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I. SUMMARY
 

The cost of solar cell arrays without concentration can be reduced to
 

approximately $250/m2 (or $2/peak watt) through the utilization of
 

known technologies and mass production equipment. A detailed cost
 

analysis showed that this objective could be reached utilizing process
 

technology that is known today and conventional crystal growing and-slic

ing methods. No major technological breakthrough would be required,
 

and the effort would essentially involve production engineering activ

ities rather than a basic research and development effort. There
 

would need to be a growth in production rate to about 2.5 MW per year
 

to justify the mass production equipment.
 

Additional cost reductions can be projected based on new technologies
 

that are anticipated. Array costs of $70/ 2 (or $0.50/peak watt)
 

have been projected. There-are at least four options that have been
 

identified that appear capable of providing this cost reduction, namely:
 

1. Ribbon growth of silicon crystal
 

2. Inexpensive silicon poly raw materials
 

3. New slicing technology
 

4. Optical concentration
 

Again, these objectives require a major expansion in production rate
 

to a level of about 1000 MW per year.
 

Considering the four options listed, it appears that at leascone can.be
 

developed within the next five years since both ribbon growth and low
 

cost poly silicon processes are being studied extensively and appear
 

promising.
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II. INTRODUCTION
 

This final report summarizes the work performed under Contract NAS3-17361
 

directed toward the study of options for lowering the cost of producing
 

solar cells and arrays.
 

Present methods of producing solar cells and arrays are very expensive
 

because the production rates are small and the processes have not been
 

mechanized. If the costs could be substantially reduced, it would pro

vide the opportunity for considering new missions that utilize large
 

scale solar power systems both for space and terrestrial applications.
 

There are quite a few potential space missions that require large solar
 

cell arrays, that could benefit substantially from lower solar cell array
 

costs-. If we consider terrestrial applications, the potential for utiliz

ing solar cell power systems becomes tremendous if the array costs can
 

be reduced enough. Therefore it becomes apparent that the demand for
 

large quantities of solar cell arrays can be anticipated both in space
 

and on the earth's surface, thus we need to assess the potential for
 

developing low cost methods for producing these arrays.
 

This study is the first step in the process to define the necessary
 

technology, production approaches and methods for substantially reduc

ing solar cell costs. The study reviews and evaluates technology
 

options for lowering cell costs and identifies promising approaches
 

that can be used now in mechanizing and automating production facil

ities. A detailed cost analysis was made based on this technology
 

and a forecast of the expected cost reductions provides data that can
 

be used as a guide for future systems analysis.
 

The general approach used in the study was to first make a systematic'
 

evaluation of the various technological options available compared to:
 

the present manufacturing processes used in producing spacecraft silicon
 
solar cells and arrays. A simplified process flow chart containing all
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the basic steps required to make cells and arrays was used as a step
by-step checklist for considering what factors make up the costs and
 
what technological changes could be made. 
Section III contains detailed
 

discussions of the various technological options that are available. This
 
discussion considers first the options for fabricating the blank and
 
includes an evaluation of the methods of producing and purifying silicon
 
and the methods of growing monocrystals and slicing the blanks. Then
 
the options for fabricating solar cells from the blanks were evaluated
 

and compared to the present fabrication technology. Next, methods of
 
array fabrication were discussed and design criteria evaluated. 
Also,
 

optical concentration was evaluated and the impact on costs determined.
 

Section IV contains a detailed cost analysis for producing solar cells
 

and arrays assuming large scale production and an advanced process
 
based on conventional silicon crystal growth and slicing techniques.
 
This provides a realistic near term cost reduction goal that can be
 

used as a guide for future systems analysis.
 



III. DISCUSSION OF TECHNOLOGICAL OPTIONS 

IIIA. BLANK FABRICATION
 

Material Requirements
 

The overall process of array fabrication is divided into 3 areas and 14 steps
 
as shown in Figure 1. Area "A", Blank Fabrication, includes six stepsin the
 

present process:
 

i) Reduction of silica to metallurgical silicon
 

2) Conversion of metallurgical silicon to intermediate
 
compound (e.g., trichlorosilne) 

3) Purification of intermediate compound 
4) Decomposition of intermediate compound to 

polycrystalline silicon
 

5) Growth of silicon monocrystal
 

6) Slicing into blanks and removal of slicing damage
 
by etching
 

These steps are grouped into a single technical area because they accomplish
 
the function of preparing the basic raw material for sblar cell fabrication
 

(silicon) in a form meeting specified requirements of chemical purity,
 
crystalline perfection, and dimensions. Also, these 
steps are common to
 

all silicon semiconductor devices.
 

The important impurities in silicon which must be specified are the group
 
III and group V elements (B, Al, P, As) which produce-shallow doping levels,
 
the heavy metals (Fe, Cu, Au) which produce deep levels which act 
as re
combination centers, and the non-metals C and 0 which produce precipitates.
 

The tolerable level of group III and V elements depends ow-the final-doping
 
level of the silicon. If the intention is to produce 10 ohm-cm P-type
 
silicon in step 5, boron will be added to the -melt in this step to produce
 



FIGURE 1.
 

Simplified Process Flow Chart
 

A. 	 Blank Fabrication
 

1) Reduction of silica with carbon
 

2) Conversion of metallurgical silicon to intermediate compound
 

3) Purification of intermediate compound
 

4) Decomposition of intermediate compound to polycrystalline silicon
 

5) Growth of silicon monocrystal
 

6) Cutting into blanks and removal of cutting damage
 

-------Finished blank------------


B. 	 Cell Fabrication
 

7) Junction formation (including removal of back-surface junction
 

if necessary)
 

8) Contact deposition
 

9) Anti-reflective coating deposition
 

10) 	 Cell test and sort
 

----------Finished cell-------------


C. 	 Array Fabrication
 

11) Cell interconnection into modules
 

12) Module encapsulation and integration with support structure
 

13) Module interconnection and integration with concentrator (if used)
 

14) Installation at site
 

------------- Finished array--------------
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a net acceptor concentration of 1.3 x O1 5 cm-3 . or 26 ppb (parts per
 

billion). The net concentration of group III-V elements in the poly
 

used will not usually be known prior to crystal growth; it cannot be
 

accurately measured by measuring the resistivity of the poly because free
 

carriers in the poly are trapped by deep levels produced by imperfections.
 

The purification process (step 3) must therefore be thorough enough so
 

that the net concentration in the poly can be assumed to be negligible.
 

In practice, a "negligible" level would be about 2.5 ppb for both donors
 

and acceptors.
 

Since solar cells for terrestrial applications can be made from more
 

heavily-doped material (as high as 2.5 x 1018 cm 3 , or .03 ohm-cm), poly
 

with residual concentrations of group III-V elements as high as 5000 ppb
 

might be usable in this application. However, for general semiconductor
 

device applications such material would be completely unacceptable. The
i 

residual level of 2.5 ppb which is acceptable for 10 ohm-cm solar cells
 

is also acceptable for almost all other device uses.
 

The concentration of deep-level impurities such as Fe, Cu and Au must be
 

kept low in order to obtain adequate current output from the cell. These
 

impurities act as recombination centers, reducing minority caripr life

time. The relationship between minority carrier lifetimer diffusion
 

length and cell collection efficiency is shown in Figure 2. In orderto
 

obtain the high levels of collection efficiency (>90%) presently obtained
 

in space cells, a diffusion length of 200 im is required, corresponding
 

to a minority carrier lifetime of 10 microseconds for an N/P cell or
 

30 microseconds for a P/N cell. There is apronounced knee in the
 

efficiency curve at about 20 jim and 75% collection efficiency, corres

ponding to an electron lifetime of 0.1 microsecond and a hole lifetime of
 

0.3 microsecond. The rapid decrease in collection efficiency below this
 

point suggests that this is a good estimate of the lower limit for diffusion
 

length in a practical cell. Corresponding values of AMO conversion
 

efficiency would be. 10% to 12% for material with a minority carrier diffusion
 

length of 200 1m, decreasing to 6% to 8% at 20 pm. Conversion efficiency in
 

terrestrial sunlight would be somewhat greater.
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FIGURE 2: Silicon Solar Cell Collection Efficiency vs.
 
Base Diffusion Length and Minority Carrier
 
Lifetime.
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The impurities Fe, Cu and Au produce recombination centers in silicon with
 

a capture cross section of about 5 x l0- cm2.
 In order for th& minority
 

carrier diffusion length to exceed 200 pm, the total electrically active
 

concentration of these elements must be reduced below 1.5 x lO1 2 cm-31
 
-3
(.03 ppb) for N/P cells or 5 x l0ll cm (.01 ppb) for P/N cells'.. If a
 

minority carrier diffusion length of 20 Um is considered adequate, the
 

allowable concentration of these elements can be 100 times greater.
 

Discrete crystalline imperfections, such as those produced by electron
 

irradiation, have properties similar to the recombination centers produced
 

by deep-level impurities. Such discrete centers can be eliminated by:
 

thermal annealing; the annealed silicon will contain clustered defects
 

(including dislocations and grain boundaries) separated by regions of;
 

nearly perfect material. The annealing process results in a very large
 

decrease in defect density; on the other hand, the capture cross section
 

of a defect cluster is much larger than that of a discrete defect. This
 

is the result of the fact that the Fermi level within the cluster is
 

pinned (by the large density of traps within the cluster) near the center
 

of the band-gap, so that the cluster is surrounded by a space-charge
 

region which is a sink for minority carriers. (1,2) This model has
 

been shorn to be successful in explaining recombination kinetics in
 

neutron-irradiated silicon (2) and in heteroepitaxial films (3), and
 

has been applied to the study of lithium precipitation in neutron-irra
(4) (5,6).
diated silicon , and mobility and lifetime in polycrystalline 

films deposited by chemical vapor deposition.
 

At present, silicon monocrystals for solar cell application are not required
 

to be dislocation-free, but the presence of lineage, slip lines, twins or
 

.grain boundaries are cause for rejection. A systematic study of the effects
 

of crystalline imperfections on solar cell performance has not been made,
 

so that a lower limit for material perfection cannot be precisely defined.
 

However, silicon chemically vapor deposited at 10350C on thermally-grown
 

silica films exhibited a minority-carrier lifetime about 3 orders of mag

nitude lower than material epitaxially deposited on silicon at the same
 

time (6), and a mobility about 1 order of magnitude lower, indicating
 

a diffusion length of the order of 0.1 1m. Silicon films deposited on
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oriented single-crystal spinel were monocrystalline by x-ray diffraction
 

but had a high density of defects in electron micrographic examination

these films also exhibited sub-nanosecond minority-carrier lifetime
 

On the other hand, Berman and Ralph (7) fabricated solar cells from poly

crystalline rods which exhibited efficiencies as high as 11% (AM 1).
 

Their material was Czochralski-grown under conditions (high pull rate)
 

which prbduced polycryiilinediowth Pith grain -sizeTMf-and TgFger. 

Their spectral response curve indicates that the diffusion length in their 

material was about 20 Lm; single-crystal cells fabricated at that time 

had diffusion lengths of 50-100 ,Lm. The short-circuit current of their 

poly cells was about 90% of the value for single-crystal cells, and the
 

open-circuit voltage was about 100 mV lower.
 

If a grain boundary is pictured as a sink for minority carriers, it is
 

reasonable to expect that the short-circuit current will not be seriously
 

affected if the average grain size is much larger than the diffusion
 

length in the interior of the grain. Also, one would expect that the
 

open-circuit voltage will be lowered by a grain boundary intersecting
 

the junction, even if the short-circuit current is only slightly reduced,
 

since under forward bias a large amount of current will flow at the inter

section. Therefore, high-efficiency (7 10%) cells will probably require
 

perfect material, while low-efficiency (6-8%) cells can be made from poly with
 

grain size greater than -1 mm, and poly material with small grain size
 

will probably not yield acceptable cells.
 

Figure 2'also provides an estimate of the minimum cell thickness for a 

given current efficiency. If a back contact which is reflecting for both
 

photons and minority carriers is used (e.g., an aluminum alloyed and dif

fused contact on an N /P cell), the optical thickness of the cell will be
 

twice the physical thickness. Thus, reasonable efficiency can be expected
 

for cells as thin as 10 pm. The maximum area of a single cell is a function 

of the contact and interconnect design used; since increasing the area in

creases the current output without changing the voltage, larger cells
 

require proportionately lower-resistance grid lines to carry the larger
 

current without appreciable voltage drop.
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Silicon Production
 

The primary function of steps 1-4 of the simplified process flow in Figure 1
 
is chemical purification, which in the present process is accomplished in
 

step 3, using an intermediate compound formed in step 2. The major part of
 

this report section is concerned with the choice of the intermediate com

pound. 
Before proceeding to discuss the possible choices of intermediate
 

compound, the p6ssibility of dispensing with an intermediate compound will
 
be discussed. If no intermediate compound is used, purification processing
 

must be performed on silica or on metallurgical silicon.
 

Purification of silica can be accomplished by dissolving silica in a sodium
 

hydroxide solution, followed by fractional precipitation of impurity elements
 

and final precipitation of purified silica, which would then be reduced to
 

silicon by some means which would not re-introduce impurities. Table 1(8)
 

gives a typical analysis of diatomite, a highly pure natural form of silica.
 

From the discussion in the preceeding section, it can be seen that Al and Fe
 

must be reduced in concentration by factors of l07 to l09, to meet require
ments fo± semiconductor grade silicon. This would seem to exceed the capa

bilities of chemical technology. The analogous Bayer process for the puri

fication of alumina yields a product containing about 100 ppm Fe. (8)
 

Purification of metallurgical silicon was attempted during the 1940's;
 

metallurgical silicon was leached with acids to produce material suitable
 

for microwave diodes. ( Little purification is necessary for this appli
cation since extremely low minority-carrier lifetime is required. Other
 

possible approaches involve applying purification processes to molten
 

silicon (10) or to solutions of silicon in metals such as aluminum.(9)
 

Silicon-rich aluminum alloys can be produced by the reduction of clay with
 

carbon in an arc furnace. (ll) Table 2 shows a typical analysis of met

allurgical silicon of the grade used for trichlorosilane production. It can
 

be seen that the degree of purification required is about the same as for
 

diatomite, and it is difficult to see any technical or cost advantage in
 
working with molten silicon or molten silicon-aluminum alloy over working
 

with an aqueous alkaline solution of silica, particularly in view of the
 

extraordinary corrosivity of molten silicon and aluminum towards all known
 

refractories.
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TABLE 1 

Typical Analysis of Lompoc Diatomite
 

Sio2 88.9o% 
Nao 1.44%
 

Mgo 0.56%
 
Cao 0.53%
 

Al2 3 3.00%
 

Fe203 1.69%
 

TiO2 0.14%


V2o 5 o.11% 
Loss on ignition 3.60%
 

TABLE 2
 

Typical Analysis of "Metallurgical-Grade" Silicon for 

Trichlorosilane Production
 

C .01 - 1.0% 
O" .01 - 1.0% 

Fe 0.6% 
Al o.4% 

Ca 0.25% 

Mg 040 

Ti .01%
 
B .001VO 

P v.s.001% 
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It therefore appears that an intermediate compound offers the best route 

to highly purified silicon, and the remaining options are listed according
 

to the choice of intermediate. An ideal intermediate would be inexpensive
 

to produce, easy to purify, and could be decomposed to purified silicon
 

at low cost and high yield and without producing any unnecessary by-products.
 

All known intermediates fall short of this ideal in some way.
 

The intermediate compounds which have been used in volume production of
 

semiconductor-grade silicon are silicon tetrachloride (SiC14), trichloro

silane (SiHCl3) and silane (SiH4). These are discussed in some detail.
 

SiCI 4 and SiHC 3 are produced in large quantities for other purposes. 

Silid6h tetrachioride is produced by the reaction of silicon or
 

silicon carbide with chlorine at about 5000C. In addition to SiC14,
 

small quantities of polymeric chlorides of the form SinCl2n+ 2 are
 

formed. The SiCl4 vapors emerging from the reactor are led to a dis

tillation column. The purified SiC14 from the column is sold for about
 

$0.15/ib, ( 8 ) or $2.00/kg Si content. For semiconductor-grade silicon 

production, the SiCl4 is further purified by repeated distillation. The
 

major difficulty is the removal of boron trichloride. SiC14 is reduced
 

to Si by reaction with Zn, Na, or H2.(9) Zinc reduction was used by
 

DuPont to produce silicon in the 1950's. The product vwas in the form of
 

needles which required considerable densification before they could be
 

used in a Czochralski crystal grower. Dense rods of polycrystalline
 

silicon can be produced by loading a mixture of SiC14 vapors and hydrogen 

into a reactor containing a resistance-heated silicon rod; the silicon
 

deposits on the rod. However, trichlorosilane is preferred in this
 

process because it yields a higher deposition rate and a purer deposit.
 

Trichlorosilane is produced by the reaction between metallurgical silicon
 

and hydrogen chloride in a fluidized-bed reactor at 300C:
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Si + 3 HC1--- SiHC13 + H2 

The reaction is not quantitative since the competing reaction:
 

Si + 4 HCl- SC 14+ 2 H2
 

also occurs, leading to the production of SiC14 and polymers. To suppress
 

this reaction, excess hydrogen is usually added to the input gas stream.
 
The output gas stream is led to a distillation column from which SiHC13 is
 
obtained. 
This grade of SiHCl3 is used in large quantities in the manu

facture of silicone plastics; the approximate present price is $0.80/lb,
 
or $8.50/kg of Si content.(8) 
 For the production of semiconductor-grade
 
silicon, SiHCl3 is further purified by repeated distillation and finally.
 
reduced by hydrogen in a reactor as described above. When SiHel3 is used,
 

the major residual impurity is phosphorus rather than boron, and phosphorus
 
is much more easily removed by zone refining in vacuum.
 

Regardless of whether SiC14 or SiHC13 is used, the composition of the gas
 
phase in the deposition reactor at the silicon surface is closely approk

imated by the thermodynamic equilibrium composition. Calculations of this
 
equilibrium for the practical range of input gas compositions and reactor
 
temperatures have been carried out by Lever (12) Sirtl (1 ) 
and others.
 

A high yield in the deposition reactor can only be obtained by using a
 
large excess of hydrogen in the input gas stream, which increases the amount
of electric power required per kg of poly deposited and reduces the deposition
 
rate. 
The optimum conditions are thus determined by a complex balance
 
between conversion efficiency and power and capital costs. 
A typical flow
 

chart for this process is given in Figure 3.
 

iane (Sil4) can be produced by a large number of reactions - 

which can be summarized into two classes: 

a) Reaction of metal silicides withacids; for example:
 

Mg 2Si + 4 HC1-> SiH4 + 2Mg1 2 

13 
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This reaction is commonly used in the laboratory; about 25% of the silicon
 

input is converted to silicon hydrides, of which,-40% is SiH 4, - 30% is
 
Si5 6, and -'30% consists of higher polymers. The analogous reaction in
 

the liquid ammonia system:
 

N\H
 
M 2 Si + '4 NH4Br N4 SiH + 2MgBr 24 + 4 NH3 

produces a yield of 70-80% of the silicon input, and only silane and
 

disilane are produced. Mg2 Si can be produced at low cost by the reaction 

between SiO2 and Mg. 

b) Reaction of a suitable silicon compound with a metal hydride;
 

for example:
 

ether
 
SiC14 + LiAIH4 ----- > SiH4 + LiC1 + AiC13
 

Although in the laboratory this reaction is most conveniently carried out
 

in a suitable organic-medium (e.g., tetrathylene glycol dimethyl ether (15)),
 
in production it is desirable to carry out the reaction in a fused salt 
bath, so that the hydride formation can occur as part of the overall 

reaction. Jackson (16) investigated the reaction between Al, H2 and
 
SiCl4 or Si02 in a bath of molten AM013/NaC1 eutectic (m.p. 1080C, operat
ing temperature 1750C). Very high hydrogen pressures (400 to 900 atm)
 
were required; the reaction mechanism was postulated to involve the form

ation of AIHxC (3-x) . At 1750C, 400 atm., the overall reaction:
 

3 Si02 + 4Al+ 2 AiC13 + 6 H2 --- 6 AlOCl+ 3 SiH4 

produced silane at a conversion efficiency of "80%. No information onf
 

reaction rates was obtained. Sundermayer (17) studied the reaction:
 

SiC4 + 4 LiH----- SiH 4 + 4 LiC1 

in a LiCl/KC1 melt at 4000C. The reaction is interesting because the
 
lithium hydride can be produced by electrolysis of the melt to produce
 

lithium metal and chlorine (which can be used for SiC14 production)
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followed by hydrogenation of the lithium metal, using the hydrogen released 

in the decomposition of the silane. The result is a closed system which 
converts metallurgical silicon to semiconductor-grade silicon, without
 

any by-products. Union Carbide Corporation obtained patent rights to the
 
Sundermeyer process and developed it into a commercial process for the, 
manufacture of silane. (18) Additional information on this process is don
tained in the Appendix to this report. Silane is sold for $400/kg, in small
 

quantities, in cylinders. At the present time, one producer of poly (Komatsu
 

Electronic Metals in Japan) uses a proprietary process involving silane. The
 

Komatsu material is more expensive than poly from other producers, (19) but
 
it is preferred by some customers because it does not contain carbon, as
 
does silicon produced from triehlorosilane ( 1018 cm-3 

Although silane is evidently more expensive to produce than other inter

mediates, it is much easier to purify. The reactions by which silane is
 
produced are advantageous in this respect, since few elements have volatile
 

hydrides (however, among them are B, P and As). Hydrides of B, P and As
 

can be easily removed either by absorption on activated carbon at 00C or 

by passing the gas stream over an inert surface at 3500C which will 
decompose them. Silane is decomposed by pyrolysis in the same type of. 

reactor used for the hydrogen reduction of trichlorosilane. 

Dichlorosilane (SiH2Cl2) can be produced in relatively low yield ( 15%) by 

the reaction of hydrogen chloride and silicon in the presence of excess 

hydrogen. It is purified by distillation and can be decomposed by pyrolysis, 
although the yield of poly is better if excess hydrogen is present. Dichloro
silane is currently sold at about $50/kg. The Si-Br-H system has been in

vestigated by Sangster and Sirtl, the Si-I-H system by Sirtl, and the Si-I 

system by Glang and Wajda. The Si-Br-H system does not seem to be advan
tageous, since the chemical behavior is very closely similar to the Si-Cl-H 
system and bromine is much more expensive than chlorine. The Si-I system
 

has some attractive features, despite the high cost of iodine and the rela

tively low reaction rates attained. Iodide transport (Van Arkel-de Boer
 
process) has been widely studied for the production of pure crystals of 
refractory metals. The iodide disproportionation reaction:
 

2 Si 2 0 Si + Sil 4 

16 



can be used to transport silicon at considerably lower temperatures
 

(9250C) 
than are needed for the hydrogen reduction of trichlorosilane.
 

If it were not for the fact that many undesirable impurities are also
 
readily transported under the same conditions, a simple reactor of the'
 
Van Arkel-de Boer type could be used to convert metallurgical silicon to
 
semiconductor-grade poly or even to single-crystal material. 
As it is,
 

it is necessary to prepare silicon tetraiodide and purify it in a manner
 
similar to the chlorosilanes, although the purification task appears to 
be somewhat simpler.
 

Monocrystal Growth, Slicing and Etching
 

During the early years of silicon device development, a large number of
 
processes for silicon crystal growth were conceived and evaluated.
 

References to this work (prior to 1965) can be found in the references by
 
Runyan (19) and Crossley et al(2 0 ) . After 1965, many of the publications 
on crystal growth of silicon were related to epitaxial growth processes, 
which have not been of direct interest in the production of solar cells. 
Silicon for solar cells has been grown by the standard Czochralski process 
or its variants, the float-zone and pedestal processes. Although there 

has been no radical change in the crystal growth technology applicable to 
solar cells in the preceding decade, costs associated with crystal growth,
 
slicing and etching have been steadily-reduced by the introduction of new
 
and better equipment. Czochralski crystal growers have grown larger 
- the
 
charge capacity has increased from 1 kg to16 kg or more during this period
 
- and automatic control systems have eliminated the need for constant,
 

operator attention during most of the growth cycle. 
Slicers also have;
 
been improved to reduce kerf loss and increase cutting speed, and have been
 
fitted T4ith controls for semi-automatic operation. The result has been very
 
substantial cost reductions, primarily in labor costs per unit output, pro
vided that the installation is sufficiently large to take advantage of these
 
new machines. Unfortunately, the lack of gorwth in the solar cell market
 

has not permitted solar cell manufacturers to take the lead in the exploita

tion of new equipment.
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The recent interest in obtaining dramatic cost reductions in silicon solar
 

cells, assuming dramatic production volume increases resulting from wide

spread application of silicon solar cells for terrestrial power generation,
 

has resulted in renewed activity in the development of new technology for
 

silicon crystal growth and blank fabrication. Some of the approaches aim
 

at elimination of step 6 of blank fabrication (slicing and etching) through
 

the development of techniques for growing silicon crystal in ribbon form.
 

The others aim to replace steps 4, 5 and 6 by the deposition of silicon in
 

thin film form directly from a purified intermediate compound upon a suitable
 

substrate.
 

Either of these approaches could ultimately lead to a process for c6ntinuous
 

fabrication of solar cells, replacing the present wafer-oriented process.
 

This could lead to drastic reductions in processing costs, but would require
 

considerable development work on cell fabrication processes. Initially, the
 

development of ribbon or thin-film silicon is expected to reduce cell costs
 

primarily by eliminating the costs incurred in the present slicing and
 

etching operations. A major part of these costs are the result of the large
 

amount of monocrystalline silicon consumed in these operations.
 

In principle, the most attractive approach is the deposition of a thin film
 

of silicon from the purified intermediate compound upon an inexpensive
 

substrate. At present, cells fabricated from such material exhibit very low
 

efficiency (<2%); unless their efficiency can be increased substantially 

their economic potential is not great. Since it is not Yet known what changes 

in deposition process and substrate material will improve efficiency, an 

economic analysis of thin film silicon cells is premature. -

Growth of silicon crystral in ribbon or sheet form, eliminating slicing and
 

etching, has been developed to the point of providing material of satisfactory 

quality for solar cell fabrication and this option will be discussed in this 

section. The two processes considered are edge-defined film-fed -crystAl 

growth (EFG) and veb-dendrite crystal growth. Detailed cost projections for
 

these processes are speculative because these processes have not been
 

developed to the point of production use.
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A third option is the further development of the wafer-oriented technology
 
used in production today. 
For this option, the technology is well under
stood and detailed cost projections can be made; therefore this option is
 
discussed in Section IV: 
 Cost Analysis.
 

Ribbon Growth
 

Both the EFG and web-dendrite processes can be considered as variants of
 
Czochralski growth. 
In the standard) Czochralski technique, a single-'Icrystal
 
seed 
is dipped into the melt, which is maintained at a temperature a few
 
degrees above the melting point. 
Since heat can flow from the melt through
 
the seed crystal and pulling spindle, the crystal begins to grow. 
The
 
diameter of the crystal is controlled during growth by controlling the rate
 
at which the crystal is withdrawn from the melt, balancing this rate against
 
the rate at wich the melt in contact with the crystal solidifies, which
 
depends on the rate of heat flow across the interface. Heat is remoyed by 
conduction into the growing crystal and then primarily by radiation from the
 
crystal surface to the walls of the crystal puller. In order to grow a
 
uniform crystal, the thermal environment is designed to have axial symmetry, 
and both the crucible and the crystal are rotated to average out any residual
 
assymetries. The result is a cylindrical crystal of uniform diameter,. 

While in principal crystals of different shapes could be grown by modifying 
the thermal environment only, in practice ribbon crystal growth requires 
further modifications of the standard Czochralski process. 
 In the EFG
 
process (21), the crystal is grown from the top of a die. 
A layer
 
of melt is maintained on the top surface of the die by a capillary flow
 
from a reservoir below, and the dimensions of the melt layer are defined by
 
the edges of the die. 
The growing crystal therefore .tends to have th 
same
 
crosssection as the top surface of the die. 
In the web-dendrite prdcess
 
(22), the thermal environment of the melt is adjusted so that the top surface
 
of the melt is slightly below the freezing point, although the melt at the
 
crucible walls is above the freezing p6int. A special seed is used, which
 
under the proper conditions will nucleate two dendrites. Between these
 
dendrites a web is formed.
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In ribbon growth, the linear growth rate is much larger than in the standard
 

Czochralski process, because of the much larger surface to volume ratio of
 

the ribbon which increases the rate-at which heat flows from the freezing
 

interface. In both processes the ribbon width is limited by the difficulty
 

in maintaining a uniform thermal environment over the width. Consequently,
 

the cross-sectional area of the ribbon is very small compared to the :
 

cylindrical crystal grown by the standard process, and the productivity of 

the crystal furnace is low, unless multiple ribbons can be grown simultan

eously. The standard Czochralski crystal grower described in Section IV 

grows 3" diameter crystal at 1.7 mm/min., or about 8 cm3 /min. To 

maintain the same productivity, growing 0.2 mm ribbon at 5 cm/min., would 

require the simultaneous growth of 20 ribbonseach 4 cm wide. 

We have not yet taken account of the fact that 50% to 70% of the crystal
 

grown in the standard Czochralski process is consumed in the slicing and
 

etbhing operations. If 100% of the ribbon material was good, a ribbon
 

process might compete in productivity if onI six ribbons cibid be grown 

simultaneously. However,, even the most enthusiastic proponents of ribbon 

growth (o not project a 100% yield. They usually do assume that sub

standard ribbon can be remelted; this remains to be demonstrated. In
 

standard Czochralski crystal growth large chunks of substandard material
 

are remelted, but wafers are not remelted.
 

The inherent advantage of a ribbon growth process arises from the possibility
 

of eliminating the loss of silicon in slicing and etching. The problems 

which must be overcome in order to make ribbon growth a practical production 

process arise from the complexities introduced in forcing the crystal to 

grow in a highly assymmetric shape. To achieve any saving, all of the follow

ing technical objectives must be reached:
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Crystal quality: The crystal quality (lifetime, etc.) must be as good
 

as the quality of present Czochralski material. Any loss of quality
 
which produces lower efficiency in the cell will be reflected as a
 
severe cost penalty on the ribbon process, since the penalty must
 

include not only the cost of manufacturing additional material but
 

also the costs associated with cell manufacture, array manufacture and
 
land costs resulting from the larger area of converter surface required
 

to supply a given load.
 

In the early 1960's, a solar cell pilot line was operated by Westing

house using web-dendrite material, and a median efficiency of about
 

10% (AMi) was achieved (23). This efficiency was slightly lower than
 
the efficiency of conventional cells produced at that time. The web

dendrite process has also demonstrated the ability to produce dislocation

free crystal (24) in thicknesses less than 25 Pm.
 

The present quality of EFG ribbon is not as good as the Westinghouse
 
web-dendrite material. 
Tyco data on solar cells has shown there are
 

problems. Some of the earlier cells made from a baked die had an
 
efficiency of about 5%, which would be expected to increase to about
 
7% after anti-reflection coating. The lower efficiency of EFG ribbon
 

material results from relatively poor crystallinity and also from
 
contamination of the silicon crystal with lifetime-killing impurities
 

from the die material. Some more recent cells are claimed to be over
 

10% efficiency.
 

Multiple ribbon growth: If multiple ribbons cannot be grown simul
taneously, it is difficult to see how ribbon growth costs can approach
 

the costs of the conventional process. The costs associated with
 

conventional Czochralski growth, per machine-hour of operation, have
 

changed very little with time; the cost reductions per kg of product
 
which have been obtained over the last decade have resulted from
 

increased machine productivity.
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Both the web-dendrite process and the EFG process place much
 
more stringent requirements on the crystal furnace. Because
 

the top surface of the melt must be undercooled in the web

dendrite process, temperature control of the melt is very
 
critical. In both accuracy and speed of response, the web

dendrite process is 
one to two orders of magnitude more critical
 

than the conventional process. 
These problems are sufficiently
 

severe so that multiple ribbon growth does not seem to have teen
 

attempted with the web-dendrite process.
 

The EFG process does not require better temperature control,
 

but it does have stringent requirements on the die, which
 

must be wet by the molten silicon (to permit the capillary
 

flow which replenishes the liquid film on the top surface of
 
the die) but the die must not be chemically attacked by
 
molten silicon. No material which has been tried appears to
 

fully meet these requirements.
 

Dimensional control of the growing crystal is clearly more
 
difficult with ribbon growth. In conventional cylindrical
 

crystal growing, crystal diameter is optically sensed and
 

maintained constant by varying the pull rate. 
 In-the Westing

house web-dendrite workthe larger dimension (width) of the
 

ribbon was sensed optically and the smaller dimension
 

(thickness) was sensed by mechanical fingers riding on the
 

ribbon some distance above the freezing interface. Dimensional
 

control was by variation of pull rate, and large differences in
 

pull rate as growth progressed had to be accommodated by the
 
control system. The separation between the point at which ribbon
 

thickness is sensed and the freezing interface introduces a
 
time lag into the control loop, a lag which varies with pull
 

rate. Considerable difficulty was encountered in maintaining
 

constant dimensions, but by the end of the program width was
 

controlled to 9.75 t 0.12 mm and thickness to 0.4 t .06 mm (23).
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In principle, dimensional control of EFG-crystal growth should
 

be much simpler, because crystal dimensions are stabilized by the
 

growth process to closely approximate the dimensions of the die.
 

In practice, EFG silicon crystals do not exhibit close dimensional
 

control at present.'
 

Dimensional control is discussed here because it is obvious that
 

multiple ribbon growh will be very difficult, and probably
 

totally impractical, if the dimensions of each ribbon must be
 

independently sensed and the pull rate of each ribbon independ

ently controlled in order to achieve satisfactory uniformity.
 

The EFG process appears to have a clear advantage over the web-'
 

dendrite process in this respect, at least in principle. The
 

fact that EFG growth of multiple sapphire ribbons has been
 

demonstrated without independent control does not necessarily
 

imply that independent control will not be required for the
 

EFG growth of multiple silicon ribbons, however. Heat flow from
 

the freezing interface in sapphire is primarily by optical
 

radiation through the transparent crystal. This mechanism
 

provides much more stable growth in the presence of fluctuations
 

in the thermal environment.
 

Silicon utilization: As discussed above, the standard process
 

appears capable of utilizing no more than about 40% of the input'
 

polycrystalline silicon (for a final blank thickness of 0.15 mm).
 

The silicon utilization for ribbon processes can, in principle,
 

be much higher, but further development is required to ahhieve
 

high utilization factors. In the web-dendrite process, the
 

dendrites contain many dislocations. Trimming off the dendrites
 

improves the efficiency of the final cell but reduces silicon
 

utilization, as well as adding another operation. In the EFG
 

process, a means for continuously replenishing the melt is
 

required in order to maintain the proper level for capillary
 

flow in the die. The use of a floating die is an alternative, but
 

there are also problems to be solved with this approach.
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It is also important to realize that growth of unnecessarily
 

thick ribbon reduces the effective utilization fraction. With
 

a proper back contact, cell output falls off very little with
 

decreasing thickness and the minimum practical thickness is
 

determined by yield loss from breakage during cell fabrication.
 

While the web-dendrite process has produced web as thin as 15 jim,
 

the EFG process is having some difficulty in producing ribbon
 

as thin as 200 am. To produce thin ribbon, a narrow die
 

containing a still narrower slot must be used. 
This makes the
 
die more expensive and more quickly affected by reactions
 

between the die material and the silicon melt.
 

At the present time, it does not appear from the literature
 

studied that either the web-dendrite or the EFG process has
 
consistently demonstrated significantly higher silicon utiliza

tion than the standard process can attain. During the Westinghouse
 

program in 1963-65, silicon utilization of 55% was reached towards
 

the end of the program, before allowance for the further loss of
 
silicon during dendrite removal. No data is available on silicon
 

utilization in the EFG process.
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IXIB. CELL FABRICATION
 

This report section will begin by reviewing the present solar cell and
 
array fabrication processes to determine the parameters which have a
 
major effect on cost. Those technological options presently available
 

for a large-volume, low-cost manufacturing process will be considered,
 
first and finally some options which might become available as a result
 
of future development will be discussed.
 

In the area of cell fabrication, the number of options which could be
 
considered is very large. 
To evaluate the technical merits and cost
 
advantages of each option in detail would be laborious, and also of
 
little value in the ultimate analysis. In most cases the cost
 
difference between competing options will be found to be small,
 

considerably smaller than the uncertainties involved in projecting costs
 
to production levels up to one million times present levels. 
Therefore;
 
we have chosen to discuss the process options in terms of the generalized
 
process flow chart (Figure 1) and the various approaches available for
 
cost minimization. 
A detailed cost estimate for one particular set of
 

process options is given in Section IV: Cost Analysis.
 

Present Cell Fabrication Technology
 

A flow chart for present cell and array fabrication for space purposes
 
is given in Figure 4. Forty-four separate operations are shown as being
 

required to complete steps 7-11, of the simplified process flow chart
 
(Figure 1), which carries the array through module interconnection. Not
 
shown in Figure 4 are many other operations which are not in the direct
 
process flow but are nevertheless essential; for example, periodic cleaning
 
of diffusion tubes, boats and evaporation masks.
 

Most of of the cell fabrication operations listed in Figure 4 involve manual
 
handling of individtal blanks, and in most operations the production rate
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per operator is determined by the speed with which blanks can be manually 
handled. Typically, an operator with average dexterity will achieve a rate
 
of about 250 blanks/hour throughput in such an operation. 
Thus one might
 
estimate that 22 opeators could process 2000 blanks/day, or 500,000/year.
 
However, because of the incidental operations not shown in Figure 4, and
 
because allowance must be made for absenteeism, training, machine down
time, etc., this estimate would be about a factor of two too low. 
Even so,
 
since total solar cell'prduction at present is of the order of 1,500,000
 
cells/year for the entire industry, it can be seen that the total number of
 
operators involved is quite small.
 

Production costs for solar cells at present are made up of the following
 

components: 

Direct production labor 25% 

Indirect production labor 

(Supervision, maintenance, QC, etc.) 25% 

Materials 21% 
Other overhead (facilities and equipment 

costs, etc.) 18% 
General and administrative costs 11% 

100% 

About one-half of the materials cost is silicon; other important matetials
 

are acids, gases, solvents and silver.
 

For the semiconductor industry as a whole, the amount of capital required
 
per dollar of net sales ranges from $0.50 to over $1.00. Solar Cell
 
manufacturing is at the bottom end of this range, primarily because the
 
processing operations are labor-intensive and therefore the capital
 
investment required for plant facilities and equipment is unusually low.
 

For steps 11-12 (array fabrication up to system integration) the break
down of productions costs and capital requirements is not substantially
 

different than for cell manufacture on the whole, although spacecraft
 
arrays are much less standardized than cells and 
so the cost distribution
 
varies more widely from job to job. In general, the cost of a
 
completed array will be three to four times the cost of the cells
 
contained in it. 
 In addition to cells and coverglasses, the substrate
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material itself is a major cost item.
 

Since each operation requires only a few minutes at most, it is
 
technically possible to process a cell from a sliced blank through
 

to its place in the final array in a single day. In fact, this is
 
not done. Partially processed cells are held at various points in the
 

process for considerable periods of time. While this adds some

what to cost, it also provides time for inprocess inspection and
 

correction of processing difficulties.
 

Current Technology Cost Reduction Options'
 

In terms of annual volume, the silicon solar cell is a very low volume
 

semiconductor device. 
 If one assumes that in the near future production 

volume will begin to increase rapidly, a natural approach is to 

utilize machinery and techniques already in use in the production .of high

volume semiconductor devices and other high-voluime electronic components. 

While considerable technology is available at present which could
 
greatly reduce production costs, this technology must be adapted to
 
the specific requirements of solar cell manufacture, and in most cases
 

this will require modifications to the production process.
 

Cost reduction can be accomplished by eliminating some of the process
 

operations, developing new processes that combine steps, by simplifying
 

the step and making it less critical, by designing machines to speed
 
up the process, by minimizing the number of handling operations, and by
 

using inexpensive materials, A detailed list of cost reduction options
 

are summarized in Table 3. All options will probably not be able to be 
utilized with every new process developed but an attempt must be made to
 

utilize as many as possible. For instance, a high-speed process is highly
 

desirable but not a necessity for a lowcost process. If a large batch is
 
to be placed in an oven for sintering or a heat treatment, this may require
 

a long time, but because a large quantity is processed at once, it can
 
be inexpensive. Therefore, each process operation must be analyzed on a
 

cost per unit processed basis before it is clear that cost improvement is
 

available.
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TABLE 3 

COST REDUCTION OPTIONS
 

1. Reduce number of steps
 

2. Mechanize handling operations
 

3. Increase cell area
 

4. Use 	continuous flow process
 

5. Increase process throughput
 

6. 	 Simplify process -


Eliminate masking and evaporation
 

Eliminate wet processing
 

Eliminate critical tolerances
 

7. Reduce indirect material usage
 

8. Select processes with high controllability (high yield)
 

9. Integrate operations (assembly)
 

10. Reduce energy usage
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Junction Formation
 

Junction formation is typically accomplished by the open tube gaseofis
 

diffusion process. In this process the silicon blanks are loaded
 

onto a fused silica boat which is placed in a tube furnace. The 

material is allowed to heat up for several minutes, then a gaseous 

compound of the dtsired impurity type (either N or P type) is passed 

through the tube. Some of the impurity deposits on the silicon and is
 

diffused the proper depth into-the bulk material. The boat is then
 

removed from the furnace to cool the material.
 

The complete process typically requires about 20 to 30 minutes and about
 

800 cm2 of material is diffused. Modifications of this process that are
 

likely to result in cost reductions are: the batch size could be increased,
 

the diffusion time can be reduced by increasing the furnace temperature,
 

or the operation could be mechanized to have continuous processing with
 

preloaded boats continuously fed in on a belt system.
 

Another diffusion method that has been developed and proven satisfactory
 

for solar cells is the paint-on source technique. In this process a
 

dopant compound is simply coated on the silicon, dried, and the silicon
 

placed in a furnace to accomplish the diffusion. At first glance,
 

this looks as if more costs are added since an additional coating step
 

precedes diffusion. The interesting aspect, however, comes from some of
 

the options that result. One important factor is that since the dopant
 

source is directly applied to the silicon surface, the material can be
 

stacked in a boat much more closely than material going into a gaseous
 

diffusion furnace where space for uniform mixing of the gas must be
 

provided. Therefore, a higher packing density and throughput rate can
 

be achieved with equivalent tube furnace facilities. The process is very
 

well suited for a continuous belt furnace operation. The problems of
 
controlling various gaseous atmospheres in different zones is eliminated
 

thus making the gas system simple-. There is no operator required except
 

to load and unload boats.
 

Many other diffusion processes have been used in the semiconductor 

industry in addition to the two mentioned above (25). Instead of an open 
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tube, a sealed capsule or partially sealed box can be used. Instead of
 

introducing the diffusant in the gas stream or painting it on, the diffusant
 

can be deposited on the wafer surface by chemical vapor deposition, 'or
 

generated in the tube by a suitable chemical reaction: for example, oxidized
 

boron nitride wafers can be placed between the silicon wafers in the
 
diffusion boat; boron oxide volatilizes, deposits on the adjacent silicon
 

surfaces and acts as a source for boron diffusion. These variants of the
 

basic diffusion process each have their advantages and disadvantages, but it
 
does not appear that any particular choice would have a large cost impact.
 

Junction formation can be accomplished by other means than diffusion. Ion
 

implantation is one such technique. In this approach, a suitable cqmpound
 

containing the desired dopant is introduced into an ion source, in
 
which a plasma is formed. Ions are extracted from the plasma by an electric 
field. A crossed magnetic field may be used to separate the d(sired ionic
 

species from others. The ion beam then bombards the silicon wafer.. The
 

depth of penetration of the ions can be very accurately controlled by
 

controlling the accelerating voltage, while the number of ions per unit
 

area can be accurately controlled by controlling the ion current and
 

bombardment time.
 

Ion implantation requires equipment which is more complex and expensive
 

than diffusion equipment, but this need not produce a substantial increase
 

in cost per unit processed, if the equipment throughput is high enough.
 

Ion sources for boron, phosphorus and arsenic are available (26,27)
 

which produce 1 to 4m& of ion current, which is sufficient
 

to dope silicon at the rate of about 1 cm2 cell area per second.
 

This compares quite well with the present throughput of a diffusion
 

furnace. Ion sources have been built for hydrogen ions which produce
 

several amperes of ion current. (28) Since the output of an ion source
 

is expected from theory to vary as 1/1M, where M is the ion mass number,
 

ion currents of several hundred milliamperes should be attainable
 

for common dopant ions. Mass separation is not required for the solar
 

cell application; and accelerating voltages are low (of the order o
 

40 KV) because the junction is shallow, Annealing is required to eliminate
 

radiation damage produced by the implantation process, but the energy input to
 

raise the silicon to the annealing temperature can be supplied, at least
 

in part, by the ion beam itself.
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Another approach to junction formation is to use a Schottky barrier rather
 

than a P-N junction. Metal films with sheet resistances comparable to
 

the sheet resistance of the diffused layer in P-N junction cells 
can 

have values of light transmission as high as 90%, with a suitable AR 

coating. (29,30) Since the height of Schottky barrier in silicon is always 

considerably less than the band gap, Schottky barriers are probably

better suited for use with larger band gap materials than silicon. However,
 

this may be the best approach to the fabrication of solar cells in
 

polycrystalline silicon, if low conversion efficiency does not rule out
 

polycrystalline silicon entirely.
 

Whichever approach to Junction formation is selected, consideration-must
 

be given to the region in which the junction intersects the surface in
 

order to avoid large leakage currents. In present processing, using gas

phase diffusion sources, impurity diffusion occurs at both surfaces of
 

the blank. The junction at the back surface is removed by etching after
 

diffusion. An alternate approach applicable to N+/P cells is to use
 

an aluminum-alloyed back contact.(31) The N+ layer at the back surface
 

is dissolved during the alloying process and an N+/P/P+ structure is
 

produced. An edge etch is required to avoid formation of an N+/P+
 

junction at the cell edge.
 

Contact Deposition
 

Contacts are typically deposited by evaporating suitable contact metals
 

on the silicon wafer through a mask etched to the desired grid pattern.
 

The vacuum evaporated system is usually set up with dual top-and bottom
 

evaporation sources so that both sides of the cell is coated at the
 

same time. Some installations use one evaporation source with a
 

rotisserie type fixture to provide metal deposition on both sides of the
 

cell. In general fairly small evaporators are used since the production
 

rates are small. Typically, 0.1 to 0.2 m2 of cell surface are coated in
 

one operation.
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Cost reductions could be realized by going to still larger walk-in
 

type evaporators that.thave continuous feed wire sources. This type
 

system would increase the throughput rate from about 0.3 m2 of cell
 

area per hour to over 2 m2 
per hour. Mask loading and cell handling
 

could be completely mechanized so that labor would be minimized.
 

Apother evaporation system technique that could be used is a ferris
 

wheel arrangement within the vacuum chamber which mechanically brings
 

the blanks over a fixed evaporation source and mask. The major
 

advantage of this technique is that a minimum amount of metal is
 

wasted.
 

Plating has been used for metal contact deposition in past years.
 

This reqqires some sort of masking material placed on the cell in the
 

proper pattern to prevent the metal from plating where not wanted.
 

This masking can be performed by a photoresist operation or by a screen
 

printing operation. Screen printing is less expensive but cannot produce
 

grid lines as narrow as photoresist. In either case the masking
 

material must be removed after plating; thus two additional operations
 

are introduced. Plating has the advantages that metal is deposited
 

only where needed, reducing metal costs; also, copper or nickel can
 

be used rather than silver, and the thickness of the plating can be
 

greater than can be conveniently deposited by evaporation. Despite
 

these advantages, the replacement of plated electroless nickel contacts
 

by evaporated titanium-silver contacts led to lower costs, because the
 

evaporated contacts led to higher yields. It was found to be very
 

difficult to produceconsistently adherent, low-resistance contacts,by
 

plating.
 

A very fast contact deposition method is the screen printing technique
 

whereby a metal paste is simply printed onto the surface in the pattern
 

desired. The printed metal paste is then heated in a furnace to
 

volatilize the binder, sinter the metal particles and make an ohmic
 

contact to the silicon. Although this type contact has not yet been
 

fully developed, it would be a very attractive approach since
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completely automatic printing machines capable of handling 20 cells
 

pbr 4inute £re 'available. Also there is essentially no waste of
 

material and low-resistance grid lines can be formed. However, as
 

with the plating technique, there appears to be a difficult problem
 

in achieving consisLently good adherence and ohmic contact. 

- kntfrefhection Coating 

Antireflection coatingsare presently deposited by vacuum evaporation. 

Since the AR coating is deposited on only one surface of the cell and 

the coating is very thin, the production rate can be two or three times 

the rate of metal contact evaporation. This process can be easily 

scaled up to larger vacuum chambers to increase throughput. Either 

masking must be used to prevent deposition of the coating material on 

the contact bar, or the contact bar must be cleaned (chemically or 

mechanically) to remove the coating material prior to soldering or 

welding the interconnector to the cell. 

When boron trichloride is used without oxygen to produce a t+/N cell
 

with a very heavily doped surface, a surface layer of a silicon-boron 

compound is formed which is an effective antireflection coating. The 

coating does not interfere with electrical contact to the cell. The 

surface layer does have some optical absorption and the very high -

surface concentration of boron does lead to the introduction of defects
 

into the surface region of the cell; for these reasons, P+/N cells
 

made in this way have slightly lower short-circuit current output than
 

cells diffused in an oxidizing atmosphere, which avoids formation of
 

the silicon-boron compound. Cell conversion efficiency is still
 

quite acceptable, however. No similar technique is known for forming
 

an antireflection coating on N/P cells during diffusion.
 

Although an optimum antireflection coating is very thin (one-quarter
 

wavelength at 600-650 im), thicker coatings are almost as good if they
 

have the proper index of refraction and low optical absorption.
 

Consideration has been given to a coating applied by spraying or
 

spinning, in the saxe manner as a diffusion source. The desired index
 

of refraction is 1.95, if the outer surface of the coating is in
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contact with air, or about 2.35 if the outer surface of the coating is
 
in contact with a protective layer of glass or plastic. 
The highest.
 

refractive index obtainable for a plastic coating is about 1.6 (poly
carbonate lacquer); spin-on glass coatings can be formulated with
 
indices of 1.95. 
Both coatings have adequate durability. Thick
 
coatings of either material will have a reflection loss of about 21%,
 
compared to 35% for bare silicon and about 6% for silicon coated with
 
an optimized antireflection coating. If a suitable coating could be 
found with an index of refraction of 2.5, a two-layer thick coating 
(indices of 1.6 and 2.5) would have a reflection loss of 14%. Unfortu
nately, neither plastics or glasses appear to be available for the
 

higher-index coating.
 

The figures given above are computed for light at normal incidence. In
 
typical solar photovoltaic system designs for terrestrial applications,
 
the cells are illuminated over a 
wide range of angle of incidence; this
 
is true both of flat-panel, fixed-position arrays and tracking arrays
 
using optical concentration. 
The effect of non-normal incidence is to
 
increase reflection losses for all types of coatings, and to somewhat
 
reduce the relative advantage of quarter-wave coatings over thick
 

coatings.
 

Cell Testing
 

Testing of cells prior to assembly of the array is required to:
 

1) Eliminate low-output cells;
 
2) Sort acceptable cells into output classes, so that the cells
 

making up a module have matched characteristics, otherwise
 

the curve factor of the module will be seriously degraded;
 
3) Provide feedback for process control.
 

Although cells for space applications undergo stringent visual and
 
mechanical inspection as well as electrical tests, the performance of
 
arrays assembled from reject space cells in terrestrial applications
 
strongly suggests that electrical tests are sufficient. The electrical
 
tests consist of illuminating the cell and measuring the electrical
 
output (current as 
a function of voltage). The illumination intensity,
 
spectral distribution, and cell temperature must be known and maintained 
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constant. Limiting the testing to electrical meRsurements is highly
 

desirable because such measurements can be taken rapidly, and the
 

test equipment is readily adapted to computer cont.rol to eliminate human
 

error 'nd to provide for data analysis. This feature is important
 

to provide rapid feedback for control of a high-speed fabrication process.
 

Evaluation of Cell Fabrication Options
 

Instead of evaluating options one by one, it is more informative to
 

consider the overall process, and to attempt to define the requirements
 

for minimizing production cost in terms of a consistent philosophy
 

which can then be applied to each process operation. For the present
 

process, the dominant cost factor is labor, and one obvious requirement
 

for cost reduction is increased throughput per operator. The first
 

six approaches in the list in Table 3 provide ways of satisfying this
 

requirement. Mechanical wafer handling equipment can process at least
 

10,000 blanks per shift (assuming the rate of throughput is determined
 

by handling time) even if blanks are handled one at a time. 
 This is
 

five times the rate attainable with manual handling. Increasing the
 

size of the blank from 2 cm square to 7.5 cm diameter increases the
 
area processed per blank by a factor of 11, thus these two changes
 

alone, without any changes in the basic process operations, can increase
 

throughput by a factor ot,55. It is reasonable to expect that mechanical
 

handling in properly designed machinery will reduce the possible sources
 

of contamination and permit elimination of most of the in-process cleaning
 

operations. Computer control of the machinery should eliminate much
 

of the direct and indirect labor now required to keep track of the
 

progress of blanks through the fabrication operations, as well as
 

providing prompt feedback to maintain high yield.
 

Overall, it appears to be possible to reduce direct labor unit costs by
 
as much as a factor bf 100 by mechanization. The saving in indirect
 

labor costs and other overhead costs will be less, because the more
 

complex machinery will no doubt increase the percentage of cost
 

associated with equipment maintenance and depreciation. However,
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substantial cost savings when costs are expressed in dollars/watt should
 

be attainable in these areas also.
 

It would therefore appear that the most important criterion to be applied
 

in evaluating the options for each process operation is that the option
 

should be compatible with mechanization. While some type of mechanization
 

can be applied to almost any conceivable type of production operation, the
 

combination of options finally selected for a particular process should
 
ll be compatible with the same type of mechanization, in order to provide
 

maximum efficiency.
 

A major difficulty in selecting one mechanization approach is that some
 

operations require high temperature, others require exposure to strong
 

ricids, and still others require process operations to be performed 

under high vacuum conditions. Sequences of production operations have 
been conceived (32) which might permit all required operations to be 

performed on a continuous basis; however, the necessary changes in
 
individual operations are drastic and the development work is not far
 

along. Even if a completely continuous process were technically
 

feasible, the difficulty of introducing further changes would be a
 

setious disadvantage in a field in which rapid technological progress
 

is expected..
 

It appears that the best approach for the near future is to concentrate
 
on mechanizing the transfer of blanks between operations, leaving the
 

operations themselves to be performed on a batch basis as at present.
 

This may also be the best approach for the long run, particularly if
 
long ribbons of silicon cannot be provided at low cost.
 

Even though the specific process operations for solar cells differ
 
considerably from those used for fabricating other semiconductor devices,
 
the transfer operation is identical if round blanks rather than square
 

blanks are used. Mechanical equipment for handling round wafers has been
 

developed by several firms for the semiconductor integrated circuits
 

industry, and this equipment is coming into widespread use. A discussion
 

of the principles employed by one firm in the design of its equipment
 

is given in reference (33) and is reproduced in the appendix.
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Other firms use sllghtlfr ditferent'p inciples, but all firms 
agree on standardization of two items:
 

a) 
The wafer must be round, and all wafers must be the same diameter 

(+ 3om) 

b) 	 Wafers are handled in carriers, which contain 25 wafers held in
 
slots with a spacing of 1/8" or 3/16".
 

The 	 first item permits standardization of wafer tracks and handling 
fixtures within the machinery, and the second permits transfer of
 

wafers from one carrier to another by placing an empty carrier over a
 
full one ind inverting. Carriers are provided in aluminum (for routine
 
processing), fluorocarbon or polypropylene plastic (for wet chemical
 

processing), and quartz (for high-temperature processes).
 

The 	major problem in applying this type of machinery to a solar cell
 
production process is in adapting it to high-vacuum operations.
 

Existing equipment is not designed for operation in vacuum, and in some
 

cases the design principles are not compatible with vacuum operation.
 

Either the equipment must be redeligned, or the process operations must
 
be altered to replace vacuum operations -with others. As discussed in
 
the 	previous section, there are alternatives available for all vacuum
 

operations.
 

As long as cell fabrication is wafer-oriented, the use of wafer-handling
 

equipment provides a satisfactory solution to the cell fabrication
 

problem, in that the combination of mechanized handling and compatible
 

processing operations can reduce cell costs (including the blank) to
 
lesd than twice the cost of the blank its-elf. If thecost'bf the blank
 

were reduced far below the- ro*s:E-o-$75/m -give n i,h-- celrprocessahg 

costs would require further reduction if they were not to be again the 

dominant cost item. While the same basic principle of concentrating on 
increasing throughput per operator would still be applicable, the specific
 
methods to be employed would depend on whether the silicon input to the
 
cell fabrication operations was in the form of wafers, ribbons, or something
 

else. Until this parameter can better defined, a choice between options
 
for the fardistant future cannot be made.
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Ii1C. ARRAY FABRICATION
 

There are important differences between the space and terrestrial
 

environments which require a completely different approach to array
 
design. 
Radiation resistance need not be considered in a terrestrial
 
system, and ultraviolet light intensity is much lower. 
The range of
 
thermal cycling is typically smaller and the rate of change of tempera

ture smaller also. 
On the other hadd, the designer must consider the
 
effects of rain, dust, snow and ice build-up, hail, corrosion from
 
seashore and industrial atmospheres, wind forces, bird fouling, human
 
vandalism, etc. The severity of these conditions varies from one
 

installation to another and typically is not well defined, and
 
available information on the endurance of various materials in
 
terrestrial environments is usually of a general comparative nature.
 

Nevertheless, the high capital cost of solar power systems compared to
 
alternatives requires the designer to design for a long life expectancy
 
with minimum maintenance, and in this respect the design requirements
 

are not less severe than for space systems. To meet these requirements,
 
the designer cannot rely either on extensive testing and qualification
 

of units, as is done for space systems, or on large safety factors and
 
redundant elements, as is commonly done for terrestrial structures,
 
since either approach would produce an unacceptable cost penalty.
 

In space systems, power output per unit mass and per unit surface area
 
are extremely important parameters. In terrestrial systems they are
 

less important, but not negligible. Many present-day applications of
 
terrestrial solar photovoltaic systems are in remote areas, and the
 

cost and difficulty of transportation must be considered. The cost and
 
difficulty of erecting the system is also very important, and the
 
design should be engineered so that the system can be installed with a
 

minimum of skill and equipment.
 

Even at present, applications for terrestrial photovoltaic systems
 

range from a fraction of a watt to several kilowatts output (peak).
 
Within the next decade it is hoped that cost reductions will permit
 

extending this range upward into the megawatt range, and by the end of
 
the century, into the gigawatt range.
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Given this extremely wide range of applications,' it would be indeed
 

remarkable if any one type of array design were to be found to be
 

optimal over the entire range. Given the present very limited
 

experience with terrestrial photovoltaic systems, it is difficult to
 

specify even one type of design which is known to be adequate, let
 

alone optimum, for any application. In the area of array design and
 

fabrication, the gap between our present knowledge and what we needto
 

know is much larger than in the other technical areas previously
 

considered, because we cannot draw to a great extent on the experience
 

gained over the last 15 years on space programs to define a baseline
 

from which to project future costs and technological requirements.
 

Design Requirgmeiits
 

a. 	Structumal: The array as a whole, and its components, will be subj&et
 

to mechanical forces arising from wind, thermal expansion, and possibly
 

other forces. Failure can occur by catastrophic mechanical failure, and
 
also by fatigue failure due to cyclic stressing. The designer must not
 

only provide load-bearing members of proper material and cross-section
 

to carry such loads, but must also consider the distribution of
 

internal forces to avoid stress concentrations. A particularly weak
 

point is at the connection of the electrical leads to the cell.
 

Because of the low thermal expansion of silicon compared to common
 

metals and plastics, and the brittleness of silicon, this point is
 

inevitably stressed by thermal forces. 
In addition to designing this
 

connection to resist cyclic stressing, suitable provisions for stress
 
relief should be provided to avoid the transmission of gross structural
 

forces to the connection.
 

b. 	Electrical: A silicon solar cell is a high-current, low-voltage
 
generator, and considerable care is required in designing electrical
 

connections for minimum series resistance.
 

c. 	Thermal: Array output voltage decreases with increasing temperature.
 
When the load is essentially a voltage source (e.g., a storage battery),
 
the useful output of the array is zero if the output voltage does not
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exceed the battery voltage. It is therefore important to minimize
 
the thermal impedance between the cells and the ambient, since this
 

parameter has 
a large effect on the number of series cells required to
 
supply a given load under worst-case conditions. Heat transfer from
 
the cell to the ambient atmosphere is primarily by conduction and
 
convection, rather than by radiation as 
in space.
 

d. 	Weatherability: 
 In addition to the gross mechanical and thermal forces
 
imposed on the array by the terrestrial environment, there are many
aspects of the environment which can lead to failure due to corrosipn
 
or obscuration. In particular, transparent materials used to cover
 
the 	cells (to protect them from humidity, etc.) are likely to degrade
 
due to yellowing (from ultraviolet absorption), abrasion from dust,
 
water absorption, crazing, etc. In plastics, these effects are accel
erated by mechanftal stresses (internal stresses built-in by molding
 
operations and externally applied stresses). If possible, the use of
 
a transparent plastic part as a load-bearing member should be avoided
 

for this reason.
 

e. 	Manufacturability: Fabrication costs can be minimized by:
 
1) choosing low cost materials and using them efficiently;
 

2) designing around standardized modules which can easily
 

be assembled into a range of array sizes;
 

3) applying the mechanization concepts discussed under cell
 
fabrication, and integrating mcidule fabrication and cell
 

fabrication to the maximum possible extent.
 
The above requirements are more easily stated than satisfied. 
The trade
offs involved in practice can be illustrated by considering a simple
 

conceptual design. 
Consider a module consisting of an assymmetrical
 

I-beam section of extruded aluminum, with a single series string of cells
 
adhesively bonded to the top surface and coated with a conformal silicone
 

coating for environmental protection. 
An array is assembled by connecting
 
modules together mechanically by end rails, and paralleling modules'
 

electrically.
 

Desiga Characteristics 
a. 	 Structural: Structural requirements are satisfied primarily by the 

aluminum member, which is light in weight and relatively inexpensive 
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($0.50/lb. for aluminum extrusion in quantity). The I-beam section
 

uses material efficiently, and the mechanical joints at the ends of the
 

module can be made by simple means in the field. The durability of
 
extruded aluminum is generally adequate if the aluminum is properly
 

protected by anodizing or painting. Since the entire structure canbe
 

made 	of aluminum, thermal forces between structural members are
 

minimized. The length of the module is an important design parameter,
 

since longer modules require a deeper section.
 

b, 	Electrical: Electrical requirements also affect module length. For
 

simplicity, a module output voltage equal to the desired array output
 

voltage is desirable, but this may result in a module length which is
 

undesirable structurally. A simple series string makes interconnection
 

simple, but is vulnerable to opens and to shadowing. Since in a series
 

string the current in each cell is constant, cell testing and sorting
 
should preferably be at constant current rather than constant voltage.
 

c. 	Thermal: Thermal requirements are met very well by this design if the 

thickness of the adhesive layer under the cell and the conformal coating 

over the cell is kept to a minimum. This is best done if these layers 

are applied in the form of films and laminated to the cells and 

aluminum I-beam, perhaps in the manner developed at NASA-Lewis (34, 35, 

36). The lamination process would need considerable development for 
this application. Silicone resins applied as liquids can also be used.
 

For applications involving optical concentration, the thermal impedance
 

can be reduced by changing the aluminum extrusion die to add fins to
 

the aluminum beam; this can be done without otherwise affecting the
 

array fabrication process.
 

d, Weatherability: Weatherability factors are the weakest point of the
 
design. The conformal coating provides environmental protection; it
 
must be flexible to prevent cracking under thermal cycling, but this
 

conflicts with the desire for a hard abrasion-resistant surface.
 

Extremely good adhesion to aluminum, silicon, and the electrical inter

connector is necessary to prevent moisture entry and delamination at
 

mating surfaces; plastics which have high bond strengths are not
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especially good in chemical stability or ultraviolet resistance. Ohe
 

way of avoiding these conflicts is to use an outer window of glass
 

with a resilient plastic filling the gap between the glass and the
 

aluminum; this adds another layer of material, increasing cost and
 

thermal impedance, and the requirements on the plastic are reduced
 

only slightly. The resilient plastic layer is now sandwiched betwebn
 

two rigid materials with different thermal expansion coefficients, which
 

further aggravates the problem of maintaining good adhesion during
 

service life.
 

e. Manufa'cturability: Manufacturability of the basic design is excellent,
 

'but the variations which may be required to meet performance require

ments complicate processing and increase cost. It is clear that some
 

economic balance must be sought between fabrication cost and service
 

life, but the proper economic balance will differ substantially for
 

different users and in any case the necessary data for the computation
 

are not available.
 

While the specifics of the above discussion apply to one particular
 

design, the general problem of defining and improving cost-effectiveness
 

in array design and manufacture apply to any design. Figures of merit
 

such as dollars per watt are not really the best choice for comparing
 

array designs, since they do not include the important parameter of
 

expected service life. Fortunately, if a simple array design is chosen,
 

the additional cost associated with the array manufacturing operatipns
 

can be reduced to a fraction of the cost of the cells, at least until
 

cell costs decline substantially below the costs projected for the 1980
85 time period. During the next decade, one can hope that experience
 

will provide more data on materials properties and service performance
 

so thai array fabrication costs can be reduced in parallel with cell
 

costs without impairing service life.
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IIID. OPTICAL CONCENTRATION
 

Optical concentration is an available technological option which can
 

be exploited to increase cell output. System cost in dollars per watt
 

will be reduced-as long as the added costs for the optical elements,
 

additional structure and cooling, and the costs of sun tracking, if used,
 

are less than the saving produced by reducing the number of cells required
 

to power a given load. The system net energy cost (energy consumed in
 

fabricating the system) and the energy payback period can also be sub

stantially reduced by optical concentration if the energy cost of the
 

additional optical elements is less than the energy cost of the solar
 

cells they replace. This will usually be the case.
 

As the optical concentration ratio "i" is increased, cell current output
 

increases proportionally but cell power output increases more slowly
 

because cell temperature increases and the power dissipated in the internal
 

resistance of the cell also increases. As m increases, the cost of the
 

optical-elements, structure, cooling and tracking also increase. Higher
 

concentration ratios require more perfect optical elements, more accurate
 

alignment and tracking, and more complex cooling systems. Also, as m
 

increases, the field of view of the system is reduced and some part of the
 

diffuse sky radiation is lost.
 

The optimum value of m is thus determined by a complex balance between
 

many factors. This problem is presently being investigated by Arizona
 

State University and Spectrolab under NSF and ERDA sponsorship. However,
 
the following general conclusions can be drawn from the report on the first
 

year 	of this study (37):
 

a) 	 The optimum concentration ratio depends on cell cost,
 

and goes down as cell costs decline relative to the costs
 

of other elements.
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b) The optimum concentration ratio also depends on the value
 

of the thermal output from the array. If only electrical
 

output is of interest, the value of the thermal output is
 

negative (since costs are incurred in dissipating the heat).
 

If the thermal output is useful, a higher concentration
 

ratio is optimum to raise the temperature of the thermal
 

output. Pushed to the limit, the system becomes a solar
 

thermal system with electrical output as a by-product.
 

In this connection, it is interesting that a silicon
 

solar cell is a near-optimum selective absorber; indeed,
 

silicon thin films are being used in one experimental
 

study of solar thermal power systems at the University of
 

Arizona.
 

c) 	 Large reductions in silicon solar cell series resistance
 

can be achieved by improved designs, without sacrificing
 

efficiency or cost. The most effective design change is
 

the use of ribbon conductors bonded to the front of the
 

cell to minimize the length of the current path in the
 

contact metallization. With optimum cell design, high
 

efficiency can be achieved in low cost cells up to
 

illumination levels of at least 10 watts/cm2 (100 suns
 

terrestrial).
 

d) 	 Significant improvements in thermal resistance (cell to
 

ambient) can be achieved with optimum choices of cell
 

mounting methods and heat transfer surface configuration.
 

e) 	 Optimum values of concentration ratio are typically in
 

the range of 10 to 40. Because these values are fairly
 

low, there is a wide range of choice for the optical
 

elements, and the accuracy with which the optical surfaces
 

must be fabricated is low. Additional work is needed to
 

determine the lowest cost optical concentrator in this
 

range; also, attention should be paid to achieving as
 

nearly uniform flux distribution in the exit plane as possible.
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f) For favorable locations, it is possible to reduce energy
 

costs by more than a factor of 3 through optical concen
tration, assuming unconcentrated array costs of about
 

*250/m 2 as projected in Section IV for the early 1980's.
 
In other words, the proper use of optical concentration
 
would reduce the manufacturing cost of arrays from the
 

figure of $2.15/watt projected in Section IV to the
 

equivalent of,$0.T0/watt. As array costs decrease further,
 
the savings from optical concentration also decrease but
 
remain appreciable even at array cost levels of *50/m2
 

(under $0.50/watt) for unconcentrated arrays.
 

From these results, it appears that the use of optical concentration
 
is a very powerful approach to achieving large reductions in the cost of
 
photovoltaic solar energy in the near future, in favorable locations and
 
applications. However, optical concentration increases system complexity
 
and therefore is most likely to be applied to large systems for which the
 
increased engineering design and installation costs will not constitute
 
a severe cost penalty. Optical concentration can be applied to space
 
systems as well as terrestrial systems, although the degree of optical
 
concentration which is practical for space systems is lower because
 
of the increased difficulty of heat rejection. For the low concentration
 
ratios found to be optimum in the ASU-Spectrolab study, the additional costs
 
involved in fabricating cells and arrays designed for use with optical
 

concentration were found to be small.
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IV. COST ANALYSIS
 

General
 

In this section, we will make the cost analysis by presenting cost
 
estimates for cell and array fabrication based on similar assump
tions. In general, our assumptions are that we will be using the
 

best currently available technology, with reasonable engineering
 

extensions to fit this technology to our needs. 
We are not assuming
 
any major changes in process technology, but we are assuming
 

certain improvements in process technology which we regard as
 

reasonable, low-risk assumptions. In the blank fabrication area,
 

we assumed that:
 

a) the cost of poly would be $35/kg; and
 

b) kerf loss in cutting could be reduced to 0.15 mm and
 

etching loss to 0.05 mm.
 

We have experimentally verified that good solar cells can be pro
duced from off-grade material which can be purchased for about the
 
assumed price, and that removal of 0.03 mm/face from saw-cut slices, 
in sodium hydroxide etchant, produces and adequately damage-free
 

surface. We have not experimentally verified the assumed reduction
 

in kerf loss from 0.30 to 0.15 mm, but manufacturers of blades
 
and slicing equipment have stated that they believe this goal is
 

attainable within current technology.
 

There are many options available in the cell fabrication area
 
which would produce cells of very similar characteristics and
 
cost. 
We have chosen a process involving the use of conventional
 
thermal diffusion for the junction formation step, with spin-on
 

diffusants applied to both surfaces of the blank (a phosphorus
containing diffusant on one 
side, a boron-containing diffusant on the
 
other). Two diffusants are not strictly necessary, particularly if low
resistivity silicon material is used, but will produce a better cell.
 

Contacts are applied by screen printing; we have verified that contacts
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of acceptable electrical and physical characteristics can be made in this
 
way. The anti-reflection coating is assumed to be applied by a spin-on
 
technique; we have received samples of an AR coating material for spin
 
application but have not verified its performance as yet. 
The final
 
processing step is an operation to remove the Pi/N+ junction at the edge
 
of the cell; this can be done by stack etching if round cells are to be
 
produced, or by diamond sawing if another shape is 
to be cut from the
 
round blank. 
If maximum packing factor is desired, the best choice is
 
a hexagon, which can be produced by three passes through a double-bladed
 
saw. The hexagonal cell has 82.7% of the area of the round blank from
 
which it is cut, while a square contains only 63.7% of the area of the
 

round blank. 

After testing and sorting by automatic machinery, cells are interconnected 
by soldering, using automatic machinery cutto and form the mesh inter
connectors and to solder the interconnectors to the cell. 
Although no
 
machinery exists which performs these operations in precisely the required
 
way, similar machinery has been .built to automatically test, sort and
 
interconnect the 2 x 2 
cm cells used in space applications. The basic
 
technology is well known and we see no reason why such machines cannot
 
be built, although the development of a completely satisfactory machine
 
is not a trivial engineering project.
 

Interconnected strihgs are ilaid down on anodized aluminum extrusions (for
 
mechanical support, and thermal control) and coated with a silicone
 

conformal coating.
 

The cell and array design and processes which we have chosen for analysis
 
are reasonable choices for the near future. 
 The fact that considerable
 
technological developments will occur which will provide new options
 
for further cost reductions. 
At the time at which these options become
 
technologically feasible, their economics will be evaluated against the
 
costs of the conventional technology at that time poerJod. n the next 

48
 



section, we present cost estimates for the baseline process as it.might
 

be carried out in a minimum-sized plant in the near future. In sub

sequent sections, we attempt to project unit costs at higher production
 

rates, for this same process and design. These estimates are quite
 

rough, but are intended to provide some idea of the unit costs attainable
 

with conventional technology as a function of production rate and time,
 

and therefore to define the economic environment in which the evaluation
 

of future technological developments will be carried out.
 

Detailed Cost Analysis
 

It was assumed that the crystal growing operation employed five large

capacity crystal growers operating 24 hours per day, 7 dayts per week,
 
49 weeks per year. It was also assumed that the machine availability
 

was 80% (i.e., that the total amount of material processed was 80%
 

of the amount that could be processed if there were no machine down

time or other interruption of production) and that 80% of the crystal
 

grown was within specifications. With these assumptions, five crystal
 

growers would produce 23,000 kg-of good 78 mm (3") diameter crystal
 

per year. The detailed cost analysis of the crystal growing operation
 

is shown in Table 4 and is representative df data supplied by Leybold

Heraeus(38) on one of the largest crystal furnaces available. The totals
 

shown are the total manufacturing costs to which the cost of polycrystal

line silicon must be added to obtain single crystal costs. Using the
 

$35/kg poly crystal cost assumptions this results in a single crystal
 
silicon cost of $62.03/kg for 3 inch diameter crystals.
 

To process this material into blanks, 18 slicers would be required. With
 

a slicing yield of 95%, they would produce 5.6 million good slices per year
 
from the 23,000 kg of crystal, operating 24 hours per day, 7 days per week,
 

49 weeks per year. The slicing cost analysis is summarized in Table 5.
 

On the same basis, the subsequent processing line must accept 681 slices
 

per hour. Assuming 80% machine availability on the cell processing line,
 

the line must process 851 slices per hour when operating. A design
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TABLE 4 

-. PRODUCTIVITY OF EEZ 1600/6000 CRYSTAL GROWING MACHINE FOR-SILICON 

Maximum Pulling Length i600 mm (62.9") i600 mm (62.9") 

Crystal Diameter 52.5 mm (2.06") 78 mm (3.07") 

Orientation 1-1-1 1-0-0 1-1-1 1-0-0 

Cyl. crystal length mm 1400 (55.1") 1450 (57") 1350 (53") 1400 (55.1") 

Cyl. crystal weight Kg 7.100 7.4 15 15 

Remaining Si in crucible o.4 0.3 0.85 0.55 
and tapered ends Kg 

Crucible charge Kg 7.5 7.7 16 16.3 

Theoretical yield 94.6 96.1 93.75 96.3 

1.0 Charging time 

1.1 Ldadming min 10 10 

1.2 Melting min 60 8o 

1.3 Balance Temp. ain 5 5 

1.4 Pulling time min 740 795 

1.5 Cooling time min 90 120 

1.6 Remove crystal min 15 15 

1.7 Cleaning after 20rain2020 
5 charges (100 ain 

total) 
1.8 Tot&l 1.1-1.7 min T51 

1.9 Service and repair 40 40 
4% of 1.8 

1.10 Total time/charge 980 1085 

Pulling time is estimated
 
at rm/ain 1.9 ima/min 1.7 m/min 



2.0 Productivity/Year 52.5 mti 
,L-l-1 

(2.02") 78 mm (3.07") 

2.1 

2.2 

2.3 

2.4 

2.5 

Available hours 

(49 wks x 7 days x 24 hrs) hrs. 

Theoretical no. of charges 

Assumed 80% yield 

Silicon requirement/yr Kg. 

Assumed 80% yilId of 
cylinder crystal Kg. 

8,200. 

500 

400 

3,000 

2,400 

8,200 

450 

360 

5,760 

4,600 

3.0 

3.1 

3.11 

3.12 

3.13 

Power requirements and 

operational supplies 

Power consumption/charge 

Melting 

Pulling 

Total 

DIh 

KWh 

KWh 

50 

435 

W 

80 

530 

3.2 

3.3 

3.4 

Cooling water/charge 

Argon/charge 

Crucible diameter 

gal. 

ft. 3 

MM 

15,508 

98.C 

200 

17,173 

106 

240 

4.0 Productionccosts/year 

4.1 Direct labor, 1 man, 
5 machines 
(20% of $9/hr. x 8200) 

4.2 Power ($.03/KWh) 

4.3 Argon ($O.iO//ft3) 

4.4 Quartz crucibles 
($50 each) 

4.5- .Spare parts .and wear parts 

$14,760 

7,275 

4,945 

25,000 

,20,000 

$14,760 

8,235 

5,300 

27,500 

20,000 

4.6 Total'4l  4.5 $71,980 $75,795 



4.7 	 Production costs/Kg
 
$16.48
mono crystal 	 $29.99 

These figures are only meant to be
 

representative. Each user must
 
adjust the above to suit their
 
particular cost structure.
 

5.0 	 Fixed costs
 

5.1 	 Machine price based on a
 
purchase of 5 units $170,000 $170,000
 

5.2 	 Transportation, installation
 
(estimate) 	 15,000 i5,000
 

- $40/ft2
 5.3 	 Building costs 


180 Ft2 required 7,200 7,200
 

5.4-	 Investment
 
5.1 - 5.3 $192,200 	 $192,200 

5.5 	 Crystal costs, depreciation 

38, bho
5 years 	 38,440 


5.6 	 Fixed costs/Kg crystal of 

3.07" 0 (pt. 5.5/2.5 = $/Kg) 8.35/Kg 8.35/Kg 

6.0 	 Manufacturing costs/Kg Si
 

6.1 	 Production costs/year $ 29.99 $ 16.48
 

6.2 	 Fixed costs/year 8.35 -8.35
 

6.3 	 Total oosts/Kg Si $ T$ -s4.83 

2.20 	 2.20
6.4 	 Allowance for silicon wasted 


6.5 	 Total manuf. costs/Kg Si $ 40.54 $ 27.03 



Table 5 

Cost Analysis -- Slicing and Etching
 
Projected 197.7-Costs (revised)
 

Basis:' 	Cost/kw of-3"-diameterblanks-

Final blank-thickness 0.15 mm
 

Silicon 	Cost
 

Kerf loss: 0.15 mm 
Etching loss: 0:05 mm 
Yield loss: 0.02 mm .(95% slicing yield) 
Material utilization: 0.15/0.37 = 41% 
Cost of silicon consumed in process at $62.03/ke 
- crystal cost 90.97 
Slices/kg product: 599 

Other Material
 

Blades: $80/blade, 2000 slices/blade 23.96
 
Etchant: sodium hydroxide 4.10
 
Other chemicals and solvents 4.50
 

Labor
 

Feed rate: 2P"/minute, 40 slices/hour
 
Machine hours/kg product: cutting L4.98
 

,Machine set7up and adjustment 2.25
 
17.23
 

Labor hours/kg product: slicing 3g,45

(1 operator-per 5 machines)
 

-. 0.50
-Etching 


3.95 x $7.50/hr. 29.63
 

Totals
 

Total contersion cost per kg of product $153.16
 
'Cost of silicon crystal in product 62.03
 
Value of product per kg $215.19
 
Cost per completed blank 2 0.36
75.21
 
Cost per square meter (2.86 2/kg) 
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operating rate of 900 slIces/hour-has been used in the following dis

cussion.
 

The cell processing operations are listed in Table 6. Steps 1, 2 and 8
 

are carried out using equipment of the type developed for automatic
 

application of photoresist. A typical example is the GCA 6605/4122
 

automatic coater with mated bake oven. Using a 12 second -spin cycle,
 

which is adequate for the application of spin-on diffusants, the four
 

tracks of this machine will process 900 slices per hour. Three machines
 

would be required in a minimum-size facility, one for each of the three
 

steps. The GCA 6605/4122 coater costs about $40,000 with programmable
 

controller which can interface directly with a process control computer.
 

Steps 3 and 7 can most advantageously be performed in belt furnaces. The
 

use of spin-on diffusants eliminates the need for careful control of
 

furnace atmosphere during diffusion, and even the smallest belt furnace
 

can process far more than 900 slices per hour if the slices are in wafer
 

carriers, 25 wafers per carrier, and the wafers will then be transferred
 

to mating quartz boats by dump transfer. Suitable belt furnaces are
 

priced at from $5,000 to $15,000 depending on size and features.
 

At the exit end of the diffusion furnace, wafers would be dump-transferred
 

from quartz boats to Teflon carriers, and step 4 would be carried out
 

in a spin rinser-drier, 4 boats (100 wafers) per load. One machine
 

would be required, costing about $2,500.
 

Steps 5 and 6 are performed using automatic screen printers with cartridge
 

feed and automatic paste dispensers. Such machines are available from
 

several manufacturers at a price of about $15,000. Since screen printing
 

is generally done on square ceramic substrates, the cartridges and feed
 

mechanisms used on presently available printers are not directly compatible
 

with the wafer carriers used elsewhere in the processing. However, it
 

appears that compatibility could be achieved with minor mechanical
 

modifications. Each printer should be providewith a small oven to
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Table 6 

Baseline Process Operations 

Starting material: Etched silicon blanks, 78 mm diamete)',0Oi S5tawi
 
thickness, resistivity and conductivity type
 
optional.
 

1) Spin on P-type diffusant and bake.
 

2) Spin on N-type diffusant on other surface and bake.
 

3) Diffuse in belt furnace.
 

4) Remove diffusion oxides in BF, rinse and dry.
 

5) Screen print back contact and bake.
 

6) Screen print front contact and bake.
 

7) Fire contacts in belt furance.
 

8) Spin on AR coating and bake,
 

9) Cut to final size and shape.
 

1O) Test and sort.
 

ii) Interconnect into series strings.
 

12) Apply first layer of encapsulant to aluminum extrusion and lay down
 

cell strings.
 

13) Apply second layer of encapsulant and cure.
 

14) Install end connection blocks and'caps.
 

15) Final test.
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dry the paste.
 

The screen printed contact is the first departure in this process from 

the conventional technology employed in space solar cells. The major 

advantage of the screen printing over vacuum evaporation is the extremely 

high throughput. Typical cycle times for screen printers are afto' 4

seconds per print. Thus two machines costing about $30,000 with one
 

operator per machine, are sufficient to handle the two screening operations
 

at a rate of 900 wafers/hour. A vacuum process would require a bank of
 

equipment costing an order of magnitude more, plus a much larger staff to
 

handle not only the deposition itself but also the ancillary duties such
 

as mask cleaning and maintenance. Screen printing is also more economical
 

of contact metal since metal is deposited only where required. The major
 

drawback to the screen printed contact is the higher contact resistance
 

between the contact metal and the silicon. Adequately low contact resis

tance can be obtained for cells designed to operate at i0 mW/cm2 illumina

tion. If optical concentration is used, the screen printed contact may
 

not be satisfactory at present. There are several possible ways of
 

improving the contact resistance, so that further development should result
 

in contacts which are satisfactory for moderate concentration factors.
 

The second departure from conventional processing is the use of a spin-on
 

AR coating. The coating material is a solution of organometallic com

pounds which form a glass layer of the proper refractive index after firing.
 

The coating thickness is controlled by the solution viscosity and the
 

spin speed. The economic advantage of this process over vacuum deposition
 

is not as large as for contacts, because the vacuum deposition of the AR
 

coating does not require masks and the deposited layer is much thinner
 

than the contact metallization. The drawback of the spin-on process is
 

that precise control of thickness and refractive index is more difficult
 

to achieve.
 

The spin-on AR coating has not been thoroughly evaluated; however, for
 

purposes of cost analysis the total processing cost would be little affected
 

by the substitution of a process involving vacuum evaporation, sputtering,
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or chemical vapor-deposition, provided the apparatus used could accept
 

wafers in carriers at a steady throughput of 900 wafers/hour. In
 

principle there appears to be no reason why equipment could not be
 

built to carry out any of the above processes. Since such equipment
 

would have to be custom designed and developed, we have assumed the
 

spin-on process because the equipment cost is known.
 

Step 9 would require a simple modification to an existing dicing saw, 

such as the Tempress 602 ($12,000), to mount two blades on the mandrel,
 

and to rotate the table 600 between cuts. However, it would be much less
 

expensive to build a saw specifically for this operation, since most of
 
the cost of the Tempress saw is accounted for in the step-and-repeat
 

mechanism.
 

The remaining operations require specialized equipment which must be de

signed and built for the operations. In particular, handling mechanisms
 

will be different than those used in cell processing if the cell is cut to
 

a non-circular shape. Estimated costs (not including development) are
 

given for the remaining equipment. Optical elements for concentration are
 

not included in these estimates.
 

In summary Table 5 gives the cost of an etched blank ready for diffusion.
 

Table 7 provides cost data for,steps 1 through 10 of Table 6, giving the
 

cost of a completed cell, tested and sorted. Table 8 provides cost data
 

for steps 11 through 15 of Table 6, giving the manufacturing cost of a
 

completed module. 
Table 9 summarizes the equipment and sface requirements.
 

Table 10 provides a summary of the costs for the entire process.
 

It is difficult to estimate just how much optimism is built into these
 

figures. Perhaps the most questionable assumption is that consistant
 

round-the-clbk capacity operation could be achieved. 
While an adequate
 

allowance for equipment maintenance has been provided (both ,scheduled and
 

unscheduled) it is difficult to imagine economic conditions which would'
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Table 7
 

Cost Analysis -- Cell Fabrication
 
Projected 1977 Costs
 

Basis: 	 Cost/year of operation of one
 
production line, 900 cells/hr
 
design capacity, 8232 hrs/yr
 
operation.
 

Material 


Silicon 	slices, 78 x 0.15 mm
 
5,585,000/yr x $9.36/slice 


Contact paste, diffusants and AR coating 

Miscellaneous material 


Total Material 


Labor
 

20 operators x $7.50/hr x 8232 hours-

Total Cost 


Acceptable cells: 5,585,000 starts/yr x 0.85 yield 

Cost per acceptable cell 


Area produced: 4,747,250 cells x 39.5 cm2/cell (hexagonal) 

Cost per square meter 


Output power at 1 kw/m2 insolation, 250C, 14% efficiency 

Cost per watt 


K$
 

2,006.5
 
194.1
 
100.0
 

2,300.6
 

1,234.8
 
3,535.4
 

4,747,250
 
$0.745
 

18,760 m2/yr
 
$188.46
 
2,626 kw
 

$1.35
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Table 8
 

Cost Analysis -- Module Fabrication
 
Projected 1977 Costs
 

Basis: Cost/year of operation of one
 
production line, 900 cells/hr
 
design capacity, 8232 hrs/yr
 
operation.
 

Material $
 

Solar cells, hexagonal, 67.55 mm 3 535.4
 

Aluminum extrusion, assym. I-beam 11" wide 
263,000 ft/yr x 1.576 lb/ft x $0.64/1b 265.3 

Silicone encapsulant, *02" thickness over cell 
74,832 lb/yr x $2.50/lb 187.1 

Miscellaneous materials 150.0 
Total Material 

Labor
 

20 operators x $7.50/hr x 8232 hours 1,234.8
 
Total Cost 5,372.6
 

Area produced: 18,760 m2 cells x 0.95 yield x
 
1/0.85 packing factor: 2
20,967 m


Cost per square -meter $256.25
 
Output power at 1 kw/m2 insolation, 25°C, 14% cell efficiency 2495 kw
 

(11.9% array efficiency)
 
Cost per watt $2.15
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Table 9 

Summary "of Equipment and Space Requirements
 

Equipment
 
-$850K
*5 crystal growers at $170K 

43218 slicers at $24K 

25
1 etching station 


3-coaters at $38K (with bake oven) 
114
 
24
2 belt furnaces at $12K 


-2 screen-printers at $15K (with dryers) 30
 

3 dicing saws at $12K 36
 

1 automatic cell tester/sorter 45
 
90
1 automatic interconnect soldering machine 


1 vacuumencapsulation machine 15
 
4o
Miscellaneous equipment 


$206 1
 
Installation .309
 

$2770K 

'Spare
 
900 ft2
 *Crystal growing 


Sliding and etching 1500
 

Cell fabrication 3000
 
540O -ft at $40/ft2 $ 216K 

Module fabrication 3000 ft2 

Office and laboratory 3000 
6ooooft2 at *30/ft2 180 

10000 ft2 at $20/ft2 200
Storage: 

$56
214-0 t 


*Costs associated with these items are already included in the crystal
 

cost analysis.
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Table 10
 

Cost Summary
 

Basis: Annual costs as estimated
 
in previous tables.
 

Material 


Polycrystalline silicon ($35/kg) 

Other materials 


Direct Labor
 

45 operators/shift at $3/hr 


Overhead
 

Indirect labor 

Fringe benefits 

Rent and facilities maintenance 

Depreciation of equipment 

Miscellaneous manufacturing overhead 


K$ % 

997.3 19 
1,505.3 28 

1,111.3 21 

670.0 12 
356.3 7 
85.8 2 

494.o 9 
152.6 3 

5,372-.6 
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provide a sufficiently high level of demand so that production cut-backs
 

due to lack of orders were never encountered. Also, no allowance has
 

been made for production shut-downs due to changes in product design.
 

Costs would be substantially higher if the more probable assumptions of
 

fluctuations in production rate and product mix were made. It should be
 

borne in mind that a very large percentage of the costs are fixed costs,
 

at least in the short run. This is true even for materials, since the:
 

continuous operation of such a plant would involve careful scheduling of
 

deliveries from vendors to minimize inventory requirements, and these
 

schedules could not be changed at a momentts notice. Nevertheless, since
 

the assumption of steady continuous operation is always made in other
 

cost analyses of this type, the same assumption is made here.
 

On the other hand, the direct labor costs are probably higher (by as much
 

as a factor of two) than the minimum requirement. Because off-the-shelf
 

equipment has been used in the estimates, each piece of equipment is
 

assumed to be self-contained and transfer of product from one operation
 

to other is assumed to be done manually. If such a production line
 

were to be actually built today, it is clear that the expenditure of
 

engineering effort to provide more integration of equipment would be
 

worthwhile in reducing labor requirements.
 

Ultimate Cost Analysis -

The cost estimates in the previous section are estimates of manufacturing 

cost. At least two other cost figures are of interest in assessing the 

competitive position of photovoltaic solar power systems. Selling 

price includes manufacturing costs plus engineering design and marketing 

costs, general and administrative expenses (including the costs of 

working capital), and profit. Installed cost includes selling price 

plus other costs incurred by the purchaser, such as system engineering, 

specification and procurement costs, transportation and erection of the 

system at the site, site acquisition and preparation expenses, etc. 

Installed cost is obviously the most meaningful cost parameter to use 

in comparing solar power to other power sources. However, it includes 
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many cost items which woud-differ'.cohsiderably between different
 

installations and which in any case are outside the scope of this study.
 

Manufacturing cost is the best parameter to use in comparing array
 

processes and design concepts and therefore is most appropriate for use
 

in this study.
 

In previous sections, estimates of manufacturing costs for cells and
 

modules have been generated. For the purpose of comparing solar power to
 

other power sources, system costs are most meaningful. A solar power
 

system consists of a number of modules making up the array, plus
 

additional elements such as energy storage components, regulation and
 

control electronics, and power conditioning and conversion equipment to:
 

match array output to the requirements of the load. Again,-the estimation
 

of system costs involve factors which are application-dependent and which
 

are outside the scope of this study.
 

It is not uncommon in the literature to find estimated manufacturing costs
 

for solar cells being used for comparison purposes as if they were
 

equivalent to installed costs for photovoltaic solar power systems, or
 

to encounter cost estimates which are not sufficiently well defined to
 

be placed in the appropriate category. This presents some problems in
 

comparing the cost estimates developed during this~proje .with others in the
 

literature.
 

In order to project the behavior of costs ever tt 4e, the "experiencee curve"
 

concept developed by the -Boston Cqnulting. Group will be used.,, Thjs
 

projection showsthat if unit cost (in constant dollars) is plotted against
 

total accumulated unit volume (both variables on logarithmic scales)
 

regular curves result which,can be interpreted in terms of the economic
 

environment of the industry and from which conclusions can be drawn as
 

to the optimum business strategy for a producer. Examples of these plots
 

are given in Figure 5. A straight line on these plots implies a constant
 

fractional change in cost or price for a given factor of increase in
 

total accumulated volume. The straight lines marked "90% slope", 118%
 

slope", and "'70%slope" refer to price decreases of 10%, 20% and 30% for 

each doubling of accumulated volume.
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For most industries, price/volume plots display a slope between 90% and
 

70%, with a 90% slope characteristic of mature industries (and also of
 

the start-up phase of new products or industries) and a 70% slope
 

characteristic of periods of rapid technological change and market
 

expansion within an industry.
 

If the production rate increases exponentially with time, the ratio of
 

the total cumulative volume produced at the end of a given year to the
 

production during that year will be a constant. For a production rate
 

which doubles every two years the constant factor is 3.4. Also'l it would
 

be unrealistic to assume that the single production line analyzed in the
 

preceding section would account for a major fraction of industry produc

tion. If an assumption is made that it accounts for one-third of total industry 

production at the time the estimated costs are realized, the industry.: 

production rate at that point would be about 60,000 m2/year and the 
2

accmnlated production 200,000 m 

In Figure 6 we have plotted the blank, cell and array cost figures on a
 

plot of silicon solar cell cost projections taken from the Satellite
 

Solar Power Station Feasibility Study (NASA CR-2357). The points for
 

the blank and cell are connected to the 1971 points for a-2" diameter
 

wafer and cell. It can be seen that the-connecting lines have a 70% 

slope. While this doen't prove anything, it is consistent with the
 

experience of other industries under similar conditions and therefore
 

tends to support the reasonableness of the cost estimates previously
 

derived.
 

Also shown on Figure 6 are lines extrapolating costs to a total cumula

tive production volume of 20 million square meters. The line for the
 

blank cost is drawn with a slope of 90%, and this results in a prediction
 

of a factor of 2 decrease in cost for a factor of 100 increase in
 

accumulated volume, to about $37/m2 . The point labeled "Cost Projection
 

for EFG Ribbon-Grown Solar Cell" is plotted at $25/m 2 , the cost estimates
 

for EFG ribbon adopted in NASA CR-2357. The Phase II cost estimate by
 

.
Tyco, is $8.75/2 As indicated, the Tyco estimate appears to be too low
 

but the NASA CR-2357 estimate appears reasonable.
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From the point representing the array cost estimate derived in this
 

report, lines with slopes of 90%, 80% and 70% are drawn. A 90% slope
 

for -the blank cost was considered reasonable on the assumption that the
 

blank fabrication processes are already highly mechanized and rapid
 

cost reduction is not likely without substantial technological change.
 

On the other hand, the level of mechanization described in the preceding
 

section for cell and array fabrication is clearly only a first step, and
 

the cost elements associated with direct labor and structural materials
 

could clearly be reduced considerably by greater mechanization and more'
 

thorough design. A 70% slope is obviously impossible since the array
 

cost would then be less than the blank cost, but 80% is not unreasonable
 

and would result in an array cost slightly lower than the SSPS Solar
 

Collector Cost Projection of $68/m2 . This would imply that the additional
 

costs of cell and array fabrication could be reduced from the level of
 

about $180/m2 estimated in the previous section to about $30/m 2 , or a
 

factor of 6. While this is clearly a challenging task, it should be
 

borne in mind that the 100-fold volume increase itself would be expected
 

to provide a cost reduction of a factor of 2 (90% slope).
 

Prospects for achieving these cost reductions will be discussed in the next 

section of this report. The remaining portion of this section will attempt 

to forecast the timae at which these costs and production volumes will be reached. 

Industrial Growth Forecast
 

For purposes of analysis it was assumed that we would start by building
 

a plant with a production level of 1.5 MW/yr in 1978, then double
 

production capacity every two years thereafter. The 1978 level was the;
 

most optimistic forecast which could be justified based on marketing
 

studies. It corresponds to almost 100% saturation of the remote power
 

market which is presently the only commercial application for photo

voltaic terrestrial systems. A doubling time of 2 years was the most
 

optimistic forecast we could justify based on studies of production
 

increases in other industries.
 

The industrial growth forecast was thus based to a great extent on considerations
 

of demand, rather than on the production factors. It has been apparent that the
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doubling of demand every two years would require a massive and continuing 

effort to develop new applications and markets for photovoltaic systems, 

and that government assistance in this effort would be even more 

critical than in technology. No attempt has been made to defiihe- the 

specific approaches to this problem which should be considered by the 

government. Historically it is apparent that much less attention has
 

been paid to stimulating demand than to improving technology, although
 

the results of this study appear to us to make a strong case for the
 

position that, because of inadequate demand, industry is presently unable 

to take advantage of existing low-cost production technology to make
 

immediate cost reductions.
 

If production'rate was limited only by technological considerations, a
 

production level'of'about 60,00 m2/year (about 7'MW/year at the array
 

level) could be reached by 1977,,as estimated in the preceding section,
 

and thereafter production could be doubled each year to reach 6 million
 

m2/year (700 Mw/year) in 6.5 years.
 

Figure 7shows several production rate estimates.. Line "A' is the working
 

estimate, with a 2!year doubling time. Line "B", with a 5-year doubling
 

time,, is a reasonable estimate of the rate at which demand might be
 

axpected to increase without governmental stimulation, based on the
 

experience of similar industries. Line "C", with a 1-year doubling time,
 

represents our estimate of the maximum rate at which production could
 

increase if limited only by technological factors-. Finally, line "D"
 

is the production rate-fbrecasted by the National Science Foundation
 

(H. R. Blieden: A National Plan for Photovoltaic Conversion of Solar
 

Energy; Proc. Workshop on Photovoltaic Conversion of Solar Energy for
 

Terrestrial Applications (Cherry Hill, 1973); NSF-RA-N-74-013). The
 

approximate doubling times for line "D" are 20 weeks up-to 1000 MW/year
 

increasing to 5 years beyond 5000 MW/year.
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V. CONCLUSIONS
 

Manufacturing costs of solar photovoltaic arrays, without optical
 

concentration, can be reduced to approximately $250/m
2
 

through the utilization of existing mass production equipment and processes.
 

The only critical requirement is the growth of demand to the point at
 

which mass production is economically feasible. During this period,
 

engineering effort will need to be expended to plan, construct and debug
 

the production lines. This effort is essentially of a production
 

engineering rather than an R & D nature, and can most effectively be
 

carried out in a pilot line operation.
 

To reduce manufacturing costs to $70/m 2 and $0.50/watt, the major tech

nical problems to be addressed are lowering the blank cost by at least a
 

factor of 2, to the level of $25 to $35/m2, and lowering the cell and
 

array fabrication costs by a factor of 4 to 6. Again, these objectives
 

require a major expansion of production volume as well as technological
 

development.
 

There are at least four options which appear to be-capable of reducing'
 

blank cost by the required am6unt:
 

1) Ribbon growth of silicon crystal
 

2) Inexpensive silicon poly from silane
 

3) New slicing technology
 

4) Optical concentration
 

Research on ribbon growth is being supported by ERDA and NASA, concentrating
 

on the EFG process and the web--dendritic process. In order to provide the
 

required cost, improvements are needed in all of the following areas:
 

a) crystal structural perfection and lifetime must be improved 

to closely approach present crystal growing techniques; 

b) ribbon width should be increased and thickness reduced, 

and dimensional control greatly improved; 

c) means for continuously replenishing the melt should be 

developed; 
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d) 	growth techniques should be developed for growth of
 

multiple ribbons;
 

e) 	all of the above developments should be incorporated
 

into the design of reliable equipment, suitable for
 

production-line operation.
 

Very inexpensive poly, of the order of $6/kg, could provide the required
 

cost reduction.without major changes in the crystal growth or slicing
 

processes. The approach utilizing silane is preferred because:
 

a) 	silane pyrolysis to silicon will consume much less
 

electrical power than the present process, reducing the
 

payback period from years to months;
 

b) 	it is likely that good quality hexagonal single crystal
 

material can be deposited directly from silane in the
 

poly reactor at a small additional cost, eliminating the
 

crystal growing step and reducing the loss of silicon
 

incurred in shaping cells to produce high packing factor;
 

c) 	silane is inherently more suitable for the production of
 

thin films because deposition occurs at much lower
 

temperatures and reaction products are non-corrosive to
 

substrate materials.
 

A slicing process which substantially eliminated the loss of silicon in
 

the cutting and etching steps would also provide the required cost
 

reduction independently of other technological improvements. A non

abrasive cutting process is required to prevent the introduction of damage
 

which must be etched away. No potentially suitable process was
 

uncovered in this study, but some form of electrochemical machining,
 

possibly using very thin wires as electrodes, might be feasible.
 

Optical concentration reduces the effective blank cost per watt by
 

increasing output per cell at the expense of increased array cost. Based
 

on current research results, it appears that concentration factors
 

(including optical losses) of about 4 in non-tracking collectors and
 

about 15 in tracking collectors, are feasible with low-cost optical
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elements. These concentration factors appear to be compatible with low

cost cell designs and processes. While the use of concentration does
 

involve some additional constraints on array location and increases the
 

cost of the array fabrication steps, it is felt that the array target
 

cost of $0.50/watt is well within reach, independent of other tech

nological advances.
 

In addition to these four options, thin film polycrystalline cells could
 

provide costs much lower than $0.50/watt. The technical problems which
 

must be solved in order to accomplish this are very basic in nature,
 

and it is difficult to evaluate this option on a basis comparable to
 

the other four options.
 

Considering the four listed options, it would appear that at least one
 

can be confidently expected to be developed within the next five years.
 

In particular, optical concentration involves only the solution of
 

engineering design problems, without the need for any research effort
 

to remove underlying technical limitations, and ribbon crystal growth
 

and inexpensive poly from silane appear to be not very far from reality.
 

Reduction of cell and array fabrication costs require mainly increased
 

mechanization of fabrication operations and material cost reduction.
 

Mechanization, as before, can be expected to occur as a result of
 

increased production volume. Material cost reduction is largely a
 

matter of design refinement involving minimization of the amount of
 

structural and protective.materials used, and substitution of lower-cost
 

materials. The major technical need is for more information relevant
 

to reliability of arrays in various terrestrial environments, since
 

manufacturing cost reductions cannot be obtained at the expense of
 

service life if solar photovoltaic power generation is to be economically
 

advantageous.
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APPENDIX I 

THE ELECTROCHEMICAL PRODUCTION OF 

HYDRIDES IN MOLTEN SALTS 

Dr. W. Sundermeyer * 
Organic Chemistry Institute of the 

University -of Goettingen 

and 

Dr. L. M. Litz
 
Union Carbide Corporation
 

Research Laboratory, Parma, Ohio
 

ABSTRACT 

The development of an electrochemical process for hydrogenation of halogen 

compounds of boron, silicon, germanium and phosphorus is described. 

The production of hydrogen compounds is possible with this process. An 

experimental facility for the manufacture of silane was built, which could 

produce -sufficient inexpensive silicon to meet the requirements of the entire 

U. S. A. for pure silicon (for transistors, etc.). 

Possibilities and problems of applied electrochemistry have been thoroughly 

discussed in this journal recently, in which reactions in aqueous or organic 

solutions have been emphasized. 1 Following the historical development still 

further, one sees on the other hand, that the production of molten salts is 

still considered as electrometallurgy even though considerable contributions 

have been made toward a general utilization of molten salts as a reaction 
e Zmedium. The specific advantage of the application of ionic liquids lies in the 

fact that one could use the electrochemical or metallurgical process as a step 

in a continuous or semi-continuous recycling process, usually to reestablish 

the initial state again. An especially typical example occurs here in Germany 

in which a well established process for the hydrogenation of halogen compounds 

Translated from: Chemie-Ing.-Techn. 37. Jahrg. 1965/Nr. 1; pages 14 to 18 

Presented to the GDCHrTechnical Group (Applied Electrochemistry,
 

Oct.' 22 & 23T, 1964 in Ludwigshofen/Rh)
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of groups III, IV and V of the Periodic Table operates. The process was
 

further expanded in the U.S.A. for the manufacture of silane.
 

With the increasingneed for pure silicon for semiconductor devices, an. 

inexpensive process for the production of silane (Si H4 ) seemed desirable, 

since as is well known, it can be thermally decomposed to very pure silicon. 

.Older methods, especially the use of silicides and acids in aqueous or non

aqueous systems (liquid ammonia/ammonium bromide) or the hydrogenation 

of silicon tetrachloride with the well known but very complex hydrides of 

boron and aluminum (boronates, alanates), -although still very I 

useful for laboratory use, are not practical-for commercial synthesis. No 

s6lvent of the usual-sort could be found for the well-ordered salt-like 

hydride of alkali and alkali earth metals. A big step forward wag a 

process4 in which silicon tetrachloride or other halogen compounds were 

converted in a suspension of sodium hydride in mineral oil at an elevated 

temperature; aluminum must be present as an "activator" (or catalyst). 

A steady new formation of complex compounds between these activators and
 

the.sodium hydride, and their solubility in the above solvents allows a
 

vooth running reaction.
 

Reduction of SiCl in a Melt
 

Even though there are no conventional solvents for salt-like hydrides, they
 

do dissolve well in molten salts, e. g., in a lithium chloride/potassium
 

chloride melt (at 4000 C), and are then able to undergo the desired reaction.
 

If silicon or boron halogenides are passed through the above solution,
 

then immediately the halogenide is exchanged for hydrogen.
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4 LiH + Si Cl Sill4 + 4 Li C1 l) 

If simultaneously one sets into action the usual fusion electrolysis with a 

hydrogen-bathed cathode, there will be formed new alkalihydrides continuously 

over the precipitated alkalimetal (Li). This corresponds to the initial statb, 

without changing the salt melt or producing useless by-products. 

4 Li Cl-' 4 Li+ 2 Cl 2 *(2) 

4 Li+ 2 H- 4 LiH
 
2
 

the results of the balanced reaction is 

Si Ci 4 +ZlHz Sil 4+2Cl z (4) 

or if one uses the chlorine made directly again to produce silicon tetrachloride, 

Si+ 2 C12-p Si C14 (5) 

For the elements boron, germanium and phosphorus the same formulas can be 

used. 

Methods for the Technical Realization of This Reaction 

There have already been reports concerning the choice of melts and the different 

5possible end-products, and also concerning the reaction results 3 . In the follow

ing, the specific requirements which the apparatus must fulfill to have the desired 

reaction, or rather how to overcome the significant corrosion problem, shall be 

discussed. The presence of hydride ions seems to be a prerequisite for the pro

cess, but under no circumstances should the hydrogenated halogen, e.g. , silicon 

tetrachloride, be allowed contact with the alkalimetal in the cathode area, for 
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elemental silicon instead of silane would be formed. Both the free
 

lithium and the alkali-hydride show a strong corrosive action toward al1
 

ceramic materials and graphite. A reaction chamber made of carbon-free
 

steel (and under certain circumstances protected by a layer of solidified
 

melt) is the most suitable becauu@ in the usual electrolysis cell an
 

isolation problem exists.
 

Both possibilities, the semi- and completely continuous process were
 

demonstrated by a simple set-up, on which all subsequent systemsdwere,
 

3
 
based.
 

If for instance one electrolyzes a lithium chloride/potassium chloride
 

melt at 400'C in a simple U-tube (Fig. 1) and the cathode and anode area
 

are separated either through mechanical means or by "freezing" the melt,
 

in the lower area, then the lithium is completely reacted with hydrogen
 

,to lithium hydride, and if one then injects silicon tetrachloride a semi

continuous process results which can be recycled by opening the closure.-


In a larger cell, which has the advantage of a closer electrode spacing,
 

one uses a double wall spacer, whose holes can be shielded by misalignment.
6
 

By doing this one can shield the anode area with its unstable graphite
 

anode against the lithium hydride. Only after more recent experiments
 

was it possible, by incorporation of a tungsten anode, to use again the
 

simple principle of the U-tube in a semi-continuous process, withouttne
 

necessity of the periodic separation of the electrode areas.
 

Continuous Operation Technique
 

Naturally the continuous process is the most interesting. It can be demon

strated in a double U-tube3 (see Figure 2). Between the two sections of
 

the anode and cathode area, there is a third reaction zone, into,which
 

,the silicon tetrachloride vapor, possibly with hydrogen as a carrier
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gas, is injected. During the electrolysis, hydrogen is fed intothe
 

cathode area which is heated to 150-2000C higher than the rest of the
 

apparatud. By this means the formation of lithium hydride is grBatly.
 

enhanced. By convection, the agitation produced by the in~ectedgases,
 

and the rapid transport in the electric field toward the anode, the
 

hydride ions end up in the middle reaction zone, where they react with
 

the silicon-tetrachloride to produce dilane. For this process too,
 

cylindrically symmetric cells with cylindrical separators were developed.
 

A further interesting variation is that, instead of the previously used
 

graphite anode material, coarse silicon or boron granules ake loosely
 

packed in contact with a graphite conductor, which react directly with
 

the anodically formed chlorine to form the halogenides (SiCl4, BC13 ) 9.
 

This cell allows the formationof silane.1 0 However, contact of the rising
 

concentration of silicon tetrachloride with free lithium metal,which
 

reacts slowly to hydride at the operating temperature off35 00C, is un

avoidable, since the hydrogen-bathed cathode is directly connected to
 

the anode delivering silicon tetrachloride. The electrolytic efficiency
 

is also greatly decreased from the free chlorine which may be formed.
 

The free chlorine oxidizer attacks the silicon and causes it to'precipitat
 

throughout the melt, and increases the resistance of the cell. Then the
 

silicon granules fise to the surface and produce a unique surface appear

ance.
 

The anodically introduced boron or silicon must naturally be very pure
 

to avoid contamination of the melting bath and the disassociation of
 

metals other than lithium (e.g. iron out of ferro-silicon).
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The automatic dissolving anode leads to a further simplification
 

of the apparatus, showinin Fig. 2, which resembles the simple U-tube.
 

In one leg of the tube the silicon anode forms silicon tetrachloride
 

at 4000C while at the same time in the seowid leg a hydrogen-bathed
 

iron cathode at 6000C produces lithium hydridel(see Fig. 3).
 

The hydride ions arrive in the anode area by means of the stirring
 

effect of hydrogen but especially through the convection of the melt
 

between the two legs which are at different temperatures. In-order
 

that the hydride ions do not get to the anode itself, whete there
 

would be a discharge, the connecting piece between the two legs is
 

set at an angle to the top of the anode area. By th&s means the
 

transport by convection is improved, as well as guranteeing that
 

the hydride ions will only come in contact with the rising silicon
 

tetrachloride. The most unsatisfactory feature of this cell is the
 

electrode spacing.
 

An essential principal step to a continuous process for commercial
 

use is represented by the apparatus depicted in Fig. 4. In a cell,
 

fitted with a diaphragm or baffle with a silicon granular anode and
 

an iron cathode, lithium and silicon tetrachloride are produced.
 

Since the rising lithium is cauqht immediately in a steel funnel, the
 

whole cell can be made of a ceramic material. i.e. an insulating
 

mass. The lithium rises to a reaction chamber, heated tt 600*C,
 

which is over the cathode area, where it converts to a hydride with
 

injected hydrogen. By convection, the hydride solution arrives, as
 

described in Figure 3, at a second part of the apparatus above the
 

anode area in which the anodally produced silicon tetrachloride
 

rises and is converted to silane.
 

This reactor, because of the decomposability of the end product,
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runs at 4000C. Because of this, a strong convection current for the
 

transport of the hydride in the upper chamber occurs in the melt
 

via a second connecting tube to the first reaction chamber. Only
 

the gradual depletion of the lithium chloride in the electrolysis
 

cells and the precipitation of potassium chloride associated therewith
 

is disadvantageous, since the necessary convection of the melt
 

which is rich in lithium chloride by virtue of the reaction, (Eq.l),
 

is not easily achieved.
 

Technical Experimental Installation
 

All the variations of the process described up ontil now finally led
 

to a mature "pilot plant" which has worked for years, trouble-free
 

(Fig. 5) with over a 90% reaction and a significant yield and delivers
 

very pure silane. Unlike the first-mentioned process in mineral pil,
 

this process is free of boron, aluminum and carbon contamination.**
 

No self-dissolving silicon anode is used because of the aforementioned
 

disadvantage, but instead the silicon tetrachloride is produced ex

ternally to the electrolytic cell using the chlorine recovered.
 

Simultaneously a more compact construction method which has a smaller
 

electrode spacing is achieved, in which the container wall serves
 

as cathode. A bell jar gathers the rising lithium which, because of
 

its low specific gravity flows on its own to the hydride producer.
 

**The present plant could fill the complete demand for silicon in
 

the entire U.S.A. The crystallized product with a specific resistance
 

of at least 1000 ohm-cm can be produced at a third of the price of
 

similar material made by the trichlorosilane process.
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Lithium hydride is again formed here at 6000C, which arrives in the
 

already-mentioned fashion, by convection into the actual reactor
 

(400CC). The descending lithium chloride-rich melt returns to the
 

hydride producer and in part from there to the electrocell.
 

Once again the return to the electrolysis area would not be sufficient,
 

if artificial circulation were used without the use of a pump or the
 

equivalent. For this reason, a gas is introduced into a vertical
 

portion of one of the connecting tubes of the reactors and the cell.
 

The rising gas bubbles push (if the outer tube is close enough to
 

the inner tube) the liquid up before it and pulls the potassium
 

chloride-rich melt- out of the cell, and thereby the lithium chloride

rich melt is brought into the cell via a second connecting tube.
 

As easily seen in Fig. 5, silicon tetrachloride (which has to be
 

introduced anyway), is appropriately used as the carrier gas, so that
 

the silane produced is not mixed with foreign gas which would make
 

the condensation more difficult.
 

En order to give satisfactory results the apparatus must be of a
 

size which would allow 6-10 kilograms of lithium to be electrolyzed
 

and further processed in a period of 8 hrs.
 

In addition, a sufficient convection of the melt is possible in the
 

diagonal pipe only if it has an ample cross-sectional area. Return
 

to the principle of the separation of the three reaction components,
 

initially introduced in the three-pipe apparatus (instead of use of
 

a single reaction chamber ) permits the process to proceed simply
' 

and without reagent starvation. An unexpected advantage is that the
 

plant can be turned off at any time and after it has been reheated
 

can again be turned on.
 

84
 



The Laboratory Process
 

In closing, a procdss should be mentioned, which is an interesting

variation that allows working on a smaller scale and yet returns
 

one to a semi-continuous process and the continuous production of
 

silane. The lithium is electrolyzed in a double cell, Fig. 6, and
 

then transferred to a sfimilar double cell which serves as a hydride

producing reaction unit. If the lithium chloride is sufficiently
 

depleted in the electrolytic double cell calcium chloride precipitates
 

at the operating temperature, and if a large lithium chloride excess
 

exists in the second double cell, by virtue of the reactions of Eqs.
 

(3) and (1), then the electrolysis will be performed in the latter
 

and the lithium will be introduced into the first double cell and
 

there turned to hydride and reacted with silicon tetrachloride. Since
 

the chamber used at any particular time as the hydride producer is
 

heated to 6000C at the surface of the melt and only to 500-550C, at
 

the bottom, there is sufficient convection within each double cell
 

for the transport of the lithium-rich melt. The transport of the
 

lithium or potassium chloride is completely avoided here, since the
 

relatively simple alternating transport of the separating lithium
 

metal takes place. Such a set-up could find use even on a laboratory
 

scale foresubstantial requirement of hydrogenated products.
 

Use of Silanes
 

Silane has the following advantages as a .compound for the production
 

of transistor silicon, as compared with the presently widely-used
 

technique of converting trichlorosilane, SiHCI 3: the silane obtained
 

by this new process which is already very pure, may be further
 

purified more easily than trichlorosilane by a simple absorption process,
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The boron content is extraordinarily low, so therefore a product with
 

a greater than 500 ohm-cm specific resistance can be directly pro

duced. The energy costs for heating the silicon rods on which the
 

pure metal is separated are considerably lower than in the trichloro

silane process because of the low decomposition temperature of the
 

silane. Finally the yield of silicon metal, referring to the silicon
 

present in the trichlorosilane, is limited by the restriction of
 

chemical balance to 20%, and there is no use for the silicon tetra

chloride which is produced at the same time. A similar limitation is
 

not present with silane, so that more than a 96% silicon separation
 

can be attained by the thermal decomposition.
 

In closing reference should be made to the production of the
 

technically interesting chlorosilane and hydrogen-containing organo

silanes through co-proportioning with silane as the final product.
 

Submitted Sept. 28, 1954 (B1838)
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,sl Fig. 1 Simple U-Tube apparatus for producing 
silane a. anode b. cathode c. ceramic 

L = d. additional heating e. cooling coil. 

- C 

'(I". 

H? S 4, 

dt. 

, sC 

Fig. 2 Double-U-tube for a continuous 
process (designation same as in 
Fig. 1.) 
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Fig. 3 Continuous procdss with self
dissolving anode (designations
 
same as Fig. 1 f. silicon
 
granules g. diaphragm.)
 

16 SI4 

0 

Fig. 4 Continuous process with 
self-dissolving anode with 
narrower electrode spacing 
(designation same as 
Fig. 1 & 3) 

gi8 
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Fig. 5 Technical experimental
 
plant. (designation same
 
as Fig. 1)
 

0 Fig. 6 Laboratory system (Top
SC Cbhw d , view & side view) (fiesig-

I 'nation same as Fig. i) 
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APPENDIX II
 

Touchless Wafer Handling 
Donald P. Baumann 
GCA Industrial Modular Systems 
Santa Clara, California 

Semiconductor wafer processing is discussed with emphasis on wafer handling methods. 
it is suggested that the increasing high damage rate (and its critical cost) due to "man
handling" of wafers can be reversed by moving them on a linear dynamic air bearing. 
This appears to be the next step after flip-transferrable carriers. The technique has been 
applied successfully to at least half a dozen common processing operations by both large 
and small manufacturers. The system is discussed in detail including comparisons and 
compatibility with other handling methods, costs, conversion from hand processing, and 
impact on the industry. 

IN MANUFACrURING SEMICONDUCTORS the most inse- negligible compared to costs of packaging, wire bonding, 
cure and unpredictable clement has been water pro- testing, etc. after wafer processing (see Table 1). 

cessing. Wafers moving through the production process The next rung in the complexity ladder is the basic 
travel from tweezer-tip% to finger-tips, back and forth integrated circuit (IC) In this case the average wafer 
from station to station. They are moved and manipulated has a maximum of only 1000 to 1500 dice. Also, there 
one at a time by various personnel, who may drop, are more steps in the processing, such as isolation dif
break, scratch, chip or otherwise damage as many as fusion, an extra layer ot metal, or passivation layer 
not. Damage and breakage rates, speed of production, (mostly in the photo-resist area). A finished wafer costs 
and wafer uniformity (all still in primitive stages in $15 to $30, still not much compared to the cost of the 
many plants) are major cost considerations throughout remaining processing operations. For example, pack
the industry. These costs become more critical as the aging alone for one die runs 25a-$2.00, while the wafer 
sophistication of electronic units expands. The dramatic processing cost for that die is about 2-34 (see Table I). 
increase in complexity is seen in comparing a small -The cost picture is quite different with a more sophis
signal transistor to an LSI computer module. ticated unit, such as a beam-lead CMOS memory. There 

Of course, every manufacturer in the semiconductor may be 25 or more major wafer processing steps (e.g., 
industry wants to produce a better, more reliable product 9 or 10 masking steps); dice are 4" by /", and the 
in the shortest time and at the lowest cost. Time goals yield is usually 10-20 per wafer. Here the individual 
would seem to point to some kind of batch processing, wafer cost is $50 to $150. Now the processifig cost per 
but significantly reducing costs complicates the picture. die is in the same ballpark as that of packaging and 
Deciding how to approach the task requires careful other operations. 
analysis. Even if a company is just in transistors, iautomation 

in today's market is becoming a matter of survival. The 
Quality Is Quantity number of devices sold each year has tripled in the past 

The term "yield" is bandied about in discussions of five or six years, while the market's gross sales have 
how to make semiconductors more efficiently, and there- remained unchanged or declined somewhat So, a unit 
fore merits some discussion. Consider transistors approx- that used to sell for $1.00 now costs about 30 cents. 
imately 10 mils by 15 mils square, with 15,000 to 30,000 If IC's are the product, the point appears moot. It 
per wafer. If the yield per wafer is sufficient, whether it 
costs $10 or $20 to process one wafer matters little. 
What matters is whether you get 10,000 or 15,000 good Table I-Cost Analysis 
dies on the wafer. In this situation wafer quality is meas- Process Process 
ured by die quantity. And with that many dice on one Dice/Wafer CostlWafer Yield/Wafer. Cost/Die 
wafer, you really are batch processing; the batch is on Small Signal 
each wafer, not in groups of wafers processed in differ- Transistors 15-30,000 $10-20 10-15,000 . 0.14 
ent labs. These transistors are small signal transistors, Average IC 1000-1500 $15-30 500-800 , 3.0. 
which represent about 80% of the market. Here the Beam-Lead ,"-x 
cost of getting a single die through wafer processing isCMOS (S) 15-25 $50-io 10-20 $10 
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is worth studying, as mentioned, costs of packaging and Table II-Testing and Sorting 
testing can be considetable An MOS device,, for (100 MOS devices/wafer) 
example. that equires special testulg. may call fot an Number of Devices Passing Test 
additional half million dollairs in equipment. When such Manually Air Transported 
testing is required. it is often due to minor imperfections Handled Wafers Wafers 
caused by unreliable u'ajer halnling. A company 1 Stringent Test 10 90 
that is selling to the mitamy as \\eli as to the conifler- 2 Medium Test 10 10 
e al Laiket havecan a signi Icant sorting pioblem when 3. Mininil Test 30 
Irving to mee stringent slpecllications. 

Tesling and soiling are interdepcntdenit. The devices 
are stntd into qiialii. cttcgtnriel nou!ch :i suet,,,,,ioa) I' tanl thce isc ii,i\s or olher mletalls ol transport that 
of dhcIea'imgl" dillicult tests (-see T[able 1). 'ihe culls aic Incompatiblc X\1Nlear'liCls. In addition \\arerr Ioad
from the nole se\ce tests can onlv be usec in unsophis- In,.,unloadinig, a prinry scene of danmage, is a clitical
 
ticated equipment like pocket transistor radios Here, factor.
 
a reliable automatic handing s.\stem can ieduce the r'ltp-ul:anst, rable cmets made possible the first step
 
need for testing and sorting, because 90r; ol tile devices in taking xvalfs Iroan manual handling (see Fig. I).
 
on such carefully handled x\afets usuall pass the flist Wafers can move ftoma one station to the next without 
test. manual contact, because the wafers slide Iroin one car-

If one gets into MSI. LSI, and beyond. the choice is tier directly into another. 
obvious. He must be concetned with walcr proces,;ing A new development programs wafers to move in and 
costs -irst.Here. management thinks early about mechan- out of carriers without touching any surface enroute. 
ization and automation. Carefullx combined streams of air act as invisible hands 

in manipulating and transporting wafers automatically, 
50% Damage and "Nobody Wanted to Admit it" 'yet they avoid solid contact much of the time. This "air 

With wafer processing Under sctitin%, where should bearing system" handles wafers with unprecedented care, 
the money be spent? Should it go into wafer handling, helps produce uniform wafers more consistently, and 
process contaol. aeducing materials costs, or eliminating may tequire less floor space than most mechanized 
labor? In a recent presentation, Mike Clayton, Manager equipment. depending upon the application. 
of Process Engineering at Motonola's Semiconductor "Reject rates aire reduced by 10-20% where the air 
Products Division. said, "Wafer handling is usually the bearing system is used," said Don McDonald, Product 
major factor because halt the wafers that started in a Manager at Advanced Memory Systems, Inc., "but this 
manual processing system didn't reach the end. (This is only one of the advantages." He then spoke of gains 
is why Motorola made the move toward automation in speed, unitormity, consistency, repeatability, definition, 
more than tour years ago) I mean there was about and an overall improvement in semiconductor quality 
50% damage, although nobody wanted to admit it." and yield. 

It becomes a vety vicious cycle; once a lot of money "You can probably increase throughput by 30%," 
has been invested in these wafers, and half the work said McDonald, "'ifthat's what you are looking for. But 
is in broken pieces, the manufacturer cannot afford to we're more concerned with the consistency of fine geome
discard the pieces. So he processes them and; thereby, try definition. With this new equipment, definition and 
is locked into a manual handling system because most consistency are improved by at least 50%." The micron 
mechanized equipment and systems won't handle broken lines-lines between the paths and circuits on the wafer 
pieces. In other words, if automation is to be achieved, -are more precisely repeated, because wafers are han
the breakage must be largely eliminated or the system-
must handle broken pieces. Consequently, many corn- £. - wK;, ,2' .. , 

panies have been afraid to automate handling. """ - , 

Stop "Man-Handling":"- t ,,, - - .€ 

Most of the numerous approaches to this dilemma :, " 
tried to reduce man/wafer contact. Primarily, such solu
tions placed an intermediary tool or surface mechanically 'J" " i't - ,* V4 

between human hands and wafers. Thus the first "car- g.
 
rier" (a vertically slotted holder) replaced the tray, ,r:Zo'
 
where wafers lie flat and exposed to impurities and . ;j,. " .- ,
 
damage. fppX2 ~-'1 4 

A few work stations were mechanized with new ap- Fig. 1-Wafer Carriers. Carriers come in sev
paratus. Mechanically they run the gamut from steel eral types and sizes, but all hold the standard 
wires and conveyor belts to rubber bands, but their 25 wafers. The white and clear carriers are of 

quartz and silicon respectively for high temper
uses are limited and most are bulky; but, more im- attire operations. 



RESULTINGK FORCEr _--_- - SCINVE.F/RC SECTION VIEWdied with more cae and Lonniency. There is actualy 

cleanet development of the film on the wafci due to II '
 
the autonatic non-contact technique. Thee is much 
greater consistency in the application and spraying 0l 

the photo-resist, and the line areas are etched %%ithout 
undercutting the lines themselves. The result can be 
likened to the dilflerence between a g-ood and bad 
photograph 

The Coanda Effect 

This air hanspoit system is based on a device called 
thle "Li near DireetionalI Aui Bearinug.- 'The pa tcrnt holder, 
C. Arthur La:sch, co-founder and president of GCA/ln
dustrial Modular S\ %tens Cot p . used a principle known 
as the "'Coanda Ellect". namely, that when high velocity, 
low piessuie ali is dnected onto a tiack through tangen-
tial jets. the flow acts as a pump that entrains ai from 
the atmosphere Differential pressules from above and be
low result in a vector loicing air down alon,, the .track's 
surface An\ regularly shaped object will reach equillib
rum in the s,earn above the track and move as directed 
by the jet's flow. This also n'a\ be called pre.%sie gradi-
ent betiig, a piessuie iadient is produced which bends 

the jets' flow toward the tiack's surface. Soe Fig 2. 
The resulting aii beaing system moves wafers on a 

.008 to .015 inch air cushion within a processing station 
or in entering/departing stations. 

An example ol wafer processing improvement with 
this equipment is seen in photo-icsist coating. Produc-
tion rates are reported to have jumped as high as 1200 
wafers per hour (depending upon spin cycle duration). 
However, this is onl) pait of the function of the air 
bearing system. Wafers are not only moved on a cushion 
of air through developing, etching, photo-resist coating, 
and hiegh-temnpcature processing, but they can be moved 
into and out of the work stations with the new technique. 

A Smooth Transition 
A noteworthy feature of the units in the air bearing 

system is that the) are units; that is, separate independent 
modules. As AMS's McDonald points out, "You don't 
have to have the whole line to make each piece worth-
while. Each is valuable on its own merits. You can adapt 
your initial capital investment to your budget as well as 
your needs." 

One mechanical apparatus, designed to do a similar 
job, functions well and is, perhaps, easier to set up. 
Here, however, the wafers are carried in flat trays five 
at a time and are exposed to possible damage In addi-
tion, the trays are incompatible with flip-transferrable 
carriers. Again, loading/unloading becomes a sticky situ-
ation that requires man-handling. There is another me-
chanical system that utilizes flip-transferrable carriers, but 
the company is just starting to release its equipment, and 
it is premature to evaluate it at this point, 

The early air bearing systems, installed three to four 
years ago, were each custom designed. It was difficult 
to see how each would work in other situations. A 
little more than a year ago an off-the-shelf product line 
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began appearing, module by module. General applica
tion proved successful and the line is still growing. 
Currently available are. a loader/unloader, a wafer feed 
system (used in mask alignment), an automatic devel
oper system, a rapid-quench furnace transport, and of 
course, the flbp-tiansferrable carriers. 

Although this is still the only air bearing system of 
its kind on the market (a related technique has been 
used to move bulk grains, tin cans, and various light
weight objects in packaging operations) several manu
facturers are into the carrier business. The largest semi
conductor manufacturers were making their own flip
transferrable carriers in-house several years ago. Ac
cording to GCA/Industrial Modular Systems Corp., the 
system's manufacturer, they have cooperated with other 
companies like Emerson Plastronics, Fluoroware, Fluoro
carbon, and others to allow them to begin manufacturing 
similar carriers. For high temperature operations, coin
panies like Berkeley Glass, International Quartz and' 
Quar-Tronics are making quartz and silicon carriers. All 
hold 25 wafers each, and are compatible for flip
transferring. 

The starting point for air bearing operations is the 
transition from single, manual transport of wafers to 
mass air transport. An operator selects wafers indi
vidually to enter the loader/unloader. The carrier is 
then indexed up to present its next empty slot (see 
Fig. 4). Conversely, the machine can unload wafers 
automatically and feed them into any sort of connecting 
equipment. A prime feature here is speed. Hand-loading 9 
requires 5-10 seconds per wafer; with the air bearing I 



unit, throughput is at one wafer per second. Typical 
cost for the unit and a laminar flow work station is
 
$4500.
 

Mask Alignment 	 0 

A variation of the loader/unloader is the air bearing 
wafer feed system. This unit automatically unloads (D
wafers from a standard carrier, orients them, carries 
them into a mask aligner for fine alignment and ex
,posure, then transfers them to a carrier at the other 
end of the station (see Fig. 5). This module is directly 
compatible with the mask aligner made by K&S. Kasper 
makes an aligner that incorporates the air bearing feed 
system within the unit. Such companies operate under 
a licensing agreement with the air bearing manufac
turer. This includes other approaches to the task. Mask
 
aligner makers, like Co-Bilt, offer handling systems that
 
accept the wafer carrier, but move 
the wafers mechanic- Fig. 3-Partial Production Line-(1) Loader/Unloader,
ally. The air bearing wafer feed system is connected to (2) Continuous Difusion Station, (3) Etching/Cleaning
the mask aligner so that each step of the operati i Area, (4) Automatic Photo-Restst Coter, (5)IR Bakeion 	is Oven, (6) Automatic Mask Aligner, (7) Automatic spin/cued by the corresponding action of the aligner. There- Spray Developer, (8) Inspection station. 
fore, the system loads and unloads the wafers without 
any direct command from the operator, who is free to 
keep his mind on running the mask aligner (a precision 
task that truly requires all of his attention). 

A 	 wafer in the above operation goes through four 
steps: 

1. 	 The wafer is removed from its input carrier and 
transported on an air bearing to a buffer position
 
where it waits until the pre-alignment chuck is 
 -

clear. 

2. 	 The wafer moves to the pre-alignment fixture. It
 
is rotated on air jets until the fiat or notch is cen-. 
 A 
tered on an optical sensor. This position is main-	 A - . 
tained by vacuum.-' 

3. 	 The wafer is moved into the mask aligner for fine " "
 
alignment and exposure. 

4. 	 The wafer is moved out of the aligner and into
 
the output carrier, again, on an air bearing.
 

A typical cost for an entire installation, including the 
work station, mask aligner, and feed system is $41,500. Fig. 4-Loader/Unloader.A carrierrises step by step from 

Programmed Coating and Developing 	 the I-shaped cavity, and with each step a wafer moves out 
of or into the slot that is on the level ofThe automatic photoresist coater can be programmed track. the air bearing 

as desired. Again, the linear air bearing system, without 
human or mechanical contact, gently unloads wafers 
from the input carriers, transports them to and from The photo-resist spray developers appear very sim
spin chucks, and loads them onto output carriers for ilar to the coaters. Four standard carriers are loaded
baking (see Fig. 6). The entire coating cycle is gov- into the input side. A start button is pressed and wafers
erned by pre-set programs dictated by plug-in cards are carried through the spray development cycle four
that control time, acceleration, ramp, and spin speed. at a time, then reloaded into output carriers, all by airProcess functions may include: spray washing with a 	 bearing. Of course, the plug-in programs are unique for
cleaning solvent and spin drying, pre-coating with ma- each operation. A typical program for developing a
terials such as silane-zylene and spin drying, and coating KTFR film of one micron thickness is: 
with photo-resist and spin drying. Compared to other 1. 	 Developer is sprayed on for five seconds at 800 rpm.
methods, only a fourth to a third the amount of photo- 2. For the next two seconds developer and rinser~are 
resist is required. Coating thickness variations of less sprayed simultaneously.
than 100A across the wafer surface are reported as 3. A five-second rinse during which spin speed is
typical. accelerated to 4000 rpm. 



4. 	 A five-second spin-dry completes the 17-second pro
cess. 

Such a cycle gives a throughput rate of 650-700 waf-
ers 	per hour. One-micron lines with one-micron spacing 
,ieproduced, with a reported edge definition of better 
than 0 I micron. The typical cost of a coater or devel
oper with laminar flow work station is $27,000. 

fhe air bearing principle also has invaded high tem
perattie processing. Howcvei, the system doesn't use 
air: instead it employs another gas mixture less sensitive 
to heat. The rapid quench Iurnace transport system auto
niatically transfeis wafers individually from a carrier 
into a soak position in a furnace via a quartz gas bearing
track. After the specified soak time, the track is pulsed 
with high-velocity gas, which couples to the wafer and 
accelerates it from the furnace tube (in 0.2 seconds) 
to a water-cooled vacuum plate. While this wafer is 
cooled, the next wafer is carried into the tube. The 
"quenched" wafer is transported from the chill plate 
to a carrier. The sequence is repeated automatically 
until all the waiting wafers have been cycled. This 
module is said to be most useful in gold diffusion and 
aluminum and gold spike alloying. System cost varies 
greatly with numbers and types of furnaces and other 
individual requirements. 

Some firms are reluctant to automate because of the 
assumed difficulty in adapting to the variety of wafer 
sizes. However, all modules of the air bearing system 
accommodate wafers ranging in diameter from 0.875 to 
3 50 inches, which includes all wafer sizes currently 
used in the semiconductor industry. Most standard car-
riers me compatible also. 

Conclusion 

The need to reckon with the costs of wafer processing 
has increased over the past five to eight years, especially 
since sophisticated MSI and LSI circuitry have begun 
to dominate electronic component production. Manual 
wafer handling and its attendant high damage rate, slow 
production speeds, low yield, and lack of consistency 
comprise the primary arena of loss. The use of flip
transferrable carriers was the first step in attacking the 
problem, and they are being widely and rapidly accepted. 
Now the linear directional air bearing system seems to 
be 	 emerging as the next step. Thle technique has been 
applied successfully to at least half a dozen common 
processing operations. Noteworthy increases in yield, 
production speed, and wafer uniformity, as well as re-
ductions in reject rates have been achieved. Still, hand 
processing is not entirely obsolete, since the air bearing 
system is compatible with hand operations during proba-

tion and conversion. It is still speculation, but the indus-
try dream of fully automated "no-touch" wafer process-
ing may be around the corner, 
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