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AUTOMATIC DESIGN.PROGRAM FOR SINGLE-LOOP SYSTEMS WITH UNCERTAIN
 

PLANT PARAMETERS (ADSUP)
 

Introduction
 

This program is divided into four parts:
 

PART 1 is the translation of time domain boundaries (T.D.B.) into frequency
 

-domain bounds (F.D.B.).
 

PART 2 	 computes, for a given plant, the templates at various frequencies and
 

stores them.
 

PART 3 	 derives the optimum L (jm,) (open-loop transfer function with excess
 
- - 2 

of 2 poles over zero).which satisfies the bounds on L(j) due to
 

F.D.B.
 

PART 4 	 derives the final L (jo) (excess of 5 poles over zero). It,then
 

derives the prefilter F(jai) . Both- L and F are obtained as
 

rational functions in the complex variable s
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I. PART I
 

Philosophy
 

In the first step; all second order systems (two poles, no zeros) 
are
 

found, which satisfy the T.D.B. Real poles and zeros are then added, which
 

continue to satisfy the T.D.B. Part I consists of the following components.
 

A. START1
 

This routine reads the T.D.B. data.
 

NT : number of T.D.B. points.
 

DELTA: increment (inseconds) in time
 

BMAX : vector of NT maximum tolerable values.
 

BMIN : vector of NT minimum tolerable values.
 

Note: 	 If NT<24 linear interpolation is used in order to have at least 24
 

points. Amaximum of 100 points isallowed (NT,1O0.')
 

B. TWO
 

This routine finds all second order systems which satisfy the T.D.B. 

First,- KRANGE computes mn min and wn max corresponding to 

<mn min Wn < (On max -such that Vt BMIN(t) cL-l( ~2nn2 <)BIAX(t). 
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The vectors TMIN(.) and ThAX(.) are calculated on a set of selected
 

frequencies (see TABCS). TMIN and TMAX denote respectively the minimum
 

and maximum permitted frequency domain values of the system transfer function.
 

Then, for wn E [Wn min'Wn max] , there is found the range (by calling KRANGE) 

of the damping [Rmin denoted CMIN and max denoted CMAX] ,which satisfies 

the T.D.B.; wn is incremented using step-size DW . At each step TMIN and 

TMAX are, if necessary, updated. 

Note: 	 WO is called the central frequency: If M=128 (number of points) (see
 

TABCS) then WO-W(65) . In general WO4W(M-+ 1)
 

1) KRANGE (A.,B,,N)
 

Input : A,B are the first guess for the range, N is number of iterations
 

allowed.
 

Output: AB is the range of variation.
 

The method used here is systematic cut and try.
 

2) MTEST (X)
 

Let -,krepresent wn or c
 

If KFLAG I (in the common block), then c=1 , and we test the transfer function 

T(s) I if L-(T()) E T.D.B.
 
s + 2 s1 1
 

-REPRODUCIBILITY OF THE 

ORIGINAL PAGE ISPOOR 
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If KFLAG=2 then we test if the step response of T(s) = 2 1 ....
S


lies inside the time domain bounds. OMEGA) +2x
 

3) KTEST (NQ,NP,Q,P,GAINWO)
 

We test if GAIN*Q(S/WO)/P(S/WO) iies in T.D.B. Q is a polynom of degree 

NQ .P is a polynom of degree NP . The outputs are shown in Fig. 1.1. 

-c(t)
 

KTESTI 

f t 

Fig. 1.1
 

C. STEP and DSTEP
 

Those routines compute the step response-of G*Q(S)/P(S)
 

1) .STEP (M,N,Q,P,G,DELTA)
 

Q is a ,polynom of degree A . -P is a- polynom of degree N 

Let the dynamical system be given 'by: 
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+ bu = Apx 


where: Ap = 0--1 I
 

y= cx
 
c [q m q m -1 " " '*
qzs1 ,O1 

and let u be a step function. Then y(s) = 1C(SI-A f'b . H(S) C(SI-A )-lb

S p p
 

is the 'Laplace transform of the impulse response.
 

If 6=DELTA , is the increment in time, let A=e6A. The step response 

is then: 

y(t) = fce P bd 
0 1 A t. I
 

y(t) = -CA- b +Ce PA b
 
p p

'At 1
 
= H(O) + Ce p A- b
 

p
 

but A'b = so finally: 

y(kd) = H(O) + -g/pn)(CAk) (L) 

where the subscript i refers to the first el-ement of that vector.
 

The following notation is used:
 

A <= EXP(QELTA*A )
 

B <= -g/P6 

PN <= P(N)
 

F <= H(O = q*g/pn
 



6 

,1,OJ 

AA <= A 

STEP isthe value at t=O of the step response. 

2) DSTEP (N) 

N is the degree of P(-) . To calculate the step response at the time 

kx6 , we must call k times the function DSTEP , which computes (1). 

C(-) <= ,qmgqm_,***,q 


D. Description of the Package of Subroutines for Stable, Minimum Phase 

Rational Approximation to a Magnitude Squared Function (RFA) 

1) Philosophy 

The problem is to construct a rational function 

H(s) = g 

whose poles and zeros are in the LHP , such that 

IHWjw)1 2 F (w)0 

where F (w) is a given magnitude squared function with a known excess of
0 

poles over zeros.
 

2) Theoretical Preliminaries
 

The heart of the approximation procedure isbased on the following facts:.
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Let F() be a.positive, even function on (-7,rT) (a "power spectrum") and 

let its Fourier coefficients be denoted by 

rk 2 f cos(ki)F()dO 

[these form the autocorrelation Sequence for a stationary second order random 

sequence with power spectrum F(w)]. Let R(n) be the (n+l)x(n+l) Toeplitz 

matrix 

r° r rn-
O 1 

R(n) = 
r 
1 

r 1 

rn r1 r0 

Then R(n) is positive definite for each n Define [a ,p(n),'--pn(n)J
 

to be the solution
 

Pn(n) -0 

pn-i (n) 

R(n) : 

pl(n) 0
 

1 -an
 

Finally, define
 

P (Z)= zn + p (n)zn-l + + p (n)
n fl 

n 

n~m) - iPn(eJP)12 

Then the following are true: 	 REPRODUCIBILIIY OF THE 

ORIGINAL PAGE IS POOR 
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> 0M det R(n):. 
()	 n det R(n-1)
 

(ii) 	The zeros of P (Z) are in the open unit circle, i.e.
 

Pn -()= 0 => Ifi < 1 

(iii) 	 2 cos(wk)Fn M) = 1 Ifcos(wk)F(w)dw = rk for k=a,1,,,,n. 

-
(iv) -7 Pi(eJ)PJ(e j0)F(w)dw = if 1=j (Orthogonal polynomials) 

(v) 	An equivalent version of the abdve is the following. Let T(n) be the
 

(n+l)x(n+l) upper triangular matrix whose diagonal elements are ones,
 

defined by
 

T 0 ,for i>j
 

i pi(J-i ) , otherwise 

Then
 

TT(n)R(n)T~n) = diag(z,...,a ) 

This is a "triangular decomposition" of R(n)
 

vi) an is the minimum value of gTR(n) , taken 'overall vectors ' of the 

- form 

X 
X 
x
 
Ix
 

1
 



9 

(vii) 	 The-sequence a ,a ,-.- is nonincreasing and has the limit 
071
 

lim a. = expE 1 f In F(i)d]
 

(This is the 'geometric mean of the power spectrum F ).
 

(vifi) 	 The solutions to equation (1)may be computed recursively ih n.
 

This is
 

Levinson's algorithm:
 

Initialization: a ,= r
 

n
 
Recursion: = ES Pk(n)rn+l-k


k= D
 

n
 

= aI(-n2
an+1 -an [1(an 2
 

In the above p0tn)=l for all n
 

Remarks: 	 Levinson's algorithm dates from the paper: N. Levinson, "The Wiener
 

rms error criterion in fil-ter design and prediction", J. Math. Phys.,
 

Vol..25, pp. 261-178, Jan. 1947.
 

It is reprinted inthe book Extrapolation, Interpolation, and
 

Smoothing of Stationaty Time Series by N. Wiener, as an ap endix.
 

The result (vii) isdue to Szeg6, and may be found inthe book
 

Toeplitz Forms and their Applications by Grenander and Szeg6.
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For,more references, proofs, and discussions see "The Use of Second

.Order Intomation InRecursive Filter Approximation", by T.Mullis and R.
 

Roberts, (Dept. of Electronics and Engineering, University of Colorado,
 

Boulder).
 

3) Rational Approximation on Unit Circle
 

This-is the discret6-time equivalent of the approximation problem. In 

other words, given a magnitude squared function F(c) , - << , find a 

rational function 

H(z) = g 

where
 

-
q(z) = zm + q1zm + ... + qm 

p(z) = zn p zn- + + Pn 

m < n , 	 the zeros of both p and q are in the open unit circle, 

such that 

IH(eJw)i2 - F(o) 

The all-pole specialization is m=O , so that q(z)=1 . In this case a useful
 

approximation is provided by Levinson's problem. Ifone sets
 

n 

p(z) = Pn(z) REPRODUCIBILITY OF -TE 

ORIGINAL PAGE isPOOR
 



Update Denominator 

Given F(w) and q(z) , find an all-pole model 

a -U ; set gv, 

Ip(e")l1 2 lq(e"')i 2 

Update Numerator 

Given F(w) and p(z) , find an all-pole model 

_ _ _1 1 
e ,)set g=-


These two iteration modes are repeated until some degree of accuracy is
 

obtained. Note that one can increase the degrees m , n of the polynomials
 

between iterations. It is also possible to consider approximations of the form
 

q1(z)-"qr(z)
 
g p (z)...Pe(Z)
 

then the resulting approximation IH(eJ')I is useful in that Fourier
 

coefficients are matched, i.e.
 

- 2-jxe)jcosNkwouw- f 7F(w)cos(kw)dJ 

for k=O,1,...,n . Furthermore, the poles of H(z) are indeed in the open 

unit disc. 

Since low order all-pole approximations are not very efficient, it is,
 

advisable to consider the case m>O , but how can this be done? In RFA an
 

iterative procedure is used. This procedure has a number of modifications,
 

but basically it goes as follows:
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Initialize by setting q(z) p(z)=l , and update only one (factor)
 

polynomial at a time, if it is necessary to have a suitably factored
 

approximation..
 

Each iteration requires the computation of a power spectrum, and a
 

number of numerical integrations to obtain autocorrelation coefficients
 

before Levinson's algorithm can be applied. It is here that most of the
 

computation time is spent. For the computation of the power spectrums, it is
 

necessary to compute Ipce~")j 2 or lq(eJw)J2 . For this purpose the routine
 

SPE ("Special Polynomial Evaluation") was written for the numerical integration
 

the routines APA and JP were written.
 

Description of SPE (P,N,CN,SN,X,Y)
 

Here the inputs are
 

P = (pl,p2 ,.-..pn) 

=
CN cosw
 

SN = sinw
 

and the outputs are x , y , where
 

k + iy = p(ejw) , where p(z) = zn + p zn-, + 

'The algorithm is fast in that it requires only about n. multiplications and 2n
 

additions. It is based on the following:
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if [0F l ~ sinG]A= jb= ,C . 

L-1 2coL-1 case 

then for k>O 

[sin ke CAk-ib = 

For the system
 

*p(0)=[]
 

ip(k+l)'= A*(k) + bPk+l
 

Have
 

Z A
=kA 1pn n 


and
 

C[(n) : sin n + sinE(n-1) "
 

(n) =An [0] + k -bPn+i-k
 

Fcos[(n-1)e0]
cos ne + .. 1I+J
 

=[m p(eJe).] 

4) Rational Approximation on jo Axis
 

The technique isto transform the problem to approximation on the unit
 

circle via the bilinear transform
 

z-1-s ' s (-1
= ,+s Nf(-$)
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j0  
Define 	the map o+e by s=jo , zee so that 

a = l+cose tan{~i) 	 (3a) 

0 = 2tan '() 	 (3b)

n
 

The numerical integrations on (0,7T) in APA assume a uniform step
 

size, so that 0 will take on the values {0 , , . This generates
I,.--} 

0 0 

corresponding Values of w . Relation (3a) is thus used in TABCS to define
 

the set of frequencies. The center frequency (i.e. for 0=j-) will be 

w-I . RFA is set up so that N
0 

is a power of 2, up to 2'=128 . The indexing 

issuch that 

I) = 	0 

J(N /2+1) = 1 
0 

w(N +1)
 

0 

Note: 	 We can multiply all frequencies by the constant factor w defined 

above, such that w(N
o 
/2+1)=w

0 
, which explain the name given'to the 

central -requency. 

The essential dynamic range, in deca , is 

F1+cos l 
0= log1Lt 	 ] =2log N0 

-wF2 F 1 , iLN j 
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N 16 32 64 128 256
 
0
 

D 2.02 2.62 3.22 3.82 4.42
 

The log frequencies are distributed symmetrically about the center frequency,
 

with the density greatest at the center. Inother words
 

log[(k +j)] = -log[c(k -j)] 

N
 
where k o +1
 

o2
 

5) Transformation of Rational Functions According to Bilinear Map - Emphasis
 

of Deemphasis
 

Let F (w) be a magnitude squared function on (o,-) . This generalies
0
 

the magnitude squared function
 

F(O) = F (tan-) : Fo(w)
w
0 2 


on (0,r) . If F isthe magnitude squared of a rational function with an
0
 

excess of e poles over zeros, then F(e) will have a zero of order 2e at
 

T . It is not wise to approximate F(e) inthis form, since its inverse will 

have a pole of order 2e at it , and the numerator update will be ill-behaved. 

Hence F(e) ismultiplied by an "emphasis", so that the result will have no 

poles or zeros on the interval (0,r) . A natural choice of emphasis function 

is suggested by the bilinear transformation. Given a rational approximation 

for (0,n) , we must be able to compute the corresponding rational approximation 
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for (0,) This is the reason 'forthe following operator B , whose inverse
 

is implemented inthe program by the function subprograms BT and NORMLZ. A
 

consideration of this operation will lead to a convenient emphasis
 

deemphasis.
 

For any monic (leading coefficient units) polynomial ir(t) of degree.
 

k define the monic polynomial
 

k 
==(z)7(zA1)(z+1)
(B ) +s
 

(B-'r)(s) =T 1+,s k 

Suppose that F (L)=,j(jw)jI ,where 

= g p)
H(s) 

and: - q is monic of degree m ,'zeros in'open RHP 

,p ismonic of degree n , zeros in open RHP 

n'-m=e
 

Then.
 

q(z-41)(z+1)m
 
H(s) = g (z+1)e
 

=(z+l)e B.z
z-1


For zeJ j, 1+zj2=2(1+coso):. Therefore 

*'I (.)5 )(B )(e6)' 2 e 
(Bp )(ej) 

p 
 e ' 
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Hence, we may as well use
 

.5 e
 
1+cos6" 

for emphasis (see TABLE) and approximate
 

-(e) = +co.5eF (tan 6)Mo 
 2
 

on (0,ir) , note that F(O) has no poles or zeros on this interval.
 

Suppose this isdone, i.e. we have found an approximation
 

() =S L.)
 
p(z)
 

where q is monic of degree m , with zeros in open unit circle and p is 

monic of degree n , with zeros in open unit circle, for which 

- F()
Ifl(ej )12 

O
 
e
 

[2( 1+cos0)]
 

How do we recover the approximation to F (w) which isstable and minimum phase?
0
 

From the preceding approximation, we have
 

z (Il+eJl 2 )e g -.j )
F (w)= IH(Jw)12 (e0 


Then
 

- (z 1+S
H(s) (l+z)n m 

p(z) I z L:s
 

a n-m _ [ 2n-m (B'1)(s)
 

nr m th-erf (B'P)(s)
 
We may ther~fore take
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g = I (2)n-m 

q(s) = (B-' )(s)
 

p(s) = (B-')(s)z:
 

Numerically, what is required in order to transform the jw axis problem
 

to the unit circle problem is,.
 

(i) Emphasis, i..e. replace F (w) with
 
a 

Nei) ~FGO.w)- [2(ltcose)]n-m
 

(ii)After finding the approximation on (0,T) , recover g , q , p as above. 

Inorder to do this, the function subprogram BT was written. 

6) Implementation 

a) tABLE (NPQ)
 

For an excess, e=NPQ' we store a table in TAB -of the values of
 

5 e 

b) NORMLZ (FD,P,NPQ)
 

This subroutine'transforms F(w) in an emphazised function FD(e) with
 

-eE(o-n).
 

REPRODUCIBMITY OF ME 
ORIGINAL PAGE IS POOR 
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c) TABCS
 

This routine computes a TABLE of Cosine and Sine. With step-size w 
n 

(n given) itcomputes cos(.) , sin(-) and the frequencies
 

W(.) = SN(1+CN(-


E. RFABND (TM,PNAP,PDAP,NNQ,NNP,GAMA)
 

.Given the frequency response TM (input), a rational approximation
 

GAMA*PNAP(.)/PDAP(-) is calculated, with PNAP of degree NNQ , and PDAP
 

of degree NNP
 

Note: 	 RFABND begin to approximate with degrees (1/3) , then (2/4) ...
 

until a maximum error (EPS) of 1% in the approximation achieved
 

or until a maximum degree of 12 isreachedfor the denominator PDAP .
 

F. EXTLWB (NEXCESS)
 

This routine tries to extend the Lower Bound of the overall transfer
 

function using up to NEXCESS of poles over zeros.
 

This isdone by selecting suitable poles, which added to the upper bound,
 

still guarantee a coryect behaviour in the time domain.
 

Systematic cut and try isused here and so, starting from a first guess
 

ISTART (index frequency) we converge toward the final value of ISTART , at'
 

which one or several poles can be placed.
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W(.) being the frequency-vector (see TABCS) then POLE=W(ISTART)
 

1) MUL (P,NP,POLE;PA,NPA)
 

This routine calculates. PA(s)=P(s)*(s+POLE) where P is of degree NP
 

and PA of degree NPA=NP+1
 

2) KEEP5 (BND,POLEN)
 

This routine updates the F.D.B.
 

FDUM(.) = BND(-) * POLE2 N
 

POLE2+W() 
2
 

FDUM is then compared to BNMN (BouNd Min) and BNMX (BouNd Max) which
 

contain the lower and upper limit of the F.D.B.
 

G. EXTHGB (NEXCESS)
 

This routine EXTends the HiGher Bounds by placing appropriate zeros on
 

the lowest bound TMIN and works in a similar way.to EXTLWB
 

H. FREQ
 

RFA requires a frequency scale, given by TABCS . However Part II uses
 

a logarithmic scale for the frequencies. The routine FREQ does this
 

transformation on the FREQuencies and makes the interpolation for the upper.
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and lower 	bounds of the F.D.B., BNMN and BNMX and for the ratio R=BNMX/BNMN
 

Example: 	 Suppose that NBR , the number of points/octave derived is 2
 

Suppose k=2 , which means that the set of points considered in Part
 

.II,is (1,1+22 ,1+2x22,l+3x2 2 ,---)=l,5,9,l3,...) In other words
 

k=2 means that an interval of 2k:4 ischosen for the index
 

frequency scale.
 

Old system Jfrequencies 0 	 WO
-I
 
(TABCS) index-frequency 1 	 65 129
 

New system frequencies u 2u 4u 

(logarithmic) L index-frequency 1 9 17 65 I29 

NBR*2
 The logarithmic step is,ingeneral , . 

I. Other Subroutines Used
 

1) INIT
 

This isjust an inialization of BNMN and BNMX , the lower and upper
 

limits of the F.D.B. obtained with the second order model.
 

The vectors FP(-) and FQ(.) are also initialized - to 1 in order to 

be able to call the routine RFA . 
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2) SPE2 (P,N,OMEGA,X,Y) 

At frequency OMEGA , the polynom P of degree N has for real part 

X and imaginary part Y, 

P(jOMEGA) = X + jY 

REPRODUcIBILITY OF THE
 
M1dnZAL PAGE IS POOR
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II. PART 2
 

Philosophy
 

The plant is read in (PLANT) and its range or templates (TMPLT)
 

calculated over a set of frequencies. As an option, the boundary of the
 

template can be plotted (P020) and the bounds on L can be computed and
 

plotted (BNDG)
 

A. PLANT Model
 

0 -0 
1 2
 

Fig. 2.0
 

Between the nodes 1-2 , there can exist (Fig. 2.0): 

a) a known block of transfer function t(s) . This will be called a LINK 

b) an unknown gain k . Inthis case itwill be called a KINK 

The rules to describe the plant are the following:
 

i) 1MLINKSIO ;
 

(ii) I, KINKSO4 

(iii) No feedback from final node;
 

(iiii) No feedback into first node;
 

(j) No trivial KINK , i.e., 1k 1
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(jj) All integrations should be included in path from 1 to 2 ;(The
 

number of integrations is called NTYPE );
 

(Uji) !The only branch out from 1 isto 2
 

1) Mathematical Preliminaries-


Let us replace all integrations by a unit delay "1"
 

Let IC(I) denote the length of the shortest path from node I to the 

output. Thus IC(- is a vector of the shortest path to the output, from 

different nodes. It is seen, then, that the shortest path from input to 

output is the excess e of poles over zeros of the plant P(s) . Let NPO 

and NQO denote respectively the degrees of the denominator and numerator 

of P(s) , so that e=NPO-NQO 

Let IA be a matrix and IA(I,J) represent the length of node I to
 

node J
 

Example:
 

0 

5! 1 2 3 4 1 


-1 2 

Fig. 2.1
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The minimum path (Fig. 2.1) in 1 step only is represented by:
 

0 2 -1
 
IA = 

00c 

The minimum path from node I to the output in 1 step is represented by the
 

vector:
 

IC = C = 
0 2 

1
 

Define addition (+) by
 

IA (ij)+ IA (ij) = Min[IA (ij),IA (i,j)]
1 2 1 

and multiplication (*) by
 

IA (i,j) * IA (i,j) = IA (ij) + IA (ij)
 
1 2 1 2 

Then itcan be shown that the set of matrices IA associated with the two
 

laws of additive (+) and multiplicative (*) is a field.
 

Thus, the minimum path in 2 steps is:
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0 2 -1-

-c I- i 3 0 

0 2 -1 -1 
IA = (IA)2 = 

0 - 0 C 2 -1 

It can be proven that the minimum path in 2 steps to the output is:
 

C = C + IA * C
 
1 0 1 0 

and in general, the minimum path in N steps or less to the output is:
 

Ct = Ct_ + IAI * Ct-i
 

or Ct(i) = MinfCt-1 (i),min[Q(i,j)+Ct_(j)31 

It remains now to note that e=Ct(1) when N is very large. 

2) Implementation
 

in the program is replaced by the number 777 . The preceding formula
 

(same notation) is used in the program to calculate e
 

The links are read in the matrix T , which is organized as follows:
 

REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR 
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link # 1 -T(1), T(LINKS+1) T(126*LINKS+1)

link # 2 T(2) T(LINKS+2) T(126*LINKS+2)
 

link.# LINKS T(LINKS) T(2*LINKS) T(127*LINKS)
 

frequencies W(2) W(3) ------- --- W(128)
 

Ti) isa complex number which represents the transfer function from node
 

k to P at the frequency W(n)
 
/
 

Then the links are read inand AK and BK are vectors of extremal

,values for each 
 KINK
 

B. RECQPG (NP,NQ,Q,P,G,X)
 

For the plant condition X , this subroutine RECovers the polynoms Q
 

and P of degree NQ and NP and the gain G , such that G*Q(S.)/P(S) match
 

exactly the. data contained in the previous matrix set. This problem is known
 

as the Cauchy-interpolation problem and is presented under "Mathematical
 

prelimina'ries" below.
 

1) Mathematical Preliminaries
 

Suppose the data set [(X ,x),.-.,(XNxN)} is given, where the {Xi}
111
 

are distinct.
 

N N-1
 
Define n(s) = ir(s-.X) sN + Trs + ... + 7TN 

11
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Define 0l{ k=O 

A , k>O 

•. -k 1 
Then 	 (-s)
 

ko
 

and [0,,.-.• ,O,, ,---} 

k=N 

Construction 	 c [1 OJ
 

A-=N J 	 b= ] 

_____ k N A5
Then A- XE cEkb= I cAb 

1 _ c(siA)-'b -cb + cAb + 

and c b*='0 " for k,< N
 

Assume that the data satisfies
 

Yip(xi) = q(Ai) for i=l,...,N
 

where p(s) = sn + a ,sny + .. + an 

q(s) =qosm + .... + qm 

Note,: Distinguish between n and N 
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Define 0 , k=O 
= k-i
 

gk N Ai q(Ai)
Ei -i - ) k>O 

L =1 ( 1 

Then k sk ( 

and {gk } = {0,**,0,q ,q+qZAi, }. .


k=N-m
 

Define N i Yi
 
'r'(I
hk = 


Since yip(xi)=q(xi) for each i , assuming that p(Xi)#0 for each i
 

we get
 

hk= 
N X1$-' q(X.)
I[ 

-Let f(x) = K X)- I 

f( i) 
 -

-cf(A)b zhks-k
 

Ehks k = cq(A)[p(A)(sI-A)]- b
 

• .k+k-,k~n 
Using E = 4 P(i) 

£= o 

n N qX q(i) 
Ehk+anZ = E 

ko i=1 

This, implies the following
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h hn+ 1 an
 

=
h2 hn+2 I (3) 

h3 hn+3 a g9 

Since gk=O for k<N-m , if N-man , i.e. N>n+m , then p(s) is determined 

from 1fh ,...,han} . These numbers depend only on the data, and not on the 

isdetermined, the above equation can'generatethe{gk) .Once p(s) 


sequence {gk Which'can be used to generate q.(s)" in view of the identity
 

gk rs-'=This isdohe as follows:
s. 


'-(N-m) I-(N-m+i) +s-N
 
a(s) qos +q " 

1 +ir S1 + + rns-N
 
1 n
 

therefore
 
{O' ,9O ,Oq,q s.-,qmOOO,,-.-}
 

iindex=N-m
 

{0, , , ,gNm *'{f1,, .... ,0,0.**f.
 

i.e. q = gN-m 

q,= qN-m+ i+ 
Tr gN-m 

q2 = qN-m+2'+TiqN-m+l + ArgN-m
 

etc.
 

REfODUCIBIT Y OF THE 
ORIGINAL PAGE IS- POOR 
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Case 1 Nt2n' 

Xi} f{(Jl ),'",(JOn,),(-Ji ),' ,(-jwn,)} 

{yi} f (a I+jb ) .n,) (a- ),.(an,-Jbn,)} 

h = 
k 

n' (a.+jb)(jwi)k-i 
E 2Re[ -ji J
i= ,j i 

for k>O 

7f(s) = 

7r'(iw) 

i (s 24m4) 
1 

0 
= 2of(oi-o4) 

0 
E isa deleted p 

define 2j _ 1 

t h e n 

k22 

n]SR [ (b -a )j )k i]
hk E e Q=, -a , ( w , 

k=3 

k = 0 Qbk 

k I Q,a ,,, 

k =3 -Qapw 

Case 2 Same as case one except N=2n'+1 , add 0 to 

ns 

i(s) = si (s2'+w) = sr(s) 
1 

n' 
i'(0) = (Hi 

t1 
(m)= -2o4Jio-w ) = jx'(m) 

f{i y 0a 
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--T'
EiRe [(	 k-3
)Q2,Cit).] 
-7- k,o R=' 2 

a a° + n EC at+jb . 

k 

(11w.)


I 

-Q

1 

9 

k = bQ2
 

k = 2- atQpo
 

k = 3 -b Q 2
 

Y,k- , kk 

i)2hk = ( 

hk i , k>1
 

2) Implmentation
 

For the set of select frequencies W(-) , we compute P(jw) . This is 

done through subroutine PJ 

ay 'PJ (KW,X,PJW) 

Input 	 KW is index frequency
 

X is the plant condition
 

Output: 	 PJW <= P[jW(KW)] = P(jw) 

In the frequency domain (Fig. 2.2), we can write:
 

x Gx + 	 cu 

y = bx
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,2
U C20oy
 
0 


0 

Fig. 2.2
 

Thus: y = c(I-G)-'bu 

Here c=[1,'OJ so the transfer function we are looking for is: 

P W ='[(I-G)-'b]
1 

where the index x refers to the first coefficient of the vector under 

parenthesis. Instead of inverting (I-G) ,we employ "Crout reduction". 

Essentially this leads to the building of the matrix A<=[I-GIb] which 

is n+lxn 'where n+1 is the number of nodes. 

"Crout reduction" uses matrix A to compute 

- .POW = [(I-G)-'bJ 1 as [b+Gb+G2 b+ ] 
1 

b) JAKRON (KFLAG,NN)
 

This routine builds up the Hankel matrix
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h h2 hn+1 

h 
2 

H= 

hn+i h2n+1
 

used inequation (3).
 

c) HANKEL (N1,H,A)
 

This subroutine solves recursively equation (3)and leads to the
 

computation of the coefficients of the polynom P(s) of degree n
 

The sequence {gk} then generates the numerator g(s) whose degree
 

-n-e=m is known, and the gain G
 

Note: 	 The main reason for using Cauchy interpolation problem is to guarantee
 

the minimum form of the plant P(s)
 

C. PATTERN (KW,KINKS)
 

• . index-frequency
 

KINKS: number of independent parameters
 

This routine computes the contour of the template of P at frequency

index KW and stores the necessary points.
 

-. 	 G M POOR 
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1) Mathematical Preliminaries
 

Using the bilinear theorem, we know that if one parameter k varies over
 

(k ,k) the plant transfer function describes in the complex plane, an arc of
 

a circle. To represent an arc of circle in the complex planewe 
use the mapping
 

f 
R -> C 

f(x) g ax+bwith x R
 

a,b,c e C 

we have an arc of circle. The relations between a , b , c and
If x C (0,1) 


f(O) , f( ) , f(1) are given by:
 

f(O) = b 
ab 

f( ) + b 
T 

fa+b
 

f(1) = a+band 

b , c and f(0) , f(l) , f'(0) are given by:The relations between a , 


f(O) b
 

df() a+b 

f'(0) = a - bc [f'(x) a-bcand (cx+l)'
 

Thus we can show that:,
 

f(x) = cx+lf(0) + f'(-)




36
 

with 1 + 	p = f'() 

Notation: 	 FO <= f(O)
 

FH <= f( ) FPO <= f'(O)
 

Fl <= f(1)
 

2) TOUR. (IN,M,NO)
 

M is the number of KINKS
 

NO=2M is the number of vertices inthe space of parameters.
 

IN is a vector which summarizes the path taken.
 

Example: W:3 => NO=8 

010 110
 

110
011 	 ii_11
 

k1
 

000 100 g 

01011 

100 


001 101 
1
 

k Path l is a tour 

Fig. 2.3a Fig. 2.3b 

3 
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All the corners (Fig. 2.3a) are reached by taking the path 1 (Fig. 2.3b)
 

which can be described by the vector IN={1,2,1,3,1,2,1,3} (called a "tour")
 

which indicates only which of the 3 independent parameters is changed. Thus
 

IN describes a, "TOUR" 

Two other tours are possible by single circular permmtation.
 

In PATTERN the vector IDGE(I,J) reveals whether the edge from I to J
 

has already been examined [IDGE(I,J)>O] , or not [IDGE(I,J)=O] . In each
 

edge, trois points are examined and the parametric linearization isfound in
 

ARC .
 

3) ARC (C,FPO,,FO,FH,F1)
 

Given FO , FH , F1 . This subroutine computes FPO and C ,-in order to
 

describe the arc-of circle f(z)=f(O)+f'(O)-- with z e (0,1)
 

4) IVARC (C,FPO,FO,D,T)
 

Given C , FPO , FO and D=f(l)-f(O) . This subroutine computes the
 

curvature of the circle and depending on it,a multiple of 2 (points) are
 

added to describe the arc of circle.
 

IVARC can be 1,2, 4, 8 .
 

The eventual added points are set inthe vector T(t ,-..,t )
1
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*f(1) 
+ 

f(t8) 

f(O) 

f(t) 

f(t2) 

f(t3) 

Fig. 2.4 

5) KMULL (Z,N,X,I1,I2) 

z7 

z6 

z5 

2 / 

z2 / 

/z3 

z4 

Fig. 2.5 

Given some ordered vectors of a convex polygon 

complex, check if X complex belong to the convex 

S , 

HULL 

Z(1)-..Z(N) 

S 

all 

HULL = 0 if 

1.if 

X E S 

X,t S 
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If KHULL=1 , I , 12 are the indices corresponding to the end values of the 

points to be next. (Example: here 11=1 , 12=3 ). 

6) IRT (X,Y,Z)
 

Fig. 2.6 

Given X , Y , Z complex, the-value of iRT is returned according to the 

drawing. IRT isused by KHULL to detect ifa point is inside or outside a 

convex hull, 

7) P020 (Z) 

This isa plotting routine for the templates in the Nyquist plane. 

P021(N,NPT,Z), plots on the Nichols' chart. 

8) 'P01 (NQ,NP,Q,PGAIN) 

This is a printing routine for the rational function GAIN*Q(S)/P(S) 

-REPRODUCBITY0r THE. 

ORIGINAL PAGE Is POOR 
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9). DOT (-X,Y)
 

•* = DOT(x,y) 

D. TMPLT (KINKS)
 

This routine first eliminates all the arcs which are interior to the
 

convex hull returned,from the routine PATTERN
 

Then the contour of the template isstored inparametrized form.
 

• 5
 

• '7 3
 

FO(kw)
 

Fig. 2.7
 

"FO(KW). isthe starting point of the template at frequency KW . NPT is the 

number of arc of circles which describe the template at KW LOC i'an adress
 

such'that FPO(LOC) contain the value of f'(O) for the arc no.1 ; FPO(LOC+1)
 

contains f'(0) for the arc no.2 ; FPO(LOC+NPT) contains f'(O) for the
 

arc no.NPT
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ILOC I NPTi NTMP(KW) 

LOC and NPT are stored in arc register NTMP(KW) . They are obtained using
 

the rule:
 

LOC = NTMP(KW)/128
 

NPT = NTMP(KW) - 128*LOC
 

Inthe parametrization we do not use c , but store h=1/(1+c) in H(.) 

Thus the first arc is described by: 

FO(KW) , FPO(LOC) , H(LOC) 

It's final point is f (1) and will be the initial point of the second arc 

described by: 

f (1) , FPO(LOC+1) , H(LOC+1) 

and so on.
 

Note: Instead of storing the template of P , we store the template of 1/P
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III. PART 3
 

Philosophy, 
 -

We take a first guess for L (jwY (FRSTG) and do 4 iterations of "local
~2 

changes" The "local" changes are done at each frequency and the correction
 

then affects all frequencies. This allow rapid initial 'ball-park' convergence.
 

"Global" changes are then made to improve the solution. "Global" refers
 

to the fact that the corrections are made iimultaneously at every frequency.
 

1) Mathematical Preliminaries
 

N~ B(KW)
 

Fig. 3.1
 

Suppose that B(KW) is the bound on L(jw) at the frequency. KW , and' 

let M be the value being used at this point for L(KW) . The correction 

from point M, to point N ismade by means of a lead-lag network, of the 

form t (s) b s+a 
cor Fs+
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Suppose we want the effect of the network to be maximum at the frequency
 

W(KW) . Then we can let b=x . W(KW) and a=W(KW)/x and
 

Itcor[JW(KW)1 2 = x ' 

t (s)= xEW(KW)+xs]
because 
 car [xW(K-W)+s
 

We know that for minimum phase system , the phase and magnitude are 

related through the Bode-integrals. However, to use the Bode-integral we must 

evaluate singular integrals, difficult to do with precision. 

We use instead a technique first proposed by Bode (Bode, p.343) whereby
 

the given characteristic, isapproximated by "semi-infinite segments". The
 

phase corresponding to such a characteristic (break-point W ) isgiven by:
 

.)C

B(xc 2(xc+ 


=2r +x - if 0 4 x.c .414
 

- - 1 xxlog - 2 c if - .414 i x < 1 
IF c 

cc
 

where Xc =W
 
(0 

Our procedure for global changes is as follows. Given L(i)(j) obtain
 
2
 

after i iterations, we compute the P, corrections corresponding to the Y
 

different frequencies of interest. Thus we will end with a set of Z
 

magnitudes, from which the corresponding Z phases will be obtained. The new
 

set of Y magnitudes and P phases give new loop transmission L(i+') (jm)
 

etc.
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A. PLNMNL
 

This routine calculates the PLant NoMiNoL for x=1 , which correspond to 

the minimum value of all KINKS . The nominal plant is then stored, in 

PLNL( ) for the magnitude squares, and in PLNFI( ) for the phase inradians. 

B. FRSTG (GF,IST2,IST1,NNN)
 

The first guess of L is takes as s . Thus (L nomGPnom
 
1Gk 


=Gfirst guess s(s+-a P1--_ " 
nom 

GNVAR denotes variation in the high-frequency gain factor of the plant. 

IST1 isan index-frequency which is chosen such that 

I Tmax > GNVAR but [R(IST1-1)<GNVAR] 
R(ISTI) = Tmin I=IST1 

Then 
 a = W(IST1) 

IST2 isan index-frequency calculated in Part I,and which essentially gives
 

the first index-frequency for which L(jw) satisfies its bound.
 

k is then chosen as the minimum gain-for which L2 nom satisfies its
 

bound on the interval (IST2,IST1)
 

The procedure now consists of finding L which satisfies its bound
 

2 nom 

on (IST2,ISTl) then to increase ISTI until L2 nom(IST1) is less than
 

GNVAR (the high gain variation). The later will be the solution of our problem
 

ifwe were satisfied with an excess of 2 poles over zeros.
 

REpflODUIBILITY OF THE 
APSiALAPAGE IS POOR 
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IS T2
 

L2fin
 

IST1 

Fig. 3.2 

C. BNDL (IST2,ISTI,NNN)
 

This routine computes and plots the first nine bounds on Lnom
 

D. XLDLAGI '(A,B,I,KL,NFCAG1,IST2,ISTI) 

At frequency-index I E (IST2,IST1) , this routine computes the LeaD-LAG B s+A 
which brings L nom 


RNG1 (see below) computes Tmax/Tmin and accordingly x isincreased or
 

decreased.
 

B-s-B to its boundary. This isdone by cut and try.
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A and B are then returned to the current program..
 

2
a~x - Il+Ljax jI+GP 1 _G + 112 
Note: R =
 

T2 2 
 I1+GP12 V +112.1+Lj
min Imin min P min
 

Thus in XLDLAG1 we need to call RNG1 after translating the origin
 

FO by G
 

G + 11maxPMAX <= 


PMIN <= IG+ 11i
 

1) RNGI (FO,FPO,H,N,ZMIN,ZMAX,PMIN,PMAX)
 

Given a boundary composed of N distinct arc of circles parametrized 

by FO,FPO(1),...,FPO(N),H(1),-..,H(N). This subroutine determines the 

points Zmax and Zmin , with the greatest and least distances from zero. 

2) CHK1 (F,PZMIN,ZMAX,PMIN,PMAX)
 

P=jFI2 , F complex.
 

This subroutine does the following: 

If P < PMIN then P'=> PMIN 

If P> PMAX then P => ZMIN, 

if PMIN < P < PMAX , nothing happens. 
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3) MIDPNT (F1,D,H,FPO,F)
 

If an arc of a circle is parametrized by F1 , D , H , FPO this
 

subroutine returns the number of special points contained in the arc.
 

J , no special point on the arc 

MIDPNT = , one special point is contained 

2 , two special points are contained 

A
 

B A and B 'are special
 

0 points
 

Fig. 3.3
 

4) KUAD (A,B,C,XI,X2,Y)
 

Given the polynom p(s)=As2+Bs+C , this routine computes-the roots of'
 

p(s)=O and stores them in y . KUAD is then the number of roots Which lie
 

in the interval (xlx2)
 

5) ERROR (I,NFLAG,IST2,IST1)
 

This routine computes the normalized Euclidienne distance of the point 

Lnom i') to its boundary at frequency I . Moreover, it stores the maximum 
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of all 	distances computed on (IST2,1STI) , with one db considered
 

equivalent in 'distance' to 5 degrees.
 

NFLAG=7 , indicates that the disturbance bound has been violated.
 

Note: 	 In XLDLAG1 (except when called for local' changes), the value of x
 

is limited to (.95,1.05) (5%of changes allowed at each step) in
 

order to avoid oscillations inthe iteration.
 

An additional refinement was found to be useful in the final stage of 

the iteration for eliminating oscillations. InFig. 3.4 suppose the n-th 

iteration gives the points A , B for L(joj) , L(jo ) respectively. Say 

the correction corresponding to 11 , ismade for the new set of magnitudes 

(for the n+1 trial). This smaller magnitude gives a larger rate of decrease 

of magnitude near w , driving L(j ) inthe direction of A' . No correction1 	 1 

is persumably needed at 2 because B is on the boundary. However, since the
 

magnitude of A' isnow being used at w , if B is used at w then the
 

average rate of magnitude decrease near w is now less than before, i.e.
 
2 

ma,g.(B-A')<mag.(B-A) , leading to phase lead at w , inthe direction of B
 
2 

To prevent this we should lower also the magnitude at w , in the direction
 
2 

of B' . This refinement is incorporated at present only along the high

frequency disturbance boundary. For example at C,D,-..,G in Fig. 3.4 the
 

updates would normally be, say, .95, 1.0, .98, 1.02, 1.05 . Instead we use
 

.95, .95, .93, .95, 1.0
 

REPRODUCIBLITY op THE
 
ORIGINAL PAGE ISPOOR
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A
 

A'l - -1 

OC B B 

B1
 
0 E 

F 0 

GO Fig. 3.4 

E. KEEPG (A,B)
 

This routine isused with local changes. It updates the compensation 

G(s) at every frequency according to the rule 

Gnew(S) = Gold(s) * * s+A 

F. FIXG (A,B,L,IST,IST1,IST2)
 

This subroutine isused for "global" changes to update the set of
 

magnitudes squared. At index-frequency L s (IST2,IST1) the vector F is
 

filled with G2x2 . For the frequencies smaller than IST2 .,L2 nom(JW) is
 

assumed to have a slope of 6dB/octave and for the frequencies greater than
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ISTI , the last slope is extended indefinitely. 

G. SLOP (I1,12,NNN)
 

Given a set of magnitude square F(-) over (11,12) , SLOPE(-) contains
 

the relative change of slope over the previous interval at each frequency.
 

H. PHASE (W,I1,12,NNN)
 

Using the previous results stored in SLOPE(-) , this subroutine computes
 

the phase at frequency W , using the technique previously described.
 

I. XGAIN (IST2,IST1,NNN)
 

This subroutine replaces G(-)<=XK*G(-) where XK is a pure gain, obtained
 

such that as many points lie above the boundary below.
 

J. Other Subroutines
 

1) DSP (NPT,NY,X,Y,SYM,TITLE,KFLAG,Y1,Y2)
 

This routine is a plotting routine.
 

NPT number of points
 

YI,Y2: Min and Max of the ordinates y
 

NY : number of curves
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X : vector of abcissal values 

Y : two dimensional vector of curves yK=Y( ,K) 

TITLE: vector of alphanumeric characters 

SYM : vector of symbols for up to 10 curves 

0 , if general 
KFLAG: 

1 , if we want to plot f(x,y)=O 

Inthe latter case of should be stored in DSPZ 

2) DSP2 (A,Y1,Y2,XI,X2) 

Used when KFLAG=1 in DSP 

3) IFOR 

Used for scaling purpose. 

4) FIXBET (I) 

This subroutine calculates the maximum possible phase of 

all frequencies and plant-conditions. 

L (jW)
2 

over 
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IV. PART 4
 

Philosophy
 

At the end-of Part 3 we do not have as yet the required loop transmission
 

L(jw) . We have for reasons of convenience a loop transmission (physically
eM
 
unreal iable) with Has an excess of (2-90 poles over zeros, where eM refers
 

to the phase margin of L (see Fig. 4.1).
 

V-- Region
 

t L Optimum 
2 

Fig. 4.1
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We therefore multiply this by H- K(s+z)2 with. 0=I-g , inorder
 
.,i
(s2+2cnS+w )2 


to obtain a realizable loop transmission with an excess of 5 poles over zeros.
 
4
 

Obviously, we do not want to change the gain at low frequencies, K=-n •
 
z 


We let tn=Xz , and search over the three parameters z , A and ,
 

given 6M , inorder to find an 'acceptable' characteristic. The search over
 

A and c has been experimentally and charts of suitable X(eM) and c(OM) 

were prepared and stored in the program (see Fig. 4.2). Therefore, it is
 

necessary only to search over z , given 0M 9 eNM) and X(eM) . This is
 

done by cut and try.
 

When z is found, L (jw) is available in the form of numerical data,
5
 

over a set of frequencies. A rational approximation is then made of
 

2
(s 2+2zns+c)n
L0(s) = L(s) S 
U2 
2 


n 

which is finite non-zero at s=O and at s=- . The reason for this modification
 

is to retain-the double complex factor in the final rational representation of
 

L(s)
 

A. CHKBND (IST,IST2,IST1)
 

This routine uses the chart (Fig. 4.2), to compute c and A . Then the 

value of z is adjusted by cut and try.
 

The final results are stored in block 'IBETAII
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*.41. 380.4 .4 : .
 353 
-3.8 ,. 3 33
 

.... 7 3.4
 
..7 

I . 2IIII 

O..-2 -.4 .6, .8 1. 

Fig. 4.2 

Notations: BETA <= 0 XLAMDA <-A-* 

A<=z QSI <=c 

B-., FREQ1 ST)
 

This subroutine changes our logarithmic scales for the frequencies into 

a trigonometric one as defined by TABCS . This isdone inorder to be able 

to take a rational approximation of L
5 

. On that new scale 1G12 is 

interpolated and started in F(.) 

C. INIT1 

This subroutine initializes, FP, and'.FQ , for use in RFA 

REPRODUCIBILITY OF THIg 
,ORIGINAL PAGE IS POOR 
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D. RFAFNL
 

This subroutine computes
 

(sZ+2zwns+Q4 )

L = L (s) S (2

0 5 	 2 

and approximates it by GAMA*PNAP(S)/PDAP(S) ,where PNAP is of degree NNQ
 

and PDAP of degree NNP . Then L is approximated and G(s) calculated.
 
5 

[G(s)=L (s)/Pnom(s)] •
 

1) CNVLTN (A,NA,B,NBC,KFLAG)
 

This subroutine computes the product of two polynoms A and B of degree
 

NA and NB and puts the result in C
 

E. PREFI (IST,IST1)
 

The data for the prefilter F is obtained from
 

M-	 G+F n Max nmMax/G

G PMin 	 PMax
L L 


T-IAMin(TTL)Max
 

Notations: 	 FM <=,F is stored in the block PREF
 

BB <= TMIN * TMAX
 

PMIN <= IG + 1IMin
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PMAX <= IG+ VIMax 

GMAG <= IGI 

This subroutine, thus, prepares the data of IF12 RFA is then used to
 

obtain a rational approximat-ion.
 

Note: PREFI prints out a summarizing table;
 

OMEGA stands for frequency 

DB1 stands for (TMax/TMin) tolerated in DB 

DB stands for (TMx/TMin) real in DB 

XLMIN stands for (L/1+L)Min in.imag. square.-

XLMAX stands for (L/I+L)Max in mag. square
 

DIST .stands for tolerated disturbance in mag. squares
 

PREF stands for value of the prefilter
 

BNMN(KW)' is the actual min. bound of T at KW 

TMN is-the tolerated TMin 

TMX is the tolerated TMax 

BNMX(.) is the actual max. bound ,of T 

F. FkEQ2 (NEXPF)
 

This subroutine extends the data for the prefilter, assuming an excess of'
 

'NEXPF poles over zeros for the prefilter.
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G. RFAPF (IST,IST1)
 

This routine approximates the data contained in FN~GAMA*PNAP(S)/PDAP(S)
 

which isthen stored back inthe common block jFINPFI , to be available for
 

printing and plotting of the prefilter response.
 


