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HIGH SUBSONIC FLOW TESTS OF A PARALLEL PIPE FOLLOWED

BY A LARGE AREA RATIO DIFFUSER

By

P.S. Barnal

SUMMARY

Experiments were performed on a pilot model duct system in order to explore

its aerodynamic characteristics. The model was scaled from a design projected

for the high speed operation mode of the Aircraft Noise Reduction Laboratory

located at NASA Langley Research Center. The test results show that the model

performed satisfactorily and therefore the projected design will most likely

meet the specifications. The experiments were conducted in the Aerodynamic

Laboratory of Old Dominion University.

1 Professor of Engineering, Old Doiniiiion University, Norfolk, VA 23SO8.



LIST OF SYMBOLS

A	 = sectional area, m2

a	 = throat area of Venturi, m2
0

cp = diffuser pressure recovery factor

C  = coefficient of discharge

D	 = diameter of the parallel pipe, m

T = average friction factor along parallel pipe

g	 = gravitational acceleration, m/sect

K	 = specific heat ratio

,^L = length of pipe section under consideration

M = Mach number measured along parallel pipe and diffuser

p	 = absolute pressure measured along parallel pipe and diffuser, kg/m

Op = pressure difference in Venturi, kgf/m2

Q	 = volumetric flow rate, m3/sec

R	 = gas constant, joule/kg OR

T	 = stagnation temperature, OR

V	 = velocity, m/sec

W	 = flow rate, kg/sec

x	 = distance measured along parallel pipe and diffuser

y	 = distance across the flow, m

•y	 = specific weight, kgf/m3

e	 = static temperature

p	 = fluid density, kg/m3

P0 = fluid density at isentropic stagnation conditions, kg/m3

Subscripts

1	 = inlet to a section

2	 = outlet
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INTRODUCTION

The experiments presented in this report were planned to explore the flow

behavior of an air duct system scaled down to approximately a one - tenth* size

pilot model of the prototype. The prototype itself is a duct system projected for

the Acoustic Noise Reduction Laboratory at NASA Langley Research Center. The three 	
1

main components of this system are an air intake, a parallel pipe, and a diffuser.

The flow entering the ^:r intake is to be accelerated in transit to a Mach number

of about 0.5 and is to be further accelerated along the parallel pipe to unity

(sonic condition) at pipe exit where the flow is permitted to enter the diffuser

for pressure recovery. A large centrifugal blower is projected to perform the

necessary flow induction, and it is anticipated that the model operation will

furniEl, satisfactory data for estimating the performance of the prototype.

Preliminary studies indicate that there arises no particular problem with the

intake and a sensible design will satisfy the need for a uniform distribution of

flow tc the parallel pipe. The requirement of attaining a Mach number 0.7 along

the pipe, and preferably being able to increase it to unity at pipe exit, calls

for attention consiJering the variation of friction factor along a parallel pipe

anticipated under hi-oly accelerating flow conditions. Furthermore, the uncon-

ventional design of the diffuser with a proposed area ratio of 16 to 1 appeared

highly problematical from a recovery point of view. In addition, the effects on

the flow of an instrument-mc, ,anting employed inside the parallel pipe arpears

theoretically unpredictable. rinally, all of these effects combined prosents the

problem of matching the pressure changes and flow rates required from the system

against the actual quantities being available by the induction under operational

conditions.

TEST EQUI1 MF.NT

The test equipment essentially consistec,, of a parallel pipe which was provided

with a well-rounded entry at its inlet and was ' ` ^onnected to a diffuser at its outlet.

* The actual scaling factor was 1:9.6.
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Located upstream from the entry a venturi meter of standard design was employed

for measuring the flow rate. The general arrangement is shown in figure la.

The parallel pipe was made of extruded acrylic tubing with approximately

.00470 m wall thickness and was fitted with flanges at each end. To establish

the exact location of the section where diffusion started, the end of the pipe

was slightly tapered from about one inch distance from its exit plane. Pressure

tappings were distributed at regular spacing along the pipe but the distance

between tappings was decreased towards the wipe exit where large pressure gradients

were anticipated. Some sections were provided with a single tapping while ethers

had three taps which were interconnected, thus allowing for the average of three

pressures to be recorded in any one plane of measurement.

While there was only one pipe employed throughout the experiments, there were

two diffusers tested. The first diffuser was made of plastic material and had

straight walls with a taper angle of 3 degrees, while the second diffuser was made

of sheet metal. This started with a lower taper angle of 2.4 degrees which changed

to a hig)er angle of 4.76 degrees halfway along the diffuser length, as shown in

figuri 1b. Pressure tappings were distributed along the diffusers at regular

spacing.

Tests were conducted under two different operational modes: (a) under suction,

and (b) under pressure, and the test arrangement was changed accordingly. Under

suction, the flow was "inducted" and operation was maintained with the aid of a

vacuum system consisting of an air ejector to which the primary air was supplied

jy a compressor. The ejector was specially designed for these tests to reduce pres-

sure to about 22.86 cm mercury below atmosphere inside two tanks each of 28.317 m3

capacity. Evacuation time to the desired vacuum lasted for about 15 minutes.

Under suction operation all pressures along the tube and diffuser were measured

with a multitube manometer, while the suction pressure in the vacuum line was read

on a single tube manometer, both manometers using mercury as indicating fluid

(see fig. 2a). Under pressure, flow through the system was maintained by a	 R

powerful centrifugal blower which discharged into a settling chamber where the

pressure could be varied from .0508 m to .254 m water gage. Fluctuations of the

airstream were damped out with honeycomb screens. From the side of the settling,

chamber the flow entered the parallel pipe through the inlet section and was

finally discharged into the atmosphere through the diffuser (see fig. 2b).

Under the pressure operation, velocity traverses across various cross sections of

4
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the pipe and the diffusers were obtained with a standard pitot static tube of

.001587 m diameter.

For velocity traverses and for measuring the flow rate, inclined tube mano-

meters were employed using alcohol as indicating fluid. Atmospheric temperature

and pressure were read from a standard barometer located near the test equipment.
1

For the boundary layer suction experiments in the second diffuser a small

blower unit was used and attempts at sucking the layer were made both at diffuser

inlet and at the halfway section. The flow rate was measured with a small Venturi

C	 meter built into the suction line.
i

k	 PROCEDURE

1	
The experiments were performed under either quasi-steady or fully steady

flow conditions. More particularly, under suction the induced airflow into the

tanks through the pipe was greater than the evacuating volume flow, because the 	 f

t	 compressor was unable to maintain an adequate supply of primary air to the ejector

under decreasing vacuum. However, when the flow attained sonic speed at the pipe

F	 exit the pressure distribution along the pipe remained unchanged for some short

t	 period of time, long enough for it to be considered steady, while under subsonic

flow conditions at pipe exit the pressures were steadily rising. In either case,

the pressure distribution was instantaneously recorded by photographing the mano-

meter board. On the other hand, fully steady operation was maintained when

operating under the pressure mode.

For the suction mode experiments the following routine applied. Air was

withdrawn from the closed tank until a maximum vacuum of about 23.308 cm fig was

attained. Each test was started by quickly opening the admission valve to the

tank :nd immediately observing the manometer hoard. When the desired flow condi-

tions were attained the board was photographed and simultaneously the suction

pressure and the pressure differential of the Venturi were recorded. The tests

were subsequently repeated for several different suction pressures. Immediately

after each test the admission valve was closed and remained closed until maximum

vacuum in the tank was restored.

Several test runs were performed with unrestricted flow through the pipe and

one run was performed with a protruberance that restricted the passage at a parti-

cular cross section. It was located .279-1 m from the pipe entr;ince. The protruher-

ance was shaped after an instrument Folding device and it simulated partial blockage.
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During the pressure mode experiments, velocity traverses were made at the

relevant points along the flow--at the inlet to the parallel pipe, at the inlet

to the diffuser, at the half-way section of the diffuser, and at the exit. These

tests were subsequently repeated with boundary layer suction which was applied

to either the inlet to the diffuser or the half-way section of the diffuser.

During these experiments the effects resulting from varying the suction flow

rate were also studied. During the tests the atmospheric temperature and

pressure were recorded.

EVALUATION OF TEST RESULTS

For calculating the Mach number M from the mass flow rate, stagnation

temperature and static pressure, the Fanno equation was used

IV A =	
R M 

I+ K- 1 M2

F

Details of the procedure for calculating M are given in reference 1.

For the calculation of the recovery in the diffuser, the recommended

expression was employed (ref. 2).

W:

i

(1)

P 2 - P 1

C =

p

2 p1V12

where V 1 = M 1 h^ and 0 1 = T./ ( I + K 2 1 M2l

found from the equation of state p l \= p1/gR01•	

l

/

(2)

'llie value of p l can be

It is noted that the entry condition to the diffuser (subscript 1) was

assumed to be identical to the exit condition from the parallel pipe.

For calculating the loca l skin friction along the parallel pipe it was assumed

that the distances between consecutive pressure tappings were small enough for the

factor f to be considered constant over those: distances. Than

f	 4H	 I K	 M 1 - M2) - k K 
1 Rrr 'DM1 ]	 (3)

M2

b

a

fJ^



whe re

I+ K- 1 M1 2

	

2	 1

^M1 =
	

M12

and

1 + K
	 1 2

^M2	
M22

Here the subscripts 1 and 2 refer to the inlet and outlet section respectively

of the pipe length (AL) under consideration.

The mass flow rate of air through the Venturi was calculated with the

expression

W=Cd ao 2 D
	

(4)

where the pressure differential AP was measu red on the inclined manometer

connected to the throat section. The other limb o: the manometer was open to

the atmosphere.

DISCUSSION Oh THI: RESULTS

The results of the experiments are presented in figures 3 to 8. In figure 3,

the distribution of Mach number along the pipe and diffuser is shown for four

different suction pressures from 12.7 cm to 21.1 cm lig vacuum. In figure 4 the

pressure recovery of the test diffusers is plotted against inlet Mach number,

while in figure 5 the variation of the friction factor along the pipe is shown

for the specific case when M = 1 at exit. In figures b and 7 the effects of

boundary layer suction at various locations are shown and in figure 8 the velocity

distribution across the inlet plane to the parallel pipe is presented.

Figure 3a shows that the Mach number at inlet to the parallel pipe was about

0.62 as against 0.58 calculated with an assumed constant friction factor of 0.02.

About halfway downstream from inlet the flow attained M = 0. 7, and from x/d = 20

7

I



onwards there appears a rapid increase in N1. The gradient dM/dx is highest at

1	

the exii, where M becomes just slightly greater than unity*. In going downstream

a rapid decrease in M is experienced in the inlet region of the diffuser and ulti-

mately the flow exits with M = 0.05. For suction pressures lower than 18 cm fig

the pressure distributions change, resulting in lower Mach numbers as shown in fig-

ures 3c and 3d. While at pipe exit the Mach number falls substantially below unity

the curves remain rather similar in appearance. After the insertion of the protrub-

erance some tests were repeated to study the effect of partial blockage. The

changes were found negligible and presentation of these results has been omitted.

The pressure recovery factor Cp for the original diffuser was found to he

about 0.8 (fig. 4) and was slightly improving with increasing inlet Mach number.

This figure is in good agreement with results obtained by other investigators

(refs. 3 and 4). The pressure recovery for the proposed new diffuser was found

about 4 percent higher and the experiments show that most of the recovery is

already accomplished at halfway along the diffuser.

The local friction factor varies considerably along the pipe (fig. 5). It

decreases first, then increases and finally markedly decreases near the exit. The

scatter of the experimental points suggests that under unsteady flow the pressure

measurements obtained by the mercury-in-glass piezometers have rather limited

accuracy. It becomes clear, however, that the assumption of constant friction

factor in a highly accelerating gas flow does not hold.

Velocity traverses obtained at various cross sc tions, namely at the inlet

(X), outlet (Z), and mid-section (Y) of the second h,ilf of the new diffur: cr show

the beneficial effects of boundary layer control with suction. The suction was

applied at mid-section X only and shows little (if any) effect on the profile

at X (fig. 0a). The effect, however, is more noticeahle at section Y (fig. uh)

and is quite marked at the exit section Z. The gradual improvement of profiles

with increasing houndary Dyer suction is shown in figure

I : finally, the velocity distribution obtained at the inlet to the parallel pipe

(fig. 8) shows they effectiveness of the contraction. While the velocity distributiOn

is fairly uniform across the center portion of the pipe, it appears to be slightly

higher oil 	 sides due to curvature of the contraction walls. This rffect is

* The increase of M above unit y at the exit plane is attributed to the streamlines
slightly diverging over a short distance• ahead 01' the inlet to the diffUSer.
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considered negligible and usually disappears shortly after the flow enters the

parallel pipe.

From the measured local friction factor an ove , r;iII can be established and with

this value assumed constant along the pipe, a variation of the inlet with the exit

Mach number may be predicted as shown n figure 9. It appears that at lower Mach

numbers (say, up to 0.4) the flow may be considered as incompressible.

CONCLIIy ION

The general conclusion that may be drawn from the experiments appears favor-

able and the projected duct design should meet the requirements. In other words,

by scaling up the experimental results it may be predicted that the operational

demand from the duct appears to match the rerformance of the induction system.

Relevant details of calculations are prese p '.od in Appendix A.

More particularly it was found that:

1. A Mach number equal to unity at the exit from the parallel pipe may be

anticipated in the range of induction press.rres 18.03 to 21.1 cm Hg (vacuum) corres-

ponding to 7888 kgf/m 2 and 7473.6 kgf/m 2 , respectively. Since the effect of stream

line curvature on the exit Mach number is rather difficult to estimate accurately,

a conservative value that may be recommended for the induction pressure would be

!	 about 20.32 cm fig corresponding to about 7593 kgf/m2.

2. The pressure recovery in both of the diffusers may he c -onsidercd satis-

factory. However, the velocity distribution at the exit of the new proposed

diffuser appears more attractive especiall y when houndary l;iyer suction is

applied at half distance along its length. Flow oscillations, which always

accompany separated flow, thus may he reduced or even elimin;ited because the

risk of flow separation is minimized with "full" velocity profiles. 	 Relevant

details of boundary layer suction are presented in Appendix B.

3. Variation of the friction factor along the pipe is considerable and as

a result, the experimentally found Mach number at pipe inlet was found higher

than the calculated figure hased on constant friction.

4. The design of the contraction (air intake) ;ippc;irs satisfactory as the

velocity distribution across the pipe inlet is fairly uniform.

9
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S. A comparison drawn between pressure distributions along the pipe with

unrestricted flow and restricted passage due to the protruberance indicated no

substantial difference. Thus the partial blockage, due to the instrument panel,

may be predicted to be negligible.
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Figure 2. Photograph of experimental apparatus.

HEMODUCERITAW 01 11 PTE	
14

ORIGMU ]PAGE IS PWR

.	 I



I	 .

BOUNDARY LAYER SUCTION

DI WISH

PIPE
0,,—AIR EXHAUST

A- 4

TRAVERSE

4

Y
1

F

i
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APPENDIX A

CALCULATION OF T11E DESIGN POINT FOR COMPRESSOR

From the experiments performed on the model, the design operational condition

representing the anticipated mass flow rate and diffuser exit-pressures can be

estimated for the full scale duct.

Assuming isentropic flow, the stagnation pressure at inlet to the parallel

pipe would be atmospheric, with the experimentally found M 1 = 0.62 at inlet,

the static pressure

Po	 (14.7)(6894.75)

P1 = (
	 l

\1 + K 2 1 M12 / K k 1	 (9.80665) I I + K ., l M 1 2 ^ K h 1

14.7)(6894.7S)	
= 7975.25 kgf/m2

(9.8066S)	 1 + .2(.62)21 3.5

Since the flow is frictional and M2 = 1 at pipe exit, from the Fanno equation

Plr11	 I + K 2 l h^1 2	 =
	

P21`^z	 I + K 2 1 M22

hence

(7975.25)(,0')	 1 + (.2)(.02) 2	 2
P2 -	 = 4686 kgf/m--

1.2

The static temperature at pipe exit at t
0
 = 70° F,

T O 	 530_	

11 282	 (K +	
lee = 441.7 0 R

By the equation of state p/y = R0,

P2

Y2 = It02

29



t

;v

(S3.3) (4. 4,18) (.3048) 	 k g f - m
R _	 I(9.80665)(.453S9)	 k-	 R 

(4686) (9.80665) (.45359)
Y2	 (53.3)(4.448'1.3048)(441.7)

Y2 = 0.053 kg/m3

Velocity of air at sonic condition for Y = 1.4,

R = (S3.3) (4.448) ( . 3048) = It,. .. 4 S kgf - m----Q--
(9.80665)(.45359)kg R

g = (32.2)(.3048) = 9.814S6 in/sect

V 2 = ^ (1.4) (9.81456) (11,.245)0 = 314.02 m/sec
i

Hence the massflow rate, with pipe area

(	 2
A = I (1.25) (.0254) n = .0075)17 m7

L	

`
and without taking the boundary layer into consideration

t

W = YAV = (.653)(.007917)(314.02) = 0.16234 kg/sec.

Experimentally, mass flow rate of the model found

(.3515)(.45359) = .159437 kg/sec

Without the boundary laver thickness the sealed up flow rate in the duct

would be W = (.653)(.785)(.6-)4.903)(314.2) = 14.95 kg/sec; with a scaled boundary

layer displacement, this reduces to an actual flow rate

W = 14.817 kg/sec
a

IN

30



Since sonic flow was attained at about .203 m mercury, the exit pressure from the

diffuser was found

P = (14.7)(6894.75)	 (36 - 8 ) = 7579.08 kgf /m29.806hS	 30

The point of operation is shown on the compressor performance chart (fig. Al)

as OP.
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AN I FINl1l X B

For the estimation of houndary layer suction Mower the following; approximate

calculation was employed.

For the max i noun

.00297 m 3/sec there

the duct. Experimen

hence the difference

2601.35 kgf/m2.

volume suction for the model AQ = (.105)(.0283168) =

corresponds a AQ = (92.16)(.00297) = .274016 m 3/sec in

is show that the pressure at halfway section was 7733.76 kgf /m2,

between atmospheric pressure Ap = 10335.11 - 7733.76 =

Th^ theoretical power required to remove this air is

p = (A^) (O1') = (.274016) (2601..;5) = 712.81 kgf - m/sec = 6.995 kW.

To match this requirement a 11.60 kW motor world be recommended.
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