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ON This	 is an	 interrim report of the second phase of	 research under

Grant NSG	 1128,	 dealing with the design of a Microwave Landing System

(MLS) aircraft receiver capable of optimal	 performance	 in the multipath

environments found	 in air terminal	 areas.	 The project	 focuses on the

angle-tracking problem of the MLS receiver; the work reported here

includes tracking system design considerations, continued study and

application of	 locally optimum estimation,	 involving multipath adaptive

reception and then envelope processing, and finally microcomputer system

design considerations.	 A significant result obtained	 is that envelope

processing	 is competitive	 in	 this application with 	 i-f	 signal	 processing

performance-wise and	 is much simpler and cheaper, 	 hence future effort

will	 focus on envelope processing. 	 To provide a basis for discussing the

results obtained,	 a brief summary of the signal	 model	 concludes ihis

introductory section.

In the last report [1] the received signal in the (linear) i-f

channel was modeled as a function y(t k ,T) of a global discrete-time

variable t  and a continuous time variable T local to the present scan.

as follows:

Y(tk,T) _
 YD( t

k ,T) + yR ( t k ,T) + n(T)	 (I-1)

corresponding to direct-path and reflected components and receiver noise,

respectively where, neglecting doppler effects, on the kth received sran

and for 0 5 T 5 T,

i
.l	

y0(tk,T) = a(t k )p[6 4 (T) - 6(t k )1co'AW IF T + 13(t k )]	 (I-?)

y R ( t k ,T) = F a i (t k ,T) p[ 6A ( T -

Ari(tk)

c	 ) - 6 R (t k )]cos[w IF T + ai(tki]
(I-3)



n(T) = stationary, bandpass, Gaussian process, mean zero,

variance a 2
n

	= nc (t)cos[w IFT + g(t k )] - n s (T)sin[wIF T + 6(t k )]	 (1-6)

Alternatively, in terms of the above, we may write also

y(t k ,T) = V(t k ,T)cos[wIFT + S(t k ) - r(t k ,T)l	 (I-7)

whe re

V(t k ,T) = /{a(t k )p[a A (T)-8(t k )] i-yRc (t k .T)+nc (T)} 2 +ty Rs (t k ,T)+fl s (T)} 2	kI-H)

yRs(tk,T)+ns(T)

I(t k PT) -- arc tan[	
R5

)p e (T)-6(t ) +y(tT)+n (T)

	

— }	 (I-9)
k	 A	 k	 R	 k 
	 j

c

A r. (t )
yR (t k ,T) _	 a i (t k ,T)p[eA (T -	

i
	 kc	 ) - 8 R (t k )]cos[a i (t k ) - g(t k )]	 (I-10)

c
t

Ar. (t )	 j 1

yR (t k ,T) = F a i (t k ,T)p[6 A (T -	 ,c L ) - a R (t k )]sinE6 (t k ) - 6(t^)]	 (I-II)
s	 i	 i	 i

1
and

W
a ( t k ) - $(t k ) = Bi(tk-1) - B(tk

-1)
 - I:Is ( tk - 

t k-1
)Ar i ( t k ).	 (I-12)

i
L 

ji

	

	 Refe ence to [I] is made for definitions of unfamiliar quantities not

defined (or redefined) above. The principal parameter to be estimated is

the aircraft (A/C) angular coordinate 8(t k ); other parameters whose estimates

are needed for the 6-estimation include the amplitude parameter a(t k ) and

the noise variance a 2 . Necessary modeling of the evolutionary dynamics of

n{1	 8 and a has been deferred un t i l the requirements of f he esi i mat i on a l (1or i Him
	i

j^	

chosen become firm.

U
i^

is	 2
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II. TRACKING ALGORITHM DEVELOPMENT

The sought tracking algorithm for the MLS receiver is a discrete-

U
time estimator of a vector x(k), comprising the A/C angular coordinate

and ancillary variables, given the sequence of observations {Y(k), k=1,2,...),

^l	
where, for the kth scan,

I i	 Y(k) Q {y(t k ,T), 0 < T < T).	 (II-1)

Such algorithms generical y are characterized by the following functions:

Extrapolation: X(kjk-I)	 = f(x(k-ljk-I),	 k,	 k-I) (II-2)

Error Estimation:	 e(k1k) =	 g(Y(k),	 Y(klk-I)) (II-3)

i
Updating: x(kjk)	 =	 x(kjk-I)	 +	 e(klk) (II-4)

it

where

is

x(k- Ijk-I) -	 an	 estimate of	 x(k-1),	 given	 all observations up

through the	 (k-I)th scan. (II-5)

x(klk-I)	
6

the extrapolation of 	 x(k-I I K-I)	 up to the beginning
of the kth scan (II-F)

j^ ^
L1 e(klk)	 an estimate of the error	 in x(kjk-I), given the kth scan

observatiors Y(k) (II-7)

Y(kjk-I)	
0

predict i on of Y(k),	 based on the extrapolated estimate
x(kjk-I). (II-8)

	

LI	 .
The dependency of e(k1k) on x(kjk-I) through Y(kjk-I) indicates that such

	

„	 algorithms are recursive. The theory and design of recursive state esti-

mators is well-documented, and given suitable, valid models, this approach

	

j	
might be applied to the extended problem involving also identification of

	

[ j	several model parameters imprecisely known. Modelinq the state excitation

4

	 as white noise and augmentation of the state with the parameters to be

identified are required generally. Recursive estimation has much to

3
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lJ	 recommend it generally, but the potentially high dimensionality of the

augmented state model and reservations about the validity in this app;i-

^^	 cation of modeling state evolution uncertainty with a white state noise

both have made more attractive a layered approach to the extended problem,

as follows:

I. Use modified recursive estimation of the angular coordinate
Ii	 and ancillary variables (simple state).

2. Use batch (i.e. finite-memory) processing of a sequence of most
recent, raw state estimates to obtain a more refined state

1	

evolution model.

3. Extrapolate with the most recent refinement of the state
evolution model.

L Modified recursive estimation refers to the error estimate a being defined

`	 and calculated for its direct addition with constant unity gain in the

L	 update equation. This i= necessary to insure that the results of the

batch processing include the most recent observations, fully weighted.

In this way also both tracking stability (including false lock) and esti-

mation quality (including suppression of multipath effects) can be dealt

with in developing the estimate e. For example, clearly e(kjk) is a

function of the actual error e(k) in x(klk-I), where

III

elk)	 x(k) - x(k^k-I).	 (II-9)

Strict stability of the tracking algorithm requires

U	
<e> = 0 when e = 0	 (II-10)

0 < <e> < 2e when e > 0	 (II-II)

2e < <e> < 0 when e < 0.	 (II-12;

l^	 Estimation criteria for e should optimally relate to the quality of the

t
x estimates, perhaps, but with the assumption that x is a fixed parameter

throughout the kth scan observations y (k), a reasonable, albeit possibly

suboptimal, approach is to require e to be locally unbiased at e = 0 and

have minimum mean square error, i.e.

u
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u
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Locally Unbiased: <e - eel 	 = 0 (vector)
e=0

	

8e <e - e>^	 = 0 (matrix)	 (II-14)
e=0

MMSE:	 (DO	 <(e - e)(e - e) T > I	 be minimum among all estimates
e =0 of e locally unbiased at e=0

( II-13)

This i s the locally optimum estimation criterion expounded by Murphy in

[2J ai^d applied in [1] and in the next chapter of this report to estima-

tion of the A/C angular coordinate, given respectively the (linear) i-f

signal anc! then its envelope. Approximate covariance-of-error expressions

for the estimate a are produced also in terms of the estimated signal-to-

noise ratio on the kth scan; these might be useful for weighting the raw

es t imates x in the batch processing, as shown below.

Batch processing, corresponding to finite-memory or moving-window

filtei' n q, is used here to fit in a least squares sense on assumed stat(,

evolution i.- linear in the unknown parameters, constituting a vector V,

to a sequence of estimates x, constituting a vector X, via minimization

of the quadratic form

(HV - X) TY(HV - X)I	 = (WHV - WX) T (WHV - WX)	 (II-16)
Y'=WTW

giving

V = (WH) +WX = VW	 (II-17)

where ( ) denotes the pseudoinverse of the matrix ( ). 	 If a linear law

of evolution is assumed of the form

x(t) = x(t k ) + (t - t k )i(t k )
	

(II-18)

5
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u
and the most recent K + I raw estimates x and associated error variances

0 
e 
2 are used, then

x(klk)

;(k-Ilk-1)

X =

x(k-Klk-K)

1	 0

1	 (tk-I-tk)

H = ;

I	 (tk-K tk)

	

1	 0	 . . .	 0oe^

I
W -	 0	 Q N-I)

	

•	 e

	

0	 k-KT
e

and

(II-19)

(11-20)

i
(1I-^l )

Under these circumstances H and WH are K + I x 2 with full rank 2 and

thus as an alternative to the expression (II-17) for V above, we have

V = (HTT ) -1 HYX = VW
	

(II-22)

In all cases the matrices to be inverted are either 2 x 	 in dimensicr ,r

otherwise diagonal (approximately), so the computational load for model

estimation is not excessive. The number of measurements K(> •') used here

needs to be established; this might be done in a manner that would make

the algorithm somewhat adaptable to A/C maneuvering. This will be studied.

6
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Given a solution for VW,  extrapolation for x(kfl Ik) is accompli5hod

as follows:

x(k+ljk) = (I	 (tk+l-tk))V(k)
	

(II-23)

We note this is a smoothed prediction; the rm)othed "current estimitt-"

value is available as the first element of V(k). The one-step prediction

is exnected to be the principal result, however, both for maintenance of

th algorithm (in calculating e) and in output, since processing time is

oft;tt somewhat in prediction.

In summary, a layered tracking algorithm structure has been described

involving recursive estimation of the A/C coordinate and batch processing

of these estimates for model identification. The approach allows fal-,e-

lock prevention and suppression of local multipath effects (assymetrical

pulse distortion) to be included in the well-defined problem of processing

new observations for optimal estimation of prediction error. Also the

approach permits the batch processing window to be adaptable to manifest

A/C dynamics, thus producing a good and reasonably recent model for

extrapolating the estimate through gross multipath effects, such as sic:nal

fades. A disadvantage of batch processing is the storage requirement for

past data, if significant. An overall study of processing time, storage

requirements and tracking performance is being done. Fully-recursive

approaches have not been totally discounted either and one also being

studied. Particularly attractive are the two-filter versions of Biernkan

[3] for fixed memory filtering and Nelson and Stear [4] for simult,ineous

state and parameter estimation. Batch processing and recursive estimation

approaches ma, not produce the same results [5], and performance analyses

and comparisons are essential, along with assessments of computational

loads, in selecting the algorithm to be implemented for field test.

7
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u
f,	 III. LOCALLY OPTIMUM PREDICTION ERROR ESTIMATION

Part A: BASIC THEORY AND I-F SIGNAL PROCESSING

The concept and development of locally optimum estimation, expounded

by Murphy [2] in 1968, was summarized in [1] and applied to the A/C angular

coordinate estimation problem in MLS, given the receiver i-f signal. To

facilitate presentation and evaluation of new resulf ,; to be liven, .r brief

summary of some results from Ell is presented in thi • . chapter including

key relations in the locally optimum estimation model.

Lr
Locally optimum estimation theory involves operations on the Radon-

L Nikodym derivative dP e/dQ where Pe is the measure corre,pnndinq to the

integrated observations process {Y(t), 	 t e [O,T]}, and Q is the measure

corresponding to the	 integrated receiver noise process {N(t),	 t E [O,T]);	 Pe

L is absolutely-continuous with 	 respect to	 (wrt)	 Q.	 The Radon-Nikodym deriva-

ist;ve	 a generalization of	 the ratio of	 the two appropriate probability den-

s i t i ens ,	 commonly	 termed	 the	 likelihood 	 ratio a,	 t,, which	 it	 degenerat e,, whenU the m,?a ;ures	 P	 and	 Q are	 b r )th absolutely-cant inrn)u; 	 wrt	 I obPr.qu--	 j,.
e

Without	 regard	 for these	 finer distinctions,	 the	 symbol	 A and term	 likeli-

hood	 ratio wi l l	 be	 used	 indiscrir,.,nantly	 for either rnathematical	 object,

as applicable,	 thereby rendering the basic model 	 applicable to both con-

tinuous-time and discrete-time estimation, 	 the	 latter being used 	 in the

envelope processing algorithm where probability densities of 	 the	 (finite)

sets of	 samples are available.	 Specifically,	 therefore

dPe

d0	
for continuous-time processes with

measures Pe ,Q as defined.

Likelihood Ratio, A =
e	

p(V)^signal Rresent , for discrete-time processes,

p(V) J5igi.il absent	 V being the K-vector of

,:rive I opA sample,,,
[V(t k ,T 1 ), ... V(t k . T K )l .

(IIL —i)

Murphy [2] has shown that the estimate e of the vector e which is

locally optimum at e = 0 is given by

i	 1	 8

LJ

L
u
H
u

1#
1



<BeT> I	
- 1

= -I
e=0

(III-'^)

u	
e = •pAp

where A O is the vector whose ith component, AO i , is given by

	

[2e	
In A 1

	

i	 e r=0	
i f a e	 U

AO =	 :III-3)

i	 0	 otherwise

and

mp = <ApAO> 	 (III-4)

the latter expectation being taken wrt the measure Po corresponding to

e = 0. Further, if e = 0, the residual mean square error (i.e., the
-1

error covariance matrix associated with this estimate is mp , that is

Applying these results to estimation of the error in the one-step

prediction x(kIk-I), given the kth scan observation y (k), the error vector

e was constituted as follows:

00

	 error in the prediction, ©(tkltk-1)

e =	 _	 (III-G)

ea	error in the prediction, a(tkItk-I)

corresponding to the state vector x being estimated. Four cases have been

or are under consideration at this time, as follows:

1.	 I-F signal observations

a. No multipath

b. With multipath

2. Envelope observations

a. No multipath

b. With multipath

9



These studies and results are described below and on the following chapter.

I.	 I-F Signal Observations

The 1-f signal y(t k ,T) was given in Chapter I is fellows:

y(t k ,T) = y0 (t k ,T) + yR (t k ,T) + n(T)	 (III-1)

where, for 0 < T < T on the kth scan, neglecting doppler effects,

y0 (t k ,T) = a(t k ) pro A (T) - 0(t k )]cos[w IFT + Mt k ) I 	 (III - H)

Ar i (t k!
r (t k ,T) = S a i (t k ,T)p[OA (T -	 c	 ) - 0 1ZI (t k ) , ^ces[w IFT + 0 (t h ) J 	 (III—`e)

and, since the i-f bandwidth B(- 160 kHz) is substantially greater than

the reciprocal poise width (8 millisec-1),

n(t) z white Gaussian noise with 2-sided spectral density N
0

( = (12/2©).

In the following yp denotes the above expression for y 0 with the estimates

a(tkitk-I), 0(tkItk-I) substituted for a, 0 respectively; also the explicit

dependency on t  is suppressed when no confusion results.

a. No Multi^^ih. Here yR - 0; under the hypothetical assumption

that the par meter 6 is known, the likelihood ratio, a, for inttrumentution

purposes, can be written as

ae = exp(N- f  yD(T)[y(T) - 11Yp(T)]dT}No
(1II-II)

(III-12)

Also, under the same circumstances,

T ayp(T)

f	 [Y(T) - y^(T)]dT
I	 ^	 JO

AO
	 No	 T ayp (T)	 _

^ o —a- [y(T) - Y
D
(T)]dT

10
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i.
u

where A, a denote 0(tkltk-1)' a(tkItk-I) respectively. Finally, and most

importantly, after substituting for yp (III-9), and some manipulati;r
-1

simplification, we obtain m 0 , the covariance of the estimation error

II
	 E = e - e	 (III-13)

for e = 0, as follows:

- 1	 {a2 j^ P2[eA(T)]dT)
-I 	0

0 	 ?N	 (III-14)
0	

0	 {Jo	 Ap2[e(T)]dT)
-1

where

^	 d
p[eA (T)]	 -	

p(ee)l s
des

=s	 (T).	
(III - IS)

e	 A

The case for S unknown but assumed to be a random variable uniformly dis-

tributed on	 (-n,n) will	 not be summarized here;	 reference	 is made to [I]

for this develooment and the resulting structure, which 	 is a quite compli-

cated quadrature detector signal 	 processor.

r-
b.	 With Multipath.	 The processor of the signal	 for the no-multipath

} case above, as evidenced	 in the expressions	 for A O above and	 in [1], consists

of an	 integration over the scan	 interval	 of the product of the received

i-f	 signal	 and	 a	 sinusoid which	 is both	 phase-synced with	 the	 i-f	 signal	 and

amplitude-modulated	 by the derivative	 (wrt the parameter of 	 interest)

direct	 path envelope	 function.	 This	 is a	 form of gating	 (weightin_-),

and	 in	 reaching	 for a concept of multipath-adaptive reception, 	 it	 sa ^^

reasonable to expect the same general 	 structure	 in the nucleus of an adaptive

receiver with the amplitude-modulation of the 	 local	 oscillator being con-

trolled by	 suitable addi+ional	 algorithmic machinery to adaptively discrimi-

nate against manifest multipath	 interference.	 These notions are fairly

easily confirmed	 for the	 i-f	 signal	 observations case,	 using the	 locally

0

i

i

i

i



u
optimum estimation equations.

Ca -- The multipath propagation component y R (t k ,T) of the composite i-f

signal	 y(tk ,T)	 is modeled as the sum of	 individual	 reflection components

yR (t k ,T), each a function of an amplitude variable a i (t k ,T)	 and a phase

variable 6 i (t k ).	 Within a given scan period the S i	 have been effectively

determined to be independent random variables uni`:)rmly distributed on

[-n,n] (through their 	 individual	 variations from scan-to-scan are highly

correlated,	 thus	 insuring the continuity 	 in time of the	 interference

T phenomenon present). 	 Under the assumption each a i (I k ,T)	 is a	 (time-varying)

l Rayleigh	 random variable	 (i.e.,	 a Rayleigh	 random process)	 independent of

• the associated 6	 (t k ), each reflection component y 	 (t k ,T)	 is a nonstationary

Gauss;an process, as	 is consequently also the total	 multipath propagation

i
component y R (t k ,T).	 Under milder assumptions on the a i (t k ,T),	 if	 the

` number of non-zero a i 's are	 large,	 it	 is still	 possible to argue that

T
yR (tk ,T)	 is approximately Gaussian.	 It seems plausible that usually some

combination of the preceeding conditions would prevail, 	 such that the
I
f multipath	 interference component y P (t k ,T)	 in the received	 i-f	 signal
f	 ^^

y(tk,T)	 is an additive Gaussian	 random process with zero mean value, or

more appropriately a random field with zero mean value and covariance

y R (t i ,T J )y R (t k ,T^)1	 =	 ^ R (t i ,t k ,T J ,TQ )	 (.TI-16)

This assumption we make.

Let the composite i-f signal y(t k ,-r) be -)ampl(-d on the kth -.can

and a K-vector Y(t k ) be defined, comprising these samples, i.e.,

y(t k ,T I )	 yD(tk,Tj)	 yR(tk,Ti)	 n(TI)

•	
Y(tk,T2)	 yp(tk,T2)	 yR(tk,T2)	 n(T2)

i_	 Y(t ) _	 _	 +	 +	 (III-17)
e	 k

Y(tk.TK)	 yp(tk,TK:	 yR(tkFTK)	 n(TK)

= YD (t k ) + [YR (t k ) + N],	 (III-18)

IL

I

I

i
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defining the K-vectors Y D , YR , and N. Regarding Y D as the signal (known

sure function) and Y  + N as the interference (Gaussian), then thL' Iikt'li-

hood ratio, corresponding to (III-16) above, Is

pY +N(Y-YD)
-1	 -1

a =	 R	 = exp{-![(Y-Y ) T (P +^ )	 (Y-Y ) - YT ((P +' )	 Y
_
11	 (I1I-19)

	

pY R (Y)+N	 D	 R N	 D	 R N

where ON is the covariance of the noise vectcr N, and 4) R (t k ) is the co-

variance of the reflection component vector YR (t k ). (The ijth entry in

0R H k ) is ^R(tk,tk,Ti,T.J ), from (III-16).) The above can be simplified to

-1

X = exp[YT (0R + 4N ) (Y - ^YD ) ].

corresponding to equation (III-II) above. Then, corresponding to (III-12),

the optimal processing of the received signal Y(t k ) is indicated by

	

T
	 -1

((R + @N ) (Y - YD)
ae

A O	 aYT	 (III-21)
-1

as ((P
R + 4)N )	 (Y - YD)

which, if the i-f noise samples are independent with variance a 2 , then
n

4N = a2Z , and A O can be expressed in the form

aYT	
(R	 (D	 -1

ae 
[I- 

2 
(I+ R ) ] (Y	

YD
a 	 a

I	 n	 n

A O = Q2
n

aYp	
OR	

(DR _1

as [I - a2 (I + Q ) ] (Y

	

2	 - YD)

	

n	 n

13

(III-20)

(III-22)
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3i	 The innovations (Y- Y
D
) are effectively procossod wiin a weighting tunk•tion

1
-1

that is dependent on 4b	i .e. , a-n [ 1 - R (I + - )	 ], in the an t lu I .+r
n	 n

coordinate channel. When there is no multipath and hence (P
R
 = 0, the.

results correspond with equation (III-12) above, oth^rwise a modification

dependent on (P
R
 is made that preserves locally optimum estimation performance.

Application of the algorithm requires estimation of 0 R , of course, as well

as (PN ; however as (III-21) shows, only the sum (0 R + 4)N ) is needed not

the individual covariances. The sum (^ R + (PN ) is the covariance of the

innovations process (Y - Yp ) at e	 0, however, suggesting a method by

which (P
R
 + 0  might be determined and even tracked as (P

R
 varies with the

environment.

No further study of i-f signal processors in general, and their

multipath suppression capabilities in particular, Kis been done, or i...

planned in view of the competitive performance ob,;e rved of the much more

economical envelope processors, but the notion of interference-adaptive

reception is clearly capable of generalization to non-additive, non-Gaussian

interference models. This work is in progress.

^L

u
r^

f'
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IV. LOCALLY OPTIMUM PREDICTION ERROR ESTIMATION

Part B: ENVELOPE SIGNAL PROCESSING AND PERFORMANCE EVALUATIONS

As pointed out in the December 1975 interim report [1], the com-

plexity of the optimal 1-f signal processors motivates serious considera-

tion of the simple envelope detector and the optimal processing of the

resulting envelope samples in the estimation of A/C angular coordinates.

To date the envelope processor has been developed only for the no multipath

case and an outline of this development is presented below.

Murphy [2] (see also Chapter III of [1]) has shown that the locally

optimum estimate e of the parameter vector e at e = 0 is given by

-1
e = ^^A O	(IV-I)

where A 0 is the vector whose ith component is

a	 dPe	 dPe
ae. I n(—d,— )  I 

e=0	

i f dQ # 0
Ao	 =	

i	
(IV-2)

i
0	 otherwise

and

0 0 = <A O AO> = 1 ADAp
SZ	

dP0	 (IV-3)

It is assumed that, for the samples of the envelope, the Radon-

Nikodym derivative is equal to the likelihood ratio,

dPe I - - p(VIS+N) I	
(IV-4a)

.a
dQ	 e-0	

p(VIN)	
e-- 0

K	 V.P.	 -P?

n Io( J 2 J )exp(	 j )	 (IV-4b)

^ I	J=1	 Qn	 2v2

15
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(IV-6)

= a - &, i.e., 'he error

the direct path signal a;

= a = 0). It should also

known (or being provided

in estimating the ?nglt^

and therefore e = 0 imnlic-

be noted at this point

via a separate estimation

J
0

0	 whicn further assumes the i-f noise is a narrow h. ► nd, Toro moon GIN'[' wi Ih

variance a 2 and that the envelope detector function is	 g i von	 by	 oc)u. ► t i oi

(I-3)	 with	
y 
	 = yR	= 0 These latter assumptions lead to the detetm i-

nation that tke progability density function	 for the envelope samples

given that e = 0 is	 [	 6, p.	 166 and p.	 3571

V. V.P. V? + P?

p(V.ie =O) _ -^	 Ip(-J--^)exp - (	 J)	 ,	 V
k

0	 (1V-',)
J o2 02 2o2

where {V J } is a set of identically distributed (Rician) random variable,,.

Note that V.	
k

= V(t ,T.) and P J
	

k, g

J	
Pit , T .) = a(t 

k 
)p[A 

A 
(T. ) - A	

k
(t )] = up.

J	 J	 J	 J
are the sample values of the envelope and the deterministic signal due to

the antenna selectivity function, respectively, at T = T  on the kth scan.

Also recall [1] that e is the error vector in the parameters being estimated,

and in the present case

e 
e =

e
a

where e = A - 6 and e
A	 a

A and the amplitude of

A = 6 and a = & ( not A

that a2 must be assumed
n

process).

The form of the likelihood ratio given in (IV-4b) is obtained by

assuming independence of the K envelope samples which implies p(V 1 , ... Vk)

K

IT p(v.) and dividing by the product of Rayleigh densities p(V.IP.=O).
J=1	 J	 J	 J

The independence assumption implies that the sampling interval AT = T. - t
J	 J-I

is equal to the value of the delay variable which makes the autocorrelatier,

function of the i-f noise equal zero [7, p. 399 and p. 4161. If the i-t

noise spectra is assumed to be ideal bandpass, then At = (i-f Bandwidth)

x 6us.

16
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The components of A O from (IV-2) are the partial derivatives of tho loq

likelihood ratio I-
k
 and are given by

V.P.

	

I	 I
Q

at k	
I K ap	 I1 ( a )

q 1 = 56I	 = o1 I a ae {Vi	
V P
	

- P.)	 (IV-7)

e=0 	 n j = 1	 I (^)	 0-0
o Q

n

V.P

at	 K	 1,(-1-4)

q2 ^a	 = I2 1 p.{V. ^^— - P , }	 (IV-8)
	e =0 °n j = 1 ^ ^ I ^	 J e=0(

Q

)
0 

n

(Note that q l = q2 = 0 are the maximum likelihood equations for `"ML'

I.e., a = aML and a - a ML' ) Thus

(1 1 	 glg2
A O Ao =	 (1% ))

q  g
2

2 1	 2

and

<q2>	 <q q >
1	 1 2

(D 0 = <A O AO> _	 (IV-10)
<q q >	 <q2>

2 1	 2

As the locally optimum estimator e is unbiased at e = 0

-1	 -1 <q >	 0

<e> _	 <AO> -	 1	 = 0
	

(IV-II)
<q2>

To show that this is indeed the case, it suffices to show, using freel,

some notational abuse,

u	 17
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N

w

i"

U

V.P.

I1
CVj
	

vi—) = P 	 (IV-I1)

I0(^)
an

V	 V2+P2
f
 0 v 

I 1 ( ^ 1 -^ I 0 ( )exp - ( J	 2 ' I ) dV .
0	 an	 are	 J

	V? 	 V2 + P?

r^ 2 I 1 ( )e'xp - (^ ;

	

n	
J ) (IV .

J 0 a	 2a2	 I

= Pj Q2 (x,0) = Pj

where

m-I	 2
Qm (x,y)	 f y Z(X )	 Im-I (xZ)exp - ( ^ 2 x ) dZ	 (IV-13)

is the generalized Marcum Q function [8, p. 4111 and Q
m 
(x,0) = I, all m

and x (the integrand is the probability density function of the random

variable Za = IIYII where Y c N2m (A,a 2 ) and xa = IIAII, see [9, pp. •11-42]).

Now the expressions for q 1 and q 2 (equations (IV-7) and (IV-8)) may

be simplified by letting

I 1 ( ) -

y J - Vi I 0 ( )
	 P.

be a new random variable with <y.
J	 J
> = 0 and <y .y.> = 0 for i # j. Thus

^ 
(IV-7) and (IV-8) may now be written as

I	 K
ql	

02	
1 al Jyln j=1

18
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<y?> = <[V. 11( 1] 
2 
> - P2

J	 J 1 0 ( )	 JL
(IV_ 18)

u

u

u
L
r

I
I
E
I
r

I	 K
q 2 = 

Q2	
pjyj	 (IV-16)

n j=i

	with the obvious notation pj = !!i.
 
	 The development of the locally opti-

mum estimation algorithm will be complete with the evaluation of tho

components in the m 0 matrix of equation (IV-10) and the consequenl invr.r-
-1

sion to provide 0 . Therefore, proceeding to evaluate the entries in

(IV-10), yields

K
<q 2 > = I a 2 p? <y2>	 (IV-17a)

1	 0^ j-1	 J	 J

K
<q2> 

= 6In

pj <y j>	 (IV-17b)J	 1

K
<q q > = <q q > = 

I4	
ap p . <y?>	 (IV-17c)

1 2	 2 1	 on j -1	 .1 J	 J

Note that (IV-17c) implies that if p.
J 

has even symmetry and p. has
J

odd symmetry about the mid-point of the summation, then <q q > = 0 ( <y2>
1 2	 J

has even symmetry if p,
J 
does). The conditions required for this to be

true are:

I. the antenna selectivity function p(e © ) has even symmetry ,+bout
its boresight,

2. the derivative of p(ee) with respect to the angle off boresight

has odd symmetry about its boresight, and

3. +he sampling times Tk are symmetrically distributed about the

center (boresight) of the stored signal p(ee).

The only significant problem remaining is the evaluation of <y2>
1

From the defining equation for y.
J

, (IV-14), it is clear that

II

II

where

19
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Il
I	 (	 )	

2	 co	 I , (	 )	 2	
V j 	V2	 +	 pJ

^ V j
-1--	 ]	 I0(	 )exp -	 (-	 )	 dV.	 (IV-I,))
1 0 (	 )^	 10

	 CV
	 I 0 (	 )

L^

a2	 zRn	 J

V. f' .
Due to the nonlinear nature of 	

I1 --^
	 where	 (	 )	 (-	 )	 ,	 this	 integroI

L

O
n has not yet yielded to an exact evaluation. 	 Certainly this	 integral	 could

Ll

be evaluated via careful 	 digital	 computation;	 however, the value of the

 p2^2p2

integral	 is a function of the (signal-to-noise)	 ratio R' —Z
J	 ton	 2a^

i
Rmaxpj	

and would, therefore,	 require on	 line computation for each sample
i^

.2
value p^ and scan estimateRmax
	 2Q2	

As this appears to be an unreason-

n
UL1 able computational	 buraen on the anticipated receiver microprocessor, ari.1-

l
lytic approximations were	 investigated.	 In order to minimize	 the	 .,. • ,umpti a l

I! made, power series approximations to the 1! - ^ function wore u ,ed but 	 I lic
0

resulting	 integrals,	 which	 were put	 in	 tho	 form of	 the moments of	 thy- pr(bo-

bility	 density	 function	 associated	 with	 Q.,(x,y),	 arc^(liven	 in	 terms of

the confluent hypergeometric 	 function which	 is expressed either as an

l^
infinite sum or	 in terms of exponentials and I 1	 and I 0 .	 In	 the	 first rase

the	 value of	 the	 integral	 is expressed as an	 infinite sum of	 an	 infinite

jj sum, and	 in the second as an	 infinite sum of products of exponentials and

modified Bessel	 functions.	 In neither Cdse were closed	 form solution,

evident;	 nor was	 it clear how	 reasonable assumptions might simplify the

U expressions.

(!
Approximations to the values of the	 integrals can be accomplished

it by examining the nature of	 the nonlinearity and the parameterization of

the Rician density	 function,	 i.e.,	 its	 functional	 character	 for high and

low	 R2,	 [7,	 414]	 for	 large RJ	 Rayleigh	 forvalues of	 e.g.	 p.	 GaIISSidn	 and

small	 R?	 (= 0).	 That this	 is a reasonable approach 	 is supported by	 thr^
J

I^
fact that the antenna selectivity 	 function pj	 is,	 by design,	 a highly

selective	 function,	 i.e.,	 its	 values	 tend to be	 relatively	 high	 in	 the

L
mainbeam and	 fall	 off	 rapidly	 to	 relatively	 low values	 in	 the side	 lobes,

e.g.-23db.	 Thus	 it seems reasonable to dichotomize the problem	 into

these two extremes of R? and use asymptotic approximations 	 in these two

I I JC,.15!?S.
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Case	 I:	 R2 	>>	 I

Rocaii ;e	 tho	 f i na I	 result	 dt­: i rod	 is	 the ova I u,it i on c,	 , f 	 .:v?-•

gi ven	 in	 (IV-18)	 which	 is the difference	 in
.I

two relatively	 large numbrr•,

which may	 differ only	 slightly	 for R
i
	>>	 I, care must be taken 	 in	 ,l.proxi-

mating	 the	 value or	 the	 integral	 in	 (IV-19). For example, assuming

il(	 )	 VL-

for	 (	 )	 _	 ?	 »	 I	 and assuming the Rician density becnmes

°n
Gaussian with mean P. and variance a	 yields <V?> _ "? + 0 2 with <y?> = 02.

J	 r' J	 ^	 n	 J	 n

Making the same assumption that Ion	 ^	 =	 I	 but retaininq the exact	 form of

^j the Rician	 density	 yields [7,	 p.	 4151 <V?>	 = P? +	 20 2 with	 <y?>	 -	 20 2 ,	 a
J J	 n	 J	 n

variation of 2-to-1	 from the previous result. The following analysis

produces an upper bound on the value of the integral	 which appears to be

accurate.

f

reasonably

•^ To avoid squaring the approximation of the 1(- ̂  function in thn
Ip(	 )

Integrand,	 use,	 dropping the subscripts,

[V
	

(mo 	 ]	
Ip( ) = [ .V I o-)] I,( )	 V (IV-20)

1 1 0 ()

U

with (IV-19) now becoming

(CV I1( ) 2

	

	 W	 I.1( )	 V 2 P	 V2 + P2
I o ( )]	 10 V Ip( )	

PP I1( )exp - (	 2 —) dV	 (IV-2I)

n	 ton

II( )
= P V Io( ) >, expectation wrt N 4 0"(3

2 ) [9, p. 421

Now introducing the approximation I1( ) = I(-> 11( ))
Ip( )	 I0( )

P CV I--L ^> 5 P< V >

^	 N4	 Ni,

(IV-22)

< P(2(7 2 )^e
-R2

 C(2.5),Fl(2.5;2;R2)
n

( 2n ) R /:	 2
4	 Pune 2 I^(R 2 / 2 )[3 + ID(

I ( R / ) 
+ 4R (I + I 1̂ f^%:))]

21
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This upper bound	 is used	 in obtaining the upper bound on	 the ratio

A	 =	 <y?>/Q^	 in	 Table	 (IV-1).	 This	 upper	 bound calculation,	 in addil^ ­
J

to several	 digital	 computations of the valuw; of	 iho	 inieiIrM	 of

leads to the choice A	 -	 I,	 i.e., j1 > _c2	 for R 7	>	 I.

IICase II•	 R
2 	 <

Using the ,ame approach as above, except approximating ^ (Ly^ I,v x

ter	 IZ ? 	<	 I,	 yields

I O ()	 N 4	 2a^	 N4	 2o^	 P14	 (IV-23)

P2	
2 -R2	 25	 (=)2one	 1'(3) I F I (3;2.R	 )

2Jn

^I
I ^:

{ < 2P2 (I	 + 22)

t

r

j

ll
' Using this	 upper bound	 for f22 	<	 I	 yields

<y?>	 =	 P2 ( I	 +	 R?)	 ( IV-."I )
-. J	 J	 J

io use these approximations	 in	 (IV-17)	 assume that	 there are2 samples

taken	 in each of the to-and fro-scans (K/scan)	 and that R2 <	 I	 for	 1	 <

and R2 >	 I	 for t+I	 < j	 <- K.	 Therefore
J

t	 K
a 2

<	 2>	 =	 {	 F	 p?P?(I	 + R2)	 +	 ^?02}	 (TV-25^)

qltU on	 j=1	 1	 J	 J	 j4+1	 J	 n

a 2	
K

_	 ^	 9{,	 P=^f2? ( I	 +	 k^:)	 +	 . }
	 (IV-25t,) 2

°n	 j-1	 j=1+1

and	 for R 	 <<	 I	 for	 I	 <	 j	 < e

K
>	 (IV-25c)<qi	 = 2R 2 	r	 ^ 2max. ^' ^J-	 +I

22
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Table	 (IV-1)

i	 f

11^ UPPER BOOND for 	 ,yJ:. /0 2	for

I I .2141	 I

4 1.44897

9 1 .479.11

Ii
16 1.48833

U 75 1.49248

36 1.49477

1.4960q49

64 1.49695

81 1.49753

100 1.49792

L

U
I^

U
I1
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There	 Is some computational	 evidence that <q j ^	 (,OR ,	and	 ! kit t tior
max

investigation	 of	 the	 vaI idity of	 this	 ;impin	 approxim,if ioii	 wi I I	 bt-
Continuing with the evaluation of the elements of	 0	 lead-.	 to

t	 ):
<q 2 	-

4
	 {	 I	 p? p ? ( I	 + R?)	 +	 p2o2 }

	
(IV-26;:j)V 

an	 j=1	 J	 J	 J	 j=	 +1	 J

t	 K

=
02	

{	 F 2pJRj(I	 + R^)	 +	 pJ}	 (IV-2t,h)

n	 j = 1	 j=^+I

^	 K
_	 4 FR 4 (I	 + R?) + -?	 R?	 (IV-26r)

- a2	 j=1J	 J	 a2	 j= +1	 J

K	 K
 F	 R? = 2
	

F	 p?	 (IV-'odc12
j =P+ I	 J
	 0 2 	=t+ I	 .I

^E

1
I,

V
•^I
I
I

I
T

and for the present study p, and 1;, will he al.sumed to have the requir-d
J	 J

symmetry to have <g l g 2 > = 0. None of the forms of oqu,,tions (IV-25) ()r

^-	 (IV-26) present significant computational di4ficulty and the sensitivity

_.	 of system performance to the accur, ►cy of approxim.,t i nq these terms w i I I

..	 be investigated via simulations. Returning to the estimate R of (IV-1)

O-lAo

-1

	

- <q ^ >	 0	 ql

0	 <q2> 	92

I
i	

y2

	

<q l >	 ql

I j^
	 =	 I	 (TV-27h)

	

<qj>	 g2

and the individual error estimates are

Ll

IKC -
ee	 <q 2 > q 1	 <q^,	 02 L ^ j ( y j 1^ j - i' I	 (IV-26,J)

h
1	 n j=1	 o	 j

1	 24



!	 K _	 I ( )
ea 	<qj> q2 = < q2>	 Q2 F Pj{Vj 10( j - Pj }	 (IV-28b)

n j=1

where the "	 ' indicates parameter evaluated at the estimate from the

^J previous scan, e.g.,	 Pj 	= ap j 	= ap[DA (T j )	 - 6(t k )].	 The above error

may be used to update the tracking receiver estimates of the angular

position of the A/C,O,and the peak amplitude a of the direct path	 signal.
L

Note that if the sums over samples for which R2 <	 I,
J

i.e.,	 I	 <	 j	 <	 Q,

are neglected in computing <y2 >, the resulting equations for e 0 and ea are
J

e 0 =	 pj{Vj I o1^
	 Pj} /2a K N

2	(IV-29a)
j = !	 j=J+I

ea =	 S p j {V j I o 	_ Pj } /	 pj	(TV-29b)_^

{ U J=I	 J-Q+I

where the denominator sums are nearly cons tant,	 i.e., t constant, over a

fairly wide range of R2 	 and thus may be precompu led	 if on-line computa-
max

tional	 power	 is	 limited.

Preliminary	 results of simulations are	 presented	 in	 Figure IV-I.	 It

should be noted that, at this point, 	 no attempt has been made to assess

the accuracy of the approximations	 in <q 2 > and <q2> or ftie effects of these

inaccuracies on the performance of the estimation algorithms (sensitivity

analysis).	 Again	 it should be pointed out that the error statistics 	 (one

a values)	 given here are for the raw error which contains none of the

smoothing anticipated when a tracking algorithm 	 is	 in use e.g.	 those

suggested	 in Section II of this report.

As was pointed out	 in Sections II and III,	 if e = 0 the residual
-1

^^

mean square error associated with the estimate e 	 is 4) 0 ,	 i.e.,

I

-1	 <q >	
0

(l <PeT> I (IV-30)

l e =O

(D p	 =

0 <q2>

25
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^__	 I	 I	 I	 I- I--_!	 i
u

I
and, therefore, <ee> 	 <q 2 > . Using the simple approximation following

(IV-25) yields	
11

s	 I	 _
<e2>	

60R2	
(IV-31a)

max

-- or

<e6> - 0.13	
(IV-31b)

w max

T' for theoretical	 root-mean-square values of 0.013 and 0.051 	 for R 2	of	 100
max

(20db)	 and 6.3 (8db)	 respectively.	 These numbers are very close to those

- obtained	 in simulation	 (0.012 and 0.047,	 see Figure IV-1)	 and tend to

•* show agreement between these theoretical	 developments and computer simu-

lations.	 However, as the simulation 	 results appear to produce smaller

w root-mean-square errors than the theory would 	 indicate possible, there

appears to be some need for further refinements of this analysis.	 Addi-

tionally,	 the	 simulations produce a significant 	 bias	 in e9 which	 is,

of course, counter to the theoretical 	 developmen t of an unbiased estimator,

i.e.,	 <e6 > = 0.	 There	 is some evidence that this bias 	 is due to a very

remote characteristic of the specific computer program being used to

generate the random noise 	 in the simulation.	 This problem	 is now under
(

study and alternate noise generating programs are being considered.

Comparison of	 I-F & Envelope Detectors

From Section III Equation	 (III-14),	 the mean square error of	 the	 i-f

detector is given by

2N0
r

j E
<e2>

e	 IFl
e

_	 2.)( IV-3
= O	 a2f 0	

p2_ A(z)]dT
^-

I:

which can he closely approximated by

I

fl	
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1 A

'	 <e2> =	 2N()	 = 2N f) B	 I

8 IF	 K	 a2	 K

I	
a20t C 15	 (' P2

€	 j1=1 j	 J/=1 j

"2 K	 -1 KK	 -1
(a p2)	 _	 (2R2 /.	 p2)	 (IV-33b)

i y a 2n J	 maxj=1	 j=1

u where AT = B -1	 is the reciprocal of	 the	 i -f bandwidth and 2NOU	 .

paring this with the results for

n
the envelope processor, equation	 (IV-25c),

k

r^
<e2>

6	 E
=I

-1
<q 2 >

e=0

i,	 K	 -1

u	 = (2Rmax	 7 P?)	
(IV-34)

j=^+l j

and the ratio for the two cases becomes

K
c
K

42 > IF / <e© > E =	 L	 P ? /	 p2 <	 I	 (IV-35)-
j=,e+I	 ^	 j=1	 J

U
K	 K

For	 large signal-to-noise	 ratios,	 i.e.,	 RI>>	 I,	 y	 ii	
.	 1	 p2 and	 the

max

I j=t+l	 J	
i=1	

Jmean-square performance of the two algorithms become nearly equal,	 e.g.,	 for

i	 (
R 2	=	 100	 (20db)	 the	 ratio	 is 0.94.

I	 max
Also the numerator of 	 (IV-35)	 is a

u	 lower bound on the actual	 value, and yet	 it can be shown by actual computa-

tions that the value of the ratio of mean-sq uare errors is bounded above

` LI
by	 unity	 for R2	sufficiently	 large,

max
e.g.,	 R 2	> 6.3	 (8db).	 As the

max
performance of the two processors is very nearly the same for reasonably

high signal-to-noise	 ratios,	 all	 future efforts will	 be concentrated c'r

L the envelope processor which 	 is much simpler to	 implement.	 One	 plausible

explanation	 for this perhaps surprising result	 is that there	 is no	 informa-

tion concerning the A/C angle in the phase of the	 i-f	 signal	 as modeled.

{
A brief elementary study showed that, in the	 far	 field of	 the antenna,	 this.

signal	 model	 was appropriate.

I .
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Plans for Future Work

Work will continue in many of the areas discussed in this :c: i. ­

with respect to the envelope detector processor, e.q. p,1r,1metric -;oil-i-

t i v i ty study v i a s i mu I at ions, f urthor ana I yt i s ref i nemont of the boun(P.

on the formulation of <y2>, etc. New work will include analytic and
J

^•imul,,tion effort in the following areas:

1. Multipath suppression including use of boih random process .vnd
unknown deterministic signal models of the multipath,

7. Revise signal model and resulting processor derivation to include
logarithmic i-f as well as alternate types of detector-,, e.q.,
linear/logarithmic squared amplitude envelope,

3.	 Investigate the feasibility of making the envelope processor
adaptive to the antenna selectivity function; also look fir

robust designs which might be insensitive to this possibly v,iri-

able signal feature without significant loss of error performance,

e.g., the square gate receiver used in our simulation.

Most of this work is scheduled for completion prier to the start

of programming the microprocessor, i.e., June 1976. All of this portion

of the project should be completed by mid-July 1976.

u
U
UT

f^

^I 29



u
L
PV. CURRENT INVESTIGATIONS, SYSTEM CONSIDERATIONS AND RECOMMCNDATWN:^

ri	 Al l effort currently is related to optimoI onvoIopo procos-.in,i.

}ul	 T hoorr-,t i ca I i nvest i qat i ons have been d i ,,cussed and are .urnma r i 70(J IW I Ow :

I. Multipath-adaptive processing of the received signal envelope.

2. Comparative evaluation of f i me -word I c^nc;t h digital  proce,,,,ors

designed to accept linear envelope, log envelope and squ,3red amplitude

envelope signals.

3. Comparative evaluation of the layered tracking algorithm di,-

(^	 cussed with structures of the fully-recursive design.L
4. Tentative consideration of algorithmic requirements for a

beamwidth-adaptive feature.

Simulation work will follow the theoretical studies listed; in addition

the receiver evaluation filters will be added to the simulation to facili-
t.s

tate evaluation and comparison of results with these of other studies.

u

	

	
System design of the prototype signal processor to be fIighi-te,,f od

has begun. Microcomputing equipment has been ordered, though previously

unanticipated delivery delays has forced some change in the project

schedule; a revised schedule is given in this report. A longer period

of more extensive pre-flight exercising of the system than originally

L	 scheduled is desired, and it appears this may not be possible in the

current funding period. This is discussed further below.

In general the software in the microcomputer must accomplish four

distinct tasks:

I.	 Input conditioning and storage

2. Algorithmic calculations

3. Output updating and posting

4. Allocation of the machine resources to the above 3 tasks

the executive program).

The input conditioning and storage functions will be served by a dir,)(t -

niemory-access (DMA) control Ier, which w  I I autonomously sample , III - inl)ul

analog (envelope) signal over the proper intervals (detorminod by 11w

u	 prodiction o(klk-I) during the TO and rRO scan,, perform analog-to-di,fit.,l

A
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.^ conversion of	 these samples and then store the	 data	 in prc , scribed blot-L.,_,

of	 m( , mory	 (RAM)	 in th ,- machine.	 An	 interrupt	 from the DNIA control l.'r

tol(()wing	 storage	 of	 doia	 tor-	 ihc-	 10	 ,Ind	 flt0	 ,c.In v .	 ".Ich	 will	 en,rhl

processing of the new data 	 (when otherwise timely).

The algorithmic calculations use only memory for	 source and sync

OT	 data and hence will 	 run	 in the "background" under executive Control

(of	 initiation).

1 he output est i mate	 i s obtained by	 "avi rk i ng"	 i ht ^ c o x t rapo I a t i ntl

estimate at	 the oc( urrence of the Barker correkit ion peak ( t	 puleO
0

that	 indicates the .Trrival 	 of	 the next	 scan.	 A default trigger will

provide this	 function	 (with	 suitable advisement)	 in	 the event of	 lose

of	 sync signal.	 The angular coordinate estimate	 is then passed both	 to a

serial	 output port for external	 distribution and to a parallel	 lathed

output	 port	 for	 local	 digital	 display.

The executive program takes all external liming and channel idonti-

fication intormation and performs the scheduling function in the machine,

including for example:

I. "Mark" the extrapolating estimate and terminate extrapolation

when the new sync pulse ar r ives (if sync signal is lost, mark-by-defauli

the extrapolating estimate but do not terminate extrapolation). Outpul

the "marked" val'ue of the angular coordinate estimate.

:1 . Adapt the algorithm to the elevation or azimuth channel, as

appropriate to the upcoming scan;

3. Initiate processing of TO ,can data after ^Jorag6 is complete.

4. Initiate processing of FRO scan data and subse(iuent estimatr,

extrapolation after storage of FRO scan data is compl(te.

5. Resolve ambiguities in timing and syncing associated with turn-c,n,

signal loss and recovery, etc.

6. "Idle" when all scheduled calculations are complete.

If tho input data rate (multichannel) i, too high, the executive program

,hould also selectively edit the input data stream in an acceptable manrn^r

to not exceed the processor thru-put rate.
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Above, the advisability of a somewhat fuller lab testing and pro-

f I i ght exerc i s i nq of the prototy,,c was mentioned l i n orur . t i, , ,, i

computer do I i yr ry de I .,y and rjssoc i .-,1(,d ic:hodu I e imp.wimp., t,. 	I h^ pi i

reason for this i; thi,l the prototype system, v, i t i'. ('volvinq, wi I I

involve many different functions, only a few of which (Ilw ,II rilhmi^

,Iculat )n ,A wi I I i t have been f(,a!,ible to test in Ili, , large MORAN

simulation.	 It would seem prudent, if possible, to test all function;

prier to interfacing the prototype with the Phase III Receiver. Helev,lnI

rlsc, is the avid (able electrical and functional r,nlpui of the f've III

Receiver, its full definition, and the potent idl necessity to install

lin g drivers in the Phase III Receiver enclo ,.,ure to sand signals by

coaxial cable to the prototype system. Our recommendations for future

work are essentially that provisions be made for Ihe c.e tasks, parii(ularly

the system test. A real-time simulation of the Ph,ise III Receiver c.;n

be econom i ra l l y developed in the	 fit "y . I ­m ill 1 1

I,ih .jnd used to exercise the completed I)rotolvpr ,y-,tc•m in Coto thr"u'11

i I-, desi fined hardware interface. Th i would he.l p to I n ­,ure a c.mooth

i n tograt i on wi t h thr , Nhdse III Race i vor .ind to quor,,n I ire the ear00 0,i

performance at f I i ght test time.  A proposal for project cunt i ntja f i ^^r

along these lines will be submitted.

ORIGINAL; PAGE 18
OF POOR QUALP Y
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