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M
w	 o	 Three specific tr.sks were outlined in Article 1 - STA TEMENT OF 1d0RK -

,a w	 of the subject agreement. Of the three, two were accomplished. The
a	 third was partially accomplished, and will be completed when data from

U a U-2 flight becomes available. The three tasks will be discussed in
H s H 4dz u. o	 the following paragraphs.
H .1 -u U

	

ia:W' "q 0	 1.1 A procedure was developed for calculating 24 -hour totals of
p X;	 c., ca
U.4 v u,	evaporation from wet and drying soils that utilizes surface tempera-
n; x ,T ...F, ture data that can he obtained remotely. Its application requires a
W F'	 knowledge of the daily solar radiation and the maximum and minim um airH	 -J 4-3
-^ r w W x temperatures (standard Weather Service measurements). .^oi.st surface
a y tn 0 alhedo, and maxin:ur,1 and minimum surface temperatures (obtainable from

surface or airborne sensors). Details of this p rocedure a^ e g iven ini►-+ w 1 c>a ^	 P	 g -
v r.	 7 the appended reprint from SCIENCE: 189:991-992, 1975, enti,ledr."Estimating evaporation: A technique adaptable to remote sensing," hy,_
w o e	 S. B. Idsa R. D. ;ackson and R. J. Re lnato.
HC? w U
W	 ..4

r u r	 >	 1." Th,- tJ ermal inertia method of remotely sensing soil moisture
z u N w was fur, r developed by an experiment in ;rich the surface temperatures
O ^L' U' were obtained from thermocouples, hand-held radiation thermometers, and

1 H W

u 1- 4 u " the thermal IR band of a multispectral scanner mounted in a NASA air-
U a W W U1 u: ;_ w L.J craft. Data were obtained for botli rough and smooth soil surfaces, and
a, z (P W from soils that were considerably wetter than in previous experiments.

Q '_ t- or w Results confirm and c::tend the earlier work on relations between thermal
--w o r u, inertia and remote sensing, and show that airborne sensors are an

excellent means of obtaining su.'face temperatures. Details of this
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experiment are given in the appended manuscript "Soil water content
"	 and evaporation determined by thermal parameters obtained from ground-

based and remote measurements," by R. J. Reginato (USWCL), S. B. Idso
(USWCL), J. F. Vedder (NASA/AMCS), R. D. Jackson (USWCL), M. B. Blanchard
(NASA/AXES), and R. Goettelman (LFE Corp), which has been accepted for
publication in the JOURNAL OF GEOPHYSICAL RESEARCH. A second manuscript
concerning the relationships between reflected solar radiation and soil
water content is in the rough draft stage.

A problem that is bothersome to the thermal inertia technique for
estimating soil moisture is environmental variability. For example,
a change in the content of water vapor in the atmosphere changes the
rate of surface cooling at night and this changes the surface tempera-
ture. A procedure was developed that utilizes Weather Service air
temperature data to normalize the measured surface temperatures to
largely account for environmental variability. This procedure is dis-
cussed in the appended manuscript entitled "Normalization of surface
temperature data to compensate for environmental variability in the
thermal inertia a , )proach to remote sensing of soil moisture," by
S. B. Idso, R. D. Jackson, and R. J. Reginato. The manusc-ipt has
been submitted to the JOURNAL OF APPLIED METEOROLOGY.

1.3 A NASA U-2 aircraft carrying the HCMR simulator was flown
over Phoenix on 3 September 1975 at 1400 hours. Concurrently, surface
temperatures were obtained, using a PRT-5 infrared radiation thermom-
eter, on 20 ten-acre fields at the Cotton Research Center farm. Bare
soil temperatures ranged from 59 to 64 C. Alfalfa temperatures were
33 to 34 C, and cotton plots ranged in temperature from 33 to 37 C.
Some cotton plots were being irrigated at flight time. This was a
calibration flight for the HCMR simulator. Processed data from the
U-2 are not yet available to compare with the ground-based data.

Ray D. 7ackson
Principal Iniestigator
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UNITED STATES DEPARTMENT OF AGRICULTURE
AGRICULTURAL RESEARCH SERVICE

WESTERN REGION
U. f. WATCfi CONSCRVATION LARORATORV

"11 CAST RROADWAV

PHOENIX, ARIZONA 05040

Dr. T. J. Schmugge
hydrology & Oceanography Branch
NASA Goddard Space Flight Center, Code 913
Creonbel.t	 aryland 20771

Dear Dr. Schmugge:

T am enclosing 15 copies of our final report- to complete the Memorandum
of Understanding S-53769A. The distribution of the report is as per
the Ptemorandum.
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7.	 System Reliability Directorate	 300

	

1
	

Office of the Director of Application 	 900

	

1
	

Publication Branch 	 251

	

1
	

Patent Counsel	 204

	

1
	

Contracting Officer	 289.1

	

10
	

Technical Officer	 913

Would you please see that- proper distribution is made.

Sincerely,

L 	 1
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Estimating Elaporation: A -Technique Adaptable

to Remote Sensing

Abstract. A procedure i.s presertled for eulrulating 24-hour una/s al evaporation front
wet and tort 'ing soils . /n application requires a knuvs/edge ul the dail y solar radiation and

the mai,in ran and nunumon air temperaturex tsmndard Weather Service m easure-

ment%), nruist sur/ite'e alhedu trendil y eviinruied or obtainable /runt a one-iinrr mea%ure.
tent 1, and tnravintun and minimum surfrier renrperaturcs (ubruinable from suria,e or
airborne sensors). Tests o/ the tealwiyue on a bare field o/ Avondale 1, ant at Phoenix,
Arizona. hate ehoun it to be independent of sea.sun.

loam wtth two weighing lysimeters. 14c
dotted these measurements against night-
time [trials of L.,. obtained from calcu-
lations of (R A Rs) where R A is the in-
coming atmospheric thermal rudi n ion and
Rs Is the outgoing surlice thermal raldi-
aton. The quantity R A was obtained from
the Idso-Jackson lurmula (4) as

R.,	 rr1-n4( 1 0 261
exp[ 7.77.. 10'073 7:,1')) (2)

Evaporation of water from soils and
crops is art factor in managing
both irrigated a(A drylund farming opera-
tions. It influences the time of seeding, the
scheduling of irrigations, and various till-
age practices (1). Evaporation is also im-
portant in determining the water balance
of watersheds, which allows prediction and
estimation of runoll' and groundwater re-
charge. Thus, several techniques have been
developed over the years to estimate evap-
oration rates (2)• Most of these techniques,
however, have been of rather limited use-
fulness in two respects. First, they have de-
pended on many environmental parame-
ters and surface characteristics that are
generally diflicult to measure over extend-
ed areas, that is, vapor pressure, air tem-
perature, wind speed gradients, soil "liter
content, and surface roughness length. Sec-
ond, many have been applicable only to
potential evaporation—the rate that pre-
vails over a surface of any configuration.

under a given set of meteorological condi-
tions if there is no saturation deficit at the

too r o Aug. 1972
o May 1973 °

°
u

' Sep. 197380 f. Dec. 1973
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Linear regression

a 20 j LET = 1.56 L N '	 156
r = 0.998

F
0-

-120	 -100	 -90	 --60	 -<o	 -20

Zatculaled LN (cal cm 7)
Fig. I, "rood evaporation induced b) thermal ra-
diation U1. 1 ) front it smooth hart field of
Avondale loam at Phocnix. Arizona, as ;I

 of the total net thermal radiation (L N ) cal-
culated as (R A Rs) from average value , )f TA
and Ts, as determined from nighttime daut; r_
correhllion coefficient.

surface, that is, It
	 of nonlinliung

water supply (d).
In light of the seriousness of the current

and projected world food shortage, we
must overcame these limitations and tic-
velop it of evaporation estiniatiori
readily ajaptable to rapid application o,,.,r
large areas that handles both the potential
rate phase of evaporation and the post-
potential (falling rate or soil-limiting)
phase of evaporation, where the surface

water supply is limiting and acts to de-
crease evaporation rates below the poten-

tial rate that would occer if water were
nonlimiting. [it report we describe the
first step in the development of such an
evaporation estimation technique and its
initial tests oil field of bare soil. It} addi-
tion to standard Weather Service mcasurc-
ments of daily solar radiation and maxi-
mum and minimum air temperatures, it re-
quires only a one-time r. ,easuremcm or es-
timate of moist surface albedo and daily
measurements of maximum and minimum
surface temperatures.

We note first that the evaporation ener-

gy equivalent (LE) is largely proportional
to net radiation (Ru) in the potential rate
phase, and that net radiation can be readily
subdivided into its two component parts:
net solar radiation and net thermal
radiation (L N, ). Since SN is an external
forcing function thermally independent of
evaporation whereas Ls; is in part deter-
mined by the evaporation process by virtue
of its effects on surface temperature, we as-
sume that the total 24-hour evaporation is
directly equal to the daily SN plus some
function of the 24-hour summation of LN;
that is, we assume

LE=LEs+LET=SN+I(L N ) (l)

where L£s and LEr are, respectively, the
components of the total evaporation in-
duced by solar and thermal radiation.

To explicitly derive the relation LET =
J(L,), we utilized nighttime data, when
no solar radiation %%as present. On several
clear nights we measured evaporation
from a smooth bare surface of Avondale

where n is the Stefan-Boltzmann cun,tamt
and TA is the air temperature measured at
I m above the surface. The quantity Rs
was obtained Irom the Stefan-Boltzmann
equation for blackbody radiation as

Rs - a I,,	 13)

where Ts is the surface temperature. Val-
ues of both TA and Ts were obtained [ruin
fine-wire,	 copper-constaman	 thermo-

couples at 20- or 30-minute intervals

through the night. The results (Fig. 1) in-
dicated that, when the soil surfucc is moist
and evaporation is in the potential rate
phase,

	

LET = 196L % + lib	 Of

In testing our basic hypothesis, w1 next
computed 24-hour representative values of
TA and Ts as averages of their maximum
and minimum values and used these
average values to compute 24-hour totals
of L N (which were all negative). These
values were then used as the independent

variable in the linear regression equation
(Eq. d) to determine the negative evap-

oration component to be algebraically
added to the daily SN . We cumpared

we v	 Feb. 1962
<	 July 1970 nr
°	 Mar. 1971500
o	 Aug. 1972

u	 May 1973

n <00
z	 Sep. 1973

Dec. 1973
E

0 3

°w = aoc oc

'4
Lineal regression

zoo 2 y	 =	 1.02 . _14.1
f ^	 _;^ r = 0485

too ^'
too	 Sao	 300	 <ao	 Sao	 Goa

Calculated evaporation feat cm 7)

Fig. 2. Total 24-hour measured evaporation

(LE) plotted again,t the 24-hour evaporation
calculated as LE - 5- ;c + I S6 L N + 156. "lilt
L, in this instance calculated from the averages
of the maximum and minimum values of TA and
Ts for the 24-hour period.

Reprinted from SCIENCE,

19 Septembei 1975,volume 189,paues 991-992

"Purchased 6y the l tnited States
Department of Agriculture fur
of tiea I I'sv,"

Copyright © 1975 by the

American Association for the Advancement of Science
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the results of this procedure with mea-
surements of potential evaporation (Fig.
2), which showed that our basic hypothesis
produced acceptable results.

Equations developed to calculated evap-
oration will often give good results in one
season or climate but not in another (?);
that is. in a windy, dry situation they may
do •seal. but in it calm, humid situation they
may perform poorly, or vice versa. We
consider our approach potentially adapt-
able to various situations, for it incorpo-
rates Ts, which is d ; -ectly and strongly
linked to the evaporation rate. For ex-

ample, between day I and day 3 after
heavy irrigations of our field (72 by 90 m)
in February 1962 and again in March
1971, the average daily wind speed more

than doubled, greatly increasing the evapo-
ration rates; yet our calculation procedure,
which does not explicitly account for wind
speed• gave equally good results under
both sets of conditions. Why? Because the
increased evaporation rates on the windy

days lowered the Ts of the soil relative to
TA , which resulted in a less negative LN
flux for the day and a less negative value of
LET to be algebraically added to the LES

component of the total evaporation. There
is a similar automatic adjustment for hu-
midity variations. Over the range of condi-
tions depicted in Fig. 2, vapor pressure, an-
other component not explicitly accounted
for in our procedure, varied by a factor of
5: yet our evaporation calculations were

equally good over the entire range. In addi-
tion, no specification of surface t ype was
made in developing our technique. Thus,
we believe that relations similar to the one
derived for bare soil in Fig. I could be de-
veloped for other surface types such as

crops.
For bare soils, we next confront the

problem of postpotential (falling rate or
soil-limiting) phase evaporation, where the
surface becomes dry and evaporation rates
drop significantly. For this problem we
again utilized Ts and TA. Idso ei al. (5)
have shown that for several soils, ranging
from sandy loans to clays, both the maxi-
mum value minus the minimum value of
the daily surface soil temperature wave

( Ts.n., T ,.nu) and the maximtvm value
of the surface soil temperature minus the
air temperature [(Ts	 are good
predictors of soil water pressure potential

(the work required to move a r-tit mass of
water against a force field from zero po-
tential to the point in question), indepen-
dent of the soil type. Thus, since evapora-
tion is probably related to water pressure
potential of the Surface soil in the drying
stages, we felt it would also be related to
these thermal parameters.

To test this idea, we plotted ratios of
24-hour actual-to-potential evaporation

against the thermal parameters I(Tso,,,

Tsm,n) -. 22.5' C l and [( Ts - TA)n,a, - 3.5 ° C)1
for several periods after approximate
10-cm irrigations of our field (Fig. 3).

-1 lie potential evaporation for all days was
taken to be equal to the measured poten-

tial evaporation at the start of each time
series helilre the surlace soil dried, that is,
d tY I inianedl eels after irrigation. (Vvea-
ther conditions fur all Class of each drying
run were tern similar.) On the nornrdvad
basis depicted in Fig. 3, unc line adequatc-
Ic describes the relation between relative

evaporation and both of the thermal pa-
rameters. Combined with our procedure
for obtaining actual potential evaporation
totals for the initial days nl such drying

periods, these results allow estinmtes of
actual evaporation totals to he made

throughout both the potential and post-

potential stages of soil drying, although
there still remains %,)file uncertuintc at the
transition point between these two re-
gimes.

The prime significance of these results
lies in the fact that they indicate that actwd
evaporation rates throu ghout all stages of
soil drying may be obtained from remotely
acquired surface temperatures and routine
weather network data. Measurements of
maximum and minimum air temperatures
are the most basic measurements made at
all weather stations: solar radiation is rap-
idly becoming a standard measurement
also. Moist surface albedo can be obtained
from information in the literature (6) or
from a one-time measurement. Thus, max-
imum and min ; murn surface temperatures
are the only additional data needed for
successfully estimating evaporation, and
these measurements can be made Over
large areas by radiometric means. Such
temperature measurements may thus be
capable of specifying actual soil evapora-

tion rates wherever air temperature and so-
lar radiation data are available.

St[RwooD B. IDso
RAY D. JACKSON

Rorie RI J. REGINATO
U.S. Water Conservation Laboratory.

4331 East Broadwav,
Phoenix. Arizona 85040
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1	 Abstract

2	 Soil water contents from both	 *h and rough bare soil were

3 estimated from remotely sensed surfa 	 oil and air temperatures. We

4 found an inverse relationship between two thermal parameters and

5 gravimetric soil water content for Avondale loam when its water content

6 was between air-dry and field capacity. These parameters, daily maxiw.n'

7 minus minimum surface soil temperature and daily maximum soil minus a'_t

8 temperature, appear to describe the relationship reasonably well. These

9 two parameters also describe relative soil water evaporation (actual/

10 potential). Surface soil temperatures showed good agreement between

11 three measurement techniques: in situ thermocouples, ground-teased

12 infrared radiation thermometer, and the thermal infrared band of an

13 airborne multispectral scanner.
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1	 Periodic assessment of soil water content and evaporation rates

2 can greatly benefit agriculture, hydrology, and civil works [Idso et al.

3 1975a]. Recent research has shown that daily maximum minus minimum

4 surface soil temperature and daily maximum surface soil minus air

5 temperature (this latter value measured at the time soil maximum occurs)

6 can be used to estimate soil-water content and bare soil evaporation

7 rates [Idso et al., 1975c,d]. These results were obtained using

8 temperatures derived from thermocouples. To extend these techniques

9 to large land areas requires remote radiometric assessment of soil

10 temperature, whether from just above ground,.frum aircraft, or from

11 satellites. The objective of this paper is to compare measured soil

12 water contents and bare soil evaporation with estimates derived from

13 thermal parameters measured by (1) in situ thermucouples, (2) a portable

14 infrared radiation thermometer just above the ground, and (3) an

15 aircraft-mounted multispectral scanner.
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I	 SOIL WATER CONTENT AND EVAPORATION MEASUREMENTS

2	 Three soil moisture conditions were established in a 72 x 90 m

3 field of bare Avondale loam (fine-loamy, mixed (calcareous), hyperthermi

4 Anthropic Torrifluvent) at Phoenix, Arizona. The conditions were: a

5 continually wet section (113), a continually dry section (111), and an

6 initially wet section (112) that was allowed to dry during the week of

7 the experiment. During the evening of 17 'March 1975, two sections

8 (112 and 113) were flood-irrigated with about 5 cm of water. A similar

9 amount of water was also applied to the surface of a weighing lysimeter

LO in section 112. Thereafter, section 113 was replenished with water on the

Ll evenings of 18, 20, and 22 March; section 112 received no additional

L2 water. Section 111 and its associated weighing lysimeter were not

M3 irrigated at ary time during the experiment.

M4	 Each section had two surface soil conditions -- smooth and rough.

15 The smooth soil was flat and level and had not been cultivated for the

16 past 5 years. The lysimeters located within the smooth part of the

17 section also had smooth surfaces. In contrast, the rough areas were

18 chiseled and disked to give an uneven surface with roughness elements of

19 0 to 10 cm. The rough areas were located on the southern portions of all

20 three sections.

211	 8ravimetric soil moisture samples were taken from all three

22 moisture treatments on both the smooth and rough plots in identical

23 fashion to that described previously [ Idso et al., 1975d], except

24 sampling was not continuous but restricted to two 2-hour periods daily:

25 0430 to 0630 and 1300 to 1500 mountain standard time. Five sets of

26



1 samples were taken during these time periods (at half-hour intervals) in

2 each of the three sections in both the smooth and rough parts. Depth

3 intervals sampled were 0 to 0.2, 0 to 0.:, 0 to 1, 1 to 2, 2 to 4,

4 4 to 6, 6 to 8, and 8 to 10 cm. The five sample3 were averaged to give

5 one value per time period for each depth interval for both the smooth

6 and rough parts of the three sections.

7	 Three readings from each of the two lysimeters were obtained

8 every 20 minutes, allowing smooth traces of the diurnal soil water

9 evaporation trends to be obtained. For comparison with the remote

0 sensing techniques, these diurnal trends were integrated to yiele 24-hou

A totals of bare soil evaporation. Also, daily totals of free water

.2 evaporation were recorded from buried insulated tanks [Cooley, 1970].

.3 To obtain potential soil water evaporation rates for the week's

`4 experiment (since there was no lysimeter in section 3), the ratio of the

L5 daily eva poration from the lysimeters during the first 2 days when the

`6 soil was wet to the daily evaporation from the tanks was computed. This

L7 ratio (1.04) was then used with tank evaporation data to estimate

L8 potential soil water evaporation for days when evaporation from the soil

L9 was below potential.

10

tl

is

27
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1	 TEMPERATURE MEASUREMENTS

2	 Thermocouples. Copper-constantan thermocouples were used to obtai

3 air temperature (125 cm above each section) and surface soil temperature

4 (about 1 mm below the soil surface) at two locations in the smooth-

5 surface parts of the three sections and in the two lysimeters. Tempera-

6 tures were recorded every 20 minutes for the week's experiment. Previou

7 research had demonstrated that the minimum surface soil temperature

8 occurred just before sunrise, while the maximum occurred about one and

9 one-half hours after solar noon. To standardize the measurement times,

LO temperatures recorded at 0540 and 0600 hours were averaged for the

L1 minimum, and readings at 1340 and 1400 hours were averaged for the

L2 maximum temperature.

Ground-based radiation thermometer. A portable, precision,

infrared radiometer (Barnes Engineering s/ PRT-5) was used to measure

L5 surface soil temperatures at 30-minute intervals during each of the two

L6 2-hour sampling periods, from 0430 to 0630 and from 1300 to 1500, for

17 the week's experiment. This instrument yields equivalent blackbody

L8 temperature with a resolution of + 0.5% within the 8 to 14 pm band.

L9 Measured temperatures were corrected for emittance using a value of 0.96

A for Avondale loam [ Idso and Jackson, 1969). Temperature measurements

were taken both in the smooth and rough plots of the three sections„

and in the two weighing lysimeters. The PRT-5, with a 20° field of

24

2515/ Trade and company names are included for the benefit of the reader

261and do not infer any a:udorsement or preferential treatment of the

product listed by the U.S. Department of Agriculture or NASA.



view, was hand-held at a 1-m height and aimed at a point about 4 m

distant into the plots, and about 0.4 m high directly over the lysimeters

Airborne scanner. Temperatures were obtained using data from the

thermal channel (8 to 14 pm wavelength range) of a multispectral scanner

(Bendix M2sv) mounted in the NASA NP-3A aircraft. Radiance data in the

visible region, 0.4 to 1.1 um, were obtained from the M 2S. At approxi-

mately 0540 and 1350 hours each day of the experiment, the aircraft

passed over the experimental site at about 300 m. The equivalent

blackbody temperatures were corrected for emittance in the same manner

as was the PRT-5 data. The effective spatial resolution of the scanner

for this experiment was about 0.8 x 0.8 m, with a temperature resolution

of approximately ± 0.5 0 C. Complete data sets were obtained for 4 of the

6 days: 18, 19, 20, and 23 March 1975. Instrument malfunction caused

some data 'loss on the afternoon of 21 March and the morning of 22 March.
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1	 RESULTS AND DISCUSSION

2	 Previous work [ Idso et al., 1975b] demonstrated that volwnetric

3 water content in the upper 2 cm of Avondale loam could be obtained from

4 albedo measurements. These measurements appear to be sensitive only to

5 the very surface of the soil, whereas surface soil temperatures seem to

6 be influenced by soil conditions somewhat deeper. This statement is

7 illustrated in Figure 1 which shows a computer-enhanced picture from

8 the airborne scanner data of the experimental field on the last day of

9 our study. The three sections are as follows: #1 on the left was the

.0 continually dry plot; #2 in the center was wet initially and allowed to

.1 dry; and #3 on	 right was continually wet. Note that sections 1 and

.2 2 both apheii iight in the visible region, while section 3 is dark.

.3 However, in the infrared region there is a definite difference between

L4 all three sections: #1 being the lightest, #2 intermediate, and #3 the

15 darkest. Thus, the thermal infrared region of the spectrum seems to

L6 hold more promise than does the visible region for the remote assessment

.7 of soil moisture with depth.

L8	 Soil water content. The relationships between the two thermal

L9 parameters, daily maximum minus minimum surface soil temperature and

A daily maximum surface soil minus air temperature differential, and

11 gravimetric soil water content are shown in Figure 2 for the 0- to 2-cm

M soil depth for both the smooth and rough surface conditions. Earlier

13 results had shown a good correlation between the thermal parameters

and the soil water content in the 0- to 2-cm layer. Data from these

previous experiments (1970 to 1973) for the 0- to 2-cm depth on smooth

2'

6
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1 Avondale loam for several seasons of the year are shown as solid dots

2 in parts A and C. The lines describing the relationships for water

3 contents leis than 0.19 were derived from the 1970 to 1973 data using

4 linear regression analysis. Also plotted are data obtained in March

5 1975 from (1) the in situ surface thermocouples ( q ), (2) the ground-

s based infrared thermometer (n ), and (3) the airborne multispectral

7 scanner (A).

In Figure 2A, the recent data for gravimetric water contents less

9 than 0.19 are fairly well described by the line derived from the 1970

.0 to 1973 data. However, at water contents greater than 0.19 the inverse

-1 relationship does not appear to hold. This is probably explainable as

.2 follows: for Avondale loam, the soil surface (0- to 2-cm layer) remains

-3 wet within the water content range from saturation to about 0.19. When

l4 the surface is wet, the evaporation rate, which greatly influences soil

15 temperature, is controlled by meteorological conditions. With uniform

L6 day-to-day weather, a relatively constant maximum minus minimum soil

L7 temperature could be expected. For variable meteorological conditions,

L8 1howev:r, this would not hold true. Thus, the data scatter in Figure 2

L91 for water contents greater than 0.19 is, at least in part, due to

w lvariations in meteorological conditions. For water contents below 0.19,1

)II the rate of movement of water towards the surface limits evaporation

aad, indirectly, soil temperatures, thereby making evaporation and soil

:31 temperature less responsive to meteorological conditions. Thus, for

Avondale loam, less scatter exists below a water content of 0.19, which

corresponds roughly to the so-called "field capacity," a term used to



i

11 describe the amount of water remaining in the soil 2 to 3 days after

21 irrigation.

Since no previous data were available for a rough soil surface,

4 the relationship from the smooth soil was used in Figure 2B. Although

5 the data points from the rough surface do not fall directly on the line,

6 they are within the limits of scatter (Figure 2A). There appears to be

'. l ittle, if any, difference between smooth and rough surfaces in terms of

81 the thermal parameter-water content relationship described in Figure 2A

and B.

.0	 The second thermal parameter, daily maximum surface soil minus

•1 air temperature differential, is shown as a function of Water content

^2 for both a smooth (Figure 2C) and a rough (Figure 2D) surface. The

L3 same inverse linear relationships for gravimetric soil water contents

L4 less than 0.19 appear to hold for-tbi,s second thermal parameter as they

did for the first. The slopes of these lines are nearly identical.

L6 water contents greater than 0.19 this thermal parameter appears also

L7 to be dependent on meteorological conditions.

L8	 Based on tl information derived during 1970 to 1973 relative to

L9 the two thermal parameters and water content or relative evaporation,

:01 the standard errors of estimate from the March 1975 data are shown in

71 1 the four panels of Figure 2 as S y x . The differences between the four

Z2 values are minimal, indicating that regardless of which thermal parame

23 is used or the condition of the soil surface, estimates of soil-water

24 content are quite comparable. A similar ••analysis of the data was made

for the 0- to 4-cm depth with identical results.

26

^e
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1	 Agreement is good between the three techniques for measuring

Z urface soli temperature: in situ thermocouples, ground -based infrared

3.-radiometer, and airborne multispectral scanner. These re -ults are

4 imilar to those obtained by Marlatt [ 1966]. If water content per se

5 ure of interest, each soil type or possibly some broader soil.

6 'assifi.cation unit would be calibrated from rather simple ground-based

7 easurements. Subsequent routine thermal measurements from aircraft or

B atellites could be used to characterise the soil moisture status over

9 Large .'L and areas.

LO	 Soil water evaporation. The ratio of actual to potential daily

L1 oil water evaporation as a function of the two previously described

L2 thermal parameters is shown in Figure 3A and B. Star:.Beard error of

L3 estimate values were derived in a similar manner as previously described

L4 for Figure 2, and are shown in Figure 3 as Sy.x ' 
The break between the

L5 potential and the falling rate stage is at 22°C for the daily maximum-

L6 inimum surface soil temperature parameter, and at 3.5% for the daily

L7 maximum soil minus air temperature parameter. These are the same

LB values noted in Figure 2 for water content determinations. Intuitively,

19 one would expect this similarity. when the soil water content is high,

tO the hydraulic con%ucting property of the soil is relatively high, thereby

21 allowing enough water to flow to the soil surface to meet the meteor-o-

22 logical evaporative demand of the potential rate. However, as soil

23 water becomes limiting the potential evaporation rate cannot be met,

Z4 and the relative evaporation rate declines with decreasing crater content.

Z5 The applicability of these relations to other soils in other areas must

26 be examined to determine the usefulness of the technique over large
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1	 CONCLUDING REMARKS

2	 Our data showed that remotely sensed surface soil temperature can

3 be used to estimate soil water content and evaporation from bare soil.

4 For water content estimations, both smooth and rough soil surfaces gave

5 similar results.

6	 From an air-dry soil water content to a water content correspond-

7 ing to field capacity for Avondale loam, there is an inverse relation-

6 ship between the two thermal parameters and gravimetric soil water

9 content. Both parameters, daily maximum minus minimum surface soil

10 temperature and daily maximum soil minus air temperature, appear

11 equally good for describing the relationship. Relative soil water

12 evaporation (actual/potential) is also described by these two parameters

13 er4ally well.

14	 Surface soil temperatures showed good agreement between the three

15 measurement techniques: in situ thermocouples, ground-based infrared

16 radiation thermometer, and the thermal infrared band of an airborne

17 multispectral scanner.

18	 To determine the extent of applicability of the above evaluations,

19 measurements must be made at locations with different soils and under

201 different climates.

23
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List of Figures

Fig. 1. Visible and infrared imagery of three fields in different stages

of soil drying. a

Fig. 2. Daily average gravimetric soil water content in the surface

0- to 2-cm layer of bare Avondale loam vs daily maximum minus

minimum surface soil temperature for (A) smooth so ,-'l and

(B) rough soil; and vs daily maximum soil minus air temperature

for (L') smooth soil and (D) rough soil.

Fig. 3. Ratio of actual to potentia3 daily soil water evaporation from a

smooth bare field of Avondale loam vs (A) the daily maxir.-a .:anus

minimum surface soil temperature and (B) the daily maximum surface

soil minus air temperature.
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NORMALIZATION OF SURFACE TEMPERATURE DATA TO COMPENSATE FOR ENVIRON-

2
	

MENTAL VARIABILITY IN THE THERMAL INERTIA APPROACH TO REMOTE SENSING
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1
2	 ABSTRACT

r
	 3	 A procedure is developed for normalizing surface temperature data

4 that are used in the thermal inertia approach to remote sensing of

5 soil moisture. The procedure removes data scatter due to environmental

6 variability in time and space. Tests of its basic premise on a bare

7 soil and a cropped field indicate it to be conceptually sound. It

8 is possible the technique could also be useful in other thermal

9 inertia applications, such as lithographic mapping.
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1	 INTRODUCTION

2	 A major goal of several scientific groups in the United States

3 is to develop a practical procedure for estimating water contents

4 near the surfaces of bare soils and throughout the root zones of

5 crops from data that can be gathered remotely. Such a feat, if

6 accomplished, would open the door to a host of economically important

7 activities, such as predicting world harvests, crop pest outbreaks,

8 plant disease epidemics, fertilizer requirements, irrigation needs,

9 etc. (Idso, et al., 1975a). Two bazi.c approaches to achieving this

10 goal that have shown substantial indications of success are to relate

11 soil water contents to (1) the magnitudes of the differences between

12 daily maximum and minimum soil or crop canopy temperatures, and

13 (2) the differences between maximum soil or crop canopy temperature

14 and concurrent air temperature (Idso, et al., 1975b; Idso and

15 Ehrler, 1976).

16	 The first of these procedui-es is what has been known historically

17 as the "thermal iAtcrtia" approach. It has previously been used

18 in determining the nature of lunar surface materials prior to

19 spacecraft landings (Wesselink, 1948; Jaeger, 1953; Sinton, 1962) and

20 in the lithographic mapping of portions of the earth's surface

21 (Watson, 1973, 1975; Watson, et al., 1971; Pohn, et al., 1974; Kahle,

22 et al., 1975), based on the fact that the thermal inertia of a

23 given substrate is inversely proportional to the amplitude of its

24 diurnal surface temperature oscillation. A problem equally bothersome

25 to both of these applications is . environinental variability — the

26

27
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1 non-uniformity from day-to-day or from season-to-season or from

2 place-to-place of the external forcing functions of the daily surface

3 temperature wave. In this paper we present a solution to this

4 problem that may considerably expand the potentials for both remote

5 sensing of soil moisture and lithographic mapping.

6 17
	

THEORY

8	 The amplitude of the diurnal surface temperature wave of any

9 substrate material, be it soil, rock, or plant canopy, is a function

0 of both internal and external factors. The internal factors are

.1 thermal conductivity (X), density (p), and specific heat (C), where

2

.3^	 P = (apC)1/2

4

.5 defines what is known as "thermal inertia." The external factors

6 include such items as solar radiation, air temperature, atmospheric

7 precipitable water cntent, cloudiness, wind, aerosol concentration,

.6 etc. These factors generally are not treated individually in the

.9 mathematical formalism of thermal inertia analyses, however; but

W their myriad combinations are instead expressed in the single

U resultant forcing function G, the surface heat flux.

12	 As environmental conditions vary over the earth and in time, G

%3 may vary considerably, which in turn causes the amplitude of the

:4 surface temperature wave (0.5 AT
s
 ) to vary. This variation is not

15 I due to variations in P and therefore creates problems for both

(1)

:7
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lithographic mapping (based on P discrimination from AT  measurements)

and soil water content, 0v , estimation (based on 0v vs. AT  relations

as surrogate 0v vs. P relations).

As a first step in compensating for environmental variability,

we normalize AT  measurements to what they would have been for some

arbitrary standard value of surface heat flux (G std ). That is, we

transform actual AT  data into normalized AT  data (AT s Nor) via the

relationship

ATs
	 G

Ts,Nor.	 Gstd.
	 (2)

Thus, in any situation where AT  is measured and G is known, we can

transform AT
s ;,Nor.into AT , allowing us to make use of a standard

ATs,Nor. vs. P relation that is reasonably independent of environ-

mental conditions.

A problem with this approach is that G is usually not known.

Thus, a surrogate for it must also be found. Air temperature (TA)

would appear to be the ideal candidate for two reasons. First, it is

probably the most commonly measured meteorological parameter on earth.

Second, air temperature respon? •, in very similar fashion to the

effects of environmental factors that affect surface temperature.

Indeed, it does so because its diurnal variation is driven by convec-

tive coupling with the purface. Thus, we postulate that

26
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1 and propose that all AT  data be normalized with respect to an

`L arbitrary standard diurnal air temperature variation.

3

4
	 TEST OF THE HEAT FLUX-AIR icMPERATURE RELATIONSHIP

5
	

During three of our extensive experiments on 
G  vs. AT 

6 relationships in a smooth bare field of Avondale loam (Idso, et al.,

7 1975b), we also oht_ined measurements of soil heat flux at a &pth of

8 1 cm. These measurements were made with National Instruments

9 Laboratory Z/ Model HF-1 heat flow discs calibrated by the procedure of

10' Idso (1972). Since our analysis of the T s data indicated that the

11 variations in AT  as 
0  

changed were due primarily to changes in

12 Ts,Max and since GMin also appeared to be quite invariant, we

13 plotted daily GMax vs. AT  as shown in Fig. 1, where the TA data

were obtained from the nearby National Weather Service Station. The

15 results clearly indicate that there is indeed a linear relation

16 between GMax Ind AT  of such a nature as to justify equation (3).

17

18	 TEST OF THE NORMALIZATION PROCEDURE APPLIED TO BARE SOIL

19
	

Figure 2 contains the original AT  vs. 0v data of Idso, et al.

20 (1975b), plus some more recent data obtained by Reginato, et al.

21 (1976) on the same Avondale loam soil at Phoenix. For each of the

22 days represented by data points in Fig. 2, we obtained the maximum

2., and minimum air temperatures recorded by the National Weather Service

Zb	 2/ Trade names or .company names are included for the benefit of

26 the reader and imply no endorsement or preferential treatment of the

27 product listed by the U. S. Department of Agriculture.
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1 and utilized equation (3) to transform the AT  values into ATs,??or

2 values b, arbitrarily assigningeTA,std a value of 18 oC. With this

3 operation the data of Fig. 2 were transformed into the data of Fig. 3,

4 where the scatter among the data points is seen to be somewhat

5 reduced.

6	 The choice of 18 DC 
fordTA,std 

is completely arbitrary. Any

7 number could have been chosen. However, to make data from different

8 locations and seasons compatible, once a number has been chosen, it

9 must be used exclusively.

10

11	 TEST OF THE NORMALIZATION PROCEDURE APPLIED TO A CROP

12	 Four separately irrigated 1-hectare plots of Avondale loam planted

13 to alfalfa at Phoenix, Arizona, were studied from 16 June to 23 July

14 1975. Every Monday, Wednesday, and Friday, canopy surface tempera-

15 tures were measured just before sunrise and about an hour and a half

16 past solar noon. On Tuesdays ar.d Thursdays, only t e afternoon

17 measurements were made. The canopy temperatures were measured with a

18 20-degree field-of-view Barnes PRT-5 infrared thermometer?/ , hand-held

19 at about a 45-degree angle with the ground approximately 1 meter

20 above the crop surface. Preliminary tests using a utility platform

21 that could be raised 9 meters high indicated that once the alfalfa

22 was 30 cm high, canopy temperatures did not vary when they were

23 obtained at viewing angles ranging from 0 to 50 degrees from perpen-

24 dicular over the height range 1 to 9 meters.

25	 At the same times that canopy temperatures were measured, air

261 temperatures were measured one meter above the crop canopy by means of

1
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1 an aspirated psychrometer. Every Monday, Wednesday, and Friday, we

2 also r.ampled gravimetric soil water content in each of the four fields

3 at 30-cm increments to about 2 meter's depth.

4	 The first analyses we made with these data were to test the two

5 basic procedures for estimating root-zone soil water contents. Thus,

6 in Fig. 4 and 5 we plotted the 1400-hour canopy-air temperature

7 differential vs. the volumetric water content of the 0 to 2-meter root

8 zone, and the 1400-0500-hour canopy temperature differential vs. the

9 same parameter. Volumetric water contents were obtained by multiplv,ing

LO the measured gravimetric values by the soil's mean bulk density.

Ll	 The lines drawn on Fig. 4 depict the relation developed by Zdso

L2 and Ehrler (1976) for cotton and sorghum grown on the same soil type.

L3 Our results for alfalft show essentially the same pattern, where

L4 data for non-water-stressed plants essentially fill up the "bathtub"

L5 part of the graph. The plants we studied were always irrigated at

L6 the proper intervals, however, so that they were never really

L7 stressed.

L8	 With this thought in mind, let us consider the data of Fig. 5.

L9 At first glance they appear to be devoid of much meaning. However, it

^O is noticed that they fall into two major groups: "pre-monsoon" and

21 "during monsoon." Since our data were all gathered at one location

U and we could not traverse great latitude changes to experience

23 different air temperature regimes due to solar altitude variations,

24 we conducted our experiment over the period of abrupt climatic change

25 that occurs with the arrival of Arizona's summer monsoon. During

27
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1 June, Arizona normally experiences very dry weather. However, in

2 early July iL becomes immersed in moist air from both the Gulf of

3 Mexico, at high levels, and the Gulf of California, at low levels.

4 The low-level source has recently been documented to be the primary

5 source (Hales, 1974), which causes the atmospheric precipitable water

6 content to about triple in very abrupt fashion. The effect of this

7 change in atmospheric humidity is to greatly reduce the amplitude of

8 the diurnal air temperature wave, as shown in Fig. 6. Thus, data

9 obtained before and after the monsoon's arrival present an ideal

l0 opportunity for testing our normalization procedure.

Ll	 Operating upon the data of Fig. 5, then, in analogous fashion to

L2 our normalization of the bare soil data that transformed Fig. 2 into

L3 Fig. 3, we now, find Fig. 5 transformed into Fig. 7. The reduction of

L4 data scatter in this instance is even more than for the bare soil case.

15 1 Indeed, the scatter is cut to only about a third of what it was prior

L6 to normalization.

L7	 The maximum surface-air temperature differential approach

L8 cannot claim this same advantage, however, since correct absolute

19 values are required for both the surface and air temperatures in order

20 to get a valid differential value. To illustrate, if National

21 Weather Service air temperatures are used instead of air temperatures

22 measured just abova the crop, the plot of Fig. 4 transfc-rms into that

23 of Fig. 8. Considerably more scatter is inherent in the data of

24 Fig. 8; and the pre-determined soil water content relationship is

25 significantly violated.

26
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1	 CONCLUDING REMARKS

2	 In normalizing both the bare soil surface temperature data and

3 the alfalfa canopy temperature data, we utilized maximum and minimum

4 air temperatures measured at the Phoenix National Weather Service

5 Station. Although one cannot expect absolute magnitudes of maximum

6 and minimum air temperatures to be the same over a transpiring crop

7 or moist soil surface and an asphalt-surrounded airport site several

8 kilometers away, the maximum-minimum air temperature differentials

9 apparently may be quite similar. This fact greatly increases the

.0 potential for using the standard thermal inertia approach in remote

Ll sensing of soil moisture, since no in situ measurements need to he

.2 made. It is also possible the technique may be of some usefulness in

L3 certain lithographic mapping applications, in areas where the

L4 required air temperatures are available.
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I LIST OF FIGURES

2 Fig. 1. The daily maximum soil heat flux at 1 cm depth in a smooth

3 bare field of Avondale loam at Phoenix, Arizona, vs. the

4 daily maximum-minimum air temperature differential measured

5 at the Phoenix National Weather Service Station.

6 Fig.	 2. The maximum-minimum surface temperature differential of a

7 smooth bare field of Avondale loam vs. the average daily

8 volumetric soil water content of the uppermost 2 cm.

9 Fig. 3. Same as Fig. 2, except that the ordinate values of the data

LO points have been normalized according to the procedure

Ll described in the text.

L2 Fig. 4. Maximum canopy-air temperature differential of four different

L3 fields of mature alfalfa as obtained from measurements made

L4 at 1400 hours local time vs. the volumetric water content of

L5 the crops' active root zone.

L6 Fig.	 5. The maximum-minimum canopy temperature differential of four

L7 different fields of mature alfalfa as obtained from measure-

18 meats made at 1400 and 0500 hours local time vs. the

L9 volumetric water content of the crops' active root zone.

20 Fig.	 6. The maximum-minimum air temperature differential obtained

21 from official National Weather Service records for Phoenix,

22 Arizona, v.. the mean daily atmospheric precipitable water

23 content obtained from National Weather Service dew-point data

24 and a procedure outlined by Idso (1969).

25 1 Fig Same as Fig. 5, except that the ordinate values of the data

points have been normalized according to the procedure

described in the tent.



1 Fig. 8. Same as Fig. 4, except that the air temperature data used

2	 were obtained from the National Weather Service Station,

3	 rather than 1 meter above the crop canopy as in Fig. 4.
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