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RE^`1VÊ u `^ `-
..	 N p,SP 

Sj' 
^^,NCN

MARCH 1976

I

i
i

X-660-76-58

PREPRINT

^^^^ ^a^ 
^;s A	 1 n

GAMMA-RAY AND MICROWAVE
EVIDENCE FOR TWO PHASES

OF ACCELERATION IN SOLAR FLARES

('1ASA-TM-)(-110P3)	 GAPMA-h4Y AND MICFCWAVF	 N76 -20056

FV IUNCE FC- -1 w ,) FH ASFS OF ACCELEFATICN Ili

SOLAR FLAT f ,(`NASA)	 'n p HC $4.00 CSCL 03B
Unclas

63/92 22158

T. BAI

R. RAMATY

0

0

It

co GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND



01

GAMMA-RAY AND MICROWAVE EVIDENCE

FOR TWO PHASES OF ACCELERATION IN SOLAR FLARES

T. Bai

Department of Physics and Astronomy
University of :Maryland

College Park, Maryland 20742 U.S.A.

AND

R. Rama ty
Goddard Space Flight Center

Greenbelt, Maryland 20771 U.S.A.

i

Research supported by NASA Grant 21-002-316
at the University of Maryland, College Park.



0

ABSTRACT

Relativistic electrons in large solar flares produce gamma-ray

continuum by bremsstrahlung and microwave emission by gyrosynchrotron

radiation. Using observations of the 1972, August 4 flare, we evaluate

in detail the electron spectrum and the physical properties (density,

magnetic field, size, and temperature) of the common emitting region

of these radiation. We also obtain information on energetic protons

in this flare by using ga-,nma-ray lines. From the electron spectrum,

the proton-to-electron ratio, and the time dependences of the micro-

wave emission, the 2.2 MeV line and the gamma-ray continuum, we con-

clude that in large solar flares relativistic electrons and energetic

nuclei are accelerated by a mechanism which is different from the

mechanism which accelerates ^ 100 keV electrons in flares.
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I. INTRODUCTION

Extensive measurements of solar radio emissions, X-rays, and

interplanetary energetic particles have firmly established the fact

that charged particles are copiously accelerated in solar flares.

•	 Even though the detailed flare accelerati^n mechanism is not known,

the data tends to support the suggestion (Wild, Smerd and Weiss,

1963; deJager 1969; Frost and Dennis, 1971) that the acceleration process

consists of at least two phases. The first phase, or flash phase,

accelerates mainly electrons up to energies of several hundred

i
keV. These electrons produce Type III radio bursts, impulsive 10

y
to 100 keV X-ray emissions, microwave bursts, and EUV bursts (e.g.

Kane, 1974); streams of energetic electrons detected in interplanetary

space are also believed to be due to this acceleration phase (Lin,

1974). Because the total energy in electrons accelerated in the

first phase constitutes a large fraction of the energy of the flare

(Lin, 1974; Hudson, Jones, and Lin, 1.975), only very efficient

first order acceleration mechanisms can be responsible for this

phase of acceleration.

The second phase of acceleration ocairs in a smaller fraction

of flares than does the first phase, and it ac=elerates ions to tens

and hundreds of MeV and elecLioas to relat.ivi!itic energies. This

acceleration phase is associated WI Ln 'hype I  and Type IV bursts,

,	 and produces the fluxes of ions and electrons of energies greater

than several MeV observed in interplanetar y space. Microwave and

hard X-ray bursts are also produced during second phase acceleration.

But as pointed out by Frost and Dennis (1971), X-ray bursts produced

0
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during this phase are different in character than those associated with

the first phase. The acceleration of the ions and the electrons in the

second phase is probably due to the passage of shock fronts in the 	 I
solar atmosphere.

Gamma-ray emission in the energy interval from 0.35 to 8 MeV,

containing both lines and continuum, has been observed during the 3B

flare of 1972, August 4 (Chupp et aL , 1973: 1975; Suri et al., 1975).

The implications of the line emissions have been investigated most

recently by Ramaty, Kozlovsky, and Lingenfelter (1975), and inter-

pretations of the continuum have been given by these authors, by Suri

et al. (1975), and by Bai and Ramaty (1975). The most likely mechanism

for the production of continuum emission in the above energy region is

bremsstrahlung of accelerated electrons. 'file lines are due to nuclear

interactions of energetic protons and ions with ambient solar atmosphere.

In the present paper we show that unique info nation on the two

phases of acceleration in solar flares can be obtained by treating the

gamma-ray data together with the X-ray and microwave observations of

the 1972, August 4 flare. The fact that the gamma-ray continuum from

the 1972, August 4 flare may contain this information was first pointed

out to us by P N. Suri, E. L. Chupp, D. J, Forrest and C. Reppin

(private communication, 1974),. The gamma-ray continuum and the hard

X-ray emission from this flare define an electron spectrum over the

broad energy range from about 20 keV to eeveral MeV which shows the

effects of the two phases of acceleration. The spectral flattening

above — 0.8 MeV (Figure 1) suggests that below this energy the electrons

are accelerated in the first acceleration phase, while above this energy
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they come from the second phase. Furthermore, a detailed treatment of

gyrosynchrotron radiation reveals that radio emission above about 25

GHz is produced by electrons in the MeV region. Therefore, the micro-

wave emission should be more closely related to the gamma-ray continuum than

to the X-ray data; this fact is borne out by the observations.

Finally, the existence of spectral lines in the gamma-ray data gives

information on the number, spectrum and time dependence of accelerated

nuclei in the flare; we find that the data is consistent with the

acceleration of nuclei in the second phase.

In section II we calculate in detail the bremsstrahlung produced

by the interaction of accelerated electrons with the ambient solar

atmosphere. Using these calculations, we deduce the number and spectrum

of electrons in the flare region which produce the observed continuum

emission in the X-ray and gamma-ray bands. In section III we calculate

the gyrosynchrotron radia n ion of these elections, By fitting these

calculations to the microwave and millimeter emissions observed from the

August 4 flare (Croom and Harris, 1973), we deduce the magnetic field,

the ambient density, the size, and the temperature of the emitting

region. We take into account all the known absorption mechanisms

(e.g. Ramaty, 1973), and we find that the microwave emission is supressed

at low frequencies mainly by selfabsorption and free-free absorption.

With these absorption mechanisms taken into account, we show that the

apparent discrepancy between solar microwave and hard X-ray bursts

(Peterson and Winckler, 1959) is satisfactorily resolved. In section

IV we investigate the time dependences of the various emissions 	 We



find that the time profile of the number of accelerated nuclei in

the flare is more closely associated with the time profile of electrons

accelerated in the second phase rather than in the first please. We

summarize our results in section V.

II. HIGH-ENERGY CONTINUUM EMISSION

The instantaneous photon production rate per unit energy at a

photon energy P;, owing to electron-proton bromsstrahlung,is given by

M

q ( E ) = n	 dE N (E) cB d (E, E ),	 (1)

where n is the ambient proton density, N(E) is the instantaneous

number of accelerated electrons per unit kinetic energy interval

around E, c^ is the electron velocity, and 
dE 

(E,;:) is the unscreened

differential cross section for electron-proton bremsstrahlung (Koch

and Motz, 1959, Equation 3BN),

a-

	
(E	 C'

_	
^,ro2	

P

P P	 P3
p

pp,

+ L + C_
2	

) +

E/mc` yti,+p^ -k lyy +P2
+

Lt83L3rP' mc2)	 3	
,	 3

(	 P	 P 2PP^
(1k
 p3 .3

P

2eiy' l

mc2p2p'2

Here m is the mass of the electron, oe = 1/137,	 r o =	 2,82	 x	 1() -13 	cm,

Y = E/mc 2 + 1,	 y'	 = Y-E /mc2,	 P =

1

(7 2 -1)
7
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For energies below 2 MeV, Equation (2) is multiplied by the E1,4ert 	 1

correction factor, fE , (Koch and Motz, 1959, Equation 1:1-6)

r	 P, f 1 - exp { - 27/(137F)11	
(4)

`E	 Et'(1 - exp { - 217/(l37Q')1j

where E ' = (.7' 2 - 1) i /y' o

In addition co electron-proton interactions, bremsstrahlung is

also produced in the interactions of accelerated electrons with heavier

nuclei t' _inly Ile) and with ambient electrons. For a 'ie/Il ratio of

0,(17 (Cameron,1973) the contribution of electron-helium bremsstrahlung

is 28 of the electron-proton bremsstrahlung at the same electron

L-iergy., Electron-electron bremsstrahlung is negligible in the non-

re.ativistic region, but it becomes comparable to electron-proton

hremsstra. 1 1ing in the relativistic domain (Akhiezer and Berestetskii,

1965),. Therefore, we neglect it below an electron energy of 0.7 MeV,

and take it to be the same as electron-proton bremsstrahlung at higher

energies. We have chosen the transition energy somewhat arbitrarily

at 0.7 MeV, becau.ic there is no detailed theory for electron-electron

bremsstrahlung in the mildly relativistic domain. A different tran-

sition onergy in the range 0 5 to 1 MeV does not change our results

substantially.

Using Equations (1), (2), (3), (4), and the above assumptions,

we have evaluated the photon spectra produced by various electron

distributions. from these ro-zults we deduce the differential electron

number in the Clare region which produces by bremsstrahlung a photon

' r ^i tLat f;t	 he- cb^( . rvation , shown in figure . 1	 The shaded
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area in this figure snows the range of variability of the observed

hard X-ray flux in the time interval from 06:23 UT to 06:30 U'1'

(van Beek et al., 1973), and the error bars represent the average

observed gamma-ray flux over the time interval from 06:24 UT to 06:

33 UT (Suri et al., 1975). As call 	 seen, two sets of observations

agree reasonably well. The solid line in Figure 2 is the differential

electron number in the flare region that produces the photon flux shown

by the solid line in Figure 1.

The quantity nN(E) for the

by

3 3 x 1044 F -2 4

nN(E) = 2.6 x 1043 E-3.5,

1 4 x 1042 exp(-E/4),

where E is in MeV and n N is in e

deduced electron spectrum is given

E	 0.1 MeV

0.1 MeV c E ^ 0.8 MeV 	 (5)

E	 0.8 MeV

lectrons cm -3 MeV -1	The most

prominent features of this electron spectrum are thc break at an

energy of about	 100 keV and the excess or bump at energies greater

than about 0.8 MeV. The	 break ac	 --	 100 keV, first observed by Frost

(1969),	 is a	 rather common feature in solar X-ray bursts. This

break is probably due to the diminishing efficiency of the first-phase

acceleration mechanism that produces electrons in the energy range up

to several hundred keV. On the other hand, the bump above — 0.8 MeV

is a novel feature, probably caused by a population of electrons accel-

erated by the second-phase mechanism. A similar bump can also be seen

in the observations of Gruber et al. (1973) of the 1967, May 23 flare.

In order to investigate the uniqueness of the high-energy bump
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in the deduced electron spectrum, we have evaluated the bremsstrahlung 	 I

from an electron distribution for which the transition from the second

to the third branch in Equation (5) is not so abrupt as that shown

by the solid line in Figure 2 	 The resultant photon and electron

spectra are shown by the dash-dotted lines in Figures 1 and 2, respect-

ively. As can be seen, the solid line in Figure 1 provides a better

fit to the data than the dash-dotted line. Theref ,, re, electrons in the flare

region may possess a sharp spectral change at energies from about 0.5 to 1 MeV,

re:lecting the transition from the first to the second acceleration phase.

The dashed line in Figure 2 is the differential proton number

in the flare region deduced (Ramaty et al., 1975) from the observed

gamma-ray lines at 2.2, 4.4 and 6.1 MeV (Chupp et al., 1975). Because

these lines give information on the proton spectrum in the energy	 +

region between about 10 to 100 MeV, whereas the observed gamma-ray

continuum is insensitive to electrons in this energy range, it is not

possible to compare the proton and electron numbers at exactly the same

energy. Nevertheless, with a slight extrapolation of the electron

spectrum, we see that the proton-to-electron ratio at 	 10 MeV is about

100:1, a value quite similar to that found in the galactic cosmic rays.

It should be pointed out that this ratio pertains to the instantaneous

particle numbers, and not to the proton and electron source functions.

The latter quantities, however, have direct bearing

on the acceleration mechanism	 They can be obtained from the instan-

.	 taneous numbers by taking into account the losses suffered by the

particles. These losses are given in section IV, However, the full
I

treatment of the relation chips between the instantaneous particle numbers

and source functions for the 1972, August 4 flare is deferred to a

subsequent paper.
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In addition to the lines at 2.2, 0.5, 4.4 and 6.1 MeV, solar flares

should also produce other gamma-ray lines. These lines, however, were not

resolved in the 1972, August 4 spectrum because of their low relative

inten:.ities.	 From the results of Ramaty cc al. (1975) we estimate

that for this flare the combined nuclear radiation in the energy range

from about 0.8 to 2.3 MeV, mainly due to lines of Ne, Mg, Si and Fe,

is about 0.1 photons cm -2 s -1 . As can be seen from Figure 1, this

radiation, if added to the calculated bretnsstrahlung flux, is not

inconsistent with the data.

III. MICROWAVE EMISSION

Microwave emission in solar flares is believed to be due to

gyrosynchrotron emission of energetic el.. trons in magnetic fields

of the flare (e.g. 'rakakura, 1967) 	 Large flux dcnsit ics of microwave

emission have been observed from the 1972, August 4 flare, at 9.4, 19,

37 and 71 Gliz, coincidently with the gamma-ray observations ((:room

and Harris, 1973). We procc. 	 )w to evaluate th(- radio spectrum

produced by the electron distributions deduced in section II.

For the calculation of microwave radiation from mildly relativistic

electrons we use the treatments of Ramaty (1969, 1973), and Ramaty and

Petro:,ian k1973). The following absorption and suppression effects arc

potentially important. for solar microwave radiation: gyroresonance

absorption, ab:;orptiotu below the plasma frcqu^-ncy, free-free absorption,

gyrosynthrutron self.:bsorptiun, and the Razin effect	 however, as	 we

shall show below, only gyrosynchrotro^n selfab ,,orption anti free-free
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absorption are important for the 1972, August 4 event.

For a radio source of volume, V, consisting cf a homogeneous

and isotropic population of energetic electrons, N(E), moving in a

uniform magnetic field, %, the gyrosynchrotron emissiviLies, j+(>),R)

and seltabsorpLion coefficients, K+ (^,q), in th- ordinary (+) and

extraordinary (-) modes, can be written as (RamaLy, 1969,Equation 16)

313 e	 v

7T 2

K+(vie)	 _	 (`
15V`	 II + O	 , t?).	 (7)

Ij 
B

Here a is the charge- of the electron; v is ehe frequency of the radio

emission; vB = eB!(2"mc); 9 is the angle between the direction of

observation and the magnetic field; and

G+ 1	 1/4	 d	
s2	 s

—	 =	 f dE N(E)/(SY)	 x
11	

cosA	 o	 s _ sl	 -^ co;^, cos s
+

x f - (3 sin6 5 i (X s ) + (cot; -	 S on s ) i (Xs) ] 2	 (8)

1

x	 - (vB/v)2 9Y2 N(F) d^ (q)

'	 where X S = s$sin(,sin6 s /(1 -pcosrIcos6 s ), s 1 2 =^.v / v$ ' (i + pcosP,), and

coo s = (1 - s)B/(Yv)I/(NcosA)-

11w free-free absorption coefficient is given by (Ramaty and

Petrosian, 1972)

h ff - 10 -2 ne 2 /(.j 2 T' 312 )	
17 7 + On (T

•3/ yV) },	 (9)
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where ne and r are the density and temperature of the ambient free

electrons. Using Equations (6) through (9), we can write the radio

flux density at Earth as

F = R2	
j+ [ 1 - exp( _ . . +1.)1 + 3 - [ 1 - exp(-"-'.)]	 (10)
K+	 K_

where A and L are the area and depth of the radio source, respectively,

and R = 1 A.U. We have evaluated Equation (10) nunu-rically, and the

res ,ilts	 shown in Figures 3 and 4.

In Figure 3 we show the flux density at Earth in the absence of

absorption (-+L • 0 and '_L - 0). Spectrum A is due to tl:e electron

distribution N(F^ = 2.6 x 10 43 }; -3.5 with a high-energy cutoff at

E = 6.8 MeV; spectrum B is produced b y the sate: distribution with no

high-energy cutoff and spectrum C is due to the distribution N(E)

1.4 x 1042 exp (-E/4 McV). The electrons below 0.1 MeV given by the

first branch of Equation (5) produce negligible radio emission for

V	 5vB. Because at lower harmonics the emission is strongly iibsorbed,

we do not have to take :.uto account the contriLution of these electrons.

The open dots in Figure 4 represent the average microwave N il.<

density obtained by integrating the ohserved (Groom and Harris, 1973)

flux densities over the gammi-ray measurr-meat time (1972, August 4,

06:24 to 06:33 UT)	 When these data are compared with thu calculated spectra of

Figure 3, two results become apparent: The microwave flux density

flattens at high frequencies (v a 3 x 10 10Itz), as expected from the

presence of component C; there is evident• ,• for strong absorption at

lower frequencies (v : 15 Gliz).
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The calculated lines in Figure 4 were obtained from Equation

(10) with finite absorption. Component A, due to N(E) = 2.6 x 10
43

E -	 with a high energy cutoff at 0.8 McV,is absorbed both by

gyrosynchrotron selfabsorption and free-free absorption. For simplicity

we have applied only free-free absorption to component C; however, the

addition of selfabsorption does not change the total spectrum because

selfabsorpt i on is important only at frequencies where the contribution

of component C is negligible. We used the following parameters: B =

415 gauss, 11 = 7.1 x 10 10 cm-3 , A = 1.6 x 10 i9 cm` (0.9 arc minutes), and

1/2
L/1	 = 0,41. If L - A	 = 4 x 109 cm, then T = 4.5 x 106 K. These

values represent reasonable estimates for the physical conditions of

tho acceleration region. We note that there is no inconsistency between

the total number of electrons deduced from the radio emission and that

obtained from the X- and gamma-ray emissions. As already pointed out

by Holt and Ramat y (1969), the apparent inconsistency found by Peterson

nd Winckler (1959) is removed mainly by gyrosynchrotron selfabsorption.

For the above density, temperature and magnetic field, the

plasma frequency, '^p, the gyruresonance absorption frequency, 1)	 =gr

4\)B , and the Razin cutoff frequency, v R = 20 ne /B (Ramaty, 1973),

arc 2.4, 4:6 and 3.4 GHz, respectively. Because these values are

lower than the observed turnover frequency of — 15 GHz, the above three

mechanisms cannot contribute significantly to the suppression of microwave

emission for the 1972, August 4 flare.

Castelli et al. (1974) have recently analyzed the microwave

emission from the 1972, July 31 flare. Contrary to our conclusions for
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the 1972, August 4 flare, these authors find that the dominant loir-

frequency suppression mechanism for the July 31 event is gyroreson-

ance absorption. Since the August 4 burst at 	 15 Glli: was larger by

a factor of	 100 than the July 31 burs*_, it is possible that these

two conclusions are not mutually inconsistent. Wo point out, however,

that Castelli et al. (1974) use an incorrect formula for 
vsa' 

the

turnover frequency for gyrosynchrotron selfabsorption. According to

'2/5
Ram^aty (1973), the formula sa	 5.3	 107 B 1/2 ( Fm /cf)	 , ^-ihere vsa

is in 11z, B is in gauss, Fm is in solar flux units and r, is in

2
(arc. minutes) , gives a good fit to the detailed numerical calculations;

the formula used by Casteili et al. (1974) has ; smaller numerical

coefficient by about a factor of 2. Using the sbove formula for )sa,

we find for B = 415 gauss, Fm = 2 x 104 flux units, and	 = 0,8 (arc

minutes)` that vsa
	

10 0 Hz, in reasonable agreement with the numerical

calculations presented in Figure 3.

IV. TIME DEPENDENCES

The obser—od time dependences of the X-ray emission in the energy

range 29 to 41 keV (van Beek et al., 1973), of the gamma-ray flux in

the range 0.35 to 8 MeV (Sari et al., 1975), and of the microwave

emission at 37 GHz (Croom and Harris, 1973) are slim-in in Figure 5.

The variation in time of the X-rays depends on the time profile of

electrons of several tens of keV in the flare. region. On the other

hand, the time dependence of the gamma rays is determined by the

variation in time of electrons of energies greater than hundreds of keV;

as can be seen in Figure 4, radio emission at 37 Gllz is also due to
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electrons in this energy range. Indeed, as seen in Figure 5, the

general rise time of both the continuum ;amma rays and 37 GHz radio

emission (- 4 minutes) is longer than that of the X-rays (- 2 minutes).

This result provides support to the suggestion made on the basis of

spectral information in section II, that electrons above several

hundreds of keV are accelerated by a different mechanism than the

:nchanism which accelerates lower energy electrons. We should point

out, however, that there is good observational correlation between the

individual peaks of the X-ray, gamma-ray, and microwave time profiles,

as can be seen in Figure 5. Therefore, the first-phase and second-

phase acceleration mechanisms should be closely related. For example,

the first-phase mechan.>m could serve as an injection source for the

second mechanism. This possibility is supported by the total number of

electrons in the two components: from Figure 2 we calculate that the

number of electrons in the high-energy component is only 0.1% of the

number of electrons in the lower energy component above 20 keV.

If different acceleration mechanisms are responsible for the

acceleration of low- and high-energy electrons, it is of considerable

interest to determine which of the two mechanisms accelerates protons

and nuclei. The time profile of the nucleonic component in the flare

region can be deduced directly from the observed time profile of the

2.2 MeV line. This line is due to the reaction n + p -- d + y, where

the neutrons are the products of nuclear reactions of energetic protons

and nuclei in the flare region (Ramaty et al., 1975).
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The error bars on the 2,2 MeV gamma-ray time profile shown in

Figure 5 are the measured intensities of this line (Chupp et al., 1975).

The solid, dashed, and dotted lines are calculated time profiles of the

2.2 MeV line obtained by using the results of Wang and Ramaty (1974).

The solid line is obtained by assi.naing that the instantaneous number

of nuclei in the flare region has the same time dependence as that of

the observed 0.35 to 8 MeV gammma rays. The dashed and dotted lines

are obtained by assuming that the time dependence of the nuclei is the

same as that of the 29 to 41 keV X-rays. For the solid and dotted

lines we used a photospheric 3 H abundance, 3He/H = 5 x 10 -5 ; for the

dashed line, 3He/H = 0^

As can be seen, the measured time profile of the 2.2 line is

in good agreement with the calculated result shown by the solid line.

The dashed and dotted lines, however, give poorer fits to the data,

independent of the amount of 3 H in thu photosphere. (A smaller amount

of 3 H in the photosphere results in a slower loss of neutrons and

hence a longer delay of the 2.2 MeV line). This result implies that

the nuclei are probably accelerated by the second-phase mechanism.

The individual peaks in the time profiles of the X-rays, con-

tinuum gamma rays and microwaves shown in Figure 5 have decay times of

about 30 seconds. These decay times can be due to energy losses of

electrons in the flare region if the energy loss time of the relevant

electrons are shorter than the observed decay times, or due to the

escape of electrons from the emitting region.

In Figure 6 we show the energy loss times, E/(dE/dt), for protons
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and electrons in a filly ionized plasma of density, temperature, and

magnetic field as deduced in section III: n = 7.1 x 10 10 cm ', T = 4.5 x

106K, and B = 415 gauss. The energy loss rate, dE/dt, is due to Coulomb col-

lisions for protons, and due to both Coulomb collisions end synchrotron losses

for electrons. We have used the results of Trubnikov (1965) for electron

Coulomb collisions, and those of Ginzburg and Syrovatskii (1964) for

proton Coulomb collisions. The transition at - 1 MeV in energy loss time for

protons is due to the fact that the proton velocity at this energy is comparable

to the electron thermal speed for T = 4.5 x 10 6 K. For electron syn-

chrotron losses we have used the results of Ginzburg and Syrovatskii

(1964). The maximam, at - 10 MeV, in the energy lo.,-s time for electrons

is due to these losses.

As can be seen from Figure 6, the energy loss time of 5, 50 keV

electrons which produce the 29 to 41 keV X-rays is less than about 1

second_ Therefore, the observed decay times of - 30 seconds of the

individual peaks of these X-rays could be due to collisional losses.

This conclusion is different from that of Brown and Hoyng (1975),

who have suggested that the observed time variations could be due to

betatron acceleration and deceleration in a medium of density 4 x 107

cm-3 and magnetic field 12 gauss These low values, however, are

inconsistent with the density and field deduced in section III from the

microwave and X- and gamma-ray data 	 The energy-loss time of -- 2 MeV

electrons which produce 37 GHz microwaves and continuum gamma rays is

- 70 seconds. For these electrons, escape from the emitting region

may play an important role in determining the observed time profile.
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V. SUMMARY

We have calculated the X-ray, gamma-ray continuum and micro-

wave emissions from the 1972, August 4 flare. By comparing these

calculations with the data, we can deduce the number and spectrum of

the energetic ele=ctrons, the ambient density, n, the magnetic field,

B, the area of the radio source, A, and Cie: temperature of the emitting

region, T. The energy spectrum and absolute value of the product

nN(E) are given in Equation (5) and Figure 2. For the rest of the

parameters we find that n = 7.,1 x 10 10 cm-3 , B = 415 gauss, A = 1.6 x

10 19 cm2 (D = 0.8 (arc minutes) 2 ), and T = 4.5 x 106K.

The deduced energy spectrum of the electrons supports the sug-

gestion (Wild et al., 1963; de.lager, 1969; frost and Dennis, 1971) of two

acceleration phases. For the 1972, August 4 flare, the first phase accel-

erates electrons up to several hundred keV; 	 the second phase

accelerates electrons to at least several MeV and protons to energies

greater than several tens of MeV. From observations of gamma-ray lines

(Chupp et al., 1973; 1975) and the theory of line production in solar

flares (Ramaty et al., 1975), we obtain 	 a	 proton-to-electron

ratio at about 10 MeV of 100:1. This result is consistent with the

fact that the second phase acceleration produces a larger flux of protons

than electrons (Sturrock, 1974).

Microwave emission at frequencies greater than 25 Gliz in the

August 4 flare is produced by electrons in the MeV region which

produce the ga yinna-ray conLinuum. The spectral flattening, caused
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by the transition from the first-phase to the second-phase acceleration,

produces observable flattenings in both the gamma-ray continuum and

microwave spectra. Below about 20 GHz the microwave emission is strongly

absorbed by selfabsorption and fro g -free absorption.

The observed time profile of the 2^2 MeV gamma-ray line i- cun-

si.stont with the assumption that the number of accelerated nuclei has the

same time dependence as the electron number at energies greater than

severa 1 hundred keV . On the other- hand, ; .ie 2.' MeV time profile, ca lcu 4 t,d

by assuming that the nuclei have a similar time dependence as the

X-rays below -- 100 keV, precedes the data by about 100 seconds. This

result lends further support to the two phase acceleration hypothesis

and gives information on the time lag between the two phases.
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FIGURE CAPTIONS

Figure 1.	 The observed hard X-ray and gamma-ray continuum from the

1972, August 4 flare. The shaded area is based on the

data of van Beek et al. (1973) and includes all their

spectra between 0623 and 0630 UT	 The data points are

from Suri et al. (1975). The solid line represents the

bremsstrahlung spectrum calculated from t._. electron spectrum

shown by the solid line in Figure 2. The dash-dotted line

is the additional photon spectrum obtained from the additional

electron spectrum given by the dash-dotted line in Figure 2.

Figure 2.	 Electron and proton differential numbers for the 1972,

August 4 flare. The electrons produce by bremsstrahlung

the photon spectra shown in Figure 1. For the power law

spectrum (including the dash-dotted part) we ignore electron-

electron interactions, while for the exponential spectrum

we take into account these interactions as described in the

tex t. The proton spectrum is obtained from gamma-ray

line observations,

Figure 3.	 Radio flux densities from the electron spectra shown in

Figure 2. The spectrum A is from N(E) = 2.6 x 1043E-3.5/n,

0.1	 E • 0.8 MeV; B is from the same N(E) as A except that

there is no high-energy cutoff on E; C is from N(E) = 1.4 x

1042 exp(-E/4)/n with no low or high-energy cutoffs.

Figure 4.	 Radio flux densities from the components A and B defined

in Figure 3, with the effects of selfabsorption and free-

free absorption. The circles are based on the data of Croom

and Harris (1973). The fit to the data implies that the

angular size and temperature of the radio source are 0.9

arc min , ites and 4.5 x 106K.
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Figure 5.	 Time dependences of radiations of the 1972 August 4, flare.

The three upper lines are th • r measured time profiles of

X-rays (29	 41 keV), gamma .,;yc (0.35 — 3 MeV), and micro-

waves (37 GEIz)	 The error bars in the lower part of the

figure represent the measured intensities of the 2.2 MeV

line. The solid, dashed, and clotted lines are calculated

time profiles of the 2.2 MeV line. The solid line is obtained

by assuming that the instantan-aous number of nuclei in the

flare region has the same time dependence as thst of the

observed 0.35 to 8 MeV gamma rays. The dashed and dotted

lines are obtained by assuming; that the time dependence of

the nuclei is the same as that of the 29 to 41 keV X-rays.

For the solid and dotted lines we used a photospheric 311e

abundance 3 lie/11 = 5 x 10 -5 ; for the dashed 1 ine, 3 110/11 = 0.

Figure 6.	 Energy loss times, E/(dE/dt), of ele.trons and protons in

the medium with n = 7.1 x 10 10 cm-3, li = 415 gauss, and

T = 4.5 x 106K.
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