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In the first semester of the one-year grant, the following tasks have
been performed:
(1) Formulation of a generalized method of conformal mapping to
generate computational grids about cross-sections of actual airplanes,
including the case of wing cross-sections detached from fuselage cross-
sections. The method is entirely analytical and it consists of a repeated
application of the Karman-Trefftz mapping function. Techniques to make
the application of the method automatic have also been developed. The
pertinent FORTRAN codes are ready to be used. The analysis has been
reported in a paper accepted at the Symposium on Numerical Laboratory
Computer Methods in Fluid Mechanics, sponsored by the ASME , in New
York, November 1976, and which is reproduced in full in the following pages.
(2) Formulation of the geometry of a sample case, a simplified arrow-wing
airplane. A FORTRAN code to venerate such a geometry at any number of
specified cross- sections and with a variety of basic parameters has been pro-
vided to NASA on February, 1976.
(3) Formulation of the gasdynamical analysis of a three-dimensional, super-
sonic, inviscid, steady, shockless flow past an arbitrary airframe, 	 using
the computational grids generated by (1). The analysis, which includes special
treatments for body points and bow-shock points, relies on the equations of
motion written in terms of logarithm of pressure, entropy and two angles re-
prising the velocity vector. A FORTRAN code including the sample geometry
of (2) has been prepared and is almost totally debugged. To date, the flow
analysis is considered reliable wherever the cross-section is elliptic in shape.
Further tests are being conducted to determine reliability in more complicated
cases. A detailed report on the analysis is in the process of being written and
it will be submitted to NASA shortly. Results of the calculations will be sub-
mitted for acceptation at the winter meeting of AIAA, January 1977.



CONFORMAL MAPPINGS FOR COMPUTATIONS OF
STEADY. THREE-DIMENSIONAL. SUPERSONIC FLOWS

1. Introduction

Steady, supersonic, three-dimensional, inviscid flows can be

evaluated numerically by marching techniques, which amount to integrating

the equations of motion in successive steps along a fixed axis lying in the

general direction of the velocity vectors. In the numerical analysis of the

flow about a vehicle, we will stipulate that our basic frame of reference is

a Cartesian-(x, y, t) frame, whose t-axis lies along the body and whose

(y, t) plane is the plane of symmetry of the body. The symbol t is used

here in lieu of the conventional z to avoid confusion with z as a complex

variable; the choice of t is suggested by the time-like role which t plays

in the numerical procedure. In fact, at each computational step a set of

initial values is known at a certain number of points on a plane, normal to

the t-axis and a set of final values is to be determined at corresponding

points on another plane, also normal to the t-axis, downstream of the ini-

tial plane; At is the distance between the two planes.
i

For the sake of accuracy, the following conditions should be satis-

fie d:

1) Computing at evenly spaced grid points;

2) Having a set of grid points exactly on the body and on the outer

boundary (the bow shock);

3) Making the grid in each t = constant plane as close as possible

to an orthogonal grid, particularly in the vicinity of the body.

The Cartesian frame being obviously unable to satisfy the second

condition, it is necessary to recast the equations of motion with reference

to another set of independent variables, X, Y and T, such that the X=0



plane represents the body surface and the X=1 plane represents the bow

shock wave; in addition, to satisfy the third condition, the two families

of X= constant and Y = constant lines in any plane normal to the t-axis

should be as close as possible to an orthogonal net, at least in the vicinity

of the body.

If the geometry of the rigid boundaries is simple, the mapping can

be obtained in a straightforward manner. For example, to study the flow

past a nearly circular cone (Fig. la), the equations of motion can be writ-

ten in a cylindrical (p, 8, T) frame, with

X = p cos A

(1) y = p sin A

t = T

Let p = b(A, T) be the equation of the body wall and p = c(0,T) be the equa-

tion of the bow shock. Then, the transformation

X _ 0-b
c-b

(2) Y = 9

T = T

maps the shock layer onto a parallelepiped, a cross section of which is

the rectangle shown in Fig. lb. * In it, the image of the body is a straight

segment, AC (X=0), the image of the bow shock is a straight segment,

DF (X=1) and AD and CF are symmeti y lines (y = ± n/ 2). Lines defined

by evenly spaced values of X and Y are shown in both the computational

and the physical plane. The f quations of motion are, once more, easily

Stretchings in either one of the X- and Y- directions can be used, if
necessary; in which cases Equations (2) are replaced by more compli-
cated expressions. We are not considering such possibilities in the
present paper, since our attention is focussed on the part of the mapping
problem, so far expressed by (1).

2
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recast in terms of the computational variables, X, Y and T.

Note that , if the cross sections of the body and the bow shock were

concentric circles, the grid in the physical plane would be orthogonal, but

this is generally not the case. The lack of perfect orthogonality, however,

does not impair the accuracy of the results to within reasonable limits.

To maintain accuracy in the computation of the flow about an

elliptic cone, with an axis ratio, say, greater than 5, a more sophisticated

mapping is needed. In fact, if we proceeded as in the preceding case, the

grid in the physical space (shown in Fig. 2a) would be grossly inadequate

in the vicinity of the body. Elliptic coordinates should be adopted in each

cross sections , resulting in the grid shown in Fig. 2b.

The construction of such a grid depends on a simple conformal

mapping. Let

(3) z = x + iy

and
(4) C = p eie

be two complex variables, and let

(5) z = T (S + S)
where h is a real number. If A and B are the semi-axes of the ellipse

in Fig. 2b, and

(6) h = (A2 - B2)

the ellipse is mapped onto a circle in the 5- plane, having its center at the

origin and a radius, po , defined by
s

(7) p _ b 
_ (A-B

A+B
o 

The portion of the z-plane exterior to the ellipse is mapped onto the

3



portion of the C-plane exterior to the circle. Obviously, the image of the

shock in the C-plane is another closed line (all the more similar to the

shock itself the farther it is from the body since, at infinity, z tends to

Let it be called the p = c line. Then, one can proceed as before, using

(2).

In what follows, I intend to generalize the concept above, by showing:

1) that simple rules can be found to map the portion of a plane exte -

rior to a given rigid body (or bodies) conformally onto the portion of a plane

exterior to a nearly circular contour, so that the final (non conformal)

mapping described by (2) and illustrated in Fig. 1 can always be applied;

2) that such mappings can be obtained by repeated applications of

a single, and rather elementary, analytic function;

3) consequently, that the application can be automatized, without

requiring any guesswork by the user;

4) that all derivatives required for the numerical analysis of the

flow can also be evaluated analytically and automatically.

A glance at Fig. 3, where two typical cross sections of an airplane

are shown, gives an idea of how much bigger the challenge is in dealing

with practical applications than in the idealized case of the elliptic cone.

It also shows how drastically the contour to be mapped changes from one

cross section to another of the same airplane.

2. Numerical Mapping Techni que

Obviously, one could solve the conformal mapping problem numer-

ically on each and every cross sectional plane. The physical shock layer

could even be conformally mapped directly onto a rectangle, in this way

eliminating the second, non-conformal step expressed by (2). In principle,

the problem could be solved by simply adding to the equations of motion

the two equations:

4
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t

(8)	 X  = Y  , Xy = - Y 

which assert that the complex variable Z = X iY is an analytic function

of z defined by the condition that the physical boundaries must be mapped

onto the sides of the rectangle, as shown in Fig. 1. The feasibility of

such an approach has been demonstrated by J. F. Thompson, et al. in a

recent paper 2 , which contains a host of seemingly successful applications

to incompressible flow problems. Any attempt to compare the strictly

numerical approach to the one described in the present paper would be

premature. A comparison will require a good amount of additional informa-

tion; definitive data on computational time c re not available; neither do we

know, at this time, whether the number of grid points needed to solve the

mapping problem numerically would be compatible with, or would exceed

the minimum number of grid points needed to perform the flow field analy-

sis. For a three-dimensional, compressible flow, the equations are much

more complicated than for a two-dimensional, incompressible flow, even

if the latter is viscous. The role played by time in the latter and by the

time-like variable t in the former is different; more

t-dependent terms appear in the latter than in the former. A possible

advantage of the present technique may stem from the fact that it defines

the mapping and all related derivatives analytically -- that is, exactly.

Derivatives produced by the gradual variation in the mapping function along

the t-axis, as a result of which the physical gi- id changes whereas the

computational grid remains unchanged, are also definable analytically. It

may be worthwhile to mention that full-scale computations of three-dimen-

sional, steady, supersonic flows past airplanes using conformal mappings

have been performed already  without lengthening the computational time by

more than a factor of two.

1
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3. Analytical Mapping Technique

As a first step towards constructing a mapping function, we observe

that a typical cross section (such as in Fig. 3a) contains a large wimber of

corners and edges. Each sharp angle in a contour (and its symmetrical on

the left half plane) is smoothed out by a mapping of the type:

C-1z-h	 b
C+T=lz +h

where h is the complex coordinate of the corner or edge in the z-plane,

h * is its conjugate and b is the inverse of the external angle in multiples

of n. In the C-plane, r = t 1 are the images of the two points, z=h,

z=-h* but the contour is now smooth at C = ± 1. All other sharp angles on

the contour remain unaltered in the C-plane. The mapping defined by (9)

is, to within a Fcale factor, the classic Karman-Trefftz airfoil-generating

function. Note also that the function defined by (5), known as a Joukowski

mapping, s a particular case of (9) with a real h and b = 1/2.

The same procedure can obviously be applied iteratively, each

time with a different value of h and a different value of b, until all cor-

ners and edges have been eliminated. Since (9) is symmetric with respect

to the imaginary axis, the successive contours remain symmetric in the

intermediate planes and in the final plane. The final contour is certainly

smooth and, in all cases of practical interest considered so far, very close

to a circle.

4. Additional Remarks

The greatest difficulty in writing a general purpose code for the

repeated application of (9) stems from the multi -valuedness of the arc-

tangent and the need for continuity in the mapping, except across the cut

running between the branch-points of (9). Note, first, that (9) can be

decomposed into two parts:

(9)

6



= (	

If

N	 z + h

(11) S = 1 - d

In turn, (10) can be computed in the form,

b
(12) d = z _ h	 exp{ib[arg(z - h) - arg(z + h*)]}

z + h

•	 Now,

(13) arg(z-h) = arctan Q = eM , arg(z+h*) = arctan L:. = e
X+OL

if

(14) h = R + is

The angles A M and 8  are shown in Fig. 4 where the heavy line represents

a possible cut. It is clear that, as z moves in the right half plane, e 
varies continuously and it can be correctly defined by standard ATAN

functions in Fortran. The case for 6  is more difficult. So long as z

remains to the right ofAB, where Real (z-h) > 0, the Fortran definition of

e 	 is correct. If z enters the region to the left of AB, below the cut, -r

must be added to e  as defined by Fortran; if that happens above the cut,

r must be added. In Fig. 5 more extravagant cuts are shown. In addition

to the regions, similar to the ones discussed above, where ±n should be

added to e M , there are two possible regions, shadowed in the figure,

where ± Zr should be added, in order to assure continuity in 8 M. In	 j

coding, the difficulty can be circumvented very easily, by introducing a

factor, u, equal to 1 for all points above the cut and to -1 for all points

below the cut. If eM is the value of arctan [(y-P)/(.-a)] as provided by

Fortran,



i	 I

I

e 0	 , Real (z-h) > 0, sgnu = sgn[Imag(z-h)]

(15)	 6M = e 	 + urr , Real (z-h) < 0

e o + 2un , Real (z-h) > 0, sgnu sgn[Imag(z-h)]

The concepts of "above the cut" and "below the cut" are invariant by con-

formal mapping; therefore, the value of u for a given point with respect to

a given Tut need be defined only once even when a string of intermediate

mapp'i:gs is used; this can be done, thus, in either one of two planes where

I	 the definition is simple, that is, either on the z-plane or on the final

C- plane (the plane of the near-circle). In Fig. 6, for example, the cuts

needed in the successive intermediate mappings which transform the shape

of Fig. 3a into a near-circle are shown, both in the z-plane and in the

C-plane. The definition of the factors u in the C -plane is obvious.

In principle, the intermediate mappings can bee .ecuted in any

order. In practice, the ceding turns out to be much simpler (and, in many

cases, the contour in the C -plane closer to a circle) if the edges and cor-

ners are eliminated, beginning with the one having the smallest value of

b (largest angle) and in the order of increasing Vs. For example, in the

case of Fig. 6, if the corner at D were eliminated before eliminating the

edge at E, the corner at F would disappear simultaneously and a special

logic should be provided to take care of such a possibility. If the edge at

E is eliminated first, F and D are far apart from each other in the fol-

lowing steps and can be treaXd as usual. An even more delicate situation

would arise for a cross section of the type shown in Fig. 7, unless the

edge at B is eliminated before treating the corners at A and C. Indeed,

if the corner at A (having an exterior ankle equal to n/3) were to be

eliminated first, part of the shock layer would penetrate into a second

8
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Riemann sheet (t:uu to the fact that b = 3) and should be recalled back

when treating C. It is clear, instead, that ordering the edges and corners

by increasing values of b results in a simple logical operation.

To conclude our general considerations, let it be noted that,

whether we want to proceed from the z-plane to the 5 -plane or vice versa,

the nature of the intermediate mappings is the same. In fact (9) can be

written as follows:

(16)	 z - h _ C - 1
1/b

z+h*	 {+ 1

and (16) can be used to obtain z from C as (9) was used to obtain C from

z. Therefore, as announced above, the mapping problem can be reduced

to repeated applications of a function, MAP, a sample coding of which is

given in Fig. 8, regardless of the complexity of the geometry and of the 	 L

direction in which the mapping is considered(from the physical cross sec-

tion to the near-circle, or vice ve • a). In the calling sequence, INDEX
n

is set equal to 1 if (9) is used to get b from z (in which case POINT

means z and MAP means C), equal to -1 if (16) is used to get z from C

(in which case POINT means C and MAP means z); FACTOR is any

convenient number ha y .	 :he same sign as U. The meaning and use of

DER will be discussed later on. Note also that II(J,J) and PONVER(J) are

h and b respectively as they appear in (9) and (16). Finally, note that in

the program of Fig. 8 the special cases shown in Fig. 5 are not contem-

plated.

5. Examples

We turn now to examining few examples of mappings, involving

non-trivial geometries. Note that the input is the geometry alone (which

obviously includes the location of edges and corners in the physical plane).

9



The program orders the edges and corners in order of increasing 6, and

finds the location of their images in the '-plane. Then, at regularly

spaced values of e between -n/2 and n/2, it finds, by trial and error

(and using the mappings in reverse), which value of b produces a point on

the original contour in the z-plane; generally, three iterations are suffi-

cient. In these test cases, a shock is assumed as a circular boundary in

the z-plane. Once more, by trial and error, all the proper values of c(e) 	
g

are found. Finally, for each e, and for intermediate values of X, de-	 i

fined by

(17) X - C°- b ^c b

the remaining points on the ;rid are determined. Note the slight difference

between (17) and the first of (2), which permits grid lines to concentrate in

the vicinity of the body. The figures are self-explanatory. In Fig. 9 the

case of Fig. 7 is solved; in Fig. 10 we see a similar problem (with equal

values of the corner angles) but with a more clustered geometry; in Fig. 11

a case similar to the one of Fig. 3a is considered (an airplane with a fin on

the wing); and, finally, in Fig. 12 a cross section of a fuselage and an

arrow wing is mapped. Note that in the latter case the near-circle contour

is composed of alternating parts representing rigid walls and points in the

free flow.

6. Coupling of Mappings and Equations of Motion

In non-dimensional form, let P be the logarithm of pressure, S 	 I

the entropy, `U the temperature, defined by

v _ 1	 ^
(18) `^ = exp	 Y P + 1Y S)

and V the velocity vector. The equations of motion are:

10



H	 -1

V. VP+Y O • V = 0

(19)	 Tv(Vz) - V x v x V +7v P= 0

V.vS = 0
A^

Let I, J, K be the unit vectors in the direction of the x-, y-, and t-axi-,

respectively. Let also i and j be the unit vectors in the z-plane, parallel

to the 8=constant line and the p-constant line at each point. Let us denote

by an index, 1r all vector operators defined in a t=constant plane only,

and let

(20?	 V = w(X + 1{)

It is ea;,y Yn prove that th•_ equations of motion (19) can be recast in the

form:

(21) 2o<<x^)— X x ; x x+	 (DAP-PtX)+Xt =O

+St=0

Scalar forms can be easily obtained from (21) but it must be kept

in mind that, if non-Cartesian variables such as p and 9 are used in each

cross-sectional plane, 0-.e values of x and y at a node. of the grid (at con-

stant p and 6) change from plane to plane; therefore, for any function, s:

(22) 7t = JT + sp 0t + s E 6t

For example, if
N	 A	 ^

(23) X = Q i + tr y

and
_ dC	 iw

where S is the complex variable of the near-circle plane, obtained, if

11



necessary, through repeated applications of (9), it follows that

}	 Xx v^xx P C(G)P—(G)B](^1— ^j)

2
(25)	 K • x --_• 

G 
C (	 )P + (G ) B ]

Xt = C6 + (Wt - 9t )r^,]i 4-C>^t+

Let

(2A)	 f = fl + i fa = a—	 C
t

(27) Co = CPi + is^a = S 
d tog g = S d Cog g

	

dC	 g dz

(28) + i t'a =amt

a
(29) Ai = G	 + P fa, Aa = G T + fa, X = 1 - 

a /

x	 P )(	 IVa

(30) B1 = G Q + p fl , Ba = p T) + fa

(31) D= 
P

[r(1-Cn l )-CT M2 ] +fa -11fa

Then, (21) can be written in the form:

P, +A,PP +A^F + 7x (^+pr e ) + KP [^(1- ^P,^ + ^^2J=0

+B + 8 ? +-^P + /G-^ f )P —cf P ] - ^D =0
T	 i P	 z e wa 	 T `	 P a P	 z e

(32)
+$ + 8 r `^ y^ P — prof P ( G _^f ^P,+C-D= 0i ^(^	 . r8 

4-	 +M,2 L I T	 i P	 p	 1 B^

s?+^s$P+Bz^a= 0	 f

r

I
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A final change to the variables X, Y and T can now be performed but will

not be considered in the present paper. As one can see by inspecting (32),

prior to integrating the equations of motion one must evaluate g, f,CP, and

y, . In what follows, we will briefly expose how the evaluation is performed

in a complicated case.

Let us assume that J successive mappings are necessary to elimi-

nate all edges and corners, each partial mapping being of the form (9),

'	 that is:

s^
z i' h ii 1	 /'(33) = 1	 I	 1 ^=1,2,..., 1

z ^;s-'-1 	z^+ h

We will also identify the physical z-plane with the z l -plane. In such a
t'

plane we consider J+2 points, denoted by h j 1 (Fig. 13); the first J points

are representative of edges and corners and will operate as "hinges" in

the successive mappings; the last two points are the intersection of the

physical contour with the y-axis. The image of ht,l in the z.J -plane will

be called ht j . Note that hjj is the active hinge in the j-th transformation

and, therefore,

(34) hj,.l+l = 1

The J-th mapping produces a smooth contour, but it is convenient

to have it as centered as possible about the origin of the (-plane. There-

fore, a (J+1) st mapping is used, which is simply a translation:

(35) = z J+1 - s , s = 2 (hJ+1, J+1 + hJ+2, J+1)

In conclusion,

(36) - l zJ+1 (z 
J[.. , z 2 ( z l )])}	 zl = z

For each partial mapping except (35), let

.46*M

0
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^I

^u i

az^+s	 Sj di
(37)

dzi

whe re

(38) h 	 a^ + i

Then,

(39) g

J

d	

daz.s	
—	 gj

'

s	 j=^

d^g^	 z a 1ogg; _
J

^a^^gaTIgi)	 i

g
_

az	 1S ^_	 dz g F1	 dzj	 (.O

(40) j
J .	

+

g 8^1	
^i+s	

1	
7*	

aj

^ g o g 2^

To evaluate f and dt, let us observe first that

(41) — b^

1

1
(zj-^a)^^^+211,

+s
(42)

aZ^
= - igj

Then,

— gj (--	 --(43) aa?	at a	 at « at	 at

and

14



dz ;.1 _	 r az; h j7	 aa; 	 + Z^.^-1 log^i-h * asij
(44) at	 ? 1 at`—dj 	 Dt	 at 2	 z^+h at

Similarly,

a^ _ ^ ZJ+z	 1	 ahJ^1,J^1 + aha+2,3 +1
(45) at — at	 2	 at	 at

Note that ah'C,
j
+l /at can be computed as a particular case of (44):

(46)
ah?, i+1 

= g 
I a ?^t' + I» -k2^ dad _ ahij + h4 .^1 - 1 , 

'h - hj;.
at	 7 at	 a^	 Dt	 at	 2	 °^ h ,^h* ^t .!

ah.

Note also that, if d,=j, bh	 1 = 0, a result consistent with (34).

The values of ah -tl /at ( ),=1, J+2) and of 66 
J
./at are known from the

geometry of the vehicle as a function of t. Therefore (46) permits all the

values of ahj +1, j+l/at (j=1 through J) to be computed recursively and (44)

furnishes all the values of az j+l /at, including az J+: /at, in a similar way.

Then, aC /at is obtained from (45) and f is obviously equal to 1 t
C cwt '

From Fig. 8 it appears that g j , as defined by (37), is computed

every time either z.
J+l J

(z.	
J

) or z. 
J

(z.
+1 ) 

is computed, and in either case it

has the same meaning. The factor, g j , appearing in (46), must be under-

stood as

dh j +1
dh^

,j

and is thus obtainable when MAP is applied to determine the values of

h t" j  
+1 from the values of k. 

J.

Finally, to compute if, one uses (39) and (37) obtaining, after more

manipulations,

15
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az ao	 as

) ^_^ alaggi _^^lc^bi +1 
a-1+ ZzL Bzj.s _ 2 (z a t at ^ — °`^at

(47	 1a. a	 a	 J
ri at	

^ 6^ at	
t Zs 1 

at	 (zj -h)j )(z i +h^^ )

At this stage, all elements necessary to eve ate (47) numerically

are available.

7. Conclusion

Sections 4 and 6 contain all the information which is necessary to

use the conformal mapping concept, as explained in Section 3, for the

numerical analysis of a three-dimensional, steady, supersonic, inviscid

flow. Details of such analysis, from the fluid-mechanical viewpoint, and

a sample calculation of a redimentary arrow-winged plane will be pre-

sented in a forthcoming Report.

^ - t - --- -- - - -
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COMPLEX FUNCTION MAP(INDEX•J•POINT•FACTOR•DER)
COMPLEX POINT9HINGE•CI9P9D9DER•H(10.10)
COMMON/CMAP/PI•PIO29CI.H.POWER(10)

C	 ****	 DER IS DERIVATIVE D(Z(J*1))/D(Z(J))	 *aoe
HINGE=H(J.J) $ POW=POWFR(J) $ IF(INDEX.E0.-1)POW=1./POW
P=POINT $ D1=RE_AL(HINGE) $ D2=AI,IAG(HINGE)
IF(INDEX.EO.I)P=(POINT-HINGE)/Dl*1.
XM=REAL(P)- 1. $ YM=AIMAG(P) $ XP=XM*2.$ Y2=YM**2 E RM2=XM* *2*Y2
RP2=XP**2•Y2 $ THP= ATAN(YM/XP) $ IF(XM.EQ * 0.)GO TO 1
THM=ATAN(YM/XM) $ IF(XM.GT.O.)GO TO 2 $ THM=THM*SIGN(PI•FACTOR)
GO TO 2

1 THM=SIGN(PIO29YM)
2 D=(RM2/RP2)**(.5*POw)*OEXP(CI*POW*(THM-THP))

MAP=(19•D)/(1.-D) $ IF(INDEX.^O.-1)GO TO 4
DER=D1°POW*(MAP**2-1.)/((POINT-HINGE)*(POINT*CMPLX(Dl.-02)))
RETURN

4 MAP=HINGE*(MAP- 1.)*Dl
DER=0I*(POINT**2-1.)/(POW*(MAP-HINGE)*(MAP*CMPLX(Dl•-D2)))
RETURN $ END
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