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THE INTERACTION BETWEEN A SOLID BODY AND VISCOUS
 

FLUID BY.MARKER-AND-CELL METHOD
 

By 

Robert Y.Ko Cheng
1
 

SUMMARY
 

A computational method for solving nonlinear problems relating
 

to impact and penetration of a rigid body into a fluid-type medium
 

is presented. The numerical technique, based on the Marker-and-Cell
 

method, gives the pressure and velocity of the flow field. An impor

tant feature in this method is that the force and displacement of
 

the rigid body interacting with the fluid during the impact and
 

sinking phases are evaluated from the boundary stresses imposed
 

by the fluid on the rigid body.
 

A sample problem of low velocity penetration of a rigid block
 

into still water is solved by this method, The computed time his

tories of the acceleration, pressure, and displacement of the block
 

show good agreement with experimental measurements. A sample problem
 

of high velocity impact of a rigid block into soft clay is also
 

presented. The constitutive relationships of the clay is repre

sented as a very viscous non-Newtonian fluid.
 

1 Professor of Civil Engineering, School of Engineering, Old
 
Dominion University, Norfolk, Virginia 23508.
 



INTRODUCTION
 

There is a need to develop an analytical method of studying
 

the problem of aircraft landing impact on soil runways. Since
 

deep ruts are created by the tires on unpaved runways, the drag
 

forces on the landing,gear can be large enough to endanger the
 

safe operation of the aircraft.
 

Many studies have been performed (refs. 1, 2, 3, and 4) to
 

study the soil-tire interactions at ground speeds associated with
 

aircraft operations. The methods used in those studies are based
 

on either empirical modeling techniques or on soil strengths
 

obtained by static tests. Although the rut depth and drag forces
 

will depend on many factors other than the soil strength, a rational
 

method for predicting the landing-impact problem must take into
 

account the dynamic soil properties, the interface-stress distri

bution between the tire and soil, and the large movement of soil
 

masses.
 

As a first step in a program to provide an analytic method
 

as an engineering tool for studying the landing-impact problem,
 

a computational method is presented for solving the problem of
 

large displacements of fluid-acting media when interacting with
 

a solid body. An important feature in this method is that the
 

force and displacement of the rigid body during the impact and
 

sinking phases are derived from the fluid field.
 

LIST OF SYMBOLS
 

C wave speed
 

D divergence of fluid medium
 

E energy
 

e strain-rate
 

e strain-rate tensor
 

f force component contributed by a single cell
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F force component acting on rigid body 

Fforce vector 

g gravitational acceleration vector 

g gravitational acceleration 

h depth of fluid field measured from the base of ±igid body 

I unity dyadic 

L length of fluid field 

M mass of rigid body 

m direction cosine of unit tangential vector 

n direction cosine of unit normal vector 

p hydrostatic pressure 

q velocity vector 

R source term of Poisson's equation for calculating 

t time 

u velocity component in x-direction 

v velocity component in y-direction 

x,y cartesian coordinates (also used as subscripts) 

At time increment 

AxAy width and height, respectively, of all cells 

C strain 

sstrain tensor 

a normal stress 

a stress tensor 

T shear stress 

Tdeviatoric stress tensor 

V del operator 

A dilation 
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pmodulus of rigidity
 

K bulk modulus
 

TI non-Newtonian viscosity
 

qapp apparent viscosity
 

v kinematic viscosity
 

'ratio of pressure to mass density of fluid
 

p mass density of fluid
 

X convergence criterion
 

Xf force tolerance for iterative scheme
 

Subscripts
 

11,22122 diagonal elements of stress tensor
 

e identifies trial value for rigid body
 

i~j denotes x and y direction, respectively
 

o initial impact velocity
 

w identifies rigid body
 

a externally applied pressure
 

Superscripts
 

spherical stress tensor
 

deviatoric stress tensor
 

n time cycle
 

m order of recycle
 

s order of iteration
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SOIL PROPERTIES AND CONSTITUTIVE RELATIONSHIPS
 

A valid solution in continuum mechanics requires that the
 

solution satisfies the equations of conservation of mass and of
 

energy, equations of motion, and the equation of state of the
 

material. When the tire of an aircraft landing at relatively
 

high speed strikes the free surface of the soil, a strain-rate
 

which depends upon the landing velocity is imposed on the wheel
 

and the soil. Assuming the deformation will be large, the momentum
 

(or energy) of the aircraft will be dissipated by the soil in the
 

form of elastic deformations and plastic flow. The elastic defor

mations can be expressed as a function of elastic stresses whereas
 

the plastic flow can be expressed as functions of shear (or viscous)
 

stresses with magnitudes depending on the rate of straiA. The
 
yield stress will be defined as the transition point from the
 

elastic to the plastic state. Plastic flow will appear only
 

when the stresses exceed a certain limit indicated by the yield
 

stress. For materials exhibiting distinct yield points, there
 

is no ambiguity in establishing this limit. The stress-strain
 

behavior of most soils seldom indicate any distinct point that
 

may be identified as a yield point. Therefore, in this paper
 

the yield stress will be defined as the transition point from the
 

linear stress-strain behavior to the non-linear stress-strain
 

behavior. Below the yield point, the stress-strain relationship
 

is not rate dependent.
 

The various phenomena which are generated by the landing
 

impact of an aircraft may be treated as follows:
 

a. In the extremely "close-in region" in the neighborhood
 

of the impact in which the stresses are very large, with resulting
 

large displacements and velocities of the material, the medium
 

will be in a state of plastic flow. The impact momentum is.pri

marily dissipated by the shear resistance of the material. The
 

phenomenon is of a deviatoric nature.
 

b. As the magnitude of stresses decreases from the zone of
 

loading, there is a transition region in which the medium undergoes
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a transition from the plastic flow state to the elastic state.
 

The momentum dissipation in this region is relatively small in
 

comparison with the flow state. The stresses and displacements
 

can be evaluated by the elastic constants of the "solid" material.
 

c. As the moving load moves away from the "close-in region",
 

the applied load is released, and the flow state reverts to an
 

elastic state. The elastic rebound is a rather common phenomenon
 

observed upon unloading in many simple compression (or tension)
 

tests. It must be noted that the material, after being subjected
 

to plastic flow, reverts to a solid but with elastic and flow
 

properties which may be drastically different from its virgin
 

state.
 

Some of the physical variables of sandy and clayey soils
 

influencing mass behavior are: air and water content, grain size
 

distribution, and density. The environmental variables affecting
 

the mass behavior are confining pressures, stress history, rate of
 

loading, and duration of loading. The elastic and flow properties
 

of soils are all influenced by these variables. The state in which
 

the soil remains elastic is highly dependent upon the confining
 

pressure.
 

The state of stress at a point will be described by a stress
 

tensor a, as:
 

CF (12L" 1 0y13]
= I 21 (122 C72 3 

031 032 03
 

The strain tensor s is given as:
 

JEli 612 613
 

!/21 E22 E23
 

E 3 1 C32 C33 
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The strain-rate tensor e is related to strain tensor as:
 

= de
 
e dt 

It is to be noted that the above relationship is valid only where
 

the strains are small, so that higher order products of strains
 

and rates of strains may be neglected. For a small incremental
 

stress-strain relationship, as will be the case considered in
 

this formulation, the relationship will be valid.
 

The velocity of a material particle at some point and at time
 

t is given by the vector q which is completely described by
 

time rate of change of the displacement functions. The strain
 

rate tensor defined in terms of displacement functions is;
 

1
 

The total deformation in a soil mass may be decomposed into (a)
 

volumetric deformation caused by hydrostatic (or spherical) stress
 

components, and (b) deviatoric deformation caused by deviatoric
 

stress components. The stress, stain, and strain-rate tensors
 

may be decomposed into hydrostatic and deviatoric parts given as:
 

Eo a" + a
E = " + E' (I) 

e e"l + e 

The deviatoric tensor has the property that the first invariant
 

is zero. Generally the stress-strain behavior of a medium for
 

the hydrostatic stress field is linear.
 

From small incremental stress-strain theory, the volumetric
 

strain is the dilation A given by:
 

A = V
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The hydrostatic stress tensor is the mean of the normal stress
 

components given by:
 

= o-p]0 -0 

where
 

1 
-p = ( 1 + 2 + a33) 

if the material is isotropic with a bulk modulus K (not necessarily
 

a constant), a constant rigidity modulus p in the elastic state,
 

and a flow parameter rj in the plastic flow state, the constitutive
 

equations are:
 

p KA 

a' = 2el' (elastic region only) 

0 = 2ne' (plastic region only) 

In comparison with plastic flow, the shear deformation is rela

tively small in the elastic region. The material behavior in the
 

elastic region may be associated with the conservative (recoverable)
 

part whereas in the plastic region it is associated with the dissi

pative (non-recoverable) part, in which the flow takes place at
 

constant volume. In large displacement problems, the deformation
 

due to the conservative part will be small in comparison with the
 

dissipative part. Henceforth, conservative-part deformation will
 

be tentatively neglected. For a cohesive soil such as clay, the
 

flow parameter n is non-Newtonian and it is a function of the
 

confining pressure and strain-rate. A convenient method to express
 

the constitutive relationship for a non-Newtonian material is the
 

use of an apparent viscosity, iapp' (ref. 5) as shown in figure
 

1. The constitutive relationships for the Mississippi Buckshot
 

clay of various water contents is given in reference 6.
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GOVERNING EQUATIONS
 

The governing equations describing the motion of a continuous
 

medium are:
 

dP + pV -q = 0 Conservation of mass
 
dt
 

° 
 Conservation of motion
d-= pg + V a 

(3)
 

dE
 
pt= a:e - V bb + ch Conservation of energy
 

E = E(p,p) Equation of state
 

where b and are the heat flux vector and radiative heat term
ch 


respectively.
 

For compressible flow, the equation of state is necessary to
 

complete the system of equations for solving the unknowns q, p,
 

p, and E. For incompressible flow, the governing equations are
 

reduced .to:
 

V . =0 

(4)
 

+ ~q ) 4 = p-9 + V* 

Imposing the stress strain relationship expressed in terms of
 

displacement functions, the set of governing equations may be
 

solved and the solution is given by these displacement functions
 

in time derivative fdrm.
 

For reasons given previously, large deformation is attributed
 

to plastic flow so that volumetric deformation due to hydrostatic
 

stresses will be neglected. The soil system is considered to flow
 

under constant volume under the conditions of soilrtire inter

action due to a moving wheel of an aircraft,
 



In the plastic flow state, the constitutive equation of the
 

soil system is;
 

a = al" + t' = -p& 2ne' 

The deviatoric strain-rate tensor expressed in terms of displacement 

functions is: 

l= e (Vq + qV) - (V ae-


The constitutive equation becomes: 

E =-pI + n(Vq + jv)- 2 T(V (5) 

Substituting the constitutive equation into Eq. (4), the equation!
 

of motion becomes:
 

p + VP +L[3V (V + V 2 ]q) (6) 

+ (Vp) * (Vq + iv) 2 (V (V1) 

Imposing the condition of incompressibility, the governing
 

equations describing the motion of a medium are:
 

V o = 0 

(7)
 

o V-+= p - Vp + nV2- + (Vn) (V + qV) 

where n = n.(p,e), For a special case in which the flow parameter
 

q is treated as a constant, the equation of motion in Eq. (7) is
 

the well known Navier-Stokes equation.
 

In view of the non-linear form of Eq. (7), the difficulties
 

involved in obtaining an analytic form of solution satisfying Eq.
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(7) and the imposed boundary conditions is formidable. By treating
 
the soil as an incompressible and viscous material, the governing
 

equations arq similar to those in fluid dynamic problems.
 

The availability of large, high-speed computers and advanced
 
numerical techniques (ref. 7), provides a powerful tool for solving
 

complex non-linear boundary value problems in fluid dynamics. A
 
computational method based on the Marker and Cell (MAC) technique
 

(ref. 8) is used since the primitive variables of velocity com

ponents and pressure are solved directly, and the primitive
 
variables are required to relate the interaction between the
 

solid body and the fluid medium.
 

The Marker and Cell (MAC) method is a computational method
 
with visual display for solving problems of time-dependent motions
 
of a viscous, incompressible fluid with a~free surface. Some recent
 

workers usingthe MAC method are Donovan (ref. 9) and Vieceili
 
(ref. 10). The MAC method requires that the external wall shapes
 

be confined to the fixed rectangular cells of the Eulerian mesh.
 

In this paper, the MAC method has been adapted and modified to
 
handle the fluid-solid interaction problem'involving the moving
 

wall of the solid body0 The restriction of the stationary wall
 

boundary has been overcome by an iterative scheme involving the
 
impulse-momentum principle and the translation of coordinates.
 

For a complete detailed description and discussion of the
 

MAC method, the reader is urged to consult reference 8. Basically
 

the method is a numerical technique for solving problems in incom
 
pressible hydrodynamics containing free surfaces. Using two
 
spatial dimensions, the primary dependent variablesare the
 

pressure and the two velocity components. The variables are
 

computed in each time step and the solution is advanced in small
 

time increments. Using the Lagrangian approach to represent the
 

fluid motion with time, massless "marker" particles are moved in
 

each time step to new positions according to the velocity com
ponents in their vicinities. The marker particles serve to define
 

the free surfaces and they do not enter into the solution of the
 

Navier-Stokes equations.
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As with most other numerical methods which work in small
 

incremental form, the MAC method works with a small time cycle
 

The results of the field variables in each cycle act as initial
 

conditions of the next time cycle, and the calculations are con

tinued for as many cycles as the investigator wishes.
 

During the small, but finite, time cycle At, the flow
 

paramet r q may be treated as a constant within each cell,
 

such that Vr = 0. Introducing
 

(8)and -

P p
 

Eq. (7) describing the motions of an incompressible fluid in two

dimensional Cartesian cQordinates are:
 

D au 0 (9)x 5y
 

au a a/aa 2uag\(0 

aEt ax ay_ 

av + u v 2 = a + V/3 2 v + a2V (11)
E @ u y gy ay ay 2 / 

The kinematic viscosity is considered to be a constant, but the
 

numerical method can easily account for variable viscosity which
 

may be treated as a function of pressure and velocity components.
 

Operating on Eq. (10) with _x and Eq. (11) with 0 and
 

allowing the interchange of space and time differentials, one
 

obtains the Poisson equation:
 

- + = -R (12.)
2 2ax ay 
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where
 

aZu 2 a uv +av 2 +D aPD a 2 D 
Ox5 05y2 at2 ay2y x


Equations (9) through (12) constitute the basic equations from
 

which a finite difference scheme is developed.
 

Thq bouidary conditions required for the problem are indicated
 

in sketch 1. The stationary boundaries are represented by no-slip
 

x Moving rigid block
 

y surface
I<Free 


Fluid
 

Stationary boundary { 
Sketch 1.
 

impervious boundaries, and they are placed at sufficiently large
 

dptance9 away from the moving boundary to simulate an infinitely
 

large region. The moving rigid block is represented by a no-slip
 

impervious moving boundary. For the symmetric case, the line of
 

symmetry is represented by a free-slip, impervious boundary. At
 

the free surface, the boundary condition requires that the tjai

gential and,normal stresses vanish.
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DIFFERENCE EQUATIONS
 

The computational region is divided into rectangular cells 

as shown in figure 2. The positions of the variables on the rec

tangular cells are shown in sketch 2. The pressure parameterr P, 

V 1 

_ 
 ui~iri i,j 
 i+l,
 

Sketch 2.
 

is evaluated at the cell center The field variables to be computed
 

for each cell are u(i+l/2, j), v(i,j+l/2), and (ij). The
 

cell-centered values of u and v and corner values of uv are
 

evaluated by simple averages. Representative exainples are:
 

ui, j 2 i+I/2,j +i/2, j )
 

Nv) - "I+/j + U~
 
(UV)i+1/2, j+1/2 -4 (Ui+l/2,j i+i/, +
 

(vi,j+1 /2 + vi+l, j+1/2
 

The time derivative quantities are approximated by forward differences
 

of the first order
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Dn+1 -nD
 

3D) D. 7 - D., 
at At
 

n+l n
 
Bu3) ui+I/2,j 
-tPi+l/2,j
\/i+ /2,j ''A
 

where superscript n+l denptes the advance time step. All the
 

space derivatives are approximated more accurately by a central
 

difference scheme. Representative examples are:
 

i-j- A-- (Ui ljj
 

(,2U) 
1,J 

= _ (u + 2u
Ax2
x--2) i+l,j U,j
i+ 


a2uvh
 
T/i AxAy (Uv)i+i/2,j+i/2 + (uv).- "2
 

(UV)i+i/2,j-i/2 
- (uv)i-l/2,j+l/2]I
 

In advancing the solution from time step n to n+l, the
 

Poisson equation is first solved iteratively by the Liebmann's
 

methods of successive correction; that is, to sweep along the
 
positivp x-direction and the positive y-direction from the origi-.
 

In representing Eq. (12) by finite difference forw, the term
 
should ideally vanish in order to satisfy the incomprqsqibility
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condition. However, any iterative scheme will not solve Eq. (12)
 

exactly so that the divergence D of each cell will not be zero.
 

In order to compensate for this discrepancy, an auxiliary conditiqn
 

is imposed in reference(ll)as
 

Dn+l
 = 0 (13)
 

which ideally would result in a zero divergence in the advance
 
time step n+-. The auxiliary condition generates a splf-corrective
 

scheme in the computational procedure, so that a relatively co rse
 

convergence criterion can be used for solving the Poisson equation
 

as time advances without the accumulation of error. Imposing the
 

condition of Eq, (13) for cell (i,j),
 

3D). j At At 
Att At (14)
 

the finite difference form of Eq. (12) fqr the pressure parameter
 
is
 

n+l [1 +1 1
 
i 

- L Axx
2 
2 Oi+l~j + ti-l,j) +- Ay2 (i,j+l + 'i,j-1) 

(15)
 

+ Ri] 

where
 

Z = 2 +l l (16)

(x2 Ay2] 
 (cont'do)
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R.=(--- )2 + (Ui-lj) 2 2(u )2 

-
1)
12 


+ Ri. (v1 . - - 2(vj)2Vi jAy2(ij cv,.jj 1 2 + 

*x2---2 + (uv)i~/p~/ 
+ A( i+l/2,j+l/2 +1) 


(16)
 

2] (concl'd.)
-- (u)i+ 1 / 2 ,j 1 / 2 (uv)i-1 / 2 ,j+1 / 

D. r
 
+ (,J + - 2D iAt - Ax2 (Di+lj Di-l,j ,
 

and
 

Di3 A (ui~/, ui-i/2'J ) +
 
. A -y i,j+1/2 -ij 1/2)
 

(17)
 

After solving the pressure field, the new values of u and v
 

for cell (i,j) are computed from the explicit finite difference
 

form of Eqs. (2) and (3) evaluated at i+l/2,j and i,j+l/2,
 

respectively. The equations for u and v are:
 

n+1l2i+l/,= ui~/, + At f -L[(ui,j)2 - (Ui+l,j)2] 

i+l/2,j i+l/2,j Ax . ( j 

(18)
 
+ (uV)(uv) cont'd,) 

Ay i(uv)i+/2,j- 1/2 - (uv)i+i/2,j+i/2 

:7
 



+ g+ (n+l _ n+l, j +V( 
- + v (ui+3/2,j
 

Ay2 (Ui+ 1 / 2 ,4 1
+ ui-i/2 ,j - 2ui+1/2 ) + (ii2jl(8 (18)
 

(conc!'do)
 

+ ui+l/2,j 1 - 2ui+1/2 ,j )
 

= i,j+l/2 A -(i, j+l.
11j+1/2lV. = + 1t(y Ir(vi j2 - (V +) 2) 

+ (uv)i-1/2 ,j+l/2 - (uv)i+l/2 ,j+l/2 ]
 

E 
(19) 

.+g 1 (+n+1 _ nl V( 1 
Ay \ ij i,j+l) + (i+lj+i/2 

1 

Vi-l,j+1/2 - 2vi,j+1/2) + (vi,j+3/2-

Ay2
 

+ Vi,j-/2 - 2vi,j+1/2)1}
 

BOUNDARY CONDITIONS
 

Moving Boundary
 

As the rigid body penetrates into the fluid, the motion of the
 

body introduces a nonsteady boundary condition. The position of
 

the moving boundary (rigid body) depends on the forces exerted by
 

the fluid. An iterative scheme involving the ippulse-momentum
 

principle and the translation of coordinates is adopted so that
 

at the end of each time step, the Eulerian mesh is translated to
 

match the boundaries of the moving rigid body.
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If the pressure and velocity components are known for cell
 

(i,j) adjapent to the boundary, the stress components of the pell
 

acting on the boundary by the fluid as shown in sketch 3 are:
 

x I Ax 

yF
 

y 

Ay 3 

Ta' xy
 xy
 

Tt'kP 

Sketch 3. 

The force components contributed by a single cell are: 

fx = ax'AY + TxyAX - pAy 

(20) 

fy = ay'Ax + TxyAy - 4pAx 

where 

x ax 

a' = 2rj Dv 
y --


Tj (au + av)
 
xy y ax+
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The force components Fx and Fy experienced by the rigid body,
 
treated as constant during one time step, are computed by inte

gration of the forces of all the cells adjacent to the moving
 

boundary, Equating the change in momentum of the rigid body
 

between any time interval n and n+l, to the force acting
 

on the body, one observes
 

MdQDq = Mg + y (21)
dt
 

The finite ditferenqe form of Eq. (21) for the velocity components
 

of the rigid body are;
 

Fn+l
 
n 


~ u x
Un+ =n + 
x At
w w
 (22)
 

nFn+l
n+l +
Vw =w + y t
 

with g = 00 The values of the force components Ffn+l and 

Fn + are required as boundary conditions at the beginning of
 

each time cycle and must be found by an iterative scheme, The
 

displacement of the body at the end of the time cycle, shown in
 

sketch 4, is computed from the average velocities as:
 

n
I un+l + u


Ax W wAtw 2
 

(23)
 

n l + vn
 v y

AYw 2w At
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'C
 

Coordinates for time
 
step n
 

F 
y
 

I Coordinates for time 
step n+l 

Axw
 
Sketch 4.
 

n+J n+l
Since the advanced time velocities uwn and vwn as expresseq
 

by Eq. (22) must also satisfy the momentum equations expressed by
 

Fn+  
Eqs. (18) and (19), a judicious choice of trial values and
 
n-I n+l n+l xe
 

Fy representing Fxn and Fyn respectively are eqtimated at
ye x y'
 
the beginning of the computation. The estimated advance time
 

un +l n+ l
velocities of the body anr v can be immediately evalu
e e 

ated tnd the reference coordinates are then translated according
 
n+ l
u and vn+l
to the magnitudes expressed by Eq. (23) using 
 e e 

In solving the finite difference Poisson equation, values of
 

4, u, and v outside the computing region are obtained from the 

appropriate mementum and continuity equation. Although the types 

of boundary conditions applied will depend on the boundary under 

consideration, the boundary conditions for the case of a boundary 

to the left of the fluid shown in sketch 5 will be presente4.
 

The conditions for other boundaries are analogous.
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i I 

u2 2 

i-1,j uj 
j----ui-,3 il]u ij u' 

ni-,j+ 
 i j

v.. 1 2~2 v . 1 . 
-,3,+ 7 ,3 

Fluid side
 

Boundary 

Sketch 5.
 

The conditions for the moving boundary are:
 

1) Vi l,j+1/2 = 2vw - vi,j+l/2. 

vi-ijl/2 = 2v w - vi,j-1/2 

2) u2 I1,j=u l i
 
3) (uv)i-i/2,j+i/2 w
uw 


(uv)i-i/2,j-i/2 Uw ' w
 

4) i-l,j = .i,j + -2i Ax + 2v(u - u)/Ax
i1,j .J \M/ i+1/2,j 

5) ui-i/2,j w 

6) D i -, j = i j 
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The no-slip and free-slip boundary conditions are the same as
 
given in reference 5.
 

Free Surface
 

The treatment of a free surface cell is adopted according
 

to the procedure given by Hirt and Shannon, reference 12. The
 

n9rmal and tangential stress conditions at the free surface can
 

be expressed as
 

+ 	 2u n + nkny + av) + n2 

3x y Iy] 
(24)
 

2nam D t (nm + 	 +- + 2n m qv 0 
x x ax X y y xaxDRa 	 y 5'a5 

where the direction cosines of the normal unit vector and the
 

corresponding tangential unit vector relative to the surface are
 

related as:
 

n =-m
 x y
 

and
 

n =m 
y x
 

The tangential stress condition is approximately satisfied by
 

selecting the velocity components at-the exterior edges of the
 

surface cell so that the divergence of the cell vanishes. The
 

normal stress condition can be treated accurately provided the
 

orientation of the free surface is well defined. At present, the
 

frqe surface defined by marker particles is approximated to lie
 

either along the cell boundaries or along the diagonal of a cell.
 

The normal unit vector in both of these cases is well defined,
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COMPUTING METHOD
 

Themethod of this paper calculates a transient problem by
 

workig through a sequence of small time increments. The results
 

of each time cycle are used to define the initial conditions for
 

the next cycle. Each cycle itself is divided into the following
 

phases:
 

1. Using a linear interpolation scheme, the trial values of
 

the force components Fn+l and Fn+l are estimated. Fig. 3 shows
I
xe ye 

that the correct choice will lie along the 450 line. Using the
 

previous trial and computed values of the forces in the m and
 

m - 1 recycles, the trial values for the next recycle will be
 

chosen at the point of intersection. For the x-direction
 

Fm Fm -1
Fm-l Fm
Fn+l = x xe x xe (25)
 
xe FU _ F _ Fm-1 + Fm-i
 

xe x xe x
 

where F is the estimated and F is the computed force in the
 
xe x
 

mth recycle. The equation for Fn+l is analogous.

ye
 

2. The estimated velocities of the moving boundary ue 

and vn+ l computed from Eq. (22) are used in Eq. (23) for detere 
mining coordinate translations Axw and Ayw 

m3. The pressure i' for each cell is calculated for the
 

new coordinates. Using the values of neighboring cells as shown
 

in Fig. 4,
 

.I~j w ( Yw ±,'j +"w(IK'( y),+~ 

Ax
 -
+Pi
± AY- (± -

4. Eq. (15) is solved iteratively for the pressure i,j+l
 

by successive correction until the convergence criterion is
 

satisfied as given in reference 8 as:
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- s+i1l 
J 	 < (26) 

[rSl + J S+l + uj 	+ v?,j + jgyhj t (gxL2 

where s means the sth  iteration and A is the convergence
 

criterion which is a predetermined small positive number.
 

5. The new velocities of each cell are computed by Eqs. (18)
 

and 	(19).
 

Fn+1  
6. The forces and Fn+l are computed by integrating

x y
 

the forces of all the cells adjacent to the moving boundary.
 

7. Steps (1) through (6) are recycled or: repeated until the
 

force tolerance is satisfied
 

n+l
Fn+l _ X
 
x xe f 

(27)
 
Fn+ l 
- Fn+l
 

- ye f
 

where Xf is the force tolerance.
 

8.1 The apparent viscosity, ,app' is computed for each cell
 

using the cell centered velocity and the stress-strain-rate curve,
 

(fig. 1).
 

9, The marker particles are moved to their new positions
 

according to the same procedure given in reference 8. At the
 

start of the calculation, the fluid configuration is represented
 

by a uniform distribution of four particles per cell. The particles
 

define the new free surface.
 

10. The cells are reflagged according to the new fluid
 

configuration. The next time cycle can immediately begin.
 

A listing of the computer program is given in the Appendix.
 

STABILITY AND ACCURACY
 

All finite difference schemes expressed in explicit fqrm for
 

initial'value problems are governed by some form of stability
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requirements. Roache (ref. 7) indicated that the existing mathe

matical theory for numerical solutions of nonlinear partial
 

differential equations is still inadequate and that there are no
 

rigorous stability analyses, error estimates, or convergence
 

proofs. He wrote (ref. 7) "In computational fluid dynamics, it
 

is still necessary to rely heavily on rigorous mathematical
 

analysis of simpler, linearized, more or less related problems,
 

and on heuristic reasoning, physical intuition, wind tunnel
 

experience, and trial-and-error procedures."
 

The stability conditions recommended by MAC (ref. 8) are:
 

C At < 2Ax Ay (28a)
Ax + Ay
 

and
 

2v At < Ax2 Ay2 (2Sb)
 

Hirt (ref. 13) in using a technique applicable to nonlinear.
 

equations with variable coefficients, further recommended the
 

following "rule-of-thumb'! for the MAC method:
 

< I At 12 (28c) 

and
 

*1 n/23U)\2d
 

where
 

a is the average maximpm fluid speed
 

au is the average maximum velocity gradient in the direction
 
Bx of the flow,
 

It is necessary in any calculation to consider which one of these
 

conqitipns is the more restrictive, and which will govern the size
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of At, the time increment per cycle. For calculations involving
 

large values of viscosity, the diffusional stability condition,
 

Eq. (28b) will be used as a criteria for choosing the time step,
 

At.
 

The degree of accuracy desired for a given problem also
 

dictates the size of the cells and time steps. In view of the
 

iterative scheme adopted for the moving boundary-fluid interaction
 

problem, experience indicated that the time step must be small
 

enough to restrict the displacement of the rigid body Axw and
 

Ayw to one quarter the cell size. The degree of accuracy in
 
choosing the convergence criterion X used for the pressure
 

iteration has a direct bearing on satisfying the incompressibility
 

condition Dn+l = 0. he final result will be the force components
 

F and F acting on the rigid body which is the prime feature
xy
 
of interest. Generally, if Eq. (15) is to be iterated to a high
 

- level of accuracy by imposing a very small value for X, the
 

computational time will be increased many fold for each time step,
 

and also as A becomes smaller, the force .components approach an
 

asymtotic value. Figure 5 shows the relationship, for two cases,
 

of A and the vertical accelerative force F (expressed in g
 

units) for a vertical penetration problem at the end of the first
 

-time cycle. Taking gmax to be the asymtotic value, the gain in
 

accuracy will be less than two percent for X < 2 x 10-4 for
 

case (a) and for A < 2 x 10 -5 . for case (b) with force tolerance
 

Af = 1 x i0-4 . Using the computational method in an engineering
 

application, it is necessary to establish the relationship between
 

the convergence criterion and the feature of interest for each
 

case to determine the magnitude of the convergence criterion for
 

the computational experiment.
 

EXAMPLES OF THE CALCULATIONS AND COMPARISON WITH EXPERIMENTS
 

Example I. Low velocity penetration of rigid body into still fluid
 

In an attempt to provide experimental corroboration of the
 

computational techniques, the impact of a rigid flat block on a
 

still water surface was simulated as an example (ref. 14).
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The apparatus shown in figure 6 was developed to experimentally
 

observe and record the acceleration, pressure, and displacement of
 

a block dropping in water. The water tank itself, a former wind
 

tunnel test section, measures 1.23 m (4 ft) by 1.52 m (5 ft) by
 

1.23 m (4 ft) high, and can be sealed to provide for impact tests
 

under reduced atmosphere. Viewing ports are provided (as shown)
 

for lighting, camera access, and visual monitoring For these
 

tests, water was added to a depth of approximately 48 cm (19 in.)
 

and colored with sea marker dye (sodium flouriscene) to provide
 

better visual contrast.
 

The drop model shown in figure 7 was a rectangular structure
 

fabricated from .95 cm (.375 in.) thick sheet plastic, and measured
 

7.6 cm (3 in.) wide by 25.4 cm (10 in.) high, and 61 cm (24 in.)
 

in length. The length-to-width ratio was purposely made very high
 

tp better approximate the two-dimensional case used in the com

puter study. The minimum dropping weight of the model was 6.24 kg
 

(13.75 ib), and provision was made for adding ballast in the form
 

of lead shot so that the effects of added mass might be observed.
 

The model was held at the desired height above the water surface
 

by an electromagnet (shown in figure 7) which could be preposi

tioned and released from outside the tank, again to allow for
 

future tests in reduced atmosphere. During a drop, the mpdel was
 

guided by teflon-coated steel rods to assure a flat impact on the
 

water surface. Coil springs were installed on the bottom of the
 

tank to absorb the shock loading resulting from extreme penetra

tion at high dropping rates.
 

Model displacements were recorded by a high-speed camera
 

(seen in the foreground of figure 6) operating at 500 frames/sec.
 

High-speed color film was used with the necessary lighting
 

provided by one quartz lamp inside the tank and two lamps on the
 

outside aimed through viewing ports.
 

A reference probe (shown at the left of figure 7) could be
 

adjusted vertically to pinpoint the still water surface, and
 

vertical displacement of the model could be measured from the film
 

by comparing the reference marks on the probe and on the face of.
 

the Model. A time-code generator triggered an integral timing
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light in the camera so that time histories of displacement could
 

be obtained using a film analyzer.
 

A strain-gage pressure transducer of 0 - 103 kPag (0 - 15
 

psig) range was installed inside the model with the sensing face
 

flush with the bottom of the model. A ±12 g accelerometer was
 

also installed inside the center bottom of the model oriented to
 

sense vertical accelerations only, and outputs from these instru

ments were taken off the model and out through the top of the tank
 

with trailing cables. Both outputs were amplified to increase
 

sensitivity at low drop heights and were recorded on a direct

write oscillograph. The same time-code generator which triggered
 

the camera timing light also,provided a time base for the recorder.
 

Tests were conducted over a range of drop heights for two
 

model weights. In every case, drop height was established with
 

reference to the quiescent-water level, and the drop was not
 

initiated until the water surface was completely still. Camera
 

orientation was checked periodically to insure parallel alinement
 

with the surface. The camera and recorder were started abotit two
 
,seconds after impact.
 

Numprical Calculation
 

The arrangement of the computational domain is given in
 

sketch 6.
 

Y ,,Moving rigid block 

Free surface
 

Line of Stationari
 
symmetry boundary
 

Sketch 6.
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Only one half of the field is necessary for a vertically symmetric
 

case. The initial vertical impact velocity and the mass of the
 

block were chosen from the experimental values. To test the
 

computational method, the mass of the block was chosen small enough
 

to allow the hydrostatic fluid pressure to push the block back
 

towards the fluid surface.
 

Using a square grid, each cell had dimensions
 
Ax = Ay = .9524 cm. The fluid depth and width were chosen to
 

simulate an infinite medium. The fluid depth measured from the
 
face of the block was represented by 24 cells (23 cm), and the
 

width of the fluid for a half field was represented by 60 cells
 

(57"cm). The height of the block was chosen to assure that at full
 

penetration, the block would not be submerged in the fluid. Dimen,
 

sions for a half-block were 4 cells (3.8 cm) wide x 34 cells
 

(42.4 cm) long. The kinematic viscosity of the fluid was
 

0.1 cm2/sec. The mass used for the two-dimensional case was
 

calculated from the model weight per centimeter of length.
 

Comparison of Results
 

A comparison of computational and experimental results is
 

summarized in table 1 and presented in figures 8(a), (b), and (c)
 

to illustrate the effects of changes in drop height and in body
 

mass In figure 8(a). displacement, acceleration, and pressure
 

time histories are shown for an experimental drop height of 1 cm
 

using a model weight of 6.24 kg (13.75 lb). Analysis of the film
 

used to measure displacement indicated the initial impact velocity,
 

vo0 to be 33 cm/sec within an accuracy of ±5 percent. The
 

computations were conducted for v = 30 cm/sec, with convergence 

criterion, A = 2 x 10-4 and force tolerance Xf = 1 x 10-4 A 

time increment of At = .003 sec was used for the first five 

cycles, and was reduced to .002 sec thereafter as the velocity of 

the model increased. Computations were terminated at t = .411 sec 

after the model had attained maximum penetration. As can be seen 
in figure 8(a), the agreement between experiment and computation
 

Xs reasonably good for the water penetration phase. Calculations
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were also performed with the space grids, reduced by one-half with
 

Ax = Ay = .476 cm and essentially the same results were obtained up
 

to time t = .22 seconds after which the computational method
 

became unstable.
 

The effects of increasing drop height to 2 cm are shown in
 

figure 8(b) where much the same trends are noted as for the 1 cm
 

case. In this instance, initial impact velocity for the experiment
 

was found to be 47 cm/sec ± 5 percent, so for the computation
 

vO = 50 cm/sec was used. The convergence criterion, force
 

toLerance, and time increments were the same as for figure 8(a),
 

and computation was terminated at t = .395 sec.
 

In figure 8(c), the mass of the model was increased to
 

153.5 cm, and the drop height was 1 cm. At this weight, the
 

experimental initial impact velocity was found to be 30 cm/sec,
 

and v = 30 cm/sec was also used in the computations. 4gain,'
 

the time increment' At, was .003 sec for the first five cycles,
 

and was reduced to .002 sec thereafter. At time t = .155 sec,
 

the displacement of the block exceeded one-quarter cell size, so
 

the time increment was reduced 25 percent to .0015 sec, and Qompu

tations were terminated at t = .2745 sec. Again, reasonable
 

agreement is noted between experiment and computation. However,
 

it is felt that the agreement is sufficiently good to validate
 

the program and give confidence to the computational techniques
 

employed.
 

As previously suggested, the computational method not only
 

gives a solution for force and displacement of the block during
 

impact and entry, but computes displacement, velocity, and pressure
 

throughout the flow field. The computed behavior of the flow
 

field cannot readily be examined experimentally, but the agreement
 

between computed and experimental block behavior lends credence
 

to the predicted fluid dynamics. As an example of how the compu

tations may be used to examine in detail the evolution of the
 

fluid dyhamics during water entry, figures 9(a) and (b) presents
 

particle and velocity plots for an initialblock impact velocity,
 

v = 50 cm/sec.
 

0 
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The fluid pressure developed under the block may also be of
 

interest in certain applications. Figure 10 shows how the excess
 

hydrostatic pressure developed along the centerline of block
 

varies with fluid depth as measured from the bottom of the block
 

as it contacts the free surface. Two initial impact velocities
 

are shown, v = 30 cm/sec and v = 50 cm/sec, and the figure
o 	 o 

indicates that the size of the fluid field originally chosen was
 

adequate to simulate an infinite medium, since the excess hydro

static pressure is insignificantly small.
 

Example II, 	 High velocity impact of a.rigid block into a
 
very viscous non-Newtonian fluid.
 

The arrangement of the computational domain is given in
 

sketch 1. This numerical example simulated the case of an ir

craft wheel landing on soil runway with a locked-wheel braking
 

condition and zero lift. The dimensions and mass of the rigid
 

block represented 4 two-dimensional equivalent of the case given
 

in the figure 21 of reference 2. The stress and strain-rate curve
 

for the viscous non-Newtonian fluid, simulated a soft clay soil
 

with water-content of 33 percent (fig. lld of ref. 6) as shown in
 

figure 1.
 

Using a square grid, each cell had dimensions Ax = Ay = 2 cm. 

The fluid depth measured from the bottom face of the block was 

represented by 10 cells (20 cm) and the width of the fluid was 

represented by 29 cells (58 cm). The height of the block was
 

represented by 4 cells (8 cm) and the width represented by 7, 9
 

and 11 cells (14, 18 and 22 cm) to simulate various contact length.
 

The mass per centimeter of length was 90,700 gm.
 
5
At = 1 x 10- sec was chosen using the diffusional stability con

dition and the maximum flow parameter, Tapp' obtained from the
 

initial secant slope of the stress and strain-rate curve. This
 

small time step will impose a severe restriction on the practical
 

use of the method because of the large amount of computer time

required for a given problem in which the time history of the force
 

and displacements of the rigid block would be long. Only short
 

calculations were made for this example, for t.= 0 to
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-4 
t = 1 X 10 sea, using the same convergence qriterion and force
 

tolerance of example I.
 

Figure 11 shows the time history for the horizontal and
 

vertical forces experienced by the block for various contact lengths.
 

In all cases the initial horizontal impact velocity, u = 500 cm
 

per second, vertical velocity v. = 0 and the gravitational force
 

are instantly applied. The horizontal force, developed by the no

slip boundary condition, is proportional to the contact length.
 

The magnitude of the horizontal force decreased gradually with time,
 

whereas the magnitude of the vertical force oscillated upwards.
 

The horizontal and vertical displacements would be very small.
 

Figure 12 indicates the displacements at the end of
 
4
t 1 x 10- sec. As expected, the horizontal and vertical dis

placements decreased as the contact length increased.
 

The Variation of forces with initial horizontal impact
 

velocity was calculated for case with contact length = 14 cm.
 

Figure 13 shows the effects of increasing initial horizontal,impact
 

velocity for the time interval between t = 3 x 10-5 sec and
 
4
t = 1 x 10- sec. As expected, the vertical force remained con

stant as the horizontal velocity increased. The horizontal force
 

continued to increase as the horizontal velocity increased. Since
 

the sinkage of the block (vertical displacement) was extremely
 

small, the horizontal force experienced by the block was contri

buted mainly by the viscous tractive force and resistance asso

ciated with the inertia effect or the "bow-wave" aid not materialize.
 

The viscous tractive force increases linearly with velocity.
 

CONCLUDING REMARKS
 

The viability of the computational method for studying the
 

low velocity penetration of a flat rigid block on a fluid medium
 

has been demonstrated to agree well with experimentation. The
 

method is capable of providing the complete pressure and velocity
 

fields, and the visual display of the history of fluid
 

qonfiguration.
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Some limitations inherent in the method must be mpntioned.
 

First, only non-turbulent flows are considered in the model. At
 

high speeds of impact, the turbulent effects may not be ignored
 

and some implementation for turbulent simulation may have to be
 

incorporated in the method. Second, if the main feature of inter

est is centered at the short time impact phase, the choice of
 

time increment may require some computational experimentation.
 

This limitation will not be critical if the main feature of inter

est is centered at the maximum penetration of the impact body.
 

In the comparative test cases by the numerical calculation and
 

by experiment, the viscous effect is relatively insignificant
 

since the viscosity of water is small, and the forces acting on
 

the body are contributed predominantly by the pressure.
 

The computational method has not been tested for the case of,
 

fluid-solid interaction involving a highly Viscous non-Newtonian
 

medium. The apparatus to provide experimental corroboration of
 

the computational technique for the case of example II would be
 

complex and no experimental study was made for this case.
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c TP - TII = (IR PAITTCI P PRINr
 

c TS'= TI.1 .11R STQESS PP INT
 
C JIJ)=X-VLtJCITY OF CELL
 
C IJG-?STI ATe OIF FINAL HORIZONTAL JEEL VELOCITY
 

c ,J'1(I .jt=-'/-LECITY AT TIME STCP N.
 
C IJ,-X-VELCITY G3- IHEEL AT TIME STFP N
 

c VII.J)=YV.TLPCITY IF CCII
 
c VO--STIMAT: 'F FIN'E VERTICAL 01-,F VF'LOCITY
 

C V'1 (I, J)=v-V 'LCCITY IT TIMc STFP '-l
 
c V ;=Y-VEL9CITY (IF JPIEL AT TI4E STFP N
 

C Y-%=MASS -IF 4HEEL PER UNIT tIDTP
 
C WN=SOUA E IF IMSTM.CE CROM ANY P'IINT TO WHEEL CENTER


P 

C UX= -COIMQ I lATE (IF 'IEEL CEITPR AT TF-E STE 1
 
c 	 . 4Y=Y-CCIRL ('ATF ,i- APFFI CFPTFR AT TIMF STFP h
 

. XI I OF CEll F'T
=X-ClC IAfE 

r XK(K)=X-Cr'lOIATE OF PARTICLE K
 

C XO-INITIAL X-COOROINATE OF FIQST PARTICLF
 
C X'L(I)=X-C)-R)INATE OF CELL PIGHT OOUNOARY
 
C XR=X-CnPRCIM:ATE or RIGHT BUN')APY
 

C (SIPAR=C. fTER FC NO. 'OF GETTING COLUMN OF PARTICLES
 
C Y(JI =Y-C0CFtINATF OF CELL CENTEP
 

C YK(K)=Y-CCJRDINATE OF PAPTICLE K
 

C Y)=INITIAL Y-COOROINATE 13F FIRST PARTICLE
 

C Y"LIJ=Y-C3PPDINATE OF CELL LOWE- BOUNOARY
 
C ySFOAR=C0124TER FOR NO. rF GETTINg; .0 OF PARTICLES
 

C YT=Y-CCRBINATE OF LOWER BOLINDAPY
 
C
 

OIM& SIO"l U(-tI) *V(31. 71. PIl 31,171 3, 17)17).F(31,17),

*FFI( 	1. IT)..CI 3j *.L7 ).E;TA ( 3I.j1.K3 .FCC{3Id I,'
I.171 


*SG 	 A(31,I7I.S A'AY(31,17I ,T LIXY(31,17),XK(102}.YK{ I20). 
rSlFS(56.X( 3I 	 .y1 7). "L ( 31) .YPL( 17I.KA IL(IC) ,STIRAN(56 IIh
 

), STP'SSI 1.1 ).DFLY(56, 1 I.F{136).S2( 56,{1. $3156 .1).
 
*YIXF ( 1').)Ty' (10 01}*t'(31.17) ..)ATA(IO) .TUIII O?OLtTV( 1O2O),IATSI3O0)
 
tSTAIY'.(I I 


EJUIVALE' 1C I<ITU),'VYK,TV)
 

INTtG.4 FFE.PCyFS

C 

C REGION In GENCRAL SETUP 
C 

4000 	CG,.qTIFU 
MEAL 	H5.1) 01ECI,18 
IFIF'F,5)99CS.40)1
 

4001 	 CnF TI d
 
REA U,_) IACJBAP.NIS.NIF.JSNJF
 
REAO (5.3) ETt,.FKO.GXGYXRYTRWW'G.4Y.WM.U,Vi,,iNXNYX0,YOfXK,
 

'IIYKPrYi I. TCP.rTPO,If.iTSP.ALP'AII.ALPI-tVCPNVGAWAF.RP"S. [WiHEEL. 
t IESY.PSlTM,<t4I 

RFAPI,,I 4) AIPTSAi'VCVS. 'JFAXNS.NCVSS, W, ITG, EPS
 
PFA&.C.20I lcrPANIII.SIRESIII .I=14-SI
 

REARI 5r)-) rTL,NCS,NSPJNPP
 
I EnR-IAV ('IA3I) 

OOq2 	 g-IP-AI (Si "f 
3 FCR"lI (t, 12.41bEI2.41 II 2,4E 12.41/6FI 2.415E 12.4.414.F4.C) 

0001 F. ,h 'T_ /I.CL8/I, _,L LX.ThJ.I12,j3X,5HETAO=.EI2.4.4X.
 
2 4


*1 -)A, 0-2.4, ,I? It,JF 12.4- X, =, r . T ./ 5, lUY E 12.4. 1.-, 

SX 1 , F 12 .9 K i 2. ',.,_ Ia t l 1 ,44T-P=,F I /.- -l X. -,,_ .4,X Y Z -

S -< oi'2=,2.,. 3 , 5HPVTx , I. 4, Ix,7HALPHAU=.L IL.4, IX,7ALf'AHAV=. 
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______~'ITzI: 4,S', 1 2.4,4,lN, 1 t?,4X,4 NSP-lIt?,
 
w--,XI IH)'t1:I,.X, r"IU l Lr iVM ,i26j~r-z
I 12, ?X,(4jJ1X:4 z-5x lhai.. 

~Jjt~t~l/f.~d \IP 	 7'Til42.~fnfAiIITill KiNIWFftI&f.'
 
*0 AI I!CL'~I I _______
 

<JO" 	 (-L- kt-'jA:FCI 'U IF ,1XAlI._T$,IT- TAA<rU5t,2XL!,P 	 .Z___ 

I 	 2.43A '7 UY-LJ X 

-. ASDYL±XS1 AAIA LU2.s CCEsMAXSHLAAWI 3 FY=2 2.4 
0012 l-i1PPED ITLL~4X C tY. fAAA/.AT~rI..43-T,I 


0,013 F'IPMA4T( 4K -XA4j5 Fl2.4.4M.lHrRlhtoptf 12.8.4X JHLIRCPFV=. 1-2.3,
 
*4X 7P IN~M1
 

0014 FOPI~AT( LX..3PE-CYfLE TO INfPOVE VELOGrY FST7I*ATE AT 1.F1I2.4,
 
4/* ~ 8 168t 2,H 1 16.8,tX,31V6'E 168.
44J.V5 b X,4VN 

00)5 	F0Af.'±~4tlAZiTrwHFEtIrj?rrTYZ nE~ATJAE32,,/ 

0016 	FQr'1T4X,L-16,1JSTEr' TI"E VARIAB3LFS.//,4X.3-1T±. El2.4. 2K. SN)rCP=. 

001l7 Fflj-'AT it.4(<, S6T I S TOG I AROP AT T1~I T.E 124zA, 
oR P'rr .6r( 44. A T=. E12.4.4X.7 4 StlXSf=.el.4.4X.74 SDYSF=.FI2.4) 

19 F'- 'AT( lI1.E 5.6) 

0071Tl
I',iT(IKFJ;tXl=.h8.'4X.5HSFYG=.tIA.9./)
 
0022 ='1!'jAT(1 .,:-t T.,EI.4'.X.H DXSF=,12.4,4XWl DYSF=,r12.43
 
00'3 FCF "TCI/.3X--4I .?X fLHI IIX41YLJ)i2X.6bU I.J]6XAHVII.J1.t
 

fl,.L~it,-	J),t JlPNI( .I.C6-R 1, iLA.9 T1ISI,MAXII. J), IX, 
4IIHIGTY~lJl.I~l~-ZTUXY~.Jl>X.3HFF PC KC.I) 

.12.4,16)24t 	 Fe.ATtH .?,
0025 F-'A"T( 4X,7 T=,CIZ.4.4X,74 NSP=,tI?)
 
0026 Fo''AT( ..- T=,E2.4.4X.'- NPP=,)12)
 
00'7 FFlP'AT(/,)<*.45SYfl AT T.,F12.4,'X,7HF(TJ)=,T2,2X.,IHKCI.,J)=,12,
 

op"0 	 rrPP<AT1/.2C,wlF. cF-S1Pr&CE CElL [=,12034 J=,I?,,29HqjPtAS NO EMJPTY
 
SCLl 3ljtl'C.% IT)
 

0029 FOPYAT(/
 
0030 rFOR"ATC 41,-A T .E12.4.4X,7H UWE 12.4,4X,7- Vh=,E12.4.
 

t4X,7 4STbl"A~v.E12.4)
 
'41 Ff 314T(IJ ,2!4 .qEl2.4.E6.I)
 

0032 FCIr'-f( 44, - r=,E12.4,4X,7HXSFPAP=,E12.4,4xINYSFPA=.E12.4.
 

0033 F0&1,W( 4 (,--l T.,E12.4,4X.7HALPHAU,E2.,4X7F-ALPHAV=,EI2.4.
 
*4X.7-CT%44.E12.4I 
 r 

IAT(,X.3kJ 0$XIZ44~l 

t4K.7N .J)M&X=.1123
 

51 FOR <ST(7$ 


34 FO' 	 DMA-,2.4,4X,7H C"AX=112. 

cftI 

0O 2 FlF tAT(/,I-.'qTOACE 11,/1I
 
0053 Ff e"'AT1(/. I .7-T4CE C./)
 
005 F0S 'AI(/,f,7TRACGE A.!)
 
0056 F Ob1.AT4 121.:7.31[5)
 
0057 PCP-AT(/.IC,,r04T4 TO -F READ) IS NOT AT PROPER TINEPICY TERMINATE
 

0318 FOF 'AT W.ZHI=. 13.2R,2HJ=,13,2X, 2HF=, 2, 2X, 3HFF=, 121 # 
0059 FtIR4AT12%SHI4=, I3,2X. HJ=. 13.2X.4FITX<=.E12.4,2X,4HTYK=.C12.4.2X, )d l-

O0.0 	FrAQ AT(//2.,l..'ARTICLE H-AS"OVED) INTO NH26LJCG TERI'INATE-,j, 

t5l-N~CVS.1.2y,31'tS=,1S,2X, 3NIW. I 5,2XAHITG=, l5.2X,4fIEPS,F15.6,/I 

4028 	F6 1T/,,24AAPISHOSPNEUVE,/I,2K,3HhINC.,2XQHSTRAI
 

4029) FLkJAT(1X,l3.2Et2.4)
 
4010 F0IVT ,~tJ244,II NS12
 
4031 FOR"-AI(/v, /iHCJTPJT OF CELL VAR IAILFS ABOVE PRODUCED FOR TIME ST
 

4032 	 F'3P"Ar(1 ,32r10lPlu 04T6 FUR SPLINF SUB%'I'LTINE,/l 

C- IVITIALIZE CCINTCRS AND FSTASIISP SOA4E FOLJATIUNV CCN5TANTS
 
C
 

TCP=I4OICP
 

T 'r=rt )TYl 
'~~TrP r rP
 

nDstl'Vnfly
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_______ NX -- kP A2(YI3-

$T-NoIzAR 0 

C 

100 

121 

C 

01)3 
0161 

C 

105 

1)0 

107 

C 

110 


N1.P.P4"2, /!I0NO 

N IJ& I f21 10201 
NNI J1zI iflAONIJtloZ0 

IFIIALIEiFVA I ARLES TOI START PRORLFV 

DO 101 J=JBAR 

0Il II J 2 I A 

TAUXYC 1.J 3=0. 
U(I,J3='. 

PHI iJ0 

rF1 JJ)=) 

FR( i,jI=? 

ETA( i.J !0. 
CCK T'xj: 

ScT-,'D 8 4Jfl CELLS 

IFINCS.'-=.03 GO TO 161l 

00 103 i=2JARI
 
!F(ICSyW.13F.1I Cl TO 116
 
Ffl1,d1=6
 
GO Tj P-3 

F(I8PMj,3=L 
C;CNTI'!JE 

SETUP CQROINATS OF E&CI- CELL 

XTR=O. 
0.) 1116 1 1,1IIIR 
XII 3=X1 -).5*X 
XPL(I 3C2 
XTF.=XT~k"; 
CONTI.;JC 
YTF=O.l 
DO0 107 J=1,JRIAQ 

VPL (J)=YTE 
V 1C YTE V 
CONTINJE 

SETUP FUILL CELL AND COORDINATES OF EACH PARTICLE 

KtL
 
N0O 

SF V:)* 
SFYCOl. 
SFY6=O. 
S IXSF=). 

XSFQAP&). 
V S IAR 0 -

I)SF :0, 
I)YSFO-. 

51140=0. 

_________________________________40 
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-___ 
4PAt"

P-kihA 
,AA/I20 

-- M)PA R Il.2)0 

mlPA I I ,IhL1X 

nDOP z YIL T.D=IGNX 
JP= . 

DO 112 (YItfY 

T 

TVK (Ij xP 

11(KC(JC/3't? 

AVCR= KIt2. 

FL?,) 1=2 
STAll j ) FTAOq 
KCC ,,JI}=<_tCLLiiI I 

JF(,.I r.I'2)j GO TO 115 
-1 I (14) rXINl ,TYKNI ,4, 1020) 

YP=VI,,. v,( 
112 C'Jt'NTIt'dF 

ill CFJcTI' J= 

VHI-r (14) (TX (NTYKINI,,APRP 
Ew TND 14f 

C 

136 
C 
C 
C 

C 
C 
C 

DO 13 =. 
CNTI, J-. 

SET LI
D 

:NU4) AdO US AOJACENr TO 

rFI'6CS.'..r1 60 TO=13 

AUXILLAWY GEGM.ERY SET-UP 

,F1THEFL.-3. I) *30 TO 13_? 

-IN IFSV~.,E.1) GO T 134 
0: 135 1=2.6 
01 [35 J=3°41 

PNCW CELLS 

"F(I.IJh=S 

V71 136 J=3,-1 

r,,l 137 Iz -. 

F3( T1,2= 
137 FE(I.4) e2 

T w 

136FE,Jk5F:E(6,41JI 
GO Tfl 113 

0134 CONTINUE33 133 I=1C,16 

C 
tdF 

123F(1,J35 J=3,6 

(I.1J)U= 

V( 1,J)=2V0133 ECCITINJF 

'" 1r" J=3,5 

FF(9. 112 

FP(1,7J)=2 

0129 CONTIIJE 
FEC 10,3h1= 
FE(10,6}=1 
FG( 6,11 

01 129 I10,16 

1,7T=2 
01 9 CJN TI'4JE 

GilF, 

0132 CONJTINUIE 
C 
C ,fI-FEL GE2]MLTRY 
C 

Mt4X/O3X+2.fl 

SET-UP 

h,. =V(XlY+I) . 2 

6 '.=CW Yel-,CSIJ3. 
I 't= lI 

'' 126 J=4,0 N 

41-6/4.°0 /Y+?<o0 

,ea=(K(<[-- fX *,2(Vy(J)--J4YI**'2 
IF(N.,;T.(i,.=o2?I CI TO 121 
FL I ,)=5 

_____________________________4' 



V( I, J) =VW 

__________-I) Fnn138 
F( I$/ 3__5_
 
U( It'- I , J =tl 4
 
Zit I_ * i311
 

013F 	CON T!1_ -
_ 

[Ft (C'+4j 0X4X(13-_ 1__)4*23tm(RW t?3) GO TO 121
 
IFf(I'I+ 411xr((I)-64X,) x4*j)RIY*(YIJ)-.vy *Y'*) iFdRW*t2)
 

*C0(3 T-1 12? 
FL(I.1 J)='
 
IF(f_i,.EQ.II M), TV 121

FFI [4-L,J)=?
 

GO TO 12L 
01'2 	F(It _J)2
 

FF( I+I,J-I =1
 
I (IrSY'I.Eo. I) rr TO]121
 
FEC Ira-1, i32
 
FE{IPI-I,-i1
 

121 CONTINUE
 

126 CPNl It'l
 
lM=(1,X 4RW*CO5( 3.1416/4.03)/0X43.0 0
 

N=-(WY+RW /0Y+2.O
 

[,-,= I t- I
 
00 127 I,4,MM
 
On 124 J=4,.N
 
W1k=1X(I)-4X)#2+(Y(J)-WY)4t2
 
[FIl:P.GT.(R14 =2)) GO TO J24
 

U( T, J) =LN
 
VI I J)=V
 
IF(IFSY'4.EO.I) GO TO 139
 
F (ld *J =5
 

VI I',J)3=-4 

0139 	Ci3NTIMIJU
 

IF[(r ,2.0Y{(Jd-wYI DY t2oLF.(owA-*2)] GO TO 124
 
IF( f,-2.0 X*(XII-X4OX*2+2.0DY*YfJ)-4Y)OY*2.LE.(P4*2))
 

*GO T] 125 

FF I.J+1)=2
IFIIFSY.EO*.I GO TO 124
 
FE( I',J+l )-2
 

GO TO 124
 

0125 	 FE( I.J+1=2 

IF(IFSY'd.EO.ll GO TO 124
 
FF( 10, J ] 1=2
 
Ft[ 1"41 J+l )=l
 

124 CL'NTI-UE
 

127 CONTI'41JE
 
0113 CO$.Tl ,I3JF


C
 

C SET-UP 06 4OJACENT TO OND CELLS
 
C 

1F(NCS.NE.O) 1;0 To a 30 
00 Al I=2,IBARI 
IF(FII,2).EO.5} GO TO 143 
F'(1I,21=2 

.0143 IF(GOI[JIARI).O.53 G) TO 1'*1 

0141 	CPNTINJE
 
1)(]142 J2.=J eARI
 
IFCFI2,J).EO.5 GO TO 144
 
FE( 2,.J)=2
 

0144 1F(01tAR?1,J).F0.5) GO T0 142
 
FeC IRAQI.J3= 

0142 	CINTTN*W 
0130 	 CONTI':UE 

C
 

C SI.T UP SUR CELL AT INITIAL CONDITIONS
 
C
 

IF(NCS.NF.0) GO TO 163
 
J=FS
 

it 131 1=2,IBAOl
 
IF[FF(T,J3.FJ.21 GO TO 131
 

IrF([I.SyI.FJ.I) G) T) 140 

VI)1).-. O 
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FI IPAO IjJ i=) .
 
__ ___ _UfVAR _1_=0_.0
 

015 f, t[N t!N."i
 

C
 
C rSTAdLIStl INItIAL IIYDROISTATC PPtSSURF 

TU(NCS;.'F.0) GOT TOI 114 

11,11 '*J=J,J.MA 1 1 

1) 100r IL?2,! Aifl 

PHI (J. mJJ -WY+RW+.50nY )4GY
 
0109 UNTItJiE
 
0114 COINTI'I.,F 

C
 

C REA) I(IJ),V([J) FROM TAPF SIANP STEORE THESE OM MATP STORAGE
 

IF(CS.EC.'J) GO TOT IS? 
0104 RFAP(8)DATAUV
 

IF(E'IFd }104. l08
 
Obs CONTItJ=
 

TI 5lS& TA I I) 
K60Q=0ATA(?3 
SIIX SF=OATA(3) 
SOYSF=9ArA(4)
 
XSFPAR=OATA( 5)
 
YSFPAR=O)ATA(6 )
 
SFX='ATA( 7)
 
SFY=4ATA( )
 
VW=OATA(9)
 
U4=CATA(.13)
 
ALP-Ati=DATA( 1 ) 
ALPHAV=IATA (12)
 
100ICO=)AT( 31 
OnT SD=)ATA(1,)
 
OUTPP=0MTA( I5)
 
DXSF=PATA 25 )
 
DYSF=D0TA(26)
 
ERROQPU=LATA(T)
 
EHRMfV=D TA f24)
 
IC=PATA (29 1
 
SU'R=DAT ( 30 1 

SFXG=PATA(313
 
SFYG=DAT (32)
 
IF(AtS(TOS-T).LT.(GOrCP/z.)) GC TO 904
 
Wq1 T-I6,37)
 
GU T' 901
 

0904 PEACU;3
 
IF( EnF,S) 155,904
 

C
 
C READ FINAL SET DATA OF PHII(J)F(IJ),FEJIJ),ANG ETAIIJI FROM
 
C TAPE(13) AND STPRF THESE CN MAIN STORAGF
 
C
 
0155 REA.1j13JQATA,PHI.ETA,F,FE
 

IF I(E*, 131 i55905
 
0905 TOS=.lATA(1j
 

O)TCP=0ATA( 13)
 
IF(ABSITDS-T).LT.(CDTCP/2.)) GO TO 903
 
9l7 (b6,57)
 

GO TO MI
 
0903 REAb(l3)
 

IF(E'iF,131 156,903

C 

C ESTABLISH COU'JTERS FOR PARTICLE COORD. CALCULATIONS
 
C
 
0156 REAC14)qATR
 

IF(F-'.14) 156,151 
0138 CGNT[NUE 

10S=PAT(1)
 
KBAQ0P3(23)
 
ODTPP=,)AT3(I )
 
IF(AbSITDS-T).LT.(ODTPP/2.)) GO TO 902
 
WPIlSI6.57)
 
Gn To 90l
 

0902 NPARK,36A4/1020
 
MpRP=KBAR-MPAR*1020
 
MPAR I='IPAR+1
 

C 
C PRINT INPUT DATA FOR VERIFICATION 
C 
01i7 WZ[ir (,,,4) ('AW( I ,T=I.,),IAR,JBAR,.ETAO,FKOGXGY,XR,YTR,WX, 

*14Y, W4',4,VE,NX dNY XO,Y,, DXK, pYK, FIX,fY, T, TCP ,DTOI,fT SPALP-IAU, 
*A(P,IIV,.COIV. AA-,.HOST.TLNCS,NSPNPP,!WHFEL.IFSY'i,S ITMAXWI 

W4pllp(6,40321 
WkITF (AO.7)'INPTS.FSCVSMPAXNSNCVSI'S,IW,ITG,EPS
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waI I 6 02 f IS FRANI I }, SWMESIFJI=IlNSI 

S srlikF iNIThAL VALUIJP _ IApIS
C 

(fI(tCS..NE .) GO TI) 111 

ASSi,) 170 T. KRFT 
TPP-fl. 
(;Q TO 0.36 

0170 ASSTO Ill Tn KRPT
 
IC11 =1. 
GO TI In'
 

0171 CONTIUE
 
C 

REIChN 30 R(I J) CALCULATION
 

300 	 T= T+3)T
 
CAIL SECON (BItME)
 
WRI TE(.,9) T.r'IME
 

C
 
C CALCULATF 1 F,)P COMPUTING THE SOURCE TERN
 
C
 

Q-14034 J=2,JtARI 
004034 l2.IBAAI
 

yP=(FCCJ3.teo2.ANO.F(CtJ3.NF.3 GO0 Tr 4034
 
)I{ .=( M-li - .J I I/I*X) ((VI rd)-V( I.J-l )/OYI
 

4014 CnNTCtl)r
 
C
 
C CALCdLATION OF TNF SOURCE TEMO
 
C 

SIlh4=O.q
 
MI 3n11 J=2,J-IARI

DO 3l1 1=2,JARI 

I(CJt=O.
 
IHFUI.J.F.2 Gn TO 301
 
OS=(IJ( [, J } t( I-[ d )}**2
 

VS= 	V( C,)3+V( ,J-I }*42

tiVB3R(( C J+1l)1U. [ }44 VI [+14) +94 [.J) 3
 
UVTL=J(C-I J)4Ul( I-I. J-I})3*(V J-l)+V( I-IJ-f))
 
UVTsL=()( I-IJ+I ) (-)+U4 (1,V J 3)+V(-I Jl
 ) 

OLEFT=O(I-1,J)
ORIGHT=I I+l,J) 	 ,
DABOVF 5 

D(I •J-iI
 
If)ELI ( .J+l)
 

CF(FE(I.J3.NE.23 GC T0 319
 
TF(F1I-,J ).E)..k.F(I-I.J I.EC.5.CP.F(I-IJ).EQ.5) GO TO 302
 
ULS=(U.I-IJI+U(I-2,J)}**Z
 
GO ' TO 303 

0302 ULS=US
 
DLEFT=D'( I .J) 

O TO 304
TF(FCC-1,iG.E.).53 

UVBL=O. 

n
GO T 302
 

0304 UVRL=UVW44 -


UVTL=UW*VW*4.
 
IF(FF(C-.J).N@.1l GO Tr. 3n3
 
IF(FII-I,J-I).NE.5J GO TO 305
 
ORELCWsO)RELI44+(U( I _1J+1) -U/D x
 
GO' TO 303
 

03)5 DAROVF=DABOVE+(UJW -1.4-1 I-UWI/AX
 
0303 IFIFCIt-,J).L).I.00.FII,J).O.5 GO TO 306
 

URS=(U( I ,J) HU{I J} }* 2 

- GO T 307
 
0306 URS=US
 

DRIGHTI)I 1,J3
 
IF(F(CIL,J.F).53 GO TO 308
 

c)V TO , 1. 

0301 tlVfR=LIQ4VW*4.
IJVTR=U]W*V,4*1.. 

IF(FF(I+IJ).'IE) G) TI 107
 
IU4F{I+1,J-II.NE.5) r.i TO 309
 

I}IIEI '1,N=AO I .J+1[)3)/ F,IFLiOW,+4(U'4-Ilj( 

G TI 307
 
031q I)AOOV =IAlIIVE + (UW-'( I C,J-II/ (X
 
0307 .f).R.FII,J-t3.EO.SI GFOIfnJ-IG1 1031n
 

VAS=(V(1J-1I+/(CJ-2j 
GO TO 311 

OLO VAS=VS
 -- _____FlAeCVF =i)(I1,43 

ITr(C , 1-11.[3.51 G C 312 
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__ ______.E'I 11V1L-. 

liV TI =10,M4 

It-(IFLi 1,1-i) .'GO. (314TO _1 T
0 10Ii 1 I .,rlE_'.j2! L IJ1iF (_[i.I,4-_l 

_______IjRCFI =_.tGUL_+ tvI±1,tI LY fl lAY 

GI T. 31 . 
_ l._3tU ziiSSALVft_- -iLs2/.flLfl

9

l 


n

0312} 	 IFIFl~II,-i}.r'i).l~lilr|I,i lI.eO.bI GI) T 314 

0314 	VIS-VS
 
lRIBl}W=11 It Ji 

______iFl lI).S.S) GO TO 316 
UVRL =0.
 

GO T1 315 
0316 	tIVRL=UA*VW44.
 

UVP=UWtV,4*4.
 
[FIFF([,J+II.NF.tI ';O TC 315
 
F-IFII-IJ+II.NF.5) GIl TO 318
 

DR IGHI =,JR IGT1 +Vti-VII +1, JII /DY
 
GII TO 315
 

031 DLEFT=OLFFT+(VW-V(I-1, J)/DY
 
Gi TI 315
 

0319 IG(FC(riJ-1).NE.1l Tf 320
 
UVT L=I1ItV W44.
Dh81!VF=I)AI,1VE (U( I-L J-1 )+HI{-.,J )- (2.*1,h I)/VX 
OLE11FFT=OLIF T+(V II -I, J- I )+V (I ,J-1) -(2 VW) I /VY 

GO Tf' 323 
0310 	 !F(Fr(I-1,J+i.NF.1I GO TO 321 

UVeL=tU4*VW4.
 
I rFT='LFT I 2. lVV1,.vI -,J))/OY
 
D1eLPW)=IIRELOW+(U(r-I,J+I)+UL( f-I,J)-{I.*UW)I/IX
 
GO TO 323
 

0321 rF(FF(Ili,J-1).NE.I) GO TO 3 ?
 
UV T,9=U J*VW*= .
 
DAPGVE~f, ARIVF+( ( .*UW)-Ul I,J)-UJ( IJ-I} I/DX
 
DE--IGHT=I), IGHT+(V( lJ- + ( -I -2 V )/D
 

GA TO7 32S 
0322 	IFfF'([I+,J+li.NE.11 GO TO 323
 

UVBRU'VWt*4. 
IRXIGHTI=RIGIHT+I(.tVdI)-V(IJ)-V(141JI))/DY
 
DQEL4=DELO.+((2.*U4I-bC1,J)-U(I,J+IJ/I)DX
 

0323 UQS=(J(I i,J).UI,J) )t2
 
ULS=(U 1-1,JI+U(I-2,J))* 2
 
VRS=fV( I,J4-j)+VI I,Ji)t4?
 
VAs=(V(IJ-1)V( I,J-2)3*?
 

0315 R(I,J1=(US+IJLS-(.tUS)/(4.*PXS)
 
t'(VBS+VAS-(2.tS))/(4.*DYS)
 
4t(UVR'tkVTL-UVTP--VBL/ (. o X~rY)0-(I,J)/DT
 

t-ETAII,J}c(DIEL(N4+OA6OVE-(-.*O(IJJ))/DYS
 

S1* R=S-JIRtA3S (R ( I J)) 

0301 CONTINUE
 

C 
C RPGION 40-A FREE-SURFACE PRESSURE CURRFCTIEN
 
C 

DO 451 J=2,J6ARI
 
rli 451 12.IBAkl
 
IF(F(IiJ).NE.31 M71IT1 451
 
P1IM1,J)O.
 
IF(F(t,J-1).N;F.4) GO TO 452
 
IF(HII-1,J).NP.4) GC TV 453 

I(F(I+1i,).tJ.4.:'i'.i(1.Jt1).EO .4) GO TtO 451
 
PHI(1. J)=O.5*PTA( I, J)*( (U(i, J+1)+U( I-I,J+1)-U( [,J)-U( T-1,J)I/DY
 

* 	(VI+IJ) V{I+,J-I)-V(I,J)-V(I,J-I))/OX)
 
GO TI1451
 

0453 	If(F(t+1,J).iE.4) GO TO 454
 
IF(F(I,J+1).F").4) GO TO 451
 
PIlFI,Ji3-.AtTA( I,J)*( (LIii ,1) U( 1-1,J+l)-L( 1.i)-UJII-1I)J I/OY
 
*(V(1, JI+V I,J-1)-V{I-1,J)-V (1-1, J-1 ) }1X3
 

GO TO 451
 
0454 IFGTFI,j4).[).43 6 1451
 

PHI I. 11=2.Ot§TAC .,JB-CV(I J)-V( I,J-l 3)/DY
 

GI] T1 451
 

0452 GIO(F(1L,.=*4ITO 455
O 

Id?(I.Jt1H.VP.4) GOI TO 455
 
IF(F(I-I,Ji.f .4) GO TO 451 
'11I111, J) ,).5t' IA C I ,J 2*1 (U C I, J) 41(1-I, J)-u!{I,-1 1-UC 1-], J- I Ill/Y
 

•+Vll, iH-V( C, -T )VHI,Jl-VH -1, J-1) |/OX)
 

GO TI 451
 
0".56 IFWI-I-.J3).oGI TO 1.5
 

PHI[)=2.0 -TA U -45
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0455 IF(F(lIJI NF.4) GO TO 457
 
I iJ).- 4.q 'f , ii 45 ______ 
A _______ 

_____ P I..L.IJJ) ( , ) )JD (I)-Vf 1 J-

G I T' ,31
 

04*5 PIll (I I J)=-., 'FA( I J)*( {-S( IJ)+U( T- W..-L 1 I ,J-I)-U( I iJ-L1) /IlY

vIv-LJ)v( I I Jj -V l.J-i Irx)
 

I I-tLTA 

EV-1 )V 

Ccv TrI ASI
 

0437 IFlF(u-ltia-.4i GO 11t45I
 
4i=2.,J0i:TA( ) /DX
P1414 _I) I I J 1-J)(1- 1, JI 


01451 CON ITm JF
 
C 
E TT 1 QRF VARIA3LCS FUR RE-YCLING 
C
 

WRITF (16I IV.,TA, PH ,P
 
GQ 10 4038
 

f 

C RE-ESTAILISH VARIABLES FCR RE-CYCLP
 
C
 
4036 REAI)(16)U,VETA.PHI,R
 

IFIMiF, 16)403164038
 
4038 QErW'ID 1

c
 
C CALCULATE EST [(,ATE OF F[[AL WHEEL VELOCITY 
C
 

UG=UW4(1GX+( EtXGI./t' I tOT
 

VC=V'l+(GY+( FYG/ ))*OT
 
FX=({ (''l;+dw?)/2.. )* T i/fix
 
rYr( (f{ ,.Vt .2)4L3T)/Ot
 

c
 

C CELL VARIABLES AFTER Si-IFTING CO[DINATES
 
C
 

,I=l
 

N=
 
IHFYF.GE..i GO TO 417
 

0417 IFfFY.GE.O.O) GO TO 418
 
i4=-I
 

0418 FX=ABSIFXI
 
FY=A 'S(FY)

ni 4,,,) Jz ?,jnA-!
 

0-1 420 1=2,IdAkl
 
I IP! 1.1)l.NP.2.AJ".F(1.1 NHF.3i GO T0 42)
 

!F(FE(I,J).NE.2) GO TO 421
 
IFIFIIhJ).hE.Ii GU TO 422
 
PHI (ItL, J )=P'I (I, J)IGX4DX+2.*ETA( 1,J)XU( 1-13J/lDX
 
In T{14?3
 

0422 IF(PII+1,JL.h-.5) GO TO 423
 
PHI(l+1,J)=PHII(1,J-(SFYG/.'L*DX+2.4ETA(I.JLU(I-.J)-UWI/DX
 

0423 IF(F(I-1,J).NE.1) GP TO 424
 
PHI( I-1,J)=PllI, J)-GX= DX-2.*'TAI.,J) xU(I,J)/DX
 

GO TO 425
 
0424 IF(F( I-I,J).NE.5) GO TO 429
 

PHI(!-,JI=PIII, Ji (SFXG/LPI)DX 2o*ETA(IJI4IUW-U(IgJ))i/X
 
CO ii 425
 

0429 IFIF(I-1.Ji.iE.5) GO TO 425
 
PHlI(-1,J)=PHI(IJ)-GXtDX
 

0425 IP(FCI,J+1).NE.1) GC To 426
 
PHI-I. J+1 )=PHI (I,d3 +GYtL)Y+2. ETA (1 J*V(I J-1I)/Y

GO TO 427
 

0426 !P(F( I,J1I}.NE.Si GII TO 427
 
PHI IIJ+L1=OH!(I. J)-(SFYG/W'AT*OY 2.*ETA IJ)*(V(I,J-I)-VWI/OY
 

0427 If(FCIhJ-1).NE.i) GO TO 428
 
PHI(1,J-1)=PHI(IJ)-GyuY-2.*ETA(I,J)*V(IJ )/DY
 
GO TO 421 

0428 lr{F(1,l-1.IE.9) GO TO 42 1
PHI IIJ-I )-PHI ( .J} (SFYG/ tA ) DY-2.-ETA(I , J) ( V-V(IIiJ) )/DY
 

0421. P1I{ ,1 =(L -F )-l I -FY )*PHI ([,J) f X*( I.-FY/2..)*PHI (14M, J)
 
*+PRy*{I.-FX/2. )*PHI , J ;NI)
 

0420 CiNTIu iJE 

C REGION 40 PRESSURE DENSITY CALCULATIONS
 
C
 

400 	IC=O
 
401 	CON'AX0.
 

A0 402 1rFII=I,10
 
n-) 403 .=2.JBARI
 
Il 403 1=.IRARI
 
11-40!, 1. 0 T '03
13.. ' 

ICFr(hI.,I.F. I Gil TO 405
 
IF(F(It1,J.2.I) mim n 407
 
PHI f 1-1,J) =H[I I.J)i+GX*TX+2.*TAC [,J)tIJ( I-1,Jl/fX

fm rn ',&,_
 

01407 lPIRO J~i5 Gil TO -.0 
PL4I (+ iLt (IL*-(SFXG/WM1*OX+2.-!TA(I,J1*(U!l-1,JI-iUW)/lX
'PH1 I_ 


0416 [F(r II- I.j3.M.I) GO T(I409
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~flI ! I:,J PJItJzG.''_(zZ,-LLIJ _UJ. LLQX .... = 	 ,41A'flt. ._ 

GO it 4011
 
_0_.9 LZ - .,F,,IIL, I I ' -1_,n X__
 
_ PH£I L-, j.j HjL LLLLX,-.:, Im -t F _~J_j JIULL ))I 

0415 1 0( ILI-, J)J.i6.) GO TO 40 d 

04W I PFI F(1,J._-_1) b ;(I_. 4 AI.
 
PHIJy(IJj)-=PHI( 1,J)-Gy.)Y-j.2*FTAI .J.*VII J-1)OY
 
GO TO ',I)
 

0411 {F(F(11.1_? ).I-} TO 410IO, 
P[MHI II ( tL11 +Pf jj-SFY/Wi )f'YS+2.(TAJV -3W YIj I 


041l rFIF (J.,L.ILOE lf.CL11 1 41
 
PHII I J I I )PH1 I1, J I-GY*tY-e.*F1A( I I_ _I3*V Y
3 , 

GO IC 0
 

0413 GOri,-)."5
T'.. Af5 
'I I T, I -PHI (I,- )+(S YC{/Wo {1' IY+?.ITAI I J-(IV1,-V(IJ) I/Y
 

405 Pl-I .'-..=(1'141I / 17/I
(1+1 ,11+PH11-)I 4XS)
 
*+(PHII 1I,.J+l+pFMI.j-1 Il/fI*tYSI+I.41 J3U1
 

IF( I11FN.-h1lCiT 1
 
CfJRlj=&AlS(PIII.3t-PI-I1(,J )/IARS( PHIIJF.I)4ABS(PHILI, L)L________
 
*+..254 (MI'IJlJ -1.J) )&I?+0. >5# IV(IIJ I V( I.J- 1i1U*4GYT+GXXRI
 
IF(CrIJ.LT.C.NMAX) G' T 412
 
Crt,14'o =LIJ'4l 
J
 

412 PqI I . I3=PF1II';4
 
403 COMTI ZJ"
 
402 IC=IC+1
 

I rC11)TO 414 
IF( TC.p).tlr) 00.401
 

0414 IF(CWl'IAX.GT.CIINV3 GQ; T11 401
 
C 

C P-GIAlJ 50 VELOCITY CALCULATION 
C' 
0500 M=0 

T=
 
ICOPiM O
 

S 00 511 J=z.JPRI 
01 5111=
S I2RAPI
 
N=N 	!
 

TF(F(I.1.NF.5) GO TC 503
 
TU( 3)
TVIN)=VG

PHI( I J)=0.
 

GO T '1 3 2
 
,
 

0503 CON TW'JE
 
IF( I,i.NF.2.AAIQ.FI.J).NE.3I GO TO 529
 
U4OVE=U(1,J-1)
 
UIL,%=U1 I,J+L)

VT=V([,J-1)
 
V8=V( IJ
 
VTRlV(II, J-1I 
VBR=V( [ #IJ)
 
IFtF(f+,J).EO.4 GO TO 512
 
IF(F( [+IJ).EI.13 GO TC 513
 
I[FF(I+ ,JI.F..5) GO To 501
 
IFFFI+1J 13A0.1.flP.FII,J+tl.'0.1l GO TO 514 0'
 
IF(I+L.J+1).EO,5.tCP.F(I,J*1).EcX5])G., TO 5140
 
IFIF(l,,J+).NF.4.OiFII,J+I).NE.4) GO TO 516
U3ELOUM,J)
 

I GO T-1 51. 
512 	TU{ ='i( I 4J)i-G3 07
 

GO Tq SI1
 

0513 TUI N)=I.
 
GO TO 517
 

050! TU(N]=JG
 
GO T9 517
 

514 U'FL n=-U(IJ)

S V3=0. 

VRP=O. 
GO T1 516
 

5140 IJELCW2.t=UW-I I,JI

VB'VW-
VRP =kVK
 

0516 IF(F(I+1,J-1)."O.1.0R.Fll.1-11.E0.12 GO TO 518
 
FF4 1+1,J-1) .. 5.0R.F( IJ-1) EO. 5) Gil TO 5180
 
Ir{F(I+IJ-I).NL.4.Or.F(I,J-1).NE.41 GO TO 520
 
UASOV =J{ lJ}
 

T0GO 520 
518 	UA) VF=-U(IJ)
 

V 1=,].
 
VTP=. 
-;O T-1 5?-) 

51,0 UAhOVE=2.1U)4-U(I J)
 
VT=Vt
vr~t~vdu 

t(lUgFIflh-LtiAOVF-?.0 {Ij,J)/DYSI+(Pi1(1.jI,-PHI(I ,J)IIII)X+GX
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S (M=n~(JA$VUFI.Ji) (VTJ14VT)/4-(FOFI V'Wj( I I)4(VlP4',V)/4,. 
5?7 IU(Ni=J( 1, J) +Jli( SU I+SIUI)/Y4O.25_(UI (I, i .+IJ( 1 1 I t)*Z/X 

___I *Lt~r.L=V-IIILj 

J~ziLLtJ~L,±~ 4GOd TO 57! 
TH' -( 	 5??
Di lTOlI 

IF 'I (-II I_) r 0 UTI On
 .
wFIuII~ JII_ jlfl.jt I IT-1.,I).FO.I GO 21.,3
 
IF(F(IIIUJ_4_IhFO.5.OJ.F hJ).FO.Wo 60 TO 5230
 
IFIF(ItlJ+I).NF.4.fP.F(I+1.J).NF.4) rO TO 524
vrIGHr=VjL,,J)
 

5230 	V.IGHT=2. VW-VI1,JI 
uq=11w 

GiliT 524 
521 	TV(N)V( I.J+GY')T
 

GO TO 532
 

GO T' 532
 

0532 	TV(I =VG -± 

GO TO 532
 
5 3 VRICHT -V( I])
 

[I = I) 

0524 	IF(F(I-I.J+II. EO.I.OR.FII- ,J).FO.I GO TO 525
 
IFFI(I-I Ji).GO.5.LR.F(I-IJ).FO.51 GO TO 5250
 
IFIF(I-1,J).FLS) GO T, 507
 
1FF( 	I-1J + I .jF. .FIF-{-IJ .NE.4) GO TO 526 
VLFFT=V(I tJ
 
G TO 526 

5250 VLPFT=?A-VW-V(I..)
 
UL=UW
 
UkL=Uh, 

0 T- 526
 
5?5 VLIFT=-V( I *
 

IIL=O.
 

- GO TO 326 
0507 	VLEFT-V(,J)
 

UL=0.
 
U3L=O.
 

526 	SUI=FTA( IJ](V( i,J+1)+(TiJ-11-2.0*V( Ij) 1/IIYS
,(VNIVmT+VL FT-2.,-1V( ,J) )/DXS)+(PI [J I -9I(1,J+1)/)DY+GY 
SUV2= (:L+UB'L]I (V ( I I J|I VL EFT)/ A - (RRUBA} * (V ( I.JI +VP TGIT )/A. 

528 TV(N)=V( I,J) )T(SIIM,I+SU'2/OX+0.25*(V( I, )+V( IJ-1)*Z2/DY

*-').254{V{ I.J).'V(IJ ]) )**'/DYI
 

0 TO 53?
 
0529 IFIF(I+I,J).N°.5) GO TO 504
TU )NI =,;G 

GO TO 5)9 
0504 TU(N)=J(1,J) 
0505 IFU(I.+I).NE.5) GO TO 506 

TV(N)=VG
 
GO T) 932
 

05016 TV(t)=V( tJ)
 
53? IF(..tT.102OGO TO 511
 

WPIT'(IL) (TULN),TV(N),'i=1.1020)
 
ICCUNT=lICOU'4T i
 
N=11
 

511 	CONTI.,C
 

REWIND 11
 
GO TO 5,')
 

540 N=O
 

DO] 541JfdlI 
On 54L 12,19A 1
 
N=N + 1
 
Ir-(N.i0.1I GO T' 542
 

544 UL I,.Ji:TLJ(N)
 
V([ * )=FV( IN
 
I;5' I T54


5',,' 	 li-{ t.r"3.IC)JNI_) ";hiT'! 543 

r-A(11) (THJN ,TIV(N) ,N=1. (020)
 
,trM + I
 
GO T1 544
0
5', &A)l(1) (TIJ(I'I]TV(N) N=I,.NNrJ)
 
il rlW 54'4
 

599 tF( 4.LT. 1020)) GO 10 541
 
N-,)
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9.-_ 	 -Yn - -----

-_. _. -- F0_ Ci_._ S_ f U-Q __L----- LE__ .____L__CL_-V E_ 

AS SIGN .' 9 T. IKA-T
 
05,5 5 5_ TiiAr
 

I I , . Mt I ) - n .
IF(F L ,±ALLOT1ST_________________I_ 
Ir ( F ( I - J I N- .4__._1T"6S 

Ff1-f f--1.dl.NC.43 t-C)TI* ",.a'
 
If IL(LLtij fLE 3.4) '3() T1 549
 

.L-I, sit -J 550i
 

V(IJ-II=V f j)
 

05,,8 l i3.'M3.41 GFf(fcO T1 51
 
pIrI I. I+I}Fi3.4 Cf' T 553
 

V[II 	-I)=V( IiJ)
 

0n Tq 54o 
0551 F(FIfI+tI.EO.4 00 TO 552
 

Vt I 1 1-I )-V( I* JI 4)YtIUI I. 1-f) -I i D3
,"X

i l 

r TO' 54
 
0552 V(I ,Jl.3*fiY*fIU( -I.J)-U( I Jil/X
 

V( l-i)=-V( I Jl
 
GO T'l 546
 

0553 U( I.I)=I( I-lJ)
 
VII, J)=iv( I.*J)+VI 1..-I 1)12.
 
VII,J-LI=VC fiJ)
 
GO Tn 546
 

0549 FlFI.J-I)*CO.4) Gn TO 554
 
VilIJ-f) V(i dJ)
 
IllJI [-J*+
W I-]__, 1) =11( I J)
 

Gfl TiQ 546
 
0554 1(T ,Al=(Elf I,)1i-,i)i/-.
 

U( I-'IIJ=UI ],J)

Vf,J)=fVI,j)+Vf,j-I)i/2. 

V VI , _-1)( I ,J)
 
',0 TO 346
 

0550 *(I-IiJ=U( r,J)
 
V(TiJ)=(V(I.J)V(IJ-I)f/7.
 

VII .J-13=VlJ ) 

1.0TI 546
 
05i7 IFIFII+1,Ji.NE.41 rGO TC 555
 

IF(F(IIJ+I.NE.4) U TO 556
 
IFIF(l-dJ.St4) gO 10557
 

Vt lii "J=(I *j-1 

GO TI) 5', 
0557 	V ,J)=V(I ,J-I)


U(-I , 	 != (U ( ,J )+U( I.-1, J) U 2. 
U(I-IJ}=U(I.Jl
 

GO TO 546
 
OSSA TF(FI-i.i).E?.42 GO TO 558
 

U {I, J )=lJ ( -1,J) -J'(*(V( I:J)-V ( , J-I )I/Dy
 
il Tn 5465
 

0558 	UII.J).5*9XI I J1)-V lJ/DY

Ut I-I *Ji)=-LUf fiJ]
 

GO T9 546 
0555 	IFIFI I-I.J).NE.4] Gr TO 599
 

IFIHI,J+I).-Q.4) GO TO 560
 
U(f-IJ)=UI.J)+i)X(V(IJi-V(I.J-I))/Dy
 

T99O54.
 
0560 Li 1-1,)=()I 1,J)
 

V(I,J)=V(i,J-)
 
GO ILI546
 

0559 Ir(F(Fij+.3.NF.4) GO TO 561
 
V I, I )=V( I,J-I )-)Y4(t( i i-t f-lid) 1/OX
 
GO T0 545 

05obI .RI TE(i ,21hJ
 
GO TO 901
 

0546 CG'NTINIJF
 
C 

C [1POSE RIGID '4ALL (NO-SLIPI BOUN04OY CONDITIit.S 
C 

570 	0.) 571 =2.fISlAt
 
If(FI i),.0.3) 'O Ii 572
 
ViI.1=1o.0
 
U(I ,11=-tCI,?!
 

ff T. 	 57? 
57c VII,)'VIIy2


[I(I I ll ill
 
573 Vtfi.HAi) =i)O
 

U IfT , J, 4 =-IJI ,i2A4 I9
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--- ULI.Jj j ')-
IlUt1 ..J9.,075 
o-I j m.YVI 2. 

-

T 

574 . T-NII 1 ' 

V( IPAbj =-V( I AAR Ij 

ro T' KR'T 
069 CI)NTI'"IJ 

C 
C 

COVPUTE 

SF X=O. 

FfIRCES BETWEEN tHEL AND SnIL 

ASSIGN 653 fU ARET 
MI 651 J=2.JP&RI 

FIFFJI J}.N2) GO TO eS 
IF( F( Itl.J ).Nr .5.AND.f-( I-1J) .NF. 5.ANI.F( 1,J+1 I .NE.5. 

*AVID.FI 1, J- 1 .f4r-.5) GI TI, 651 
SAVE=ETA(IJ) 
KFFP-C (ft J) 
If M I.J) NF.2.AN1).F( 1,J) .NE .3) 651,611 

Ob53 StLJI=-*.tOY*FTA( I. JItIL I.J l-U(I-,J) I/X 
JF(S'J'I.LTo..J tO TO 654 

0654 SWt12 I.fl)X*TA( I. J ) 3*(V( I J)-V( I.J- I))/OY 
IFISIV.LI.O.O_) fr TV 655
SIJM?0.3 

0655 IF(PHI(IJ).LT.O) GO TO 556 
SU?3=P

t 
I( I.J ) *.IfSX

SU.4 =-H {([tJ ]4q K Y 

Gil TO b57 
0636 SEJI3=O. 

SU140. 
0657 SIS=T4UXY(I .j*i)XI 

SU; =TA:JXY( I.Jh-JY 
FTA(I ,JI=54VE 
FCC [,J=KEEP 

. IF(F(~II.)NE.5I GO TG 660 

SFX=SFX-SUM5 
Sf-Y=SFY-SUkI2+,N3 

0550 IF(FIIJ-I).Nc.5) GO TO 658 
SFX=SFX*SUt'5 
SFY= S- Y+ SU'A2-SJl 3 

0658 IF(F(I+,J).-.5) GO TO 659 
SFX=SF t-SUI'I+SU'14 
SFY=SFY-SUfv" 

0659 IF(F(I-1,J).J.51 GO TO 651 

SFX=SRX+SUI I-SI'J" 
SFY=SFY+SU 46 

0651 CCtNTI'.J 
IF(IFSfM.r,5.1) 
SFX=O. 

GO TO 661 

SFY=?.SF Y 
06ol CONTINUE 

C 
C 
C 

REGION BOA- CHECK ESTIVATF OF WI-EEL VELOCITY AGAINST 
CALCULATED VALUE. ADJUST ESTIMATE AtO) RE-CYCLE IF NECESSARY 
CCM-UOT N-r4 wFEL VFLOCITY BY IWPI;LSE-MhDFNTUP PRICIPLE 

-t k 

UWNIWICGX +SFK/WI) tOT 
V$N=VW (I-GY+SFY/W'II tT 
IF(IFSf'".EO.I3 GO T 803 
IF(St-X.°E.O.0I GO TO 810 
IF(SFXG-SO.D.')) GO TI) 822 
NOR=0 

0 

SFXC=O. 
SFYGO. 
GilTI 4136 

0122 ERPfRPUO. 
-PI) TO 903 

0810 FRRO "IC ((SFX-SFXG )/SFXI)I0. 
IrIASC-PRnRU).IT.0.nOa3) GO TO 
Ib(,J:K.GE.I) rO T

O 
805 

0800 SrXISFX 
SFX I SFXC; 
SFXG=( SX+SFXG)/2. 
'PI Tn 30 3 

0805 X(I=SFXG 
srx';-( C sExtIts1x.;I-C( SFX¢SFXGII) ) 

800 

SF XG-SFXGl.SFxI-SFX ) 

SFXrI=x 

50 



ICFYI;.(EO.O.) i 8 051LQ.0GOTO 

G. ILTO iT7 

0803 YVI=SFYLS 
IFYI,:( fV.SFYG)-(SFY#SFYCI0 ) )/(.kYG-%FY G I f
 F V - F Y )
 
SFYI=SFY
 

SiPYGI=Y[ 
0807 IF(A_3S(EkRURU).LT.0.OOOI.AND.AHSIE'RR1,RV).LT.O.000Il GO TO 804
 

IF(AS(ITCP-T).GT.(OT/2.)} GO TO dO9
 
WH I TE (4.14) T,UN .VWt ,UGVG, SFX°SFY , - RRnRII * ERRORV *IC 
W'IT' I',.2)I )SX.-,,SFYG 

0809 InINOP.GE.I0} Gtt Ti) .A04 

Ir(NOq.'NF.3) StI TO 4036 

Go T-i 40,46 
014 CONTINU E 

C REGIONI 80- CALCULATE MOVEMENT OF WHEEL AND TEST FOR SHIFT 
GRFATFR THAN ALLCWED
 

C RE-CYCLE WITH REDUCED OT IF NECESSARY
 
C
 

DYSF:((VW+VG)/ .)trCT
 
SlF= (4.tiXS-)IOX 

J&F-(4.*f)YSF)/iY 
IF(ISF.EQO.A" O.JSF.EQ.OI O TO 857 
WRITE(6,17)T 
T T-i)T /4. 
0T=. 7DT 
DTCP=. 75DTCP 

DTPP=.75*DTPP
 
DTSP=. 75iTSP
 
TCP=T 
TPP=T
 
TSP=T
 

SFXG=0.
 
SrYG=O.
 
WRITF6,t6)DTDTCP,OTPPDTSP 
GO T 4036 

857 CC;NTIUE 
IF(UW.EiXO.Oi GC TO 6870 
ALPPAU=UI/IJW 

6870 IF(VW.EO.0.0) GO TO 6868
 
ALPHAV=VG/V
 

6868 CONIIUE
UW,=UG 
VW=VG 
SFXG=SFX 
SFY 6=SF Y 
SGX SF= SDXSF If.(SF 
S( SF=S)V SFI-OYSF 

C 
..C REOIO.\ 60 CaOPUTE STRESS TFNSOR OF EACH CELL 
C FIN) PRINC'IPAL STRFSSES AND DIRECTION 

...C TEST YIELD CRITERIA 
C 

ASSIGN 615 TO KRET 
0600 DI) 601 P=2,JRAPI 

GO TO IbII,M?1,613) NH
 
061! FCI I.11) 


TAtJVY( [ .1J OQ( 
IF(FIIhJ).Nr...AN D.F-IIJ.N.31 GO TO 601 
UGiP: ( I, fJ++L tJ(I_,J}nfIR. 

UiAi=(iJ( I- J) iJ( IJ-I Il/. 

UJAL=IiJ( I-I,]ItUC I-ItJ- 112. 
VIA-(Q(1,J-Ifl'VI -I.J-Ill/2. 
VLIf= VCI|,.JlV(I 1, J)|)/). 
VRA=(V t .J-1) II J-I)i/12. 

52.
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---- j_ 07.. LVl-= ,J) W LIt1 II ))/., 
- IIJ bIA, J I NC.? I GO_rl -16 

-..--.. LL.l I.i).NF.1I1 0 TO 618 

UAP=nt
 
IjtA =1 . 
VQ 8=1. 
yr.__G 7
13=T. 

0_1_ IF rI4I.tJJ)..5) GO T6 617
 
U p =IIG
 

VRA =Vi 
VO8=VG 

0617 IPIF(I-1.J)jNE.1..R..Ff-l.J).NE.63 GO TO 620 
UAL=. 
I'l= ,
 

VI 4=1. 
VL II=.
 
GI" T-1619
 

0620 GO TO 619
JFf(|-ij)fl.E.

UAL=IIG 

VLA =VG-

VL=VG
 

061G IF(IIJ+1I).NF.1) GO TO 622
 

UqL=O.
 
=VRB'n,
Vl fl O.
 

VI R,=1.
 
GO T, 621
 

0622 IF(F(IJ+).NE.5) GO TO 621
 
UPR=UIG
U L =IC
 

VL8=VG
 

0621 IFIFIIJ-13.NE.IJ GO TO 624
 
LIAR=O.
 

UAL=O.
 
VRA=O.
 
VIA= .
 
Gq TO 673
 

0624 "[F(F(I,J- I .NF.5) GO TOI 623
 
UAP =1I0
 

UA L=tUG
 

VR A=VG
 
VLA-VG
 
GO 1P 623,
 

0616 IF(FR(I+I.J-I).NE.I3 GO Tn 627
 
UAR=U0
 
VqA=VG
 

0627 TF(FEI'I-tJ-1)NS.13 GO TO 625
 
UAL=UG
 
VLA=Vr
 

0625 TIFFEII1J±I3.NE.1l GO TO 626
 
URQ=UG
 
VQR = VG 

0626 IF(FF(1-I,JeI).N-r.1) GO TP 623
 
USL=UG
 
VLS-VG
 

0623 INF(I .J)..NE.3) GO TC 628
 
SUMh=O.
 
SUMI2=O,
 

IF(FIIJ-i).NE.4) GO TO 604
 
IF(F(I-.J).NE.4) GO TO 605
 

IF(F(I+1I I ..,).4.fl.FO[,J+I.F0.4) GO TO 603 
sumi1= 5-(M I.J+I[) +U4 I-1,1.+ lI-U (l[ J)-U { -[ J,)I /D)Y-
SU M2--51V( 1+3J +V( [+iJ-1)-VU.J)-VI!,J-1) I/DX 
GO T- 603 

0605 IFF(I+I,J).NE.4) GO TO 606
 
IF(F(I.J ).EC.4i GU T? 603
 
SUJMI=.5S(U(IJ+11+U{1-1,J+)-U{II,J)-U3(1-1,J)/DY


SU2.5={ 1T JI+V[ IJ-1I-V(I-I,J)-V(I-I,J-1I)/IDX
 

GI TO 6)3
 
060. IFIF(I,J+I.E.).4) GO TO 03
 

SURI=. 5=1II( ,-J+ 12+U( 1-,J+1 )-Ill! ,d)-U( I-I ,1) /DY 
SIJM? (V4A-VLA4VRB-VLFI)/(2.VDXI 
G IO M,03
 

0604 IF(F(II,JI.1IF.4) Gi) TO 607
 
IF(F(I,Jt13.N.4) Cl'" TO 608 
IF(FII-j.j).PIL4I GO T 03 
SlU,! 5"(tJ( I I, Ji-Ill I,.J-I 3-U I l-1,J-l 2)/DY1=. * J)+U( 
S0"2?=.5' (Vi ,IJI+V( I, -1)-VI I-I, J -V(I-ly i-II/I)X
 

GO TO 603
 
0608 IFIII-I.J).F3.4) GO TO 603
 

StiM2.., *(Vl l,)4+V( I,Jiti-V(1-, JI-VI 1-I, J-LI IDX 
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P07 IJflAPLU4±1..1 6091nT 


--- AUf J)-UAZl- (UIfhL9A~A 


0610.mUY U 11 )Ita~9!jLzAAJ.tL(.I .JA J-UI .1±JI I JY 

S-IIt'=fPI V I Al .*II I-~'I- /I? 
Iii 5i ( [603 +V( 1+ ,j-I_________________ II___H__________I)II_ 

GOIfl)4 1q 

0603 EILlAIt.L6j 0 

14 f.fSII,.I-(lR-hIASLI+~ -f. )~ 

A!P! 5EL!sULJrlziTO~L~hI(J [T NMX G. -629/ 
ASTNIrX-SRA6 II 

IFIfq.lRUl .fT.STNMX)* G-O TO £29
 
T~FlSTRAI(IM .AA)M 1 0

------ FT. E.00)=CTAO..8 
TAIIXYI I.Jt'qtTAS(IJ)S 

r.) T-1 Kprl 

68TAil. Tjh0.STRSSfI. I)/hr(1
 

681 	 rd=T:-.-l
 
FC( ryJlti
 
Ml T11 501
 

0612 	 GFFIJ.\..NFTJ.E3T90615O 

10-1'O 601
 
0675 ETA!(. A1=0,
 

Cr) TO 01
 
0613 Gil1.IE..NI.TOJNF3
601677 

SIGMAY(I,J)=2.2*ETA(I,)*(V(r.J)-V(r.J-1l)/DY
 
GO TO 601 

0677 	ETA(I,JPO-.
 

601 	COJNTINUIE 

C STPRP STllrSSE ON. TAUP
 

IF(A'SITSP-T).rT.ItT/2.)I GO TO 673
 
CIO Toi6,70.67l.671)"~
 

0670 	W.'ITFI9)T
 
'UR1TF(91TAIIXY
 
GO TP 671
 

0671 	WllTEC9)SfC'!AX
 
GO 1" 673
 

0672 WQITE!9)S1GMlY
 
END FILE 9
 
ISP=TSP+DTS'
 
NSP=NISP4I 
WPITE(6,2ilr.'JSP
 

0673 C.JNT( Iii'
 

IF(1M.L.3)GO TO 600
 

c CALCOLATE TI-W CELL PISCIREPANCIES 

J,)I"X)l
 
DMA X0n. 
091 4035 =2JFAP I 
I.0 4013 1 2,1;JAPl
 

LN! ,J10O
 

rr(I~rJptA~.F~lJ).N2)GO TO 4035 
O(141((Ii?, ) -M1 1-1,J) b/OX)+ ((V( I ,J)-V( 1,J- I)l/MY) 

4[MA'0Q( I.4 

IF(OQA6X.GF.ADiylX) GO 1.,4035 

IOftAX=I
 

___________ _________________________________53 
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4015 CIN rINIIE 

c_ TES EF'LL MRLII LIO P-LtE JIAVA IADtJSN__N_ NF 
c 

____ 

-

_ 

1',rJt.S(rcL-_rL.r 
WR I TV j,231 
__aOzg.LJ SJ ,N__ 

D.j/jL12.tG%TQ 7 0 

'SIG AX( I.,i If, I,+yI [IJIi TAIUXY(I, * Jf.( I, IFF( [ ,*1 +I-Cit *,II.IC([1.1) 

40 43 CINT! i1E 

,? T rr~h.49331IT
 

0720 C0NTINI E 

c hC~iiN 70 PARTICI E l.IIVEMF-NT 

NNz 10)0 
0i 721 M=.?PARI
 
IF(M.L.PARI GO TO 722
 
NN=APPR
 

072 REAO (14) (TXi((NI.TYKfNI 4N=) .Nr) 
11.1 to) )Jl.NV 

XK(N) I(K(, ) 
YK(M=TYK(f )
 
I=XK(N')I/X+2.O
 
J=YK({)/OYf2.Q 

FX=XK(NI /OX+2.-F!
 
FY=YK(\iI/DY.? .P-FJ 
IFIF(IJ).NL.2.&,O.F(hJ) 31 GO Tn 701 
SX(=(X(f )-XK(N) )IFNX 

v1=1(7-g * d 
U?=U(I. 11
 
IF(rY.LT.O. ) O TO 703
 
SY=(YPL(J)-YK(NI I)/DY
 
U-U( I-1, J1+) 
U4=U(I,Jll
 
IF(F

0
(r-1.J)JE.1)* 00 TO 704
 

t]3=U%4 

rO T) 705 

0704 IF(FEII-1,J+L).N-.1) GO TO 705
 
U3=UI 

0705 IF(FGIOIJI.NE.l) 0OTO 706
 

U2=I)W
 

GO T-l 707
 
070u IF(FE(II,J+I).NF.l) GO TO 707
 

U4=U2 
GO T:" 707 

0703 SY=(YK(N]]-Y'L( I-i) )/DY 
U3=U(I J - 1)
 
U4=U(I, J-1)
 
1F(F( 1-1 JI.mg-I1 rCO TI 70S

L13=U-d 
UI=U1, 

__ -GO Tfl f09 
0700 IF(FfII-1.J-1).NF.lI GO TO 70q 

03=UI 
0709 IF(FE(+I+,J).NF.L) GO TO 710 

IJ4=U.' 

00 T! 707 
0710 IF(FF(I+I.J-11.NE.J GO TO 707 

04 =U2 
707 L(= (0.5-SX) 4(O .S-;SY) (=U1.-40..5-SXI *40 . 51-5?) U2 

(0.5+SX) 10.5-S ) *IJ3+ (0,5-SX) ( 5-SY *14 
XK( IXK(N )+OLDT 

SY=(Y(J)-YK(NI I/DY 
V;!=V{I,JlI
V2V(I.J}
 

IF(FX.L1.O.5) GQ T' 711
 
SX=(XPLI I -XZ(N ) fDX 
V3-V(I ,J-)
 
V4=V([+IJ) 
JFIFP(I,>-).I GO TO 712
 
V A=VW 
VI=VW
 

Gl T' 113
 
0712 Ii(F) IIiJ-I).Nc.1) GO TO 713
 

V3=VI 

0713 IFIFF(r,11.Nr,.i) GO O,714 
V4 =VW 
V2-VW 

54 

http:IF(FfII-1.J-1).NF.lI


07Aj±ItS~th4ii~f 1)J (lf TO 115 

711L 
GO T11715 
SX=tXlUN)-X1I 

_ _ _ 
Ct1-1 I1/DX 

_ _ _ _ _ _ _ _ _ _ _ _ _ 

lH~jI~~hN 1. GO TO 706 

i3=i, w' ! 

0718 
GO TO1 715 
IFI(f-1,J+1).NE.13 GO TO) 715 

V4V'I 

715 V'K= (O.5+SX3L*(0A +SY)*V1+CO.5+SX3 *(0.5-WI *V2 
*+1O.5,-5X3*(O.5+5Y3*V3*(0.S-SX)tIO.5-SY)4V4 

VKC NI=Vk(N)-QfK*DOT 
701 rtlNJII-,JV 

I4q1Tr(1iIIIN)N .~,N 
121 CONNI ItJE 

'*EV Itin 14 
gEwpIN 15 

rCI1MPIJTF COOPO)IATFS Or PAPTItIES AFTER SI-IFTrMG 

DO e47 Jrnl.JPAR 
00 847 I=1,184k 
'(I J)zO 

0047 CVNTIMUC 
KP1 II =l 
KPI P.'). 
NNq 1120 
00 84L1 =1 ,'IPAR1 

IF(M.LE.rPA.'3 GO TO 842 
tar4=tPPR 

0947 4Af(Jll3XKIljI.YKINl.N?. 
01 811 N11,W.' 
IFfYsIN-X&PI.LT00..ORa(VKN-DYSF).CT-YT) GC-TO 911 

KPLU-=tKPLLJM* 1 
KCP'= KPLM+ I 
1)1K KPLUM4)=XK(N)-DXSF 
lYKI KPLJl=YK~iq)-()VSF 
I=TXK(KOLUX) /O-X-ftC 

0845 

IF(F{I.J).N-.5) '301TO44 
11=(TXK(K'LUY)+DXSF )10X4-2. 
IFIF(rl1j.JI..51 GO TO 845 
TXK(IKPLUMIJTXC( KPLUYI+DYSF 
[=1 I 
Gil TO 844 
JJ=ITYKIKPLIJr'+OVYSF)I/pY+2. 
IFIFII,JJ).I0.5J GOt TC 846 
TYICIKPLUM)=TYKI KPLIJNJ 4-YSF 
J=Jj 
GO TO 844 

0846 	L4IltF6.60)
 
$14 IC c.59)f1. 1.TXKIK PL3W),TYK IKPEJN , F(T, JI. FFII,J)
 
GO TO 0I 

0844 	 CON'TWIUE ________________________________ 

K(II,J3-KCQIJ4-L 
IFIKPL iA.EO.10AO) rC TO 812
 
CGO Tnl 11
 

812 WR!T (14) ITXK(N,TYK(N).H 1.1020)
 
KPLUMl J
 

811 CONTI*JE=
 
841 CONT TNOE
 
813 MIKPLU.N
 

K=KPLM 
C CONTRIL THE AISPLACFMENT OF SHIFTING COOCMINArES LFSS THAN 
C HIALF GiRL Ib FCYiEA 	 TIME 
c 

CNX=NX 
CNgY=,JV 
XKM.(X'(lIICC"-I * XK 
V'NYtYO-ICNY-I .03 tOYK
 
s i~lXP4-IXSP
 
SMY=YT4-SOYSF-

M=( S AX-XKHXI /DXI(-XSFPAP
 

0,118 	XSFPAI'.XSFPAP-I. 
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0826 (JINTIPJEt 

YP-$f)-SY5F ____________________________
X'r Xi1f.X+tXSPAR ) UK-SOYSF 
111 0!, 1CY1 .NY 

TTKL(N)<-YP 

.iYKLN(ILY+/. 
Kt4CMTl.'JFzCI14 

8
1
6 

1
NMC(L4J (TX/OKINYK() N=,1? 

X89SFIPtRSFOAP+1 . 

GiFl'TA29,0000. 

0827 CGKTItUF 
YP&?O'+LCMIY+YSFPARI 'CYK-SbYSF 
XP=X04<SFPARtUXK-S0JXSF 

TYK(14)=VP 

I"----fTXK 1)/,)X+2. I 
J=TYKU'I)/[0Y+2.0 

IF(tJ.LI.1020J) GO TA 811 
WRYTTF(14) (TXK(NI ,TYK(N) 1N=1.10201 
N=O1 

817 IC K+I 

818 CnN TINJE 
YSFI'AP YSFPAR*1.0 

8030 KgR=K 

.MPAQ=K3A-P02) 
MPPRI=4PAUVPR4O 

? 

WRITE L14) 
REWVD4 
REW1I4D 15 

LTXK(N) ,TYK(N)hN1 P4PRP 

c ST0Qf PARTICLE CUORDINATES ON TAPE 10 0 t 

IF(A STPP-TJ.CT.(rT/2.)3 GC TO0834 

ASSIGN 834 TO I(PPT 

DATB(f IhTA 

DAT6(3)M18AR 
D)ATiP 4VJ A 
DATOI,! XR 
DAIS3(S)=YT 
DATP.171=4X 

-

DATBU) .JY 
OATIM) UrI 
DATH(IL)=VW4 

041T3(12)=DX 
0418(13)=DY 
PA14(14)=DII- I 
DATnCI,! !fWH-E 1 
IJATP(15)VIFSYMl 
OA1I(IIFT4O 
DATB(IFH tUNO 
OATH14I9 I VWI1 
PAT1 ft 2'0) ,4" 
DATCI(?1I =LYfl 
I)ATAC VhISIXSF 
DAT I/3)=SUYSF 
111 -T 10L) DATIC 

C) 

0815 

0833 

IM) 833 ui=I,PARl 
[IF('JAE.MiPARI GO lCD 835 
N.W=lpp -PP) 
RCAr,(1',) ( CXK(f0), IYKLN,NtI,NNI 
W1 IF IOUTXKCN), TYK(N) ,N=1, NN) 
duIN IIIJ" 
P11) F 1(.: 10 
II'P=TPP4-tITPP 
NPP=Mpp+1 
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WA I pt 426tiTNpp 

GO T i K)RUT
 
0834 C(JN TINJ
 

C.
 
C AC-IIN K)90- PEFLAC CELLS 
C 

0820 	 n .121 JAI
 
111IfLPI j_=2, I AA
 

IF(F(UJ).NF.3 GO II IEO
 
IFI,C(,J).NE.OI G13 n 021
 
F I J)=4
 
PHI IL0j) .
 
IF(U(I1,,J.NE.4) GO TO 330
 

0830 	IrIF(!-,I.NE.41 0n T 831
 
NII- I
-,:30.
 

0831 3.NE41 GF(I(ri+
GC TO R32

VIIjl=o.
 

0832 	IFIFII,J-1i.NE.4) G' TO 821
 
V( IJ-1)=O.
 
GO 7t0 321
 

0850 	 IFFIIJ),NF.-1 G0 Tft 82t 
PHI! 	 .tJ3-O. 

!F(KCI,J).FQ.O) GO TO, 821
 
F I,J)=3 
FTAfI.J)=ETAO
 
FC Ij=2
 

0821 	CONTIt'IJ9 
00 a23 J=JAQI 
D0 823 1=2,IJAiI
 
IF(KC(IJ).FO.O) GO TI? 823
 
IF(FIhJ).NE.2) GO V, 85i
 

.F II-i J).NE.4 .AND.F EII J+I ).tE .4 .ANO .
 , I FI F I+l,J).NE.4 A NDl 

FII,J-1).NF.4I GO TO S21 
Fi ,J )=3
 
PHI (I, J)=0.
 
GO 1.)823
 

851 IFIFII,J).NF.33 GO TO 823
 
SUtMPIl=O. 

IF( F( I 1, JI).EO.4.0'.FII-,J) EO.4.OR.FIIvJ+1) .EO.4.oORo
 

*F(IJ-I).E0.4) GO T 823
 

IFCF(I-,J).NE.2) GO TO 852
 
SUMPHI=SUmIi!+PHI( 41 ,J)

N=1,1+ 

0852 	 IF(F( I-I,J).NE.2I GO TS 353
 
SUNF-I=SUIPhI1PHI(I-I.J)
 
N=N+l
 

0853 	IF(F(IJ+11.NE.2I GO TO 854
 
SUPHI=SUMPHI+PHI ( IJ+
 
N=N+I
 

0854 IF(FIIJ-I).NE.?) GO TO 855
 
SIJI.IpI=StJ.PHI PHI (I ,J- I
 
N=NfI
 

0835 	FII(
-0)?
 
FPNMH 
IF(N.-Q.0) GO TO 856
 
PHI( I I=SUIPHI/FPN
 
Gil I 823
 

0856 	IP(FEI.J).NE.2) GO TP 823
 
iCR!TEI6,A) I,J,F( I,J),FE( I,JI ,KC( 1,J)
 

0823 	 CONTINU'E 
C
 
C RE-INPOSE BOUNDARY CONDITIONS T0 FREE SURFACE
 
C.
 

ASSIGN 8u0 TC KRET
 
GO IV 545
 

08d30 CONTIJIUP
 
C 
C ESTABLISH ETA FOP FORMFRLY EMPTY CELLS 
C 

ASSIGN 824 TO KRPT 
D) S24 J=2JLAPI 
D) 124 k=2.ItAPt 
IF( FC( ,J ) NE..) 824,611 

0824 C'NTINOE 
C 
C TEST FOR TIME TO PRINT CELL VARIABLES 
C 

ASSIG ,01 T0 KPET
 
01302 CONrlq4,E
 

WRI 1) Trr,
;SFsXSFY
 

iITr(si2')rTDXS.,YSF
 

'4RIT;(,.3OT,UWV4,5TNMAX
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l4AhIM6,331ALPFLjAJ, ALPHAV ,.CONMAX
w41f!i-cb,i4JTDAX,1MAXJOFAX____________________
 

.2)TX
WRI' l F"AYFPAR.KA
 
WRdTr(A.IJIT, IC,CUNV,SUPR 

!F(AI1SCC'-T).CT.(VT/2.I) G0 TO0801
 
DA6TA-III= V
 
DAT td?hKIAR 

flATA(4)S)YSF
 
I,6T41 hXSFPAP
 

DAIAI7h=SFX
 
DATA ('3) =SF V
 
fAA(9)=VW
 

DAT AC12 1=ALPIIAV 
0616(13) OTCP 
flATAMI41fTSP 
06TA16j5)=OITDP 
nATA(16)=IBA.
 
D)ATAC 17)=J4AR 

nATAl 14) VIR
 
DAIAU') AX 

06TA121)=WV 
DATA(221 At. 

0616(23) D)X 
DATAI '4)=DV 
DATA(25)=OXSF 
DATA( 5)=tVSF 
DAT't('71 ERtfR'RJ 
DATA( 6) 4tI'RIjRV 
OAT A( 29 ) =IC 
UATA (3f)5L=J'-I
 
OAT Al31) = SFXG
 
06161 32)SFVO
 
DAT A(3314HFEL
 
DATA( 34) = IPSV.A
 
DAT A(35)=FT&O 
0DATA(36ht1W0 

06 TA 13 ?) VW-l
 
0 AT A C38 3=WI
 
06TAI '9) =H15) 
WRITE(8)OATAU,V 
EPNDFILE A 
WRITPI1l DATAPV-I, ETA, F.FE
 
END FILE 13 
TC PTCP+DTIC P 
NCS'4cs~1 
WRI TE(b.4030)T,1N(.S 
GO TO <RET 

0801 CONTINUE 
C 
C END PROBLEl 
C 

!F((TL-1).GT.(I)T/?.l) GO TO 300 
0901 CALL SECUND(BSTIMEI
 

WRI fE( ,12PSTPhE
 
GO TO 4000
 

9909 CONTINUE
 
STO7P 
ENEI 
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I, 55,'?2, 51,bt I Y,,iH, 111 ________ 

____I)ItINS [I'N X tNtiVNT,4~V)TM'X.EY(-NNT-75,$N-CVS),___ 
t1S?(yNI'PTS-i,VIvI ,iU'.NPrS,fNCVS lS wC-v% MAXI , S(pNc vS,4AX)
 
AMINPIS) ,5;2(MNVCVS,MMAXI,PRIJX!N(VNCVS),__________
 

EPSSLN=PS 	 -

D-I t11 K 1,NCVS
 
.3 13 51 j= t __________________________________
 

Jilj 7 1fX + -U 

5-11 [ltY I(I,.RKI IY I JJI, KjyI YI IT KI H I I
 
4 1,:) 7 I=2NIl
 

H ( 111liil +HE(I)I
 
t)ELS'JYII =(OF[V( [igi-DFLYI I1,K()1/ H21 [I
 
Fl(I1 5tiH( IJj) /L12(l I)
 
52 12(TK 12 .4"FLSOJY(I)I 

52CI I-=3A, OL SOY( III 

S2IN.1(hO.A 
CMCItAI.07I 79613 

6 D.1 1-1 12,N1 

7 4=(C(l)-B(J)*52(I8.K)-hS-BII))hS2fIF,KJ-52(I,K)h*0t4EGA 
8 IF (A485(W)-eTAl 10,10,9
 
9 ETA=AuSIW)
 

10 52([,K)=z(1,(14
 
13 IF (ETA-EPSLN) 14,5,5
 

t41) 1 = ,I
 

53 53(1 ,Khf 52(1 t,K) -S2(1,K()1/ H(I)
 
101 CeITN.!-F
 
15 C(JFIINLJF
 

[04 J=,
 

54 IF (TLI])-X([)I 58,17.55
 
-55 IF (T(d)-XIN) 57,59,5d
 
56 IF IJ3-X(1)) 60,17,57
 
57 1=1+1
 

Cf) 	 rI n 
58 P-1NIT 44, J
 
44 FORMAT (14,Z4HTH AFGUMENrT OUT OF RANGE)
 

GOP1T 6 1
 

60 	cF1NI '4Un 
lj 	 5 

17 	D0) 110 K=i.NCVS
 
HTI=TLJ)-Xd 13
 

H 2=TI ])-X(IlI I 
PpROD-i-TI t T?
 
SS2[K.JI=S2Uf.Kj.-HTltS3(T.K)
 
DELSOS=1S211.K34-S?(11.K)+S52(K,J))/5.
 
SS(K,J)=Y(T. K)+141'tOELYI,114PRUDi-OELSOS
 
SS1IIK.,))=[)ELY(I[,Kfl+(H-TI-HT2) DELSOSPRlV#S3( I K)/6.0
 

110 cOIITII 'iIt 

IFIJ.IT.M)GO It, 105
 
[Fl(rrG.GT.0)PFTUR.l
 
Oll 120 K=IgNCVS
 

20 PalnximIK)o.0i
 
01 	62 1=1,01
 

62 PRC XJMIKh=PCxiN(K<)4-.5*H(1)I'(YII,K)flI,K)-HI) C*3*(
 
152(1 ,1(14-2(It.K)U/24.
 

'120 	 CONTINJE-
P1-TUPH 
FNC) 

_______________ ___________________________59 
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TABLE I 

SUMMARY OF RESULTS 

Quantity Comp. Exp. Comp. Exp. Comp. Exp. 

Equivalent mass of block, gm 102.2 102.2 102.2 102.2 153 153 

Initial impact velocity, cm/sec 30 33 50 47 30 30 

Peak acceleration, g 1.76 1.52 2.84 2.28 1.24 1.12 

Peak pressure, kN/m 2 2.9 6.3 4.7 9.2 3.0 6.5 

Maximum-penetration, cm 27.11 23.07 28.16 24.46 -- --

Time at maximum penetration, sec .395 .390 .375 .373 

C' 
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Figure 1. Soil constitutive relationship. 
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I = No-slip Boundary 5 = Moving Boundary
 

2 = Full Cells 6 = Cell Adjacent to Boundary
 

3 = Free-surface Cells 7 = Corner Cells
 

4 = Empty Cells
 

Figure 2. Position for different types of cells.
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Figure 3. Linear scheme for estimating Fn +l. 
xe 
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Figure 4. 	Areas used in shifting of pressure field
 
for a positive AXw and AYw 
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Figure 5. Accuracy of vertical force on rigid block. 
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OiU{R1014L PAGE IS 7(R 

Figure 6. Experimental apparatus used to measure
 
displacement, acceleration, and pressure. 
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Figure 7. Impact block.
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(a) v = 30 cm/slec, mass of block = 102.2 gi 

Figure E. 	Comparison of computational and
 
experimental time histories of
 
rigid block impacting on still
 
water.
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Figure-8. Continued. 
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(c) v o = 30 om/sec, mass of block = 153 gm 

F'igure 8. Concluded. 
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52- .% U+S4,It 0 V4I,,t'', tit 52- .,7,No. o ,..hl 1 	 .of. fed 5..m) ..ce....2.62.Widt 	 =..e.l. 

Mas0.. Flu. kinematic viscosity I.Olcm. 
I,,,, . 2 , , ,, , ,:A,,.... . ....'.::..."......":........... ....~i: 

Ax~~~~~ fl..dph..4cIs(3 =Ay= ~..Initia 	 .924. 
(a)Particle configuration, t.0 se. (b)Particle configuraton, t .155see, (c)Velocity vector confgurationit
a.155sec.
 

Computational Parameters
 
SAx =Ay=.9524cm. Initial fluid depth = 24cells(23cm) 
!No. of cellIs = 62 x 62 Width of f luid (half f ield) = 60cells (57cm) 

Vo = 50 cm/sec. Size of half block = 4 x 34 cells (3.8 x 32.4 cm) 
Mass =102.2gm. Fluid kinematic viscosity =O1cm2/Seo. 

Figure 9= 	 Fluid dynamics evolution for typical
 
comp~utationali study.
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Figure 10. Computed excess hydrostatic pressure at center of
 
base of rigid block -at'time t = .003 seconds
 
after impact. Mass = 102.2 gm
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Figure 11. Time,history of forces on 
rigid block of various0contact length 
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Figure 13. 	 Effect of initial horizontal block Velocity
 
on forces.
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