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Abstract

Characteristics of Southern Hemisphere 200 mb flow are examined using	 r

geopotential height fields constructed with the aid of sateliite-based thermal

structure. Similar Northern Hemisphere, satellite-based fields are developed

in order to make inter-hemispheric comparisons. Results indicate that both the

zonal and meridional components of the S.H. eddy kinetic energy are as large as

their N.H. counterparts. In winter the principal inter-hemispheric difference

with respect to eddy kinetic energy is that the S.H. standing eddies are much less

important only to the meridional component. Zonal component standing energy

is about equal in the two hemispheres. In summer the S.H. has larger zonal eddy

kinetic energy than the N.H. and smaller standing eddy contributions in both

components. Although transient eddies are generally predominant in the S.H.,

estimates in this study of the standing eddy contribution are larger than previous

values. The meridional spectra show a preference for intermediate size (k = 4, 5)

transient waves. Ratios of zonal to meridional energies indicate that, especially

at intermediate wavelengths, the S.H. waves are "more meridional" than these

in the N.H.
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1. Introduction

The purpose of this paper is to describe certain characteristics of the large-

scale, 200 mb flow in the Southern Hemisphere (S.H.) using geopotential height

fields based on atmospheric temperature structure obtained fr:-m a satellite

borne, multi-channel infrared radiometer. This study concentrates on the 200 mb

level because it is a major contributor to the kinetic energy of the atmosphere

and is representative of upper tropospheric or jet-stream flow patterns. Most

previous studies of S.H. upper tropospheric flow have been based on data from

the sparse radiosonde network there. Although estimates of parameters such

as zonal-averaged zonal flow are fairly reliable, terms such as the kinetic energy

contained in transient waves are difficult to descr i t;c adequately from the conven-

tional data network. However, the satellite-based information used in this study

has the spatial and temporal resolutions necessary to describe pertinent features

of large-scale 200 mb flow.

This study uses one winter month and one summer month of daily analyses

in both the S.H. and the Northern Hemisphere (N.H.). The N.H., satellite-based

calculations are compared to calculations made with National Meteorological

Center (NMC) gridded data. Therefore, the validity of conclusions based on the

S.H., satellite-based calculations can be readily judged. The geostrophic approx-

imation is used to obtain the winds from the geopotential height distributions.

The topics explored here include:

a. zonal flow

b. zonal and meridional eddy kinetic energy

c. standing and transient eddy contributions

d. spectral distribution of eddy kinetic energy

e. horizontal anisotropy

1
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2. Method used to obtain geopotential height fields from SIRS radiances.

'rhe satei^ii:e data for this study are from the Satellite Infrared Spectrometer

(SIRS) instrument aboard the Nimbus 3 spacecraft. The technique used to Obtain

atinosphoric bLructure information from the SIRS radiances is summarized by

Adler (1975) ,aud described in detail by Adler (1974). Basically, geopotential

thicknes 5 or l :yer-mean temperature information is determined from the SIRS

data by a I?m:-, regression technique. The dependent variables in the regres-

sion procedure are the thicknesses for the four following layers: 1000-700 nib,

700-500 mh, 500-300 mb and 300-200 nil). The independent variables are the

radiances o. Vie eight SIRS channels. Separate regression equations are de-

termined lo: :rch layer and for each of the following latitude zones in both

hemispher«;Li: 20-40 0 , 40-60 0 and 60-800.

The r;tCi;;nce data used is restricted to that portion determined to he "cloud-

free" 63 are ji-ioctive procedure based on the radiance data itself. Approximately

15(70 of the on-inal dat<1 is eliminated as cloud-contaminated. The standard

errors of e:'tirt ►ate for the derived regression equations are comparable to those

in other st:.di- s (e.g. Smith, Woolf and Jacoh, 1970).

The geopotential height information at 200 nib is obtained by adding thick-

nesses to a 1t-00 ioh height field. In the N. If., the NNIC 1000 nab height fields

are used. In he S.H., 1000 mb height analyses are obtained by convertin- daily

surface pr: sure analyses of the Commonwealth Bureau of Meteorology,

Australia. Tlie SAL surface pressure analyses are nearly hemispheric in scope.

but %here they me blank, the field is filled in subjectively by a combination of

extrapolat i on and cliniatology.
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The major limitation of the atmospheric structure obtained from the satel-

lite radiances in this way is that longitudinal or east-vest gradients tend to be

underestimated. The reasons for this underestimation are discussed by Adler

(1974, 1975). The effect is related to the distribution of satellite data and the

tendency of the regression equations to produce accurate results near the mean

thickness for a particular latitude band, but to undervalue deviations from that

mean. The magnitude of the underestimation is evident in the N.H. comparisons

between the conventional-based and satellite-based statistics. Because of this

limitation, the emphasis here is not always on absolute magnitudes, but often on

relative magnitudes (S.H. compared to N.H.).

3. Zonal and eddy kinetic energy

a. zonal flow

The standard notation for means and deviations will be used in the fol-

lowing discussions. Time and longitudinal averages will be denoted by an over-

bar and brackets, respectively, and deviations from these means are marked by

a prime and asterisk, respectively. Therefore, [u; represents the time and

longitudinal mean of the zonal flow.

Fig. 1 shows the distribution of the zonal mean geostrophic wind at 200 mb

in the S.H. for July and January. The zonal mean winds as determined from the

SIRS-based 200 mb heights are presented along with the climatology curves

based on Taljaard et al. (1969). The two profiles for each month agree fairly

closely, considering one is from a climatological distribution and the other is

for a specific one month period. In winter (Fig. la), a secondary peak at 60S is

evident in the SIRS profile, while the climatological curve shows only a very

3
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weak relative maximum farther north. Since the SIRS curve is based on only one

month ol' dat%. the exist%nce of a secondary peak on a year-to-year basis is still

very questionable. H,)wever, conventional data, upon \\-hick  the climate curve is

based, is ver y sparse in the 50-65S region. Therefore, that curve may also be

open to question.

Tho ex:,-,'.ence or non-existence of the secondary maximuni in [u] during

winter'ias bt.cn discussed by Webster and Curtin (1974). "Their data from the

EOLE constant density balloon expel invent does not show the second peak; how-

ever, the nur:uer of balloons aloft in midwinter was relati-.ely small and the

results durir.- June, July, and August may not be representative. From clima-

tological cross-sections especially at particular longitudes (see Van Loon,

1972), there -.ppears to be a basis for a second peak of [u] . The existence of

the peal: imjy depend heavily on the averaging period. Such a maximum may

often exist on a nionthly basis, but :ui average over a number of years of the

same calendar month may reduce or remove the peak.

The zc:nal kinetic energy (K7,) calcul-ited from [ u] has alrt^ady been dis-

cussed by Adler (1975). The most striking difference between the N.H. and S.H.

is in the magnitude of KZ in the summer. At 200 mb the S. ]l., KZ is approxi-

mately three times as great as that in the N.H. This difference, of course, re-

flects the 1arQe tifference in the [ii] pattern In summer, with the peaks in the

S.H. and N.'l. being approximately 30 ms -I and 20 ms - ' , respectively.

i,, eddy kinetic energy

The edd y; kinetic energy (KE) is defined, using the standard notation as:

2	 (1)

4
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C	 The standing and transient eddy portions of KE are given by:

• 2 	 •2
1KE(standing) - ^u 1 ^ ^ v	 (2)

KE(transient) - [ u' 2]+ [vo 21	
(3)

In this case the time average is for a period of one month.

Some aspects of S.H. 200 mb eddy kinetic energy have already been examined

by Adler (1975). The primary conclusion of that study was that at 200 mb the

eddy kinetic energy (KE) is of about the same magnitude in both the N.H. and

S.H., both in winter and summer. It was also shown that a smaller percentage

of KE is contained in the standing eddies in the S.H. than in the N.li. 'The pur-

pose of the present discussion is to examine the kinetic energy in terms of zonal

and meridional components.

Tables 1 and 2 indicate the magnitudes of the mean 200 mb eddy kinetic

energy associated with a and v components in the winter and summer. The

values are area-weighted averages over the latitude band 20-80°. N.H. values

computed from SIRS-based 200 mb height fields and from NMC height fields are

presented for comparison with the S.H. values. A comparison of the N.H. NMC

and SIRS columns , makes it obvious that the energies are being underestimated

by the SIRS-hased calculations by approximately a factor of 2. However, the

ratios of standing to total energy (rows 3 and 6) in the N.H. NMC and SIRS col-

umns agree favorably. The reasons for the underestimation were mentioned in

Section 2 and are discussed in detail by Adler (1974, 1975).

5
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'rable 1

`,Pinter Zonal and Meridional Eddy Kinetic Energy

for latitude Band 2U-80 0 . Units m^ 8 -2 .

N.11. 5.11.

January January July'printer

1970 1970 1969

N111C Slits Slits

►i^	
(standing) 37.6 15.6 18.0

2

(tc `.al) 90.7 50.2 51.5

r Iti^^ 0.42 0.37 0.35

``%"	 1 stand in,1 17.7 8.3 4.0

—	 (tut:^l) 84.5 36.4 40.4
2

ratio 0.21 0.23 0.10

6
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Table 2

Summer Zonal and Meridional Eddy Kinetic Energy

for Latitude Band '20-80°. Units: m 2 s -2 .

N.H. S.H.

July July .JanuarySummer
1969 1969 1970
NMC SIRS SIRS

" Z	 (standing) 22.5 11.8 8.7
2

11
(total) 59.8 30.4 37.0

ratio 0.38 0.39 0.24

(standing) 11.2 5.3 3.4
2

V2
—	 (total) 54.3 24.9 28.4
2

ratio 0.21 0.21 0.12
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T*ie characteristics of the eddy kinetic energy in the S.11. as compared to

the N.H. nan be examined using the list two columns of Tables 1 and 2. These

contain the satellite-hosed calculations in the two hemispheres. Although the

SiKS-based values for the eddy energy are underestimates, the amount of under-

estimation should he approximately equal in the thv0 hemispheres. Thus the

N.H. an(' S H. values can be examined to obtain relative magnitudes.

In v,inwr fable 1) the eddy kinetic energy of the zonal component ( 11 /2) is

approximaic l \ the same in the two hemispheres. This is true for both the stand-

ing and total unergy and hence for the transient wave energy. ilowever, the

m eridional component ( v 2 /2), in the lower half of Table 1, ind i cates a sharp

differenc e between the hemispheres in the standing eddy energy and in the ratio

of standing cr) total eddy energy. While the values of total eddy kinetic energy

in the meridional component are about equal, the S.11, standing portion i, one half

that of the N.il. This results in a S.H. ratio of 0.10 compared to 0.23 for the

N.H. The zonal component ratios are alxmt the same above and below the equcl-

ter. Thereforv, in %vinter the principal difference between the hemispheres with

respect to eddY kinetic energ y is in the relative contributions of the standing and

transient cddie- to the meridional component of the eddy kinetic energy. The

zonal component, on the other hand, lens quite similar magnitudes in the two

hemispheres v.ith reg;ird to both the standing; and t ransient portions.

For the shinier month (Tablc 2) the zonal odd; kinetic energy, u 2/2 (tot;,l),

is larger in the S.11. than in the N.H. This is reasonable since the mean 7017411

flow (ii; and the Tonal kinetic energy arcs so much larger ill 	 S.H. The term

\12 /2 (tota!) Is about the same in two hemispheres during this season. The S.H.

standing-to-total ratio is smaller for both components in swt ► nier. As can be

8
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seen from Tables 1 anI 2, standing eddies contribute only half as much to the

meridional eddy kinetic energy in the S.11, as they do in the N.H. The difference

between the hemispheres in this regard for the zonal component is evident only

in the summer.

Kao, Jenne, and Sagendorf (1970) present values of zonal and meridional

eddy kinetic energy (both standing and transient) for various latitudes in the S.H.

for the 500 nib level. Their study is based on conventional data from the Inter-

national Geophysical Year (IGY). Based on their tabulated values, one can cal-

culate the ratios of standing to total energy for both components at 500 nib. The

result is substantially lower values for both components and for both seasons.

Therefore, Kao et at indicate less energy in the S.11. standing ec dies than does

the present study. The earlier study, however, was based on the sparse S.H.

radiosonde network of the ICY. The validity of the ratios in the current, satel-

lite-based study is bolstered by the good as reement between conventional-based

and satellite-based calculations in the N.11. Therefore, although the standing

eddies in tire SAL are much weaker than in the N.H., they may be more signifi-

cant than previously thought.

4. Spectral Characteristics

a. wave number spectra of a and v

The spectral coefficients are calculated from the daily 200 mb analyses

anti then averaged over the month to determine the mean spectra for the month.

Spectra are also calculated from the monthly mean fields to determine the

stationary eddy components. Because only a month of data goes into each spec-

trum, the results must be treated cautiously. For this reason, the spectra de-

rived in this study are compared to previously derived spectra to ascertain

9
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representativeness. unlike previous S.11. calculations, the current ones

have the :advantage of an immediate compar:son with N.11. values calculated in

an identical fashion from a very similar data base.

Figtw. 'l. and 3 display the wave number spectra for winter in both het_A-

spheres for latitudes 30° and 5U°, respectively. Fig. 4 shows the s„nimer

spectra for 50'. In -xinter latitude 30° is the approximate location of westerly

wind	 r, both hemispheres, Mile in sunrn,er the maximum is located

in the vicinity of 50°. In each diagram there are two N.H. curves: one based

on calculation., from the NMC gridded data, the other derived from the satcllite-

based atmospi-cric structure. The bpectra nre discrete and the lines connectin.;

each c• ak.-ulatr- 1 point at k = 1,2 ... are merely to aid in displaying the

(listribut4wi.

The J.11. -ncctrn in IFig. 2 winter, 30') indicate that the underestin,ati,)n

of eddy amplit o rles by the satellite-based infornintion increases (percentage-wise)

,.p ith inereabir;* wave number k. However, the satellite-based spectra do show

the same gene vatl characteristics as the conventional-based ones. Vor u'%2,

the N.II. has a leak at k = 1, a Shari, drop-off of energy out to k = 3, and then a

less ral)id decrease. The s.H, svec• trum also has its peak at k = 1, alth„ui;h

wave numlx;r 2 d(ws not contribute relativel y as much at :30S as at 30 N. The

energy in uM/3 (k = l) at 30S is primaril y in the stationar y eddy (731 c), %%Jjile

k = 2 has a mu,h 1()%% or stationary contribution (2r1 b). Beyond I. = 3 the contrihu-

tion is negligible. In the N. II., the wave numbers 1 and 2 have large (- 707,0)

standing; components and waves k = 3,4 also have significant (- 25-4U`6) sta-

tionary contributions. The large amount of energy in standing wave number 1

in both ou • mispheres is due to the eeccntricit^ , ► r the polar vortex.

10
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The spectra for the meridional component, v, at 30° (Fig `lb) indicate the

usual peaks at intermediate wavelengths. The agreement between the two N.11.

curves is not good, although the positions of the absolute maxima are only one

wave numlver apart. The S.11. spectrum shows a peak at k = 5, c%hich agrees well

with a peak in the 500 nib v spectra at k - G noted by Kao, •Jenne and `>ag;endorf

(1970) at 20S and 40S. The calculated percentage contribution of the standing;

eddies at k = 5 is 1%. The two surrounding; wave numbers 4 and G have percent--

ages of 20% and 11°x, respectively. "Therefore, the enerp- in the peak is almost

completely associated with the transient eaves. At similar %%-ave numbers in the

N.H., the st,:odii g eddy portion is larger (  20-30('(").

Better agreement between the conv entional and satellite-hased calculations

is evident in Fig;. 3 for winter at 50° latitude. This closer agreement is rclatc.d

to the distrihutiun of satellite d11ta. The Tonal spectra derived from both satci-

lite and c• onventionai data (Fig. 3a) have their peaks at k = 2 in the N.H. This

disagrees tiith the N.H. rnid-latitude spectra of K io and Wendell (1970). 	 at 200 nil),

Kahn (1962) at 200 nib, and Saltzman and Fleisher ( 190'..') at 500 mb, all of %k hich

have the zonal energy peak at k = 1. Benton and Kahn (195b), however, do shat%'

peak energy at k - 2,3 at 300 m g ,. 'therefore, althuuAh 4oth N.H. spectra have

a zonal energy peak at k = 2 ► r .J:inuary 1970, most other studies indicate the

peals occurring; at 1: = 1 in W(ferent years. The S.H. peak in Fig. as at k - 1 can

be compared to Kao et al (1910) with peaks at k = 1 (40S) and k = 2 (GUS), both at

500 mb. Since the energy in k - 1 is dependent (oil 	 eccentricity of the polar

vortex, slight variations in vortex orientation will produce large changes in stave

number 1 energy. Therefore, the wave number location of peak zonal energy is

probably not a good parameter for inter-hemispheric comparison % ith such a
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short time sample of data. However, it is obvious that the S.H. has a much more

rapid {•,crease of zonal energy going toward higher wave numbers.

Aporoximatel y 35% of the energy in k = 2 (N.li.) is contributed by the sta- 	 I

tionarY eddy. In the S.H., k = 2 has much less energy in the zonal component

and essentially all that energy is in the transient portion. Wave number k = 1

in the o.:i, is .;alculated to have an 81% stationary contribution.

The spectra of v 2/2 in Fig. 3b indicate perhaps the most striking disparity

bet,xeer_ the hemispheres. In the N.H. (50N) there are two peaks, at k = 2 and

k = 6; at 50S there is one peak, at k = 4. At 50N the peak at k = 2 is predomi-

nently st'itior —y wave energy (calculated values of 86'1(! and 67% for the NNIC

and SIRS values, respectively), while at k = 6, the standing contribution is very

small ( 10"'. A double peak in v spectra at northern mid-latitudes is evident

in most, but i)iA all, previous studies. Saltzman (1953) indicates peaks at k= 3,

6 for one January at 500 mb. Benton and Kahn (1958) and Kahn (1962) display

peaks at the same wave numbers for a two month winter period at 300 mb and

200 mb, respectively. One of these :wo months, however, coincides with Saltz-

man's January. Saltzman and Fleisher (1962) present tables indicating; peaks

at k = 3,5 for the cold six months of one year at 500 mb. However, the results

of Kao and Wendell (1970) at LION and 60N at 200 mb do not show double maxima,

but have one peak at k = 5 at 40N and one peak at k = 3 at 60N. Therefore,

although the double peak in the ineridional spectrum is not in evidence in all

studies, it is a common characteristic. The N.H. spectra of the present study

can this be considered representative. Also in agreement with the present

investigation these previous studies have the stationary eddies dominating; the

Pnergy in the low wave number peak, while the transient waves are the main

contributors nt the k = 5,6 peak.

12
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At 50S the meridional spectra of the present study show maxima at k = 4 in

both summer and winter. Rave number k = 5 has the second largest energy

associated with it in both seasons. Therefore, wave numbers k - 4,5 appear to

be the preferred wavelengths in the S.H. with wave number 4 having the maxi-

mum energy. The energy associated with these waves is almost entirely in the

transient mode. Other S.H. investigations also exhibit spectral peaks in the

same wave number region. Price (1975) displays S.H. spectra based on conven-

tional data which have k = 4 as the dominant wave number. Kao, et at (1970),

show peaks in the spectra at k = 6 (40S) and K = 5 (605) in winter

using geostrophic 500 mb winds calculated from the 11'Y  data fields . :Although

their spectra do not have their absolute maxima at k = 4, the broader peaks of

their study contain most of the energy in the wave numbers k = 4,5,6 (40S) and

k = 3,4,5 (60S). In summer, peaks at k = 5 and k = 4 at 40S and 605, respectively,

are also noted by Kao et at (1970). Although hreviniis S.H, studies are limited by

the sparseness of the conventional data, they are still in good agreement with

the results of the current studv.

A summertime spectrum at 45S is also available from Desbois (1975). His

spectrum is based on winds determined from tracking SOLE constant-level balloons

at 200 mb. For the October 1971-February 1972 period, the meridional spectrum

has a maximum at k = 5,6. Although this maximum is at slightly higher wave

numbers, it is in general agreement with the spectra of the current study.

Differences in these spectra are due to differences in the type of data, length

of time interval used and natural variation.

The contrast in the N.H. and S.H. meridional spectra in Fig. 3b has possible

implications with regard to the energy conversion process in the two hemispheres.

13
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The winter-time conversion of eddy available potential energy to eddy kinetic

energy in the N.11., when examined spectrally, has two peaks: at k = 2 and k = 6

(Saltzman and Fleisher, 1961; .Viin-Nielsen, 1959). The maximum at k = 6 is 	
A

the larger of the two. These two peaks correspond to the maxima in the N.H.

v spectra (Fig. .3b). This agreement merely reflects the association of poleward

flow with ascent and equatorward flow with descent. Assuming the same rela-

tionships hold in the S.H. means that most of the energy conversion processes

are oce, ► rring there on the scale of wave numbers 4-5. Thus the energy con-

version processes in the S.H. are apparently carried out predominantly by

transient eddies of a slightly larger size than their N.H. transient counterparts.

;J. 'aliscropy

Wr uoldi edge and Reiter (1970) indicate that significantly larger ;lorizoncal

anisotropy at cyclol.e wavelengths exists in the S.H. compared to the N.H., w1th

the v component bung larger than the zonal component u. This conclu p ion is

based ou relative velocities of balloon pairs flown as part of the GHOST balloon

prog1'a 1 ,c at -'Ou nib over the S.H. The calculated geostrophic winds of the prubem

study offer a data set to examine this characteristic.

The ratio of u k /v2 %% as calculated and plotted as a function of k for latitude

50° in both hemispheres, for both winter and summer. The results are shom-n in

Fig. 5. The two N.N, curves (conventional and satellite-based) are in good

agreement. For k. _ 3, the S.H. distribution is quite a bit different from that in

the N.H. in xinter, and slightly different in summer. In winter, the ratio of	 1

u k 'v2 is smaller in the 5.11. for intermediate and shorter waves (k - 4). The

difference is greatest at k = 4,5. These are the «ave numbers of peals nleridiojW

14
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energy (see Fig. 3b). The summer distributions (Fig. 51)) show a smaller dis-

parity and then only between wave numbers 3 and 5. At 30 0 latitude (diagram

not shown here) in winter, the distinction shown in Fig. 5 does not occur. How-	 .P

ever, at mid-latitudes the S.H. does appear to have a tendency, especially in

winter, to produce waves strongly anisotropic with the v component dominating

the u component more than in the N.H. This confirms the observation of M ool-

dridge and Reiter (1970) and again indicates the intensity of meridional flow in

S.H. eddies.

5. Conclusions

The flow -t near-tropopause levels in the S.N. has significantly different

characteristics Shan the comparable portion of thu atmosphere north of the

equator. This is apparent in the patterns of zonally-averaged flow, distributions

of eddy kinetic energy, and in the spectral characteristics. The general picture

of the S.H. upper tropospheric flow that is revealed is quite different from that

of smooth zonal flow given by climatology.

In terms of the magnitude of the eddy kinetic energy. the eddies of the S.H.

are as significant as those in the N.11. This is true for both the zonal and

meridional components. However, the eddy kinetic enerr;y of the two hemispheres

does differ with regard to the relative contributions of standing and transient

eddies. In general the S.H. is more highly dependent on transient eddies. This

is especially true of the north-south component of the flow. As a result, time

mean fields fail to show large eddies, particularly meridional eddies. Zonal

eddy kinetic energy statistics are quite alike above and below the equator (Table 1).

This is the case for both the standing and transient parts. With the meridional

. 5-..
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eddy kinetic energy the story is much different. Although the total meridional

eddy kinetic ctier y is nearly the same in the N.H. and S.H., the standing portion

in the S.H. is only one half as large as that in the N.H. In summer (Table 2) the

zonal eddy kinetic, energy is larger in the S.H., although the meridional energy 	 !

is ahout the same. Both components display smaller standing eddy contributions

in the S.H. Although the standing eddies are less important in the S.H. than in

the N.H., the present study shows evidence that they are greater contributors to

the eddy kinetic energy than previously thought.

The meridional spectra for the S.H. indicate a preference for wave numbers

k = 4,5. The energy at this wavelengtli :s predominantly in the transient waves.

In winter a single peak at k = 4 is noted at 50S, while at 50N peaks at k = 2 and

k = 6 are evident. Because energy conversion processes are tied closely to

north-soutii flow, S.I1. energy conversions are probably carried out by inter-

mediate sized transient waves, while in the N.II. large stationary and transient

synoptic-scale (k - 6) waves are the principal converters.

Examination of 200 mb horizontal anisotropy as a function of wavenumber

at latitude 50 0 reveals that the S.H. has a tendenc y to have the scale of meridional

flow dominate over the zonal flow more than in the N.H. This feature is most

evident in winter at k ? 4. In summer it is restricted to k = 3,4,5. Therefore,

the S.H. 200 mb flow at intermediate and shorter wavelengths appears to be in-

fluenced strungly by meridional motions, more so than even the N.H.

The zonally-averaged zonal flow patterns derived in the present study gen-

erally agree with S.H. climatology. The [ri] pattern for July (winter) does,

however, indicate a high latitude (60S-65S), secondary maximum which does not

appear in some other puhlished distributions.
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Figure Captions

1. Zonal mean geostropic wind at 200 mb in the S.H. for July and January. 	
..6

2. Spectra of winter 200 mb geostrophic flow at 30° latitude. (a) zonal com-

ponent, (b) meridional component.

3. Spectra of summer 200 mb geostrophic flow at 30° latitude, (a) zonal com-

ponent, (b) meridional component.

4. Spectra of winter 200 mb geostrophic flow at 50° latitude. (a) zonal com-

ponent, (b) meridional component.

5. Anisotropy. Ratio of zonal to meridional spectra coefficients at 200 mb at

50 0 latitude. (a) winter, (b) summer.
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