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ABSTRACT

Fermi-scattering and transit-time damping have been
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suggested as two possible mechanisms for accelerating low-

energy protons ( % l Mev) in co-rotating particle streams.

In this paper, the requirements and properties of each of

these mechanisms are illustrated by means of numerical

solutions to the equations which govern particle behavior

in such streams. It is found that the conditions which are

required for Fermi-scattering to be the dominant accelera-

tion mechanism are more extreme than those required for

transit-time damping. Acceleration by Fermi-scattering

requires a scattering mean-free path more than an order of

magnitude smaller than the nominal value for low-energy

particles of 0.1 AU. Transit-time damping of only the

okserved .low-level of magnitude fluctuations in the inter-

planetary magnetic field appears to yield the required

acceleration rate. Measurements of the direction of the

anisotropy in the particle streams could be of help in

deciding whici; of these mechanisms (if either) is operative.

In the case of Fermi-scattering the anisotropy must be in

the heliocentric radial direction, whereas for transit-time

damping a significant azimuthal anisotropy could be present.
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McDonald et al. (1976), by comparing Pioneer 11 and

IMP-7 data, have found recently that the intensity of 1-Mev

protons in co-rotating streams increases by more than an

order of magnitude between 1 and 3 AU from the sun. Althouqh

other interpretations of these data may be possible, McDonald

,A al. (1976) draw the reasonable conclusion that these

observations are compelling evidence for extensive Inter-

planetary acceleration of loci-energy _(_articles. McDonald

et al. (1976) suggest that a possible mechanism for this

acceleration is a Fermi- scattering process, as has been

discussed by, for example, Jokipii (1971) and Wibberentz

and Beuermann (1972). In this mechanism particles are

statistically accelerated by interacting with randomly

propagating Alfven waves which have wave lengths comparabie

in size to the particle gyro-radii. Equivalently, the

particles are accelerated by cyclotron damping of the Alfven

waves. Fisk !1976x? 'has suggested that an alternative

mechanism is transit-time damping. In this process particles

are statistically accelerated by interactin g with fluctua-

tions in the magnitude of the interplanetary magnetic field

(e.g. magnetosonic waves). By using only the low-level of

magnitude fluctuations that are observed in the inner solar

system, Fisk (1976a) finds an accelrlutiun rate which appears

to be sufficient to account for the intensitv increases

reported by McDonald et al. (1976). It is the purpose of

the present paper to illustrate the requirements and proper-

ties of each of these possible acceleration mechanisms by
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means of numerical solutions to the equations which describe

particle behavior in steady-state co-rotating streams.

I The discussion here is limited to acceleration by

Fermi-scattering and by transit-time damping. The exclusion

of other acceleration mechanisms should not be construed,

however, as implying that Fermi-scattering and transit-time

damping are the only possibilities. For example, some of

the observed intensity increases could result from acceler-

ation of particles by interplanetary shock waves.
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The Model

It is assumed here that protons are injected into co-

rotating streams at heliocentric radial distances that are

small compared with 1 AU, and at energies small compared with

the observed energies of 1. 100 keV. For example, the protons

could originate in the suprathermal tail of the solar wind

near the sun. The proton:: are then assumed to be accelerated

in a statistical process, or, equiva'.ent'_y, to diffuse in

momentum space. This acceleration competes against the normal
i

adiabatic deceleration which results from the expansion of the

solar wind (Parker, 1965). The protons also diffuse spatially

and are convected by the solar wind. It is expected that this

simple model will illustrate many of the features of particle

acceleration in co-rotating streams.

however, that particle behavior could

details in models where the injection

radial distance (e.g. where particles

erated out of the solar wind),-)r in m

are injected at the sun with energies

observed energies.

It should be recognized,

be different in some

occurs continuously with

are continuously accel-

adels where particles

comparable to the

It is also assumed here that the solar wind flows in the

radial direction with constant speed V. The mean interplanetary

magnetic field, as a result, executes a simple Archimedes

spiral pattern. A mean field line, or flux tube, then lies

along a curve of constant ^*, where (Parker, 1963; Ng, 1972)

^* = m - Qt + S2(r-r s )/V	 (1)

Here, m is the azimuthal angle in a spherical coordinant
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i
system which has a polar axis along the axis of rotation of

i the sun. The angular velocity of the sun is :2; t is time;

r is heliocentric radial distance; and r s is the radius of

the sun. Clearlv .y* marks the location of the footpoint of

the mean field line at the surface of the sun, at t = 0.

It is further assumed here that particles propagate

only along the mean field direction, i.e. cross-field dif-

fusion is ignored. As discussed i., detail in Ng (1972),

the behavior of particles in one flux tune is then independ-

ent of the behavior in other flux tubes. A convenient

coordinant system to choose is thus r and w*, as opposed

to r and ^, since the particle behavior at different values

of ^* is now unrelated.

The equation for the omni-directional distribution

function f (particles per unit volume of phase space,

averaged over particle direction) in a steady-state co-

rotating stream can be written in terms of r and m* as

(Parker, 1965; Gleeson and Axford, 1969; Ng, 1972; Fisk et

al., 1973; Fisk, 1976a)

2v of	 1 a	 jf	 1 3	 of	 _	 ^f

	

- 3r p 2p = rTar (r 2 K it COS 2y
dr ) + n';13 (p2-5 

21f V ar	 (2)

This equation determines f as a function of radial distance

r and particle momentum p, within a given flux tube or

stream, i.e. along curves of constant T*. Particle differ-

ential intensity j per unit interval of kinetic energy T,

is related to f by j = f//p2.

The first term on the right side of (2) describes the
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diffusion of particles in the heliocentric radial direction,

where K ,, is the diffusion coefficient for propagation along

the mean magnetic field, and where y is the angle between

the mean field and the radial direction. The second term

on the right of (2) describes the diffusion of particles

in momentum space, i.e. it describes the statistic acceler-

ation. Here Dpp (in the notation. of Fisk (1976a) ) is the

rms change in momentum per unit time averaged over particle

direction. T1 . third term on the right of (2), and the

term on the left side, describe the convection and adiabatic

deceleration of particles in the expanding solar wind.

EgLati^n (2) can also be written in terms of the

differential number density U, per unit interval of kinetic

energy T, or aL 

l (r2K„cosZyar) + aT (DTTaT )	 ' T ( 2TTr Tr

+ 3rDT (aTU) - r 3 (r 2 U) = 0	 (3)

Here, DTT = v2Dpp, where v is particle speed;

a = (T+2To)/(T+To), with To particle rest energy. The

statistical acceleration results in an rms change in energy,

which is described by the coefficient D TT, and in a mean

energy change, which is given by the term D TT/2T. In the

analysis of Joki.pii (1971) and McDonald et al. (1976) only

the mean energy change is considered. In many cases, 	 (;

however, including the ones discussed here, the rms change

in energy is more important.

o
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iumerically by using

the technique that is outlined in the appendix to this paper.

Consider now two examples of these solutions, which illus-

trate the requirements and properties of (i) a Fermi-

scattering mechanism and (ii) transit-time damping as a

means for explaining the observations of McDonald et al.
I

(1976). In both examples the parameters are chosen so that

the calculated intensity has the reasonable value of

j = 1 proton/cm Z6ec-ster-Mev at r = 1 AU and T = 1 Mev.

It is further required that the calculated intensity increases

by a factor % 10 between r = 1 and 3 AU.

(i) Fermi-scattering

Jokipii (1971) reports that the mean change in energy

that results from acceleration by a Fermi-scattering process

is
dT

2y-
= DTT	 8V 2 T	 (4)

dt	 -^-

where VA is the Alfven speed. However, as can be seen from

the work of Wibberentz and Beuermann (1972), this expression

for the acceleration rate is too large by roughly a factor

of 5. The assumption made by Jokipii (1971) that particle

pitch angle can be ignored in the derivation of (4) is

unfounded since dT/dt varies roughly as pitch angle cubed.

In the calculations presented here DTT for acceleration
I

by Fermi-scattering is taken to be

VADTT	 A	 (5)
K ^^



The Alfven speed is taken to be VA - 50 km/sec. The

parallel diffusion coefficient is assumed to have the

simple form K„ = 1/3 va where a is a constant independent

of position and particle rigidity. The magnitude of K„ is

taken to be such that K„ = 1.8 . 10 19 cm 2 sec-1 at T = 1 Mev.

The rms change in energy, per unit time, is then

DTT = 1.4 . 10-6 T 3 / 2 (14ev 2 /sec)	 (6)

where T is• in units of Mev.

The solar wind speed is taken here to be V = 400 km/sec

and the Archimedes spiral pattern of the mean field is

normalized so that cos 2 ^ = 0.5 at r = 1 AU. The number of

particles per unit time and solid angle, which areinjected

into the co-rotating stream, is taken to be Q = 2.8.1021

protons/sec-ster.

With these parameters, and with the injection procedure

specified in the previous section, the intensity determined

by (3) has been calculated as a function of energy for

various radial distances. The results are shown in Figure

la. As can be seen in this figure, the parameters chosen 	 I

here yield the required factor ,,10 increase in the 1 Mev

intensity between 1 and 3 AU, as well as the required

intensity of j - 1 proton/ cm 2 - sec-ster-Mev at r - 1 AU and

T - 1 Mev.

It should be noted that with the specification of VA,

K„ in this example determines both the acceleration and the

spatial diffusion of the particles. Accordingly, the



0
c

s

requirement that the intensity at 1 Mev increases by a

factor of ti10 between 1 and 3 AU essentially uniquely

determines K„ at this energy.

It should be emphasized here also that the magnitude

Of K„ that is required to produce the observed factor of x.10

increase is exceedingly small. For example, this K„ yields

a mean free path for a 1-Mev proton of only A ,A- 10-3AU,

which is only %15 times the particle gyro-radius in a

typical interplanetary magnetic field of 5 . 10-5 Gauss. This

value for	 is much smaller than the nominal mean free path

for low-energy particles of X%0.1 AU (Ma Sung et al., 1975).

(ii) Transit-time damping

As can be seen in the discussion in Fisk (1976a), the

transit-time damping acceleration rate is unrelated to the

pitch-angle scattering rate. Particles are accelerated in

this mechanism by interacting with long-wavelength magneto-

sonic waves, an interactic- which conserves the particles'

magnetic moment. The pitch-angle scattering res:_, lts from

interactions with Alfven waves which have scale-sizes

comparable to the particle gyro-radii. The diffusion coef-

ficient K„ can thus in this case be chosen independent of

DTT . In the calculations here K„ is again assumed to be

independent of particle rigidity. The magnitude of K,,,

however, is now taken to be such that K. = 7.1020cm2sec-1

at T - 1 Mev, which is the magnitude that results with the

mean free path taken to be the nominal value of X = 0.1 AU.

Further, K„ is assumed to increase with heliocentric distance
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I
in such a manner that K„co5 2 ^ remains constant.

For the acceleration rate for transit-time damping it

was shown in Fisk (1976a) that

D

-22 = 1.2 . 10-7 T-1(sec-1 )	 (7)
p2

which corresponds to

DTT = 5'10-7T(Mev 2 /sec) 	 (8)

where T in both (7) and (9) is measured in units of Mev.

The formulae on which this acceleration rate is based are

calculated by using standard quasi-linear/adiabatic theory.

The acceleration rate -'s evaluated by using parameters that

should describe the low level of small-scale fluctuations

in the magnitude of magnetic field which are observed in the

inner solar system. For example, the amplitude of the fluc-

tuation3 5B, relative to the mean field strength Bo is taken

to be (WBo) 2= 0.01, in agreement with the observations of,

e.g., Smith (1974).

The solar wind speed is again V=400 km/sec and
l

Cos 2 ^=0.5 at r=1 AU. The number of particles that are
t

injected into the co-rotating stream is Q=7.1027protons/

sec-ster.

.

	

	 With these parameters and with the injection procedure

specified in the previous section, the intensity spectrum

at various radial distances have been calculated from the

numerical solution to (3). The results are shown in
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Figure lb. Again, the parameters chosen here ya-:ld the

required intensity at r=1 AU and T=1 I1ev, as well as the

required increase in the 1-Mev intensity between 1 and 3 AU.

It should be noted that the number of particles that

must be accelerated in both of these examples is quite small

(Q^5 . 10 27 protons/sec-ster). Suppose, for example, that the

accelerating region has an inner boundary at ro=0.1 Art, and

particles are injected into this region by being convected

in at the solar wind speed. The number density of injected

particles .- -.hen only n. Q/ ( ro ? V) - 5 . 10- c protons/cm' .

The number of particles which are accelerated to

!	 energies of, e.g., 1 Mev is quite sensitive to the acceler-

ation rate. As pan be seen in the approximate solution to
I

(3) which is given in the appendix, the number accelerated

varies as the exponential of -VT 2 /(DTT r). It is thus
i

intereF:ing to note that with a similar number of particles
I

injected, transit-time damping requires a noticeably smaller

acceleration rate than does Fermi - scattering to produce the

same flux at ri g AU and Tm 1 Nev. At T=1 Mev, D1..r in (Q) is

roughly a factor of 3 smaller than D TT in (6). In the model

considered here particles are injected into the co-rotating

stream at some small radial distance and then accelerated

as they propagate to 1 AU. In the case of Fermi-scattering,

K. is sufficiently small so that particles move essentially

only by being convected by the solar wind. The available

time in which to accelerate the particles seen near earth

is then only the transit time of the solar wind to 1 AU.
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In transit-time damping, however, the particles are more

mobile. Particles, for example, could be convected out to

a distance of several AU and then diffuse back to near earth.

::e time that is available in which to perform the acceler-

ation is thus longer with transit-time damping, or equiva-

lently, the required acceleration rate is less.

In both of the examples given here the intensity at

til Mev reaches a maximum at several AU from the sun, and

then decrease with increasing r. This decrease occurs even
r

though the acceleration rate is constant as a function of r.
{

Particles are injected only at small radial distances and

low energies. As the particles propagate away from the

injection point and are accelerated to higher energies, the

f	 number of particles left at lower energies thus diminishes,

or equivalently, the intensity here decreases. In inter-

pretin g observations, then, a decrease with increasing r in

the intensity at a given energy should not, by itself, be

taken as evidence that the acceleration is diminishing.

such a decrease in the acceleration rate can be inferred

only if it can be shown that the intensity at higher ener-

gies is also declining.

It is noted finally that the spectral shapes that

result in both of the numerical examples considered here

exhibit, in a crude sense, some of the features found in

the observed spectra. McDonald et al. (1976) report that

at energies above %400 keV the observed spectra can be fit

with an exponential: exp(-T/T'), where T'til Mev. At

1
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energies below -, 400 keV, however, the observed spectra do

not flatten as would be expected from an exponential, but

rather rise toward the lower energies. The dashed curve in

Figure la is an exponential with T'-,800 keV. As can be seen

in this figure, the calculated spectrum at r=2 AU is

reasonably well fit by this exponential at energies above
1

%1 Mev, and produces some excess over the exponential below

this energy. The spectra shown in Figure lb also exhibit

I	 this behavior. These latter spectra, however, are fit at

energies ^1 Mev with a steeper exponential, i.e. T'-,300 keV.

The spectralshapes shown in Figures la and lb are,

r
however, model-dependent. In circumstances other than the

ones used in these examples, the spectral shapes could be

different. For example, if K„ in the Fermi-scattering case

were proportional to particle rigidity as well as velocity,

the acceleration rate DTT/T 2 would vary as T -1 , rather than

a s T-1 / 2 as in (6). This more rapid decrease in the acceler-

ation rate results in steeper spectra at the higher energies;

in fact, the resulting spectra are similar in shape to the

spectra in the transit-time damping example. Further, if

`	 particles are injected continuously with radial distance,

the calculated spectra may not turn over at low energies

`	
(as in Figures la and lb), but rather, in this range, may

I
have a steep negative slope.

c
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Concluding Remarks

The conditions that are required for Fermi-scattering

to be the dominant mechanism for accelerating particles in

co--rotating streams appear to be more extreme than those

required for transit-time damping. Based on the calcula-

tions in risk (1976a), it appears that transit-time damping
i

of the observed small-scale fluctuations in the magnitude of

the interplanetary field yields an acceleration rate that is

sufficient to account for the observations of McDonald et al.

(1976). A similar acceleration rate by the Fermi-scattering

mechanism requires a mean-free path that is more than an

order of magnitude smaller than the nominal value of 0.1 AU.

It is therefore tem.utin_ to conclude that transit-time damp-

ing is the more likely of the two acceleration mechanisms.

This conclusion, however, should be made only with some

caution. As is pointed out by McDonald et al. (1976), the

observed co-rotating particle streams coincide with stream-

stream interaction regions in the solar wind. The enhanced

turbulence in these regions could conceivably result in the

small mean-free path required for Fermi-scattering. More-

over, it is assumed in the transit-time damping calculations

of Fisk (1976a) that the observed magnitude fluctuations are

the result of fast-mode magnetosonic waves. If some of the

magnitude fluctuations are due to other modes (e.g. thev

could be due in part to static structures in the field), the

acceleration rate by transit-time damping will be reduced.

Of course, with detailed observations of co-rotating
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streams, it may be possible to decide which of these

mechanisms, if either, is in fact operative. As is discussed

above, the spectral shapes predicted by both the Fermi-

scattering and the transit-time damping mechanisms can be

similar and, in any case, the spectra are model-dependent.

Measurements of the intensity ,lone are, therefore,

not expected to be very revealing. A somewhat better obser-

vational test for deciding between these two mechanisms may

come instead from measurements of the direction of the

anisotropy in the streams.

In a co-rotating stream the radial anisotropy is given

by Ng (1972):

- 3 (CV_K„coS 2 ^ DU)
r	 v	 U	 ar

I	 where

	

C = 1- 1 2- (aTU) _ _ a knf	 (10)
3U aT	 aknp

is the Compton-Getting coefficient. The azimuthal anisotropy

is

_ 3k„coslsino aU
vu	 ar	 (11)

The anisotropy makes an angle X - tan-1(^^ /Er) with the

heliocentric radial direction.

In the case of Fermi-scattering, the required K„ is

sufficiently small so that ^r - 3CV/v and IE,1 « k r l. The

anisotropy vector in this case is then closely aligned with

the radial direction. For example, in the above numerical

solution, which illustrates the requirements of the Ferri-

scattering mechanism, IXI <1°. The magnitude of the anisotropy

(9)
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in the example is - , 40% near r=1 AU, where the spectrum is

steep, and it declines to , 10% at r=4 AU.

In the case of transit-time damping, however, K„ can be	 1

sufficiently large so that a detectable azimuthal anisotropy

is present. Plotted in Figure 3, as a function of r, are

values of X and ^, that are calculated from the above

numerical solution which illustrates the requirements of

transit-time damping. In addition to noting in this figure

that ^ is sufficiently large to be detectable, it is inter-

esting to note that F^ changes sign as r increases. As can

be seen from (11), this sign change occurs where the radial
l

gradient (3U/3r) changes sign.

Clearly, if the anisotropy is found to lie in other

than the radial direction in co-rotating streams, accelera-

tion by Fermi-scattering can be eliminated as a viable

acceleration mechanism. Detection of an appreciable azimuthal

component would be consistent with acceleration by transit-

time damping. However, such an observation is not proof that

the acceleration occurs in this manner since other accelera-

tion mechanisms are still possible. Conversely, detection

of a strictly radial anisotropy would suggest that the

particles are experiencing extensive scattering, sufficient

perhaps to accelerate by a Fermi-scattering mechanism. How-

ever, this observation does not eliminate the transit-time

j	 damping mechanism since this acceleration could also be

performed in the presence of considerable scattering.
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APPENDIX

Equations (2) and (3) are elliptical partial differential

equations, and as such must be solved numerically by an

iterative procedure. The appropriate technique is to add a

term A(r,T)3U/9t to, for example, (3), which then becomes

-12 a (r 2 K„ Cos 2 ^ U ) + a (D	
UL - , a (DTTU)

P Tr 	 ^T TT-3T 	 ^T

I	 +
2V a

 3r aT(aTU) - r 
3r(r 2 U) = A ( r , T )

at 	
(A.1)	 f

{

where t is time and A(r,T) is a function of r and T, which

will be specified. By starting frc-i an initial condition

U(r,T,t) at t=0, and with appropriate boundary conditions,

(A.1) is then used to generate the solution U(r,T,t) at

subsequent times. The procedure is continued until such

time that 3U/Dt-0, i.e. until the solution relaxes to the

required steady-state solution.

To obtain a numerical solution, (A.1) is of course

converted into a series of finite difference equations which

determine the solution at various grid points. Thus,

U(I,J,K) is determined where r=Ar•I+rmin; T=[.T•J +Tmin;

t=At • K; Ar,AT, and At are the constant s pacing between the

1	 grid points and rmin and Tmin are, respectively, the

•	 minimum values of r and T. It is also convenient, in some
i

instances, to c:zange variables in (A.1) from r and T to

znr and knT. The grid points then are spaced such that

and 4.nT = A^.nT • J+r,nTo , where `. nr andknr = Aznr•I+knro, 

AknT are constant. With these latter variables, the solution

^o
^cr
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can be determined over a wide range of energies and radial

distances. Also, by using Qnr as the variable, there are

many grid points at small r, where the solutions frequently

vary strongly.

The form of (A.1) is similar to the form of the equation

which governs solar modulation in models where interplanetary

conditions vary with heliocentric latitude, a. The variables

r, T and t in (A.1) are, respectively, the analogues of the

variables r, e, and particle momentum p in the modulation

problem. The technique which is outlined in Fisk (1976b)

for solving the modulation equation can thus be applied
i

directly to the solution of the finite difference equations
t

that result from (A.1).

It might seem on physical grounds that A(r,T) should be

set equal to unity, since then (A.1) is simply the time-

dependent form of (3) (cf. Gleeson and Axford, 1967). For

example, with A=1, (A.1) could be used to describe the

evolution of a stream with a time-varying source. In prac-

tice, however, this choice for A is inappropriate. Rather,

to achieve a numerically-stable solution, A must be chosen

so that the solution converges from the initial condition

U(r,T,O) to the steady-state solution at roughly the same

rate at all values of r and T. An appropriate choice for A

has been found by trial and error to be

K „cos` .i	 DTT
A (r, T ) - B	

(t, r) 2	 + (^T) 2' At	 (A.2)

where B is a number , 0.1. With this choice, the effective

time-step at each grid point is roughly the time required for
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particles to diffuse, in space or in energy, to the grid

point from several grid points away. In cases where (A.1)

is written in terms of Anr and knT, Ar and AT in (A.2) should

be replaced by r(Aknr) and T(AtnT), respectively.

For the initial condition U(r,T,O), an approximate

solution to (3) can be used. As is discussed in Fisk (1976a)

(2) can be solved analytically in the limit where the spatial

j	 diffusion term (the first term on the right of (2)) can be

neglected. In particular, solutions are available for the

conditions used in the examples given in the present paper,

i.e. when I5pp=Do p y , with Do and B constants, and when the

injection occurs at low momenta and small radial distances.

In terms of U, this approximate solution is

- (11-48' )

U(r,T) =	
27T 1 12 Q 	 r	 T__2 71 r

V(4-28')  (i+B ) / (2-B' ) r [3/ (4-26') ]

4(11-46') V 	ex -
( 3 1 2_^j T2 

p-B.
f

r"(A.3)
3Do '1	 p'	 (	 o

where DTT=Do'T B1 (Do and 3' are constants), and F(z) is the

gamma function. Again, Q is the number of particles injected

per unit time and solid angle. The effects of spatial

diffusion tend to be small at low energies, particularly for

acceleration by Fermi-scattering. This approximate solution

thus tends to be a reasonable approximation to the exact

numerical solution. Equivalently, the number of iterations

that is required to obtain the exact solution is not large.
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For one of the boundary conditions, U(r,T,t) is taken

to be zero at the maximum value of r, i.e. the interplanetary

medium is assumed to have a free escape boundary. For the

two examples given here, the boundary is placed at approxi-

mately r=20 AU. Also, few particles are assumed to obtain

high energies, i.e. U(r,T,t) is set equal to zero at the

maximum energy considered, which is taken here to be 20-30 Mev.

Since (A.3) becomes an excellent approximation to the exact

solution at very low energies, U(r,T,t) is set equal to (A.3)

at the minimum energy Tmin, which is taken to be Tmin-10 keV.

Finally, it is required that 3U/3r=0 at r=r min' which is placed

at r=0.2 AU. Strictly speaking, this last boundar y condition

is incompatible with the initial condition. (A.?). However, as

is frequently the case in these problems, the boundary condition

at small r has little effect on the solution near earth and

beycnd. It is sufficient, as is done here, simply to choose

a boundary condition which is easy to implement numerically.
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FIGURE CAPTIONS

Figure 1	 A plot vs. kinetic energy of the calculated

ntensities in a co-rotating stream, at various radial

distances. The intensity spectra in the right figure

(la) result from acceleration by a Fermi-scattering

mechanism; the intensity spectra in (lb), from a

transit-time damping mechanism. The dashed curve is

given by an exponential: exp(-T/T'), with T' -800 keV. 	
I

Figure 2	 The direction of the anisotropy (X) and the

magnitude of the azimuthal anisotropy (C,) in a co-

rotating stream, where the acceleration is by transit-

time damping. The curves are plotted here as a

function of heliocentric radial distance at two

energies: 1 Mev and 500 keV. The parameters used

in calculating X and C b are the same as those used in

calculating the intensities in Figure lb. The angle

X is measured relative to the hel'_^jcentric radial

_section.
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