Reports of the Department of Geodetic Science
Report No. 237

SOME PROBLEMS CONCERNED

WITH THE GEODETIC USE

OF HIGH PRECISION ALTIMETER DATA

|

N76-19530

nclas
20638

G3/43

Research
CSCL 08E

SCME PROBLENS CONCERNED
GEODETIC USE OF HIGH PRECISICN
(0hio State Univ.

67 p HC $4.50

THE

NASA-CR~146302)
wWITH
ALTIVMETER DATA
Foundation)

|

(

by
D. Lelgemann

Prepared for

National Aeronautics and Space Administration
Goddard Space Flight Center
Creenbelt, Maryland 20770

Grani No. NGR 36-008-161
OSURF Project No. 3210

The Ohio State University
Research Foundation
Columbus, Ohio 43212

January, 1976



Reports of the Department ~f Randatin Sejence

Report No. 237

Some Problems Concerned with the Geodetic
Use of High Precision Altimefer Dafa

by

D. Lelgemann

" prepared for

National Aeronautics and Space Administratic
Goddard Space Flight Center
Greenbelt, Maryland 20770

Grant No. NGR 36-008-161
OSURT Project No. 3210

The Ohio State University
Resecarch FFoundation
Columbus, Ohio 43212

January, 1976



Foreword

This report was prepared by Dr. D. Lelgemann, Visiting Research
Associate, Department of Geodetic Science, The Chio State University, and
Wissenschaftl, Rat at the nstituf fiir Angewandte Geodidsie, Federal Repub-
lic of Germany. This work was supporfed, in part, through NASA Grant
NGR 36-008-161, The Ohio State University Research Foundation Project No.
3210, which is under the direction of Professor Richard H. Rapp. The grant
supporting this research is administered through the Goddard Space Flight
Center, Greenbelf, Maryland with Mr. James Marsh as Technical Officer.

The author is particularly grateful to Professor Richard H. Rapp for
helpful discussions and to Deborah Lucas for her careful typing.

~ii-



Abstract

The definition of the geoid in view of different height systems is discussed.
A definition is suggested which makes it possible to take the influence of the un-
known corrections to the various height systems on the solution of Stokes' problem
into account.

A solution of Stokes' problem with an accuracy of 10cm is derived which
allows the inclusion of the results of satellite geodesy in an easy way, In addition,
equations are developed that may be used to determine spherical harmonics using
altimeter measurements, considering the influence of the ellipticity of the refer-
ence surface.
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1. Introduction

As part of its Earth and Ocean Physicé Applicafioin Program (EQPAP)
the National Aeronautics and Space Administration (NASA) plans in the next ten
years the launch of some satellites equipped with altimeter for ranging to the
ocean surface. The announced accuracy of the future altimeter systems lies in
the scope of 10 cm, '

By solving the inverse problem of Stokes, it is possible to compute
gravity anomalies from these very accurate altimeter data. In view of an exami-
nation about possibilities, problems and accuracy of a solution of the inverse
Stokes' problem with this high accuracy we will treat two preparatory problems
concerned with the direct solution.

In order to transform the altimeter data into geoidal undulations’ (if pos-
sible, taking oceanographic informations about the so~called sea surface topo-
graphy into account) we need 4 suited definition of the geoid at lsast with the same
accuracy. Another problem is concerned with the impossibility of the measure-
ment of reasonable altimeter data on the continents. So we have to cut.the dis-
tant zones off in our integral solutions, taking into account their influences by a
set of harmonic functions, This is also in agreement with the recent numerical
‘treatment of Stokes formula (Vincent and Marsh, 1973, Rapp, 1973), The best
set of harmonic coefficients is, of course, a combination solution. So we should
have regard to the fact, that these coefficients do not belong to the potential on
the ellipsoid or the earth surface but to a sphere.

The first comprehensive study of the direct solution of Stokes' problem
with regard to the use of altimeter data is due to Mather (Mather 1973, 1974).
However, because of the necessity of the inclusion of satellite coefficients into
the solution, we will follow another way which seems better suited in'the: case of |
our preconditions.

The following frearment 1s paseu 0N TNB TEBULES USSCTIUEU 11 | VUT1LG,
1974). In order to avoid long~winded repetitions we refer often to results and
formulae of this study, so that the knowledge of this report may be recommend-
ed for an entire insight into the present work,

Regarding our two special problems desc;-ibed above we first fry to
give a suited definition of the geoid, Of course, we shall not change the defini~
tion of the geoid as an equipotential surface of the earth. What we will do is



‘ nothing else than a specialisation of one equipotential surface distinguished as
the geoid., Our main condition in this context is the possibility of a realisation
of this special equipotential surface by geodetic measurements,

A certain modification of Moritz's approach seems to be necessary if
we want to include satellite data (e.g. in form of a set of harmonic coefficients),
This is not so in view of the correction terms to Stokes!' formula. But the in-
clusion of satellite information directly in "Stokes approximation" (Moritz 1974,
f. (1-9) ), may lead to very.complicated problems,

In order of a better understanding of our problems and also the way
which is chosen for the solution we will remember some hasic considerations of
geodesy. The main task of geodesy is the estimation of the figure of the earth
and the outer gravity field with the aid of suited measurements. In the over-
whelming ecases these measurements belong to the earth's surface,

We will assume that the earth's surface is a star-shaped surface. In
this case any ray froin the origin (the gravity center of the earth) intersects
this surface only once. Describing the physical surface of the earth by geodetic

coordinates, the ellipsoidal height. can be considered as a function of the two
other coordinates '

h = h(®, \)

ho Y Y IN ] euipsoidﬂl height
®.eesen..geodetic latitude
Aeveos...geodetic longitude

We will assume further that we have measurements of the following type -

a) ellipsoidal heights h (e.g. by altimetry over the-
ocean surfaces)

b) potential differences C = W ~ Wo (by levelling)

c) gravity g



Now by a bé_mbination of various types of these data-we can obviously
solve our main task in different ways. Because of the superficial similarity
with the well-known boundary value problems of potential theory we can also con-
sider three geodetic boundary value problems:

a.) First geodetic boundary value problem: Given the ellip-
soidal height h and the potential difference C. Today,
this method looks somewhat artificial, but with the re-
cent development of doppler measurement methods or
perhaps with altimetry on the continents, it may become
very interesting,

b) Second geodetic boundary value problem: Given the ellip~
soidal height h and grdvity g. The existence and unique-
ness of the solution is discussed by (Koch and Pope, 1872).

¢) Third geodetic boundary value problem: Given the poten~
tial differencé C and gravity g. This is the well-known
" Molodenskii problem. For a detailed discussion of a so-
lution see (Meissl, 1971). '

Supporting on this classification we will now make a few general com-
ments, including a summary of some results.

In all threc problems we need a potential value W, as additional infor-
mation., Tt may be pointed out that by the inclusion of one additional.piece of data,
(that is in case three, the inclusion of one geometric distance e, g, one ellip-
soidal height h) the value Wo can be computed.

It is nowadays impossible to measure C on the ocean surface. So the
determination of the sea surface topography with the aid of geodetic measure~
ments can only be obtained by the solution of problem two (Moritz, 1974), In
the case of the inverse problem we must assume that the altimeter information
can be corrected by oceanographic information for sea surface topography., In
this case the corrected altimeter data should belong to an equipotential surface.
Because of this assumption the information C = ¢ is given in addition to the
ellipsoidal height. If the equipotential surface is identical with the geoid, the
ellipsoidal heights are identical with the geoidal undulations,

The problem of the unknown geoid and the estimation of datum parame-
ter to the various height svstems can be solved by combining data of all three



types. This is what we are going to do in the next two sections, The geoid as
the equipotential surface with the value Wy is defined in such a way, that the
square sum of the differences to the main height systems (corrected by oceano-
graphic information about sea surface topography) is a minimum. To solve the
problem of the practical determination of W and to compute the datum correc-
tions to the height systems, condition equations of a least square adjustment pro-
cedure are derived in section three, It may be pointed ouf, that the '"geoidal un~
dulations", which are needed in this model as measurements, are not the true
geoidal undulations but values obtained from gravity anomalies which are falsi-
fied by an unknown correction to the height datums,

The main task of modern geodesy is not the solution of one of the three
boundary value problems but .2 uniform solution which combines data of-all types.
From a practical point of view the combination of "terrestrial data™ (gravity
anomalies, altimeter data) and ngatellite data" (orbital analysis, satellite to
satellite tracking, ete.) is the most important problem. At least fhe lower
harmonic coefficients will be computed from a combination of all these data,
From this point of view it is uncomfortable {o use solutions of a boundary pro-
blem, because the surface of the earth is very complicated. So it is important

that the analytical continuation of the potential inside the earth is possible with
any wanted degree of accuracy (Krarup, 1969). Moreover, if we start from

the same data set (i.e. gravity anomalies) a series evaluation leads fo the same
formulae as the Molodenskii series solution, as shown by Moritz (Moritz, 1971).

A computational procedure in which we can include terrestrial anc
satellite data is the following successive reduction method.

Ay Direct effect of atmospheric gravity reduction. Remove
the atmosphere outside the surface of the earth and redistribute it
inside, The resulting disturbing potential is then an analytic fune-
tion outside of the earth's surface and the reduced gravifty anoma-
lies Ag, are boundary values at the earth's surface.

B) Direct effect of the regard of topography. Compuie gravity
anomalies Ag: at the geoid (or the ellipsoid) by a suited form of ana:
lytical downward continuation,

C) Direct effect of ellipticity correction. Compute from the
gravity anomalies Agy at the ellipsoid gravity anomalies Ag, at the
sphere with the radius a.




At this state we can combine the gravity anomalies Ag, with satellife
derived data. From the combined data we can compute the disturbing potential
T, at points on this sphere., We may remember that this potential must not
be the true value of the disturbing potential at this point in space but only the
result of the analytical continuation (consider the case of a mountain at the
equator), ) ’

D) Indirect effect of ellipticity correction, Compute the
potential Te at the ellipsoid from the potential values T, at-the
sphere with radius "a, )

T) Indirect effect of the regard of topography, Compute
from the potential values T: at the ellipsoid the potential Ts at
the earth's surface by an upward continuation, using the inverse
method of step B.

¥} Indirect effect of atmospheric gravity reduction, Cor-
rect the value Ts at the earth surface by the indirect effect of the
atmospheric reduction made in step A.

Here, we will make only some remarks about this method and the re-
sults, A detailed description together with a compilation of thé formulae is
given in section four,

The .estimation of the direct and indirect effect of atmospheric gravi-
ty reduction is the same as in (Moritz, 1974), The treatment of the influence
of the topography is also very similar as used by Moritz. Tt canbe shown -
(Moritz, 1971) that the common handling of the direct and indivect effect leads
to the same formulae as recommended in (Moritz, 1974, sec 4). However,
the meaning of the procedure is quite different from Molodenskii's solution,
which avoids analytical continuation, But the computational formulae are the
gsame and well suited for practical computations.

The treatment of the influence of the ellipsoidal shape of the reference
surface is different from the procedure in (Moritz, 1974), The first part, the
computation of gravity anomalies Ag, on the sphere with radius a from gravity
anomalies Age on the ellipsoid was done in the main in (Lelgemann, 1972),
The indirvect effect, the computation of T¢ at the ellipsoid from T, at the
sphere, is derived in this report.



The use of the final formula for the correction term may also be fa~
vorable within the computation of spherical harmonics from given altimeter
data, Let us assume that we have altimeter data, corrected for sea surface
topography, as a function of the geodetic coordinates, Then we obtain the dis~
turbing potential at sea level by

N.........geo0idal undulation (from altimetry)

Yeseeeesesnormal gravity

Tt eee.....disturbing potential at the geoid or
ellipsoid,

" In order to obtain a set of spherical harmonics we need the disturbing
potential at the sphere with radius a.,

We get this value by the simple correction

2
Ty (B0 = Te(o, ) - _—Z; ces” G+ Lo, A)

e’.........58econd eccentricity .

The der1vat1on of this simple formula is done in an indirect way., Be-
cause of the length of the derivation it is given at the end of the report in the:
sections 5 to 6.



2. Considerations on the Definition of the Geoid

The first definition of a geoid as thaf real equipotential surmce or tne
earth gravity potential, which is characterized by the ideal surface of the oceans,
was given by Gauss. Such a definition presupposed that the ideal surface of the
oceans is part of an equipotential surface of the earth gravitational field. To a
- certain degree of apprommatmn this idealized sea surface coincides Wll'h another
more or less time invariant conception, the mean sealevel.

We will consider here as mean sea level the mean ocean surface after
removing time dependent effects. Because the mear sea level is than not neces-
sarily an equipotential surface of the earth gravitational field, slopes of mean sea
level were detected both by levelling and by oceanographic computations, The de~
finition of an ideal surface of the oceans and the computafion of the.difference be-
tween this ideal surface and mean sea level cannot h(, a problem of geodetic but
of oceanographic science.,

From a geodetic point of view the idea of a geoid is closely concerned
with the definition of the heights. It is well-known that the heights are computed
from measured potential differences. Let us assume for the moment the. (of
course unrealistic) possibility, that we can carry out spirit levelling also over the
ocean surfaces, In this case the geodetic community would certainly define as a
geoid that equipotential surface, from which the potential differences are counted.

In every case the geoid must be considered as the reference surface of
a world wide height system, So within the problem of the definition of a geoid
the problem of the definition and also the practical possibilities of the computa-
tion of height datums to the various height systems play a central role.

There is a third utilization of the geoid or in this case rather the guasi-
geoid as established by Molodenskii, {Molodenskii, et,al 1962), which is very im-
portant in geodesy and this is the role of the geoidal undulations in the interplay
of gravimetric and geometric geodesy. Apart from its own importance, we will
use this connection to overcome the problem of the impossibility of spirit level-
ling over the ocean surfaces.

The most important geodetic aspect in the considerations about a defini~
tion of the geoid seems to be the definition of a reference surface for the height
determination. So we will mention some principles which should be important
in respect of our opinion that the computation of datum corrections is one of our



main problems, As in the case of the definition of other coordinate systems
(e.g. the definition of a highly accurate cartesian coordinate system for the pur-
pose of the déscription of time dependent coordinates of gedphysical stations)

we may answer the following questions:

1) What physical meaning has tne aenmrtiony

2) Can we transform the physical definition into a
mathematical description?

3) Can we realize the mathematical and physical
definition in the real world by measurements?

4) Can we compute transformation parameters to
already existing height systems ?

We will give the answers in the course of this section with exception of question
three, Whlch will be answered in the next section.
After this preliminary considerations we will start the discussion with

the definition of 2 geoid given by (Rapp, 1974). He started the discussion from
the set of all equipotential surfaces of the actual gravity. field

W = W(x,y,%) = const.

W is defined as the sum of the gravity potential W, and the potential of f-he atmos—
phere W,. We must point out that the potential

(2-1) W= W, + W,
is not harmonic .outside of the earth's surface because of the presence of the

atmosphere,

. Because we are going to distinguish in the following considerations



several different equipotential surfaces, we will call an equipotential surface
with the potential W, (where the subscript i described only the fact, that W,
has a fixed value)

geop (W),

Later on we will specialize one of this equipotential surfaces as the geoid, that
is

geoid = geop (We).

Departing from the customary expression for the potential of the geoid by Wo,
we have characterized the potential of the geoid by Wi. The reason for the
change of this abbreviation will be clearer in the course of this section. The
choice of this special equipotential surface seems in a certain way arbitrarily,
dependent on the starting point of the considerations, For this reason we shall
discuss, for ‘the moment, the problem separately from the three special areas
we have mentioned at the beginning of this section, Then we will look for a com
bination of all these considerations, Most important, of course, is the possi-
bility of a practical realisation of the geoid in the case when we have encugh
accurate measuring data,

1) The geop (WhisL) as the ideal surface of the oceans,
(MSL vevevssss.... mean gea level)

The definition of mean sea level and the ideal surface of the oceans,
which we will consider as an equipotential surface, cannof be the task of geodesy
but of oceanography. A pood description of the difficulties of the definition and
more over the realisation of these concepts are given in (Wemelsfelder:;, 1970),

The following very simple model of the real processes may be sufficient
for our considerations, Because geodesy is only interested in the deviation of.
the ocean surface from an equipotential surface, we may say, that the ideal sur-
face of the ocean is disturbed by the following irregularities:



a) very short periodic irregularities (e.g. oceax
waves, swell)

b) periodic or quasi periodic irregularities (e.g. tides)

¢) quasistationery irregularities, which retain their form
‘but change, their place (e.g. gulf stream)

d) quasmtatmnery 1rregu1ar1t1es, whmh retain form
and place

If we correct the real ocean surface for ail these irregularities, than the
result should be an equipotential surface and we will name it by

geop (Wasy)

Corrections of the individual height datums to a world wide height system
are then given by the correction (dWMSL) for quasistationery sea ‘surface topo-
graphy at the water gauges.

Such a definition is not only important for oceanographers, but also for
geodesists. If we can compute with the help of oceanographic information the de-
viation of the sea surface from an equipotential surface, then we can also com-
pute geoidal undulations from altimeter measurements, Especially if we want to
‘recover gravity anomalies from altimeter data we have to use such information.

2) The geop (Wys) as .the basis of a worldwide height system

(H30......00.....height system zero order)

In order of an explanation of a geop (Wuso) let us start from a-reference
surface of a particular height system geop (Wis) (e.g. from the mean sea level
1966.9 at Portland, Maine), We will assumé errorless levellings to the reference
points of (n-1) additional height systems, Consequently, we have n different
height systems with the reference points on equipotential surfaces

geop (Wysy)

-10~



Of course, such kind of levelling is impossible because various height
systems lay on various continents. We shall bridge this difficulty using the
comection between gravimetric and geometric geodesy.

The most plausible reference surface of a worldwide height system
is then the equipotential surface geop (W) for which the sum of the square
deviations to the particular height systems is a minimum,

n

2-2) ), (g = Wig)® =i,

In this case all height systems have equal influence. As a solution of the pro~
blem we get easily

(2-3) ' Wiso =

B |

. .
ZWHSi
{=]

We can assume that a geop (Wysp) defined in such a way lies very near the
geop (Wwsr), because all height systems are based on mean sea levels at least
in the reference points, The transformation parameters are given by the defi-
nition equation, )

3) The geop (W,) from the connection between gravimetric and geometric geodesy.

(Wo = Uge....Uy = normal potential on the surface of the normal ellipsoid)

We will start the definition of a geop (W) from the normal potential
based on a rotational ellipsoid., The surface of the ellipsoid should be an equipo-
tential surface of the normal potential, It is well known that in this case the nor-
mal potential on and outside of the ellipsoid and also the geometric form of the
ellipsoid itself can be described by four parameters, e,g.

kM.......mass of the earth

(& 4. .000.rotational velocity

K harmonic coefficient
of order two

-11-



Uos s+« s+ « potential on the ellip=-
soid surface

or
840000000 8€mi major axis
We presuppose that we have very exact values-of the first three terms

(maybe from satellite geodesy). To a certain degree-of accuracy: the following
relations hold (Heiskanen-Moritz, 1967) for the fourth term

2-4) U, + £
(2-5) dU, éw.zl% da = - y,da.

- It is well known that we cannot measure the absolute.value of the poten-
tial. We get this value by an indirect method using e, g, the connection between
gravity and a distance in formula -(2-5), For a definition of the normal gravity

field, it is important that only three physical constants are fixed values of the
real earth, The fourth term is in certain limits arbitrarily. Let us describe
the geometrical relationship in this case. We have the following situation,

= P geop (W,)

i

1 : topography
I

} Fpo

|

L geop (W,co)

L

o geop (W, =)
{15 |

— ellipsord U,

-12-



Bpeesessessellipsoidal height

Ne vvoeesa..geoidal undulation

Hege s o« o « o Orthometric height of the
point P in a worldwide
height system

It is easily seen that in the case outlined above, the main.equation, -
(2~6) h=H+N,

connecting gravimetric and geometric geodesy holds not in this form. We have
two possibilities to correct the situation. We can refer the heights to the re-
ference surface

geop (Wo)
or we can change the size of the normal] ellipsoid by
dng"-# (W}ﬁo wT :Wo)urn:-)’, [

‘ The choice of the'kind-of thercorreclion is our own pleasura, -On the »»
other hand if we have fized-one of bothrvalues - (hal is -WHSD--'-ui'.WO, eilher by a
ovevk onthe earth swrlace or by a-given mumbeyy, the dilference between thewm
must be computed from geodetic measurements.,

In this connection we will also consider the mathematical description.
of our problem. ¥or this purpose we use the relation

(A=Thi 1y h= T+ N 7f40. W

hi e« a. » ellipspidal height, ..
H......orthometyic height

N o oue »» geoidal undulation..

2o on oo quAgi-geoidal.andulation .
1% 2urie o mormaial odghé oo

13-
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For an accurate definition and explanation of all these terms see
e.g. (Heiskanen-Morifz, 1967).

4) ~The geoid = geop (W) as 2 result of the previous congiderations

Because of the close connection with a worldwide height system our
final definition of the geoid is based mainly on poinf {wo of the previous con-
siderations, In addition we will take into account information from oceano-
graphic science., M order to bridge the continents and to get 2 numerical
value of W we shall use also-the connection between gravimetric and geome-
tric geodesy. We study the geometrical relationship on the following figure.

%f')ﬁ: geop (Wp)
: fopograephy

cPij' HPL
___I_______-—-—-—-— geop (Wygi)
—
dWm dHMS“ geop (WHSC +dWms;)

AW dfesi — geop (We) = geold
—’_jd___g_'lf_{i——-———" geop (W)

ellipsoid U,
The geoid is defined by
n

(2—'8) Z (WG - (Wgsi + dWMsg) )2 = min,

{=

Hp1 eeeeovsas.orthometric (6r normal) height
in a particular height-system i

OHuste » e « o o o « » T€duction of the gauge (mean sea

14—



level) mark to an ideal ocean
surface because of sea surface
topography, given from oceano-
graphic science

AHigte s o« - » » » » deviation of the corrected basic
level of the height system i from
the geoid, defined by (2-8) and
constant for the area of this parti-
cular height system

Q2. .444000.00cCOrrection of the Ssemi-major axis
for the term (Wo - Wg)
N.sesesessesqgeoidal undulation

In an explicit form we have for the definition of the geoid

(2"’9) We = ———i (WHSl + dWHSi).

-
il
A

If the oceanographic corrections d Wys are correct then all geop
(Wi + dWg) are identical or at least close together and the corrections d Wiy
are small or zero. In this case the practical procedure developed in the next
gection may be regarded as an independent checking of the oceanographic infor-
mation by geodetic methods. If we have no oceanographic information we can
put, in this case, simply dWux = O.

~] 5=



3. On the Realisation of the Definition of the Geoid

11 the previous section the possibility of transferring the theoretical
definition into physical reality and vice versa was one of our main requirements,
This is certainly a question which can only be answered by sransh(,al methods,
that is by the development of a sulted adjustment model.

Our mathematical description of the problem is based on the connection
between gravimetric and geometric geodesy. So we can start with the condition’
that the basic equation of gravimetric geodésy

h=H+N = { +H*

is fulfilled in a set of m points. Because the observations from levelling, from
geometric and from gravimetric geodesy may be given in different sysfems we
must include in our model transformation parameters as unknowns. In this way
we are lead to the model of 2 least square adjustment of condition equations with
additional unknowns

(3-1) Av+ Fx +w = 0,

The solution of such a system is well known (e.g. Gotthardf, 1968, p.238 1),
We will discuss here the explicit form of the condition equations, presupposing
that the following ''observations'are given at m points P; on the earth surface:

by...ooves...ellipsoidal height, computed from-
rectangular coordinates as a result
of satellite geodesy

Hfy 44 e0s.0..n0rmal height in the i-th system.of
n height systems

Ly eueeneeas.. quasi-geoidal undulation

=16~



In addition, we have for any of the n height systems a constant d Hyy, repre-
senting sea surface topography as computed in oceanographic science:

dHysy + ee+.. ... gagE correction due to sea surface
topography in the i-th height system

In order to fulfill the condition equation
(3-2) h - H*-C =0

we will first consider our "measurements (h,, H%,, ).

As mentioned above these "observations' may belong to diffenent gys-
tems. The transformation parameters between these systems may not be known
and have to be estimated in the course of the adjustment. This is true in any
case for the height datums dHuy and the correction of the semi-major axis da.

In this way it is possible to take also other systematic effects into ac-

count, We will restrict ourselves to the unknown parameters described in'the
following context.

a) Ellipsoidal Height h

We assume that the geometric reference ellipsoid is not in an
absolute position, but connected with the center of mass by the vector (dxj,
dyo, dzg). Then for absolute ellipsoidal heights h we get the following equa-
tion (Heiskanen-Moritz, 1967, p.207)

(3-9) h = hy - cospeosidxo - cospsinidyo - sinpdzo = da,
We have already included in this equation the unknown

s 1
(3-4) da = S ATn—. dUO

*%

W



from which we can compute the numerical value of the potential at the geoid o
(3-5) We = Uo + dUs

after the adjustment,

b) Normal Height H*

From figure two we get easily
(3—6) ’ H* = Hygt + dHuy + d'HHs; :

The n unknowns dH,, are the transformation parameters for all the height
systems together with the constant values dHugy.

¢) Quasi-geoidal undulations

This case is less trivial, because the "measurements" L, are
connected with the unknowns dHuy by Stokes' integral formula. With regard
to our adjustment model we must derive a linear relationship between the "mea~-
surement" {, and its true value {

(3-7) C =& + i (s * dHusy)

k=1

The influence of £, by the unknowns dHys, is due to the fact that we ean compufe
gravity anomalies Ag only with heights related to the geop (Wisy + dWr-isk) For
gravity anomalies Ags related to the geoid we have the expression

(3~8) bge = g - 9% + 0.3086[(H, + dHuy) + dHgl

or
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(3-9) Ags = Agy, + 0.3086 dHsy
with
Mg, = (g -~ % + 0.3086 (H, + dHwy ).

We have used in this formulae the normal gradient of gravity

F = 0.3086h

obtaining F in mgal if we introduce h in meters. The accurady of the formulae
above is sufficient for the computation of the coefficients a,.

The use of Agy is in agreement with our conception, that the first step
to the estimation of the geoid is the inclusion of oceanographic information. The
gravity anomalies Ag, are related to the geop (Wisk + dWhsi), Which should be
very closed to the geoid or, in an ideal case, should already coincide with the
geoid, If we put the expression (3~9) into Stokes' formula, we get

L =01+ 8

where

_ R
(3-10) = o :[ (0.3086 dHesy S(¥) do.

Tn spherical approximation we can write

. oY . 2G
0.3086 = - : =
ah R




Putting this relation into (3-10), we obtain

(3-11) = — Jdmﬁk - S do.

2n
{T

The area in which heights related to the geop (Wwsk) are being used, may be -
described by Fisk.

Because dHy, is constant over the area Fusy, We get the following
expression

(3~12) £ = i d Hex * —21%-— _I‘»S(tb)_d'cr.
k=1 Fisx
or
(3-13) ay = —— [sapdo
Fisk

where S (). is Stokes' function referred to the point P, in question. From the
expression (3-13) we are able to compute numerical values for all the coeffi-
cients ayy, replacing the integral by a summation,

In order to get a feeling about the magnitude of ay;. we will consider a
simple example, We assume only one height system with a.reference surface
different from the geoid, We assume further that the area ¥y of this height
system is a spherical cap of size Yo around the point Py under consideration.
Starting with

l,bo .2
8y = -:211-_-;—- J' _|!7 S sinpdPpda

¥=0 o=0

-20-



the integration over ¢ gives

Yy
gy = J' S sinp dy. = 23 (%)

=0

where the function J(¢) is defined by (Heiskanen-Moritz, 1967, p. 119)

b
s@ = % [ swesmiay.
0

From 2 table of .J(¥) (e.g. Lambert and Darling, 1936) we draw the values
J@ = 0.5 at !b_=' 27° and ¥ = 50° .
Ience, under this circumstances the coefficient of the unknown dHyy i8
(1 +ay = 2,

After this preliminary discussion about the connection of the "measurements"
and the unknown parameters, we will now derive the explicit form of the
condition equations, We put (3-3), (3-6) and (3~7) into (3-2)

(hy + V) - (HYy + Vy) = (8 + Vap ~ cospeosidxy
(3-14) ~ cospsinidy, ~ sipdz, - da ~ dHay - dHus

- i (8xy » dHus) = 0,

k=1
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To this system of condition equations, we have to add the equation

(3-15) Y B = 0

which is a consequence of the definition equation (2-8), This additional condi-
tion equation connects only unknowns and not the "'observations'. However,
there are no principal problems concerned with the solution if we add equation’
(3-15). at the end of the -equation'system (Gotthardt, 1967).

We will now discuss some main aspects related to the present and fu-

ture accuracy of the data. We seperate the discussion info four paris in accor-
dance with the different type of data which are needed in the adjustment,

a) Determination of gauge corrections d Hus,

TFor purposes of physical oceanography to interpret the results of a
satellite altimeter, it is necessary to know the absolute shape. of 2 level surface
near mean sea level, Also for geodetic purposes it is necessary that we know
the deviation of mean sea level from an equipotential surface., We can com-
pute this deviation combining altimeter measurements and gravity measure-
ments (Moritz, 1974, sec. 5), However, gravily measurements over gea are
~ very time-consuming. So from a practical point of view it could be very help-
ful if we can determine geoidal undulations directly from altimeter measurc-
ments taking a small correction term from oceanographic science info account.

To compare the results from oceanographic science with the geodetic’
results it is of course very important to determine the heights of several gauges
in the same height system. Differences.between theory and measurements are
known (AGU, 1974). The first step in the realisation of 2 worldwide geoid
should be an explanation of these differences, because this seems io be an indi-
vidual problem which can perhaps be solved prior to the inclusion of geometric .
results and geoidal computations, From a comparison of Ievelling and the
results of oceanographic science at the coasts of the United States (AGU; 1974)
we can conclude that the present accuracy of the oceanographic, computations
of sea surface topography is better than a meter.
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b) Determination of station coordinates and the ellipsoidal ahe'ightlni

We expect accurate station coordinates from satellite geodesy, deri-
ving ellipsoidal heights from the cartesian coordinates. The present accuracy
lies in the order of 5-10m (Mueller, 1974). However, with the high accuracy
of new developed laser systems (some cm) and with special safellites. such as
Lageos or special methods, such as lunar laser ranging we can expect a fast
increase of the accuracy at least for the coordinates of some geophysical sta—
tions. So it seems advantageous to use such geophysical stations also as the
basis for the adjustment model developed above, It should be useful to have
several well distributed stations in the area TFyy of every main height system.
Necessary are likewise the very accurate parameter of a normal ellipsoid, that
is at least the three parameters (w, J, kM), computing the semi-major axis-
a within the definition of the geoid. ) ‘

¢) Determinafion of normal heights H* or orthometric heights H

For long times levelling was one of the most accurate geodetic measur=
ments with a standard error up to *0.1mm per km distance. Today, neverthe-
less, the increasing acciracy of distance measurements let us expect a similar
accuracy for coordinates and distances, To stay comparable in the accuracy a
very careful examination of systematical errors in levelling i8 required.

So far it is possgible, a mutual connection of the geophysical stations
and also the connection of these stations ‘and the fundamental gauges of the height
system by high precision levellings should be performed.,

d) Determination of geoidal heights N or guasi-geoidal undulations €

This seems from the present accuracy considerations the most crucial -
point in the method, On the other hand the definition of the geoid given above is
connected with precise gravimetric geodesy, so that we can assume the pre-
sence of data with the necessary accuracy.

This is not the case for present gravity data which allows a computa~
tion of geoidal undulations with an accuracy of better than 10 m, Methods in
recent development like aero gradiometry and so on will provide perhaps a much
better estimation,

However, a highly accurate determination of the harmonic coefficients

of lower order and a good and dense gravity material around the geophysical
stations seems of high value in the solution of our problem.
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4, On the Solution of Stokes! Problem Including Satellite Data Information

We will not consider Stokes' problem as the computation of a regularized
geoid.but as the following problem: It may be possible to determine the disturbing
potential on and outside of the earth, using gravity data from the earth's surface
in Stokes' integral formula and correct the result by some small terms, In this
way we .can interpret Molodenskii's solution as a well suited and theorefical unob-
jectionable solution of Stokes' problem,

On the other hand, we have to go nowadays a Step mriner. Uur udiu Bey
comprise not exclusively gravity measurements on the surface of the earth but al~
so'a lot of other information about the gravity potential, one of the most important
the lower harmonic coefficients from satellite geodesy.

We do not know an exact solution of Stokes' problem., We will discuss on-
ly approximate solutions, but the approximation error must be legs than 10cm in
the geoidal undulations and the solution should be as simple as possible in view of
practical computations.

Because of the presence of the atmosphere, we have fo solve not 2 La~-
place but a Poisson equation, We shall overcome this difficulty by'a suitable
gravity reducfion.

The majority of the data (the gravity anomalies) calls for a solution of
the so~called Molodenskii problem. This is a very complicated type of a non~
linear boundary value problem, Molodenskii already has bhased his solution
_on Stokes' formula, because the result of Stokes' formula differs from the exact
solution only by small correction terms.

A unified treatment of Stokes' problem with the necessary accuracy of
better than 10 cm for geoidal undulations was done by Moritz (Moritz, 1974),
‘Such a solution must be taken into account,

1) the effect of the atmosphere
2) the influence of topography,
3) the ellipticity of the referencé surface.
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Neglecting terms of higher order of a Taylor series expansion, Moritz
treats all three effects independently of each other. He ends with the following’
procedure:

1) Reduce Ag to the "Stokes' approximation" Ag® by,

3
(4-1 Agt = 8g - Gie
) 121 ¢

2) Apply Stokes' integral to Ag,

- R
(4-2) g° = T g_Ag° S do.
3) Correct £° to obtain the actual value § by,
e
(4-3) L =0 + ZZI.
=1

This solution of Stokes! problem is-well suited if only gravity anomalies
are at hand. However, the inclusion of data other than gravity anomalies may im-
prove the solution very much, At present, the most important addifional data are,
without question, the results of satellite geodesy in the form of potential coeffi-
cients, & seems very difficult to include this data in formula (4-2) in a convenient
way.

Tor this reason we have to change the model of Moritz, For a better unde
standing of the basic idea, we will explain the difference in the case of the applica~
tion of the ellipsoidal corroctions,

“In (Moritz, 1974) and also in {Lelgemann, 1970), we have established a
one to-one mapping of the reference ellipsoid on a sphere with radius R by mapping
a point P of geodetic (geographical) coordinates (@,A) on the gllipsoid into a poinf
P' of spherical coordinates (% = ¢,A) on the sphere.
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In this case the sphere is not attached to the ellipsoid, serving only a8
an auxiliary surface for the computations and the result belongs, of course,. to the
point P on the ellipsoid (or rather to the earth's surface). - ' ’

" Now, we will describe the present model. In this cage, we compute from
the anomalies on the ellipsoid the anomalies on the sphere with radius. a, which is
tangent to the ellipsoid at the equator, With the aid of Stokes' integral, we com-
pute T, at the point- P! on the sphere (if P' lies outside of the earth's surface,

T, is the real disturbing potential at the point P! in space), At this step, we can
combine the surface data with satellite data, Finally, we compute from the dis-
turbing potential at the sphere with radius a the disturbing potential T¢ at the sur-
face of the ellipsoid. This treatment of the ellipticity seems to be the appropriate
expansion of the correction for spherical approximation in view of the fact, that the
apalytical continuation of the disturbing potential is possible with any wanted accur-
acy.

In order to get a closed theory, we must also treat the influence of topo-
graphy in another way than Molodenskii. Molodenskii's solution is identical with
the analytical continuation to point level (Moritz, 1971). The formulae for anas
Iytical continuation are derived by Moritz in the cited publication. Because there
is no theoretical difference in the reduction to different level surfaces (Moritz,
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1971, sec, 10) we can first reduce the measurements to sea level and afterwards
back to the earth's surface. The formulae remain nearly the same, but we should
lock at the terms of the present model as a result of a2 computation of the potential
of analytical continuation at the ellipsoid and the sphere with radius a. In this
way we end with the following procedure:

(4-4)

(4-9)

(4-)

(4-7)

(4-8)

(4-9)

1)

2)

3)

4)

5)

6)

Reduce the gravity anomalies for the effect of the atmospher~
Ag, = bg - Og.

Compute by a-suited form of analytical downward continuation

gravity anomalies at the geoid or better, immediately at the

ellipsoid

Age = Ags - Oga.

Compute from the gravity anomalies on the ellipsoid the gravity
anomalies on the sphere with radius a

Apply Stokes' integral in order to get the potential (of analytical
continuation) at the sphere with radius a

_ a
T, = —i- L[(Aga) s(h do.

Compute the potential at the ellipsoid by

TE = Ta + 6':3 -
Compute the disturbing potential at the earth's surface by up-
ward continuation

Ts = TE + 6t.

2



7) Correct the disturbing potential at the earth's surface by the
indirect effect of removing the atmosphere

(4-10) T =T, + 0O,

From the disturbing potential T we get immediately the quasi geoidal
undulations by

{4-11)
and the geoidal undulations by
(4-12) N = £ + (H* - H).

Now, we will collect the formulae for the correction:terms, together
with the references. For a detailed explanation of these formulae see the re-
ferences,

(4-13) 1) gy = - -Mﬂg)— = -0gu.

r

(See Moritz, 1974, formula (2-23) ). Note that this cor-
rection has the same absolute value as-the gravity correc-
tion Og, in (IAG, 1971, page 72), I takes its maximum .

value of | 6g,. | = 0.87mgal at sea level.
(4-14) 2) bg, = H* I (8g)
with
(4-15) L (Ag) = ;f J] g do

q
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(See Moritz, 1971, formulae (1-5), (1-8) ). Note the
this is only the first term of a series solution.. How-
ever, it seems to be sufficient for all practical purposes,
especially in the case of the use of altimeter data).

2 [ k1 )
(4-16) 3 Oz - =) ) {n-1) [ConRuu(8)) + DsaSua(6,)]
n=jn=0
The coefficients can be computed in the following manner,
When
o o
(4-17) T (6,0 = 2 z [ARw (B, N) "+ BumSum(6,N)]
n=Bn=0
then
Com = A(n—a)man + Agg Qug + A(n-!-z)mrnm
(4-18)
Doy = B(n—z)mpnu t Bpalo + Bcﬂ'ﬂ)nrnn
where,
P - Bn -1 n-m-~1) (n - m
an 4m-T1) (2n ~-3).(2n ~ 1)
_ _-6n° + 8n° + 25n + 6nm® + 6m® + 21
(4-19) U 4 -1) (2n + 3) (2n - 1)
. Bn+1)(m+m+2)yn+m+1)
Yoy =

4m-~1) (2n + 5} (2n + 3)

See (6-33), (6-35) and (6-41) and also (Lelgemann, 1972,
formula (33) ), The formulae give the reduction ferm in
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the case of gravity anomalies, Similar formulae for
the computation of gravity disturbances at the sphere
from gravity disturbances at the ellipsoid aré derived
in section 6 of this study.

y o= -2 e swdo
| e 5

The disturbing potential T is computed instedd of ge-
oidal undulations in order to avoid the definition of
geoidal undulations or quasi geoidal undulations in
space.

e
4

(4-20) 5) 6ty = .+ cos®8 .. T(6,N.

The derivation of this simple formula is rather lengthy.

It is given in the last three sections of this study, (see

formula (6-35) ), '
(4-21) 6) 8, = - H + Ag

(See Moritz, 1971, formula (1-14) ). Note that this _

correction is almost zero in the case of dltimeter data
because of H = 0,

(4-22) 1) 6, = —I kM) gy
r

r!

or

(4-23) Ot

I bgy (m)dr'
r

(See Moritz, 1974, formulae (2-22) and (2-27), Note
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that the indirect effect amounts to maximal 0, 6cm. .
In spite of the overall accuracy of the solution, we
can neglect its influence.

All the correction formulae are the same in the case of gravity dis-
turbances with the exception of the correction term dg,.- The correction term
dg, for gravity disturbances is given by formula (6-33).
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5. The Influence of the Ellipticity in the Case of Gravity Disturbances,

The purpose of the next three sections is a unified treatment of the in-
fluence of the. ellipsoidal reference surface and an unified evaluation of the formu-
lae which connect the potential on the ellipsoid and the potential in space (that is
on the sphere with radius a), The content of the present section ghould only be
seen as an intermediate result, which will be needed in the following section,

In contrast to the very similar derivations in (Lelgemann, 1970) the
derivation of the whole theory is based on gravity disturbances, The advantages
rest on the avoiding of the difficulties concerned with the spherical harmonics of
zero and the first order, which appeared in (Lelgemann, 1970),

We will mention that the first explicit solution based on gravity distur-
bances as data was derived by Moritz (Moritz, 1974), starting from the solufion
of the problem for gravity anomalies, Using his technique in an inverse way we
shall derive in the next section the solution for gravity anomalies from the solu~
tion based on gravity disturbances, '

On the surface of the normal ellipgoid we have in a linear approxima-
tion the following boundary condition,

(5-1) o) = -t

Usiilg Green's second formula for the function T and the ellipsoid as the integra-
tion surface,

we get, after inserting the boundary condition, the integral equation

(5-3) onT =E|'-%§— dE + JT ("5%‘ (—i—))dE.
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In consequence of the assumption above, this is a Fredholm integral equation
of the second kind, The integrals must be taken over the ellipsoid. In order
to get a solution we transform first the integrals into a spherical coordinate
system. The resultis a linear integral equation with an unsymmetric kernel.
We shall develop this kernel with the required accuracy into a power series of
e™. The resulting system of integral equations consists only of equations with
symmetric kernels, moreover of equations with a well known kernel,- Because
the eigen~functions of the integral eguations are the spherical harmonics we
arrive very easy to series solutions.

We map points of the ellipsoid with the geodetic latitude ¢ in such a
manner onto the sphere that the spherical latitude is identical with the geo-
detic latitude (left side of the figure)

8=90°- ¢

First we shall evaluate some terms in the powers of e up.to the re-
quired degree of accuracy, TFor the surface element of the ellipsoid we have,

1 3
(5~4) M = a(l+e'® /2 (1+e®cos®p) A a(l-e” + 3/2e"™cos’)
1
(5-5) N = a(l+e?)/? (1+e'ecosscp)'%=' a(l+se™cos”0)
(5-6) dE = M*N+cos@dpd) = M*N+do = (1-e®+ 2e'®cos®6)a’do.
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Further we will represent 1/f in dependence of-1/4 (s€e figure above), -We
start with -

(5-7) % = (% -' '1’-@)2 (Y - YD+ (Ze - Ze)”
where,
X = Necos¢@coBd, Ye = Ncos@sin), Zg = b¥a® N sineo.
Developing this formula in powers of & and using the substitution.
(5-8) 1% = (X-X)? 4 (Y-Y)? 4+ (Z-20°
with
X = acospcosd, Y = acosgsind, Z = asing
we get
(5-9) 5? = 17+ $e(cos®d - cos8Y) £ - Ze'a-'a'g {cos 8 - cos O

and with the help of a series evaluation the final result,

an?
o2 (cosb —acos.ejl-::l

(5-10) —i_—— = -:11—— [1 - -—é—- e'?(cos®6 + cos®0Y + e'® 7

An exact expression for Ba (1/ %) was derived by Molodenskii '(Molodenskii,
n

1961, page 54)
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3 1 1 3.2
h=-11 L .. - . t
(>-14) o (ﬂe) N (L teTm)
with
1 b
(5-12) RE g Ty (Nsine - N! sing",

A series evaluation gives

- o (1y . _ _1 ~ L o1200e20 4+ o1? (€088 ~ cosf? \
(5-13) = (&) Bl (1 zZe cos_ + e Eog ,
with
(5-14) fo = 1/a « 4 = 2sin ¥/2.

Inserting these expressions info the integral equaticn-(5-3) , we obtain, after
some transformations

- 1
2nT = JI {1 -e"? 1 % e cos®0 - —i‘—"e'acosae' + or2-(cosb gos@)

2o
(5-15) . bg - J‘{ 14 e 5 o1200g8 + L er®cog6!
2 8 8
a
- o® (cos® -;ose')" ]. e . A do.
{o {o

The kernel of this integral equation is not symmetric. So we evaluate T in
powers. of the small term e'®

(5-16) T =T+ ®T* + e*T? 4 .....

-35-



Inserting this series into the integral equation (5-15) and equating the coeffi- '
cients of the powers of e'™ we arrived at the following integral equation system

21’ = [a- 6g+ ——do - 3 [T°—=-do
R 4 Tk

2nT = i a- 0g e _h]_.;— [—1 + % cos®8 - —i— cos®0".
: 3 :
+ _{cosB - cosB) ]dcr N J‘Tu 1 [1 _ _b 3
(5-17) o Tl 2~ cos’8

1 2 (cos@ ~ cosBh? ] 1 a1
F ar = - d _,——_IT...——dU,
g °F 2o -3 o

3t
lﬂT T hessssass

we must solve successively the first and second equation of this system, These
two edquations contain all terms up to the order e'® so that a solution of the fur«
ther equations i€ not necessary in view of the required accuracy.

We develop the first integral equation into a series of eigenfunctions.
Because,

1
2n+1

1
4

(5-18) f Xa(8, X) Py(cos¥Pydo = Xa (6, AN

T
g

we get the series representation,

=]
n~3s
o ‘g
+
-1
=

(5-19) T = a
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Analogous to Stokes formula we can represent this series as an integral formu-
la (Hotine, 1969)

(5-20) T = ; Iﬁg Swdo
ag
with
1 3 2n+1
(5-21) Sy = Py (cos )
nZO n+i

or by the closed expression

o 1 1
(5-22) S = Teing/e tn (1 * sin /2 )

In order to get a solution of the second equation of the system (5-17), we evalu-
ate the disturbing term in a series of harmonic functions. Because T* is to be

multiplied with e' we can use the following formulae in spherical approxima-
tion:

(5-23) b = —— Y (@+1) T,
a =0
and
oo =] nt co n -
(5-24) T = T, = T = {Am Rua(8, A) + By Sup (8, M1

Ag an intermediate result we get
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(5...25_ T1 + 1 JTl-g-g—- = A, + A1 Ay t+ Ay

4 £
with
(5-26) d" = —Z"rn
ne="
S N IDICIENE z

Using formula (8-6) we obtain

1 J‘ (cosf - costn?

TA, = ﬁos

$ 2, a0 -
o =0 .

(5-28)

i i n(gm- 1)
(2n+3)(2n-1)(2n41) ~™

n=hgpx0

and with formula (8-5)

0

- 1 i (14n+9) 5 2g _do
Ae = J;[n=o 2 o Jeos®0 5

(5-29) --i-‘- So (14ﬁ +9)‘Z [A,,,,, {Z—‘i‘lml_-g Rprae (65 X)
- m =0

Ba
" T Rawl® ) + % Reeg s (0}
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Performing the integrations on the left hand side of the integral equation we have

) 1 1 1 do i n+l 1
- = —_ T,
(5-30) T + - i ™ 2 L s T

Transforming first the term A in a series of harmonics we get afterwards from
a series comparison on both sides of the integral equation the following solution,

-y =)

n= n+l =D m=0 (211+3)(2f!”1)(n+1)

_m. . 3n+1 . 3n+2
¥ %nzo EZO [Anm n+3 O R(“+’3)n (6’ A) + _:11— Boa Run (6 A)
(5-31) .
Sn+3 Sn+1
+ 11—'1 ynmR(n-z)n(e) A)} +. B ‘n+3 anms(n-ba) m(e, /\)
3n +2 : 3n+3

-+

n+i ,Bnmsnh(ei Ay + Tpn-1 7nus(n—z)m(6: )\)}]-

It is possible, of course, to write this resulf in a more convenient form,
However, we are going to use this result only in order to derive the relationship
between the disturbing potential on the sphere with radius a from the disiurbing
potent1a1 on the ellipsoid, which is done in the followmg section. The expression
(5-31) is very suited for this purpose.
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6. The Connection Between the Potential on the Ellipsoid and the Potenfial in Space

In the previous section we have mapped data from the ellipsoid
to an auxiliary sphere, solved an infegral equation for the desired function and
remapped the solution to the ellipsoid. In this section we will compufe the po-
tential on the tangent sphere of radius a as'a function of boundary values on the
ellipsoid.

We can write the potential (of analytical continuation) on the sphere
with radius a as a series of harmonics

(6-1) T, = i i [Aunman((@: >t) + Bﬁnns‘nm((av )L)]

n=0n=0

@ v4eeees.complemont of the geocentric latifude &

R;1 (8, A) | unnormalized spherical harmonics in view of

Sue (8 A) J the simpler recursion formulae, They have
the same definition as in (Heiskanen-Moritz,
1967).

As data on the surface of the ellipsoid we shall consider 0g and later on
also T and Ag,

We start the derivation with the representation of the disturbing poten-
tial outside the ellipsoid by the well-known formula of a surface layer x-

(6-2) T, = J’ —z—‘-— dE

E

together with-tha intacm] eguation for the surface layer

3 X
6~3 2 - dE = 6
(6~3) ™ v E[ " g



The definition of the teyms, especially of £ and £ can be seen from the figure,

N sessssessss direction of the outer ellipsoid normal
®-ool|oollou = 90 - @

Similar as in the previous section-we must transform the integral equation for
the surface layer ¥ into an equation over the unit sphere, using geocentric lafi—
tudes & as paramelers.

Tor this purpose, we can use again the expression

(6-4) 2 (_1_.) =2 - 1 (1 - 3e®cos? @ + o'® (093@ ;02005@)1)

taking now the derivative in the fixed point P'.

Together with (Molodenskii 1961, page 56)

(6-5) = Z) (1~ S-e?gind)(1 + Fe®sin®d)cosddd di
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we arrive with the transformation onto the sphere at

12 - )
6-6 X + % | X dq Tt e -3 cos®® - —1—cosg®'
(6-6)
p £o 2 ra 4 4.

(cos® ~ cos@")® ] do
s X
Ty A

= dg.

(o]
Now we evaluate the surface layer X in powers of e'”

sz.o -+ e'le + e'4X2+--‘.......

Substituting this expression in the integral equation (6-6) and equatiﬁg the coeffi~
cients of the same power of e'® we arrive at the following sysfem of equations

(67) 2e7%° +;?=;-J"x° 4o g
Lo
X+ -}——jxl—d—c— = 4 ——1—~J [-—-g'—- cos2® + —— cos® @
4 fo 417 & 4 4

_ _(cos® - cos@')z:‘ & do
fo® fo

2

X - [ EEEEEEREEENEE NN NN)

Again, we are only interested in the first and second equation, With formula
(5-18) we have also due to the orthogonality relations of spherical harmonics

(6_8) '_4};' IXn(GJ! A) do = 1_ 1 Xn(ﬁa's A-')
o

Lo 2n 4
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and with this the solution of the first equation

1 ¥ 2n+1
6-9 ¢ = = BT bg.
( ) X 4T n+1l Ba

In order to solve the second equation we must expand the right hand side in a
series of harmonics, As X' has still to be multiplied by e* we can use the.
formulae in spherical approximation

(6-10) og, = -Ea”fi T,

and also

(6-11) %n = 4‘:a (2o + 1) T,
with

To = ) [AmRun(® A + BauSu(®, X 1.
n=0

Then we get

=]

. .
2n + 2 Xl = 1 { cos” @' iT“

=0 2n+ 1

_ i z (4m® - 1) T
(2n+3(2n-1

=0 mn=0
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-+

o

N {2n +1) .
Z Aso (zn + 5 anmR(n+2)m (®s A-)
n=0

n=0

b BuRue(® ) + SR R a@, 0] ]

Developing also cos®®' T, with the belp of formula (8-5) and comparing the two
sides of the equation resulis in

11 __éo : (2n + 1) (4m® ~ 1)
*T Bm { nZU mzo (m+1)(2n + 3) (2n - 1) Tna(® A

(6-12) + z }: Ang [%G;%l)— Oz R (i) = (€5 A) + atl)

(n+1)

n=0 n=0

* Bu Rpn (®: A) ').’nn R:(n-'.a) A A-) ] }

2n
(n-1)

The solutions (6~9) and (6-12) must be inserted into (6-2). With (Molodenskii
1962, page 56)"

(6-13) dE = a®(1 -e™sin” & cosd dd dx

(6-14) : £ = 2. sind/2 /21

(6-15) Te z a(l -e'®sin®9)

we get

(6-16) -%E-L = -%— (1- 2 e®cos”@) cosd dd dr



and

(6-17) T, = I%— dE = a J'X(l——‘;?-efaeosz@)_i;cosadé dx.
E oF

Evaluating also T into a power series of the small parameter et?
Ty, = Tp + 2T +0%T% o+ 00

and inserting this expression in (6-17) we obtain

(6-18) T - g J‘ xo _4g
ij fo
and
1 3 2 o 0 dc‘:r 1 do
- = - —_— BX —— + a —_—
(6-19) T a J' T cos P ('J:X i

o Q

We get as an intermediate solution

(6-20) ™ = ai L &,

n=on+1

or written as an integral equation

(6-21) 27T + 3 I["f"—‘??— = a6 dg
5 o 5 £o

and afterwards
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n

ml - - a % (4m2 - 1)
’ 2::Zo mZo (m+1)(2n+3)(2n-1) Tna (@ A)
— _ -l_ o It
o 4 nZo (o 1),,20 Ao {(n + 3) R(n+z)e (@) A)
o Yo
+ @+ 1) Run (@, A} + —-(-;-ni)—— R(n—e)m(@), }Q}

Whereas usually the integrations over the unit sphere are made.with the ajd of
the geodetic latitude ¢, the geocentric latitudes % are used as parameters in
equation (6-21).. Applying here (Lelgemann, 1970)

_(6-23) cos® = (1 +e'”sin®P)cose
(6-24) dd = (1-e™ + 2 sin®@)do
S S S [1_ e”
4 2sind/2 —  2sind/2 2
(6~25)

6 - cog Y
« (cos® B + cos® BY + e'® (ZO:inz 4);203 )

with

6 = 90 ~ o
cosﬂi = cos ¢ cos® + sin® sind' cosAA
coSyP = cosp cosy + sing sinp cos AA
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we arrive at the following integral equation system

1 s o do a do
P L [t | 8l (g do
4n s b 20 5 £
T + J‘Tl do_ . _ L J'To{—l—%cosae’+—g-cosae
4 £y 4
o 0 :
2
6-26 N (cog 6 - cos Y do ., _a J‘5 {_1 - L0082 6
(6-26) 48 /2 7, o & .

a2
+ 8 cos?0 + (cos B - cos B } d,e,:

4sin® /2

Ta= o s e gadosnestadsodes
with
do = sinB 38 dA.

We have in spherical approximation

2alg = z (2n +2)T,
n=0

and therefore

(6-27) T+ 41n iTl dzoo = 4::'r i{zo(an*'lﬂﬂ}{'l
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2
_ L aos? B 5 2g (cos & - cos 0" } do
2 COS + == cO08 -+ e 4)/2

A series evaluation gives

AV @n+D s (2n +1) (4m> - 1)
= aZ (n+1) Ty + znZo mZo (n+1)(2n+_3)(2n-1)

o]

(6-28) + z Anm {Tz_i_gé_ anmR(n-i-a)m(B’ A) + 211 +1 Bnman(e >\')

n=0 n=0

2n+2
n -~ 1 l}’nmR(n-Q)m(B >L)}

Adding now (6-22) and (6-28) we get

[+=] 2] n
2n +1 . - pfdm® - 1)
eoafma . f ) :
® n+1 * L m+1)@n+3@2n-~-1) ™M

=0 n

(6"29) ""i_ z S Anm 5:_‘_ 3 %NR(R‘Pz)n(e A)

5n+ 3
i i Run Run (8, A) +

Sn+17
n-1 YnnR(H)H(B, A)},

We sum up the result by
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1L _ 1
T 4

i~

Z {Aca [ 'I_D'nmR(u!-z)m(es A + UpoRua (5, )

n
-
n=0Q nm=0

+ anB.r(n-g)m(e’ A)] + Bou [ 'ﬁnms(n-lﬂ)m(ea A+ Qna Snn (65 A
+ "I_'nms(n-s)m(es N1}
with

- . (GBon-Nop~m+Y@m-m+2)

C B T T T 20+ 1) (2n + 3)

T = -6n® - 8n° + 6nm® - 6m® + n + 3
am (n +1)(2n + 3) (20 - 1)

—_— (Gn+NHNm+mn+m-=1

rnm —

(n=-1)(2n+1)(2n -~ 1)
In the case of the disturbing potential of the earth we have
Ago = Ao = Ay = By = 0.

We get a proper expression of the final result from the solution of (6-21)
together with a simple renumbering of the terms of this series:

(6-30) T. =T° +e”T

(6-31) T° 62 = a z _1- bga (6, N
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(6—32) Tl = Z z [Ciman(es ’\) + Dfmsnm(es A-)]

N=90 n=0
Cro = [A(n-a)m-pnm + Amwlm + A(nz)nToe ]
D = [B(;r’d)m peo + BmmGan + B(u-g)mrm]

with

(bn-1(n-m~1)(n - m)
Pm = Ty m+1)@n-93)(2n-1)

4o = -6n° - 8n° + 6nm® - 6m® + n 4 3
m 4m +1)(2n ~1)(2n -+ 3)

Gn+1Nm+m+2y(n+m+ 1)
4m+1)(2n+52n+3) -

It may be pointed out that the gravity disturbances belong fo points Pt (0, A) on
the ellipsoid and the disturbing potential to points P, (¥, A) on the sphere,
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Based on this result, we will derive some other useful formulae, We begin
with a direct relation between the gravity disturbances at the ellipsoid Og:
and the gravity disturbances 0g, at the tangent sphere

(6-33) g, = Og - 0F,.

We use the abbreviation (0g;) because the abbreviation (0g;) is already
reserved for the gravity anomalies (see formula (4-6)), The potential T,
is given on a sphere. So we bave the exact series relation

(6-34) O = == ) (8+1)(Ta-

o]

T~1s

nserting (6-30) into (6-34) we get as the desired result

9'2 N N a a
(6-35) 6g = b + —=— ) @+ 1)) [ChaRum(® 2 + DiaSu(6 N 1
n=0 m':O
or
0gy = - : z (n+1) S: [ ChaRun(B, A) + D Sun(, A) 1.
n=0 n=0

Next, we will derive a direct relation between the disturbing potential T, at the
tangent sphere and the disturbing potential T¢ at the ellipsoid, This derivation
should be performed in three steps, Tirst we compute Og, from T, with the
help of (6~20). Second, we compute the gravity disturbances at the ellipsaid with
(6-33), using for more convenience the intermediate .relation (6-29). Third, we
compute the disturbing potential T at the ellipsoid with formulae (5-19) and
(5-31) of the previous section, We arrive with the simple result

(6-36) Te = T, + Ot
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with

et®

oty = <

Y { Aue [0 Rw)a(6 ) + BuaRos (6, N

n=2 mn=0

i~1s

+ '}’nmR(rFa)m(es A1+ By %ns(m)m(es A)
+ BuwRm(B &) + YnmR(n—a)m(er N1 1.
or with the aid of (8-5)

cos® 6 T (8, N).

(6-37) 8ty =

Because Ot, is a term of second order.we can neglect the difference between
6 and ®, writing also

12

8ts = —— cos*@ T (0, X).

Finally, we shall derive the relation between the gravity anomalies Ag, at the
tangent sphere and the gravity anomalies Ag; at the ellipsoid, sfarting from
the known relation at the ellipsoid (Lelgemann, 1970)

ar
dn

(6-38) Age = bg + -y-l— T = 0g - —2-(1+e'é~ e'? cos® 6) T .

We have by definition

(6-39) Ag, = Ag: - Ogs

-52-


http:order.we

and

2
a

(6-40) Ag = Og - Te.

After some manipulation we get from these formulas

8g, = Og; - —2—(1 +e® - ePcos® )T + —T,
or as a final resull
2
(6-41) 8 = OB - —— (2~ — cos” 8) T (6, X).,

It is very easy to derive (4-16), (4-17), (4-18) and (4-19) from (6-33), (6~35)
and (6-41).
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7. Summary

The definition of the geoid is discussed in the firsf part of the present,
study. Of course, the geoid is a certain equipotential surface of the earth gra-
vity field. The discussion is only concerned with a specification of this equipo-
tential surface. The final proposition for a definition is based on the geodetic
height systems by an inclusion of given information from oceanographic science
about sea surface topography.

The realisation of the gevid should be miade in two steps., First, the
existing height systems are corrected by informatfion about sea surface topo-
graphy. An equipotential surface is choosen in such a manner that the sumn of
the squares of the deviations to the corrected main height systems is a mini-.
mum. This particular equipotential surface is called the geoid.

A least squares procedure is derived for a realisation of this definition.
The precise cartesian coordinates of geophysical sfations and in addition the
quasi geoidal indulations and the normal heights in these points are needed as
data, The unknown corrections to the various height datums influence, of course
the gravity anomalies and consequently fthe geoidal undulations. This influence
is regarded in the least squares procedure.

In the second part of the study a solution of Stokes' problem with an ac-
curacy of betterithan +£10 cm is suggested, in which the results of satellite geodesy
can be included in 2 rather simple way. The method is based on the possgibility that
the potential outside the earth surface can be approximated by the potential of ana-
lytical continuation inside the earth with any accuracy. Gravity anomalies from the
earth's surface are reduced by three successive corrections to gravity anomalies at
the sphere with radius a. At this sphere they can be combined with given potential
coefficients from satellite geodesy. Then the potential at the surface of the earth
is computed with the aid of additional three corrections.

Of special interest could be the very simple formula which connects
the potential at the ellipsoid with the potential at the sphere with radius a. In
the computation of potential coefficients from altimeter dafa the influence of
ellipticity can easily be taken into account with this formula,

-5



8. Appendix

We shall derive in the appendix an evaluation of the function

(8~1) (cos 8 - cos 6')2
8sin” /2

8,...polar distance
Y. ...spherical distance between two points
P' and P

in a series of spherical'harmonics, starting with the derivation.of two formulae
which we shall need in the final evaluation,

As the immediate result of the kernel of Poisson's integral formula
(Heiskanen-Moritz, 1967)

2 2 & nHL
R(x ‘;3 150 Z (2n + 1) (——E—)Pu(cosl,b)

n=0 ' r
wegetforr = R

(8-2) z (2n + 1) Py(cosP) = 0.

n=0

Now, we will try te deriveia series evaluation for

1 1
I 8sin® /2

In this case; we do not get a well defined expression duc fo the relation of (8-2).
The evaluation can be stapted with the well known formuila
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1 1 R®
= = — H T .
£ f(r ~ 3)2 + 4r Rsin® /2 ]'32 RZO prfd Py(co Ilb)

The first derivative gives

23/ all{f’ = —Z_ (n+ 1) I:,m-a P, (cos )
- n=0

- —gr [ (r'— R) + 2Rsin® §/2].

The second derivative gives the result

aB 1/2 _ = . Rn
—(—)—ar nZo(m +1) (r‘1 + 2) " Pa(cos i)

e

On the sphere with the radiiis R we have

4 = 2Rsiny/2

For points on this sphere we can write

[a_z.@_/&z_] _

1 . o
or e Z (0+1)(n+2) Po(cos)

_ 1 3

1 S N—
8R°sin° /2 T 8R%sind/2
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A further evaluation gives

2]

1 3 i -
il z (0 +1)(n+2) Py(cosd) ~ ~ TR
n=~0
or
1y . 3
W = ,,Zo [(n+1)(n+2) 7 1 Pu(cos )
With the identity
m+@m+2) - & = 2 (2n+1)(2n+5)
we get
1 1< :
8 sin® U/2 =7 Z (2n + 1) ( 2n + 5) Py{cos ).

n=0

Because of (8-2) we can see that the evaluation of 1/4§ info a series of
spherical harmonics gives not a well defined result but an expression of the
form

(8-3) 1

_ (2n +1)(n + a)
8 sin® /2

2

Py (cos

I
0i~-18

n=10

where a is any given number. On the other hand we shall see that in the
series expression for formula (8-1) the term a drops out,

-



Let us start with the following expression for a fixed poinft P' (Heiskanen-
Moritz, 1967).

(cos B ~ cos 8'f

£ % = 8 sin® /2

= i i [ am(@‘, AN an(Q: A)

n=0 n=0

+ bnm(ela k') Snm(e, A—)] .

Then we can estimate the coefficients a,, by

. = _ 2n +1 (_n"'m)! . 9'2.
I 5o e m) | j{[(cose cos 6%

=]
2n + + &
z Er2DE2A pocos) ] Ru(6 X} do.
Using twice the recursion formula for Legendre functions

cosb Py,(cos6) = n—;ﬁ@:’;—l R (s 1) o (cOSE) + 2—1%—112- Pt p(cos B)

and multiplying the result with cos (mA) we get the following two expressions

- +1

(8-4) cos 9 an,(eﬂ A‘) = _}'12__;:_1— R(n-t-l)m(e’ A-) + lzln++n;_ R('u-l) u(e’ A')
and

(8-5) 050 Rua(8, 1) = aR(mzya(®r X + ArgRun(8, ) + Yog R(mma)a(fs A)
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with

Mm-m+1)n-m-+2) "

%e = TTon+1) (20 3
8 =2n"2—2mg-l-2n-1
" (20 + 3) (2n - 1)
Yag = n+m) (n+m-1)

(2n + 1) (2n - 1)

With the help of this recursion formula we gef, due to the orthogonality relations
of spherical harmonies, after the integration

2,6, \1) = %{—%—:— [ ~(20 + 1) +2 + 2) Gy R(mapu(6's A1) ©
- (20 + 1) (0 - 2) By Ran (6", AY)
~(20 + 1) (0 + 8 = '2) Yo R ) (85 A1)
+ 2c0s8'(n -~ m +1)(n +a + 1) Rim)al(0', A1)
+ 2cosB'(n + m) (@ +2 - 1) R(nq)u(8', A9

- cos6'"(2n + 1) (n +a) Ry (6, XY

Using the recursion formula once more the term a drops out and we are left
with the resuit

2 =_2(r1—m)1 n-m+mn+m-+1) _ _(n+m)n-~m) ]

(n+m) ] . (2n+3) (2n - 1)

s Ryp(0', AY
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or

_ o (n-m)1 dm® - 1
© P = 2 (n+m)! (2n + 3) (2n ~ 1) Rae (0, 1),

Analogous evaluations give

_ (n-m! Am® - 1 .
Ore = 2, (n+m)l (2n + 3) (2n - 1) Saa(9'5 AN
As a final result, we get the desired expression
- (cos 6 - cos 8Y?

¢-0 8sin® /2

S 1

- 0 o
Z { (2n + 3) (2n - 1) Py( cos ) Py(cos ')

n=0

. o % m-mi 4m® - 1
ooy (A m) ! @n+ 3 ECn-1)

[ Rua(6'sA") Rua (6, A)

+ o Sm(8 N Sua(8, 01 1
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