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INITIAL BASALT TARGET SITE SELECTION EVALUATION
FOR THE MARS PENETRATOR DROP TEST

ABSTRACT

This report describes potential basalt target sites for an air drop

penetrator test and discusses the criteria involved in site selection, A

summary of the background field geology and recommendations for optimum

sites are also presented.

INTRODUCTION

This report discusses the essential characteristics of nine basaltic

flows that were investigated during the month of January and February

1976 for potential penetrator basalt targets. All flows are recent (younger

than 10,000 yrs) and relatively fresh (devoid of extensive weathering,

vegetation, and geologic alteration) . The search for a suitable target site

was focused in southern California, Arizona, and New Mexico to avoid

snow cover and to establish a site that is within reasonable proximity to

both Sandia Laboratories and Ames Rese-irch Center personnel.

SCIENCE RATIONALE FOR SITE SELECTION

In choosing a suitable basaltic rock to rget for the Mars penetrator

subsurface mission, two important factors are in,rc-rtant for selection:

(1) the rock must fit into the engineering constraints of the penetrator

for rock targets, and (2) the target rock should be very similar to those

that the penetrator might encounter on Afars.



The engineering design by Sandia Laboratories, Albuquerque,

New Mexico, (Sandia Labs. publication Sand-74-0130, Mars Penetrator

	

E I	 Subsurface Science Mission) ca11s for an impact velocity of 150 m/s.

At this velocity, the penetrator will " . . . penetrate to a depth of 1 meter in

a basaltic lava with a 2500 N/cm 2 unconfirmed compressive strength, a

bulk density of 2 gm/cm 3 and a porosity of 30 percent. "

The majority of Martian surface basalts fall under two general

categories, shield volcano flows and flood basalts. In selecting a suitable

target we based our efforts or. the characteristics of these two morphological

flow types and the basalts that form them. Shield volcanoes on Earth form

from large amounts of very fluid (low viscosity) flows. These flows tend

	

i	 to be thin (3-12 m) and move downslope very rapidly and build broad, low
i

dome-shaped mountains. The Hawaiian Islands have formed mostly from

shield volcano construction (tholeiitic pahoehoe and as lavas) . Shield
.I

volcano lava flows, comparable to those that we might expect on Mars, are

called pahoehoe and are intermixed with another type of flow called aa.

Pahoehoe lava is characterized by smooth, billowy, or copy surfaces

(Figs. 1 and 2). These flows may be thin layered or massive with vesicu-

larity greatest towards the top of the flow and decreasing downward. In

pahoehoe lavas, gases dissolved in the crystallizing liquid come out of

solution slowly and the gas bubbles that are formed are still expanding

when the flow stops moving. Vesicles tend to be spheroidal, although

they may take an elongated, elliptical, or stretched form as "he lava con-

geals during the last stages of movement. In contrast, as flows have a
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rough, rubbly surface composed of masses of clinkers that tend to pile up

into loosely consolidated clinker piles. Outgassing of as is rapid, thus

the gas bubbles may be more irregular in shape and more ;numerous than

in pahoehoe. Most flows emerge from the vent as pahoehoe and may change

to as downslope, and the two types commonly intergrade.

Pahoehoe lavas form structures that have a bearing on the selection

of a suitable test site. During the consolidation of pahoehoe, oval dome-

like hills (tumuli) form which are commonly cracked from buckling (Fig. 3)

and grade into pressure ridges (Fig. 4). Both of `hese structures result

from moving lava with the solidified surface crust being pushed against

stationary crust downslope . Coilapse depressions (Fig. 5) also form in

response to low structural strength of underlying material. All of these

structures are undesirable for optimum testing conditions.

Flood basalts form from very fluid lavas that erupt from fissures

scattered over a wide area and do not form dome-like volcanoes, but form

"flood or plateau basalts. " These basalts are tholeiitic in composition

as are the shield volcano basalts (see below) . Flood basalt flows on the

Earth are thick (up to 50 m) and are extremely voluminous (50,000 -

200,000 cubic miles).

Tholeiitic basalts, which form the major portions of shield volcanoes

and flood basalts, are chemically characterized by containing SiO 2 contents

of between 46 and 51% (low viscosity) , low K 20 contents, low Fe203/FeO

ratios, and are fairly homogeneous in composition over large flow areas.

3
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I'	 Most of the tholeiitic basalts investigated in this study are termed olivine

basalts (contain ti 3-8% olivine phenocrysts) . Lunar and meteoritic

basalts are closer in chemical similarities to tholeiites compared with

other types of terrestrial basalts.

In summary, the basalt target rock for the air drop penetrator test

should possess a porosity of'- 30%, be consistent with tholeiitic composition,

and form relatively featureless flat structures. Additional , more-detailed

selection parameters are discussed in the next section.

DETAILED CRITERIA USED IN SITE SFT':CTION

In addition to the lava type, flow characteristics, and general aspect

of the flow, field evaluation of each potential site was made on a detailed

set of rock characteristics and field conditions. These include porosity

and porosity homogeneity of the rock, vertical and horizontal fractures,

type of surface covering and depth, rock toughness, flat target footprint

(target area) and target accessibility for motorized vehicles. Land owner-

ship and airstrip accessibility were also considered.

Porosity is defined as the fraction of the bulk volume of a rock that

is void space. Engineering development requires that to penetrate 1 m of

basalt, a total porosity of ? 30% is required. Moreover, the porosity should

be relatively evenly spaced and homogeneous to a depth of 1 m for optimum

penetration conditions. The bulk of void space in basalts result from out-

gassing of the lava as it enters the zone of lower pressure at or near the

surface. The lower pressure forces the gases to come out of solution and

thus forms bubbles (vesicles) in the liquid lava. At this stage the lava

4
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consists of three physical phases; liquid, gas, and solid crystals. Rapid

cooling retains many of the bubbles as vesicles. A highly gas-charged lava

will, on proper cooling conditions, yield a high porosity rock. Flows

typically have high porosities near the top surface and decreases with depth.

Fractures are formed from shrinkage cracking in the cooled lava crust.

Tne greatest number of vertical and horizontal fractures develop near the

surface. Both vesicles and fractures contribute to rock weakness and pro-

vide the overall void space.

For this test, it is undesirable to have a thick covering of any material

on the basalt sur"ace. Loose material less than a meter and preferably less

than 0.3 m is considered to be within the tolerable limit. Large boulders,

vegetation, rubble piles, as lava, and an irregular surface (collapse struc-

tures, p •essure ridge-, and tumuli) are also undesirable.

Roc.- toughness is a rough estimate of the rock's strength. If a rock

rings and splint,-s when struck with a hammer, it is hard, brittle, and

has a high degree of toughness. If on the other hand, the rock responds

to a hammer blow with a dull thud, and it pulverizes to a powder, then it

is soft and low in toughness.

The potential sites must have an air drop target footprint of at

least 200' x 100' and the target site must be trafficable to motorized vehicles.

Evaluation criteria for each investigated potential basalt target site

are given in table 1.
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BASALT FLOWS INVESTIGATED AND EVALUATION

All basalt target site loc::^tion are shown on a reference map (Fig. 6).

Carrizozo (Malpais) and McCarty's Flows

These flows consist of quartz-to-olivine tholeiite pahoehoe and as

flows. Both are relatively recent and fresh with limited cover material

other than cinder piles and extensive vegetation on a portion of the

McCarty's floe. They both suffer from the same problems of highly irreg-

ular surfaces (irregular as lava covering, cinder piles, very numerous

collapse depressions and tumuli structures, poor fracture index, porosity

inhomogeneity and lack of a flat surface target area) . Flow and surface

characteristics are shown in Figs. 7 and 8. Field estimates of surface rock

•

	

	 porosity show a considerable range, although average estimates in small

target areas are - 30 percent. Laboratory surface porosities are nearly

30 percent (appendix) but the bottom (0.7 m from the surface) porosities

are only 24 percent (appendix) . McCarty's surface sample porosities =

26 percent (appendix).

Amboy Flows

The Amboy Crater lava flows show typical features of other lava fields.

The irregularity of the surface is locally severe although there are several

large-to-small flat regions which probably represent lava ponds. In addi-

tion, other flat areas referred to here as plateaus offer potential target sites

and emphasis is placed on one particular plateau, referred to as plateau #2

6
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(Figs V and 10) . The relief of this plateau is very slight (Fig. 10) ar.d

the surface is relatively devoid of cover; only a thin layer of windblown

sand and fist-sized (and smaller) lava blocks are present (Figs, 11) .

The plateau stands about 1-2 m above an encompassing depression and

affords good cross-section observations.

Field study indicates that the entire plateau is homogeneous with

respect to surface and one-meter depth porosities. Field estimates sug-

gest surfa(. ,: porosities of between 25-35 percent and one-meter depth

porosities . , 20-30 percent. Laboratory measurements show surface poro-

sities of tw ,) samples range between 24 and 27 percent; one bottom sample

has a porosity of 24 percent (appendix). These samples were selected for

a flow average to a depth of one meter; they are not meant to represent

optimum porosities.

Vertical fractures range from 5 to 20/meter and horizontal fractures

range from 2 to 5 for a depth of one meter. Characteristics of the plateau

(one-meter depth) are shown in Figs. 12 and 13.

Petrographic studies of thin sections made from Amboy pahoehoe

samples indicate that basalts of plateau #2 are olivine tholeiites with a volume

of 5 percent olivine, which is present as phenocrysts and microphenocrysts

(Fig. 14) . The matrix consists of plagioclase laths which shove somewhat

vague flow orientation, clinopyroxene, and ilmenite. Moreover, observa-

tions of the matrix shows a high grain density (low abundance of micro-

pores) and little matrix glass (Fig. 15). The high grain density and loin

glass abundance contribute to the high degree of toughness of the Amboy

basalt.
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Pisgah Crater Flows

The Pisgah flows contain a very large proportion of as lava and

the flow terrain is considerably rougher than Amboy. A few flat "plateaus"

do occur and characteristics of the pahoehoe lava are similar to Amboy

pahoehoe. The main drawback to Pisgah as the test site is the small target

footprint. The largest accessible potential target site measures only 100' x

60' .

Mountain Spring Flows

These flows are located in the China Lake Naval Weapons Center

Station and consist of multiple flows that formed a plateau several hundred

meters thick (Fig. 16) . Extensive erosion has dissected and rounded the

plateau to the point that there is not a suitable target site. In addition,

the top 2 meters are extensively altered from weathering.

Indian Wells Valley Flows

Only a portion of these ex- -live flows, located on the western edge of

China Lake Naval Weapons Center Station, was available for investigation

due to had weather conditions and Range testing. The observed portion

(Fig. 17) shows an upper 1-2 m of fairly porous pahoehoe intermingled

with as lava. Cinder piles are present on the surface in addition to 	 0.3

to several meters of sand and soil overburden.

8
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Pine Flows

These rather extensive flows are located just south of Big Pine, CA.

Areas free of snow cover were found to contain fairly porous pal.oehoe

covered by scattered cinder piles, pressure ridges, and some as flows.

The terrain is generally hummocky and no suitable flat target surface was

found.

SP Crater Flows, Arizona

The large cinder cone (SP Crater) and fresh related :lows are located

v 40 km north of Flagstaff. The floe surface is extremely rugged and only

one small, relatively flat surface was found. The rock is very porous,

but unfortunately it is andesitic in composition and does not fit our profile

of a suitable basalt rock type.

Strawberry Crater Flows, Arizona

The crater and flows are located 35 km northeast of Flagstaff'.

The flows are very hummock y , covered with 1-3 m of sand and soil, and

have very low porosity.

SUMMARY AND RECOMMENDATIONS

A summary of the basalt target test site evaluation is given in

Table 1. In additi ,)n to the criteria evaluation for each site, we have

established an arbitrary scording system to aid in assigning a quanti-

tative value for each potential site. A perfect suitability score = 165;

9
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the highest jcore for any of the potential sites is Amboy, follow-;d by

Pisgah, and Indian Wells Valley (Table 1) .

We recommend that the Amboy Crater flows be selected for conduct-

ing the iniiial basalt rock penetrator drop test. Whereas these flows meet

most of the major and minor criteria, the rock is extremely tough and the

probability of a successful full penetration of 0.5-1 m is le%t , . On the other

hand, the tough nature of the Amboy basalts is not too dissimilar to other

pahoehoe rocks investigated in 'his report or to tholeiitic pahoehoe in

general. This -cst should establish an upper limit to tl:e penetrability of

Martian basa l t.c- rocks.
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is defined as the fraction of bulk volume of a rock
(pore) space. Porosity is determined by the following

Porosity
that is void
equation:	

Pore volume
%porosity= bulk volume

X 100%.

APPENDIX

MEASUREMENT OF POROSITY

Bulk density and grain density were also determined by the following

equations:

bulk density= sample weight
bulk volume

grain density= sample weight
grain volume

where bulk volume= pore volume + grain volume. The measuring procedure

used to determine porosity was adapted from that used by J.S. Watkins,

1967.

Procedure.

1. The rocks were cut into rectangular solids having surfaces at
approximately right angles.

2. Since the rock surfaces were not exactly at right angles, the
lengths of each of the corresponding four edges were measured
and averaged to get the length, width, and height of the rocks.

3. Bulk volume was calculated, being equal to the average length

x average width x average height of the rocks.
4. The rocks were dried at 105 0 C. for several days to remove moisture,

and then weighed.
S. The rocks were next crushed to a fine powder so that all small

isolated pore spaces would be exposed.

6. The powdered rocks were placed into volumetric flasks and a measured
amount of kerosene was added from a burette to cover the sample.

7. The volumetric flasks were then evacuated and abitated until
all the trapped air in the sample was removed.

8. Additional kerosene was measured and added to bring the volume
of kerosene and crushed rock in the flasks equal to the flasks'

capacity.

9. The grain volume was determined; grain volume= flask volume -
volume of added kerosene.

10. Then from the above formulas total porosity, bulk density, and

grain density can be calculated.

Bibliography.

Watkins, J.S., 1967, Investigation of in situ physical properties
of surface and subsurface site materials by engineering geophysical
techniques. U.S. Geological Survey open file report.
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Results of analyses.

Amboy Plateau #2 Top 60 cm.
Total Porosity= 26.6S%
Bulk Density= 2.156 g./cc.
Grain Density= 2.940 g./cc.

Amboy Plateau #2 Bottom 60 cm.
Total Porosity= 24.020
Bulk Density= 2.218 g./cc.
Grain Density= 2.919 g./cc

Amboy Plateau #2 Top 0.75 m.
Total Porosity= 24.780
Bulk Density= 2.212 g./cc.
Grain Density= 2.940 g./cc.

McCartys
Total Porosit y= 26.18%
Bulk Density= 2.165 g./cc.
Grain Density= 2.933 g./cc.

Carrizozo Top
Total Porosity= 29.14%
Bulk Density= 2.066 g./cc.
Grain Density= 2.916 g./cc.

Carrizozo Bottom
Total Porosity= 23.82%
Bulk Density= 2.338 g./cc.
Grain Density= 3.069 g./cc.

Analyst: George R. Polkowski

Big Pine

Total Porosit y= 25.94%
Bulk Density= 2.211 g./cc
Grain Density= 2.985 g./cc

Indian Wells Valley

Total Porosity= 28.91%
Bulk Density= 2.004 g./cc
Grain Density= 2.819 g./cc

The above Amboy Plateau values compare closely to those using
similar methods of J.S. Watkins, 1967, in his U.S. Geological Survey
results.

12
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Figure 5. Collapse depressure profile.
Distance from the top to bottom (not
shown) of the depression is 7 m:
diameter is ,N 24 m. Carrizozo Flows.
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Figure 7. Surface conditions of Carrizozo flo%ks.
Note numerous collapse depressions.
Carrizozo Flows.

01^JGTN!LL PAGE 13	 Figure 8. Collapse depression showing merging;
OF Poo lt QI^^^I ' ITYi	 of as flow on t .c left with pahoehoe un the right.

McCarty's Flows.
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ŷ^

^	 ^ ^	 ^	 : ^^ .	 a ^	
IIIII'

R	
l	 `^ - r- ^'e s	 -ire •-	

. r	 —1-:	
I^ _

/	 I _.,. ......... r^.l..

Il

—4

aoH

9

r

ut

^?r

Z=i
Nat

oo^a
a

'	 Ivy
q	 I {/ p^ 	 I	 nl	 '	 ^''^ 

07 p ,	 ^^ 	 I	 -	 { 11.	 -• I - - --	 -!-^----^	 ;•	 fT ! r̂. ''^,.^^	 t.^' •.•'.; .
	 '

^a	
_	 ^	 ^'•►`. ^' .• i`i.;^'^;^^*.i"`'^^ tai ,^ ='

N
O 41
A ,y
.v+ 1•^U
a^

N F
Q

N

^ 4!
w `^0
G >
0

0 w
O

A
v^
000 a

w

U,

F

OP T, ;NkL PAGE IS
)F'	 QUALITY



..

r.

:.

J

-^^

`
l̀^

1

1

' •^
^. ^1

n

r.	 ^ ..

(i

^,	 •



jaw

r	 ^

Oak .^'.^	 -

4w

Y.

Ank

Aft
• •	 .,	 t •^'

Fij,ur, 11.	 the surface of plateau	 shu%ving thin sand covering
%ritli fist-sized lava fragments. Amboy Cr Ater floes. (Photograph
courtesy of R . Greeley)



Figure 12. Cross-section view of plateau #2 showing
homogeneous porosity with depth and fractures.
Nest side. Amboy Crater nows.

c :fir•_ '	 "v.	 ,•e	 "G

, CA

Figure H. Cross-section view of plateau
#2 showing increase of vesicle size with

-•pth, fractures, and surface conditions.
-st side. Amboy Crater flows.



Figure 14. Photom,crugraph of Amboy oliv inL ti,uleiite
lava from plateau #2. Large arrow points to olivine
microphenocryst, smaller arrow points to pyroxene
glomerocrysts, and the X's indicate vesicles. Field
width = 3.08 mm .

i. ibure 15. i il " tull " ,rugi.,pi, of the basait matrix in Fig
ure 14 showing plagioclase laths, matrix clinopyroxenr
(medium gray), small glass patch -,vitb skelt•tal ilmenite
(indicated by arrow) and pores (indicated by X s.
Field width = 0.5.'. mm .
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