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LINEAR AND NONLINEAR ANALYSIS OF

ORBITAL TELESCOPE/SPACE SHUITLE

DYNAMICS AND CONTROL

by

S.M. Joshil

SLJN24ARY

During extended space shuttle orbital missions of the 1980's, a number of

solar-, stellar-, and Earth-viewing scientific experiments shall be performed.

These experiments require a highly accurate instrument pointing system for

providing fine pointing in the presence of crew-motion and other disturbances,

and sensor noise. In view of this, an annular suspension and pointing (ASP)

system, which makes use of a magnetically suspended vernier pointing assembly,

is being developed for ultimate implementation and flight testing, possibly during

earl, space shuttle test flights. The objectives of this study are as follows:

• Development of a detailed mathematical model of the space shuttle/ASP

system.

• Design of control laws in order to obtain the desired pointing
performance.

• Prediction of the statiscal po i.nting accuracies in the presence of

stochastic disturbances such as crew-motion, and sensor and actuator noise.

This report presents a part of the effort, consisting of linear analysis

of the space shuttle/ASP system which is currently in progress. The material

presented includes derivation of a mathematical model and design of appropriate

control laws.

1. 1N'TRODUCfION

During extended space shuttle orbital missions of the 1980's a number of

solar-, stellar-, and Earth-viewing scientific experiments shall be performed.

1 Research assistant Professor in Electrical Engineering, Old Dominion University

School of Engineering, Norfolk, Virginia 23508.



These experiments will require a highly accurate instrument pointing system

for providing fine pointing in the presence of crew-motion and other disturbances.

With this objective in mind, a concept for such an apparatus, an annular

suspension and pointing (ASP) system, was conceived (ref. 1).

The annular suspension and pointing (ASP) system includes two assemblies

with connecting interfaces, each assembly having a separate function. 	 See fig.

l(a).] The first assembly is attached to the carrier vehicle and consists of

an azimuth gimbal and an elevation gimbal which provide "coars.:" pointing of the

payload instrument by allowing two rotations of the instrument relative to the

carrier vehicle. For extensive Earth-pointing usage an alternative coarse

gimbal arrangement [fig. l(b)] may be preferable in which an elevation and a

lateral gimbal provide simpler crosstrack capability when the space shuttle is

in an inverted position relative to the local vertical. This coarse gimbal

arrangement is assumed throughout this report. The second or vernier pointing

assembly is made up of magnetic actuators for suspension and fine pointing,

roll motor segments, and an instrument mounting plate around which a continuous

annular rim (fig. 2) is attached which provides appropriate magnetic circuits for

the actuators and the roll motor segments. The payload assembly, consisting of

the payload instruments, the mounting surface, and the annular rim, is suspended

in the elevation coarse gimbal without physical contact, and provides vernier

attitude fine pointing and roll positioning of the instrument as well as six

-degree-of-freedom isolation from carrier motion disturbances. In addition,

the second assembly has a rim centering mode in which axial and radial rim

position sensors located at each actuator station are used to center the rim

axially and radially I-etween actuator pole faces. This mode allows coarse gimbal

slewing for retargeting, for Earth pointing, or for backup coarse gimbal

pointing.

Nominal operation of the ASP system for solar or stellar pointing first

involves coarse gimbal pointing with coarse (wide field of view) sensors onboard

the ASP system (or with Tensors onboard the carrier vehicle and relative gimbal

angle information). The rim centering mode is activated during gimbal slewing.

After coarse ali.neme;it, coarse roll positioning is accomplished by means of the

rim roll motor and a relative roll sensor located on the rim together with a

carrier sensor or a sensor onboard the ASP system. After coarse attitude aline-

ment, vernier fine pointing is initiated. For this mode, errors obtained from

fine (narrow field of view) attitude sensors located on the ASP system, either

2
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1	 as part of the instrument or remote, are nulled by small magnetic-suspension-

i
	 and fine-pointing-actuator torques applied to the annular rim. Also,

translation rim centering is accomplished for this mode.

Nominal operation of the ASP system for Earth pointing initially involves

establishing the correct azimuth, elevation, and roll attitudes and attitude

rates (slewing) in the rim centering mode. After appropriate smooth instrument

slewing is established, vernier pointing (similar to that described for solar

an" stellar pointing) is accomplished.

The basic objectives of the present study are:

Derivation of a detailed mathematical model of the space shuttle/ASP

system.

• Design of control laws in order to obtain optimum performance.

• Prediction of the pointing performance when subjected to stochastic

crew-motion and other disturbances, and sensor and actuator noise.

In reference 1, a linear mathematical model was developed for the space

shuttle/ASP system. This model ignored the payload-to-shuttle coupling. Sensor

noise and actuator noise were also ignored. An azimuth-elevation coarse gimbal

configuration was used, and the coarse gimbals were assumed to be fixed relative

to the shuttle. However, as pointed out earlier, the "elevation-lateral"

coarse gimbal arrangement is more suitable, especially for Earth-viewing

experiments, since it avoids gimbal lock. There fore the present study assumes

the latter coarse gimbal arrangement. The coarse gimbals are no longer fixed, and

control systems are designed for moving the coarse gimbals in such a way as to

minimize the summed norm of the mag,,etic suspension centering errors at the four

magnetic bearing stations. The roll freedom and the magnetic roll actuators,

which were not modeled in reference 1, will be included in the present study.

Sensor noise and actuator noise are also included. The mathematical model

obtained in the present study describes the system in ccnsiderable details. All

the internal couplings, cross products of inertia, etc., are included in the

model. This semiannual report deals mostly with Task 1 described in the original

research proposal, namely, linear analysis and design.

Part 2 of this report contains a summary of research accomplishments and

planned publications. Part 3 contains the derivation of a mathematical model

using Lagrangian formulation. The design of controllers for the coarse gimbals

3
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and the magnetic actuators is accomplished in part 4. Part S contains normalization

of the equations of motion and inclusion of measurement noise and stochastic

crew-motion model. Present and future research efforts are summarized in part 6.

4



1.1 Symbols

s
,L

A,	 A 1 ,	 A 2 ,	 A,	 A l ,	 A 2 System coefficient matrixes

A2 Crew-motion filter coefficient matrix

A 
Points on the payload assembly annular rim which

correspond to the magnetic bearing stations on

lateral coarse gimbal

ACF' ACF
Magnetic force coefficient matrixes

a Controller coefficient 	 (rate gain)

A,	 A. Coefficient matrixes
i

B1,	 pll System input matrixes

B 2 Crew-motion

B. Magnetic bearing stations on lateral coarse gimbal
J

b Controller coefficient (proportional gain)

C^ -Cp	 (Coq)

C 1 C, +
0

C 
	 (x) Cross-product matrix of vector 	 x. Ex x y = C 	 (x) y]

DAB
Transformation matrix from A-coordinate system

into B-coordinate system

E Angular velocity transformation matrix defined

in equation (2)

E 
Normalized parameter matrix for the payload

Column vector containing all zeros except aej

"1" in the jth position

F^ (Fxj,	 Fyj ,	 F zj ) T , magnetic forces at the jth

bearing station

F 
	

Crew-motion force vector

F	 (with other subscripts) generalized forces

corresponding to the subscript coordinates

f	 Normalized crew-motion force vector
C

S
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1

819 92 Elevation and lateral coarse gimbals

H H	 ,	 H Transformation matrixes
pi, P2s	 oq

I (with subscripts)	 Inertia matrix defined in

equation (4)

I (without subscript)	 Identity matrix

I mo , Elements of Inertia matrixI yy ,	 I xy ,	 etc.

J Objective function

K K Coarse gimbal rate gains
91, 82

L	 , L Coarse gimbal proportional gains
81 82

M m	 + m	 + m
s	 81	 82

Mass of the shuttlems

m m }asses of coarse gimbals
81 92

Mass of payloadmp

M l mmp/(m + mp)

0 Center of mass of payload

0. Origin of the coordinate system	 (X., Y.,	 Z.)

O s Center of mass of the shuttle

P 1 Origin of the coordinate system	 (X81, 
Y81 ,	Z81)

P2 Origin of the coordinate system	 (X Y 92 ,	 Z92)
92'

Q Center of instrument mounting surface

q Vector defined in equation (48)

q r Generalized coordinate

r Radius of instrument mounting surface

T Transformation matrix

T 1 , T 2 , T 3 Transformation matrices 	 for 1,	 2,	 3 Eulerian

rotations

Ts , TS1 , T82 ,	
T 

Kinetic energies of shuttle, 	 elevation gimbal,

lateral gimbal and payload respectively

6
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T 
	 Crew-motion torque vector

Tcon	
Shuttle altitude control torque vector

t 
	 Normalized crew-motion torque vector

U	 White-noise source with unit power spectral density

V	 ;poise covariance intensity matrix

vABC	
Linear velocity of point "A" relative to B-coordinate

frame, expressed along C-coordinates

v	 White noise vector

v Measurement noise
m

x State vector

(X i , Y i p Z^) Inertial coordinate system

(X. ,	 Y. ,	 Z.	 ) Inertial coordinate system
1 1 1 1 1 1

( X s , Y s) Zs ) Coordinate system fixed to shuttle

(X ,	 Y ,	 Z	 ) Coordinate system fixed to gimbal	 gl
81 gl gl

(X Y$2 , Z S2 ) Coordinate system fixed to gimbal	 82
92'

(Xp , Yp , Zp) Coordinate system fixed to payload, through its

center of mass

(Xq , Y q , Zq) Coordinate system fixed to payload through 	 Q

a Shuttle altitude vector
s

a Payload altitude vectorsap ,

a
s

Normalized shuttle altitude vector

d Error variable

b j (three-axis)	 centering errors at the jth

magnetic bearing station

E Payload assembly position error

X Controller output

V Normalized payload assembly position error

P (with subscripts) damping ratios

7



ECovariance matrix of x

Ess
Steady-state value of F,

TM	 ,	 T Coarse gimbal driving torques

21

( ^S , 	 e s , I's)
Components of	 as

m g Elevation coarse gimbal angle

(^ 1 ,	 6 p , gyp) Components of	
a 

(O q ,	 6 q , lyq ) Components of	
a 

01 Target pointing angle

01
g

Normalized value of	 1 g
6 Lateral coarse gimbal angle
g

e l Target pointing angle

6 1g Normalized value of	 6g

52 81 Angular velocity of	 g l	 frame relative to	 s-frame

i2 Angular velocity of	 g,	 frame relative to	 gl	 frame
92

w Inertial angular velocities, 	 natural	 frequencies

^AB	
Positio,, of point A in coordinate system B

Subscripts

i	 Inertial frame (X i , Yip Zi)

i t Inertial	 frame	 (X.	 ,	 Y.	 ,	 Z.	 )
i t	 11	 11

gl Elevation coarse gimbal

82 Lateral coarse gimbal

p Payload

q Payload frame	 (Xq , Yq ,	 Zq)

s Shuttle

p Norminal or measured parameters

8
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2. SUMMARY Or RESEARCH ACCOMPLISIM'NTS

2.1 Research Accomplishments

The system configuration considered in this study is shown in figure 3.

A detailed mathematical model of the s pace shuttle/co..r.;o gimbals/fine pointing

system was developed using the Lagrangian approach. The model au-Z)matically

includes all the internal couplings. The equations were linearized around a

set of target angles in order to maintain the mathematical tractability of the

problem, and to facilitate the derivation of appropriate control laws. Control

systems were designed for the elevation and lateral coarse gimbals, which

minimize the sum of the norms of the 3-dimensional centering errors at the four-

bearing stations. Thus the coarse gimbals automatically and continuously follow

the payload in the solar-, stellar-, Earth-pointing modes. Control laws were

designed for the magnetic suspension and fine pointing actuators, which

minimize the sum of the norms of the 3-dimensional magnetic forces at each

bearing station. The canonical mathematical model for the space shuttle/ASP

system has 11 degrees of freedom (order 22). Sensor noise and actuator noise

are also include? in the model. This model, when coupled with the crew-motion

model (ref. 2) of order 24, results in the total system order of 46. A computer

program has been prepared to generate the system matrixes, and to solve the

the resulting covariance equation.

2.2 Planned Publications

A paper on the mathematical model of the Annular Suspension and Pointing

System and Predicted Performance Under Stocf._tstic Crew !lotion Disturbances

and Sensor Noisc is being planned, for submission probably to the AIAA

Journal of Spacecraft and Rockets. This paper shall include forthcoming

numerical results.

3. NtNTHEDiATICAL MODEL DEVELOPMENT

3.1 Mathematical Model Development

(X i , Y i p Z i ) is an inertial system centered at 0.. 	 (X 5 , Y , , Z s ) is a

shuttle-fixed system, centered at Os , the shuttle center of inass (fig. 3).

O s nominally coincides with 0 i . (Xgl , Ygl , Z91 ) is a coordinate system

9



fixed to the elevation coarse gimbal, centered at P 1 , and is obtained by

one rotation p	 about X	 The axis X	 remains parallel to X S . The
9	 91	 91

coordinate system (X 92 , Y S2 , Z82 ) is fixed to the lateral coarse gimbal.

This system is centered at P 2 , and is obtained from the gl system by one

rotation e 9 about Y92 . All the coordinate systems will hereafter be

referred to by their subscripts, e.g. i, s, g l , g2 , etc.

Another inertial coordinate system (X.
11 , 

Y.1
1 	 it
, Z ) is also centered at

O i , and is obtained by two rotations ^ 1 , e l (X, Y sequence) from the

i-system. C1 and 0, represent the target pointing angles relative to the

i-frame.

The payload assembl y consists of a cylindrical payload instrument, the

instrument mounting surface, and the annular rim (fig. 4). (X p , Yp , Zp) is

a coordinate system fixed to the payload assembly, centered at 0, its center

of mass.	 payload-fixed coordinate system (X q' Y q , z q ) is parallel to

(X
P	 P
, Y ,	 and is centered at point Q, which is the center of the instrument

;
mounting surface.

The coordinate system ( X s , Y s , z s ) is obtained fiom (X i , Yip Z i ) by

a set of three rotations ^ s , 6 s , vs in X, Y, Z sequence. The vector

s	 ( ^s' es' 
.$)T

a 
	 thus defines the shuttle attitude. The payload system

(X	 Y , z ) is obtained from the i t system by a set of three rotations
P P P	 T

(X, 1', = sequence) gy p , e p , vP . Thus the vector a  = (gy p , © p , . p )	 defines

the payload attitude.

In the material that follows, 
CAB 

denotes the coordinates of point A

in the B coordinate system; 
vABC 

denotes the linear velocity of point A

relative to the B-frame, expressed along the C-coordinates. The vector w

denotes the inertial angu.ai velocity of the bod;: expressed along the body-

coordinates, while 2 denotes relative angular velocity vector Las given in

the list of symbols). The matrix 
DAB 

denotes the transformation matrix from

A-coordinate system to B-coordinate system.

3.2 Summary of Mathematical Model

The mathematical model is obtained via Lagrangian formulation. The

complete system consists of two separate systems: i) shuttle and coarse

gimbals, and ii) payload assembly. Since these two systems are physically

separated by maim etic actuator gaps, it was advantageous to derive separate

models for each system, and to interconnect them via magnetic actuator forces.

10



The :,)arse pointing assembly consists of three objects; shuttle, elevation

gimbal, and lateral gimbal. Expressions are derived for the kinetic energies

of the three objects in terms of the inertial velocities of their centers of

mass, and their angular velocities relative to the inertial frame, expressed

along the body coordinates of each object. The eight degrees of freedom are:

CO ii	 (X0 i' YO i' 
Z  

i)T' a
s , ^g and eg.

s	 s	 s	 s

The gimbal bearings are assumed `o be frictionless. For the payload assembly,

the six degrees of freedom are:

a 
	 and 

COi l	 (XOi 1 , YOi l ' ZOil)T'

Linearization is performed about:

^0 i = 0 , as = 0, $g = 01, e g = e l, ap = 0,
S

oi l	^Oi	
(nominal).

1	 1

Total degrees of freedom are 14; however, since only the relative position of the

payload assembly, relative to the coarse pointing assembly is of interest,

three degrees of freedom are redundant. Thus there are eleven minimal degrees

of freedom.

3.3 Kinetic Energy of the Shuttle

The inertial angular velocity of tho shuttle resolved along the s-system is

O

W = E a	 (1)
s	 s s

where

cos e s cos :y s	 sin ^s	 0

hs = -cos 0 s sin ^s	 cos ^s	 0	 (2)

sin e s	
0	 1

The linear velocity of O s in the i-frame, expressed along i-frame is

0

v0 ii	
CO i'

s	 s

The kinetic energy of the shuttle is given by:

	

0	 0

Ts	 Z ms vT0 ii v0 ii + 2 

asT E

sT I s E s as	 (3)
S	 s

11



where

IXX	 -IXY	 -IXZ
S	 s	 s

Is = -I XY	 IYY	 -IYZ	 (4)
"	 s	 s	 sa

-IXZ	 -IYZ	 IZZ
S	 s	 s

3.4 Kinetic Energy of the Elevation Coarse Gimbal

The inertial angular velocity of the gimbal g l re_olved along

g l frame is

w	 S2	 + D	 m
9	 81	 sgl s	

(S)

where

T

081 - (^9, 0' 0)

	

Ds81 = T
1 (fi g)

(1181 = angular velocity of elevation coarse gimbal w. r. t. the shuttle)

The linear inertial velocity of the center of mass (located at P 1 ) expressed

along i-coordinates is

T

v Plii	 vo s ii + D is	 [g's X CPl s]	 (6)
T	 C	 )

v0sii + D
is HP1 E s as	(7)

where

HPi = 
- CP 

(^ pis
)	 (8)

Kinetic energy

_ 1	 T	 1	 T
T	

(
9 )

91	 2 m81 vri ii vPlii + 2 m81 I81 W91 

where	 I
81 

is defined similar to (4).

3.5 Kinetic Energy of the Lateral Coarse Gimbal

The inertial angular velocity of lateral gimbal resolved along the

82 -axes is

W	 =S2	 +D	 w
82	 82	 8182 81

or

+D	 S2	 +D	 D	 w

X92	 X 82	 9182 81	 8182 s81 s	
(10)

12
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^R

I	 III

where

TQ 92 = (0, 6 g , 0)= angular velocity of lateral gimbal (along S2

coordinates) relative to g l frame.

The linear velocity of the center of mass (P 2) relative to s-frame

resolved along g 1 is

vP2sg 1 = vPl sg l + Qg l x CP291 + VP29 191

But

T
vP2ss = D sgl vP2sg1,

and

vP2ss - vOs ls + vP2 ss + Ws x CP2s

therefore

v	 W-v	 +D	 T(v	 +n	 x C	 ) +	 X (^	 +DT	 C	 )
P2 is	 0sis	 sg1	 Plsgl	 91	 P291	 s	 Pis	 s 91 P291

Point P1 is fixed relative to the shuttle;

v	 = 0.
Plsgl

Since

T

^P291	 (0 ' 0 ' ZP291)

after simplification,

O	 O

vP2 ss

	

	 Dis v0 ii + Y + Hp2s 
Es a

s 	 (11)
s

where

Y = (0, -sin fig , cos ^ 9 ) T 
ZP291	

(12)

Hp2s = -Cp (^pls + Y)	 (13)

Kinetic energy

	

T	

T

T 92	 z m92 vP2 is vP2 15 + 2 W92 1 92 W92	
(14)

3.6 Kinetic Energy of Payload Assembly

For the payload assembly, it was found to be advantageous to use the

coordinate system ( Xq , Yq , Zq ) for obtaining the equations of motion. The

( Xq , Yq , Zq) system, which is payload fixed, is obtained from the i1-system

.h

13
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'	 ^	 I

t	 I	 I	 1	 i

via three rotations (0 q , a q , ^q ) = aq T in 1, 2, 3, sequence, and by translating

the origin to Q which is the center of the instrument mounting surface. The

vector a 	 then defines the payload attitude. The payload angular velocity

relative to the inertial frame, resolved along the q-axes, is

< (	 O

wq = E  a 	 (15)

where E  is defined in a manner similar to E s (equation 2).

The kinetic energy is given by

T = l m v T v	 +1 w T I w +m	 vT H w	 (16)
P	 2 P Q iq Q iq	 2 q	 q q	 P	 Q iq oq q -J

where

Hoq = -Cp (C oq)	 (17)

and Iq = inertia matrix of the payload assembly about the q-axes.

3.7 Generalized Forces

The generalized forces are obtained by increasing one generalized coordinate

at a time, from q 	 to q  + 6 qr , all other coordinates being fixed, and by

examining the expressions for work done. Thus the generalized forces for the

generalized coordinates are as follows:

Coordinate(s)	 Generalized force

	

T	 T 4
;0si	 Fc - 

Dsg l D91 92 3=13

T m	 0
1

a	 T+ T	 -	 0	 - D T	 T
s	 c	 con	 s S 1	 m2

o	 LO

_ 4	 T	 T
F	 +	 x F Bjs 

x (Ds 91 D91 92 ))
	

^c	 c
j=1

m	 T	
- e1T 

4

4	 x (D T	 F.)
S	 ml	 j=1 

Bjg l	 91 92 J

T 4
2	 x F.

e 	 Tm2 - e
	

^BJg2	 J
j=1

4

C Qil	 ;l F 

4
a q	 E CAjq x F 

j=1
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ii

(c c 
= crew location in the s-system)

3.8 Equations of Motion

The total kinetic energy of the shuttle and the coarse pointing assembly is

^s
T = T + T + T

s	 91	 92

2 ms 
^OsTi 

^O s i + 2 

asT EsT I
s E s as

+ l m	 (^	 + D. T H	 E a ) T (^	 + D T H	 E a)

	2 91	 0 s	 is	
P1 s S) 	 i s pl s s

+ I (S2	 + D	 E a ) T I	 (i2+	 D	 E a)
2	 91	 sgl s s	 91	 91	 sgl s s

1	 O	 O T
	

G	 G
+	 m	 (D.	 +Y +H	 E a ) (D.	 + y + H	 E a)

	

2 g 2 	is O s i	 P2s s s	 is Os i	 P2s s s

+ 1 (Q	 + D	 Q	 + D	 D	 w ) T I	 (n	 + D	 Q

	

92	 9192 91	 9192 S91 s	 92	 92	 9192 91

+ 9192 s91 
mss ) (18)

The equations of motion are given by:

	

dt \^ - 8 qr - F	
(19)

qr 

where qr , r=1, 2, ..., n, are the generalized coordinates and F 	 are the

r
generalized forces. Application of (19) to the kinetic energy in equation (18)

results in the equations of motion, which are nonlinear and highly complex.

Linearization is performed about the equilibrium point..

CO i = 0 , as - 0, ^9 - ^1 ' eg =:

s

and the following equations are obtained:

mC	 + (m	 H	 + m H	 ) a + hz	 m	 = F	 (20)
Osi	 Si Pi	 92 Pz s	 s	 Pz9i 9z 9	 ^Osi

where

M = m + m + m
s	 91	 92

is



( I + m	 H T H	 + m	 H T H	
+ D T	

I	 D	 + D.. T I	 D. ) a
s	 81 P1	 P1	 82 P2 s P2 s 	s 81 8 1 s 8 1 	 111	 82 111	 s

M
• (m	 H T + m	 H	 ){	 + D T	 I	 e l * m	 z	 H T h

81 P1	 82 P2 s	 0 s l	 i °1 81	 82 P281 P2 s

• D. T 	I	 D	 el) m + D.	 I	 e2 6 = F	 (21)
1 it 82 81 82	 8	 1 it 82	 8	 as

•o

(m82 2P291 
h)C

0 s i + 
(elT 

1 81 DS 81 + ZP281hT 
HP2s 

m82

• e1T D
T	 I	 '^.. ) a + (I	

+ e1T D
T	 I	 D	 el

8182 82 111	 s	 XXgl	 8182 82 L182

• m	 z 2	 ) ^^ +e2T I	 D	 el 8 = F	 (22)
82	 P281	 8	 82 8182	 8	 Og

I 
w	

+e26	 T I	 D	 el	 + e2  I	 D	 D	 a= Fe	 (23)
82 8	 82 8182	 8	 82 8182 s81 s	 8

In equations (2)) - (23), th

incremental values about the

corresponding transformation

6 1 ,	 and D..	 = D	 D
111	 8182 S81

symbols ^0 i' as
s

equilibrium point.

matrices evaluated

(evaluated at ^1,

m , 6	 denote their
8	 8

Dsg 1 , 
D8182 denote the

at constant angles ^1 and

61).

For the payload assembly, the lineari-ed equations around

aq = 0, CQil = 0

are:

»	 ..
m  

(^Qi1 + Hoq a 	 F^Q11
	 (24)

T ••
I q aq + mp Hoq C Qil = Faq	 (25)

substituting for ^ Qi from (24) into (25),

T	 oe _	 T_

(I q 	m  Hoq Hoq) a 	 Faq - Hoq F;Qi l	(26)

But the moment of inertia of the payload assembly about the p-axes is

I = I - m H T H
p	 q	 p oq oq

Also, for the linearized system,

a = a
q	 P

Therefore, equation (26) becomes:

Ip ap = Faq	 Hoq F{Qil
»	 _	 T

	

(27)
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Considering the two position equations, (20) for 
;0 i

, aad (24) for

S

^ Qil , only the difference between the payload assembly position and the

coarse pointing assembly, is of interest.

Define

E = ^P2il - ^Qil
	 (28)

Before linearization,

^P2i1 = pii l t0S i + D	
T 

p T	 + p	 D Tiil p1s s 81 ^P291	 ill is ^Pls

After linearization of the second derivatives of this equation about the

equilibrium point, simplification yields

..	 T	 ..	 ..	 .,	 ..

^0 i = Di it
( E + C Qil ) - HP2s a s - hz

P281 8	
(29)

s

This value of 
^0 i 

is substituted into equations (20) - (23) to obtain the

s
following:

m	 m +
..	 b' 1	 s	 81	 ..

E+ D ii	 m 
H	

m	 H s	 as1	 P1	 P2

(m+  m	 D..
s	 gl	 ..	 ,.	 111

-Dii l 	 m	 hzP291  8	 Hoq aq	 m	 Fc

4

m + m
F. 	 (30)

p	 i=1

where F 	 is the crew-motion force. The remaining equations of motion are:

(I +m	 H T 	 -m	 H T H	 +D	 T I 	 D	 +D.T	 I	 D.. ) a
s	 81 P1	 P1	 81 PI	 P2s	 S91	 81 S91	 1 i t 82 111	 S

• (m H T +m H T ) p T e+ ( p T 	 I	 el
81 P1	 82 P2 s	 1 i t 	 s 81 81

 
as

• D.	 I82 p8182 
el	

mg t HP 1T hzP281 ) ^ + D.	 I82 e2 e8

(m H T + m H T) D. T H a = T + T
81 P1	 82 P2 s	1 i t oq p	 c	 con

T
M1	

4

Tm2 cos 
01	 - L C  

(^BJs)(piTil 
Fj)

T 
	 sin 01

	

j=1	 \

2
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,I

Iti

^i
c t

	

T	 T

(m91 HP1 + m9 2 HP 2 s )	 T	 A

m	
D.	 F. + zc x Fc	(31)

P	 1 J =1	 J

m	 Z	 hT D. 	 E+ (e 1 T I	 D	 + e1T D T	 I	 D.. ) a
g 2 P281	 1 11	 81 s 81	 gl 92 92 111	 s

T	 T	 ••

+ (IXXg l + el D81 92 1 82 D8192 e
l) 08

	

e l 8 - m	 Z

	

+ e2T I
	 D	

T	 T	 ..

g 2 8182.	 g	 82 P281 h Di i t Hoq a 

	

_	 T	 T

Tml	
e1	

j=1 
CP 	D81 g2

 F.

mgt	 4

mpy P281 hT D. . 
F Fj	 (32)

-1

	

+ e2T I	 D	 el ^ + e 2T I	 D.. a
IYY 92 eg	 92 8182	 8	 82 11 1 s

4

	

Tm2 - e 2T	
C 
	

Bj82) Fj	 (33)j=1
4

I  ap1 Cp (^AJq	
coq) Fj	 (34)

J

Equations (30) - (34) define the complete linearized motion of the system.

Position Sensor Outputs:

An axial and a radial position sensor is located at each magnetic actuator

station. For computing the magnetic actuator forces, it is necessary to

compute the centering errors at each actuator station. Since the payload

assembly rim is continuous, it is necessary to compute the points on the rim

directly under the actuator stations. This can be done by minimizing over rim

roll angle W, the distance between a point on the rim (assumed to be a circle)

and a magnetic actuator station. For the present linear analysis, however,

this can be achieved by a simpler method. The linearized radial centering

errors are simply the radial components of E. The axial centering errors

are obtained by finding the angle between the bearing plane and the rim plane.

The vector
B392 

is transformed ("projected") into the q'- coordinate

system (with E = 0), q'- system being same as the q-system, but without the

yp = rotation. The Z-component of the transformed vector { Bjq " plus the

axial (Z-axis) components of translation error E, gives the total axial

centering errors. Let 3j (x) denote the X 82 -axis centering error at the

jth actuator station, etc.

18



First ignoring the translation,

^8J9, = 
T2( e p ) T 1(mp ) Dii1 1). T Dsg 1 T DTB1 g2 ^Bj82	

(35)

After linearization and simplification, the following expressions for the

sensor outputs are obtained:

S 1 (x) = 6 3 (x) = E X	 (36)

5 2 (Y) = 5 4 (Y) = F-

5 1 (z) = 
E 
	 - r (cos ^1 e s + sin m1 Sy s ) - r ( e g - 6p )	 (38)

5 2 (z) = E Z + r (cos 6 1 m s + sin 8 1 sin 0 1 es - sin 6 1 cos 01 
*s)

+ r ( pg cos a 1 - 0p )	 (39)

5 3 (z) and 5 4 (z) are obtained from 5 1 (z) and d 2 (z) by changing the

sign of r.

4. CONTROL SYSTEMS DESIGN

4.1 Coarse Gimbal Control Systems

The coarse gimbal assemble, which consists of the elevation and lateral

coarse gimbals, must automatically follow the payload assembly. This is

accomplished 1-y the use of two brushless DC torquers. The objective of the

control sN ,stem: for the torquers is to move the coarse gimbals in such a manner

that the payload assembly is kept properly centered in the magnetic bearings.

Thus an appropriate design approach is to obtain the command values of

p	 and 6	 which will minimize
g	 g

4

J = 5 1 2 (X) + 5 3 2 ( X ) + 5 2 2 (Y) + 5 4 2 (Y) + Y 5 2 ( z )	 (40)
ij=1 

This is done by substituting for 5 j from equations (36) to (39), and for.

c from linearized version of equation (28), and making

a 	 _ aJ = 0

a m g	 a 6g
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The solution gives the following command signals:

^	 - m =	 1	 ^z	 E - r2 cos e l (cos 8 1 m - m )
gc	 8	 ..2	 + r2 cos 2 61	 P281 Y	 S	 P

- P2 91
c^

r2 cos 6 1 (cos 8 1 ms + sin e l sin 01 e s - sin 6 1 cos ^1 ^s	 (41a)

e gc = a  - (cos 0 1 8s + sin 0 1 Vas)	 (41b)

It can also be proved that

_	 _	 1	
r	

r cos 61

^gc	 ^g	
z 2	 + r2 c05 2 81 C^P291d 2 

(Y) -	 2

11	

P281

152 (z) - 6 4 (z)}]	 (42)

and

8 1 (z) - d 3 (z)
6 g - e  =	 2r	 (43)

Equations (41a), (41b) are used for solution of the state equations, and

(42),	 1 3) arc- used in actual implementation.

The torques to be generated by the coarse gimbal torquers are then given by

0
- ^"	 +	 4 4

Tm l	 91 9	
L 
9) ^gc - 09)	

( )

0

Tm2 = - K92 6 9 + L 9 (
6 gc - 691	 (45)

where K91 , 
K 9 

are rate gains and LB1 , 
L 9 

are proportional gains. The

desired response can be (approximately) obtained by making

K
91

T T	 2p 91W91
lxxg l + e

1 
0 9192 1 82 08182 

el

(46)
L
81	 2

T T	 W81

1XX81 + e
1 

0 8182 1 82 08192 el

^2	 L92
I	 = 2092 W92' and I	 = 

W92 2	 (47)»g 2 	 ^^92
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4.2 Magnetic Actuator Control Systems

Magnetic forces acting in Xq , Y  and Z 	 directions (nominal) at each of

the four bearing stations are used for controlling the motion of the payload

assembly. Tlius there are twelve control forces. Ignoring the rotation-

translation coupling, the desired responses are obtained by making

4

Fxj
j=1

4

FYj	
ml0 X 

j=1

F
zj

j=1

and
4

C	 F. - rf = -I	
X

ho	 po ap

j=1

where

f = (F 
Z 4

- Fz2, 
Fzl - F^

3 , FX2 - FX4 + FY3 	
FY1)T

M I = mmp/(m + mp), C^ = -Cp ( coq ), X  = (X Ex, Xey ► XEz)T

0

X	 = 2P	
X X	 X

E + W 2
EX	 X	

EX, etc.

The subscript "o" implies the measured or estimated value of the parameter.

Thus the control force equation can be written in the following matrix-vector form:

ACFF=q

where

F = (F
X i 	 x2	 x3

, F , F , F x4
	 Y1
, F , F 

Y2	 Y3
, F , F 

Y4 '
 F 

z l	 z2	 z3
, F , F , F 

Z4 
)T

q=	 ml0 XT E , _ ( Ipo Xap + C {o m 10 XE)Ti T	 (48)

A
CF = appropriate 6 x 12 coefficient matrix.

Letting

FX1 = Fx3 = 2 m10 e1T XE

(d9)

FY2 = FY4 = 2 m10 
e2  XE
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f

The remaining equations are:

ACF F = q,

or

F
X2

1	 1	 0	 0	 0 0 0 0 F FX	 + FX
X4

1 3

0	 0	 1	 1	 0 0 0 0
F	 + F

0	 0	 0	 0	 1 1 1 1 F 	 1 Y2 Y4

0	 0	 0	 0	 0 -1 0 1 F 0
Y3 = q	 -

0	 0	 0	 0	 1 0 -1 0 F 0

1	 -1	 -1	 1	 0 0 0 0 Z1
0

F
Z2

F
0

Z3

F
Z4

The solution which minimizes the norm of	 F^ is given by

F -_	
(AI)T
	 J ACF	 (A I ) T

CF

1 —1 q.

which,	 after simplification, gives:

FX2	
4'r 

r e3 T (Ipo aap + CCo m10 AE ) (50)

F	 = -F (51)
X 4	 X2

F	 = F (52)
Y1	 X4

F	 = F (53)
Y3	 X2

F	 =	 1 m10 e 3T a
zl	 4	 E

+	 1
2r

e 2 T (I
po

a
ap

+ C
{o

m10 X )e (S4)

Fz2 = 4 m 10 e3 	 XE - 2T
e1T

(Ipo Xap + C oo m 10 A E ) ( 55)

F ^ 3 = 4 m 10 e3T X e 2r e2T ( ' Ipo dap + C{o m l0 aE ) (56)

F ^ 4 = 4 m 10 e 3
 
	aE + 2r

e1T
( I po aap + C {o m 10 aE ) (57)

This can be e-pressed as:

F=Aq

i
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where

el o	 el o	 o	 e 2 o	 e2 ,e3	 ;e32 e 3 Ze3
AT - 1

2	 1	 1	 1	 1
o 3 e3 o - 2 e 3 - 2 e 3 o 2 e3 o	 e2 - el - e 2	 el

Let
T

e .
i

Ai =
	 eTi+4	

i = 1, 2, 3, 4	 (58)

T
e i+8

Then

F  = Ai Aq	 i = 1, 2, 3, 4	 (59)

These are the expressions for desired magnetic actuator forces.

4.3 Space Shuttle .attitude Control System

The attitude of the shuttle is assumed to be controlled by such devices

as CMG's or AMCD. The control torque is given by

T
con	 s	 gl P1

= -(I + m	 H T 
H P1	 92 P2

+ m	 H T 
s 

H Pzs ) a s
	

(60)
a

where

as = (X^ , ae , a^ ) T	 (61)

s	 s	 s	 s
0

X	 = 2p	 w	 + w2m y s , etc.	 (62)
0

S
	 O
	 O m
s 	s s
	

J

S. COMPUTATIONAL ASPECTS

S.1 Equations of Motion Mien Actual Payload Parameters Differ From the

?4,ominal Ores

The control systems designed in the preceeding section are based on nominal

or measured values of the parameters coq, M  and I P , which are, in general,

different from the actual values. It is desirable to investigate the pointing

performance when such errors exist. To keep the number of Variables small,

it is assumed that the same per unit error b exists between the actual and

measured (or nominal) values of these parameters, i.e.

C ; _ (1 + b) C co , m  = (1 + d) mpo , I p = (1 + d) Ipo.
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Then equation (34) becomes

I a = (C - C ) m 10 a - I	 a	 (63)
P P	 {	 {o	 a	 Po ap

or

(1 + 6) 
1 P a

P = 6CCo m10 X  - Ipo X ap	 (64)

which reduces to

so
 = I +6 	 1 -1 po C{o m10 a E - 1 + 6 a ap	 (65)

Similarly, equation (30) becomes
D..

..	 ..	 ....	 111

E + Al2 
as 

+ A13 ^ + A15 3p = m	
FC

dm
I 1 

b 
(1 + 

6M Po
	 aE	 (66)
Po

where A l2 , A13 and X14 are easily identified by examining equation (30).

In an attempt to normalize the equations of motion to some extent, the

Euclidian norm Yyogoil, hereafter denoted by Y {Q, was selected as the

normalizing Parameter. The following variables and parameters are defined:

E
0
	 m10 Ipo-1 V {12, C1 

- C{o/11 C I, v = c/^ CQ, 6
s 

= CL	 CQ,

01 g = C g
	

e 1 g = e g /kill fc = F c /N, t c = Tc C

The normalize 3 equations of motion then become

.o	 ••	 ••
V + A1? 6s + A 13 01

9
 + A 15 

aP

m
B 11 fc - 1 + 6 (1 + 6 m +Pm ) av	 (67)

Po

••	 N	 M	 N	 ••
A 21	 + A22 6 s + A23 

a1  
+ A24 

el9 
+ A25 aP

Tml	 4

1 T	 + t - 1 Lcos al	 Y C ( {gJs ) D. . Fj
p { ^ con	 c	 11{5	 m2
	 P

1

r	 ^	 T	 sin pl	
J=

m2

T+ m H T
	 T

(m91 HPi	 92 P2 s) Di -1 4
F Fj + {c X fc	 (68)

	

( 1 + ^) mP o ^^{^	 j-1

..	 ..	 ..	 ..	 ..
A31 v + A32 6 s + A 33 m ?. g + A3`, 

61 9 + A35 a 
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f	

4	 m92

C ^I LTmI	
e1T 

E 1 
CP (CB ) g l ) DT919 2

 F]	
( 1 + 6) mpo

4

zP2g1hT Dii1T

	 Fj]	 (69)
j=1

T 4

	

0o	 ., e•	 1	 e2

A42 a s + A43 ^1 + A44 8 1 g =	 Tm2 - — F Cp	
gj92) 

Fj	
(70)ICII	 VCl j=1

The matrices Aij are given in the appendix.

cc	
l + ^ E

o C 1 av - 1 + a XaP	
(71)

Equations (67) - (70) contain the terms F j /1 ^ II, Tmi /C c l in their right -hand

sides. From equations (S9) and (48)

q	 a
— = m1 L1 'v

C1

where

1 3x3	 03x3 
IIII

L1	
(73)

1
LC1 r	 Eo^ r

Thus the F j /IBC terms in the right-hand rides of equations (67) - (70) can

be normalized. The only quantities that remain io be normalized are Tm
1

and Tm 
2 , 

which are given by equations (44), (45), (41a) and (41b).

After simplification, division by 1^1 yields

^gc	

^g = 2	 12	 2	 zP291 v
y - r2 cos 6 1 KCOS  6 01g

	

ki	 z 
P2g1 

+ r cos 6 

1P) 
	 (cos e 1 , sin e 1 sin ^ 1 , - sin 6 1 cos 01) S s	 (74)

6	 -e	 e
gc	 g = P - (0, cos ^1, sin ^1) 6 s	 (7S)

	10	 W

Hence it is seen that 
Ogc 

and 6 gc , and therefore Tml and Tm2 cannot be

normalized in this fashion, and the parameter r or 1^1 must be specified

in addition to the normalized parameters

i
,e

^t
c^

(72)
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l

4	 C1 = CCo

and	 (76)

s	 E  = m 1 o H2 
1po-1

5.2 Representation of Measurement Noise

Control systems for the coarse gimbals process the measurements of
O	 O

6. 2 j = 1, 2, 3, 4, fi g , 6 g , and generate appropriate torque signals. Control

systems for magnetic actuators process the measurements of 6 j , j = 1, 2, 3, 4,

(for e and e) and ap , a 	 in order to generate appropriate voltages for the

magnetic actuator coils	 (force equations 50 - 57). Space shuttle attitude

control s y stem makes use of the shuttle attitude and attitude rate measurements
C

(a	 and a). All these measurements contain certain amounts of noise. The
S	

s
0

payload assembly attitude a
P	 P

and rate a	 are estimated by a star-tracker

system fixed to the payload which possibly makes use of a Kalman filter. The

star-tracker model currently available is discrete-time 3 . However, as a first
O

attempt at the problem, continuous measurements of a p , a  are assumed to be

available, and are represented by adding continuous white noise to the actual

quantities. The covariance of the additive noise is to be made equal to that

reported in reference 3 using the "optimum s ystem." The results obtained

using this approximation are expected to be conservative (showing worse perfor-

mance than actual) because the actual estimation error is not white, but is band-

limited. All other measurements are contaminated with continuous white noise,

and appear in all control terms, e.g., a c , as s, a ap , etc. Sensor dynamics have

not been included in this first trial, but appropriate representations will be

included later. A nonlinear model for the coarse gimbal torquers has been

supplied by Sperry Flight Systems, and will be used in task 2, the latter part

of the grant. The linear part of this model contains the representation

of torque as being proportional to the motor current. Since the control loop

contains current feedback, the lag due to inductance can be theoretically made

as .mall as desired. For the second-order model currently available, the

eigenvalues represent dynamics which ar,: much faster than the rest of the

system; therefore the torque outputs may be assumed to be instantaneous in

this first attempt at the solution.

Addi*i , .: measurement noise contaminates the sensor outputs at the

four suspension gaps (6 j, j = 1, 2, 3, 4), coarse gimbal angle rates,

payload attitude and attitude rates. The coarse gimbal angular rates are
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measured by tachometers, and the relative displacement rate (e) is generated

by using a lead circuit. Thus the measurement noise, represented as white

noise processes, appears in all the control terms; e.g., av, Xas' etc. Each

noise term is normalized by division by

^

	

	 The crew-motion forces and moments for each crew activity can be described

by passing a unity power spectral density white noise through a filter of order

four (or less) for each force and each moment. 2 The complete equations of

mot ion can be symbolically written as

•e	 o
A X 1 = A l X 1 + A2 X 1 + B1 fcr + D1 w 	 (77)

fcr = T X2	(78)

o
X2 A 2 X2+B2u

where

T	 T	 T) T
X 1 = ( v , S s , ^l g , 6 1 g , ap

(79)

T	
T T

fcr	
(fc, tc)

X2 = state vector of crew-motion filters

u = white noise with power spectral density = 1/IICl2

w
m
 = measurement noise vector (normalized)

Let

X1 = Y1

0	 0

X1 = Y2 = Y1

0
Y 1 = Y 2	 (80)

Y 2 = A -1 A l Y 2 + A' 1 T2 Y 1 + A-1 B1 T X2 + A -1 D1 
w 
	 (81)

;2 = A2 X2 + B2 u	 (82)

Thus, defining

X = (Y1 T
, ; I T , X2T)T
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equations (80), (81) and (82) can be written in the form

X = A X +^v	 (83)

where v is a vector white noise process.

The resulting covariance equation for this system is
O

= A	 +	 AT + B V BT	(84)

where

E [v vTi = V d (t - T)	 (8S)

This covariance equation can then be solved for E ss , the steady

state value of F_, by the method described in reference 4.

6.0 PRESENT AND FUTURE EFFORTS

A detailed linearized mathematical model has been derived for the space

shuttle/ASP system via Lagrangian formulation. The model incorporates all

internal couplings, and sensor noises. The elevation-lateral coarse gimbal

configuration has been assumed. Control laws have been designed for the coarse

gimbals, which minimize the summed norm of the suspension gap errors at the

bearing stations. Thus the coarse gimbals have the capability of automatically

and continuously following the payload in order to point at a target which is

moving with respect to the space shuttle. Minimum norm control laws have

been designed for magnetic suspension and fine-pointing actuators. A computer

program has been written for generating the system matrices, and for solving the

resulting covariance equation.

In the immediate future, preliminary computational results will be

obtained for this model using the program mentioned above. Computation will

be performed using data for two or three typical payloads, and statistical

pointing accuracies will be obtained as functions of errors in estimating the

payload parameters, and sensor noise variances. The star-tracker models which

are currently available will be reviewed, and a suitable model will be chosen

for inserting in the present mathematical model. (The present mathematical

model assumes that the payload attitude estimation error is continuous white

noise, with covariance reported in reference 3. This is a conservative

assumption and should give worse-than-actual pointing accuracies.) A detailed

star-tracker/payload attitude estimator model would be discrete-time; therefore

its interconnection with the continuous shuttle/ASPS model will have to be

investigated. One solution would be to discretize the continuous system, and
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to use equivalent disercte white measurement noises and crew-motion filter input

noise. A simpler and computationally less expensive solution would be to

approximate the discrete-time star-tracker/estimator system by a continuous

system.

The above computational results would also yield the effect of the payload

motion on the shuttle. If this is found to be significant, a model for a second

payload/ASPS/coarse gimbal system will be added to the present model, and the

computation will be repeated. The two payloads are connected only through the

shuttle motion; therefore these efforts need be undertaken only if the payload

motion is found to significantly affect the shuttle.

If the knowledge of flexible modes of the shuttle is available, this shall

be included in the present model as the next step. The linear analysis shall

be complete with this step.

The next task is to perform nonlinear analysis. The nonlinearities to be

considered include: 1) coarse gimbal torquer nonlinearities due to ripple,

togging and friction; 2) magnetic suspension and fine-pointing actuator

nonlinearities: square-law, dead one, h ysteresis, coil switching, etc.;

3) sensor dead ones; and 4) shuttle attitude control system vernier jets, which

operate in on-off fashion. The nonlinear s ystem will be represented by a linear

part and time-in variant nonlinear blocks. Computational results will be

obtained via Monte-Carlo simulations. Finally, time permitting, an analysis

of earth-pointing performance shall be performed using the linear model. One

way to perform this could be to evaluate the ASP's local pointing performance

when tracking a relatively fast-moving target.
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APPENDIX

Coefficient Matrices:
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