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Abstract

A linear analysis and comparison of the damping properties of six dynamic
initialization schemes is presented, indicating that the Okamura-Rivas scheme
has the most efficient damping properties over the whole frequency range, and
suggesting that it should be faster than the other methods and give more stable
results. The results obtained with a nonlinear shallow water equations model
agree well with the linear analysis. The Okamura-Rivas scheme attains complete
balance in the equivalent of 5 to 6 hours of leapfrog forecasting, and requires
in this model an order of magnitude less computation than the balance equation

solution.



1. Introduction

It is well known that the use of observed data directly as initial fields
for numerical primitive equation models results in predicted gravity-inertia
oscillations with amplitudes far in excess of those observed in the atmosphare.
Thes¢ oscillations may mask the meteorologically significant motions, as was
first observed in Richardson's (1922) experiment. The problem is that the ob-
served fields contain excessive imbalances between Coriolis and pressure forces,
which arise primarily from observational errors. |

Two techniques have been widely used to solve the initialization problem,
i.e., to redur the excessive imbalances 'between the mass and wind fields.

The fiyst {s the balance equation approach, in which the initial mass and
wind fields are forced to satisfy some form of the balance equation, from a
simple geostrophic approximation to the full nonlinear balance equation. Phillips
(1960) suggested that a consistent estimate of the divergent wind should also be ob-
tained from the quasi~geostrophic omega-equation and added to the nondivergent
wind determined through the balance equation. H.aghton and Washington (1969)
and Houghton, Baumhefne:: and Kasahara (1971) show how this methiod can be
applied on a global scale.

This method is generally satisfactory, but it has disadvantages, some
of which are: a) It requires the numerical solution of a set of "diagnostic"
type of equations which may not be directly compatible with the prediction
equations; b) In extratropical regions, where w#inds are usually obtained in
terms of the mass field, the nonlinear balance equation is of a mixed hyperbolic-
elliptic type, and is readily soluble only when purely elliptic. Non-ellipticity
occurs in strongly anticyclonic regions where the total vorticity is smaller
than one half of the Coriolis parameter. This problem, which as we will see
becomes more critical the better the resolution of the model, is usually "solved"

by artificially modifying the ebserved mass fields in non-elliptical regiomns,

but obviously this is not a satisfactory procedure.



The second technique which is becoming increasingly popular is known as
"dynamic initialization", 1In this technique the primitive equations themselves
are used to march forward one or several time steps and then return to the initial
time by reversing the time step. A damping scheme, as for example Euler- back-
wards, is used, and if the procedure is repeated, the high-frequency inertia-
gravity waves generated by the initial imbalance are eventually damped out
- (Nitta and Hovermale, 1969), Nitta and Hovermale suggeste& that the original
mass fleld be recovered after each forward-backward iteration under the assump=
tion that, at least in extratropical regions, measurements of pressure and height
fields are more reliable than winds, Partial recovery of the height fields has
been proposed by Mesinger (1972) and Winninghoff (1973).

The advantages of the dynamic initialization techniques are two: a)
they are very simple to use. The forecast equations (minus the dissipative terms)
are used, and therefore the initialized fields are compatible with the forecasting
scheme. b) there is no ellipticity constraint when winds are obtained from the
mass field., On the other hand, they have a serious disadvantage which.is their
relative inefficiency. The original Nitta-Hovermale scheme may require several
hundred iterations before convergence, equivalent to the number of computations
necessary to make a few days' forecast. v

A similar, but somewhat more efficient scheme, has been proébsed by Mesinger
(1972). Temperton {1973) has proposed an initialization scheme in which the
fields obtained after forecasting 6 timesteps, say, starting from the initial
time, and those obtained by "hindcasting" 6 time=-steps starting again from the
initial time, are averagsd, and the procedure is then repeated. The method is
based not on the damping properties of the time scheme, but on the assumption that
while large scale meteorolegically significant components of the fields will
remain largely unchanged, gravity waves generated by the imbalances will be

averaged out,

Okamura (see Nitta, 1969, appendix) has proposed a scheme of the Nitta-



Hovermale type, which is simpler and more efficient, but has not found wide
use, Kélnay de Rivas has developed a more flexible version of Okamura's scheme
which enhances its effectivity, increases its stability and still retains its
simplicity.

The purpose of this paper is to compare the balance equation method and
the different dymamic initialization techniques. Section 2 contains a brief
discussion of the solution of the balance equation.- In section 3 we discuss the
mathematical properties of the different dynamic initialization methodé. The
design of the numerical experiments is presented in section 4 and section 5

contains the numerical results.



2. The balance equation approach

The balance equation, as proposed by Chamey (1955),1s obtained from the
divergence \ juation by neglecting divergence and vertical motion terms, and by

assuming a non-divergent wind, y = k x Vi, This yields
V24 = £V2y = VPeVE + 292 - 2 = 0. 2.1
: V- V- B (2.1)

This equation*has a maximum relative error O(RiRo), where Ri and Ro are
the Richardson and Rossby numbers, and therefore is accurate at least up to
10% even in equatorial regions.

If the stream function ¢ is considered known from the observed wind field,
the balance equation can be solved to obtain the geopotential ¢, and is obviously
elliptic. On the other hand, if ¢ is taken directly from the data, and

(2.1) is solved for ¢y, it is easy to show that (2.1) is elliptic if
V;Q _ Vi ; vy, _ g_. (2.2)

It should be emphasized that this restriction is non-physical, and does
not arise when the complete consistent system of balance equations is consi-
dered (Charney, 1973). Houghton and Washington (1973) have shown that the
solution of (2.1) for ¢ yields more accurate results in the tropics, whil=z the
solution for y is preferred for extratropical regions. Thus the ellipticity
condition may be violated in isolated regions over a substantial portion of the
globe.

In extratropical regions the balance equation is usually solved by rewritiag

eq. (2.1) after Petterssen (1953) and Bolin (1955) as follows:
. 1
V2 = —f + (292¢ + £2 + A% + B2 - 2Vf .« yy)° (2.3)

where A = wxx - wyy and B = 2¢xy are the deformation terms. The pecsitive or

negative sign of the radical is applicable in the northern or southern hemisphere
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respectively. A proredure for solving eq. (2.3) for ¢, called the cycle-scan
method by Miyakoda (1956, 1960) and Schuman (1957) cousists of evaluating the

right hand from a given guess for ¢, and '~  correcting Yy dy inverting the
laplacian on the left hand side. The pro e usually converges if the ellipticity

constraint is satisfied, which also ensures that the right side of 2.3 1is real.



3. Analysis of the dynamic initialization methods

In this section we make a linear analysis and comparison of the properties
vf six dynamic initialization methods. For simplicity, let us represent a

set: of primitive equations by

au _
8—t- "'Fu (3-1)

where u is a column vector of the dependent variables and® is a matrix differen-
tial operator which contains no explicit time derivatives. This equation can be
converted into its fini~e difference (or-'spectral) equivalent. For example, an

Euler marching scheme may be represented as
L ]

(t)

ol @ 4 aer = (14 AU (3.2)

where U(T) are now discrete values of the dependent variables at time t = gat
and F is the finite difference (or spectral) equivalent of F.
The first twe schemes we will discuss were suggested by Nitta and Hovermale

(1969). The first method, which we will call Nitta-Hovermale 1 or NH1, is the

following:
v = oY 4 aer ™)
(3.3a)
v o O 4 pere”
T 1O RN A1) 3.3)
uO) g0 L gere™,

Note that it consists of a single forward time step using the Euler back-
ward or Matsuno scheme (3.3a) followed by a backward time step using the same
scheme (3.3b). The superindex (v) indicates number of iteravions, not time,
since at the end of a complete iteration we are at the same initial time level.

(v)

A recursion relation involving succesive values of U is obtained from

(3.3):



vOM) o+ 22 + aedEyuY) (3.4)

The second method (Nitta-Hovermale 2 or NH2) uses a modified Euler~backward

scheme;

*
+ AtFU (3.5a)

2
0=u™ o ard . (3.5b)
TALARS AL SO RS- 3

The recursion ralation for succesive iterations is

AtS

e S R~ RN (3.6)

¢

A third method was proposed by Okamura (see Nitta, 1969, Appendix). It

involves an explicit Euler time scheme applied forward and backward,

*
v* = o™ 4 e ™ (3.7a)
*k * *x

U =U - AtFU (3.7b)

') *k

followed by a linear combination of U and U :

*k

gD gy ) (3.7¢)

A fourth method is a generalization of Okamura's method by Kﬁlnay de Rivas,

in which (3.7¢) is replaced by

k%

U(""'l) = (n+ 1) U(") ~ nl (3.7d)

and n is allowed to vary with v. It reduces to Okamura's scheme if n = 2,

The recursion relation for the Okamura-Rivas (0-R) scheme is
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v ) o (1 4 nac2r?) vV, (3.8)

Before introducing the last two methods, let us examine the stability and
damping characteristics of these four schemes. For this purpose, consider a
single harmonic wave of frequency ¢ in time, ¥ = U eimt. w represenis any of
the characteristic frequencies of the problem (Rossby waves, inertia-gravity
waves, ete.), or, more precisely, the eigenvalues of the linearized version of

the operator F, and U are the corresponding eigenvectors. Then, the time dif-

ferencing can be expressed explicitly:
AtFU = jwpaAtl = ipU, (3.9)
Introducing (3.9) into (3.43, {3.6) and (3.8), we obtain for each method

g o gy (3.10)

where R is the damping factor corresponding to one complete iteration and is

given by
R=1-p2+ p NH1
R=1-p2+%5 NH2
(3.11)
R=1- 2p? 0
R=1-np? 0-R.

Stability of the iterative methods requires |R] < 1 and this places a

restriction on the size of the time increment at:

At? < 1/m§ NH1
a2 < 2/w? NH2 (3.12)
At? < 2/(n%§) 0-R.

Here W is ‘¢ maximum frequency present in the problem (for example the
frequency of the shortest Lamb wave in a primitive equations model). We have

assumed in (3.12) that n is fixed, and in that case it is clear that Okamura's



choice of n = 2 maximizes the efficiency of the method,

Fig. 1 shows the absolute value of the damping factors |R| as functions
of p for one complete iteration, as in (3.11). The damping of one O-R iteration
is shown for n = 1, 2 and 4. Note that NHl and 0-R for n = 2 (Okamura's scheme)
show the undesirable property that the highest frequencies (p ~ 1) are not
damped, and O-R for n = 4 is obviously unstable, even though it is strongly
damping for low and mid-range frequencies.

In the O-R method, this can be corrected by allowing n to repeatedly take
on a sequence of values during the jterative process. The total damping factor
of a sequence is the product of the dampihg factors at each n of the sequence,
The sequence can be chosen in such a way as to maxXimize the damping bothk at mid-
range and high frequencies. A good exnftifle of such a sequerce, although not
necessarily an optimum one, is n = 1, 1.6, 4, The numbers in this sequence were
specifically chosen to correct for the sharp rises in the single-n curves shown
in Fig. 1.

It should be noted that the number of computations involved in a single
complete iteration depends on the method used. The most costly part of the
scheme is the computation of esach operation F on U. A meaningful comparisen of
the cost in computer time required by the methods is therefore the number of
F computations required per complete iteration., Another factor that may deter-
mine the advantage of a method is the amount of computer memory required, given
approximately by.the number of sets of the dependent variable U which must be
stored separately. Table 1 compares the four methods, as well as Mesinger's
and Temperton's methods, on the basis of these practical considerations.

Fig. 2 ghows the damping of the NH1, NH2, Okamura and Okamura-Rivas with
n=1, 1.6, 4, after 12 F computations, and therefore compares the relative
efficiency of the methods. Note that the O and 0«R methods are far more efficient

than the NH1 and NH2 methods for low and mid-range frequencies, but only the 0-R
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the iterative schemes.

Method ff of F per complete iteration iU stored

NH1 4 2

NH2 6 3
Okamura 2 3
Okamura-~Rivas ‘2 3
Mesinger 4 2
Temperton (N) 2N 3
Table 1: Comparison of number of computations and storage requirements of
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method exhibits strong damping of high frequencies,

Mesinger (1972) has proposed a marching scheme which is a generalization

of the Matsuno and Heun schemes:

v* = v 4 aser (O

(3.13)
p D | @

*
+ AtFU
The extrapolation factor a = 1 corresponds to the Matsuno scheme, and a = 4
coincides with the Heun scheme. Mesinger suggests the use of thic scheme in a
forward-backward fashion for dynamic initialization. After a complete iteration,

the damping factor is

R=1- (2a - 1)p? + pt, (3.14)
The time step At is chosen by Mesinger as At = (2a - 1)/(2a2m%) so that
damping increases w+-itiionically with frequency. Replacing At? in (3.14) we

obtain

2 0 b

Re1 - 2(1 - 4a) (%j—)2 =m0’ . (3.15)

m m

Then maximum damping is obtained by letting a + =:

Ryps = 1 = 260° + (' . (3.16)
m m

Note that this method, like NH1 requires 4 F computations to complete one
iteration.

A distinct advantage of Mesinger's scheme is that it can also be used as
a regular forecasting scheme, in the same way as Matsuno's scheme. However,
in order to provide significantly more damping than Matsuno's scheme, a has

tc be muechk larger than one. The time truncation error of this scheme is

3%y a2 33

i.e., first order in At (unless a = %) and proportional to a. Mesinger suggests

the use of aldt = 6 hours, but we think this will introduce intolerably large
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errors even for syioptle waves,
Fig. 3 compares the damping of the Mesinger and Okamura-Rivas schemes

after 12 computations of F. In the 0-R scheme, At = lﬁwm, 50 that p = wAt = 3—-.
m

Even though Mesinger's scheme is better than the NH1 and NH2 methods, it is
considerably less efficient than the O-R scheme‘with n=1, 1.6, 4,

The last scheme that we will discuss is the one proposed by Temperton
(1973). He suggests that a forward Huler time step followed by centered leap

(NAt) ]

frog steps be applied so as to obtain U Then, starting again from the

initial time a similar forecast with negative time step should be executed,

obtaining U(-NAt). An iteration is completed by averaging the two forecasts:

gL |y (Bae) | G (-Nae) (3.18)

and the process can then be repeated. To understand how this method works,
consider the wave equation 3u/ot + cdu/axs= 0, and suppose that init_:ially a consists
of a single "bump" of width 1f we apply Temperton's method once, with

T = NAt, assuming that we mak. no truncation error, we obtain

LD I %[u(o)(x ~e1, 0) +u@x + e, 0)1.

{0)

3
If cT << L, u(l)# u< . If T > L, u(l’

will contain two bumps, with cwne
half of the amplitude oi the initial bump, and therefore the eneyrgy contained
in u is now halved. This analysis suggests that T should be chosen in such a
way that csT << L:3 for synoptic waves, and ch > Lg for gravity waves, Tha
optimum T found experimentally by Temperton, T = 6At, satisfies this criterion
for the values of cg = 140 m sec-l and Lg = 2Ay = 400 km corresponding to his
numerical modal.

int

I1f we apply Temperton's method to a single harmonic component U e .

with N = 6, we obtain a total damping

R, =1- 18pZ + 48p* - 32pS. (3.19)
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This involves 12 computations of ¥ and is also plotted on Fig. 3. Note
that if At is taken as llwm. the maximum value allowable for stability, as done
in Fig. 3, then the damping for low frequencies of Temperton's scheme is
R6 el ~ 18p2. The 0-R scheme damping after 12 F computations is RO-R Lo 13.2p2.
However, from “Fig. 3 we see that Temperton's scheme does not provide damping
at all frequencies unless the time step is taken as At < 1/{2wm). In that case
Temperton's method beccmes much less efficient than the O-R method evei =t low
frequencies. It should also be noted that for odd N, Temperton®s scheme will
amplify high frequencies.

Tn summary we have shown from a linear analysis that of the six methods
compared, the Okamura-Rivas scheme with n = 1, 1.6, 4, which i3 not necessarily
optimum, provides the most efficient damping at low and middle frequenciles, and
the best damping at high frequencies.

Before closing the secticn we want to make two comments:

a) We have assumed that w is a real number. This implies that irreversible
terms, like friction, are not included, a.d amplifying or decaying modes, 1if
present, need to have slow growth ratesz. 7

b) In this analysis we have not allowed for the restoration of heights

after each iteration.

2

“Kdlnay de Rivas (1975) has recently developed a simple scheme that will damp
out any time dependent behaviour, and can be used, for example, to obtain an
unstable steady state solution of the complete primitive equations, including
forcing and dissipative terms.
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4., Design of the numerical experiments

To test the various initialization techniques, & nonlinear, shallow-

water model was developed, defined by the following equations:

9¢u _ _ 3duu _ 3guv _ 4 93¢

ak ax 3y + £4v ~ ¢ 5% (4,1a)
a¢v _ _ 3¢uv _ 3dvv _ _ . 8%

t v 5y fou - ¢ 5y : (4.1b)
3¢ _ _ 3éu _ 3w

at 9% 9y (4.1c)

where (u,v) are the horizontal velocity components, ¢ = gh, and h is the height

of the free surface. The Coyxlolis parameter is held constant, £ = 10 4 1,
In order to avoid nonlinear instability, a: energy conserving finite dif-

ference scheme is used for the right hand side of (4.1). The grid used has

Ax = Ay = As = 250 km.

In our experiments we artificially generate an initlal state which is
as closely in balance as possible. Then the velocity and height fields of the
balanced data are altered or perturbed by various methods, and the different
initialization techniques used to restore balznce. We are interested in deter-
mining how well the initial "correct" fields are recovered, and how well in
balance the initialized fields are.

The initial balanced state is generated by integrating the model for a finite
time T with an artificial mass source term S(x;y,t) added to equation 4,1c. The
integration is startedAfrom a state of rest with a level free surface at H= 3 km.
A leapfrog marching procedure is used with a forward . -ler step every 24 leapfrog
steps to avoid the separation of fieldas at even and odd steps. The spatial

variation of the source function is

S(x,y,t) = S(t) sin(%-"l x) sin(%l )
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where L = 4000 km. It is convenient to visualize the state produced as a checker-
board pattern extending periodically over the infinite f-plane. Numerical compu-
tations are nade on a rectangular grid which ext ds one wavelength in the x
direction and half a wavelength in the y direction. Boundary conditions are
periodic, with the north-south boundaries matched diagonally to preserve periodicity.
We found that the degree of balance attained by the initial state was
critically dependent on the time variation of the source term, S(t). ?he field

shown in Fig. . 4 is attained with the following form

S(t) = 52-;— sin(f t)

where the integration was terminaited at time T = 8 days, and A = 1.01 » 10“m2s. 72,
is the integrated strength. The contours are drawn at intervals of 60 m; the
low is 340 m below the mean heignt, and the high 150 m above it. The associated
velocity fields (not shown) are cyclonic arcund the low and anticyclonic around
the high with 30 m s "1 maximum speed.

It was found necessary to add the source in very small increments (At = 5 min)
in order to minimize the generation of imbalances in the initial state. After
the source was "turned off”’, the forecast was continued using again the leap-
frog scheme with At = 12 min. When the height at the point P (see Fig. .. 4) was
monitored, it was found that the amplitude of inertial-gravity waves present was
only 0.2 m, indicating a high degree of balance. Similar attempts to generate
initial data were made using an exponential and a linear time dependence for
S(t), with the same integrated strength. The resulting forecasts, after the
gource was turned off, showed gravicy waves with amplitudes 25 and 100 times

3
greater, respectively .

3This observation can have an important application in numerical climate studies,
in which a physical parameter P (sea surface temperature, ground albedo, etc)

is changed from its standard value P, to a different value P., to study the
effeet that this change has on the circulation., Our observa%ions suggest that
the initial imbalance, and consequently the amplitude of the transient inertia-
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The initial fields (fig. 4) and the fields obtained after a 48 hours fore-
cast are used as standards in computing rms departures of the velocity and
height fields obtained using the initialization methods. 1In the initialization
methods we allowed the option of restoring the geopotential heights after ea:h

iteration.

(cont) gravity waves generated by the change, are maximized by the common prac-—
tice of changing P, to P, abruptly. On the other hand, a smooth change over a
0 1
time T of the form
Po+P1 Py - Py Tt

P{t) = 7 + 5 cos 7 0<t=<T

will mininize the gecneration of gravity waves. When P is changed abruptly, P(t)
is a Heavigide function, and its Fourier transform contains large amplitude
high frequencies, which therefore excite gravity waves, When P is changed
smoothly as we suggest, P and P' are continuous for @ < t < T, and if T is of
the order of a few days, the transform of P(t) will contain only small ampli-
tude high frequencies. We acknowledge a useful discussion with Mr. Mark Cane
about this point.
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5. Numerical results

As indicated in the previous section, a balanced "synoptic wave' with a
geopotential amplitude of 250 m and maximum winds of 30 m 5 ! was obtained
and used as reference state for the initialization experimentes,

In order to introduce initial imbalances representing the effect of ob-
servational errors, the reference fields were perturbed in two ways. First we
assumed that the "observed" geopotential field contained no errors, but replaced
the velocity field by the geostrophic velocity field, Second, we simulated
observational errors by adding to the balanced fields normally distributed ran-
dom nuwbers, with standard deviations typical of atmospheric measurement errors.

The damping of each iterative metl'pod wassmaximized by using the maximum
time step (in whole minutes) for wiiich the method remained stable. Tabie 2
compares these experimental values to the upper limit from the linear stability
criteria as expressed in (3.12).

Hote that the iterative schemes adhere to the linear criteria more closely
than does the leapfrog scheme, and that for the NH2 method, there is strong

damping of high freqguencies even though wmaxﬂt > 1 (fig. 2).

a) Initialization of the geostrophically perturbed state

The geostrophically determined winds depart from the reference wind fields
by an rms error of %.7 ms !, If the forecast proceeds without initialization,
gravity waves with amplitude of 125 m appear, which are sufficient to strongly
distort the synoptic wave which has an amplitude of 250 m.

If the ellipticity condition (2.2) is satisfied everywhere, the balance
equation can be solved without altering the geopotential field. Our reference
state has enough amplitude that (2.2) is violated at a few points around the

perimeter of the high. At the points where

_ 4@y - b44) | £2
ij TAsc T 2

X



Method
NH1
NH2
)
0-R
Leapfrog
{forecast and

Temperton's
method)

Table 2: Maximum time steps according to the linear criteria and in the

nonlinear numerical model.

At (nonlinear)

16 min

22 min

16 min

17 min

12 min

it (linear)

17 min
o 24 min
17 min

17 min

18,



we applied the following "correction'. We defined ¢ij = A¢ij + B$ij’ and from
the conditions A+ B = 1,
b(Big - $43) , £2

A2 g E ey s

we determined A and B, Here, $,, is the average geopotential at the four

i3

adjacent points, and a is a small non-negative number., After replacing ¢ij

1

by ¢ij at the points where x,, < 0 we repeated the process until x.. > 0

ij ij
at all points. 1In our case, thu best results were obtained with a = 0, requiring
5 iterations., The height field was modified at 8 points, resulting in a maxi-
mum change of 0.5 m.4

Once the geopotential satisfied the ellipticity condition everywhere,
28 cycle~scan iterations were sufficient to solve the balance equation. Table
3 shows that the apvplication of the.balance equation reduces the rms wind error
to 0.7 m sec !, and the amplitude of the residual gravity wave to 3m. We conclude
that, in this case, the balance equation does provide a significant restoration
of both the initial fields and their state of balance. |

In additional experiments, however, we found that when the ellipticity
coniition was violated at a larger number of points the "correction" procedure
became insufficient to "elliptize" the geopotential field. When the source

strength was increased by 20%Z the correction procedure did not converge, and

therefore we were unable Lo solve the balance equation. The iterative methods,

of course, were not affected by the change in source strength. We will come

back to this point in subsection 5c.

An anonymous reviewer has pointed out the existence of a better "correction"
procedure: Calculate h = v2¢ + f£2/2 at every point. Then solve for

v2¢ + £2/2 = hl, where h? = h 1f h > 0, hl =¢ if h< 0, and € 1is a small positive
number. ¢} will satisfy the ellipticity condition.

[N

2 pa_go AP s



19!

In the first series of dynamic initialization experiments we performed 150

complete iterations with the NH1, NH2, © and O-R schemes, restoring the heipghts

after each iteration. If we assume that each evaluation of the time derivative F
(eq. 3.2) is equivalent to one timasstep in a forvard forecast, the equivalent

time traversed in 150 iterations is 5 days for the NH1 method,
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7.5 days for the NH2 method, and 2.5 days for the 0 and O~-R methods.

Fig. 5a shows the decrease in rms error with the number of iterations,
A considerable reduction of error occurs, but even 150 ilterations are not suffi-
cient for any method to converge to a steady value of the rms error. Figures
6a, b, ¢ and d (lower curves) compare the forecasts of the height at the point
P, when the heights are restored during initialization. Clearly, even 150
iterations are not sufficient to restore balance when the heights are not allowed
to adjust freely. This can be understood in the following way: after the first
iteration, the hejights are modified from the original values with an rms change
of 10-20 m, depending on the method. When we restore the geopotential field

to correct this change, we are restoring a large portion of the initial imbalance.

By restoring the heights after each iteration we force the slow convergence of
the iterative methods,

In the next experiments we performed 150 iterations allowing the heights
to adjust freely. Figures 5b and 5c¢ show the varlation of the mms wind and
height errors with the number of iterations. Only the first 30 iterations
are shown., All four methods reached a steady rms wind error of 6.9 ms !
and created an rms height error of 46 m. To compare the convergence rates,
we estimate the number of iterations required to reach the steady values:

40 (NH1), 15 (NH2), 15 (0) and 12 (0~R). The equivalent time traversed during
these iterations is 32 h (NH1), 18 h (NH2), &6 h (0) and 5 h

(0-R). Figures 6a, b, ¢ and d (upper curves) show the height forecast at the
point P when the heights adjusted freely during the 150 iterations. They show
that high frequency oscillations with increasing amplitude appear in the forecasts
after using NH1 and 0. These are due to the aliasing of very high frequency
waves not eliminated by ;he NHL and O methods. On the other hand the NH2 and

0-R methods completely eliminate these oscillations if the height is allowed

to adjust. As shown in f£ig. 7, only 12 to 15 O~R iterations, or the equivalent

of 5 to 6 hours of forecast, are enough to attain balance and eliminate inertia-
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gravity waves from the forecast.

We made several experiments with Temperton's method. 1In the first we
performed 150 complete iterations with N = 6, i.e. marched forward from the
initial time 6At, marched backward from the initial time 6At, averaged the winds
and restored the initial heights. Table 3 shows that the reduction of error is
smaller than for the O and O-R methods, but there is more balance, as shown by
the smaller amplitude of the residual inertia-gravity waves. Xt should be noted,
however, that this method is 6 times more expensive in computer time than the
O-R method. In fig. 5a the rms error is shown by the crosses plotted every 6
0-R iterations. Clearly the O-R method is‘much more efficient than Temperton's
method. M

When we allowed the heights to adjust freely during 30 Temperton iterations
(equivalent to 180 0-R iterations), the mms errors were similar to those of the other
schemes, but gravity waves with amplitudes of 2-15 m were present in the forecast; this
agrees with our analysis in section 3, in that Temperton's scheme does not filter
out high frequency waves uniformly.

As a last experiment, we tried Temperton's '"best" scheme, in which heights
were restored after each iteration during 10 iterations while velocities were
allowed to adjust, followed by 10 iterati -s in which heights adjusted and winds
were restored. We did obtain good results with this variation of Temperton's
method, as shown by table 3, However this option still requires the equivalent
of 120 0-R iterations, and fig. 7 shows clearly that in terms of balance, better
results are obtained with juét 12-15 O0-R iteratiomns.

No experiments have been made with Mesinger's scheme, but the linear
analysis in section 3 indicates that the results would be qualitatively gimilar
_ to those of the NH2 method.

b) Gradient wind approximation

The main effect of the approximation of the wind by its geostrophic value
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is to overestimate the velocity field in the regions with cyclonic curvature and
viiderestimate it in the anticyclonic regions. Therefore we can make a simple
#nalysis of the adjustment problem for a geostrophic perturbation of the winds

by assuming a perturbation of the form

Vo -,5 x Vwo N wo = gsin k x sin ky, ¢, = 0.

*rom the linearized equation of conservation of potential vorticity we can ob-
tain the perturbation geopotential ¢_ that remains in geostrophic balance after

inertia-gravity waves have been dissipated:

f 1 £
vzwo-g%-?v% A

-] L]

from which

2
= kx = le (kR )
¢ 8 sin sin ky, B Tﬁﬁzjgf:jf
where Ry = —Ei is the Rossby radius of deformation. Computing the energy

E= {[(e ¥3-+ %3) dx dy, we obtain
E_/E  ={kRq)2/CkRq)? + I .

This result indicates that in extratropical latitudes. where the scale
of baroclinic waves 1s of the same order as the radius of deformation, most of
the error introduced by the geostrophic estimation of the wind will remain pre-
sent after adjustment. This is also apparent in our numerical experiments:
when tae heights were allowed to adjust, the reduction of rms wind error by the
{terative schemes was small, while a sigrificant modification of the observed
height field was introduced (see TABLE 3). The main discrepancy occured near
the low, where the geostrophic approximation strongly overestimated the winds
and consequently the centrifugal force. During adjustment the height at the cen-

ter of the low decreased from its original value of 2660 m to 2480 m, whereas
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the cencer of the high increased from 3150 m to 3160 m,

We have seen that the common practice of restoring the mass flelds after
each iteration is not a solution to this problem, because it decreases enormously
the efficiency of the dynamic initialization schemes. A better idea is to decrease

the initial wind errors by the use of a more accurate approximation than the

geostrophic for the initial winds. We found that a simple approximation of
the gradient wind formula gave excellent results.

The gradient wind equation can be written as

y2
vV - Vg = r - (5.2)
where V is the gradiept wind, Vg the geostrophic wind and r the radius of
curvature of the trajectory. The gradient wind approximation is strictly valid
for circular steady flow but V approximates better than Vg the effects of flow
curvature. However, the equation is quadratic in V and subject to a restriction,

similar to the ellipticity condition, to ensure that the solution is real:

v, + > 0, (5.3)

If we assume that the right hand side of (5.2) is small comprred to Vg,

we can write V = Vg(l + ¢) and neglect terms i. e<. Then

\Y
Z e ————
¢ Fr + 2V ° (5.4
B
The radius of curvature R = - (1 + y')3/2/y" can be estimated from the

geostrophic streamlines; y' is the slope of a curve ¢ (x,y) = constant, and
therefore y' = - ¢x/¢y. Combining these formulas we obtain

(02 + ¢2y3/2

bex 05 = 20,000 T F dlobey

r= - (5.5)

This formula allows the determination of r and V everywhere. In the

regions where (5.3) is not satisfied, ls] > 0.5, no longer a small number.
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In these reglons the correction of the geostrophic wind is not important because
either Vg is small, and so is the error, or r is large, and fr..erefore curvature
effects are small. In our experiments we made no correctlon of the geostrophic
v.d whenever |e] > 5.

This simple correction procedure was applied to the geostrophically per-
turbed state. The resulting rms wind error was 3.8 m s ! compared to 7.7 m 8
in the geostrophic error. When no further initialization was made, gravity
waves had uan amplitude of 12 m compared to 125 m in the geostrophic casé. The
0-R iterative scheme was appllied allowing heights to adjust, and again it con-
verged in about 12 iterations, eliminatiné gravity waves. Table 3 indicated
that the rms height error after initialization wms about 10 times smaller than
in the geostrophically perturbed cases. However, these very encouraging results
may be enhanced by the rather circular and steady state character of our basic
flow (fig. 4).

c) Initialization of the randomly perturbed state.

In the previcus experiments we ..ave made no use of velocity‘measurements.
In this section we describe a simulation of actual observations of both height
and wind fields by perturbing the reference state fields with normally distributed
random errors. The random errors are chosen to be compatible with real observa-
tional errors.

Three cases were run, with rms height errors of Om, 5 m an& 1% @ respec=
tively. In all cases an error of 3 m s "l rms was introduced on each component
of the velocity field, In the threc cases the gravity waves generated by the

errors had an amplitude large enough v completely obliterate the reference fore-

cast,

Only the iterative srhemes NHZ and O-R were applied. The geopotential field

was allowed to adjust and 150 complete iterations were performed. In both methods

the rms error varied rapidly during the first 10 iterations and then attained

1

[
“imilar results have been reported by Gauntleit and Seaman (1974).



25,

a guasi~steady valve which continued to decrease very slowly as the iterations
proceeded, Again gravity waves were completely eliminated by both methods.
Table 4 presenis the results and again we find that for the same nviver of
complete iterations 0-R is somewhat faster than NHZ, even though one NH2 itera-
tion requires 3 times more computations than one 0-R iteratiom.

Another observation is that the magnitude of the height errors has no
effect on the results., Again, this is explained by geostrophic adjustment analy-
sis, Impulsive perturbations on the height with a spacial scale L will generate
gravity waves which in an infinite domain move away to infinity, and in our
experiments are dissipated by the iterati§; schemes, The remaining geostrophic
mode contains most of the energy of the perturbation if L »>> Rd = /8/f , and
very little energy if L << Rd (see for example Charney, 1973). In the case of
observational errors their scale is the grid size, much smaller than the radius
of deformation, and therefore most of the height perturbations goes into the
dissipated gravity waves. The opposite situation occurs with velecity perturba-
tions, and, as shown in table 4, a large part of the energy of wind errors
remain in the fields after balance has been attained, Ip any case, the size of
errors after initialization is reasonably small, 6 m for the heights and 2 m s
for the wind speed.

With the balance equation approach only the heights were used. Case I,
with no height errors, coincides with the case discussed in section 5a. In case
11, we were able to "correct" the heights as described in section 5a, and satisfy
the ellipticity condition everywhere, but the cycle-scan method of solution of
the balance equation failed to converge. In case IIT the ellipticity condition
was violated at many p ints and the "correction" procedure failed to determine
an elliptic geopotential field. Therefore we were unable to solve the balance
equation in cases Il and III.

The ellipticity condition (5.1) can be written as
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TMS error rms error after amplitude of
initialization gravity wave
h‘iiﬁht (m“::g-l) Method | height | wind during 48 h
" (m) (m sec 1) forecast
None — —— 40-350
NHZ 6.4 2.0 0
Case 1 0 4.2 T
O-R 6.2 2.0 0
Balance 0.1 0.7 3
None _— -_— 120-350
NH2 6.5 1.9 0
Case Il 5 4,2
O-R 6.3 1.8 0
Balance No convergence
None —_ — 70-350
NH2 6.6 1.9 0
Case III 10 4.2 —— - -
0-R 6.5 1.8 0
Balance "Correction' procedure failed

Table 4. Random perturbatiens on the reference state.
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_ 2502
bh=h-Fh < 51{%?- (5.6)

In this ferm, it is a restriction on the difference between the height at a
point and the average height at the 4 adjacent points., It becomes increasingly
stringent as the model resolution is increased. For example, with As = 250 km
and £ = 10 “sec !, Bh = 8m, but 1f 48 = 125 km, the ellipticity condition
is violated when Ah > 2 m! This is a serious drawback of the balance equation
approach, especlally since the tendency of modern NWP models is towards smaller

grid sizes.
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6. Summary and conclusions

We have presented a linear analysis and comparison of the damping properties
of six initialization schemes: the two proposed originally by Nitta and Hovermale
(1969), the one by Mesinger (1972), a scheme attributed to Okamura (Nitta, 1969,
Appendix), Temperton's (1973) averaging schcme and a modification of Okamura's
scheme by Kdinay de Rivas. The linear analysis indicates that the Okamura-Rivas
scheme has the most efficient damping properties over the whole frequency range,
suggesting that it should be faster than the other methods and give more stable
results,

A nonlinear shallow water equation; model on an f-plane hag been used to
test the initialization schemes and the results agree well with the linear
analysis. When the heights are recovered after each iteration, the iterative
methods have a very slow convergence rate, because most of the imbalarce is
also recovered after each iteration. When the heights are allowed to adjust
freely, the iterative schemes converge much faster. In particular, the Ckamura-
Rivas scheme attains complete balance in only 12-15 iterations, equivalent to
about 5 to 6 hours of regular forecasting using the leapfrog scheme.

In the case of a geostrophic perturbation of the reference state, in
which the observed winds are replaced by their geostrophic values, most of the
error energy remains in the fields after free adjustment. This is in agreement
with linear adjustment theory since the perturbation occurs in scales similar
to the radius of deformation.

Observational errorsrare also simulated by the introduction of random
errors into the reference heights and velocity fields. In this case the dynamic
initialization methods converge to a state much cleoser to the reference state
than in the case of a geostrophic perturbation. In accordance with adjustment
theory, small s:ale height errors are dissipated into gravity waves, while a

significant portion ¢f the small scale velocity error emergy is retained in the
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final fields.

We conclude that whenever available, reliable wind observations should
be included in the initial data for the dynamic initialization methods., The
smoothing incorporated in conventional analysis techniques may also help to
reduce the errors in the observed fields. In data-sparse regions we sugpest
the use of a simple gradient wind approximation which can be directly evaluated
from the geopotential field. In our experiments this approximation produced much
better results than the geostrophic wind approximation. Another method to
improve the initial estimation of the wind field can be to solve the balance
equation on a coarse grid in data-sparse regions and then interpolate to finer
resolution. In any case the best procedure is to first obtain a good estimate
of the initial fields and then apply the iterative technique, allowing the free
adjustment of the mass field.

The balance equation approach provides good but not complete balance in
the initial state for a primitive equation model. However this approach depends
very critically on the ellipticity condition, which in its simplest form is
a restriction on the maximum amount by which the height at a point can exceed
the average height at the neighboring points. 4o have reported that this re-
striction is severely violated around strong anticyclones and, when the resolution is
increased, by measurement errors typlcal of those occurring in ztmospheric
observations. The ellipticity condition does not affect the iterative technigues,
When free adjustment is allowed the dynamic initialization methods become not
only simpler but faster than the balance equation approach, In our numerical
model, the Okamura-Rivas scheme required for convergence at least an order of
magnitude less computations than the balance equation method.

We have made our tests in a simple shallow water equations model, with
high frequency inertia—gravitj waves, In baroclinic primitive equations models,

inertia-gravity waves can have frequencies with values as low as the Coriolis
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parameter. It 1is in these models that the flexibility of the Okamura-Rivas
method may be put to maximum use. Even with the sequence n = 1, 1.6, 4, which
is not optimum, and a time step of 15 minutes, waves with a frequency w = f =
10 *s ! will be reduced by 20% in 12 Okamura-Rivas iterations, and only by
4% using the Nitta-Hovermale schemes and the same number of computations,

The problem of four-dimensional data assimilation has not been considered
here, but our results suggest that the use of the Okamura-Rivas scheme may be
extremely useful in damping gravity waves generated by the introduction of new
data in a model. A few Okamura-Rivas iteFations after each set of data is
introduced followed, if necessary, by the use of a dissipative time scheme, will

probably be suffieient to ensure a successful assimilat’ion.
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Figure Captions

Figure 1: Reduction of amplitude after one complete iteration for the NH1,
NH2, and O0=R scheme.

Figure 2: Comparison of the relative efficiency of the NH1, NH2, O and O-R itera-
tive schemes. Reduction of amplitude after 12 F computations,

Figure 3* Same as Fig. 2 except for the Temperton, Mesinger and Okamura-Rivas
schemes.,

Figure 4: Reference height field. P indicates the point at which the height
was monitored during the forecast,

Figure 5: Reductilon of error during initialization. a) rms velocity error
when the geopotential is restored after each iteration. b) rms velocity
error during free adjustment. «c¢) rms height error during free adjustment,

Figure 6: Height forecast at the point P, Lower curves: heights restored
after each iteration. Upper curves: heights adjusted freely. The
reference forecast is also indicated. The initialization scheme used
was a) Nitta-Hovermale 1, b) Nitta-Hovermale 2, c) Okamura, d) Okamura-
Rivas.

Figure 7: Comparison of the height forecast at point P obtained after 12 and
15 Okamura-Rivas iterations and after 20 "best' Temperton iterations.
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