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ORIGINAL PAGE IS 
OF POOR QUALITYI 

ABSTRACT
 

Title of Thesis: On the Age of Cosmic Rays as Derived from the 
Abundance of '-Be 

Frank A. Hagen, Doctor of Philosophy, 1976 

Thesis directed by: Frank B. McDonald 
Professor 
Physics and Astronomy 

The isotopic composition of cosmic ray Be, B, C and N has been 

studied using a new range versus total light technique. Special emphasis 

has been placed on the Be isotopes and, in particular, on the radioactive 

isotope - Be whose mean lifetime against decay (Td = 2.2 x 106 yr) makes 

it an ideal "clock" with which to measure the cosmic-ray age. The
 

experiment consisted of a thin trigger scintillator, an acrylic plastic
 

Cerenkov detector and a spark chamber, followed by a totally active
 

stack of 14 scintillation detectors. This stack of scintillators made
 

possible the measurement of range, and also permitted the removal oi
 

interacting events by continuously monitering their identities alone
 

their trajectories through the.experiment. The experiment was c.rriEd
 

-
by balloon to atmospheric depths ranging from 3.5 to 5.0 g cm 2 residual
 

atmosphere for a total exposure time of 23 hr. The flight was carricd
 

cut on August 15, 1973, from Thompson, Canada.
 

Both the theoretical and empirical response of the experiment have
 

been considered in detail. The data have been corrected for variations
 

in detector response as a function of position and time, and also for
 

variations in detector thicknesses. The mass resolution achieved by the
 

experiment is given by CA 0.047A. Comparisons are made with the results
 

of other experiments after correcting the data for interactions in the
 

detector, the varying energy windows (roughly 150 to 450 MeV/nuc) in
 



which the experiment is sensitive to different isotopes, and production
 

and destruction of nuclei in nuclear interactions in the atmosphere
 

above the experiment. In addition, the data have been corrected for the
 

effects of solar modulation before being compared with model predictions.
 

The data have been interpreted within the framework of the "leaky
 

box" model of cosmic-ray propagation, where the cosmic rays are imagined
 

to propagate freely within a box (e.g. the galactic disk) from which
 

they have only a small probability of escape each time they hit a wall.
 

The results indicate the survival of (55 +21) % of the 10Be in the
 

arriving cosmic rays. In the leaky box model, this is interpreted in
 
+6 6 = 5 +6 x 10 

terms of a mean cosmic-ray confinement time given by 
Te 

S-3 
+1.03 

yr, which corresponds to a mean density, n = 0.7 -0.4 atoms cm , of 

matter in the confinement volume. This result is apparently most con­

sistent with the confinement of the cosmic rays to the galactic, disk. 
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CHAPTER I
 

INTRODUCTION
 

As understood at the present time, the cosmic radiation contains 

electrons, protons and heavier nuclei from throughout the periodic table, 

with energ£es ranging from the suprathermal to over a billion times what 

can be achaeved using currently available accelerators. In the course of 

their nucleosynthesis, acceleration and propagation through space, these 

particles must certainly have participated in very high energy processes 

of various kinds, and therefore carry significant information character­

izing these processes. The cosmic rays fill the galaxy to an energy 

density - 1 eV cm-3 , which is comparable to that residing in visible 

light, the 30K background radiation and the galactic magnetic fields. It 

follows that these particles must play an important role in the dynamic
 

structure of the galaxy (Parker 1965, Badhwar et al. 1975). It is then
 

of considerable interest to determine where the cosmic rays reside:
 

whether they are confined predominantly to the galactic disk (Ovens 1975,
 

Dickinson et al. 1975), or perhaps fill a roughly spherical galactic
 

"halo" surrounding the disk (Ginzburg et al. 1964, Suh 1974). The pos­

sibility has even been suggested that the cosmic radiation may fill some
 

extended region of extragalactic space (Setti et al. 1972, Brecher et al.
 

1971, Sitte 1972).
 

Of the various observable features of the cosmic radiation--compo­

sition, energy spectra, temporal variations, and directional and positional
 

anisotropies--the study of composition is perhaps the most promising for
 

answering questions such as those posed above. For example, studies of
 

the charge composition have revealed the presence of significant abund­

ances of components (e.g. Li, Be and B) thought to be totally absent from
 

I.
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the cosmic-ray source. Such components must originate entirely in the
 

nuclear spallation of heavier species. Thus the abundances of these
 

species depend only on the amount of matter traversed by the primary
 

cosmic-ray "beam". This leads to the conclusion that the cosmic rays
 

have, on the average, traversed
 

5- ,r (1.1) 

of material. Here <-m> is the mean atomic mass of the material (gas) in
 

the region where the cosmic rays propagate, n is the number density of
 

atoms, v is their propagation velocity (v - c is usually a good approx­

imation) and Te is the mean propagation time corresponding to Xe"
 

However, a knowledge of Xe does not answer the question of where
 

the cosmic rays reside (i.e. in the galactic disk, a galactic "halo", or
 

extragalactic space). One parameter which is highly sensitive to the
 

confinement region, however, is the number density of atoms, n: n -1 for
 

-5
the galactic disk, n - 10-2 for the galactic "halo", and n - 10 for the
 

intergalactic medium. Since Xe is known, however, the determination of
 

n and Te are equivalent. As was first suggested nearly two decades ago
 

by Hayakawa et al. (1958) and later emphasized by Peters (1963), this
 

may be accomplished by a measurement of the abundance of the radioactive
 

"clock" isotope 10Be.
 

A direct experimental measurement of the abundance of 10Be in the
 

cosmic rays has long been delayed due both to the experimental problem
 

of obtaining isotopic resolution and the rarity of 10Be relative to its
 

neighbors. Attempts have been made in the meantime to approach the
 

Be
problem indirectly by the measurement of the charge ratio B (Shapiro
 

et al. 1968, 1969; O'Dell et al. 1975). These attempts have suffered
 



from the rarity of 10Be with respect to the other isotopes of Be, in
 

conjunction with the limited precision with which it is possible to
 

calculate this ratio from theory in the cases of interest (i.e. the
 

survival or decay of 10Be). The first attempt at a direct measurement
 

of the 10Be abundance was by the University of New Hampshire group
 

(Webber et al. 1973) using a balloon experiment floating at an atmos­

pheric depth of - 3 g cm - 2 . This group has also recently reported
 

results of a new, improved experiment (Preszler et al. 1975). Satellite
 

observations taken outside the earth's atmosphere and magnetosphere have
 

also recently been reported by the University of Chicago group (Garcia-


Munoz et al. 1975, 1975a). The objective of the present thesis is to
 

supplement and improve upon the above results by a measurement of the
 

isotopic abundances of cosmic ray Be, B, C and N, with the primary
 

objective of determining the cosmic-ray age by a measurement of the ratio
 

1 0Be
 

Before discussing in detail the experiment and its results, it is
 

desirable to sketch briefly our present understanding of the cosmic rays
 

and the various theoretical models, particularly as these relate to
 

studies of the composition of the cosmic radiation. The discussion is
 

organized into three major parts following the temporal history of the
 

particles: the nature of the cosmic-ray source (or nucleosynthesis),
 

the nature of the acceleration to cosmic-ray energies, and the nature of
 

the propagation of the cosmic rays through space. With respect to each
 

of these topics, we may inquire of the mechanism of the process, and its
 

location in space and time.
 

A. The Cosmic Ray Source
 

Because of both the ultra high energies of individual cosmic-ray
 

particles and the energy content of the cosmic radiation as a whole, the
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cosmic-ray source has at one time or another been attributed to virtually
 

every violent phenomenon known or postulated to occur in the universe.
 

The earth, thunderstorms, the sun, magnetic white dwarfs, supernovae,
 

pulsars, explosions of the galactic center, radio galaxies, quasars,
 

and even the big bang itself have all been suggested at one time or
 

another as cosmic-ray sources. Clearly, there is a strong need for
 

experimental observations capable of restricting the options available
 

to the theorists in constructing models.
 

For example, the radio and optical emission of supernova remnants
 

have been explained in terms of the synchrotron emission of electrons in
 

magnetic fields (Ginzburg et al. 1964). For the particular case of the
 

Crab supernova remnant, the emitting electrons are estimated to have
 

energies as high as - 5 x 1011 eV. Because of their overwhelming rate
 

of energy loss by synchrotron emission, these electrons could not have
 

been accelerated more than - 100 years ago. This is independent of their
 

initial energy and far less than the age of the supernova, which was
 

observed in the year 1054. Thus electrons are even now being accelerated
 

to cosmic-ray energies in the Crab nebula. Accepting the rather uncertain
 

hypothesis that the Crab nebula is a "typical" supernova remnant, and
 

assuming that 1
100 times the energy going into the acceleration of
 

electrons goes into the acceleration of protons and heavier nuclei
 

(which is the ratio observed locally in the cosmic rays), one may esti­

mate the rate at which cosmic rays are being contributed to the galaxy
 

by supernovae (Ginzburg et al. 1964). In particular, it is conceivable
 

that a typical supernova dissipates - 1050 erg in cosmic rays, which
 

-
gives an average power of - 3 x 1040 erg seL I if the frequency of super­

novae is taken as one per hundred years. On the other hand, the ratio
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of the volume in which cosmic rays are confined to their mean confine­

3
ment time, Y-r 1052 cm sec-1 , is characteristic of most cosmic-ray
Te
 

propagation models which confine the cosmic rays to the galaxy. For
 

example, in the halo model of Ginzburg (1964), the halo volume is V
 

3
2 x 106 8 cm , and the mean confinement time is Te - 3 x 108 yr. Assuming
 

-3
that the observed cosmic-ray energy density of I eV cm is constant
 

in time (which seems to have been the case for at least the last billion
 

years; Van Loon 1973), we then estimate the power required of the cosmic­

-
ray sources to be - 1040 erg sec I. This is in agreement with the above
 

estimate of the power available from supernovae to within the accuracy
 

of the numbers used.
 

Such energy considerations have served to make supernovae and
 

supernova remnants attractive sites for the acceleration of the predom­

inant portion of the cosmic rays. This would not rule out contributions
 

from other sources, and indeed there may well exist a hierarchy of dif­

ferent types of sources both in our own galaxy and in others. Finally,
 

we note that this result is dependent upon the existence of an efficient
 

means of confining the cosmic rays to the galaxy and thus retarding
 

the rate of energy loss due to escaping particles.
 

The characteristics of the cosmic-ray source can be probed by
 

observations of the composition of the cosmic rays, as extrapolated to
 

the source in terms of some convenient propagation model. For example,
 

observations of the very heavy (Z ;b 30) component are apparently some­

what suggestive of an r-process (as opposed to s-process) origin (Price
 

et al. lq75). Since the r-process can only take place in an extremely
 

hot environment with high density of neutrons present, this supports a
 

model wherein the nucleosynthesis of the cosmic rays occurs in a
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supernova explosion. The r-process does not (for example) occur as one
 

of the normal cycles of nucleosynthesis in a stable star. Attempts have
 

been made (with some degree of success) to calculate the observed cosmic­

ray composition from models based on explosive nucleosynthesis (Hainebach
 

et al. 1975), which is a strong possibility as a mechanism for supernova
 

explosions (Arnett 1969, Truran'et al. 1970). Such models have a number
 

of free parameters, some of which may possibly be determined or consid­

erably constrained by observations of the isotopic composition of the
 

cosmic rays. For example, one such parameter is the neutron excess
 

present in the source, which is strongly correlated to the abundances of
 

54 Fe and 58Fe relative to 56Fe. Another parameter, the temperature at
 

which the nucleosynthesis occurs, would be reflected in the relative
 

importance of various contributing nucleosynthesis chains, such as the
 

explosive burning of C, 0 and Si, the CNO cycle, and so on. Each of
 

these cycles produces certain characteristic isotopes, the observation
 

of which would thus help to establish the temperature prevailing in the
 

cosmic-ray source.
 

B. Acceleration
 

In the following section, the acceleration of particles to cosmic­

ray energies is discussed. Features of the acceleration which may be
 

reflected in the composition of the cosmic rays are of particular interest.
 

For these purposes, a detailed discussion of the physics behind the accel­

eration is often not required, and therefore will not be given here.
 

Features which are of interest include the nature of the reservoir from
 

which particles are accelerated, and how they are Selected for acceler­

ation.
 

As suggested in the preceding section, supernova remnants are
 

prime candidates for the cosmic-ray source. Furthermore, there is
 



evidence that the acceleration of cosmic rays is an ongoing process in
 

supernova remnants (in particular, the Crab). A potential means for
 

accelerating these particles was provided by the discovery of pulsars
 

(Hewish et al. 1968)--one of which happens to be located in the Crab
 

nebula--and their interpretation as rapidly spinning neutron stars
 

formed in supernova explosions (Gold 1968). The acceleration mechanism 

would be provided by the enormous magnetic fields of - 1012 gauss associ­

ated with these objects. This is supported by the observation that the 

Crab pulsar is losing energy (as estimated from its angular deceleration) 

at a rate essentially equal to that going into the acceleration of
 

particles to relativistic energies (again assuming that 1
100 times as
 

much energy goes into protons and nuclei as electrons; Pacini 1973).
 

It is implicit in all of the above that there may well be a sub­

stantial time delay between the origin (or nucleosynthesis) of the cosmic
 

rays and their acceleration to relativistic energies. Specifically, the
 

nucleosynthesis would most likely take place in the supernova explosion
 

itself, while the acceleration appears to be a continuing process which
 

might (for example) be directly attributed to the pulsar formed in the
 

supernova explosion (e.g. see Gold 1968, Goldreich et al. 1969, Gunn et
 

al. 1971), or might (on the other hand) be due to the action of rapidly
 

moving magnetic clouds in the remnant (Ramadurai et al. 1972, Scott et
 

al. 1975). Such acceleration would presumably occur after some degree
 

of mixing of the debris from the explosion-with the interstellar medium,
 

which would be reflected in the cosmic-ray composition (Reeves 1973).
 

The existence of a time delay between the nucleosynthesis and acceler­

ation of the cosmic rays can be tested by measurements of the abundances
 

of certain isotopes (e.g. 57Co and 44Ti) which decay exclusively by
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electron capture, and are presumed to be produced by the cosmic-ray
 

source (Shapiro et al. 1975, Soutoul et al. 1975). At rest, these
 

isotopes are neutral and will decay at characteristic rates. Once
 

accelerated, however, they are stripped of all their atomic electrons
 

and thus become stable. We thus have radioactive clocks which are
 

turned on at the time of nucleosynthesis and conveniently turned off
 

when the actual acceleration occurs. Although isotopes which decay
 

exclusively by electron capture are best for these purposes, it is pos­

sible that one may also use isotopes'with alternate modes of decay (e.g.
 

56Ni and 59Ni), provided the alternate lifetime is sufficiently long
 

(i.e. Z a fewmillion years, depending upon one's model for propagation)
 

to ensure their survival in the cosmic rays.
 

Models have also been proposed in which the acceleration occurs
 

virtually at the same time as the nucleosynthesis, i.e. by relativistic
 

shock waves generated by the supernova explosion (Colgate 1969). How­

ever, such models suffer from a number of difficulties. One questions,
 

for example, the survival of the heavy nuclei in the extreme environment
 

of a relativistic shock wave. It also appears inevitable that the intense
 

streaming of the cosmic rays away from their source when created in such
 

intense bursts will set up self-generated magnetohydrodynamic waves
 

(Wenzel 1973). These waves then serve to efficiently absorb energy .by
 

scattering the cosmic rays. Such a result implies that the cosmic rays
 

would escape with at most a few percent of their original energy. This
 

drastically increases the power requirements on the cosmic-ray sources,
 

probably to unacceptable levels. Also, the dissipated energy would heat
 

the interstellar medium, again to a degree which may well be unaccept­

able (Wenzel 1973).
 



9 

The remarkable resemblence of cosmic-ray abundances to those
 

characterizing the solar system (which may also be explained, in large
 

part, by models based on explosive nucleosynthesis) has been noted
 

essentially from the first -observation of the nuclear component (Bradt
 

et al. 1950). The correlation is considerably enhanced by taking account
 

of ionization cross sections (Casse et al. 1975), which suggests that the
 

cosmic rays may result from the selective acceleration of material char­

acterized by essentially solar system abundances. The selection mechanism
 

would be ionization--i.e. only ionized atoms are accelerated. Such a
 

model would, of course, predict no anamalous enhancements or deficiencies
 

of specific isotopes as compared to other isotopes of a given element,
 

as the ionization cross sections are alL the same. This line of reason­

ing can thus be easily tested by measurements of the isotopic composition
 

of the cosmic rays.
 

C. Propagation
 

Having discussed the origin and acceleration of the cosmic rays,
 

one still needs to consider their propagation in interstellar space
 

before being able to make comparisons with experimental observations.
 

Most current models for the propagation of cosmic rays are based on the
 

diffusion model originally proposed by Ginzburg et al. (1964). Although
 

cosmic rays are constrained to closely follow magnetic field lines in
 

this model, they may be scattered back and forth along the lines by
 

irregularities in the lines. Furthermore, the actual orientation of the
 

field lines in space is considered sufficiently random that a small
 

drift (or scattering) of a particle across the field lines effectively
 

randomizes ics trajectory through space. Thus the propagation has been
 

approximated as a diffusive process, with the actual diffusion coefficient
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used left as a free parameter to be adjusted (within limits) for the
 

optimum agreement with observations.
 

If the characteristic pathlength required for a particle to
 

escape in a diffusion model is much greater than the typical dimensions
 

of the confinement region, then the diffusion model may be quite well
 

approximated by a "leaky box" model (Jones 1970, Owens 1975a). In this
 

model, the boundaries of the confinement region are pictured as the
 

sides of a "leaky" box, which have a high efficiency for reflecting
 

particles back into the box. The fundamental parameter in such a model
 

is the probability of leaking out of the box. This is given by the
 

leakage pathlength, e' which is related to the mean time for escape
 

from the box, Te, by equation I.1. If there are radioactive isotopes of
 

mean decay time Td - T. involved in the problem, then the model also
 

becomes directly sensitive to the mean escape time, Te, and thus to the
 

number density, n, of atoms in the box. The parameter Xe can be deter­

mined if we assume that certain components of the locally observed cosmic
 

rays are absent in the source. Their origin must then be entirely in
 

the fragmentation of heavier species in the interstellar medium, a process
 

which can easily be modeled. For example, Li, Be and B are all easily
 

destroyed in hot stellar interiors, and for this reason are thought to
 

be absent in the cosmic-ray sources. A calculation based on these
 

2
elements gives Xe 5 g cm- (Shapiro et al. 1973). Assuming a density
 

n - 1 hydrogen atom cm"3 in the confinement volume (which would be con­

sistent with confinement of the cosmic rays to the galactic disk) we
 

then obtain Te 3 x 106 yr. from equation I.1. Alternatively, we may
 

adopt a "halo" model in which the cosmic rays are confined to a quasi­

spherical volume surrounding the galactic disk. In this case the gas
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density (n ! 10"2cm "3 ) is much lower than for the disk, so that a much
 

longer escape time (i.e. 'e ! 3 x 108 yr) is required for consistency
 

with the observed leakage pathlength. It is thus apparent that an experi­

mental determination of the mean escape time, Te, would be a sensitive
 

test for discriminating between these models.
 

As has already been pointed out, an experimental determination of
 

the mean escape time, Te, is possible by a measurement of the.abundance
 

of a radioactive isotope which is completely secondary in origin (i.e.
 

absent from the cosmic-ray source), and also has an appropriately long
 

mean lifetime against decay (i.e. rd - Te). Several such isotopes have
 

been suggested, including 1 0Be (Td = 2.2 x 10
6 yr), 26A1 (Td = 1.2 x 106
 

yr) and 36CI (Td = 4 x 106 yr); in extreme cases even the isotope 40K
 

(Td = 1.9 x 109 yr) may be of use. Most attention so far has been
 

focused on 10Be because of its clear secondary origin, its nearly ideal
 

lifetime (for a disk confinement model), and also because it is experi­

mentally the most accessible. The experimental problem of separating
 

10Be (especially from the more abundant neighboring isotope 9Be) is still
 

very difficult, however. For this reason, most of the effort so far has
 

been concentrated on the indirect approach of measuring the charge ratio
 

Be (Shapiro et al. 1968, 1969; O'Dell et al. 1975). Since 10Be decays

B 

to 1OB, this charge ratio is the most sensitive of any to the questidn
 

of the survival of 10Be in the cosmic rays. The precision obtainable by
 

this approach suffers greatly from the very low abundance of 10Be relative
 

to the other Be isotopes, in conjunction with the limited precision of
 

the theoretical predictions which can be made. Nevertheless, the
 

analysis has been performed, with results which are most consistent with
 

thi complete survival of 10Be in cosmic rays of energy E , I GeV/nuc
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(Shapiro et al. 1968, 1969; O'Dell et al. 1975). The first attempt to
 

directly measure the abundance of 10Be in the cosmic rays was by Webber
 

et al. (1973), who used a balloon borne experiment floating beneath a
 

residual layer of - 3.g cm'2 of atmosphere. This group has also recently 

reported results on a new, improved experiment (Preszler et al. 1975).
 

The only other published results are those of Garcia-Munoz et al. (1975,
 

1975a), who report results from the IMP 7 and IMP 8 satellites. While
 

Garcia-Munoz et al. feel their results are consistent with the complete
 

decay of lOBe (i.e. a very long leakage lifetime), the results of
 

Webber et al. appear to indicate the survival of a significant fraction,
 

of the 10Be.
 

It is the objective of the current thesis to supplement and extend
 

the above results by a measurement of the isotopic abundances of the
 

elements Be, B, C and N, with special emphasis on the question of the
 

degree to which lOBe survives in the cosmic rays. Our results indicate
 

10 5+6

the partial survival of Be, and result in the estimate Te = 53 X 

106 yr for the mean escape time of cosmic rays. This is entirely con­

sistent with models which confine the cosmic rays to the galactic disk.
 

It is not consistent with models in which the cosmic rays are confined
 

to a spherical halo region, but may be consistent with a hybrid model in
 

which the cosmic rays are confined to a considerably flattened halo region
 

surrounding the galactic disk.
 



CRAMER II 

TECHNIQUES FOR TiE ASURE.,NT OF MASS 

A. The Develop.ent of Experimental Techniques 

Before discussing in detail the general problem of determining 

the mass of a cosmic-ray particle (section B), and the spec-fic experi­

mental approach of this thesis (section C), a brief description will 

first be given cf the develop,.ent of our knc'wledge of the composition 

(chemical and isooopic) of the cosmic radiation. We begin with the dis­

covery of the existence of a significant componen, consisting of nuclei 

heavier than protons (Frier et a!. 1948), which 'olowed close' upor. 

the association of the predominant component with protons by its highly 

penetrating nature (Schein et al. 1941) and positive charge (Johnson 

1933, Alvarez et al. 1933, Rossi 1934). A'though the existence of a 

heavy component was :;oon cor,firmed by a nunber of other experim.ents (e.g. 

see Singer 1958 and references therein), it was to be a decade before 

experimental resolution was improved to the point where a con!;ensti; began 

to emerge or. the detailed charge composition of the cosmic rays. In 

particular, there were significant discrepancies -n the measured aburd­

ances of the el~erknts L.1, Be and B a:s well as the odd Z nuclei (e.g. N, 

F, Na, Al and P), which tend to have abundances considerably reduced from 

those of their even Z neighbors. At the present time, experimental tech­

niques have improved considerably, to th.e point where excellent charge 

resolution has been obtained by groups working at several laboratories 

for elements with Z < 26. 

1. Basic Detectors. From the beginning, there has been a wide 

variety of detection schen',s applied to the study of the cosmic-ray 
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composition. These have included both passive detectors (e.g. em.Ilsions
 

and plastics) and active detectors (e.g. cloud chambersspark charbers,
 

proportional counters, scintillators and solid state detectors). Although
 

the passive detectors dominated at first, rapid improvements in the
 

resolution and areas of the various active detectors enabled therk to
 

overtake the passive detectors.
 

dE
 
2. d-'. Early investigations of the chemical co~posit~in made
 

use of the fact that the gez.apignetic field excludes low en.rgy partic.es 

from approaching the earth at low latitudes. !y going to sufficienrly 

low latitudes, one was therefore able to select highly relativistic
 

particles (E b 3.5 GeV/nuc) whose ionization energy loss is proportional
 

to Z2. In this way, it was possible to determine the charge compositior.
 

of the cosmic radiation at high energies by a simple measurewrnt of the
 

dE
ionization energy loss or stopping power, dx"
 

dE
3. rx x C. An important step towards extending WA~jstrerA.ts 

of the chemnical ccmposi: ion to part ic !e; of arbit rary energy wa!; taker 

by Webber and McDonald ('.955), who added a meas;ureme.t Af Cererkov radi­

ation to the rasur,-nent. Since both ' and the e.tt:sionne of Cerenkavdx r 

radiation depend only on 7 and B, this allc.,d the determination o! both 

these pararr ters by the sinmltaneous solution of two equations; (i.e. on. 

for 
dE 

and one for the Cerenkov radiation). In thii way, the chemical 

composition of the cosmic rays -ay be rx.asured over riwide range ot 

energies. -his range of energies (--102 to 105 MeV/nuc I.,estential-y 

defined by the threshold and saruration velocities characcri:;tic of the 

available radiator materials.
 

4. !L x E. The sinzultareot:s neasurew.nt of the icr. cnergyeonit
dx 

loss and the total kinetic energy of a partic:e prnvid,'d a :;.cotnd 

http:neasurew.nt
http:WA~jstrerA.ts
http:partic.es
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technique capable of "teasuring the che=$cal composition as a function 

of energy (Webber et a1. 1972). The basic principle of this approach 

is similar to that of the technique described above, with the Cerenkov
 

measurement replaced by a total energy measurement. The difference is
 

that the energy deyends on mass (A) and velocity (B), whereas the
 

Cerenkov emission of a particle depends on Z and 8. One is therefore
 

required to assure a one to one correlation between charge and mass
 

(e.g. A 2Z for Z ' 20) in order to complete the se, of equations for 

the unkn(7ans A, Z and $. In one form or another, this technique has 

been applied over a range of energies extending frcm - 10 keV/nuc up to 

- 100 GeV/nuc. The limitation at lower energies derives from the 

d1F
 
racroscopic thickness of the dx detector, while that at high energies 

results from prnble=.- associated with the constjctton of a practical 

detector capable of completely abs rbing a particle's energy. As one 

goes to energi'; E ; 100 HeY/ruc, it becves increasingly i-probable 

that a given particle will stop in a detector withcut underg:ufng a 

destructive nt:clear interaction. Although it is still possible to 

estiratc the energy of a particle under such circumstances, the resolu­

tion of the rteasurertert is considerably reduced. 
dE , 

As resolutions of E and E th.ectors continued to improve, even 

isotopic resolution becar.e possible by this technique. 7. this case, 

the assumption of a one to one correspondence between A and 7.is replaced 

by the more realis'ic assunption of discrete valued charge and mass dis­

tributions (see n;ection B for a detailed discussion of the analysis). 

The mass resolution obtained by this technique characteristically 

deteriorate:s as one goes to heavier particles. 3ie and 4The were thus 

the first isotopes separated. At the presetO timie, the isotopes resoved 



16 

by this technique extend to nitrogen %±1ebb.r et al. 1973, 1973a) and
 

beyond (Greiner 1972, .ejaldt et al. 1975). 

5. Magnetic Spectroret ers. Recently, large superconducting 

magnetic spectrometers have also been applied to the study of the charge 

and isotopic coiposition of the cosmic rays (Daubcr 1971). 11esC 

instrurAnts allow the determination of bot.: the sign and magnitude of a 

particle's charge, and thu!; have been used to search for anj. -Itter in 

the cosmic rays (Buffington et al. 1973, Golden et al. 1974). It has 

also been possible to use the geomagretic field as a rigidity filter 

(Jullusson 1975, .N'yer et al. 1975) in order to study the isotopic 

composition of the cosmic rays at energies of a few GeV/nuc, which are 

very ich above the energies accessible by otfer z.ethods (i.e. F 

500 MV/nuc). 

6. Trajectory EfInitton. As geometrical factor!; (i.e. active 

areas) continued to increase in attempts; to measure ever rarer particles,
 

some rans for trajectory definition of particles in experiment:; became 

essential. This has been accomplished using hoidoscopes (thin strips of 

scintillator or flash tubes, for example), optical and digital !park 

chambers, and amiltiwiro proportional counters. Using such detector;, it 

became pos ;ible to correct for the zenith angles at which particles were 

incident on detectors, and also to correct for variations in detector
 

efficiency Over their surfaces. 

The various possible experimental approaches to the detenrir.atton 

of the isotopic co.position of the cosmic radiation will be discussed in 

greater detail in s-ction B, along with the approach actually adopted for 

this experitent (section C). 
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B. The Measurement of Mass 

For our purpose:;, an individual cosmic-ray particle may be 

described by three parameters: its msss (A), charge (Z) and velocity
 

(q). This description ignore:; properties such as sense of v.locity, 

degree of ionizat ion and levels of nuclear and atomic excitation, but 

will suffice for thc present discussion. As it turns out, the charge 

may sor.etirxs be determined with no a priori knowledge of the other two, 

while velocity may be determined kn-wing only the charge. The deter­

mination of the mass, on the other hand, requires a knowledge of both 

charge and velocity aind, in this sense, is the most dtfficu't r asure­

ment of the three. One has available essentially five observable.; froi 

which co determine the mass: the range of the particle in some absorber, 

its energy, its rate of energy loss to ionization, its rigidity and its 

emission of Cerenkov radiation upon passing through an appropriate 

radiator. Since there are only three parameters to be determined (A, Z 

and 9), the problem is over specified, and it is sufficient to Measure 

a subset consisting of only three of the five observables (assu ing, of 

course, that they are a!l independent). In fact, it is sometimes suf­

ficient to measure only two of the five by assuming the partcles one 

will observe are stable against spontaneous nuc!ear decay, and thusi have 

A - 27. In the follwaing five subsections, each of the five observables 

will be discussed in turn. 

1. Energy. The kinetic energy of a particle of rmasn; A, charge Z 

and velocity 5 is given by 

E 3)  - r-1) A rP C2 A ) i.1) 

where 7 denotes the relativistic Lorenz factor. As will be customary
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for the reminder of this thesis, rss number and charge are indicated 

by superscripts and subscripts, respectively, on the left hand side of a 

variable. The first equation r--rely states the usual relativistic 

formula for the kinetic energy, while the last equality gives the scaling
 

in A and Z. The dependence of 'E on 9 is shown in figure I.1.
 

The energy of a particle is often measured using a calorirmetric 

approach in which the particle's energy is used to ionize ae-s in some 

suitable absorber. The energy deposited is then determined by so.-. means 

characteristic of the specific type of detector being used. For example, 

the ionization calorimeter r-ay consist of scintillation counters, in 

which case one observes the light eritted in the recombination of 

electrons and -ons. Alternativcly, !:olid state detectors may be used, in 

which case one observes an increase in the conductivity of the detector. 

Finally, one may use passive detectors such as stacks of erilsion!; or 

thin plastic sheets, in which case one looks for actual damage done to
 

the material. In soe.cases, passive absorbers arc inserted between
 

layers of active .Mterial (e.g. scintil'ators), but this is done at th:e
 

expense of the preci.sion of th- r-t-asurernnt. The resolution of such j
 

measure-.cnt is physically limited by the Poissoniar. statltsics associated 

with processes .uch as the production of ion-electron pairs, the con­

version of such pairs to photons and the conversion of photons to photo­

electrons in a photor.-ltiplier tube. For example, if "w', is the energy 

deposited per photoelectron produced,. the resolution is givet by 

, - I/ir 

E ' (11.2) 

For scintillation detectors, -ap, Z' 20 kV/photoelectron so that e.ergy 

resolution better than 11.my be obtained for E ) 200 XeV. For other 



19 

104  

PROTON ENERGY AND 
GRADIENT VERSJS VELOCITY 

1 I1 -I iIos 

SCALING: AE IAE d 

* 9
 
10- 104 

>010 

$--

I I .. . . 10 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 11.1. c;fa proton and ts velocity
The energy ..

.
derivative ais functions c! veloc t.




20 

types of detector (such as solid state), w nay be considerably smri.ier,
 

and the energy resolution is accordingly increased. Practically, such
 

resolutions are often far in excess of the requiretmnts and not fully 

realized in many experiments.
 

2. Rate of Energy Loss to Ionization. The rate at which a
 

particle loses energy by ionlzation, or stopping peraer, is given (in
 

the Born approximation) by the Bethe-3loch forimila (Bohr 1913, !et'e
 

1930, Bloch 1933)
 

(1.3)
 

This expression break; e(-'n at very igh,.eenergies, where In y 

increase of the ter in brackets is eventually checked by the "density 

effect" (Sternheirer 1952, 1961). For particles of very l(r4 velocity, 

on the other hand, electron pickup becores important and Z Mist be 

replaced by Zeff, the effective (time averaged) charge of the particle. 

Neither of these effects are important for our considerations. Again, 

the scaling of the ionization energy loss in i.ass and charge is given by 

the last equality of equation 11.3. The dependence of the proton ioni­

zation energy loss, Iadx , on velocity, A, is shown in figure 11.2. 

A particle's rate of energy loss by ionization may be uwasured
 

using prcportional counters, ionization counters, thin scintil~atlon
 

counters or solid state detectors. Er.;lsions and thin sheets of pla....tc 

may also be used. Resolutioni; of the order of - 1% (docina-ted by Landau 

fluctuations; Symon 1948, Rossi 1952, Tschalar 1968, 196 8a) are obtain­

able, depending upon the thickness of the detector, and the nature of 

the primary particle.
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3. Range. Range is related to the stopping power, and energy,
 
2
 

E = (7-)Ampc , according to
 

A Amnr 1ijj'r, _ A fIA7F(3) = A, (11.4) 

where the scaling law given by the last equality follcws from that for
 

the stopping power, dxE Figure 11.3 shows the velocity dependence of

dix 

the proton range, IR.
 

The range of a particle is best measured by noting where the 

particle stops in a stack of emulsions or thin plastic detectors. More 

crude measurements using (thicker) solid state detectors or (even thicker) 

scintillation detectors have also been of som.e use in previous: experi­

ments. The range of a particle fluctuates due to the stochastic nature 

of the energy loss process. The distribution is characterized approxi­

mately by a Gau.ssian with standard deviation C,, L-O.Ol% (Srxrnheime r 

1960), and imposes a physical limit on the precision with which a .-ar­

ingful measurement can be made. 

4. Rigidity. Rigidity, the fourth obs.rvablt', is given by 

O . .- P(/3) (11.5)
ite E ce 

Once ag ian, the last equality gives the scaling. VThe deperde:cv f the
 

proton rigidity, :f, on velocity is shown in figure 11.4. 

The measurement the I of a is ;1ccwmpli:shed byof rig..y partic le 

measuring its radius of curvature in a known -agnetic fieid. This -akcs 

use of the relation 

p~. -8r~c 

- ,­ (11.6)
 

where ^ repre;ents the angle between the part ic le's trajectory and t!e 
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magnetic field. The gyroradius, re, is determAined using position 

6ensitive detectors, such as cloud chambers, bubble chambers, -Ult i­

wire proportional counters, spark chambers, emulsions or plastic detectors. 

Spark chambers and mtiltiwire proportional counters have the advantage of 

being compatible with digital readout, while the others (also optical
 

spark charbers) are generally capable of higher spatial resolution.
 

5. C(rer.kpv .piaion. Finally the Cerenkov response (in u-nts 

of the response to a - 1I proton) is given by (Jelley 1958) 

zc t)( Za 21z (f0(11.7) 

The last equality again gives the scaling, and the proton Cerenkov 

response, 1C, is illustrated in figure 11.5.
 

Cer nkov radiation ry be observed by placing a radiator -"th' a 

suitable index of refraction n (depending upon the range of veocO:tel 

one intends to study) i. a diffuse reflecting box. The light emitted 

by the radiator is then observed by photoni ltiplier tubes. Tile do.-inaint 

contribution to the resolution obtained is the statistical process of 

collecting photons and converting them to photoelectrons, wh ich is 

governed by Poissorian statistics. If a Cerenkov responi;e of unity cor­

responds to C photoelectrors, then the cerenkov resolution is giver, by 

Values C " 10 are possible, depending or. experimental details such as 

the thickness of the radiator, efficiency of photon collection, and so on. 

6. Miss Deter.ination. Given observations of some subset of the 

d.­
five observables discussed above (i.e. E, ,VR, P and C), the relevant
 

subset of equations I1.1, II.3, 11.4, 11.5 and 11.7 ray be solved
 



26 

CERENKOV AND
 
GRADIENT VERSUS VELOCITY 

I , ,102 

SCALING: CZ IC 	 ­

d
C
 

I0 - 2 1 I 	 I I 11 _ _I 

0 0.1 0.2 0.3 0.4 0.5 0G 0.7 Q8 0-9 1.0
 

Figure 11.5. 	 The emision of CX rcnkov radiatiov b)y a 
proton and its velocity derivative as 

function; of velocity.
 



27
 

simultaneously for the mass of a particle, together with its charge and
 

velocity. We now consider the question of what is the optimal subset of
 

the observables which one can observe. Suppose, for example, that we
 

have a Be incident on an apparatus with velocity 0 = 0.5. We have
 

shown in figure 11.6 how the analysis might proceed if we measure (for
 
dE
 

example) the observables E, dx and/or R. The appropriate numerical
 

(i.e. observed) values have been substituted into each of equations I1.1,
 

11.3 and 11.4, and the resulting relations solved for the mass, A, as a
 

function of charge and velocity. The results are illustrated in figure
 

11.6 for the particular cases where Z = 3, 4 and 5. Consider first a
 

two parameter analysis utilizing the observables E and R. The various
 

possible results of such an analysis are represented in figure 11.6 by
 

the intersections of E and R curves of the same charge, Z. In particular,
 

the solutions are
 

)= ($17) ( &n d- (11.9) 

for the present case. It is apparent from the above example that a two
 

parameter analysis sometimes may be sufficient to uniquely determine all
 

three of the unknowns A, Z and R when supplemented with the requirement
 

that the observed particle be one of the known, stable isotopes. In
 

particular, for the present case this immediately rules out the solutions
 
20 5
 

20Li and B. 
The results of a three parameter analysis may, in similar
 

fashion, be represented as the simultaneous intersection of all three of
 

the appropriate curves on a diagram such as figure 11.6. In table II.1,
 

the results of the various possible two parameter analyses involving the
 
dE 

observables E, dLx, R and P have been tabulated for Z = 3, 4 and 5. We
 

have again taken the actual event to be a 10Be of velocity 8 0.5.
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TABLE II.1
 

Results of Various Possible Two Parameter Analyses
 
dE 10B 

Involving E, x and R for Be Event of Velocity = 0.5 

Analysis 
Mode Z A Stability 

dE 
Ex- 3 

4 
5 

21.20 
10.00 
4.85 

0.360 
0.500 
0.650 

Stable 

ExR 3 20.00 0.372
 
4 10.00 0.500 Stable
 
5 5.00 0.642
 

ExP 3 5.30 0.630 Marginal
 
4 10.00 0.500 Stable
 
5 16.45 0.403
 

dE
dxxR 3 22.40 0.360
4 10.00 0.500 Stable
 

5 4.80 0.650
 

dE
 
xP 3 11.10 0.360
 

4 10.00 0.500 Stable
 
5 8.40 0.650 Marginal
 

RxP 3 8.50 0.464 Marginal
 
4 10.00 0.500 Stable
 
5 11.25 0.540 Stable
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Since the event considered would be below Cerenkov threshold, only an
 

upper limit on the velocity (i.e. < 0.67) can be extracted from a
 

Cerenkov measurement. For this reason, the observable C has not been
 

considered in table II.I. From the table, we see that the only reason­

able result (i.e. one yielding a stable particle) of a two parameter
 

dE i0
0Be
 
analysis involving combinations of the observables E, -xand R a 


of velocity 0 = 0.5, as desired. Furthermore, we gain little more than
 

redundancy (which may be useful in the identification and elimination of
 

background) by combining all three of these observables in a three para­

meter analysis. In particular, the degeneracies present in the various
 

possible two parameter analyses (without the stability condition) are not
 

removed by the three parameter analysis unless the measurements are
 

extremely precise. This is readily apparent, both from table II.1 and
 
dE
 

figure 11.6. The two parameter analyses using either E or dx in com­

bination with P result in extraneous solutions which are only marginally
 

rejected (or accepted) by the stability requirement. A three parameter
 

d E
 
analysis using all three of these observables (E, dx and P), however,
 

easily removes the degeneracies (even without the stability condition),
 

dE
 
as opposed to the case where E, dx and R are used. Finally, the two
 

parameter analysis using R and P is the most ambiguous. None of the
 

extraneous solutions with 2 Z 8 generated by this approach can easily be
 

rejected by the stability condition. In this case, a third parameter
 

dE
 
(either E or x) is absolutely essential for the analysis. We may con­

dE

dlude from the above discussion that any combination of E, dx and a is
 

adequate for a two parameter analysis. On the other hand, the combination
 

dE
 
E, xxand P yields the best three parameter analysis. We also note in
 

passing that both of the observables E and R require that a particle be
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stopped in some absorber for their determination. The probability of
 

being able.to do this without having the particle destroyed in a nuclear
 

interaction decreases exponentially as the range of the particle (and
 

also its energy) is increased. As a result, an analysis involving the
 

dE
 
measurement of U- and P (which do not require that a particle be stopped)
 

becomes increasingly attractive. The measurement of Cerenkov response,
 

C, is similarly attractive for velocities above the Cerenkov threshold
 

(i.e. p 2 0.67 for a radiator with n = 1.5).
 

7. Resolution. The above discussion of various analysis schemes
 

for mass determination is essentially independent of the resolutions
 

obtainable or other technological constraints. We now consider the
 

resolution with which it is desirable to measure the various observable
 

parameters in order to achieve isotopic separation. Consider, for example,
 

a mass distribution of the form
 

20'- r[-(23 (11.10) 

This represents the result of measuring two neighboring isotopes (of
 

masses A, = 0 and A2 = 1) with abundances in the ratio k:l, respectively,
 

with a mass resolution given by 9" For the purposes of this discussion,
 

the mass scale is arbitrary to within a constant, i.e. the isotopes
 

could as well be of masses A1 = 9 and A2 = 10, in which case one'need
 

only make the substitution A - A-9. The condition for the existence of 

an extremum (peak or valley) in this distribution at A = Ao is 

If we choose k = 2 (which is approximately what we expect for the case
 

of cosmic ray 9Be and lOBe), the extremum location, A,, is related to
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the resolution, a, as shown in figure 11.7. In this figure, the value
 

of the distribution function at the extremum (i.e. the height of the
 

peak or valley) is also indicated. For example, consider the case where
 

= 0.5. From figure 11.7, we see that there is only one extremum (at 

A. = 0.085) in this case, which must correspond to the major (A1 = 0) 

peak. The minor (A2 = 1) peak is apparently lost in the tail of its 

neighbor. If we now improve the resolution to a = 0.3, there are three 

solutions to equation II.11. These are at A. = 0.005 (the major peak), 

A0 = 0.599 (the valley) and A0 = 0.991 (the minor peak). We also see 

that the height of the distribution is f(0.005) = 2, f(0.559) = 0.674 and 

f (0.991) = 1.10 at the major peak, valley and minor peak, respectively. 

The condition on the mass resolution for the appearance of a
 

valley between the two distributions is a7 0.35 in the particular case
 

where k = 2, as may readily be seen from figure 11.7. This result may be
 

generalized to arbitrary k by writing a : Ccrit' where acrit represents
 

a maximum of the function a(A0 ) defined by equation II.11. Again, this
 

is readily apparent from figure 11.7. For the general case, we thus
 

require
 

ra ( (A 0 ± (11.12) 

where the second equality is merely a restatement of equation II.11.
 

From equation 11.12, we see that a knowledge of any one of the three 

parameters k, A, and a crit defines the other two. In particular, the 

dependence of acrt on k is shown in figure 11.8. This figure shows 

how the requirement on the resolution for the appearance of a valley 

becomes more strict as the relative abundance of the minor isotope 
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(e.g. 10Be) is decreased.
 

We emphasize that the existence of a valley between two neighbor­

ing isotopes in a mass distribution is only one of many possible defin­

itions of the critical resolution required to "separate" the two isotopes.
 

One may even rely completely on deconvqlution techniques in which case the
 

"separation" criterion 
is on the accuracy to which one knows the resolution
 

and indeed the shape of the mass distribution, rather than on the magni­

tude of the resolution itself.
 

In order to estimate the resolution obtainable by the various 

analyses described above, we formalize equations II., 11.3, 11.4, 11.5 

and II.7 as follows: 

0Z 0P (11.13) 

A 
Here O. represents the observed value of a given observable, while zOi(B) 

gives its functional dependence on Z, A and p. For example for the 

observable E, we have
 

OE =(11.14) 

and 

A0 (11.15) 

Equation 111.13 may be solved for the mass, A.(p), as a function of 0.,
 

Z and p. The functions As(p), AdE(R) and AR(B) are shown in figure 11.6
 

for the particular case where the observed particle is a Be of velocity B
 

0.5. Expanding Ai(D) to first order in $ about poi, we have
 

(11.16)
0 
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where b$,o represents the velocity derivative of A.(B) evaluated at B = 

5oi . We proceed with a two parameter analysis as described in the 

previous section by writing equation 11.16 again for a second observable 

j j i. Solving for the mass, we then obtain the result 

A d, (11.17) 

where we have put 00 = 00i = Boj" The uncertainty in the result of the 

two parameter analysis as given by equation 11.17 enters through the 

dependences of the functions Ai(O) and A (B) on the observations0. and 

O, respectively. In particular, if we let o be the velocity correspond­

ing to A so that A = Ai() = A.(o), then the uncertainty, CA, in the 

mass determination, A, is given by 

S= [ i-t j(11.1) 

where
 

defines the mass resolution scale factor, and ai denotes the resolution
 

of the observation 2i . In order to interpret the scale factors, assume
 

both parameters contribute equally to the resolution in equation 11.18.
 

In this case, the condition for the existence of a valley between two
 

neighboring mass distributions is given by
 

trrC~kt(11.20) c I ~ 

http:C~kt(11.20
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where acrit is defined by equation 11.12. In the particular case where
 

the abundances of the two isotopes are in the ratio 2:1 (i.e. k = 2),
 

this reduces to
 

q7 < 0.2 A-. M J -4(11.21)
 

max
 
The ai are listed in table 11.2 for the various possible observables
 

10
 
and analyses, again for the particular case of a Be with velocity = 

0.5. We also recall that this table strictly applies only to the case
 

where k = 9Be/ 10Be = 2, and both observables in a two parameter analysis
 

contribute equally to the uncertainty in the resultant mass.
 

C. The Experiment
 

1. 	Specialization to ExR. We chose to do an experiment measur­
dE
 

ing the observables E, dx and R which utilized the existing technology
 

in large area scintillation counters at our laboratory. The measurement
 

of range was to be the unique feature of th experiment. This was accom­

plished by stopping particles in a stack of relatively thin scintillation
 

dE
 
counters, which then provided multiple measurements of both x and E as
 

functions of the residual range of the particle. The result is a redun­

dancy of mass detrminations, which may then be used for the identifi­

cation and removal of background. In the remainder of this section, we
 

will specialize the discussion of section B to an experiment of the
 
dE
 

multiple x x E x R variety.
 

In figure 11.9, the energy of a proton is given directly as a
 

function of its range. Curves corresponding to other particle species
 

will have the same (log-log) shape, only offset in both R and E according
 

to the scaling laws given by equations II.1 and 11.4. It is apparent
 

from the figure that, over a considerable range (up 
to R a 100 g cm2
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TABLE 11. 2 

Resolution Required to Resolve a 10Be 

of 

Velocity 0.5 in a Two Parameter Analysis 

Auxiliary 
Observable E 

Primary Observable 

dE 
dx R P 

E 

A l 

dx 

----

2 .3 % 

1.7% 

---­

1.7% 

2 .3 % 

1.3% 

2 .5 % 

R 1.0% 1.0% 1.8% 

P 2.3% 3.3% 5.8% ---­
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the relation
 

= . 3Z (- g2 
aa.3jj~2(IK~~n~2I''(11.22) 

is an adequate approximation to the range energy relation. Solving for
 

the mass, A, in terms of R, E and Z, one has the result 

~A= ((zxk~&ge~r2)(11.23) 

The resolution of the mass determination is then given by
 

I/.6 j i- - r /- (11.24) 

This reduces to
 

\O.76Q/ Tt 4. 

for the particular case of a Be with velocity p = 0.5. This is in 

agreement with the result given by equation 11.18. Equation 11.24, 

however, applies to particles of arbitrary Z, A and B. It is apparent­

from this result that an experiment of the E x R variety has the poorest 

resolution for the heaviest isotope at the lowest energy.
 

2. Range Resolution. From equation 11.24, we estirmate that the 

range must be resolved to within - 2% in order to clearly resolve the 

isotope 10Be (as defined by equation 11.21). Thus if we take the 

resolution to be aR 1 g cm"2 (i.e. the thickness of a thin scintillator), 

we conclude that 10Be can only be resolved for R o 50 g cm"2 . Clearly, 

we must do better by at least an order of-magnitude if this approach is
 

to be feasible (e.g. the mean free path of 10Be against nuclear inter­

http:ge~r2)(11.23
http:aa.3jj~2(IK~~n~2I''(11.22


actions in scintillator is - 22 g cm- 2). Thus, we are required to 

tesolve the range to much less than the thickness of a single scintil­

lator. A simple solution is to use the known range energy relation
 

(i.e. see figure 11.9) to deduce the range in the last detector pene­

trated from the energy deposited. If we approximate the range energy
 

relation by equation 11.22, then
 

(11.26)
(. 0 


where Hlast is the-pulse height (in ReV) in the last detector penetrated. 

This, however, requires an a priori knowledge of A and Z. This problem 

may be circumvented by writing equation 11.26 again for the range in 

the last two detectors penetrated:
 

4zzxf'en2/tvW 4.7t
-I-jTut -I (11.27)
 

Here Tlast-l is the thickness of the next to last detector penetrated,
 

and 0 is the zenith angle at which the particle is incident. Equations
 

11.26 and 11.27 may then be solved to give the result
 

Sea0- 4 s- ).?~ (11.28) 

which depends only on the pulse heights in the last two detectors, the
 

expon&nt of the range energy relation, tha thickness of the next to last
 

detector and the zenith angle, all of which are observable. The problem
 

is, then, apparently solved, as the range resolution has been consider­

ably improved.
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3. Scintillator Saturation. There is yet another effect which
 

nmst be considered, namely, the saturation of the response of the scintil­

lation counters used. This has two effects. In the first place, the
 

response of a scintillator is now a nonlinear function of the energy
 

deposited, as well as Z and A. Although the effect is not completely
 

understood in a quantitative sense, it does seem possible to conclude
 

dL
 
that the saturation of scintillator response (i.e. -) depends only on
 

Z and 0, and not on mass. The detailed form of this dependence, however,
 

must be measured for each specific application. This may be done by
 

using an accelerator for extensive calibrations. Alternatively, it may
 

be accomplished (with less precision) by using in flight data. The
 

latter possibility relies on particles known to stop near detector
 

boundaries, for which the range is well known. The second effect of the
 

scintillator saturation concerns our ability to estimate the range in the
 

last detector. One may hope that an assumption of a power law response
 

is still approximately valid, in which case equation 11.22 (with adjusted
 

parameters) may still be applied, perhaps in an iterative fashion. There
 

is some hope for this since the saturation is expected to be a relatively
 

small effect for the particles of interest (i.e. particles of low charge,
 

i0
 
and in particular, Be). However, the exact effect of scintillator
 

saturation is not known a priori, and the calibration may be required.
 

4. 	Additional Considerations. Yet another factor which should
 

' 
be considered is the requirement to obtain a statistically significant
 

result. As an example, consider 'an isotope such as 10Be. The differ­

ential flux of this isotope is expected to be - 5 x 10-5 particles
 

m-2ster-lsec -I (MeV/nuc)-1 (Tsao et al. 1973). Assuming an exposure
 

time of 24 hours and an energy window of - 400 MeV/nuc in which the
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experiment is sensitive, we expect to observe roughly 1700 G particles, 

where G is the geometrical factor of the experiment in m2 ster. Even 

with a geometrical factor G = 0.25 m2 ster (which is the largest we can 

attain using the available gondola), we expect only - 425 10Be, even 

before considering losses due to nuclear interactions, dead time and so 

on. Clearly these effects will be important, so that we should make
 

every effort to maximize the geometrical factor. Finally, a constraint
 

on the upper limit was set by the requirement to utilize existing hard­

ware wherever possible, including certain detectors, pulse height
 

analyzers and the gondola.
 

5. Description of Experiment. To summarize the preceding dis­

cussion, the experiment was designed to operate in a multiple dE- x E x R
 

mode in order to maximize its isotopic separation. The heart of the
 

experiment consists of a stack of scintillation counters with which it is
 

possible to determine the range of a particle and also to test for back­

ground by consistency checks.
 

a. Overview
 

The physical layout of the experiment is illustrated
 

schematically in figure II.10. Briefly, it consists of a thin trigger
 

scintillator, Dl, followed immediately by a Cerenkov radiator, D2. This
 

is followed by a spark chamber, which was used to define particle tra­

jectories through the experiment. This was especially important for the
 

identification of stopping particles, the determination of particle
 

ranges from their normal projections, and mapping of positioiial variations
 

in the responses of the various detectors. The spark chamber is followed
 

by the totally active stack of 12 scintillation counters, D3-14, which
 

comprised the heart of the experiment. These allowed multiple measure­
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ments of E and dx as functions of R for each event analyzed. The final
 

element, D15, is a penetration counter, and gives only a "yes" or "no"
 

output. The scintillators are all made of Pilot Y, chosen for its good
 

response to heavily ionizing particles.
 

b. Testing and Checkout of Detectors
 

Each detector assembly (consisting of scintillator, light
 

pipes, photomultiplier tubes and pre-amplifiers) was evaluated in a
 

light tight box using muons and a lIC, P 238 alpha source. For the
 

scintillators, commercial amplifiers, pulse height analyzers and high
 

voltage supplies were used for these tests; in general, the high voltage
 

was set to levels well above the flight values. For the Cerenkov
 

detector, the flight amplifier and high voltage supplies were also
 

incorporated in the checkout; after balancing, the photomultiplier high
 

voltage levels were fixed and not changed for the flight. The general
 

procedure of the evaluation was first to infer the response per photo­

electron of the system from the location, V , and full width at half
 

maximum, W,, of the peak from the alpha source, assuming purely Poisson
 

statistics. The most probable number of photoelectrons produced for
 

each muon, Npe, was then deduced from the location of the muon peak,
 

V ,relative to the alpha peak:
 

I 

The procedure was similar for the Cerenkov detector, except that a
 

0.003aC, Am24 1 alpha source embedded in a NaI scintillator was used as
 

a light source. The general results of the preflight checkout are given
 

in table 11.3, together with other miscellaneous data pertaining to the
 

various detectors.
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c. Detailed Description of Detectors
 

The DI scintillator was included primarily for triggering
 

purposes. Its size was made significantly larger than the other scintil­

lators in order to increase the effective geometry of the scintillator-


Cerenkov telescope (DI-3) for measuring the charge composition of non­

stopping particles. Because of this large size, it was occasionally
 

possible to trigger the experiment with particles which did not pass
 

through the spark chamber, which was only 50.8 cm x 50.8 cm. Such events
 

were discarded in the analysis.- The DI scintillator was made as thin as
 

possible (0.635 cm) in order to minimize the amount of matter above the
 

totally active stack of scintillators, D3-14. This was balanced with the
 

necessity to have a reasonable level of resolution (dominated by Landau
 

fluctuations) for triggering the experiment.
 

The Cerenkov radiator, D2, is a sheet of acrylic plastic
 

1/2" thick. It is enclosed in a box painted with diffuse reflecting
 

white paint, and viewed through the sides of the box.
 

The Cerenkov detector is followed by a digitized-spark chamber
 

consisting of eight decks 1.27 cm apart (Ehrmann et al., 1967). Each deck
 

consisted of one x and one y plane of 200 wires each. The wires, spaced
 

0.254 cm apart, where threaded through magnetic cores whose-polarity
 

could be reversed by a current pulse in the wire. The set cores were
 

read out using the pulse induced in a second wire when the cores were
 

reset through a third wire. The spark chamber was used to determine the
 

pathlength of a particle in a given detector, to correct the data for
 

positional variations in the response and thickness of the detectors,
 

and also to predict the point at which a particle would exit from the
 

,totally active stack, D3-14, assuming it did not stop. The latter was
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essential in determining whether or not a given particle had actually
 

stopped in the experiment. The spark chamber was also useful in reject­

ing background, which appeared as multiple tracks (Arens et al. 1974);
 

events which gave no track were also discarded. Both the spark chamber
 

windows and the Cerenkov light diffusion box were constructed of aluminum
 

sheets 0.124 g/cm 2 thick.
 

The D3 scintillator is primarily a trigger scintillator. How­

ever, it also serves as the first element of the totally active stack of
 

scintillators D3-14, and is especially useful for particles of low energy
 

which do not penetrate very far into the stack. Its size is the same as
 

the active area of the spark chamber, and thus is somewhat smaller than
 

the other scintillators. This helped the experiment to trigger on
 

particles which had actually passed through the spark chamber. D3 was
 

made fairly thin in order to maximize the number of detectors penetrated
 

by low energy particles before stopping, thus maximizing the information
 

available for the analysis. The limiting factor is again the role of
 

statistical fluctuations, together with the physical requirement that
 

the experiment should not have large gaps of empty space between detectors
 

(which would drastically decrease the geometric factor).
 

The three thin scintillators, D4-6, are slightly thicker than
 

D3 in order to minimize empty space between detectors; However, they are
 

still sufficiently thin to give multiple data points for low energy
 

particles. D4r6 have dimensions somewhat larger than D3 in order to
 

increase the geometric factor as much as possible within the limitations
 

imposed by the size of the spark chamber, which is fixed.
 

The thick scintillators, D7-14, are intended to extend the
 

sensitivity of the instrument to higher energy particles. Although
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detectors D7-14 are much thicker than the other scintillators, they are
 

ptill sufficiently thin to provide significant information in the critical
 

dE

region near the end of a particle's range where dx is rapidly changing.
 

The anticoincidence scintillator, D15, is .included to give
 

some indication of whether or not a particle has stopped in D14; without
 

it, D14 is reduced to an anticoincidence scintillator for D13. Particles
 

were defined to have stopped in D14 if, and only if, their trajectories

-J 

passed through DI5 and D1S gave no response.
 

d. Light Pipes
 

There are two types of light pipe used in the experiment.
 

Adiabatic,, plastic finger light pipes were used with D1 and D3 in order
 

to maximize light collection efficiency for these two very thin scintil­

lators. For D4-14, triangular light pipes were used. Their shapes were
 

determined by connecting the edge face of a given scintillator to a
 

rectangle 7.62 cm high (determined by the diameters of the photomultiplier
 

faces) by four planar surfaces. They were made as long as~possible
 

(within the constraint that they fit into the gondola) in order to max­

imize their efficiency. They were of two general types, as described.in
 

table 11.3. Each type was compared with the adiabatic light pipes and
 

found to have about half the collection efficiency of the adiabatic
 

pipes. On-the other hand they were much less costly to construct. The
 

main problem connected with the use of these light pipes was a rapid
 

variation in collection efficiency near the junction of the two pipes,
 

which was .corrected in the data reduction. These light pipes also
 

resulted in some problems during the balancing of the photomultiplier
 

high voltages due to geometrical asymmetries present in the design.
 

e.. Coincidence Requirements
 

http:described.in
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A schematic of the logic used in triggering the experiment is
 

shown in figure II.11. As can be seen, the experiment was designed to
 

trigger in four separate modes: the isotope mode (for stopping particles),
 

the Cerenkov mode (for heavy particles penetrating Dl-3), the penetrating
 

mode (for events to be used in mapping positional and temporal variations
 

in detector response) and the calibration mode (for use in normalizing
 

the responses of the various detectors). The criteria required for
 

triggering in each of these modes are given in table 11.4.
 

Most events triggered the experiment in the isotope mode. This
 

was the primary triggering mode for the experiment, and was intended to
 

detect particles heavier than helium which stopped in the experiment.
 

Since ionization energy loss decreases with increasing range, this mode
 

was designed to require lower thresholds on DI for particles of longer
 

ranges. These thresholds were set to reject He (which would otherwise
 

have swamped the experiment) while accepting as much Li as possible,
 

with no rejection of Be.
 

Of the other modes, the Cerenkov mode was intended as a separate
 

experiment to measure the charge composition using detectors DI-3, while
 

the penetrating and calibration modes were intended to provide calibration
 

data for calibrating the various data and removing systematic errors. The
 

calibration mode failed to operate properly in the experiment, and so
 

provided no useful information.
 

f. Pulse Height Analysis
 

There were two types of pulse height analyzers used in the 

experiment. All used automatic gain switching in order to obtain the 

required dynamic range of - 105 . Detectors D4-14 each had two 256 chan­

nel analyzers with synchronous clocks and three gain ranges each. The
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gain ranges of the two pulse height analyzers on a given detector were
 

overlapping, thus permitting an accurate calibration of gain factors
 

and zero offset from in flight data. DI-3 used 1024 channel analyzers
 

with asynchronous clocks and four gain ranges each. D3 also was analyzed
 

by a 256 channel analyzer, which was included primarily for-the extra
 

thresholds it provided for triggering purposes; however, it also served
 

as a partial check on the 1024 channel analyzer. A schematic diagram
 

of the pulse height analysis strategy is given in figure 11.12.
 

6. Flight. The experiment was flown by balloon from Thompson,
 

Canada, on August 15, 1973, at 5:04 a.m, local time. Data was received
 

at Thompson and Ft. McMurray. The payload floated at altitudes between
 

-2
 
3.5 and 5 g cm residual atmosphere for - 22 hours and was cut down at 

7:00 a.m. on August 16.
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CHAPTER III
 

DATA-ANALYSIS
 

A. Formulation of Response
 

The differential response of detector i to a particle of charge
 

Z. mass A and velocity is given by the relation
 

Ot~ A L (111.1)(Ajt A(( 

where the factor M describes the variation in response with position
 

dL

(ri) and time (t) for detector i, and U represents the efficiency with
 

which energy lost by the particle in detector i is converted to signal.
 

Here it is assumed that the systematic variations in response with time
 

and position in a detector (represented by 1i) may be separated from the
 

dependence on parameters (i.e. Z, A and $) which characterize the particle
 

dL
 
itself. We will also assume that K is independent of mass and detector
 

number. Although this latter assumption (namely, independence of
 

detector number) is not justified on a broad scale, it is a satisfactory
 

approximation for the particles of charge 4 Z 7 with which we will be
 

exclusively concerned in this thesis, as will be shown later. Finally,
 

since the detectors are in general quite thin with respect to their
 

horizontal dimensions, any dependence of M i on ri • ez (and consequently
 

also on the zenith and azimuthal angles, a and 0, respectively) can be
 

neglected. If R. is the particle's range (as measured from the top face
 

of detector i), then the pulse height measured by the detector is
 

(111.2)
-RALR P 

L-TLsc 

wnere T.(r ) - Ti(. i) gives the detector thickness as a function of 

55,
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position, 1ri, in its central horizontal plane. For a relativistic
 

particle, this becomes
 

N~.yV-*ISz a4~TEAe IdL( (111.3) 

which is the basic relation used for calibration and mapping of position­

al and temporal variations.
 

The response of the Cerenkov detector may be characterized in a
 

similar fashion. The differential response is given by
 

a =rtC- (111.4) 

with
 

ACS (4132 (111.5)
-f 


for a Cerenkov radiator with index of refraction,n . Analogous to the
 

case for scintillators, we have
 

-, 
H2 =' -t LR (i.6) 

and
 

H;&-n) Zz 2 Lt (111.7) 

The pulse heights, Hi, are of course statistical quantities. As such
 

they are characterized by distribution functions rather than unique
 

values. These distribution functions are determined by both physical
 

and instrumental factors. For example, important contributions come
 

from Landau fluctuations in the production of delta rays and Poisson
 

fluctuations in the conversion of scintillator light to photoelectrons
 

in the photonultiplier. All distribution functions are (for convenience,
 



57 

and unless otherwise noted) approximated by Gaussian distribution with
 

widths characterized by their standard deviation, a. Furthermore, these
 

distributions are all assumed to be statistically independent (again,
 

unless otherwise-noted).-


A
 
The pulse height zHi(8) represents the signal (light) observed in
 

detector i by a particle of charge Z, mass A and velocity 0 at the top
 

of the detector. Because of the large dynamic range required (typically
 

105), this was analyzed by a pulse height analyzer with dynamic gain 

switching. There were two types of pulse height analyzer used: D4-14 

were each analyzed by two 256 channel-analyzers using three gain ranges 

each, while DI-3 were analyzed by 1024 channel analyzers using four gain 

ranges each; D3 was also analyzed by a 256 channel analyzer. Since each 

gain range can be regarded as a separate pulse height analyzer with its 

own gain and zero offset; the pulse heights H are related to the raw 

channel numbers, Hij, (where j denotes the gain range) according to 

H;(1.8) 

The determination of the ai and bij is discussed in detail in Appendix A, 

and so will only be briefly sketched here. The aij and bij were all 

determined by terms of ail and bil by use of the overlapping gain ranges, 


of the two different pulse height analyzers analyzing a given detector.
 

In cases where there was only one pulse height analyzer, bij = 0 was
 

assumed, and the aij were determined in terms of a, by comparing the
 

cut-out channel of a given gain range with the cut-in channel of the next
 

gain range (these should both correspond-to the same pulse height).
 

Alternatively, when two pulse height analyzers analyzed the same detector,
 

both the aij and bij could be determined in terms of the al and bil by
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plotting one pulse height analyzer against the other. Next, the ail and
 

bil were all determined in terms of a41 and b41 using semirelativistic
 

particles (i.e. particles incapable of producing knock-on electrons of
 

long range which might couple one detector to another, yet sufficiently
 

fast that they did not slow down significantly in traversing a detector).
 

Finally, b4 1 = 0 was assumed, and a41 was determined to give reasonable
 

2
pulse heights for relativistic particles (i.e. -. in x minimum units).
 

In addition to the pulse height analyzer gain and zero offset
 

factors (aij and bij), the factor Mi (which describes positional and
 

temporal variations in response) must also be determined. Mi(7i,t) has
 

been assumed to be separable:
 

MrZ ,±Z) 4. 02 ..1± (111.9) 

P 
Here the mapping function, M., depends only on position and the drift
 

1?P T1
function, I., depends only on time. Both M. and M are normalized to
 
P
 

unity in order to preserve detector normalizations. The functions 14.
 

and Ij were determined by observing variations in detector response to
 

relativistic C and 0 nuclei. was approximated by an Ilxll polynomial
 

T 
with the 121 coefficients determined by a maximum likelihood fit. M,
 

on the other hand, was approximated by the least squares spline technique
 

(Thompson 1973).
 

Finally it was necessary to know the thicknesses of the various
 

detectors as a function of position. This was accomplished by caliper
 

measurements of each detector on a 5 cm grid.
 

B. Preliminary Selections
 

In the preceding section, the reduction of the raw data to a form
 

essentially independent of the idiosyncracies of this particular experiment
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has been discussed. The data must now be analyzed in a manner capable of
 

achieving elemental and isotopic resolution. This has been approached
 

in different ways for various subsets of the dataf For very high energy
 

events (E b 570 MeV/nuc), only the elemental abundances have been derived
 

using a Cerenkov versus scintillator analysis based on detectors DI-3.
 

The elemental abundances resulting from this analysis are shown in
 

figure III.1. Events which stop in D3-14, and yet are above the Cerenkov
 

counter threshold (i.e. 5 b 0.67) are subjected to an isotopic analysis
 

based on the Cerenkov and range measurements. This has the unique
 

advantage of not requiring the determination of any peculier response
 

functions--the interdependence of Cerenkov response and the range of a
 

particle are well known. This approach is particularly effective for the
 

heavier particles with Z b 8. Finally, particles which stop in D3-14 and
 

have 4 Zf7 have been subjected to a light versus range analysis. The
 

restriction on the charge of the particles analyzed is imposed by trig­

gering thresholds from below, and from above by the non-uniform response
 

functions of the Pilot Y scintillators used in the experiment. This
 

thesis will be concerned exclusively with this mode of analysis, which is
 

described in detail in section B of the present chapter.
 

The data analysis begins with the isolation of a relevant subset
 

of the data, which is defined by the following criteria.
 

Only events stopping in detectors D5-13 are included in the
 

analysis. A particle is said to have stopped in a given detector if that
 

detector produces the last nonzero pulse height observed and the extra­

polated spark chamber track exits from the stack it a point deeper than
 

halfway through the following detector. Events stopping before D5 suffer
 

from reduced resolution due to the minimal number of detectors penetrated.
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D14, on the other hand, suffers from noise from the spark chamber in one
 

of its pulse height analyzers. In addition, it is not always possible to
 

determine whether a particle has stopped in this detector due to the
 

reduced size of the anticoincidence scintillator, D15.
 

No events producing either no track or more than one track in the
 

spark chamber are included. An acceptable track must include discharges
 

in at least five of the eight spark chamber decks in the x and y views.
 

"Obviously interacting" events were excluded. These were
 

identified by examining the sequence of pulse heights in detectors D3-14.
 

Events with pulse heights more than 15% less than the average of the
 

pulse heights from the preceding two detectors (excluding the Cerenkov,
 

D2) or more than 30% less than the pulse height from the immediately
 

preceding detector were excluded unless the pulse height in question
 

corresponded to the detector in which the particle stopped.
 

Finally, events were discarded in which the pulse heights from
 

two pulse height analyzers analyzing the same detector did not agree to
 

within one channel equivalent of the smaller of the two pulse heights.
 

C. R x L Mode of Analysis
 

The R x L mode of analysis (with which we are exclusively con­

cerned here) is based upon a presentation of the response of the totally
 

active stack of scintillators in terms of the variables Li(total light
 

observed in and after detector i) and R. (range of particle measured
 

from top of detector i). In doing this, the implicit assumption that
 
dL
 

the detectors all have identical response functions, L. has been made
 

in order to allow the interpretation of L. as a simple sum of pulse
 

heights in different detectors. As has been observed previously, this
 

assumption is nor generally valid, and is a suitable approximation only
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over a limited range of incident particles such as that (4 Z 7) with
 

which the present analysis is exclusively concerned. As an example, the
 

responses of the various detectors to relativistic particles of various
 

charges are tabulated in table III.i. Ideally each detector should show
 

the same response to the same incident particle in this table. As can
 

easily be seen, however, this is not the case, and indeed cannot be the
 

case over the entire range of charges for any choice of detector normal­

izations. However, for the restricted range of particles considered
 

here, the effect is 1%. The R x L mode of analysis offers important
 

advantages due to the scaling of the fundamental parameters Li and Ri
 

in mass. It is an intuitively straight forward approach, which still
 

offers the advantages of a multiparameter analysis for testing the
 

internal consistancy of events in order to identify and eliminate back­

ground. The R x L analysis is very similar to the R x E analysis which
 

was discussed in Chapter II. Its fundamental concepts are illustrated
 

9
 
in figure 111.2, which depicts its application to an actual Be event.
 

In figure III.2A, the event is shown incident on the experiment at a
 

zenith angle of 290, and stopping in detector Dl1. The analysis of this
 

event will now be described in detail in the following subsections.
 

1. Estimation of Range. As is shown in the lower half of
 

figure III.2A, one first adds the various pulse heights to obtain several
 

values of Li (one for each detector penetrated) as a function of detector
 

number. Insofar as detector numbers may be related to depth in the stack,
 

this is already a crude R x L representation. As we have seen in
 

Chapter II, however, this estimate must be considerably refined if we
 

are to have isotopic resolution. The refinement of the range estimate
 

obviously depends upon a determination of the range in the last detector
 



TABLE III.1 

Responses of Detectors DI and D3-11 to Relativistic 

Particles of Various Charges,(xMinimum Units) 

DI D3 D4 D5 D6 D7 D8 D9 DI0 DII 

Be 14 15 15 15 15 14 14 14 14 14 

B 22 22 22 22 22 22 22 21 21 22 

C 30 30 30 30 30 30 30 30 30 30 

N 40 40 40 39 39 40 39 39 39 39 

0 50 49 50 50 49 49 49 49 49 49 

Ne 73 70 74 72 72 72 72 72 72 73 

Mg 96 92 97 96 96 95 96 96 97 98 

Si 122 116 125 125 123 120 121 122 122 126 

Fe 324 310 358 368 358 316 349 318 328 338 
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(in which the particle stops), Rlt.l Eve without such an estimate,
 

however, there is a certain subclass of particles for which the range is
 

fairly well known, namely those which stop near detector boundaries.
 

Such particles may be identified by looking for (relatively) very small
 

pulse heights in the last dete~torpenetrated by stopping events, i.e.
 

Liast 0. For such events (depending upon the limits put on Llast)
 

Rlast may be made arbitrarily small and, consequently,,negligible compared
 

to detector thicknesses (which are added to it in the analysis). Of
 

course, the tightness of this selection must be balanced with the
 

statistical weight of the resultant subset of the data. Figure 111.3
 

shows the result of plotting such a subset of the data on what amounts
 

to a rotated In L versus In R plot (i.e. the dependent and independent
 

variables have been chosen as linear combinations of In L and in R such
 

that the response curves are nearly horizontal). As can be seen, the
 

detector response is well approximated by a power law of the form
 

(III.10)
 

where 8 1.3 is a constant, and a(Z,A) does not depend on velocity. By
 

writing this equation again for the next to last detector penetrated, the
 

parameter a(Z,A) may be eliminated. One may then use the relation
 

-± seRtc_ (III.1I) 

to obtain the result
 

I ecO (111.12) 

from which it is possible to estimate the range of a particle in the last
 

detector with no a priori knowledge of its charge or mass. The derivation
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of this relation requires only that the (integral) response of the last
 

two detectors to a given particle be characterized by identical power
 

laws of the form III.10. This assumption appears to be justified at
 

least for 4 Z 7 and
 

Zj, > T 9O (111.13) 

where easy experimental checks are possible (see figure 111.3). For
 

particles of shorter range, this dependence must then be extrapolated.
 

From a strictly mathematical point of view, it is possible to
 

extract some information on the detector response, even for R < T4 .
 

Essentially, this would be done by requiring
 

d I -- T -1sere 
(111.14) 

which is based entirely on observables. This would be useful as a cross
 

check on the reliability of the range estimation procedure. However, both
 

terms in 111.14 are generally larger than their difference, with the result
 

that the accuracy suffers. For this reason, and statistical limitations
 

imposed by the amount of data available, it is not possible to use
 

equation 111.14 to meaningfully extend the checks on equation 111.12.
 

An attempt to compare the predictions of equations 111.14 and 111.12 is
 

shown in figure 111.4.
 

2. Standard Curves. Having determined Rlast to first order, all
 

of the available data may be presented on a diagram similar to that of
 

figure 111.3. This is shown in figure 111.5. From this figure, one sees
 

that there is a very clear separation of the various charges. However,
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mass separation is apparent only for Z s 3 and Be. In particular, the
 

109
 

important isotope, Be, is not clearly separated from 9Be, and the
 

problem gets worse for heavier isotopes. Since the response function
 

dL
 
is independent of the particle mass (A) while depending on both charge
 

dL
 
and velocity, it should be sufficient to determine L for a single isotope
 

of each element, and then extend the result to the remaining isotopes.
 

This will be discussed later in more detail.
 

The standard response functions L(R) are obtained by averaging
 

over the widths of the distributions in figure 1115 along the ordinate.
 

Where at least one isotope of a charge group is clearly separated, only
 

data pertaining to the most abundant such isotope is used. Where no
 

isotope is clearly separated (i.e. for Z ; 5) all of the data for a given
 

element are treated as if pertaining to a single isotope. This does
 

carry with it certain difficulties. For instance, the density of experi­

mental points along a given response line in figure 111.5 is a compli­

cated function of spectral characteristics and the geometry of the
 

telescope. In reality, the vertical contours used to locate the standard
 

response curves are probably not always normal to the gradient in the
 

density of experimental points. It is thus probable that there are
 

small systematic errors in the determination of the standard response
 

curves for elements with significant abundances of more than one unresolved
 

isotope. The effect is most important for B and N (which do not exhibit
 

a single, dominant isotope), and does not apply to Be at all since the
 

Be response curve is based on the well separated 7Be data. Presumably,
 

it can be corrected by an iterative approach if the initial approxi­

mations to the response lines are sufficiently close to reality. However,
 

this has not been attempted in the present analysis.
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The standard response curves which have been adopted are shown
 

in figure 111.5, together with the nominal masses assigned to them. The
 

precise masses to which they correspond will be determined later in the
 

analysis. In the particular case of B, the response curve has been
 

shifted somewhat (according to rules to be developed in the following
 
10
 

section) to correspond more closely to the isotope B. These same
 

standard response curves are presented in figure 111.6 in the form of
 

integral response (saturation) as a function of velocity by use of-the
 

range energy tables. Also shown are the corresponding differential
 

response functions.
 

3. Mass Determination. In order to apply the standard response
 

lines to the data, use is made of two fundamental scaling laws. The
 

first,
 

A Q3 (111.15) 

is a restatement of equation 11.4, while the second,
 

(111.16)
AC(A)= 'L() 

is analogous to equation II.1. Its validity is equivalent to the assump­

dL
 
tion that the differential scintillator response function, dE is independ­

ent of the mass of the ionizing particle (see equation 11.3). This is
 

reasonable, at least to first order, since the medium sees only the
 

charge of the incident particle. For Coulomb collisions with atomic
 

electrons, the mass of the projectile (assumed to be an atomic nucleus)
 

is relatively very large and does not significantly affect the energy
 

transferred to the knock-on electrons or the number of collisions per
 

unit pathlength which are the two fundamental parameters involved in the
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problem (Rossi 1952). The most plausible objection to this scaling would
 

be to note that saturation (i.e. the departure from unity of the scintil­

dL
 
lator response, J, is a macroscopic phenomenon (which is not well under­

stood) rather than a microscopic one (Meyer et al. 1962). The suggestion
 

is then that one should take account of the fact that a particle of smaller
 

mass slows down more in traversing a macroscopic distance (- the dimension
 

of a "typical luminescense center") than one of greater mass and identical
 

initial velocity. Thus the lighter particle will deposit slightly more
 

energy and the scintillator response may be more highly saturated.
 

Essentially, the condition for this effect to be negligible and the
 

scaling given by equation 111.16 to hold is
 

<< 
IL d ) > 

(111.17) 

where the second inequality results from the power law approximation to
 

the range energy relation (equation 11.22) and the response curves given
 

in figure 111.6. As an upper limit, we may take g to be a character­

istic dimension for luminescence centers. A better upper limit, g', would
 

be the magnitude of the range discrepancy which develops when two particles,
 

of the same charge and velocity but differing mass, traverse a distance
 

equivalent to the characteristic dimension of a luminescence center, g:
 

o) - WO.1) 

Here 01 and 02 are given by
 

It=A,P_, lR1 - (111.19) 
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and P. is the initial velocity of both particles. In any case, the
 

inequality 111.17 is easily satisfied for any realistic values of the
 

relevant parameters. A more detailed experimental and theoretical invest­

igation of the phenomenon of scintillator saturation has been given by
 

Taylor et al. (1951), Meyer et al. (1962), Katz et al. (1968), Kobetich
 

et al. (1968).
 

The analysis now proceeds to figure III.2B. Using, the scaling
 

law given by equations II.15 and 111.16, we obtain
 

t~Rg) .ny(() tt( A' (111.20)
-

Similarly,
 

Lv) o (11.21 

Thus, on the log log plot of figure III.2B, the curve corresponding to
 

variable mass with fixed charge and velocity is a straight line of slope
 

1. Furthermore, the distance between an experimental point (mass A) and
 

the standard response line (characterized by mass As) along such a (slope
 

A
 
1) curve is just /21n As In this way, a mass can be defined for each
 

experimental point. This, of course, depends upon a priori knowledge of
 

the charge of the particle; however, as is apparent from figure 111.5,
 

the charge determination is straight forward. Should the charge not be
 

well defined, one would simply compute a mass for each possible charge,
 

then select the charge for which the various mass estimates are most
 

consistent. Finally, since the points (Llast' Rlast) and (Llast-l,
 

Rlast1 ) have already been used to define the residual range in the last
 

detector, they can provide only one unique estimate of the mass. The
 

results of the analysis just described for the event considered in figure
 

111.2 are shown in figure III.2C.
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The best estimate of the mass is taken as that corresponding to
 

the maximum range, namely A3 . This is reasonable since, in general, the
 

point (Li,Ri) contains all the information contained in Li_l, Ri_l) plus
 

a contribution from detector i. As one goes to longer and longer ranges,
 

the increase in precision due to additional detectors penetrated decreases.
 

In other words, the most important detectors in determining the mass of a
 

particle are the ones nearest the end of its range. This especially
 
dL
 

stands out when one chooses to analyze in a multiple versus (R or L)
 

dL
 
mode; where - must be measured as close as possible to the end of a 

particle's range. The mass estimates A4 , . . Aast are used only to 

test the internal consistency of the event or, in other words, to look 

for background. 

4. Rejection of Background. One would expect the Ai to approach
 

A3 in the manner of a convergent series as detector number, i, decreases.
 

This follows since, as range is increased, each new detector added con­

tributes a smaller fraction of the total light, L. Such a behavior is
 

seen, for example, in -figure III.2C. If we suppose that the Ai are dis­

tributed about A3 with a Gaussian distribution, then we can compute the
 

variance of the Ai, var(A) = 2, where a is a number characteristic of
 

the width of the distribution. However, for background events, one
 

expects relatively large excursions of the Ai since the particle has
 

changed its mass (and possibly also its charge) at some point in the
 

experiment. These excursions should be reflected in abnormally large
 

values of the var(A) parameter. In figure 111.7, a frequency distri­

bution of the var(A) parameter for Be events is shown. From this figure
 

a test given by
 

V'rfl$ 0.10 (A. (111.22)
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Figure 11.7. Distribution of mass variance for Be events.
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has been defined in order to select non-interacting events. Events which
 

fail this test are identified as background and discarded. The scaling
 

with mass of the selection threshold given by equation 111.22 can be sup­

ported on both analytical and observational grounds; this justification
 

will be discussed in detail when the mass resolution is considered in
 

section III.D. The effectiveness of the criterion ii.22 in removing
 

background events is readily seen by a comparison of figures 111.8 and
 

111.5.
 

5. Observed Isotopic Composition. The mass histograms resulting
 

from the analysis just described are displayed in figure 111.9. Also
 

shown are equivalent histograms for events which were rejected by the
 

var(A) criterion, 111.22, as background. It is to be noted that, in most
 

cases, the background level is quite flat; for the one notable exception
 

(C), the background peak is at a distinctly different mass than the non­

background peak. As may be seen from the figure, the percentage of events
 

rejected decreases as mass increases. One would expect the opposite
 

behavior, if anything, since the total inelastic cross section increases
 

with A. This observation is taken as an indication of the increased
 

efficiency of the initial selections on the data in removing background.
 

In particular, the requirement that the scintillator pulse heights be
 

(within specified limits and excluding the detector in which a particle
 

stops) a monotonically increasing function of detector number is con­

sidered to be responsible for this effect.
 

The mass distribution for each element has been fitted using the
 

maximum likelihood method. In doing this, the mass distribution cor­

responding to a single isotope of mass A and charge Z is assumed to be a
 

simple Gaussian:
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w)7 O (111.23) 

where A is the actual isotopic mass and A' represents the observation.
 

A
 
Furthermore, the widths of the mass distributions, Zu, for different
 

isotopes of the same element are assumed to scale as the mass:
 

AS q (111.24) 

This is equivalent to the scaling (equation 111.22) of the background
 

2
 
mass variance threshold with A . The justification for both of these
 

assumptions will be discussed later in section III.D. Finally, it will
 

be recalled that the analysis only yields the mass of a particle relative
 

to that corresponding to the standard response line for a given element,
 

As . It is therefore convenient to include As as a free parameter in the
 

fit, especially for elements where no isotope was clearly separated.
 

The parameters which are varied in the maximum likelihood fit for a
 

given element are, then, the mass corresponding to the standard response
 

As
 
curve, As, the characteristic resolution, Z a, and the abundances of the
 

A
 
various allowed isotopes, zNtot. The best fits to the various distri­

butions are indicated by smooth curves in figure 111.9. The best fit
 

parameters are listed in table 111.2, together with the statistical
 

errors (standard deviations) assigned by the maximum likelihood method.
 

These error estimates include the effects of correlations among the
 

various free parameters in the fit.
 

In order to improve the convergence of the maximum likelihood
 

fit to the mass distribution to nitrogen, a second analysis has been
 

14
 
performed in which the value of f was fixed. The precise value used
 



TABLE 111.2. Maximum Likelihood Best Fit Parameters. Uncertainty estimates
 
are based on the assumption of Gaussian likelihood distributions.
 
The subscript S refers to the standard response curves shown in
 
figures 111.4 and 111.5.
 

Beryllium Boron 	 Carbon Nitrogen Nitrogen
 

As = 7.88+0.04 As = 9.75+0.01 As = 12.12+0.01 	 14.47+0.61 A = 14.57+0.19
As 


8 10 6 	 14 14

40 = 0.38+0.13 0 = 042_+0.14 1 = 0.60+0.02 4 = 0.74+0.08 a4 = 0.6584 	 f aa =04701 

7N 1 0 12 	 14 14

SNtot = 189 +14 5Ntot = 302 +32 1N = 3301 +60 7Ntt = 464+309 1= 405+75 

9 II 13 ** 15 15
 
4 Ntot = 81+11 5Ntot = 641+36 
 6Ntot = 256 +26 7Ntot = 523+244 Ntot = 525±56 

7 7 

10 12 14 16 16

4Ntot = 34+ 8 5Ntot = 69+18 6Ntot 
= 93±15 7Ntot = 69+ 72 7Ntot = 123+35 

* 	 14
 
Value of 7 fixed using figure 111.9 in order to improve resolution.
 

Uncertainty has been estimated for 13C due to difficulties in taking 2nd derivative of likelihood function.
 

i-h 

http:0.74+0.08
http:0.60+0.02
http:042_+0.14
http:0.38+0.13
http:14.57+0.19
http:14.47+0.61
http:12.12+0.01
http:9.75+0.01
http:7.88+0.04
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14
 

for f has been obtained essentially by generalizing equation 111.24
 

to relate resolutions for isotopes even of different elements. Equation
 

111.24 then becomes similar to the assumed scaling of the variance
 

selection threshold given by equation 111.22. Both analytical and
 

empirical justifications for these assumptions are given in section D,
 

where the mass resolution is considered in detail. In particular,
 

figure III.10 has been used to fix the value of 14 The result of this
7.
 

procedure, given in table 111.2, is apparently a significant improvement
 

in the resolution with which the remaining free parameters are determined.
 

However, it must be born in mind that uncertainties in the fitted para­

14
 
meters resulting from an uncertainty in 7 through correlations will
 

iot be included in the uncertainties estimated by this approach. Never­

theless, these results have been adopted for the remainder of this thesis.
 

In performing the maximum likelihood fits to the mass distributions
 

for the elements B, C and N, it was found that they tended to converge
 

better when allowed to add contributions from unstable nuclei to the
 

mass distributions on the high mass side. The abundances of these isotopes
 

12 16 14
 
(i.e. B, N and C) were generally more than could be explained by
 

production in the atmosphere above the experiment. The most likely
 

cause of such an effect appears to be an asymmetry in the mass distri­

butions for these elements, This can very probably be related in part
 

to the fact that the response curves for these elements were not deter­

mined from data corresponding to a single isotope. In order to estimate
 

the possible magnitude of this effect for Be, we observe that these
 

spurious isotopes are generally - 10% of neighboring abundant isotopes.
 

As applied to 10Be, this would mean a reduction by one standard deviation
 

in the observed abundance. We note that there seems to be no such effect
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in the case of 7Be--in particular, the - 19 8Be we might expect from the
 

above considerations are not observed. For the purposes of further
 

analysis of the data, the spurious isotopes 12B, 14C and 16N have been
 

obsorbed into the observed abundances of the remaining isotopes of B, C
 

and N, respectively, in such a manner as to preserve the fractional
 

isotopic abundances within each element.
 

D. Consideration of Mass Resolution
 

1. Contributing Factors. The mass resolutions achieved in the 

mass distributions of figure 111.7 are estimated in table 111.2. It 

is readily apparent that only the isotope 7Be has been clearly separated, 

and this only by virtue of the absence of 8Be. In particular, we have not 

achieved the goal (a s 0.35 for 10Be) which was set in section III.B.7, 

and consequently do not observe two peaks separated by a valley in the 

mass distribution representing 9Be and lOBe. As may be seen from table 

11.2, this may be traced to the uncertainty in our measurement of the 

total light, which is estimated as - 2% (we require - 1%). This is 

limited by the internormalization of the responses of the various 

detectors, which in turn was limited primarily by the necessity of using
 

semi-relativistic particles and also by response functions which varied
 

from detector to detector. Thus, the primary goal in improving the
 

resolution would be to improve the precision ot the total light measure­

ment through a detailed calibration of the response of each detector.
 

Nevertheless, the resolution which has been obtained is comparable to
 

those of other experiments which have been reported (Webber et al. 1973,
 

Preszler et al. 1975, Garcia-Munoz et al. 1975, 1975a).
 

As a step towards understanding the mass resolution realized in
 

the experiment (e.g. see figure 111.9), various contributions are
 

illustrated in figure III.11. The dominant contribution is from Landau
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fluctuations, which result from the statistics of producing very high
 

energy knock-on electrons and thereby depositing an abnormally large
 

amount of energy in a given detector (e.g. see Rossi 1952). For thin
 

detectors, this effect can cause a distribution of pulse heights in
 

response to a uniform beam of incident particles which is skewed towards
 

high pulse heights. However, for the present considerations, a Gaussian
 

approximation to the Landau distribution is adequate. This is given for
 

scintillation detectors by
 

I IT LC 

G( T12~7 (111.25) 

where T denotes the detector thickness. Equation 111.25 is valid only in
 

the limit where the energy given a single knock-on electron is small in
 

comparison to the total energy lost in a detector, which holds for all
 

cases of interest here. The magnitude of the Landau fluctuations is
 

probably not significantly affected by saturation of the scintillator
 

response, since the fluctuations are attributed to long range delta rays
 

which deposit most of their energy far from the core of intense ionization
 

immediately surrounding the trajectory of the primary particle. However,
 

the magnitude of the effect relative to the observed pulse height will,
 

in general, increase as scintillator saturation is introduced since the
 

pulse height itself is reduced by saturation effects while Landau fluctu­

ations probably are not. The correction to the Landau fluctuations for
 

scintillator saturation effects, derived from figure 111.6, is also
 

indicated in figure IIi.11.
 

A second contribution to the broadening of the mass resolution
 

comes from the Poissonian statistics associated with the fact that only
 

a statistical fraction of the photons produced by the scintillators is
 



87 

actually observed by the photomultiplier tubes. This is formulated in
 

equation 11.2. The photoelectron conversion efficiency shown in figure
 

III.11 has been taken from the preflight calibration of the various
 

detectors (see table 11.3).
 

Of the remaining contributions to the broadening of the mass
 

resolution shown in figure III.11, digitization refers to the round off
 

error due to the digitization of the signal by the pulse height analyzers.
 

For the 256 channel analyzers (with synchronous clocks), this has been
 

approximated by a Gaussian distribution characterized by a standard
 

deviation
 

S(111.26)
 

Estimates of the statistical resolution of the temporal and positional
 

mapping of response variations, our knowledge of detector thicknesses and
 

the resolution of the spark chamber in defining particle trajectories are
 

also indicated in the figure. Not included in the figure is the contri­

bution of detector normalization uncertainties, which are thought to
 

enter at about the 2% level.
 

2. Analytical Analysis of Resolution. After incorporating the
 

scaling laws 111.15 and 111.16 into the power law approximation to the
 

standard response curves (given by equation III.10) one obtains a'general
 

formulation of the detector response, which may then be solved for the
 

ifass: 

A A (111.27) 

Assuming the independence of the parameters L and R, the mass resolution,
 

"CA, may be estimated in terms of the range resolution, CR, and light
 

http:S(111.26
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resolution, aL:
 

(j76 )Z~s t,f(? )t( U~(111.28) 

The assumption that R and L are independent is technically valid only in
 

the limit of long range, where the information used to determine R
 

becomes an insignificant contribution to L. However, the contribution
 

of range to the total uncertainty is normally quite small, as will be
 

seen below. It is then reasonable to use equation 111.28 to estimate
 

the resolution of the mass measurement even for particles of short range.
 

In order to estimate the uncertainty of the range measurement, we
 

rewrite equation 111.12 for the range in the last detector in the form
 

R't= Ts~t -ISe(111.29-1 

where
 

H- HjAt -- t - = (111.30)H10st L&It
 

gives the ratio of light observed in the last two detectors penetrated
 

to that observed in the last detector penetrated. Generally, we have
 

HR b 2; however when the particle stops in the first thick detector, D7,
 

this becomes HR ;b 1.25. If the pulse heights are known to a resolution
 

given by -H then the uncertainty in the range measurement is
 

LH SH (11.31)
XHIL i-1~-

For H R 1.25, the term in brackets is bounded by I and 6 and
R 

equation 111.31 becomes
 

H (111.32)

-U < 

http:U~(111.28
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Finally, by putting
 

k jz (111.33) 

we.obtain
 

'R_ (111.34)
 

The uncertainty in the-determination of the total light, L, is
 

given by
 

( (111.35) 

Substituting the -results given by equations 111.34 and 111.35 into
 

equation 111.28 and factoring out the contribution from the total light,
 

we obtain
 

(T-_:.C -2) , 3 
II 

)at oz4 (111.36) 

1, which is easily
The second-term in brackets is negligible for 8 1 


satisfied for all cases of interest. In particular, 8 = 1.3 for the
 

- 1.8 for a
Pilot Y scintillators used in the present experiment, and 6 


completely non-saturating scintillator (see equation 11.22).. Thus the
 

contribution of range to the total uncertainty in the mass measurement is
 

We then have
in fact negligible, as has already been pointed out. 


TA A__ (111.37)A-= 

For the present case, the scintillators have been estimated to be normal­

ized to within CH - 0.02. Putting 6 = 1.3 and assuming the particle to
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stop in D7, we then have the result
 

(111.38)
h oZ Ao.o 31 

The result given by equation 111.37 supports the assumption that
 

the mass resolution scales as the mass (equation 111.24). It also sup­

ports the related assumption that the mass variance selection threshold
 

used to reject background should scale as mass squared. Essentially,
 

the scaling with mass depends only on the assumption of power law response
 

functions (equation 111.27), and thus is quite generally applicable.
 

The result given by equation 111.37 also gives some idea of the
 

parameters one might try to optimize in attempting to design a similar
 

experiment with improved mass resolution. For example, the biggest
 

improvement (potentially at least a factor of two) would result from an
 

improved calibration of the detectors. This is readily seen from figure
 

III.11. Such improvements might be accomplished through extensive accel­

erator calibrations of the various detectors and/or by the construction
 

of detectors with more uniform response. Alternatively, one could expect
 

as much as a factor of two improvement in mass resolution by going to
 

completely nonsaturating (i.e. 6 = 1.8) scintillators. To put the
 

potential for improvement as just discussed into perspective, we note
 

that the mass resolution of the experiment for 10Be is given by equation
 

111.38 as aA R 0.4 amu. This should be compared with the critical reso-­

lution at which a valley begins to appear between 9Be and 10Be. Taking
 

= 
k = 2.5 in equation 11.12, this is 7crit 0.35 amu. Thus we need achieve
 

only a small part of the potential improvement of the mass resolution
 

before the results become markedly more convincing.
 

Finally, equation 111.36 may be rewritten to give some insight
 



into the problem of deciding the optimal detector thicknesses for this
 

type of experiment, namely those such that the errors in the range
 

measurement actually are negligible. In particular, the second term in
 

brackets in equation 111.36 represents the ratio of the contributions of
 

range and the total light to the total uncertainty. This term may be
 

written
 

((111.39)
 

where the inequality expresses the condition for the uncertainty in the
 

range measurement to be negligible. Putting 8 = 1.3, we then require the
 

range in the last detector to satisfy
 

<<  (111.40)
 

Thus, each detector should be much less than half the thickness of the
 

material above it in the totally active stack (i.e. D3-14 in the present
 

case). This condition is easily satisfied by the present experiment,
 

since no particles have been accepted which stop before detector D5.
 

3. Empirical Consideration of Resolution. Since the assumption
 

ofta mass resolution which scales as the mass is quite important in the
 

analysis, it ,is desirable to obtain empirical evidence of its validity if
 

possible. This has been attempted in two ways. The first (see figure
 

As
 
IIII0) is to plot the Z a derived from fitting the mass distributions
 

against As . Since the fit for each element was done independently of the
 

others, this gives one point for each element considered. Although the
 

resolution appears to scale as predicted, this is not a completely
 

definitive check since a scaling of the resolution with charge (rather
 

than mass) would satisfy the data equally well. However, there is no a
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priori reason to believe this is so. A second check was attempted in
 

order to test the scaling among different isotopes of a single element.
 

Figure III.12A gives the distribution of var(A) for Be with A > 8 as
 

compared that for A < 8. If a mass independent threshold on var(A) is
 

correct, then the distribution of var(A) should be identical for all A.
 

Figure III.12A suggests that this is not the case. Figure III.12B shows
 

the same comparison after correcting the variance for the assumed A2
 

scaling. The situation is definitely improved over the uncorrected case,
 

and the mass scaling of the resolution is supported.
 

E. Corrections to the Data
 

In order to determine the cosmic ray composition at the top of the
 

atmosphere, various corrections have been applied. These factors are
 

listed in table 111.3, together with the observed and various corrected
 

abundances. The corrections treat losses due to interactions in the
 

experiment itself (including the gondola), the production and loss of the
 

various species in the atmosphere, and energy normalization factors to
 

account for the fact that different isotopes are observed over different
 

energy windows and modulated differently in penetrating the solar cavity.
 

1. Interactions. The correction factors for interactions in the
 

detector itself (column C of table 111.3) are given by
 

Li6 A jR YtRr(A 1A.I 4
 

Here n(Ata) is the density of target atoms of mass Atar along the
 

trajectory of a particle, and the total inelastic (reaction) cross section,
 

atot(AAtar), is given by the empirical relation
 

= - - - (111.42) 
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wh~re 

(2*r o0-d'446Hir,(A, htJJ3b= 1 ?-II1 (111.43) 

This relation has been fitted to the data of Lindstrom et al. (1975) for
 

12C, 160 and 40A beams incident on various targets at the Bevatron, toget­

her with the data of Renburg et al. (1972) for proton beams. Finally,
 

the number of particles p a t i c e s stopping betweene t w e n R and R +R,d -ddR to
t h e u m b r o t o p p n g a n R - Nt o t I i s
 

computed as a function of charge from the data, with mass dependent
 

effects (if any) being averaged out. This is required both by the problem
 

of statistics, and the fact that most isotopes are not resolved on an
 

event by event basis.
 

2. Energ Corrections. Since the experiment is sensitive to the
 

various isotopes observed in energy windows of differing width and location,
 

the results must be accordingly corrected before meaningful comparisons
 

can be made with either theory or other experiments. The ideal way of
 

presenting the data would be in the form of differential energy spectra,
 

in which case the corrections would be minimized. However, this approach
 

is of little advantage for isotopes of very low abundance, in which case
 

the statistical errors sevdrly limit the resolution obtainable. The
 

alternative is to assume the shape of the spectra, which may then be
 

used to normalize the results to some fixed energy. Ideally, the spectra
 

used should be experimental, but a complete set does not exist which
 

covers all isotopes of interest at the right time (i.e. in August 1973).
 

We have therefore adopted the local interplanetary spectra for 1973 which
 

have been calculated by Garcia Munoz et al. (1975b). They have assumed
 

-2
primary source spectra of the form (E + 400) .6 which are then propagated
 

to the vicinity of the sun using a leaky box model for the interstellar
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propagation (to be discussed later in Chapter IV) with a mean pathlength 

of ?e - 5 g cm" 2 and a density of interstellar matter given by n 11 atom 

cm "3 . They have then used the numerical technique of Fisk (1971) to 

modulate the spectra, and thus are able to predict the spectra observed 

near the earth. Wherever possible, the calculated spectra have been 

matched to observations by adjusting the available free parameters (mainly 

in the diffusion coefficient used for modulation). The resulting spectra 

may thus be regarded as extrapolations of the available experimental data 

to cover all isotopic species. The correction factors for the various 

energy windows in which the experiment is sensitive have been computed 

mapping the energy windows to the top of the atmosphere, then integrating 

the (predicted) spectra over both the extrapolated energy window and a 

standard energy window (233-494 IMeV/nuc) corresponding to that in which 

the experiment was sensitive to 12C. This is formulated mathematically 

by 

S J 2(111.44) 

A
 
where E1 < E2 defines the extrapolated energy window, and ZJ(E) represents 

the differential energy spectrum for particles of mass A and charge Z. 

The correction factors computed as just described are listed in column A 

of table 111.3 together with the relevant energy windows at the detector 

and the top of the atmosphere. The energy window correction factors have 

also been computed on the basis of the assumption that all isotopes have 

12

the same spectral shape as C. These are listed in column B of table
 

I1.3. This has been done in order to facilitate comparisons with the
 

data of other experimenters, who have generally made this assumption in
 

http:2(111.44
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correcting their data (Webber et al. 1973, Preszler et al. 1975, Garcia­

14unoz 1975a). However, we feel that the former approach is superior,
 

and have used it exclusively in the interpretation of our data. We
 

expect that the difference between the two approaches will- be most appar­

ent when considering: 1) secondary components of the cosmic rays, whose
 

spectra in interstellar space are expected to diverge from those of the
 

primary species (e.g. 12C) from which they are produced, and 2) isotopes
 

which do not have A - 2Z and are therefore affected differently by the 

solar modulation process than is 12C. These observations are borne out 

by comparing the corrections computed for 10Be (a very important isotope 

which satisfies both conditions above) under the two sets of assumptions. 

The correction we have adopted has the effect of giving more lOBe in 

interstellar space. 

3. Atmospheric Corrections. The production and destruction of
 

the various isotopic species in the atmosphere above the detector has
 

been corrected for using a model based on the semi-empirical formula of
 
k
 

Silberberg et al. (1973) for the partial cross sections a. (to produce
 

species j from an interaction where species i is incident on species k).
 

Equation 111.42 has been assumed for the total cross sections. The semi­

empirical formula has been normalized to the results of Lindstrom et al.
 

(1975a) for the particular cases of 
12 
C and 

16 
0 primaries. The normal­

ization factors adopted are listed in table 111.4. 

We-begin by temporarily treating the atmosphere as a slab of 

uniform thickness and known composition, the flux of species i surviving
 

at depth X without undergoing any interaction is
 

=j T51 ) e (111.45) 
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TABLE 111.4 

Correction Factors Applied to Semiempirical Formula
 

for Partial Cross Sections (Silberberg et al. 1973), as
 

Derived From Data of Lindstrom et al. 1975a
 

Primary
12 160 

Secondary C 0
 
7Be 
 0.91
 

9
 
Be 1.69 1.28
 

1 0Be 
 1.56
 

11
 
Be 0.57
 

12Be 
 5.00
 

8B 0.25 0.26
 

I03 1.45 0.93
 

11B 

1.18
 

123 0.54
 

9C 
 0.61 
 0.57
 

10C 0.57 0.53
 

11C 
 0.88 
 0.91
 

120C1.72­

13
C 1.05
 

1C 0.50
 

12
 
N 0.17
 

13
 
N 1.11
 

14
N 

1.67
 

15N 
 1.43
 

130 0.53
 

14
o 
0.23
 

150 
 0.71
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where
 

-Lj (111.46)
 

We can also write down a general formula for the flux of particles of
 

species i at depth X which have undergone precisely k interactions:
 

X-

Ad A4z 

where
 

Z n3-C )c to (111.48) 
tAr 

Equations 111.45-48 may be integrated in an iterative fashion, beginning 

with k = 1. The results, up to k = 3, are 

SCX -- j(0o) ­ji JL ­~~ 

2fpx j 1'J0)5~ x (111.49) 

AX %aeX -­a 
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We thus have, for the total flux of species i arriving at depth X after
 

an arbitrary number of interactions
 

L3 (111.50) 

In practice, the Jik(X) decrease monotonically with increasing k aboVe
 

some k'. For the present case (X 5 .gcm-), k' C 1, and terms beyond
 

k = 3 are neglected. This is reasonable, since it is observed the Ji 2 

0.02 Ji and J 0 0.0005 Ji. It should be noted that the Jik(X) are
 

all linear in the source abundances, Ji(O), so that one may write the
 

result 111.50 in the form
 

Here the Sik(X) are determined directly from equations 111.49,50. The
 

matrix SD(X) may be regarded as the "propagator" matrix which propogates
 

the cosmic-ray abundance vector Jk(O) through a slab of thickness X. Now,
 

in reality the atmosphere is not a slab for our case. The experiment does
 

not remain at a constant altitude, and particles are incident at various
 

zenith angles. The actual distribution of atmospheric depths (effective
 

slab thicknesses), f(X), is easily determined from the spark chamber data,
 

and is shown in figure 111.13. This is readily incorporated into the
 

analysis by merely replacing SD(X) by the atmospheric propagator matrix,
 

AD, defined by 

D j'Ax-D (111.52) 

where f(X) has been assumed to be normalized to unity. Then
 

lie>= (111.53)A-p 
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The problem is now easily inverted to obtain the abundances at the top
 

of the atmosphere in terms of those observed at the detector:
 

Sr.o) z Aj-)Z J- ) (111.54) 

This is obviously the formulation of interest here.
 

The general form of the matrix AD-I is triangular. The diagonal
 

elements are positive and greater than one to correct for attenuation in
 

,the atmosphere, while the off-diagonal elements are negative to correct
 

for contributions to the observed flux from spallation of heavier species.
 

In order to compute the flux of species i at the top of the atmosphere,
 

3 (0), it is thus necessary to know the Jk(X) for all species as heavy
 

or heavier (i.e. for Ak Ai). Since we have only measured the isotopic
 

abundances of the elements Be, B, C and N, it is therefore required to
 

assume abundances for other species which might contribute. For this
 

purpose, we have adopted the charge abundances measured by Ormes et al.
 

(1975) using the same instrument in the CxS mode of analysis (i.e. DI-3
 

only) for E 570 MeV/nuc. The relative abundances of the isotopes of
 

each element were then taken from the predictions of Tsao et al. (1973)
 

for the arriving cosmic rays. The various isotopes included in the
 

calculation are indicated in table 111.5.
 

In table 111.6, the isotopic abundances both at the detector
 

and as extrapolated to the top of the atmosphere are given. The present
 

data have been corrected for interactions in the detector (column A of
 

table III.3) and energy windows (column B of table 111.3) before perform­

ing this calculation. The atmospheric correction factors listed in
 

column D of table 111.3 are computed by merely taking ratios of the
 

abundances listed in table 111.6. Once the Ji(O) have been obtained,
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TABLE 111.6 

Isotopic Abundances at Detector and Top of Atmosphere 

Detector Top of Detector Top of
 
C-4.5gcm-2 ) Atmosphere 1k4.5gecC 2) Atmosphere 

7Be 57±4 43+4 "oCa 10+2 11+2
 
3Be 3D_4 23+4 41Ca 1+1 1+1
 

41
1030 1.5T4 10T4 4 ±c 4+1 

43Ca 3+1 3+1 
103 93+10 804-10 44Ca 3+1 3-P1 
11B 214±12 197+12 

a' Sc 6+_ 7±+2 

1C 924+17 932+17
 
I•C 76_- 6848 4+1 4+1
 

47TI 4+1 4+1 
14N 119+22 111+23 4'Ti 4+1 47 
15N 1604-17 155±;18 49Ti 1+1 1±1 

160 879+18 924+19 40V 4+1 3+1 
1Y0 23+3 21+3 s°v 2;1 2+1 
18O 1873 17+3 51 171 1_1
 

19 F 28+3 26+3 S°Cr 2+1 2+1 
5t Cr 5+1 4+2
 

20Re 114+6 119+7 52Cr 6T1 6+2
 
S1INe 1542 13+2 53Cr 1+1 1+1
 
22se 26+3 26±3 54Cr 1+1 1+1
 

23N, 42+4 4244 $s 6+1 7+2 

samn 4+1 .4+1 

*AM8 136+7 147+8 sft 4+1 4+1 
asms 27+3 27+3 

as, 28+3 29+3 s'Fe 5+1 6+2
55Fe 3+1 3+1 

37AI 36+4 38+4 S"Fe 5844 70:T5 
57Fe 1±1 2±1 

aesi 119-6 131+7 
Si 10:_2 10;--2 5s81N 2+1 3+1 

soS± 9+2 9+2 6oNi 1+1 1+1 

sip 9+2 9+42
 

l s 21+3 23±3 
33S J±1 471 
34S 5+1 5-12 Abundances and Errors for Be, B, C 

s± +1 1±1 and N from Maxinm Likelihood Fit
 
(Table 11.2). Other Charge Abundances 

35 C1 5+1 5+2 from Ormes et al. (1975); Isotopic
38C1 371 271 Abundances from Silberberg and Tsao 

(1973); Errors Scaled from 27. for 1SO.
 
AGSA 6+1' 6+ 2 

A 2+1 1+1
 

29K 4+1 4+1
 
61K 3+1 3+1
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they may be propagated back through the atmosphere as is shown in figure
 
111.14. 
By using the abundances at 3 g cm- 2 instead of at the top of the
 

atmosphere, we may compute correction factors to an atmospheric depth of
 

-2
 
3 g cm , as given in column E of table 111.3, in order to facilitate
 

comparisons with experiments performed at this depth. From table 111.6
 

and figure 111.14, it is evident that the relative abundance of the
 

important isotope lOBe is strongly affected by the atmosphere. The
 

various percentage contributions to the 10Be abundance observed at the
 

detector are listed in table 111.7.
 

In general, the percentage errors on the abundances are increased
 

by the atmospheric correction. The major contribution to this increase
 

often has nothing to do with uncertainties on the cross sections or
 

abundances of other species. This may be seen by rewriting equation
 

111.54 in the form
 

TJ101~TJ( AVDx) (111.55) 

Since the AD-I are always negative (i.e. subtracting from the
ik
 

observed abundance what has been produced in atmospheric spallation
 

reactions), we see that the percentage errors will be increased by the
 

factor
 

(111.56)
 

in performing the atmospheric correction. This factor approaches unity
 

for species whose abundances at the detector are mostly primary (i.e.
 

have not interacted in the atmosphere). For such cases,
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Figure 111.14. Isotopic abundances relative to carbon
 
as a function of depth in a slab model
 
atmosphere.
 



107 
ORIGINAL PAGE ISOF POO&. QUALITY 

TABLE III.7 

CONTRIBUTIONS TO OBSERVED lOBe
 

Primary Number of lOBe per 10,000 Observed Originating
 
Isotope in Atmospheric Interactions of Heavier Species
 

10Be. 
 6413
 
10B 0 
B. 1118
 

12C 
 741
 
13C 


84 

141; 60 
15 N 175
 

0 594
 

F 26
 

Ne 132
 

Na 39
 

1g ]in
 

Al 34 

Si 107
 

P 8 

S 28
 

Cl 8
 

A 12
 

K 11
 

Ca 23
 

Sc 10
 

Ti 22 

V 9 

Cr 23
 

.Mn 26
 

Fe 131
 

Co 0
 

Ni 6 
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(j' Px > (' (111.57) 

Errors on the abundances of all species contributing to an observed
 

abundance have been considered. In cases where the abundances at the
 

detector have been inferred from the charge abundances measured by Ormes
 

et al. (1975), the errors are taken to scale as J.2 with a 2% uncertainty
 

for 160 as the normalization. The uncertainties on the abundances both
 

at the detector and as extrapolated to the top of the atmosphere are
 

indicated in table 111.3 and also table 111.6,
 

4. Demodulation Corrections. Before any meaningful comparison
 

of the results with model predictions can be made, the data must be cor­

rected for the effects of solar modulation. Because of the large uncer­

tainty involved in making this-correction, it is not attempted in comparing
 

with other experiments. It is only used for comparing the data with model
 

predictions as discussed in Chapter IV. The procedure by which this
 

correction is computed is completely analogous to that used for the energy
 

correction discussed above. The model of Garcia-Munoz et al. (1975b),
 

which was used to predict the local interplanetary spectra required for
 

computing the energy corrections, also predicts spectral shapes in local
 

interstellar space. Provided one can map the energy windows in which
 

the experiment is sensitive to local interstellar space, relation 111.44
 

may then be applied again with the substitution of interstellar spectra
 

for the interplanetary spectra. The demodulation correction would then
 

simply consist of the ratio of the correction to local interstellar space
 

to the correction to local interplanetary space (i.e. the previous energy
 

correction).
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In order to extrapolate the energy windows to local interstellar
 

space, it is required to understand the process of solar modulation.
 

This process becomes increasingly important as the energy of a particle
 

is decreased below I GeV/nuc, and is thought to result in the virtual
 

exclusion of particles below - 200 MeV/nuc. The process is not completely
 

understood at the present time. Almost all current models, however, are
 

derived from one first introduced by Parker (1958). In this approach,
 

the modulation process is modeled in terms of a one dimensional diffusion
 

of the cosmic rays into the solar system along magnetic field lines being
 

convected outward from the sun by the solar wind. The quantitative form­

ulation of the model is given by (see Parker 1958, 1963; Gleeson et al.
 

1968; Fisk et al. 1969 for further details)
 

iyVm9,) - (tI 'R 
(111.58)
 

+~%r2V)W R
 

where
 

CR 
 -i
 

the number density of cosmic rays of species i, V 400 km sec
n Ri i 


is the velocity of the solar wind, r is the heliocentric distance, K is
 

the parallel diffusion coefficient and E is the kinetic energy. Here the
 

first term describes the convection of the cosmic rays in the solar wind,
 

the second describes diffusive effects due to scattering of the cosmic
 

rays from inhomogeneities encountered along the magnetic field lines, and
 

the last term accounts for adiabatic energy losses in the expanding solar
 

wind. This model deals only with motion confined entirely to the equator­

ial plane of the solar system, and thus ignores parameters which are
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thought to be important, but have not yet been investigated experimentally
 

(Cecchini et al. 1975, Fisk 1975, Moraal et al. 1975). Equation 111.58
 

has been solved numerically by Fisk (1971). However, if the streaming
 

of cosmic rays
 

cAR ~ .L R1 R -- E31Vfd-aK (111.60) 

vanishes, then it is possible to obtain an analytic solution to 111.58.
 

This is known as the force field solution, and is due to Gleeson and
 

Axford (1968). The result may be formulated as
 

7j..{=j -Fr~rb (111.61) 

where
 

EZTY je~ET(111.62) 

relates the differential rigidity and energy spectra, and
 

W---dr -Y (111.63)
 

(with K = 5KrKP assumed) relates ra and rb. Thus the differential 

rigidity spectra at ra and rb are simply related to each other. Garcia-

Munoz et al. (1975b) at the University of Chicago have u'sed the numer­

ical technique of Fisk (1971) to obtain forms of the diffusion coef­

ficient, K, and interstellar differential energy spectra, Ji, which are
 

consistent with the spectral shapes observed near the earth. The result
 

is
 

http:je~ET(111.62


Ky IIll 4tr r>5oAUJ 

[ .1rj h U(111.64)­

;trKoEr ecn >o.4- 'V
 

for 

cK C( tC400 HeV) (111.65) 

at the cosmic-ray source. Using equation 111.64 for the diffusion co­

efficient, equation 111.63 may be integrated to give the mean energy
 

loss of-particles penetrating from outside the solar cavity (rb to
 

the orbit of the earth (ra I1 AU):
 

(111.66)
E6-~~FoVN 


We emphasize that equation 111.66 gives only the average energy loss
 

experienced by a particle of given Z, A and 0 in penetrating the solar
 

cavity, and cannot be meaningfully applied to individual particles (e.g.
 

see Goldstein et al. 1970).
 

The demodulation correction factors computed as described above
 

(i.e. using the force field approximation to map the energy windows to
 

the local interstellar space and assuming the interstellar spectral shapes
 

calculated by Garcia-Munoz at al. 1975b) are listed in column F of
 

table 111.3, along with the extrapolated interstellar energy windows.
 

Due to the uncertainty introduced by the process of solar modulation,
 

the local interstellar spectra are not well known at low energies. The
 

best one can say with any certainty, is that they probably lie somewhere
 

between pure power laws in rigidity and pure power laws in total relativ­

istic energy per nucleon (Ramadurai et al. 1972). It is thus desirable
 

http:U(111.64
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to see the latitude which might be introduced by the assumption of var­

ious possible spectral shapes on the correction factors applied to the
 

observed isotopic abundances. This has been done in table 111.3 for the
 

cases of interstellar spectra which are pure power laws in rigidity
 

(total relativistic energy per nucleon, or Lorenz factor) with spectral
 

index -2.60--column I(G)--and spectral index -2.75--column J(H). These
 

can be compared to column F, which gives the correction factor we have
 

actually used in correcting the data. This correction is based on more
 

realistic forms of the interstellar spectra, and in particular takes
 

account of differences in the spectra of primary and secondary components
 

of the cosmic rays. Evidently, the various demodulation corrections all
 

affect the isotopic abundances corresponding to a given element in
 

roughly the same way. The major difference is in the pronounced charge
 

dependence of the correction factors based on the assumption of rigidity
 

power laws.
 

F. Discussion of Results.
 

The results of the present experiment are essentially contained
 

in tables 111.2 and 111.3. Although the resolution is not quite good
 

enough to see a separate peak for 10Be, it is comparable to what has
 

been reported by other experimenters. Since 1OBe and 9Be are not clearly
 

separated in the data, a fitting procedure has been relied upon to deter­

mine the relative abundances of Be isotopes. Furthermore, the uncertainty
 

in the lOBe abundance is increased from 25% to 40% by the presence of the
 

atmosphere above the detector. The factor limiting the resolution is
 

probably the detector normalization. This is closely related to the
 

necessity of using semirelativistic particles to determine detector
 

normalizations, and also differences in the scintillator response functions
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from detector to detector. A detailed accelerator calibration of the
 

instrument would thus be of immediate value in improving the resolution
 

obtained.
 

G. Comparisons with Other Experiments.
 

In the following section, the results of the present experiment
 

are compared with those of other experimenters. Experiments using the
 

geomagnetic cutoff technique (Juliusson 1975, Dwyer et al. 1975) have
 

been excluded from the comparison for the following reasons: 1) the
 

geomagnetic cutoff experiments are generally performed at substantially
 

higher energies ( 0.7 GeV/nuc) than is the present experiment (- 0.2
 

GeV/nuc); 2) the cutoff experiments so far have not yielded more than
 

mean masses for the various elements although it is in principle pos­

sible to derive the actual isotopic composition (Peters 1974); and 3)
 

the assumptions which go into the cutoff technique (especially with re­

spect to energy spectra) are at best approximations, the reliability of
 

which make the interpretation of the results somewhat uncertain. Insofar
 

as a comparison is possible, however, there are no outstanding dis­

crepancies between the present results and those of experiments using
 

the geomagnetic rigidity cutoff technique.
 

In table 111.8, we have compared the present data with the
 

results of other experiments. Included are the pioneering results of
 

Webber et al. (1973), which are balloon observations carried out at an
 

atmospheric depth of - 3 g cm"2 and about the same energy as the present
 

experiment. This group has also recently reported results of an improved
 

experiment (Preszler et al. 1975), which is also included in the table.
 

Finally, the IMP 7 and IMP 8 results of Garcia-Munoz et al. (1975a) are
 

also included. These are satellite observations taken outside the
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atmosphere and magnetosphere of the earth, at energies roughly half those
 

at which the present data are taken. The results of these various experi­

ments are referred to by NHAM-l, NHAM-2, CHIC-i and CHIC-2, respectively.
 

In each case, our results have been corrected in such a manner as to be
 

most consistent with these observations at the respective detectors.
 

In particular, the present data have been corrected to an atmospheric
 

depth of 3 g cm -2 (column E of table 111.3) for comparisons with NHAM-l
 

and NHAM-2, and to the top of the atmosphere (column D of table 111.3)
 

for comparisons with CHIC-i and CHIC-2. In all cases, the data have
 

been corrected for interactions in the detector (column C of table 111.3)
 

and for energy windows assuming that the energy spectra of all isotopes
 
12
 

have the same shape as that of C (column B of table 111.3). The agree­

ment among the various experiments considered in table 111.7 is generally
 

quite good. The only significant discrepancy among the relative isotopic
 

abundances reported concerns the isotope 10Be. All of the results
 
10
 

reported are consistent with Be a 0.6, except for those of CHIC-2,
 
Be 10 

which are most consistent with the complete absence o'f Be. The low 

10 9 
10Be abundance observed by CHIC-2 is compensated by the largest Be
 

Be
 

ratio of any of the experiments reported. All the remaining discrepancies
 

concern the relative charge abundances. These are as follows: i) CHIC-I
 

and CHIC-2 both obtain a smaller value of the ratio Be/C than does either
 

NHAM-2 or the present experiment; 2) the present experiment observes
 

the largest B/C ratio of any of the results reported; and 3) CHIC-I
 

and CHIC-2 both observe a smaller N/C ratio than does either NHAM-2 or
 

the present experiment. Finally, we note that the present results agree
 

reasonably well with other results on the charge composition obtained at
 

similar energies (e.g. see Shapiro et al. 1973). There is also a reason­

able agreement with the results of Ormes et al. (1975), which were
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obtained from the same experiment (in the C x S mode of-analysis) at
 

somewhat higher energies (> 570 MeV/nuc) and with superior statistical
 

weight.
 

Let us now consider the degree of consistency of the results
 

presented in table 111.8. In particular, we will concentrate on the
 

10
 
e
ratio .O__ which represents the only significant discrepancy among the
 

Be
 

relative isotopic abundances compared.
 

We first note that all of the results except CHIC-2 would be con
 
10B
 

sistent with the value BBe 0.06 at the top of the atmosphere. Of
 

the other results, the largest deviation from this value is by the present
 

experiment, which is one standard deviation high. We recall from the
 

10
 
discussion in section C.5 that our observed Be abundance may be reduced
 

by about one standard deviation if we assume that some of the observed
 

10Be is due to an asymmetry in the 9Be mass distribution. Although such
 

an effect would considerably reduce the scatter in BeB--among experiments
 

other than CHIC-2, it cannot by itself make the present result consistent
 

with the complete absence of 10Be in the cosmic rays. The above consider­

ation represented the only reasonable possibility for error in our observed
 

e
value of 10B. . Other possibilities which were considered not probable

Be
 

included a breakdown in the mass scaling of the variance selection
 

threshold and the standard response curves, and an error in the atmospheric
 

correction to the data due to the use of erroneous cross sections. Thus
 

it is quite difficult to see how the present experiment could be made
 

10
 
consistent with B 0. In particular, only an improbably large error
 

in the atmospheric correction could at once make the present results
 
10
 

and those of NHAM-I and NHAM-2 consistent with the absence of Be.
 

However, this seems to be very unlikely.
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We next observe that, while the Chicago group observes the smallest
 

value of Be at the lowest energies (- 100 MeV/nuc), the present experi-

Be
 

ment observes the largest value at the highest energies (- 250 MeV/nuc).
 

Thus there exists the possibility of a real energy dependence of the
 

10
 
ratio Be One possibility for understanding such an energy dependence


Be
 

can be seen from the assumption that the mean pathlength traversed by
 

cosmic rays, ke, is a constant independent of energy, at least below
 

1 Gev/nuc. In this case, equation I.1 predicts that the mean confinement
 

time of cosmic rays in the galaxy, Te, will vary as 1/p. A second effect
 

which may contribute concerns the energy dependences of the various
 

cross sections for the production of 10Be from interactions of heavier
 

species with the interstellar medium. Both of these points have been
 

taken into account in the propagation calculations of Garcia-Munoz et al.
 
10B
 

(1975b) which predict a decrease in the ratio 10Be of about 20% in going

Be
 

from 250 MeV/nuc to 100 MeV/nuc. This -of course assumes a mean energy
 

loss of - 250 MeV/nuc per particle in penetrating the solar cavity. If
 

we disregard solar modulation, then the ratio .. changes by 50% between
 

250 and 100 MeV/nuc. Clearly even this is inadequate to explain the
 

observations. Thus if there exists a real energy dependence of the ratio
 

0 e then there appears to be no ready explanation for its magnitude.
 

Before concluding, we wish to make a few general remarks with
 

respect to the various experiments. Both the present experiment and those
 

of the University of New Hampshire group are balloon borne experiments
 

performed under a retidual layer of the earth's atmosphere. The IMP 7
 

and IMP 8 experiments of the Chicago group, on the other hand, are per­

formed well outside the atmosphere and thus avoid any effects of the
 

atmosphere on the observed data. However, we have seen that the cross
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sections used to make the atmospheric corrections to the present data
 

are not likely to be sufficiently in error to have a significant effect.
 

Thus the principle disadvantage imposed by the presence of the atmosphere
 
10
 

is to increase the uncertainty of the observed Be abundance from 25%
 

to 40% after extrapolation to the top of the atmosphere. On the other
 

hand, the present experiment and those of the University of New Hampshire
 

group are performed at significantly higher energies than are those of
 

the University of Chicago. Although this does not directly affect the
 

measurement, it does significantly affect its interpretation. This
 

follows since a highly uncertain correction for the effect of solar
 

modulation is required before a meaningful comparison with theory is
 

possible, and the uncertainty of this correction increases with decreasing
 

energy. Finally, we feel that the means by which background is removed
 

in the present experiment is superior to that used by either of the
 

other groups. This derives essentially from the fact that only the pre­

sent experiment is capable of "continuously" monitoring the identity of a
 

particle over its entire trajectory in the experiment.
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CHAPTER IV
 

DISCUSSION OF RESULTS
 

Once the experimental results have been derived and corrected to
 

yield isotopic abundances in the local interstellar medium, comparisons
 

may be made with the predictions of the various models for the propagation
 

and origin of cosmic rays. Although some models have been proposed in
 

which the cosmic rays fill some extended region of extragalactic space
 

(e.g. see Setti et al. 1971, Brecher et al. 1971 and Sitte 1972), most
 

current models propose the confinement of the cosmic rays either to the
 

galactic disk or some extended region (known as the galactic halo) sur­

rounding it. The actual existence of the galactic halo is highly con­

troversial, and it is an objective of the present thesis to definitively
 

answer the question of whether it is required in order to confine the
 

cosmic rays.
 

A. The Diffusion Model
 

1. Halo Model. Most currently popular models for the propagation
 

of cosmic rays in the galaxy are based upon the diffusion model first
 

introduced by Ginzburg (Ginzburg et al. 1964). The essential observation
 

is that although cosmic rays of all but the highest energies (i.e. E
 

eV/nuc) are constrained to closely follow magnetic field lines
 

through the interstellar medium, these field lines are sufficiently
 

randomly oriented in space that even a very small drift (or scattering)
 

across the field lines (as would be caused by irregularities encountered
 

in the magnetic field) essentially randomizes the trajectory of a particle
 

through space. Ginzburg postulated that the cosmic rays originated in the
 

galactic disk, probably as a result of supernova events, then diffused
 

freely throughout a qasi-spherical region surrounding the disk known as
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the galactic "halo". Although the magnetic field intensity and gas
 

3
density postulated to exist in the halo (- 10-8 gauss and - 10-2 cm- ,
 

respectively) are two orders of magnitude less than those characteristic
 

-
of the disk (- 10 6 gauss and i cm'3 ), particles were imagined to both
 

escape from the disk into the halo and re-enter the disk freely. Ginzburg
 

found that a diffusion coefficient given by KH a 1029 cm2 sec - to be
 

appropriate for such a model. This results in an effective scattering
 

mean free path given by XH a 3KH 3pc, and a mean escape time for cosmic
 

r 2 8rH 
rays from the halo given by Te _ 2K 2 x 10 yr (where rH 12 kpc) is 

the halo radius. This gives a reasonable value for the mean pathlength 

traversed by cosmic rays (Xe a 5 g cm-3 ) as deduced from the abundances 

of the elements Li, Be and B (presumed to be absent in the source) 

relative to their progenitors, such as C and 0. In addition, the scat­

tering mean free path obtained is of the same order as the inhomogeneities 

observed in the galactic magnetic fields (Allan 1972). Finally, the 

cosmic rays are scattered sufficiently before observation (- 107 times) 

to lose all memory of their points of origin (i.e. source locations), 

which is important in order to reproduce the high level of isotropy 

observed in the cosmic rays. A further advantage of such a model is 

that it considerably reduces (by a factor - 104) the time required for 

particles to escape from the system, and thus considerably reduces the 

energy requirement on the cosmic-ray sources (i.e. the rate at which 

they must produce cosmic rays in order to replace those escaping and, 

thus, maintain the cosmic-ray density at a constant level). In quanti­
-3

1 eV cm 3
 
tative terms, for the observed cosmic-ray energy density w 

R 

CR
 

-


the power required of the cosmic-ray sources is cPRS 2 5 x 1040 erg sec 1
 

3
368 

for a halo volume of -2 x 106 cm.* For comparison the power available
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104 1 -1
 from supernova explosions is FSN erg see , assuming a supernova
 

rate of < 1/50 years and 4 105 0 erg/supernova in cosmic rays produced. 

The power required of the cosmic-ray sources in the case where cosmic 

rays freely escape from the galaxy is - 104 times that required in the 

Ginzburg diffusion model, as may be seen by comparing re and rH/c. Thus 

it is clear that supernovae can be the primary source of energy for cosmic 

rays in the galaxy only if there is some mechanism available to restrict 

their escape, as (for example) diffusion in the Ginzburg model. This is
 

important since supernovae are among the most powerful local sources of
 

energy we can imagine.
 

It is apparent from the foregoing discussion that the model of 

Ginzburg, which postulates diffusion of the cosmic rays in a galactic halo, 

meets the main requirement of a cosmic-ray propagation model. It is 

possible to reproduce the characteristic mean pathlength traversed by 

cosmic rays (Xe - 5 g cm 2) and also their high degree of isotropy 

- 4
(6 4 10 for E , 100 GeV/nuc; Allan 1972). At the same time, the
 

cosmic rays are confined in the galaxy sufficiently long that an unreason­

able burden is not placed on the sources. This is all accomplished with
 

2
a diffusion coefficient KH- 1029 cm sec in a halo of radius rH
 

- 3
12 kpc with gas density nH - 10"-2 cm and magnetic field intensity BH
 

- 8
10 gauss, all of which is quite reasonable. Halos have been observed
 

around various other galaxies (not by any means all, however) by means of
 

the synchrotron radio emission of the cosmic-ray electrons trapped in
 

them (Baldwin 1954). The existence of a similar halo around our own
 

galaxy, however, is by no means firmly established and is, in fact,
 

strongly questioned by radio astronomers (Burke 1967).
 

2. Disk Model. The disk model, a variant on the halo diffusion
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model of Ginzburg, would confine the cosmic rays predominantly to the
 

galactic disk (Owens 1975; Dickinson et al. 1975), and thus circumvent the
 

problem imposed by the failure to observe a galactic radio halo around our
 

own galaxy. We note that this model does not preclude the existence of a
 

cosmic-ray halo, but merely postulates that the re-entry of cosmic rays
 

into the disk from the halo is negligible. Both the gas deniity and the
 

-3 
magnetic field intensity in the disk (nD ' I cm and BD - 10-6 gauss,
 

respectively) are about two orders of magnitude greater than the values
 

characteristic of the halo. The former consideration requires an escape
 

time two orders of magnitude smaller than that in the halo model (i.e.
 

Te 2 x 106 yr) if the observed mean pathlength traversed by the cosmic
 

rays (Xe a!<m>nDcTe ! 5 g cm 2 ) is to be maintained. Since most particles
 

will reach the top or bottom face of the disk before reaching its circum­

ference, the half thickness of the disk (zD a 0.25 kpc) replaces the halo
 

radius in relating the escape time to the diffusion coefficient: Te a
 

3zD. We thus deduce a diffusion coefficient, KD 1028 cm2 sec-1, which
 

2-D
 
is an order of magnitude smaller than that appropriate to the halo model.
 

This corresponds to a correspondingly smaller effective scattering mean
 

free path, X 3KD-= 0.3 pc. In this model, the power required of the 
D ­

141 -1. 
cosmic-ray sources, PCRS --1.5 x 10 erg sec is only three times that
 

required in the halo model, and still within reason.
 

The halo and disk diffusion models for the propagation of cosmic
 

rays which have been discussed above characterize the two extremes of a
 

continuum of models in which the halo is gradually flattened, and eventually
 

merges into the disk. All of these models can be made consistent with
 

observations. Perhaps the most sensitive test of which model is correct
 

would be the direct determination of the mean matter density, n, in the
 



123
 

region where the propagation takes place, or alternatively the mean escape
 

time, Te, to which it is inversely proportional (by virtue of the known
 

leakage pathlength, Xe 2 <m> nc Te). The radioactive secondary isotope,
 

=
10Be, with a mean decay time, Td 2.2 x 106 yr, provides an ideal tool
 

for doing this.
 

Other variations on the basic diffusion model have also been
 

proposed. These include the assumption of boundary layers (i.e. for the
 

disk, halo, etc.) which are either partially or totally reflective. Such
 

boundaries may, for instance, be set up by self-generated magnetohydro­

dynamic waves. One may also replace the continuous distribution of
 

sources in space and time by a more realistic distribution of discrete
 

sources, which is especially important in the case where one of the dis­

crete sources happens to be quite nearby. Diffusion in only one dimension
 

(i.e. along magnetic field lines) may also be considered, or alternatively
 

"compound diffusion" in which one considers separate diffusion processes
 

for the random walk of magnetic field lines in space and the motion of
 

particles along the field lines. As a final example, one may consider
 

multiple confinement regions, each of which is characterized by a dif­

ferent magnetic field intensity and gas density. In particular, supernova
 

envelopes with characteristically high gas densities and magnetic field
 

intensities may well surround the cosmic-ray sources. The cosmic rays
 

would then be required to escape from these before entering the galactic
 

disk.
 

B. The Leaky Box Approximation
 

A rather general formulation of cosmic-ray transport in the dif­

fusion model is given by
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?% 4 JJ1(IV.l1) 

where Ji('rt) represents the differential flux of cosmic rays of
 

species i and momentum' at position r and time t. Qip,'r,t) represents
 

the source function for species i, and includes production and loss in
 

nuclear interactions and radioactive decay, and Ki is the diffusion 

tensor for species i. If the cosmic-ray flux is isotropic, we may then 

replace ; by y everywhere in equation IV.l, noting that 

. rta (IV.2) 

relates the differential momentum and energy spectra. It is usual to
 

replace the diffusion tensor by a scalar since there are no distinguish­

able directions in the problem. Furthermore, the diffusion coefficient is
 

often taken to be independent of y, r and t. To the best of our knowledge,
 

the cosmic-ray intensity2 Ji; has been constant over at least the last
 

S109 yr (Van Loon 1973), so that it is reasonable to formulate a steady
 

state model by neglecting the first term of equation IV.I. Consider next
 

the second term. For y ; 1.5, we may put
 

PAC(~leV(IV.3) 

~3 

Assuming energy spectra which are power laws in total energy per nucleon 

of spectral index - -2.7, we have 

(r-1& 3 1 (IV.4)fA T4A, OT) r 

http:JJ1(IV.l1
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For comparison, one term which contributes to Qi is the loss to nuclear
 

*interactions. Taking the total inelastic cross section to be ytot 2
 

50 A2/3mb, this term is
 

<h C/17 r=(3YI IA2 (Pv.5)
 

We thus see that the second term of equation IV.l is negligible for y >
 

1.5, at least at the 10% level. After applying all of the approximations
 

discussed above, equation IV.l is reduced to
 

z4 (Iv.6) 

which is a commonly used formulation of the diffusion model. We have
 

already seen in section II.A that the mean time for cosmic rays to escape
 

from the system in the halo (disk) model is - 2 x 108 yr (- 2 x 106 yr),
 

which corresponds to a total distance traveled of - 60 Mpc (- 0.6 Mpc). 

This is - 5000 (2000) times the distance to the nearest boundary, and 

suggests a picture in which the cosmic rays approach the boundaries often 

in their lifetimes with a low probability of escape each time. A 

reasonable approximation in this case is to neglect the positional depend­

ences and integrate equation IV.6 over all space interior to the
 

boundaries:
 

dIs - [wK2 -VIOj(Iv.7)4 4t._~ 

-v rk it }s dY
 

Here the surface integral, is interpreted as the rate at which particles
 

cross the boundary surface, and is approximated by the last equality.
 

Here Ji() is the mean differential cosmic-ray intensity inside the
 

boundary and Te is the mean time it takes a typical cosmic-ray particle
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to leave the bounded volume. We may now write the result
 

&jf)-. 3(T)(Iv.8) 

This is known as the leaky box model of cosmic-ray propagation. It may
 

be interpreted in terms of a leaky box (i.e. the boundary surface) in
 

which the cosmic rays are confined. The probability that a given cosmic
 

ray will escape from the box (i.e. leak out) in time dt is merely dt,
 
Te
 

and this loss is exactly compensated by the production of Q(y)dt, new
 

cosmic rays, either directly by sources or in the spallation (or radio­

active decay) of heavier species. The leakage time, Te, may be related
 

to the diffusion coefficient, K, according to
 

rC.K 52IO A m06 4-e (Iv.9) 

where rchar is the net distance a particle must propagate from its
 

source (on the average) in order to cross the boundary. We have assumed
 

that the diffusion coefficient K (and hence also Te is independent of
 

species. We proceed by expanding the source term, Qi(7), in equation
 

IV.8 to show explicitly the contributions of production and loss in
 

nuclear spallation reactions and radioactive decays:
 

J[7) 
1 

C- r 
±; d - r- t (c2 G'~> -Ivl 

Here Q denotes that part of the source term which is directly due to 

cosmic-ray sources, and specifically does not include nuclear spallation 

or radioactive decay. < k denotes an average over the target atoms in the 

confinement volume (V), n is the number density of such targets and* 
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Td - i) << TJ is required.r e The divergence of the term Td- (i **) 
.. 

in equation IV.lO then requires either that J.(y) - 0 with d(i -* 

or that i become large in order to balance the divergence of this term. 

The latter alternative is clearly unphysical except as an extreme assump­

tion. Consequently, Ji(7) - 0 and species i does not contribute signif­

icantly to any other species except the one to which it decays, species j. 

Thus species i may be absorbed into species j by the substitutions 

A (IV.l3) 

and
 

-s -sr.--s
Q. (IV.14) 

Radioactive isotopes which do not clearly fall into either of the two
 

categories described above (i.e. long or short mean lifetime against
 

decay) are most rigorously retained as they appear in the calculation.
 

However, it often happens that such isotopes contribute negligibly to the
 

production of other species (through the partial cross sections, k.

0ij )
 

because of their relatively low abundances. In such cases, Td(1 - i) 

-* may still be an adequate approximation for the calculation of the 

source abundances, Q (y), from equation IV.lI as a function of the leak­

age pathlength, Xe . The calculation may then be inverted using the actual
 

value of Td(- i) in order to determine the gas density, n, in the
 

propagation region, or equivalently the mean escape time, Te This will,
. 


in fact, be the approach taken below for the case of 10Be. It should be
 

noted that the approximations of long or short lifetimes of radioactive
 

isotopes against decay as described above are not required in order to
 

apply equation IV.II to the data. In particular, they do not serve to
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eliminate from the problem any unknowns which would otherwise prevent its
 

solution. The main advantage of the approximations lies in the resulting
 

simplifications, particularly in the number of species which must be
 
LB
 

considered in constructing the leaky box propagator matrix, D.
 

1. Pathlength. The application of the leaky box model to the
 

interpretation of experimental data is now a simple matter. One has only
 

to calculate the leaky box propagator matrix, LBD, for assumed values of
 

the leakage lifetime, Te, and the density of matter in the confinement
 

region, n. Given the observed abundances of the arriving cosmic rays, 
the source abundances, Q~(), may then be calculated. The values of 

Te and n are then adjusted so that the abundances of all components assumed
 

absent in the source actually do vanish. Examples of such isotopes would
 

be those of Li, Be and B (which cannot survive in the hot environment of
 
13 15N
 

a star), and perhaps also isotopes such as C and N, which are not
 

easily produced in the chains of nuclear reactions thought to be relevant
 

to the cosmic-ray nucleosynthesis.
 

Various authors have applied the leaky box model, essentially as
 

formulated above, to the interpretation of the observed charge composition
 

of the cosmic rays (e.g. see Shapiro et al. 1973). In such cases, it is
 

also required to make assumptions regarding the isotopic composition of
 

the various elements in the cosmic rays, either at the source or as
 

observed. This is usually done using the observed solar system abund­

ances (Cameron 1973) as a standard. The results are insensitive to the
 

survival or decay of the few radioactive isotopes for which it is question­

able, so that only the leakage pathlength, Xe, is determined with any
 

-
precision. The results range from e ' 3 g cm 2 to Xe ' 7 g cm 2 at
 

moderate energies of a few hundred MeV/nuc to a few GeV/nuc. Results at
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td(j - i) denotes the mean lifetime against radioactive decays taking 

s.pecies j to species i (* denotes "anything"). As formulated in equation 

IV.10, the leaky box models have two characteristic parameters which may 

be adjusted in order to achieve the optimum agreement with observations: 

the leakage time, Te, and the number density of target atoms in the "box", 

n. The relative abundances of the various target atoms are assumed to be 

sufficiently well known (i.e. - 90% H and 10% He by number) as to intro­

duce no extra degrees of freedom. 'For stable isotopes not subject to 

radioactive decay, Xe = PBcTe = <mi>c(nTe) is the only free parameter 

(<m> is the mean mass of the target atoms). We note that equation IV.10 

is a matrix equation for the source abundances, i(y), in terms of the 

observed cosmic-ray abundances, J.(), i.e. 
3. 

T~ (Iv.11) 

where
 

12)
tj (IaV.[nt3< .1 /,3<q,(A' 

defines the leaky box propagator matrix.
 

The application of equations IV.10 through IV.12 to the interpre­

tation of experimental data is often facilitated by various assumptions 

regarding the stability of the radioactive isotopes. The terms involving 

Td (j - i) may be altogether neglected in equations IV.10 through IV.12 

if the lifetime against radioactive decay is sufficiently long. The 

condition for this approximation to hold is Td(j - i) >> Te if J.()3 

Ji(y) ; otherwise, 
Td (j i) Ti Te is required. If the radioactive 

decay is very rapid, on the other hand, one may put Td(i - i) et 0. The 

T
condition for this to hold is Td (j - i) << e if J.&) ji(7); otherwise 
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higher energies seem to indicate a systematic decrease in X as one goes
e 

to progressively higher energies (Lezniak et al. 1975, Juliusson et al.
 

1975).
 

The results of a similar calculation, as applied to the present
 

results, are shown in figure IV.1, Here the cosmic-ray source abundances
 

are computed as a function of the assumed value of the leakage pathlength,
 

, on the assumption that 10Be is stable. The cross sections used in
 e 

this calculation are based on the same formulae as were used in computing
 

the atmospheric corrections (section III.E.3). The cross sections have
 

been computed based on an assumed propagation energy E = 600 Mev/nuc,
 

and assuming the composition of the interstellar medium to be 10% helium
 

and 90% hydrogen by number. The assumptions regarding the stability of
 

the various isotopes considered in the calculation are given in table
 

IV.l. For each isotope, the range of source abundances consistent with
 

zero has been determined based on the statistical errors assigned to the
 

observed isotopic abundances based on the maximum likelihood method.
 

This is indicated by the darkened portion of the curve for each isotope.
 

The dashed extensions to these error limits also take into account
 

estimated uncertainties in the cross sections used in the calculation,
 

estimated to be - 10% for total cross sections and - 15% for partial
 

cross sections. This has been carried through the corrections for inter­

actions in the detector and the atmosphere as well as the leaky box
 

propagation. The best value of Xe for each isotope (assuming it is
 

entirely secondary in origin) is that at which its source abundance is
 

exactly zero. The error limits on Xe are then estimated from the range
 

of values of Xe for which the calculated source abundance is consistent
 

with zero, i.e. that range over which the curves in figure IV.l are
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Figure IV.A. Isotopic abundances at the cosmic-ray source
 

relative tO carbon as a function of mean
 

leakage pathlength, Xe, assumed. 10Be assumed
 

stable. Heavy portions of curves indicate
 

values consistent with zero if only uncertain­
ties on isotopic.abundances are considered.
 

Dashed extensions include effects of cross
 
secton uncertainties assumed to be 10% for
 
total and 15% for partial cross sections.
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darkened. The resulting estimates, of the leakage pathlength for each
 

isotope measured are tabulated in table IV.2, and illustrated in figure
 

IV.2. These results are compatible with those of other authors, and
 

apparently indicate a real discrepancy between the values of the leakage
 

-
pathlength obtained based on the Be isotopes (i.e. Xe _ 3.5 gcm 2) and
 

those obtained using other isotopes (i.e. Xe a 6 g cm-2). We also note
 

that the only isotopes which significantly affected by the survival or

1 0
 Beare10B10
 

decay of are BBeitself and, to a much lesser extent, 10B. Thus
 

the leakage length obtained for 10 Be is increased if part of this isotope
 

has decayed, while that for 10Be is somewhat decreased. Finally, the
 

contribution to the total error in the pathlength determination from
 

uncertainties in the cross sections used is observed to be generally less
 

than or about equal to that from the uncertainties in the measured
 

isotopic abundances.
 

2. Lifetime. In order to estimate the density of matter, n, in
 

the cosmic-ray confinement volume consider equation IV.10 for the specific
 

case of 10Be (denoted by putting i = 10):
 

Itnc-r <in)(1Irieo'n>c/ 
(IV.15)
 

<n> 
Here we have substituted Xe = <m> ncRzre taken QS0 (7) = 0, and noted 

Q10 Y) 0annoe
 

explicitly that no other isotopes decay into 10Be. Observing that the
 

right hand side is independent of the survival or decay of 10Be, we may
 

write equation IV.15 again for the case where lOBe does not decay:
 

< ad 

t
 

3T M 
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TABLE IV.2
 

Leakage Pathlengths Derived from Various Isotopes
 
-
(g cm 2 units)
 

Lower Limit Upper Limit
 
Best
 

Isotope B A Value A B
 

7Be 3.28 3.49 4.01 
 4.53 4.88
 

9Be 2.46 2.58 3.24 4.04 4.27
 

10Be* 0.89 0.91 1.60 
 2.40 2.46
 

10B* 4.09 4.37 5.50 6.48 7.07
 

11B 4.93 5.54 6.33 6.88 8.02
 

1 2 C ..... .... .... .... ...
 

13C 4.70 5.10 6.53 7.89 8.87
 

14N 7.61 8.22 ........ ....
 

15N 8.12 9.53 ........ ....
 

A: No Cross Section Errors Included
 

B: Cross Section Errors Included in Interaction Correction,
 

Atmospheric Correction and Leaky Box Calculation
 

*lOBe assumed Stable
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Figure IV.2. Mean leakage pathlength, Xe , as derived from con­
dition that source abundances of various isotopes
 

vanish. Dashed extensions to error limits include
 
contributions of cross section uncertainties assumed
 
to be 10% for total and 15% for partial cross sections.
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We may now eliminate the right hand sides of equations IV.15 and IV.16,
 

and solve for the density, n. The result is
 

-j- I (IV.17) 

Assuming the interstellar medium is mainly H, with a 10% admixture of He,
 

= 
we have <m> = 1.3 amu. Taking the propagation energy to be E 600 MeV/
 

6
nuc, and putting Td (10 -* = 2.2 x 10 yr (Yiou et al. 1972), we have 

VmcAttd~4'=o:x '~r'(IV.18)
 

Using equation 111.42 'for the total cross section, we also have
 

"
 
_ ._--= (IV.19) 

It now remains only to estimate the abundance of 10Be expected
 

--ND
if none decays, J1 0. This can be done by inverting equation IV.ll to
 

calculate the expected observed abundances given an assumed set of source
 

abundances:
 

LB (IV.20)
 

The source abundances used are, of course, based on the results of the
 

previous calculation, when the leakage pathlength, X , was estimated.
 e
 

This has been done by Tsao et al. (1973) at high energies (E b 2300 MeV/
 

nuc) using the.observed charge abundances and assuming the isotopic
 

composition of the various elements in the cosmic rays at their source is
 

the same as that observed for solar system material. In table IV.3 we show
 

the predictions of a similar calculation for the arriving cosmic rays,
 

where we have adopted the source composition of Silberberg and Tsao,
 

http:r'(IV.18


TABLE N.3: Comparisons With Modol 
++ 

Model 

ke (8 ell2) 

Energy (MaV/nuc) 

Gas Composition (percent He) 

Cross Section Modifications+ 

Observed Z 

5 

600 

10 

b 

Y 

6 

600 

10 

b 

X 

5 

1200 

10 

b 

Il 

5 

600 

0 

b 

V 

5 

600 

10 

a 

U 

5 

600 

10 

c 

Abundance Ratios: 

'Be/Be 0.61 40.07 0.53 40.04 0.53 +0.04 0.54 +0.04 0.52 +0.04 0.58 +0.05 0.55 +0,04 
9 8o/Be 0.28 +0.05 0.28 +0.02 0.28 40.02 0.26 +0.02 0.28 +0.02 0.23 +0.02 0.28 40.02 

.OEelae8.11 O.04 ** 0.19 -0.o:k 0.19 .0.02 0.20 -_0.o2"* 0.2.0 +.O* 0.19 70.02** 0.14 Z0.o1" 

g/C 0.069+0.008 0.090 0.103 0.101 0.098 0.0S5 0.037 

1oB/B 0.30 40.04 0.32 40.03 0.32 +0.03 0.31 -0.03 0.32 40.03 0.30 10,03 0.33 +0.03IOB/B030 _+Oo4 0.3 

"B/B 0,70 40.05 0.68 70.06 0.68 T0.06 0.69 40.06 0.68 70.06 0.70 - .06 0.67 ±0.06-

B/C 0.l25140.017 0.222 0.248 0.218 0.251 0.222 0.225 

"2C/C 0.94 +0.03 0.95 +0.04 0.94 +0.04 0.95 +0.04 0.94 +0.04 0.95 *0.04 0.95' +0.04 

13C/C 0.06 ±0.01 0.05 ±0.01. 0.06 ±0. 01 0.05 T0.01 0.06 T0.01 0.05 b.01 o.05 +0.1O 

C/C 1.000+0.036 1000 1.000 T.000 1.000 1.000 1.000 

14N/N 0.43 -+0.09 0.62 +0.03 0.61 +0.03 0.62 +0.03 0.61 +0.03 0,61 +0.03 0.62 0.03 

./0.57 +0.07 0.38 0.05 0.39 ±0.05 0.38 +0.05 0.39 ±0.05 0.39 0.05 0.33 40.05 

N/C 0.271+0.024 0.247 0.260 0.243 0.263 0.243 0.247 

* With Corrections ACDF (see table 111.3) 
0* :OBe Stable 

+ Cross Section lodiflcoatiol Schemes: a - pure somiempirical forT ls 
b - semi.cpirical formula nornalized to results of Lindstron at al. (1975) for C & 0 primaries 

(see table 111.4) 
c - seW.icupirica formula noxntolzed to results of Lin dltom et al. (1975) for C & 0 prir.aris 

(see table 111.4) and data given by Silberberg ec at. (1973) for 11B ­ "'Be (correction 
factor 0.59), 11B. 10B (2.33), and 5'Fe -

11 
B (0.69) 

+-FError limits on model calculations estimated assuming 10% uncertainties on all total cross sections and 15% uncertainty on partial cross sections 

0 0. 

-.4 
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and performed the same calculation at a lower energy (E = 600 MeV/nuc)
 

which is more appropriate to the present application. Table IV.3 shows
 

the effects of varying various parameters involved in this calculation.
 

2
The specific examples include a leakage pathlength Xe = 6 g cm- (rather
 

than 5 g cm-2), an interstellar medium consisting of pure H (without the
 

10% He admixture), a propagation energy E = 1200 MeV/nuc (rather than
 

600 MeV/nuc), and the correction of the partial cross sections used for
 

discrepancies with the experimental, values tabulated by Silberberg and
 

Tsao (1973) in cases not covered by the data of Lindstrom et al. (1975a).
 

From the talbe, it is clear that the relative abundances predicted for the
 

Be isotopes are quite insensitive to the above variations. By comparing
 

the predicted and observed abundances of 10Be, we estimate that (55 + 21)%
 

of the l0Be survives in the cosmic rays. Although the error here is
 
10
 

estimated solely from the statistical errors on the observed Be abund­

ance as assigned by the maximum likelihood fit, it would not be signifi­

cantly increased if cross section uncertainties were included. One thus
 

has
 

J-flw) ." A . 

12(IV.21)
 S 

If the leakage pathlength is Xe 5 g cm- 2 , we now have from equation
 

IV.17 

4/ (IV.22) 

and, consequently,
 

= x os / r (IV.23) 

http:12(IV.21
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Since the leakage pathlength is a rather uncertain parameter (even within
 

the present data, as may be seen from figures IV.l and IV.2), the explicit
 

dependences of n and Te on Xe are shown in figures IV.3 and IV.4, respect­

ively. As can be seen from these figures, the above conclusions are not
 

substantially altered by reasonable fluctuations in the leakage path­

length, ke"
 

C. Conclusions
 

The results given by equations-IV.22 and IV.23 lie between the
 

extremes of the disk and halo models, as discussed in section A. This
 

is to be expected. However, the result is substantially more consistent
 

with the disk model than the halo. In fact, if there is a halo at all,
 

the present result seems to indicate that it should be substantially
 

flattened.
 

This interpretation of the experimental data is obviously model
 

dependent. In particular, in writing equation IV.10 it has been assumed
 

that the gas densities encountered by the cosmic rays along their trajec­

tories through interstellar space is everywhere constant. If this is not
 

the case, then the density of interstellar gas, n, should be replaced in
 

the model by
 

ni \TyV LUzV56 (Iv.24) 

Thus the density given by equation IV.22 is not a simple average of the
 

gas density over the confinement volume, but rather a weighted average
 

with the cosmic-ray intensity as the weighting function. This weighted
 

average reduces to a simple average in cases where there is no correlation
 

between cosmic-ray intensity and gas density.
 

http:equations-IV.22
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Figure IV.3. Matter density in cosmic-ray confinement volume as a function of mean escape pathlength.
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Models which have been constructed to explain the gamma-ray emission
 

of the galactic disk generally require a positive correlation between
 

cosmic-ray intensity and gas density. Such a correlation would tend to
 

make F somewhat larger than a simple average over the confinement volume
 

of the gas density. Consider for example the model of Bignami et al.
 

(1975), in which the cosmic-ray intensity is taken to be proportional to
 

the gas density. In this model, the confinement volume is taken as the
 

galactic disk, which is considered approximately equally divided between
 

spiral arms and interarm regions. The gas densities in the spiral arms
 

are taken as roughly a factor of two greater than those characteristic
 

of the interarm regions. We then estimate that the weighted average gas
 

10 
density, W, is only a factor of - greater than the simple average of the 

gas density over the galactic disk. Thus it seems probable that U does 

not deviate significantly (at the current level of resolution) from a 

simple average of the gas density. -

If the relative composition of the cosmic rays (as opposed to inten­

sity) is correlated with gas density, then the weighted average gas density, 

r, should also depend upon the cosmic-ray species from which it is deter­

mined. This dependence would also be reflected in the pathlength Xe = 

<m> McTe. Such variations in 5, however, should be no more than those
 

estimated above for intensity variations, and thus are almost certainly
 

negligible for purposes of interpreting the present data.
 

In general, the cosmic-ray source function used in the leaky box
 

model, Qi(y), represents an average over space and time of the true source
 

function, Q (y,t,t). Thus the true source function, which is almost
 

certainly a highly discrete function of space and time, is replaced in the
 

leaky box model by a constant in space and time. As we have already
 



noted, ;his is generally a good approximation as long as none of the
 

discrete sources are too close to the observer in space and/or in time.
 

However, if a significant part of the pathlength, X., is traversed in a
 

high density region near the source (e.g. a supernova envelope), we
 

would expect to observe a smaller surviving fraction of 10Be than if the
 

density were constant everywhere along the typical cosmic-ray trajectory.
 

Thus both the mean escape time, Te, and the gas density in the correspond­

ing confinement volume, n, would tend to be overestimated under such
 

conditions.
 

If the cosmic-ray electron component is assumed to be produced
 

by the same sources and to be confined to the same "leaky box" as the
 

nuclear component, then the mean escape time, Te, should be reflected
 

in a break observed in the electron energy spectrum. So far, no such
 

break has been seen in observations extending from roughly 10 GeV (below
 

which the spectrum is significantly affected by solar modulation) to about
 

1000 GeV. The interpretation of this observation is substantially clouded
 

by the differences among the results reported by the various experimenters,
 

which are significantly outside of the quoted experimental errors.
 

Observation3 of the electron energy spectrum have been reported described
 

as power laws with spectral indices ranging all the way from - 2.7 (which 

would be consistent with the nuclear component) to - 3.4. Until the 

experimental situation is improved, it is not clear that observations of
 

the electron spectrum can be used to place significant constraints on the
 

mean confinement time of cosmic rays, Te. Furthermore, such a result
 

requires additional assumptions before it can be related to the parameter,
 

Te, which has been estimated in the present thesis. In particular, one
 

generally assumes that the sources, confinement volume and mean escape
 



a3a 

time of the electron component are identical to those of the nuclear
 

component, none of which is established. For further details on this
 

problem, see Meegan et al. (1975) and references therein.
 

Let us now consider the resolution of the present experiment,
 

and how it might be improved. The most obvious possibility would be to
 

perform the same experiment at the top of the atmosphere. This would
 

improve the uncertainty on the 10Be abundance at the top of the atmos­

phere from 40% to - 25%. The improvement would not be as marked for other
 

isotopes, however, since the fraction of the observed abundances of these
 

isotopes originating in atmospheric interactions of heavier species is
 

generally much smaller than for 10Be. One might also hope to benefit
 

from improved statistics due to the increased exposure time of an exper­

iment done at the top of the atmosphere (i.e. a satellite experiment).
 

The alternatives discussed above decrease the mathematical
 

uncertainty in the result without a corresponding increase in the mass
 

resolution of the experiment. Thus the credibility of the result may
 

not in fact be significantly improved. The most important possibility
 

for improving the actual mass resolution of the experiment would be an
 

improved calibration of the various detectors. Such a calibration would
 

most probably be performed at an accelerator and include the internor­

malization of the detector responses, a detailed investigation of the
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shapes of the response functions of the various detectors for various
 

particles of various incident velocities, and the mapping 6f positional
 

variations in detector response. A knowledge of the shape of the response
 

function is particularly important if we are to improve the credibility
 

of the present result; specifically, the question of a possible asym­

metry in the mass distributions for Be isotopes urgently requires
 

resolution. The mass resolution may also be improved by as much as a
 

factor of two by going to completely unsaturating scintillators (if such
 

can be found). This would also help to improve the situation with
 

respect to the internormalization of the detectors, since the response
 

functions of such scintillators would be expected to be more nearly
 

uniform. We see from the above discussion that there is a large potential
 

for achieving improved mass resolution from experiments of this type.
 

Furthermore, only a small part of this potential need actually be
 

achieved before a valley begins to separate the 9Be and 10 Be distri­

butions, as discussed in Chapter II. Such a situation would, of course,
 

markedly improve the credibility of the present results.
 

Ideally, future experiments should be done at higher energies in
 

order to minimize the importance of corrections for solar modulation.
 

Energies I GeV/nuc would be most advantageous if achievable. One
 

possibility for an isotope experiment operating at such energies would
 

be to measure the parameters rigidity, Cerenkov radiation and :',as
 

was suggested in Chapter II. This has the advantage of not requiring
 

that all a particle's energy be absorbed before the measurement can be
 

carried out. The correction for interactions in the detector is accord­

ingly less severe. On the other hand, experiments where the particle
 

must be stopped in the experiment suffer increasing losses to interactions
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in the detector as particle energies increase, and their statistical
 

weight is accordingly reduced. In addition, all classes of experiment
 

must contend with energy spectra which are rapidly falling with increas­

ing energy. Thus, experiments to directly measure the abundances of
 

rare isotopes such as -0Bein the cosmic rays at high energies (E )
 

i GeV/nuc) may not be practical without long exposure times such as
 

might be obtained in satellite experiments, for example.
 



APPENDIX A 

DETECTOR CALIBRATION
 

This appendix deals with the detailed calibration of the instru­

mental response using in flight data. In order to do this, it is re­

quired to determine the gain and zero offset (aij and bij) associated
 

with each gain range of each pulse height analyzer (i.e. se6 equation
 

111.8), and the correction function (Mi) for positional and temporal
 

variations in detector response.
 

1. Gain Change Factors. The output of the pulse height analyzers
 

is an integer pulse height together with a two bit code to indicate the
 

appropriate gain range. The use of automatic gain switching was re­

quired in order to obtain a dynamic range of 105. This necessitated
 

the reconversion of the resulting pulse heights to a linear scale before
 

the reduction of the data could proceed further. Assuming the pulse
 

height analyzers and amplifiers are linear in all gain ranges, we recall
 

equation 111.8:
 

b(A.l) 

Here H. is the final, linearized pulse height characterizing the response
 

of detector i, and is the same quantity as defined by equation 111.2.
 

,j denotes the unnormalized pulse height from the jth gain rangeof
 

detector i, while aij and bij refer to the gain and zero offset required
 

to normalize it, respectively. The usual procedure would be to put the
 

bij = 0, then observe that at a gain change boundary the same pulse
 

height is measured twice, once in each of two different gain ranges:
 

SP) .Qt) (A.2) 
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TABLE A.I: Gain Change Factors 

aLiii 

DETECTOR 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

D 0.142 3.96 4.14 4.00 --------- ---- 2.99 0 0 0 ----

D2 0.179 8.58---- ----..... .... -.... 0 0- -------------- ------

D3 0.142 0.389 3.13 23.4 0.188 0.755 3.02 3.30 -3.86 1.61 3.03 -32.82 -4,20 

D4 0.394 2.55 2.40 2.52 2.16 2.50 .... 8.48 2.14 -1.99 1.07 1.89 -0.76 ---­
d 

D5 0.420 2.24 2.72 2.22 2.39 2.25 --.. 10.05 1.89 -1.67 0.64 1.89 -0.84 ---

D6 0.367 2.34 2.56 2.28 2.25 2.25 ---- 8.31 4.63 -1.75 1.47 1.78 -0.79 ----

D7 0.0923 2.37 2.44 2.42 2.09 2.35 ---- 16.14 1.26 0.27 2.81 2.89 -1.23 

D8 0.0983 2.30 2.63 2.28 2.23 2.31 ---- 19.13 1.84 -1.15 0.67 3.37 -1.46 

D9 0.1117 2.45 2.43 2.39 2.05 2.11 ---- 3.48 3.68 0.23 0.13 5.12 -2.43 ----

DIG 0.1040 2.28 2.68 2.20 2.34 2.16 ---- 13.27 1.65 -1.23 0.56 2.85 -1.32 ----

Dl1 0.1037 2.30 2.53 2.47 2.09 2.38 ---- 10.13 0.17 1.28 -1.36 2.57 -1.08 ----

D12 0.1070 2.34 2.67 2.21 2.30 2.09 ---- 17.66 2.86 -2.00 1.02 2.66 -1.27 

D13 0.0986 2.48 2.42 2.52 1.86 2.60 ---- 7.30 2.06 -0.79 0.54 5.00 -1.92 ----

D14 LO.0942 2.18 2.89 2.04 2.58 1.99 ---- 6.40 2.16 -0.86 0.65 2.42 -1.22 ----

Hk: 
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_ = j avI;(A. 3) 

In the above, we note that gain ranges are numbered with decreasing gain.
 

The aij for detector i are thus all determined in terms of ail , which is
 

recognized as the normalization constant for detector ,.and will be
 

determined elsewhere. This is the procedure actually used for detectors
 

DI, D2 and for the highest gain change of D3 (where the 256 channel
 

analyzer has saturated, and no longer overlaps the 1024 channel analyzer).
 

For the 1024 analyzers, the aij are thus determined to a maximum pre­

cision of about 0.5%. If the zero offsets, bij , are of the order of 5
 

channels, then additional errors of the order of - 2% could be intro­

duced at each gain change. The a,. resulting from the analysis just
 

described, as applied to detectors DI, D2, and the last gain change of
 

detector D3 are tabulated in table A.1.
 

A substantial innovation included in the current experiment was
 

the use of dual pulse height analyzers with staggered gain ranges on
 

detectors D4-14 and, to some extent, on D3. This offered the advantage
 

of being able to determine both the aij and the bij much more accurately,
 

in general, than would be possible using the method just described. In
 

addition, this made it possible to detect and correct for noise, bit
 

errors and other problems related to the amplifiers and pulse height
 

analyzers at a very early stage of the data reduction. If we again
 

order the gain ranges (from either pulse height analyzer) with j increas­

ing as gain decreases we have, from equation (A.1),
 

H (A.4) 
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+ ( A .5 

for the region where the gain ranges j and j+l overlap. Thus the gains,
 

a j. and zerb intercepts, bij, can all be determined in terms of ail
 

and bil, which are recognized as the absolute normalization and zero
 

intercept parameters for detector i (as a whole), and will be determined
 

later. Figure A.1 shows a representative plot of the type just described,
 

in this case for Hi and H,2. In most cases, we feel the relative gain
 

factors, aij,have been determined to within - 0.1%, while the zero off­

sets, b j, have been determined to within - 0.2 channels by this approach.
 

The detectors D8 and D9 show the presence of substantial amounts of
 

noise, probably originating in the spark chamber, and are accordingly not
 

as well calibrated. Figure A.2 shows H' versus R' , which is by far

92 ras9,.wihisb a
 

the worst case. In addition to noise, diagrams such as figure A.l are
 

sensitive to bit errors, which appear as points well off of the cali­

bration line. Nonlinearitieslin the amplifiers can also be detected
 

and corrected. Finally, the use of an additional pulse height analyzer
 

for each detector increased the resolution immediately after a gain
 

change by a factor of about 2.3 over the case where only one pulse
 

height analyzer is used for each detector. This follows since the
 

resolution is determined by the largest of the two pulse heights which
 

(after the first gain change) is never less than about 90; for the same
 

signal, the smaller pulse height (i.e. the one which has just gain changed)
 

is about 40.
 

The pulse heights from the two pulse height analyzers for detector
 

i, H'j and H11 (j+I) were combined to obtain a single value, H., according
 

to the relation
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Hj-Vd -t -(A.6) 

Here it is assumed the resolutions of the pulse height analyzers (in
 

channels) are given by
 

consant(A. 7) 

so that we have
 

0­ --- H (A.8) 

from equation A.I. This is equivalent to taking the normal from the
 

experimental point (H>i, H'( ) to the appropriate calibration line.
 
13 i(j+l)
 

The resolution of H. is given by
 

14t ~ j -~, H (A.9) 

<where aij+l) e_2.4 has been assumed, Putting H 0.5 channels, we 

have 

H. - 6 a (A.10) 

where j is the gain range giving the largest pulse height, II, 

corresponding to Hi -


Events which lie clearly off the calibration are tagged and,
 

usually, thrown out in the analysis. This is intended mainly'to remove
 
( 

events with bit errors. The resolution for doing this is generally a
 

factor of about 2.4 worse for the larger of the two pulse heights,
 

because of the slope of the calibration line.
 

For detector D3, all but the last gain change of the 1024 channel
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analyzer were calibrated in the fashion just described. Since the last
 

gain range of the 256 channel analyzer had saturated before the last
 

gain change of the 1024 channel analyzer was reached, this last gain
 

change factor was determined by the same procedure as for DI and D2.
 

The values of ai and b..j obtained by the above procedure for detectors
 

D3-14 are tabulated in table A.1,
 

2. Detector Nonlinearities. The amplifiers used (especially­

with the 256 channel analyzers) were known exhibit some nonlinearities.
 

A pulser calibration of a representative amplifier - pulse height
 

analyzer combination is shown in figure A.3. It is apparent from the
 

figure that, above channel 32 the response is nearly linear with the
 

nonlinearity being manifested mainly in a large zero offset. For this
 

reason, the calibration lines (e.g. figure A.1) were fitted neglecting data
 

below channel 32 in either pulse height analyzer. The nonlinearities
 

have otherwise been neglected. This can only significantly effect the
 

analysis for extremely low pulse heights in the first gain range (i.e.
 

< 15 x mininmm for D4-6 and < 5 x minimum for D7-14).
 

3. Detector Normalization. Originally it had been intended to
 

use highly relativistic carbon and oxygen triggering the experiment in
 

the penetrating mode to determine the detector normalization factors,
 

a,,, and to provide a first order estimate of the zero offsets, bil. 

This could be done for example by selecting b1 1 = 0, then making a plot 

of the relativistic peaks (times minimum units) of various elements in
 

Dl against their expected (after normalization) values for an ideal,
 

non-saturating scintillator. Because of scintillator saturation (non­

linearity) effects which increase with increasing charge, the result would 

be a curve asymptotic to a straight line through zero in the limit Z - 0. 
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The slope of this line would then be identified with the parameter all.
 

The remainder of the scintillation detectors, D3-14, would then be
 

easily normalized by adjusting the a.. and b.. so that both ielativistic
 

carbon and oxygen fall in the same channel as for DI. The Cerenkov
 

detector was indeed finally normalized on this basis (i.e. by setting
 

relativistic carbon equal to 36 x minimum and choosing b2 1 = 0); however, 

it was found that the above procedure could not be directly applied to
 

the normalization of the scintillation detectors.
 

When the various scintillation detector pulse heights (unnormal­

ized) were plotted against the Cerenkov, it was noticed that the scintil­

lator response to the most highly relativistic particles increased as
 

one went deeper into the stack. This was attributed to very high energy
 

delta rays which penetrated several detectors. Thus it was decided-to
 

use for the normalizations semi-relativistic particles whose velocities
 

were not sufficient to give rise to such high energy delta rays. In
 

order to use these particles, however, one must correct for the slowing
 

down of the particles as they penetrate into the stack. This was done
 

by first determining a particle's range from the top of the Cerenkov
 

detector, R2 , from equation 111.6:
 

1) ZZ'Tsec&I1?, zs c­
(A.11)
 

-__ = ( I2 I 

Here the range-energy tables (Barkas and Berger, 1964) are used to
 

relate the range to the velocity, together with the assumption that mass 

and charge are related according to A = 2Z (this is excellent for'C, 0, 

'Mgand Si; in any case, the corrections are small enough that the 
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departures from this relation enter as second order terms, and may be
 

neglected). The approximation in equation A.l1 is that the particle
 

does not slow down significantly in traversing the Cerenkov radiator, D2;
 

this is not required for the analysis. The parameter C' is unity for
 
2
 

highly relativistic particles, and zero for particles which emit no
 

Cerenkov light. If the rate of radiation of Cerenkov light changes
 

significantly over the Cerenkov detector, the solution of A.l1 is by an
 

iterative procedure.
 

The quantity
 

atee (A.12) 

51zT, &- 0 

is now evaluated for each detector, i. The particles are selected for
 

the analysis according to 0.1 C' ! 0.8, which is essentially the
 
1
 

restriction to semi-relativistic particles mentioned above. It is then
 

noted that a plot of C against 1/2 (HI + H3) shows a very nearly linear
 

behavior (for a given charge) in this region, as is shown in figure A.4:
 

cj- huJ~w4~(A.13) 

It is assumed that Hi and Ci should be related by exactly the same co­
1.
 

efficients ( and ) if the detectors are all properly normalized, 

i.e.
 

Using equation A.14, the al and bil for all scintillation detectors
 

may be related to those of one standard detector by plotting
 

(A.15)
 
-H 

http:huJ~w4~(A.13
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against '2" The standard detector gives the optimal values for the 

parameters )and Z . As the analysis is described above, this role would 

be played by the combination of.Dl and D3 (see equation A.13). However, 

because of the unique response functions characterizing these two 

detectors, it was preferred to use D4 as the standard detector. The 

normalization constant a4 l was determined from the relation (see 

equation 111.3). 

h (A.16) 

where"the average is over all data with C' > 0.8 and

2
 

S(A.17)
 

has been assumed for the normalization of the mapping function, M.. The
1
 

normalization is then obtained from the condition
 

(A.18)
 n~d~ 

so that
 

1 K C-t-,-- - ,e2 2 o-.-(A.19) 

41.
 
if we choose b41 = 0. This is shown in figure A.5. As is evident from
 

the figure, the missing data from the.light (1:Z53) nuclei (which should
 

have been admitted in the calibration mode) would have been very useful
 

for this purpose.
 

Because of scintillar non-linearities which varied from detector
 

.to detector, it was found that the interdetector normalization plots
 

http:o-.-(A.19
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Figure A.5. Absolute calibration of D4. See fig. A.4
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just described did not always display linear correlations over the
 

entire range of charges. In fact, the deviations from linearity became
 

marked for highly charged particles, and especially for iron. It was
 

therefore decided to use only particles with Z < 10 in the normalization.
 

The normalization of detector responses obtained by the.procedure
 

just described are throught to be accurate to within 2% for most cases.
 

This is determined primarily by the available statistics; consequently,
 

the accuracy is reduced for detectors deep in the stack where there are
 

less particles available for the calibration.
 

4. Positional and Temporal Nonuniformities. The variations in
 

response of each detector (except the Cerenkov) as a function of position
 

were corrected using a polynomial fit to the response of the detector
 

to relativistic (C- 0.8) carbon and oxygen nuclei. If we now assume
 

T
 
that Mi(.i,t) is separable into a time dependent part., Mi(t), and a
 

position dependent part, Mi(Lri), we have from equation 111.3
 

iKip4~s~)~ (A.20)KtHCs& 4 ,j> 0 r (13~I 

One then obtains
 

i-I.,-z? __ _ _ __ _ _ _ ___9__ _ _ (A.21) 

where
 

(A.22)
>i-

S 0.8 

has been assumed. It has also been assumed that the relative fluctuations
 

P

in '. and T. are small.
 

The function is approximated by an 11 x 11 polynomial in x.11 



r ex and 3i= ±ri ")
a i II " 


2 M.<1>;_ T ! (A.23) 

whose coefficients imjk are determined by a maximum likelihood fit.
 

Since there are few experimental points near the edges of the scintil­

lators, an imaginary border was introduced around each scintillator with
 

dummy data in order to prevent the rapid divergence of I? near the edges.
 

The number of points available for fitting (equation A.23) decreases by a
 

factor of 2.5 as one goes from DI to D14. Hence the accuracy of the map
 

obtained for a detector decreases with increasing depth of the detector
 

p

in the stack. The resolution of the fit (equation A.23) to Mi thus 

varies from a 0.4% for DI to a - 1.5% for D14. Figures A.6 and A.7 

present contour diagrams of the response of DI to relativistic carbon and 

oxygen nuclei (x minimum units), and the map fit to the data, respectively. 

The effectiveness of the map in correcting the DI response may be seen 

by a comparison of figures A.4 and A.8. 

Slow drifts of the responses of the various detectors were dis­

covered by observing the relativistic carbon and oxygen peaks as functions
 

of time. It was found that the fractional deviations of oxygen and carbon
 

peaks from their optimum values were the same, so that there was no need
 

to distinguish the two cases. This meant that there were no (observable)
 

zero offsets involved, and we had only to determine gain variations of
 

T
 
the various detectors with time. This is corrected by the factor i.
 

which is normalized so that
 

< > (A.24) 
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in order to preserve detector normalizations. The function M4 is then
 

determined by
 

- (A.25) 

The Mi are linearly correlated, as is shown in figure A.9 for the case 

of 1(t) and Mi(t). One thus has 

T T TM - /(A.26) 

N'(t) are determined in terms of M(t), the coefficients T

and all the 

and pT. being determined by least squares fits'to data "such as that of 

figure A.9. Using the and 6T,M is then approximated by a least 

squares spline technique (Thompson 1973) using equation A.25 and data 

from all detectors. The result is shown in figure A.10, together with 

the corresponding temperature profile in the gondola. There seems to be 

some correlation between the two. The normalization condition'(equation 

A.24) is apparently not satisfied in this figure since the initial phases 

of the data reduction were carried out using only a fraction of the 

available data which was taken near the end of the flight. The normal­

izations were then all based on this sample of the data, even when the 

analysis was expanded to include the entire data set. Within experimental 

error, the function Ij
1 
was parametetized using a least squares spline 

fitting routine (Thompson 1973). Since fluctuations in the data-were in 

general very much larger than the effects we were trying to measure, the 

data supplied to the fitting routine consisted of - 10 miniute averages 

of the actual data. 

Because of the statistics involved, we have been able to
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accurately determine Ni only on time scales greater than about one
 

hour. Although it is conceivable that variations in response on shorter
 

time scales may be present (such as might be expected from a rotation
 

of the gondola in the earth's magnetic field, for instance), we have no
 

way to see or correct for these.
 

5. Detector Thicknesses. The thickness of each detector was
 

measured on a two inch grid after the flight. The thickness function,
 

Ti; was then approximated by linear interpolations between these points.
 

This correction was necessary because of the large fluctuations in the
 

thickness of certain detectors--up to 10% in extreme cases. As an example, 

we have listed in table A.2 the thicknesses of the various detectors at 

each of their four corners. We feel the detector thicknesses are known 

to "- 0.1%. 
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TABLE A.2 

Thicknesses of Detectors D4-14 at Corners (in.)
 

A B C D 

D14 0.388 0.352 0.356 0.377 

D5 0.377 0.361 0.355 0.395 

D6 0.366 0.361 0.355 0.371 

D7 1.344 1.431 1.367 1.338 

D8 1.442 1.362 1.366 1.388 

D9 1.429 1.345 1.353 1.351 

DIO 1.356 1.434 1.381 1.371 

DI1 1.284 1.335 1.348 1.351 

D12 1.325 1.376 1.369 1.498 

DI3 1.387 1.390 1.399 1.615 

D14 1.388 1.619 1.395 1.374 



APPENDIX B
 

DEFINITIONS OF SYMBOLS USED IN THIS THESIS
 

aij = gain factor for jth gain range of detectoi i. 

Aij = gain factor for jth gain range of detector i relative to

(j - I)th gain range.
 

A = mass number. 

Ai = mass deduced from the experimental point (Li,Ri). 

Ai(B) = mass as a function of velocity and dharge as deduced from the 

observation of one of the observables i = E, R, P or 0. 

As =mass characterizing a standard response curve. 

bij = zero offset for jth gain range of detector i. 
hij = zero offset for jth gain range of detector i relative to 

(j - I)th gain range.
 

B =magnetic field intensity.
 

BD- 10-6 gauss = magnetic field intensity characteristic of the

galactic 
disk.
 

BH 10-8 gauss = magnetic field intensity characteristic of the
 

galactic halo.
 

"I 
c= 2.998 x 1010 cm sec = speed of light.
 

C = Cerenkov pulse height.
 

Ci = value of C' expected if detector i is actually a Cerenkov
 
detector of the same thickness.
 

ACAtmos = atmospheric correction factor for particles of mass A and
 
Z charge Z.
 

ACE = correction factor for energy windows for particles of mass A 
Z and charge Z. 

ACInter = 
correction factor for losses to interactions in the detector

Z (including the gondola) for particles of mass A and charge Z. 

AD ± atmospheric propagator matrix (= weighted slab propagator 

matrix). 

LBD = leaky box propagator matrix. 

SD = slab propagator matrix. 

170
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= unit vector orthogonal to z directed towards electronics 
package. 

ez x &x­

ez = unit vector pointing towards zenith. 

2
AE() = (7-1) mc = kinetic energy of a particle of mass A, charge Z 

Z and velocity 8. 

= ionization energy loss or stopping power of a particle of
 

Zk mass-A, charge Z and velocity .
 

f(X) = distribution of atmospheric depths.
 

1
I- = mean free path for production of species j from spallation

gij 
 of species i.
 

G = geometrical factor.
 

I
 
hi = mean free path for destruction of species i.
 

Hcal  
 = calibration pulse height for detector i as predicted from
 
1 Cerenkov and D4. 

A
 
ZHi(p) = energy deposited in detector i by particle of mass A,
 

charge Z and velocity p.
 

H~j = (integer) pulse height from jth gain range of detector i.
 

HR = ratio of light observed in last two detectors to that
 
observed in last detector.
 

I(s) s 12.5Z eV = average ionization potential of atom of atomic
 
number Z.
 

3 = differential energy intensity of species i. 

i =-Ji averaged over space.
 

P
 

i = differential rigidity intensity of species i.'
 

3i(X) = flux of species i observed under a slab of thickness X.
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J k(X) = flux of species i observed under a slab of thickness X
 
which has undergone exactly k interactions.
 

K = diffusion coefficient.
 

KD 1028 cU'2 sec -I = diffusion coefficient characteristic of the 
galactic disk. 

2 1029 2 - IKH cm sec = diffusion coefficient characteristic of the 

galactic halo. 

K= rigidity dependent part of diffusion coefficient K=SKrKr. 

K = radial dependent part of diffusion coefficient K=pKrKpr 

AL i() = total light observed due to particle of mass A, charge Z and
 

velocity 0 coming to rest in detector i.
 

A dLi(5]= differential saturation function for response of scintillator 

z A i to a particle of charge Z, mass A and velocity $. Usually 
taken to be independent of mass and detector number. 

m mass, 

M = 9.11 x 10-28 g = electron mass.
 
e 

m = 1.672 x 10- 2 4 g = proton mass.p 

x minimum unit = pulse height expected from a relativistic (0=1) particle
 
of unit charge and mass which traverses the detector
 
along the same trajectory as the particle in question.
 

Mi (i,t ) = factor describing positional and temporal variations in
 
detector response.
 

Hri ) = position dependent part ofM i - 1 i 

X T.(t) = time dependent part of M. = M. MT.

1 I i I
 

n = number density.
 

n = index of refraction.
 
-3 

n e 1 atom cm = atomic number density characteristic of the
 
D galactic disk.
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CR 

nU = density of cosmic rays of species i 

10- -3 = atomic number density characteristic of theH 2! 2 atom cm 
galactic halo. 

'tt = total number of events observed corresponding to mass A and 
Zt charge Z. 

AN(A4 ) = number of events observed in dA' about A' corresponding to 
Z an isotope of actual mass A-and charge Z. 

dE 
0 = (numerical) observed value of the observables i = E, d-, R, 

P or C.
 

A dE
A0(W)= functional dependence of one of the observables i = E, dx 

R, P or C on Z, A and d 

p = 78mc = momentum. 

PCRS = power of the cosmic-ray sources. 

A(R) = rigidity of a particle of mass A, charge Z and velocity B.Z
 

= source function for species i (including nuclear interactions). 

Qi = source function for species 1 (excluding nuclear interactions). 

S s 
Qi = Qi averaged over space. 

r = heliocentric radius. 

r = = gyroradius of a particle of momentum, p, and charge Z,
C ZeB2 in a magnetic field, B. 

r = 2.818 x 10"13 cm = classical electron radius. 

H s 12 kpc = radius of galactic halo. 

= positional vector with respect to the geometrical center ofri 

detector i.
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Ri = range measured from the top of detector i. 

R() = range of a particle of mass A, charge Z and velocity .
 

S= surface vector (orthogonal to surface, pointing out).
 

t = time.
 

T (ri = thickness of detector i as a function of position.
 

-1

V 400 km sec solar wind velocity. 

V = volume 
-3 

w a 1 eV cm = local cosmic-ray energy density. 

ZD a 250 pc = half thickness of the galactic disk. 

Z = charge or atomic number. 

o= coefficient 

T vesu T
i = linear correlation coefficient (slope) for M versus .1 


= velocity relative to that of light. 

T Tes T
 
Pi zero intercept of linear approximation to Mi versus Ml.
 

0o=oi intercept parameter inilinear approximation to A.( ).
 

1 / 2 
= (1- 2)- = relativistic Lorentz factor. 

mass resolution scale factor for contribution to total
 

13 resolution from resolution of the measurement of the
 

observable i = E, dE R, P or C in a two parameter
 
analysis.
 

a = exponent in power law approximation to range-energy relation. 

10-4 0CR = cosmic-ray anisotropy.

CR
 

= zero intercept of C2 versus j (H1+ H2 ).
 

e = zenith angle (with respect to detector normal). 
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0 

-2=­
ke E 5 g cm mean pathlength traversed by the cosmic rays. 

u = characteristic dimension of a luminescence center. 

= slope of C1 versus W + H 

2 21 2) 

f = mass density. 

= resolution in terms of the standard deviation characterizing
 

an (assumed) gaussian distribution.
 

H 	 = resolution of a pulse height analyzer (in channels).
 

= energy resolution of the jth gain range of detector i due
 
Hij to pulse height analyzer round off errors.
 

k

ai = partial cross section for production of species j from
 

interaction of species i with species k.
 

atot(A Atar) = 	 total inelastic (reaction) cross section for 
interaction of particles of masses A and Atar. 

T - i) = 	mean lifetime against radioactive decay taking species 
j to species i (* denotes "anything"). 

S = azimuthal angle (about zenith).
 

iC R = streaming of cosmic rays of species i.
 
Ii
 



REFERENCES
 

Allan, H.. R., 1972, Astrophys. Letters 12, 237.
 

Alvarez, L. W., and Compton, A. H., 1933, Phys. Rev. 43, 835.
 

Arens, J. F., and Ormes, J. F., 1974, NASA/GSFC document X-661-74-335.
 

Arnett, W. D., 1969, Ap. J. 157, 1369.
 

Badhwar, G. D., and Stephens, S. A., 1975, Conference Papers, 14th
 
International Cosmic Ray Conference, Munich, 2, 639.
 

Baldwin, J. E., 1954, Nature 174, 320.
 

Barkas, U. H., and Berger, M. J., 1964, NASA document, SP-3013,
 
Washington, D. C.
 

Bethe, 11. A., 1930, Ann. Physik 5, 325,.
 

Bignami, G. F., Fichtel, C. E., Kniffen, D. A., and Thompson, D. J.,
 
1975, Ap. J. 199, 54.
 

Bloch, F., 1933, Ann. Physik 16, 285.
 

Bohr, N., 1913, Phil. Mag. 25, 10.
 

Bradt, H. L., and Peters, B., 1950, Phys. Rev. 80, 943.
 

Brecher, K., and Burbidge, G., 1971, Comm. Astrdphys. Space Phys. 3, 140.
 

Buffington, A., Orth, C. D., and Smith, L. H., 1973, Conference Papers,
 
13th International Cosmic Ray Conference, Denver, 1, 225.
 

Burke, B. F., 1967, I.A.U. Symposium No. 31, Radio Astronomy and the
 
Galactic System, edited by H. Van Voerden, Academic, London, p. 361.
 

Cameron, A. G. W., 1973, Proc. of Conference on Explosive Nucleosynthesis,
 
Austin, Texas, p. 3.
 

Casse, M., Goret, P., and Cesarsky, C. J., 1975, 14th International Cosmic
 
Ray Conference, Munich, 2, 646.
 

Cecchini, S., and Quenby, J. J., 1975, Conference Papers, 14th Inter­
national Cosmic Ray Conference, Munich, 3, 911.
 

Colgate, S. A., 1969, Conference Papers, llth International Cosmic
 
Ray Conference, Budapest, 1, 353.
 

Dauber, P. M., 1971, "Isotopic Composition of'the Primary Cosmic Radiation",
 
edited by P. M. Dauber (Lyngby, Denmark), p. 89.
 

176
 



177 

Dwyer, R., and Meyer, P., 1975, Conference Papers, 14th International
 
Cosmic Ray Conference, Munich, 1, 390.
 

Dickinson, G. J., and Osborne, J. L., 1975, Conference Papers, 14th
 
International Cosmic Ray Conference, Munich, 2, 665.
 

Ehrmann, C. H., Fichtel, C. E., Kniffen, D. A., and Ross, D. W., 1967,
 
Nucl. Instr. and Meth. 56, 109.
 

Fisk, L. A., and Axford, W. 1., 1969, J. Geophys. 74, 4973.
 

Fisk, L. A., 1971, J. Geophys. Res. 76, 221.
 

Fisk, L. A., 1975, Conference Papers, 14th International Cosmic Ray
 
Conference, Munich, 3, 905.
 

Frier, P., Lofgren, E. J., Ney, E. P., Oppenheimer, F., Bradt, H. L.
 
and Peters, B., 1948, Phys. Rev. 74, 213.
 

Garcia-Munoz, M., Mason, G. M., and Simpson, J. A., 1975, Conference
 
Papers, 14th International Cosmic Ray Conference, Munich, 1, 325.
 

Garcia-unoz, M., Mason, G. M., and Simpson, J. A., 1975a, Conference
 
Papers, 14th International Cosmic Ray Conference, Munich, 1, 331.
 

Garcia-Munoz, M.., Mason, G. M., and Simpson, J. A., 1975b, Ap. J. 202,
 
265.
 

Ginzburg, V. L., and Syrovatskii, S. I., 1964, "The Origin of Cosmic
 
Rays", Permagon Press, New York.
 

Gleeson, L. J., and Axford, W. I., 1968, Ap. J. 154, 1011.
 

Gold, T., 1968, Nature 218, 731.
 

Golden, R. L., Adams, J. H., and Deney, C. L., 1974, Ap. J. 192, 747.
 

Goldreich, P., and Julian, W., 1969, Ap. J. 157, 869.
 

Goldstein, M. L., Fisk, L. A., And Ramaty, R., 1970, Phys. Rev. Lett. 25,
 
832.
 

Greiner, D. E., 1972, Nuc. Inst. and Meth. 103, 291.
 

Gunn, 3. E., and Ostriker, J. P., 1971, Ap. J. 165, 523.
 

Hainebach, K. L., Norman, E. B., and Schraum, D. N., 1975, preprint,
 
University of Chicago.
 

Hayakawa, S., Ito, K., and Terashima, 1958. Proc. Theor. Phys. Suppl.
 
6, 1.
 

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins,
 
R. A., 1968, Nature 217, 709.
 



178
 

Jelley, J., 1958, "Cerenkov Radiation and its Applications", Permagon,
 
New York.
 

Johnson, T. H., 1933, Phys. Rev. 43, 834.
 

Jones, F. C., 1970, Phys. Rev. D2, 2787.
 

Juliusson, E., 1975, Conference Papers, 14th International Cosmic Ray
 
Conference, Munich, 1, 355.
 

Juliusson, E., and Meyer, P., 1975, Conference Papers, 14th International
 
Cosmic Ray Conference, Munich, 1, 256.
 

Katz, R., and Kobetich, E. J., 1968, Phys. Rev. 170, 397.
 

Kobetich, E. J., and Katz, R., 1968, Phys. Rev. 170, 391.
 

Lezniak, J. A., and Webber, W. R., 1975, Conference Papers, 14th
 
International Cosmic Ray Conference, Munich, 12, 4107.
 

Lindstrom, P. J., Greiner, D. E., Heckman, H. H., Cork, B., and Bieser,
 
F. S., 1975, Conference Papers, 14th International Cosmic Ray
 
Conference, Munich, 1, 2315.
 

Lindstrom, P. J., Greiner, D. E., Heckman, H. H., Cork, B., and Bieser,
 
F. S., 1975a, Phys. Rev. Lett. 35, 152.
 

Meegan, C. A., and Earl, J. A., 1975, Ap. J. 197, 219.
 

Mewaldt, R. A., Stone, E. C., Vidor, S. B., and Vogt, R. E., 1975,
 
Conference Papers, 14th International Cosmic Ray Conference,
 
Munich, 1, 349.
 

Meyer, A., and Murray, R. B., 1962, Phys. Rev. 128, 98.
 

Moraal, H., and Gleeson, L. J., 1975, Conference Papers, 14th International
 
Cosmic Ray Conference, Munich, 12, 4189.
 

O'Dell, F. W., Shapiro, M. M., Silberberg, R., and Tsao, C. H.,.1975,
 
Conference Papers, 14th International Cosmic Ray Conference,
 
unich, 2, 526.
 

Ormes, J. F., Fisher, A., Hagen, F., Maehl, R., and Arens, J. F., 1975,
 
Conference Papers, 14th International Cosmic Ray Conference,
 
Munich, 1, 245, to be published.
 

Owens, A. J., 1975, Conference Papers, 14th International Cosmic Ray
 
Conference, Munich, 2, 684.
 

Owens, A. J., 1975a, Conference Papers, 14th International Cosmic Ray
 
Conference, Munich, 2, 678.
 

Pacini, F., 1973, Conference Papers, 13th International Cosmic Ray
 
Conference, Deriver, 5, 3285.
 



179
 

Parker, E. N., 1958, Phys. Rev. 110, 1445.
 

Parker, E. N., 1963, "Interplanetary Dynamical Processes", Interscience
 
Publishers, New York.
 

Parker, E. N., 1965, Ap. J. 142, 584.
 

Peters, B., 1963, Pontif. Acad. Sci., Scripta Varia 25, 1.
 

Peters, B., 1974, Abstracts of Papers, Symposium on Measurements and
 
Interpretation of the Isotopic Composition of Solar and Galactic
 
Cosmic Rays.
 

Preszler, A. M., Kish, J. C., Lezniak, J. A., Simpson, G., and Webber,
 
W. R., 1975, Conference Papers, 14th International Cosmic Ray
 
Conference, Munich, 12, 4096.
 

Price, P. B., and Shirk, E. K., 1975, Conference Papers, 14th Inter­
national Cosmic Ray Conference, Munich, 1, 268.
 

Ramadurai, S., and Biswar, S., 1972, Astrophys. and Space Science 17,
 
467.
 

Reeves, H., 1973, Conference Papers, 13th International Cosmic Ray
 
Conference, Denver, 1, 478.
 

Renburg, P. U., Measday, D. G., Pepin, M., Schwalker, P., Favier, B.,
 
and Richard-Serre, C., 1972, Nuco Phys. A183, 81.
 

Rossi, B., 1934, Ric. Sci. 5, 569.
 

Rossi, B., 1952, "High-Energy Particles", Prentice Hall, New Jersey.
 

Schein, M., Jesse, W. P., and Wollan, E. 0., 1941, Phys. Rev. 59, 615.
 

Scott, J. S., and Chevalier, R. A., 197-5, Ap. J. 197, LS.
 

Setti, G., and Woltjer, L., 1971, Nature 231, 57.
 

Shapiro, M. M., and Silberberg, R., 1968, Can. J. Phys. 46, S561.
 

Shapiro, M. M., and Silberberg, R., 1969, Conference Papers, lth
 
International Cosmic Ray Conference, Budapest, 1, 485.
 

Shapiro, M. M., Silberberg, R., and Tsao, C. H., 1973, Conference Papers,
 
13th International Cosmic Ray Conference, Denver, 1, 578.
 

Shapiro, M. M., and Silberberg, P., 1975, 14th International Cosmic Ray
 
Conference, Munich, 2, 538.
 

Silberberg, R., and Tsao, C. H., 1973, Ap. J. Suppl. 25, 315.
 

Singer, S. F., 1958, "Progress in Elementary Particles and Cosmic Ray
 
--...Physics", North-Holland, Amsterdam, 4, 205.
 



180 

Sitte, K., 1972, Lert. Nuovo Cim. 5, 1033.
 

Soutoul, A., Casse, M., and Juliusson, E., 1975, Conference Papers,
 
14th International Cosmic Ray Conference, Munich, 2, 455.
 

Sternheimer, R. M., 1952, Phys. Rev. 88, 851.
 

Sternheimer, R. M., 1960, Phys. Rev. 117, 485.
 

SternheimeryR. M., 1961, "Methods of Experimental Physics", (edited by
 
L. C. L. Yuan and C. S. Wu, academic, New York) 5A, 4.
 

Suh, P. K., 1974, Astron. and Astrophys. 35, 339.
 

Symon, K. R., 1948, Ph.D. Thesis, Harvard University.
 

Taylor, C. J., Jentschke, W. K., Remley, M. E., By, F. S. E., and
 
Kruger, P. G., 1951, Phys. Rev. 84, 1034.
 

Thompson, R. F., 1973, NASA/GSFC document X-692-73-321.
 

Truran, J. W., and Arnett, W. D., 1970, Ap. J. 160, 181.
 

Tsao, C. H., Shapiro, M.M., and Silberberg, R., 1973, Conference Papers,
 
13th International Cosmic Ray Conference, Denver, 1, 107.
 

Tschalar, C., 1968, Nuc. Instr. and Meth. 61, 141.
 

Tschalar, C., 1968a, Nuc. Instr. and Meth. 64, 237.
 

Van Loon, L. G., 1973, Nuovo Cim. 14B, 267.
 

Webber, W. R., and McDonald, F. B.. 1955, Phys. Rev. 100, 1460.
 

Webber, W. R. and Kish, J., 1972, Nuc. Instr. and Meth. 99, 237.
 

Webber, W. R., Lezniak, J. A., Kish, J., and Damle, S. V., 1973,
 
Astrophys. and Space Sci. 24, 17.
 

Webber, W. R., Lezniak, J. A., and Kish, J., 1973a, Nuc. Instr. and
 
Meth. 111, 301.
 

Wenzel, D. G., 1973, Astrophys. and Space Science 23, 417.
 

Yiou, F., and Raisbeck, G. M., 1972, Phys. Rev. Lett. 29, 372.
 




