
off at higher and lower wavelengths.

‘Charts 162 and 183 are the results of scaling and inverting the same
data to the 1964 model énd the 1968 model, respectively. Note that the .
same layers are evident but the derived attenuation coefficient values,
and hence the ratios. (aerosol Ray]e1gh) are different. For example,
respectively for the 1964 model and the 1968 model ratio values obtained are
.07 and .24 at 23 Km, .04 and .22 at 39 K, .09 and .26 at 48 Km, and .7
-and .86 at 59 Km. o ' :

44



Research & Engineering Division
BOEING AEROSPACE COMPANY

Approximate Alti tude 5

- 2

Chart No. o o 2

(Page No.) 15 20 30 40 50 55 60 65 2

162 a) 23 29 39 48 55 59 66 .48
, b} .07 .05 .04 .09 .16 .7 .04

165 a) 19 38 49 59 67 .53
b) -2 2 .4 1. .7

174 a) 14 19 29 41 47 52 59 63 68 71
b) .1 .08 .04 .24 .58 .43 .43 .2 .04

183 a; 23 30 39 48 55 59 67 .48

b

24 .2 .22 .26 .37 .86 .3

' Table 6. 5191 Summary Results
{a) Aerosol Layer Altitude
(b) Aerosol:Rayleigh attenuation coefficient ratio

S190A Results

The results from the S190 sensor must be presented as only qualitative

A

S

Model

o
=

64

68

since the attempts to scale and calibrate the data were unsatisfactory. This

is undoubtedly because of the limited sensitivity of the duplicate film.

The film was sensitive to Tight intensities below 30 Km where the scaling was

severely mode1 dependent. we.therefore repbrt the findings as relative and

" qualitative. The altitude and coefficient numbers are only for comparison
between charts with no real world meaning. The data was scaled against
two models which are labeled 1964 and 1968 models.  These are not the same
" models used for the $197 and S192 data analysis, however, because of a
programming error. It was felt that there was 1ittle advantage in redoing
the work since the résults were not quantitative anyway and the models
served well enough to assign an approximate altitude sufficient for in-
version. _ o _ . S

" For station 6, A = .55 yu, pages 204, 207, and 210 show the results
from the 1964 model. Layers are apparent at 16, 22, and 26 Km. On pages
219, 222, and 225 the same data scaled to the 1968 model shows layers at
22, 26, and 32 Km.

For station 5, A = .68 u, pages 213 and 216 show the results from the
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1964 model. Layers are apparent at 15, 20, and 22 km. The 1968 model results
are shown on pages 228, 231, and 234. Page 237 contains results from station
2, A = .85 .m scaled to the 1968 model.
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Table 7. Multiplicative and Additive (x10°%)
for §192 Data, Passes 61 and 47

PASS 61

BOEING A

1968 Mode]

Research & Engineering Division %

EROSPACE COMPANY i

Scale Factors

Dark Space

1964 Model v Bias Value
Scans___(100-124) (600-624) (120-144) (100-124) (600-624) (120-144) (x 1074
Band : - ' ’

. - .9576 1.0573 .9202 .9507
b - 1.267 9.174 6333 -T1.242

, a 9802 - 1.0726 1.105  1.029

b . -1.200 -2.377 - 7.214  -1.716
, @ . - - 1.0621  1.1227  1.1087

b - - - 4.049 -.9139  -1.690

PASS 47
(100-124)  (350-374)  (100-124)  (350-374)
, a ,9990 .9956 .9545 .9522.
b -.8209 -.5310 -.520 -.3153 889

, a - 1.1011 - 1.0608

b -3.284 - -2.636 1.583
; a .9955 1.0700 .8909 -

b -3.475 -3.104 2.793 - 1.414
, 3 - 1.0255 -
4 - -] -alee - 1.836
6 @ .9992 - -

b -2.874 - - .959
, a - - 1.0245 - 1.0782

b - -3.333 - -3.177 1.406
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Table 8. Multiplicative Scale Factors for S19% Data, Pass 47

Aum)

.48
.53
.63
.68
.73
.78
.83

1968 Model

1.17
.9283
5006 (x)
L7477
.8281
.8607
8264

48

1964 Mode?

1‘249,
. 9904
.5636 (x)
.8978
1.228
1.611 (x)
2.84 (x)
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5.0 SUMMARY AND RECOMMENDATIONS

The investigation results verify the analysis system developed to reduce
1imb aerosol data. The system is capabie of analyzing large volumes of data
quickly to yield altitude profiles of attenuation coefficients for each wave-
tength band. The sensors appear able to penetrate the atmosphere to about
10 Km for the longer wavelengths and to about 20 Km for the shorter wave-
Tengths. The $192 multispectral scanner appears sensitive to an altitude
of about 45 Km for the shorter wavelengths. The S191 sensitivity appears to
extend to about 70 Km. The S190A dupiicate fiim appears to be sensitive to
about 29 Km. The data contained noise which had to be analyzed and removed
which subtracted from the time available for aerosol analysis. In general,
the sensors appeared adequate to detect stratospheric aerosols although
future instruments would benefit from the experience gained through EREP.

For example, more effort could be devoted to the pointing accuracy of the
instruments thereby avoiding the necessity to compare with models in order
to locate the field of view. Accurate radiometric calibration is also
critical. Therefore efforts to attain the optimum calibration should be
continved.

The problems with the data and the effort it required to solve the
problems prevented the analysis of the data for aerosol size distribution
and number density in the manner described in the text. This would be a
candidate for future work.

In Section 4.0 much analysis results were presented. It was noted that
several aerosol layers could be identified with a quantitative measurement
of their attenuation coefficients. However, it was also noted that the
results were dependent on the model invoked to scale and locate the data.
The implication is clear that additional refinement of the models is neces-
sary, also a candidate for future work. The point should be emphasized that
the results were only as accurate as the model approximates the stratosphere.
This could easily be the cause of inconsistencies. For example, the con-
sistent increase of the values of attenuation coefficients in the lower
altitudes above those predicted by the models is most likely due to the
single scattering approximation when in fact multiple scattering is actually
occurring in this region. Another improvement in the model would be to
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include the effects of a scattering function (P(x}) (Section 2.1.1) that

is dapendent on altitude and particle size distribution. If the calibration
of the data were inaccurate, a similar error would result in scaling and
inverting the data.

Much of the acquired data was not analyzed due to the lack of time
caused by data compiications, some of which were mentioned above. With the
effort devoted to the development of a fairly involved system and with the
understanding already gained about fhe data, continued analysis would be
cost effective if stratospheric aerosols remain of interest. Additional
effort to improve the mod2ls would also be advisable since any improvements
are directly extended to the results.

The investigation has unquestionably verified that the described
approach can contribute to the analysis of the particulate content of the
stratosphere, The approach appears especially suitable to a future satellite
which would monitor the changes and variations in the stratosphere between
10 Km and 70 ¥m. The models used in much of this investigation would in
that case become previous measurements. Differences would be interpreted
as variations in time or space.

239



10.

Research & Engineering Division
BOEING AEROSPACE COMPANY

REFERENCES

Elterman, L., "Atmospheric Attenuation Model, 1964, in the Ultra-
violet, Visible, and Infrared Regions Altitude to 50 km", Air Force
Cambgédg? Research Laboratories, Environmental Research Paper,

No. , 1964,

Elterman, L., "UV, Visible, and IR Attenuation for Altitudes to
50 Km", Air Force Cambridge Research Laboratories, Environmental
Research Paper, No. 285, April 1968.

Chandyrasekhar, S., Radiative Transfer, Dover Publications, Inc.,
1960.

Bateman, Harry, Tables of Integral Transforms, Vo. II, McGraw-Hill,
1954, pp 201-212.

Phillips, David L., "A Technique for the Numerical Solution of
Certain Integral Equations of the First Kind", Journal of the
Association of Computer Machinery, Vol. 9, 1962.

Twomey, S., "On the Numerical Solution of Fredhoim Integral Equa-
tions of the First Kind by the Inversion of the Linear System
Produced by Quadrature", Journal of the Association of Computer
Machinery, Vol. 10, 1963.

Pitts, David E. and Kyle, Kirby D., "A Model Atmosphere for Earth
Resources Applications", Johnson Space Center, NASA TMX-58033,
November 1969,

U, S. Standard Atmosphere, 1962, U. S. Government Printinc Office,
December 1962.

Baum, W. A., Code, A. D., "A Photometric Observation of the Oc-
cuttation of o Arietis by Jupiter”, The Astronomical Journal,
Vol. 58, No. 1208, Jay 1953.

Tingey, David L., "An Inversion Technique Developed to Determine
Characteristics of Mie Scatterers Differing in Index of Refraction
Interspersed in the Stratosphere", Presented at the Conference on
Atmospheric Radiation, August 7-9, 1972, American Meteorological
Society.

240

A

b -y



