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Abstract

A model for the recovery of gravily anomalies from high precision
altimefer dafa is derived which consists of small correction terras fc the inverse
Stokes! formula, The influence of unknown sea surface topography in the case of
meandering currents such ag theGulf stream is discussed, A formula was derived
in order to estimate fhe accuracy of the gravity anomalies from fhe known accuracy
of the altimeter dafa, I is shown that for the case of known harmonic coefficients
of lower order fhe range of infegration in Stokes inverse formula can be reduced
very much.
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1. Introduction

As part of its Earth and Ocean Physics Applicafion Program (EOPAP)
the National Aeronautics and Space Administration (NASA) plans in the next fen
vears the launch of some safellites equipped with altimeter for ranging fo fhe
ocean surface, The announced accuracy of the future altimeter systems lies in
the range of 10cm,

Altimeter measurements of this accuracy will give an important increase
in the knowledge of the features of the gravity potenfial of the earth, because the
ocean surface is not far apart from an equipotential surface of the gravity potential,
In the present report a model for the recovery of gravity anomalies from this high
precision altimeter data will be developed.

I a study of this kind fhree questions should be answered:

1) What is the mathematical model for the solufion of the
problem, which is reasonably simple but sufficiently
accurate in view of the given accuracy of the data ?

2) Can this fheoretical model be transformed info a
stable numerical procedure, suifed for a modern
computer ?

3) What is the accuracy of the result fthat can be expected
in view of the announced nceuracy of the data?

The next section is dedicated to a detailed description of the theoretical
model, & is based on 2 solution of Stokes problem, which was developed in a pre-
paratory study (Lelgemann, 1975). The present procedure uses the formulae,
which were derived there, in an inverse application. With this idea the solution
consists of the three steps:

a) Correct the altimeter measurements by some small



terms to a suited quantity N,,

(1-1) N, = T
Yo

Yo +¢+»« nOrmal gravity at equator

b) Use the well-known inverse Stokes' formula for a
spherical problem

(1-2) b = - (N —};i M) (N - Ny)do)

a

2,,.... Semi major axis

¢) Correct the result Ag, by some small ferms fo fthe
desired gravity anomaly Ag at the earth's surface,

A detailed explanation of the method and the terms in formula (1-1)
and (1-2) is given in the next section, The method is well suited to the ro-
duction of our complicated problem to a solution of a spherical problem,

As there are no numerical problems in the computation of the correction
terms the answer to question two is mostly concerned with the spherical solution.
In the case of spherical approximation much work has already been done in answer-
ing this question, A direct and alsgo indirect solution of formula (1-2) is discussed
by (Gopalapillai, 1974), (Smith, 1974) and (Rapp, 1874) both applied the method
of least squares estimation to the spherical problem,

The main work done in the present study ie the consideration of the
accuracy, which can be expected under some favourable assumptions abouf the
size of the measuring error and the distribution of the measuremenfs, Under
favourable circumstances ( a good knowledge of the satellite orbit and so on) there



rensain in any case fhree error sources:

a) Influence of the unknown sea surface topography. We
shall discuss in secfion three the size and influence of
this error type. '

b) The deficiency of suitable altimeter data on the con-
tinents. We may overcome this difficulty by neglect-
ing the outer zones in the integral (1-~2); that means,
we will integrate only up fo a certain distance i,
For this reason we have to discuss the error due fo
the neglected parts of the potential function itself.

¢) Influence of measuring errors. We will assume that
mean values in b(km) * bkm) blocks are given
with an accuracy of m(N), e.g. ¥, = b % b =
10km % 10km and m(N) = +10cm,

The problem under consideré.tion is the behavior of these errors when
they are transformed by a linear integral operator over the sphere, especially
in view of the fact, that the kernel

L2 2
(1-3) M (¥) g® (2 sini/2)"

¥ ......8pherical distance
Lo «+...distance on the unit sphere

of the integral is singular, so that this integral exists only under some restyic-
tions,

Problems of this form are discussed within statistical methods in |
- physical geodesy (Heiskanen-Moritz, 1967)., A deep examination of the problem
of the error propagation in the case of integral operators over the unit sphere



was given by Meissl (Meissl, 1971). From both these publications we will
recall some basic relations and definitions about functions on the sphere, which
we need in our special analysis.

A function on the surface of the sphere, which is at least Lebesgue-in-
tegrable, can be expanded into a convergent series of spherical harmonics by

(1-4) £(6, A) = i [ZRua(Bs A + DaSaa (6, M1

n=0

ﬁi\/ﬁ

Roe(O5 Ay Spn(8y A) «.... fully normalized sphericel harmonics.

The terms

(1-5) Z(am + B2

are called the degree variances of the function f,
(1-6) covif, ) = z £2 P, (cos 1))

ne=i2

the covariance function of the function £ (Heiskanen-Morit'z, 1967, (7-19) ) and
1-7) var®) = )7 =) 87 <=
n=3

the variance (or the norm square) of the function f, Because it gives all infor-
mation about the statistical behavior of the disturbing potential, the covariance
function cov (N, N) or cov(Ag, Ag) is 2 basic fool of the error considerations in
physical geodesy.

At.present the best information about the statistical behavior of the dis-
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turbing potential on the geoid is probably the covariance function given by
Tscherning and Rapp (Tscherning-Rapp, 1974),

Lad 7 = N a2 A (IH"I) I
(1-8) coy (N, N) nZ'a ( yaa) m-D@m-3 @ D) 8 Py (cos ¥,
with

A = 425,28 mgal®
B = 24
8 =

0.999617 ,

A covariance function of this form presupposed that the function N
is analytic on the sphere (that is on the geoid). In the series for the covariance
function, this presupposition is expressed by fhe factor (s(™1)), which runs very
fast to zero,

We will fry to make some specifications about the covariance function
of the error function v. 1t is well known thaf in the case of uncorrelated point
measurements the error covariance function has a cerfain value at the origin
and is zero elsewhere. In accordance with our presupposition we have as
measurements N mean values in certain blocks of area Ty, that is, fhe fune-
tion N is giver as a step function with discontinuities at the houndaries of the
blocks. In this case we have to consider not individual measuring errors rather
an error function

(1-9) v = N-N,

This error function v must be likewise a bounded step function. Therefore v
is Lebesgue~integrable over the sphere with the series evaluation

(1-10) v, = z ? [CoeRual{B A + BuaSan(Bs X))

n=o> n=0



under the condition

I

(1-11) mm = v 2= ) @ <=,

n=

(&l

where Vv, is defined as

(1-12 vi =) @E o+ B
n=10

We need bo’h the covariance function of the potential function itself and the
error covariance function in our discussion about the error propagation.

Vithin the estimate of the error propagation in the case of an integral
operafor on the sphere, a very useful fool is the coneeption of the greatest lower
bound and the least upper bound (Meissl, 1971, p. 26). For example, we can
write for the norm between N and Ag

(1-13) GLB(| M) < "’%" < LUB(|M]).

GLB is the abbreviation of greatest lower bound, some sort of a generalized
minimum and LUB stands for least upper bound, which is some sort of ge-~.
neralized maximum, Under very general conditions the GLB and LUB of
the norm ratios of the main functions of gravimefric geodesy are computed
by Mcissl (Meissl, 1971).

In our special problem we have

(1—'14) Nnu T e b wme—— Agtn.



Since we know the covariance function of the disturbing potenfial itself we can
compute the norm ratio explicitly by

i e fagl [EEaE
(1-19) 2 © TN var (N)

Using the covariance function given by (Tscherning~Rapp, 1974) we gel

A sgl . . e
(1-16) : 2L < -‘ﬁr' 2 1.4 ke

becausge the disturbing potential is approximated by an analyfical function,

In the casc of the error function we have, corresponding to {1-14),
the relationship

(1-17) Vg = 2 ( o _]:_1 ) €ug

€ ,....08rror of the gravity anomslies Ag

with an estimate of the norm ratio of

(1-18) v . el Lo

=Y

a lv

(see (Meissl, 1971, page 46) ), The difference in the expressions (1-16) and.
(1-18) is of course Jdue to the fact, thaf the error function ¥ is nof an analytical
function,

We see from (1-18), that small errors in the data may accumulate in
unfavorable cases to infinite large errors in the wanted result, There are two



principal possibilities to overcome this undesirable behavior:

a) Smoothing ont also the error function v fo an analyti-
cal function. This is possible by a suitable interpolation
procedure.

b) Smoothing out the operator.

According to the assumed form of our measurements as mean values of cerfain
blocks we shall use in our accuracy considerations the second possibility. In
geodétic problems this is usually done by a separate treatment of & certain oap
with radius ¢y around the point under consideration, In our particular case
this can be done by subtracting from the measurements N the mean value I
of the central block, that is for the inner zone,

(1-19) N-N = 0.

The error function of the geoidal undulations in the inner zone is then of course
likewise zero. On the other hand fhe neglected potential function itself will
generate an error. ' -

We will give now 2 summary of the results of the error cons iderations,
All the derivations in the further sections are done only for point values, Under

some additional agsumptions we will ecnlarge these results also fo the error of
mean values. The point error can be separated into three terms;

{1-20) m® (bg) = m(Agy ' M (Age) + MT(Age)
M(AL) eaes.q.. mean point error

M {AZ)eees.... mean error due to data error and the
neglection of the inner zone.



M (ALsa) eeeveesonss Mme2n error due fo unknown or
variable sea surface topography

M(AEoz) «eseeesasqs. mean error due to the neglection
of the outer zone.
Under these three types of individual errors, m{ig,) seems by far the most
critical. Therefore, we will consider this error first.
The following formulae and numerical values are dependent on the main
assumption that mean geoidal undulations in blocks of size b{km] % h[km] and
with an accuracy of m(N) [em] arc given. The number 0.34 in the sccond

term of (1-17) depends on an estimafe of the root of the variance of the gravity
gradient of

| 2E) - kv,

EU...ou.. BEofvos unit
drawn from (Metzger and Jircitano, 1974)

Under these assumptions the aceuracy of point anomalies at tho midpoint of the
blocks can be estimated by '

_ _ B.1PmP(N) o .
(1-21) m?(Ag,) = ;‘; Fo0.34% bR

(n(dgy) in [mgall, m(N) in [em], and b in [km]),

The first term of the right hand side is due to measuring errors m(N), the
second term is a result of the neglected potential function in the inner zane,



With the aid of this formula we will now give an estimate of the accuracy
of mean anomalies of block size

c > ba
In order to do this we make two additional assumptions:

1) The error of representation for sufficiently small blocks
of size b is small as compared with the point error of
the midpoint due to measuring errors. In this way we
can cousider (1-21) also as an error estimate for the
mean anomaly values of small blocks,

2) The error values between reighboring blocks are only
slightly correlated, If they are not correlated we get
as error of 2 mean anomaly of block length ¢

. b '
mo{Ags) = - m{dg),
if they are very strong correlafed we get
mo (Aga) = m{Agn).

As an estimate of the error of mean anomaly values of block size ¢ we obtain
therefore

(1-22) %m(«'xgm) < my(Ag) < mAg) .

The correlation between errops of neighboring blocks depends on the

-10-



correlation of the gravity gradient in the midpoints and on the correlafion due
to the measuring error, It is known that the covariance function of the gravity
gradients goes very fast to zero (Moritz, 1974), According to the resulis of
Gopalapillai (Gopalapillai, 1974, p.77), ‘he error covariances between 1°x 1°
blocks aye also very small. Sc it seems not unlikely fhaf the upper error limit
in (1-22) can be reduced further.

The following lwo examples give an idea about the accuracy of the .
mean anomalies, In order to get a satisfactory ratio between the fwo error
sources (that is, due to measuring errors and due fo the neglected inner zone)
we ascume for both ferms on the right hand side of (1-17) the same magnitude.
This is attainable by a block length of

_ - 6,1 = m(N)
(1-23) b J 034 .
With

m(N) = £100cm, b = 42km

we gef according to (1-22)

e = 1°x 1°; +t8mpal € mg(dg,) <« *20mgal

¢ = 2°x 2°: +4mgal s nqu(Agn) < £20mgal.
In the case of
m(N) = £10cm, b = 13km

we get

-11-



c = 1°¢1° : +1mgal <« me(Ag,) < *6mgal,

These results are in good agresment with the results of the error considerations
in (Rapp, 1974).

We will copclude this infroduction with a few commenfs on the fwo other
error sources, In section three if is assumed that the sea surface fopography is
known with the exception of meandering currents such as the gulf stream. An es-
timate of the error due to meandering currents is very difficult. A very rough

estimate gave

+3mgal < m(Agse) < +7mgal.

These figures are point errors. However a systematic behavior, which would
result in errors of the mean anomalies of the same magnitude, cannot be excluded.
Hence attention is reguired in areas of strong boundary currents such as the gulf
stream,

If the gravity field of lower order is known the range of infegration can
be drastically reduced without remarkable additional error. In this case it is
possible to compute likewise gravity anomalies neay to the coast, However, the
remaining small errors are very strongly correlated at neighboring blocks,

The error for several different circles Yo are given for a.gravity field
known up to ne= 2, ng= 8 and np= 16 in section 6. In any case the influence of
the consfant term N, in fhe neglected part

T ul -
Ag = - Yo T M () (N ~ N,) sing d3 do
4ma ijo =0 i

may become fairly large and must be taken into account in some way,

The results given above are of course only a first estimate. They can-
not replace test computations with frue altimeter data and perhaps 2 comparison
with accurate gravity anomalies, but they may give a good insight info the diffi~
cultities and the limits of the solution, ' '

~19~



2, On the Solution of the Inverse Stokes' Problem in Precise Gravimetric Geodesy

The content of this section is entirely based on the resuifs in (Lelgemann,
1975). In that study the gravity anomalies at the earth's surface were reduced to
gravity anomalies at the sphere with radius a., Then, the disturbing potential at
this sphere was computed with Stokes' formula, combining the result with satellite
derived information about the gravity field, TFrom the disturbing potential at this
sphere the disturbing potential on the earth's surface was computed with the quasi~
geoidal undulations, which can be found by the use of Bruns equation

T
21 = 2
(2-1) g y

.ver.n.. quasi-geoidal undulation
-y aasaaas nOrmal gravity

(In the present section we have to distinguish betweon tho quasi-geoidal unduiation
€ and the quantity N, defined by (2-19). The geoidal undulation N, used in all
other sections, can then be identified with N, or can be considered as { In
spherical approximation),

In this report we are going precisely the reverse way. We transform
quasi-geoidal undulations (as a result of altimeter measurements) info the dis-
turbing potential, reduce this disturbing potential to the disturbing potential at the -
sphere a, solve the inverse problem of Stokes for the sphere and reduce the com-
puted gravily anomalies to gravity anomalies at the surface of the earth,

First we shall compile some well-known infegral formulae. All these
formulae are valid if the range of infegration is a sphere. We consider a spherical
polar coordinate system with r (radius vector}, 6 (polar distance) and A (longi-
tude) and a fixed sphere with r = a = constant. On this sphere a confinuous func-
tion x should be given. An evaluation of x in a series of spherical harmonics
should not confain ferms of zero and first order., Now we can define o second
function y on the sphere by

@-2) | y = ?;-ixSMdm

-13-



This is Stokes' well-known formula applied to a fictitious function x. The
function S (¥} is given by

(2-3) S@) = - 6siny/2 +1 - 5cosd - 3cosdn(sind/2 + sin®P/2)

1
sin (/2)
or as a series of spherical harmonics

2n+ 1
n-1

(2-4) s = i

n=4d

Py (cos ¥).

We want a formula for the inverse problem, i.e. we will compute for a given func-
tion y a function x. Tor this we can consider the integral formula (2~1) as a
Fredholm integral equation of the first kind. n a general case, the solution may
become 2 very complicated problem, but in the case of the sphere wo get the solu-
tion easily by a development of the functions involved into a series of cigenfunctions,
that is, of spherical harmonics. Due fo the orthogonality relations of spherical
harmonics we have

2-5 2 = ai ...-...__1.._.—- X,
( ) A.Vn —— n

or by 2 comparison of the same terms of both sides of the equation
(2-6) ax, (n-1)y,.
TFor the similar series

(2-7)

il B~
;‘\

11
1~
=
=

~14-



or

(2-8) Zg 5= D o* Yy

a closed solution is known by the integral (Heiskanen-Moritz, 1967, p. 39)

a
(2-9) 72 = - - f_y__.ﬁav do
ag

with
¢ - 2asiny/2,

provided y is differentiable at least fwice at the point P under considerafion.

We will write (2-9) in the following form

(2-10) R i M@®) (v - ) do
with

B 2
(2-11) M@ = (Esinwm ’

Writing equation (2-6) in the following form

ax + ¥ = ny,



we cbtain

1
ax+y = - — E[ M) (y - 3) do
or
1
-12 - e - - v 3d
(2-12) x= - L - (j} M@) (v - %)do
or in series form
(2-13) . x = %z ‘(-1 y, .
n:=-n

Assuming in this section that the results of altimetry are quasi-geoidal undulations
¢ we neglect for the moment the influence of sea surface topography. We shall
return fo the more realistic case in the next section considering then the sea sur-
face topography as an error source.

As mentioned above the computation of Ag values can be managed in
precisely the reverse way than the computation of geoidal undulations in (Lelgemann,
1975, section 4), We will use here the same notation and abbreviations, We solve
the problem likewise in eight successive steps:

1) Transformation from geoidal undulations  into
the disturbing pofential T at the surface of the ocean by

(2-14) T= ¢y

Y osves. normal gravity
Formulae for y are given in (TAG, 1970, p. 58)



2) The correclion due to the indirect effect of atmospheric
gravity reduction was computfed to be maximal 0.6cm,
S0 we can sef

(2-15) 6t, = 0.

3) Correction due to the upward confinuation ferm because
of topography

(2-16) Te = T - bty
6t, - ~H- Ag

H...... ortbometric height
Ag...... gravity anomaly

This correction is necessary in the neighborhood of coasts and on islands.
On the sea we have, of course, due fo H=0

4} Correction because of the ellipticity of the reference
surface. The computation of the disturbing pofential
at the sphere with radius a is found from '

- (2-17) | - T, = T, - 6t

3

where

-17-



(2-18) 6t, = z'a cos® 0 - T(8, X
5) We write T, in the following form
(2-19) T, = N ¢ Y.
Yo o e normal gravity at equator

In order to avoid the definition of a geoidal undulation in space, we will con-
sider N. 2s an auxiliary quanfity defined by (2-19). However, N, can be
considered as the quasi-geoidal undulation in spherical appreximation and
formula (2-20) may be more familiar then a similar formula, using fhe polen-
tial T, itself instead of N, ,

v o= 8 £ -
(2-20) be o= - (Len v J M) (- (M) do).

This is formula (2-12), applied fo our special problem.

6) Computation of the gravity anomalies at the ellipsoid
from the gravity anomalies on the sphere with radius a:

(2-21) Mgy = Agy + Oga.

From (Lelgemann, 1975) we find

et?

(2-22) A

(n - 1) [Cyo Rnn(e’ )\) + Dnnsnn(9$ >‘-)]

n=g o0

with

-18-



Ruo(8 A} Spa(B A ..... unnormalized spherical harmonics,
' They have the same definition as in
(Heiskanen-Moritz, 1967) ’

The coefficients C,, and D,, can be computed in the following way. When

(2-23)
then

(2-24)

where

(2-25)

TEN = Y ) [AuBu(® 2 ¢ BuSu® V],

n=28 o=0

Cox = A(ng)ePue F Ay + A(n-l‘a)nr'nu

Dy = B(n-a)n Pzt DBrolne *+ B(xﬂe)mrnm

. (n-1T@-m-1)(n-m
Fhon 4(n - 1) (2n - 3)(2n - 1)

-6n° - 8n° + 25mn + 6am° + 6m° + 21

e = 4(m - 1)(2n 1 3)(2n ~ 1)
o _(n+1ln+m+2)m+m+1)
s 4(n ~ 1) (2n + 5)(2n + 3)

7) The gravity correction due to topography is zero, because
we want gravity on the sea surface. We have

-19-



(2-26) Ags = bge + Ogs
with

0ga = H ¢ ILa(bg),

where L, (Ag) is an abbreviation for

2 —
Loe - - ] ~Eogke do.

This correction is only different from zero, if we want to compute gravity
anomalies at land, At sea, H, is zero and therefore we get always

gy = 0.

8) Add to this value the gravity effect Op; of the
atmosphere

(2-27) Ag = ADgy + Ggl .
Because this correction is constant at mean sea level we have

6g; = ~0.87mgal.

However the recommendation at the IAG (IAG, 1970) may be notified, thaf
this correction may be handled as a measurement correction. - In this case we

20—



have of course

8z, = 0.

There are no difficulties in the computation of these correction ferms. So we
can resfrict our accuracy considerations to fhe case of a spherical problem,
Only the problem of the unknown sea surface fopography needs a special con- .
sideration.

-2~



3. An Estimafe of the Error Influence of the Sea Surface Topography

As Moritz (1974a) has shown we can compute the sea surface topography
with geodetic measurements by a combination of altimeter data and gravity obser-
vations. However, if we want to compute gravify from the altimefer observafions
the difference befween the real ocean surface and an squipofenfial surface of the
earth's gravity pofenfial must be known,

The difference belween the instanfaneous sea surface and an equipotenfial
surface of the gravity field is generated by many different forces, Therefore, the
computation of this quantity may be very complicated (Wemelsfelder, 1970). For
our presenf purposes it seems sufficient to consider the instantancous sea surface
as an equipofential surface disturbed by irregularities of four types:

1) very short periodic irregularities (e.g. ocean
waves, swell)

2) periodic or quasi-periodic lrregularities (e, g.tides)

3) quasistationery irrogularitics, which relain their
form buf change their places (e.g. due fo the
meandering Gulf stream)

4) quasistationery irregularities, which refain form
and place (e.g. due to equatorial currents),

From a geodetic point of view we consider sea surface fopography only
as an error source. So we will make two suppositions in view of the following
error considerations:

a) The very short periodic irregularities and the periodic
and quasi-periodic effects by {ides and seasconal effects
are corrected either by statistical methods or by suifable
models of the disturbing forces.



b) Irregularifies of type three and four must be given
by oceanograghic science or we have to consider
these irregularities as a possible error source,

Because of the second supposition, the error discussion was made under
the thesis: If oceanography does not need the help of altimefry for a solution of
their problems the altimeter data can be corrected to geoidal undulations. I
oceangraphic scicnces want altimeter data for a computation of cerfain phenomena
we will consider these ag an crror source in our model,

From this point of view the difficulties seem not so important with frregu-
larities of type four, which result from the shape and the magnitude of the large -
scalc features of the mean sea surface, mnformafion 1s already given in form of
maps, from which we will mention the map from Stommel (Sturges, 1972) and the map
from Lisitzin (Rapr, 1974). The difference of about 1.5m between fhe values in
the two maps is lurgely constant, An estimate of £30cm of the uneertainty of these
maps is given by Sturges. He mentions that this error could probably be reduced
to approximately £10cm, However, the difference between oceanographic and
geodetic results in the large scale features of mean sea level along thoe coagt lines
are not yet clarified,

The situation seems not so well defined in the case of atrong boundary
currents such as the gulf stream and maybe in the case of eddies, The tracking
and also the detecting of strong boundary currents and of eddies could be one of
the tasks which oceanographic science expeets from altimetry (Sturges, 1972).

Strong boundary currents such as the Gulf stream have the following form
(Stommel, 1965),

‘\ OCEAN SURFACE

GCEoP

NORTH SIDE

|
1' ~ (00 Km

SARGASSO SEA
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The cucrent flows perpendicular to the plane of the page. The height difference
between the warm water of the sargasso sea and the colder water at the north
side of the stream is expected to be up to fwo meters, So we have fo expect a
slope of the stream of

2m: 100km = 2 » 107° ,

The main problem is the meandering of the pulf stream. Although the meanders
can remain in a fixed position for a short time, they usually change posifion sub-
stantially during a time scale of perhaps two wesks, An expression of this mean-
dering is seen in figure three in (Sturges, 1972).

It seems very difficult to obtain an exact knowladge of fhis mean~
dering, which is expected in the easfern parf of the gulf stream to an horizontal
extenf of 500 kilometers. So we have fo consider the sea surface topography
generated from such a current as an data error f.

From formula (1-2) we get
mg+m==-@?m+&>+z%-lmmuN+m

- (N i) do

or

- =....-Za__ - Ye - .
(3-1) Be - b - [0 @) do

An error estimate based on this formula seems not easy., We will give & yrough -
estimate of this 2rror using in a completely different way our knowledge abouf
the slope of the sea surface topography.

For the ratio between fhe norm of the slope Av of the geoid and the norm
of the gravity anomalies Ag we draw from (Meissl, 1971, page 42),
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s S Ve

(3-2) Yo A
v JG6 Av

where we have let G =, .

We will apply this formula to the error f. We do not know the variance
of f,, but only a maximal value of max(f) = 2 « 107°. We interpret the error
due to the sea surface topography of the boundary currents such as the gulf stream
as an stochastic process with a normal distribution on the sphere. In this case
we have

(3~3) max £, = 3+ [ £ ]| = 8+ m@gw
and
(3-4) max|f.| = 3- | &) = 3« m(va).

Then we get the following inequality
Yo wmax|f,] <« max]f < . max|f | .
76 ‘ ‘ 1 & 1 v
With
max | fy| = 2 - 107°
and Yo = 980000 mgal

we get as an rough estimate
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Smgal = max [ ifl f < 20mgal
or
(3-5) 3mgal <€ m(Ags) < +7mgal.

Because of the assumptions above the derivation of this estimate is
very weak, buf it gives at least an expression of the magnitude of this error. A
recovery of gravify data in areas of strong boundary currents should be done with
utfermost caution, including a very carcfully error analysis of data and results,
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4, The Error Ifluence of the Neglected mner Zone

We have assumed already that our data are mean values of geoidal
undulations N of blocks of size F, = b * b[km®] with an root mean square
error of m(N). We will compute the value Ag, of the gravity anomaly always
at the mid-point P of the blocks. For the value (N - N,) inside of the imer
most block we get

{4-1) N-N) = N -T) =0,

replacing in the integration procedure the function N by its mean value W,

We will now estimate the error m (Agy) generated by this procedure.
In view of the fact that we make only an error consideration, fhe infegration
over the inner square block may be approximated by an integration over an cir-
cular cap of the same area with sufficient accuracy. Because of

(4-2) F, = b#b = sfn
we get
(4‘.""3) By = ] + b

a

as a value of the radius s, of this circular cap. Approximating the radius £
of a spherical cap by the radius s; of a plane circle

(4-4) % = 2asin®/2 = asiny = s,

“and the spherical surface element by
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(4-5) a®do = a®sind dp do = sds do,

we get for the influence of the inner zone

2n iy
(4~6) Agy = = 4ﬂa zp*[ M (0) (N - N,) sing di de
a—r £
2% 8y
= -—-—-f [ - g ds do.
a=0 s8=0

We develop the geoidal undulation N at the point P into a Taylor series

(4—7) N = Np + XN + yNy Fo—=— ( X Nxx L 9 XYNW + v I\yy) Fe s s
with
” -_"(...;.IS_)D and Nex = (-a-?;y—)p .

Introducing polar coordinates,
X =689 cos¢ and y = 8 ¢+ sino
we get the following expression
3

N = N, + s(Nycosa + Nysin ¢¢) + (—%)(Nxxcusaoe

+ 2Nycosqsing + Ny, sin’g).
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The integration over the azimuth o gives
84
dge = - —2 [ @ + Myds
4 J
8=0
and the integration over the distance s

e * S |
Agy = = Yo * Si (Npx + Nyy)

4
or
_ - _ Ya- By 9 an_
(-8) b 4 Ax " Hy‘)p'

E3 1 vees.... defloctions of the vertical

We cannot esftimate the error infiuence from this formula, because
we have no stafistical information about the size of the horizontal gradient of
the deflections of the vertical. However, based on Laplace's equation we can
exchange this expression info

- odg - g (28 4 2n
(49_) or G(ax * ay)

' (Heiskanen-Morifz, 1967, (2-221)),

Because
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we obtain for the mfluence of the inner zone:

(4~10) Agy = —-:—‘ (j’%&—)p.

This expression is better suited for an estimate of the error which appears with
the neglect of the imner zone. The variance of the gravity gradient i8 known fo
be (Metzger and Jircitano, 1974):

|28 | = =2¢5v.

EU ......Eotvos unit
With the relation

1 Eotvos unit = 1 EU = Amgal 4402
10km

we get as an estimate of the root mean square error of the poin! anomaly for the
midpoint of the inner zone due fo the neglecting of this zone

m(Agy) = + . « b [mgal
(Be1) 10 4/ [ !

or

m(Ag)) = +0.34 -+ b[mgall,

where b must be inserted in the dimension km. It is easy to see that the value
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0.34 depends very strongly on the estimafe of the variance of the gravify
gradient of £24 EU.

It may be pointed ouf that the formula (4-10) is valued only for a suf-

ficienftly small zone, dependent on the desired accuracy. TFor a more defailed
examination see (Meissl, 1971a).

-31-



5. _Error Considerations for a Given Accuracy of the Altimeter Datfa

As ia the last section we assume that our data are mean values of geoidal
undulations N of blocks of the size I, = b % b [km]® with a root mean square
error of m(N), Furthermore we make the assumption that these measurements
are homogeneous and uniformly distributed over the whole sphere. The more
realislic case, that the mean values of the geoidal undulations are given only in
a certain neighborhood of the point under consideration, is discussed in the next
section,

We have to study the error propagation in the inverse Stokes' formula

[ = - Ye ) N
(5-1) bg = - Ao i(N &) M@ do.

For the moment we shall consider only the integral part of formula (1-2), taking
the linear term into account afterwards.

The main difference as compared with Stokes' formula is the stronger
singularity of the kernel M (¥) at the point of interesf. But we have already
excluded a neighborhozd around this point and the error esfimated in the lasf
section. So we can apply for the error considerations the same methods as for
fhe error considerations in the case of the computation of geoidal undulations
from gravity anomalies (Heiskanen-Moritz, 1967). The individual error ¢
of Ag is '

91 ©

(5-2) € = - 22 V@, 0) M(¥) sind dp do
dma mlo wio

where vV (¥, &) is the individual error of the geoidal undulations,

We consider only the error function v, taking the constant ferm y,
into account with
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2 17

_l«.,;_!fp_.[ I M) sin dp da = Yo
ina gy gilo | a

(See Heiskanen-Moritz, 1967, p. 37). Errors of this size can be neglected as
discussed at the end of the section,

The square of (5-2) becomes

2n  m

e - | _4_31::_1_)2& lo wI:o v (b, 0y M%) sinp di do
2m O

y w.f VO ) 3 siod ab da.
o= =

Because products of definite integrals may be written as one multiple integral
we get

™ 21

2m m
2 .
- (_43:0;- C!-':r() ﬂbio d’i‘-O w'-“—J"IO Ve v )

+ M@ M@") sind sin' db der bt dev’.

We form now the average of both sides of this equation arriving at

2 T . 2w

(5-3) m®(Ag) = (ﬁ;):io abJ—:O aL} wv‘fo o (%, o ¥ty o)

« M@ M (") sind singd' dp do dy' dot.
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In this formula, m?(Ag) is the error variance of the computed Ag-values and
(5-4) o, o, ¥, o) = o8, N 05,1 = { V(6 ) vE, N\ ]
{the braces mean the average over the whole world)

is the error covariance function of the geoidal undulations., This is the general
form of the error propagation in Stokes' inverse formula. Of course this formula
is oo complicated for onr purpose to get an estimate of fhe order of the crror,

So we include two assumptions which can be drawn from fhe presuppositions about
the measuring data:

1) Only errors at neighboring points are correélated.
We can make this assumpfion if errors of different
blocks are uncorrelated. The error covariance
function of the geoidal undulations may fhen assumed
to be zero for points further then b - /2 apart.

2) The accuracy is the same for every point of the
earth surface., If we work exclusively with altime-
fer observations this assumption is only valid at the
oceans, Tor this reason the outer zones must be
excluded from the computations. The additional
error due to this exclusion will be considered in
the next section.

By assumpiion one the integrant is noticeably different from zero only

if (8" = 8) and (\' = )}, because the error covariance function may be considered
as zero for two points move than b/2 apart. Hence, we may approximate

. g 27 T 2n - om
(3-5) m(hg) = (ﬁ) QJO lp:-:rg o,f—_jo qD'JO i

« ME() siny sind' A do 4! do

and perform then the integration over ¥' and o' first, Wo define
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27 O
(5-6) 2 | o, 0w, 0 sinpt av de = Eqg,a)
' a'=0 P'=9

E sc... error constant of the alfimeter data. .

As a maximal limit of the real error covariance function, we will assume
that the error covariance function is const = m(N)”~ inside of each block and zero
outside.

2 s,
m*(N) U

e =t -

We get under fhis assumption

(5=7) E = m*N) »

as a maximal estimate of the error constant. Because of assumption fwo the error
constant E is independent of position. In this way we obtain

y s 2m T
(5-8) - wee = () ajo d’iotmw) I sinp ap da..

First we perform the integrafion with respect to a. We get

[M (tU)ia sing di,
0

m?(ag) = (—Xz-)a -z,

a Bﬂzb

Ne—-—q

‘We have already faken into account the small neighborhood ¥ < ¥ in another



way., Consequently, we exclude the origin by beginning the integration with

b= Py

2
wPg = () & [ e i as
DRI
or
n 2
(5-9) m'dg) = —2— (L) -+ hy
with
.7 )
(5-10) Ty = | (M) 1P st ab.
=¥
Because of
3 2
M@ = 55 sin® /2
we get
1 1
) = 5 | wpm s .

6 =1

In order to solve the iﬁtegral we infroduce the new variable

z = siny/2
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with

sin §,/2 = t

and

sing dy = 4z dz.

We can easily verify

(5-11) k) = 1]é [sin‘*lz,bi/z - 1-|

In this way we gef as a final result

(5-12) ma(Ag) = 12E8ﬂ (21’% )2 [sin';lqb,/z B 1j|'

We will now specialize this formula for small angles ;. We gef

1
sin” /2

2 K3 K Ya_

Taking info account (4-3) we can approximate

siny;/2 = /2 = s/2a = b/2/7

or
1 . _187° a*
| 3in” U4/2 b .
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Furthermore, we have from (5-7)

E £ m?*N) - b2,

Putting these expressions into (7-13) we arrive with

2

m®(g) = — L . P
or
(5-14) meg = [ — —%’-’—- m (N).
This can be written in a form
(5-15) meg = == - m(9

(b in [km], m(N) in [em], m{ag) in [mgal]).

Taking finally also the epror due to the neglecting of fhe inner zone
into account we get

b

(5-16) m?(agy) = mPg) + m?(Agy
or
a pe]
(5-17) m?(bg) = ~oel o W N g, 542 2
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(b in [km], m(N) in [cm], m(Agy) in [mgal]).

This is the variance of the error of the gravity anomaly af fhe midpoint of a
compartment.

We have neglected up to now fhe influence of the congfant term in the
inverse Stokes' formula (1-2) '

(5~18) —Ye. N = 0.15N [mgai].
a

N has the dimension meter. It is easily seen that an error of 1m
in the geoidal undulafion generates an error of 0.15mgal in fhe vesult, This
error can certainly be neglected in the error considerations,

-39~



6. The Error Tufluence of Neglected Outer Zones

In the last section it was pointed out that the derived error formula is
only valid in the case of geoidal undulations given homogeneously over the whole
earth, From altimetry alone there is of course a lack of data over the confinents,
In the present section we will estimate the error which occurs if we exfend the in~.
tegral only over a certain avea, a cup of radius ¥,. In this case we neglect the
influence of the function itself outside of this cup.

First we split up the infegral into

(6-1) Ag = Agy + Ag(N;) + OB
with
Yo 2m ‘
(6-2) Agy = - 4’:‘1 J j M@@) (N - Np) siny dip do
=0 o=0
. T ?[..TT
(6-3 gy = N - e . J% ] o o dp o
™ 2
(6-4) Mg, = - 4:; f f M@) - N« sind df da.
Y=t =0

If we integrate only over the cup ¥ < P we neglect of course the
torms Ag(N,) and Ag,.. TFirst we will investipate the magnitude of Apg(N;).
Starting the integration in formula (6-8) with the integration over « and
inserting M) by the expression (1-3) we get

i)
PV A :
Ag(NP) - NP Sa‘béj_]b Sina!b/z .Sm‘P dllb'
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In order fo solve this infegral we insert
sin /2 = =

which lead fo the resulf

(6-5) Ag(Np) = N 2’2 [sin :;O/z . 1]"

The following table gives an impression about the magnitude of this correction
term for various cap sizes Y.

Table One. (N, in meters, Ag in milligal)

Yo Ag(,)
2° | 4.3 N,
5 | 1.7,
10° | 0.8 N,
20° | 0.4N,

N, [meter] ........geoidal undulation af point P
Ag(N,) [mgall......error due fo the neglecfing of the
consfant N,

Because this correction ferm may become fairly large it must always be taken
into account in fhe course of excluding the outer zones from the integration, Affer
this we will compute the magnitude of the neglected term A4g,. given by

” T 21
Bfor = = = ey w‘_[,’bn GLO M)+ N - sinddd dee
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We infroduce the discontinuous function

- EY: 0 if 0<sy¥ <y,
(6-6) M (1) {M(w) £ g ape
getting
m 2m —
(6-7) Ofey = - ~—Lo- N - M) sind dp do,
4“awio aio

The function -ITfI(qD) can be developed into a series of Legendre polynomials

2n + 1

(6-8) M) = >

n

U, P, (cos ¥).

i1 p~18

o}

For the moment we will assume fhe coefficients U, are known. A formula for the
compufation of the U, will be derived afterwards. Inserfing the series (6-8) info
the integral (6-7) and interchange the order of summation and integration we get

@ 1 2m
(6-9) Ag,. = - 8:‘; }: (8n +1) U, I I N + P, (cos¥) siny d¥ dr.,
o P=0 ok

n

il

We can write N as a series of spherical harmonics

N =

n

N, (6, M.

ny~738

3

As as solution of the double infegral we obtain

7 2 2 8. X
I [N - P, (cosy) simd dp do = A N (9 A)
wzo mgo {(2n « 1)
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and with this intermediate result

L %
(6-10) R R R

Expression (6-10) may be considered as the error at a cerfain point P = P(6, A),
caused by neglecting the geoidal undulations beyond a circle of radius Y, around
this point P. However, what we want is not an individual error but its variance

a

(6-11) o5 1 = 0383) = 2 { (Vv n) ).
n=3

Starting with this expression we get, similar as in (Heiskanen-Morifz. 1967, p.261),
after some manipulations

I dge: |* = {5— i Un Unt {No Nt o,

AT n'=z

1t is well-known that all {N, Np:} are zero except for the case n'= n. Therefore
we obfain finally

(6-12) | bgall® = 2oz ) U ks,
) nza

By K, we have denoted the degree variance coefficients of the disturbing potential
respectively of the geoidal undulations itself,

It remains the evaluation of a suited expression for the coefficients U,.

'~ We start with the infegral expression

i)
U, = J M($) P, (cosd) sing dp

e



or

- 1 .
(6-13) U, = —= J _Sﬁz—" P, (cosy) sim) dips

The main difference to the similar problem of the compufation of Molodenskii's
coefficients Q, (Heiskanen-Moritz, 1967, p. 260) consists in the fact, that the
kernel M(Y¥) is much easier than Stokes' function, Introducing the new variable

z = sin /2, t = sin /2
cosyp = (1 - 22°), sinp dyp = 4zdz
we obtain,
t
(6-14) U, = - i P, (1 -~ 2°) ‘12 .

We will develop the Legendre polynomials info a power series of z. I'or this
purpose we start with the well-known series representation of the Legendre
polynomials

6-15 P,(l-2z3) = 2" —1)k (2n - 2k) ! - 973y n2k
( ) ( =) kZ"o( ) ki@m-k!(n-2Kk! (1 - 22ys

r=NT(n +2),

Because of the binomial expansion
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Ic]

(6-16) @-h? = (- 1))) (’3) alep”

el

Y=0

we get
E oy m-2k1 2
-~ 2722k - - i 2y
(L3 vzo (D Ta-2k-u °
or
(6"‘17) (1~ 2Z )n_zk n-zﬁk (_ ) (n - 21() ! 2.)’ Za(‘p_z)
vl (n =2k -)! ‘

With this transformation of Legendre polynomials we can write the integral (6 14)
in the following form _

r

ft -2k
j A 2 By + 23("-1)
=0

1 k=0

where
2n - 2! 2-°
= _1k (
B (-D k! (0 -k)! (n - 2k)!
and
kY
P ¢ (n-2k)!2
Buy = (-1 ST Tac- ot

We interchange the order of integfafion and summation and because of 2(v - 1) #-1
we can perform fthe intsgrafion with the resulf
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(6-18) Un = 'i “i an'—'—“‘ [+&D g,

We will give this power series a more convenient form. TFirst we can write

n—2k
(

L L

_ 1)v+u 1 {2n - 2k) !
2(*”) v1k! (n-k)! (n~2k-v)! 2v 1

[{-(29-1) 1] .

Here we have of course r = INT(n/2). Now we will change the order of saum-
mafion, that is, we will sum first over v. Because of the case k = 0, fhe sum-
mation over v has fthe range from 0 fo n, Because of ¥ =n - 2k we have for a
summation over k a range from k=0 tok =p with p=INT( (n-v)/2), We arrive
therefore at the desired result with the expression

6-19 Up = - ~ e L (2n ~ 2 1 . 2v-1
( . : vzo Z'o - 20 Y1k (n-k)! (n-2k-)1 2!/ 1 e -1
with

p=INT ( (n-1)/2)
t =ging,/2 .

The final result (6~19) was checked by an apalytical integration of formula (6-14)
up to an order of n=3,

For an estimate of the error due to the neglecting of the outer zones we
use the degree variances from the covariance function {1-8), compufed by Tscherning
and Rapp

B a® 425,28 n+l
K“—( ) n-1n-2)(n+24)

with

8 = 0.999617,
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Ir this case we get as error

425 28 3‘2 s™1

— 2 =
(6-20) m=(Ago) (= 1) (n - 2)(n +24)

U2 [mgall®,

=1

A computer program was written in order to get numerical results. These resulls
are given in the following table for various radius W, of the oufer zone and different
degree n, of a reference field, The dimension of m (Ag,,) is milligal.

Table Two. Influence of the Zone Beyond the Radius §, for Reference Model
of Degree fig..

Do
e 2 8 16
2° 10.2 0.5 ¢.1
5° 3.3 G.1 .0
10° 1.1 0.0 ¢.0
20° 0.2 0.0 (URE i

If we know exactly a reference field up fo a degree n, = 16, then 1! seems
generally sufficient to carry out the integration up fo a circle of ¢, = 2°, So
it may be also possible to compute gravity anomalies near the coast of the con-
tinents from the altimeter data.
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7. Summary

A detailed description of 2 model for the recovery of gravity anomalies
from al’imeter data with 10cm accuracy is given in Section Two, The disturbing
potential at the sphere with radius 2 is computed from the geoidal undulations at
fhe earth's surface. After this, gravily anomalies at this sphere are recovered and
then these anomalies reduced to values at the earth's surface, The practical solu-
tion consists of small correcfion terms fo the inverse Stokes' formula,

The influence of the sea surface topography is discussed especially in the
case of meandering currents such as the Gulf Stream, From fhe influence of the
unknown meandering of these currents a rough error estimate indicates an expected
error of

3 mgal ¢ m(Ag.) S £7mgal,
M (ALg) s eessssa.. error of the gravity anomaly due to

- sen surface fopography

The most critical error influence is probably due to the data errors and due fo the
neglection of the inner zone, It was assumed that mean geoidal undulations are
given all over the earth in biccks of size b and with an accuracy of m(N).

Point errors at the midpoint of the blocks ean be estimated with

m(Agy) = “a;“a +0.014% | 2SE |2 . 12

m(Ag) «s.s... error of the gravily anomaly in [mgal]’
M{N)esseesss. error of the mean geoidal undulations in [em]

beievernesoes block size of the mean geoidal undulations in fkm]
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A
| %‘f“ vees... mean value of the vertical gravity gradient
in Eotvos units '

For m{(N) = *10em, b = 13km and |[—a-a§1-§ | = 24EU we get an estimate of
m{Ag) = +6mgal,

An estimate of the accuracy of mean anomalies of block size e,
c > b,

gives under certain natural assumptions

-—g—m(Agm) S m (0g) S mg).

M (AZy) ++.... €rror of the mean anomaly of
block size e.

With the numbers above and a block size ¢ = 1" we obfain
+1mgal s m.(Ag,) < *6mgal,
The results are in good agreement with the results of the error considerations in

(Rapp, 1974), which are based on least squares collocation,

In the last section the error of neglecting an oufer zone in fhe inverse Stokes'
integral is investigated. Such a procedure may be necessary because if is not yet pos-
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sible to compute geoidal undulations from altimeter data on land. If the harmonics

of lower order up to a degree n, = 16 are known, the range of integrafion can be

resfricted to a few degrees without a significant additional error. However, a cer-
tain correction has to be taken into account in this case,
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