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FOREWORD

;This is the final report of our research on biocybernetic factors
in human perception and memory which was begun in 1972 at Stanford
University and vas supported partially* or fully by the Advanced Research
Projects Agency of the Department of Defense under cos.tract DAHC15-72-~
C-0232, which is now terminating. This report presents a brief summary
of the objectives and a description of the accomplishments of the
project,

Since its inception, this project has been the result of the
collaborative efforts of many individuals, Most of the staff anembers

contributed to the writing of this report.

*Partial support for tuis project was provided from .972-1973 by
NASA/Ames Research Center under Grant NGR 05-020-575,
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Biocybernetic Factors in Human Perception and Memory

SUMMARY

The objective of this research project is to develop biocybernetic
techniques for use in the¢ .nalysis and development of skills required
for the enhancement of concrete images . the "eidetic" type. The scan
patterns of the eye during inspection o1 scenes are treated as indicators
of the brain's strategy for the intake of visual information, We
attempt to determine the features that differentiate visual scan patterns
associated with superior imagery from scan patterns associated with
inferior imagery, and simultaneously, to differentiate the EEG features
correlated with superior imagery from those correlated with jiiferior
imagery. lor this purpose, we have designed a closely-coupled man-machine
syStem to generate image enhancement and to train the individual to
exert greater voluntary control over his own imagery. The models for
EEG signals and saccadic eye movement in the man-machine system have
been completed. These models are used for monitoring and prediction of
EEG signals and eye positions. Al this moment, all parts but the feedback
path of tae man-machine system have been implemented, We shall describe
in this report the details of these models and discuss their usefulness,

We have assumed that the strategy of an individual with superior
visnal memory is to fixate his eyes at the optimal locations of the
visual scere at the optimal time instants in relation to EEG. Through
the EEG model, we have concluded that the EEG signals play the role
of timing mechanisms for visual information acquisition and processing,

By using our chararterization of scar patterns, we are able to show that
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the scan pattern is more consistent for irdividuals with high scores
obtained from the Marks' Visual-Memory Task than those with lower scores,
These results tend to confirm our assumption and help guide us in
obtaining a firmer grip of these ontimal locations and time instants, We
have also developed and implemented a technique for presenting any part
01 a sccne at a specified foveal location at a specifi2d instant of

time. 1If the specified locations and time instants are optimal, we
expect that the image will be enhanced, Prediction techniques have

been developed for both saccadic eye movements and EEG waveforms so

that lead times may be provided for the presentation of appropriate
visual cues (stimuli), We shall present and discuss many of these

in this report,
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I. INTRODUCTION

This project has been aimed ut tise development and use of biocyber-
netic coucepts and techniques for anslyzing end developing skills that
are =gsential for the enmhun. ement of co crete images of the "eidetic”
type. Ye have concentrated on tke probles of achieving biocybernetic
expansion of visual memory by using a closely-coupled man-machine system
which performs real-time mcanitoring, analysis, and feedback of spatial
and texporal cues that serve as keys to human memory encoding 21:d
recall. There is stronz evidence that th_se cues are heavily depended
on in memory encoding and retrieval by human nervous systems., The closely-
coupled” man-machine system is ucged ior the measurement and prediction
of human mnemonic performance to determine the spatial and temporai
cues as well as for the control and enhancement of mnewmonic skills.
Such a man-machine system for visual mesory tracking and training has
been designed and is depicted in Figure 1., This system is capable of
delivering optimal sequences of sensory stimulation conditionally
related to eye position and brain stat:, and thus to explore systematically
their relation to visual memory rotrieval.

It is seer from the man-machine system that we emphasize the real-
time monitoring and prediction of central nervous activities through
the EEG sipnals and through the tracking of eye movement and eye fixations.
Employing these real-time techniques, we have attempted to determine
the teuporal and spatial cues for human memory encoding and recall by
monitoring of brain states and eye positions, Again, tnrough this closely-
coupled man-machine system, we utilize this information to arrange the

desired coincidences between various brain states, eye positions, and
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Figure 1 Block diagram of the
closely-coupled man-machine system
for monitoring and training of visual memory skills
the delivery of visual stimulation. The visual stimuli have been
presented on projection screen or oscilloscope displays for binocular
or monocular viewing. The eye movement was measured wit: the Biometrics'
Eye Movement Monitor, Type SC; it is now measured with the Stanford
Research Ins-itute's (SRI) Cornsweet Eye Tracker. The brain states

have been monitored through the EEG signnls, It is expected that



greeter control of imege persistence and image dissipation can be

obtained by combining these real-time monitoring and prediction
techniques with a feedback scheme to ciose the conirol loop as depicted
in the block diagram of the man-machine systam, In other words, we
strive to use the computer system to supplement amd strengthen those
deficiencies in human memory that ordinarily result in image
dissipation based on the assumption that a superior scan pattern of
visual inspecticn that results in 2 superior memory is more consistent
and also less probable of natural occurrence than a visual inspection
strategy that is less consistent. To summarize, we attempt to steer
the subject toward improved encoding and decoding strategies for memory
ty using the techniques which have been developed and implemented on
this man-machine system.

The closely-coupled man-machine cystem utilizes computer-based
models in the system configuration to predict the kind of ftimuli which
should be used in order to produce the desired future responses, The
EEG signals and the eye-movement measurement are shown as the resporses
which arc¢ .losely controlled since the computer-based models are designed
to mimic the actual physiological processes in regard to their stimulus-
response relations. To be more specific, since the visual cues (stimuli)
wust be presented at :ppropriate locations in the visual field at the
right instants of time, monitoring and prediction on real-time basis
of both eye movement and EEG signals are essential. These models have
been developed for the purpose of monitoring and prediction. We have
completed the work on the computer-based models which will be described

in deteil in the following sections. These models have also been
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implemented on the PDP-15, All of the man-machine system, except the
interface electronic devices, can be realized on the PDP-15 computer,
At the close of this project, we have impl:amented all but the feedback
path of the aan-machine s;stem,

In order to determine the visual cues which serve as keys to
both memory eacoding an Jecoding, we have to characterize the scan
patterns of observers during the inspection of scenes, With this
quantitative characterization, we vill then be able to differentiate
quantitatively a superior scan pattera of visual inspection that
results in a superior memory from an inferior one. This quantitative
description is intended for use in ‘ne determination of those vital
visual cues, We have developed and implemented a statistical method
for the characterization of visual scan patterns. Our experimental
results have established that observers with good visual memory, as
scored by Marks' Yisuai-Memory Task, have a more consistent eye scan
pattern in quantitative terms :chan those with poor visual wemory., The
characterization of the visual scan pattern and the related eye-movement
measurement techniques will be discussed in Section IV,

Last, but not least, we will present a technique for the presentation
of the visual cues (stimuli) at appropriate locatjons in the visual
field at the right moments. Since our ultimate goal of this project is
the visual memory enhancement through biocybernetic techniques, once the
visual cues are determined, they can then be presented to the observer
or trainee using our technique. In other words, this computer-implemcnted
technique will enable us to deliver visual stimulation to coincide with

the desired brain states anrd eye positions since it controls, in real-time



the monocular field of view of an observer inspecting outline drawings
of visual scenes on a graphical CRT display. The details will be diacussed
in Sectiom V.

In Section VI, we shall summarize our accomplishwents and make
concluding remarks. Some of these accomplishments have been published
or presented in international scientific conferences, The 1list of
publications rel:vant to this research project is included in
Appendix B.

In symmary, we have designed a closely-coupled man-machine system
for the purpose of developing and use of biocybernetic techniques for
analyzing and developing skills that are essential for the enhancement
of concrete images of the "eidetic” type. This man-machine system has
been implemented except the feedback path. 1lu this system, we have
developed models for EEG signals during visual stimulation and for
eye movement dur.ng inspection of stationary scemnes, respectively. These
models are then used for the purpose of monitoring and prediction of
various brain states and eye positions so that the desired coincidences
between various brain states, eye positions, and the delivery of
visual siimulation can be arranged. This arrangement of the desired
coincidences can e cairied out by a technique we developed and implemented.
The electronic interface systems in the man-machine system serve
a very important role in data acquisition and monitoring of the brain
states and eye positions. These electronic interface systems consist
of EEG recording machines with Grass preamplifiers, eye-rovement measuring
instrument ,SRI Eye Tracker) and related interfacing hardware and

software. We shall cover some of i1he unique features of the interface



systems in Appendix A, This report will conclude with Appendix B
which includes: (1) a list of the names of those who have contributed
to this project; (2) a list of all relevant papers that have been or

are to be published; and (3) a 1list of lectures and talks given,



1I. ANALYSIS AND MODELING OF EYE MOVEMENTS
DURING SCEME INSPECTION

In the closely-coupled man-machine system depicted in Figure 1,
we have twe boxes, each labeled as computer-based model; one is for eye
movenment and the other is for EBEG signals, These computer-based models
are used for monitoring ~nd prediction of eye positions and various brain
states, respectively. The monitoring of the eye positions is nocessary
for the detemminaticn of the spatial cues that serve as keys to visaal
memory encoding and retrieval and the prediction of eye position is
esgsential for the presentation of these cues at the desired locations
of the visual field. 1In this section, we shall discuss the development
of such a model for eye movements during inspection of two-dimensional

scenes,

1. An Algorithn for Automatic ldentification of Fixations and Saccides

Eye movements during inspection of two-dimensional stationary scenes
consist mainly of two compounents: fixations and saccades. The first step
in our analysis of eye movements is to senarate the data into these two
components. We need to determine the beginning and end points of the
fixations and saccades., This helps us to determine the sequence of
fixations during a volitional scan of a two-dimensional scene, The
separation of saccades from fixations is useful for the modeling
to be described later. In the past, the delineation of fixations
and saccades and the scoring of the fixation sequences has been done
by hand. We have developed an algorithm which does this automatically

and can thus reduce large amounts of - aw eye-movement data to a sequence



of fixation points very quickly. With modifications, the algorithm can
perform in real time, In addition, it gives us an objective method of
data analysis as opposed to the earlier methods.

The detection of saccade onset is essentially a problem of signal
detection. We can consider the movements during fixation as noise and

the saccade as the signal, At any instant, we compute the quantities
k k

- Zuwux]|,R =1Y - Duy|
i=1 it y F i=1 i71

R = |Xg

where (xi,yi) are sampled values of the horizontal and vertical components
of the raw data; (XF.YF) is the location of the fixation; and [wi] is
4 weighting function of length k . The algorithm indicates the onset
of a saccade at t =0 if either Rx >T or By >T , where T is a
preset threshzl.u value: otherwise, the weighting window [mi] is moved
forward. The threshold T is a parameter of the algorithm which
depends on the noise level in the measurement, the size of the smallest
saccade that has to be detected, the amount of delay (k) allowed before
detection, etc, This approach is essentially a2quivalent to using a
matched filter since the weights {wi} are determined using the saccade
model to be describad later. Based on this model, we can determine the
error probabilities for different size saccades and set T accordingly.
We use a slightly different approach to determine fixations sinc=
the end of a saccade is usually much slower than its onset. Naw we

compute
y 3 )
n=4#{:lx - Tegxl<T A - ey l<T ,1<4 <
{J Ix Z el <To Ay Zedil <7 3

where [gi} is an empirically determined weighting function and Ts is

2 threshold value depending on the noise variance. 1In effect, we are

8



computing the number of points in a sample window of length g which
falls within a square of size Ts around the window weighted mean

CE gX, 2 giyi) . The algorithm moves to the fixation state if n
exceeds a preset value n56< 4) ; otherwise, tae saaple window is moved
forward. In practice, a simple averaging function is found to be adequate
for {gi} .

We have written a program to implement this algorithm. The program
reads raw eye-data from the magtape and uses the algorithm to determine
the fixation points. These are plotted and numbered, The program also
outputs the starting and ending times and the standard deviations of
each of the fixations, An example is shown in Figures 2, 3, and 4.
Figure 2 shows the raw eye-movement data, Figure 3 shows the sequence
of fixation points obtained from this algorithm, and Figure 4 shows the
fixation points superimposed on the actual stimulus used. It is clear
that a considerable data reduction has been achieved and the result is
easier to understanc and analyze. Other advantages of this algerithm
include easy adaptation to different noise levels and;/or measuring
instruments by changing some parametcers, and a quantitative estimation
of error probabilities. In fact, the algorithm has been used quite
successfully during the course of this project cn data obtained from both
the Biometrics unit and the SRI eye tracker by simply changing the

thresholds.

2. Modeling of Saccadic Eye Movement

The rext step in the analysis of eye movements is the investigation

of saccadic movement, We need to be able to monitor and predict the



Figure 2 Raw eve movements for
a 20-second scan, Scale = 2,5 deg/inch
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Figure 3 Fixation sequence for the scan in ligure 2
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Figure 4 Stimulus overlaid by the fixation
sequence in Figure 3
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saccade duration and length in order to present visual cues (stimuli)
at the appropriate locations in the visual field at the desired momeants.
Thus, the detailed dynamics of the saccadic movement are of interest to
us. Hence, our approach is first to develop an aporopriate model which
embodies the aynamic characteristics of the saccadic system, This model
is ther utiliz2d for monitoring and prediction of the saccadic wc—ement,
The human saccadic eye-movement control system has been of great
interest to researchers in neurophysiology and bioengineering. The
general shapes of the position, velocity, and acceleration curves of the
eye movement have been reported extensively., We have attempted to fit
the model responses tc empairical data by classical least-squares
techniques, This enables us to estimate certain parameters of the model,

These parameters which will be used for predicting the final eyv pcsitions
have only been determined by indirect mecans in the reported models. We
have also made important modifications to the model so that its output
will accurately characterize the chbserved responses. We shall describe
and discuss the model modifications, the parameter estimates, the curve-
fittin, results, and the use in m.nitoring and prediction.

For the present, we are concerned with horizontal eye movements
only. For this purpose, an experiment for the study o} hLovizontal
saccades has been designed and used. A row of LEDs cquidlsluntly
located, only one of which is lighted at any given time, is used as
stimulus., We will refer to the leftmost position as the rest position
and the c+her six as the target positions. The target signal is supplied
by a digital computer. The subject is instructed to follow the light

spot, which repeatedly jumps from the rest position to one of the target

13



positions and back, The successive target positions are chosen from a
table of random permutations tc xvoid anticipation by the subjects, An
interval of at least 1 second is provided between each position change.
Eye movements are recorded and stored as described eisewhere in this
report.

Using the algorithm described above. we first mark the starting points
of the saccades. Then the saccade position and velocity are plot@egrr
and equal length saccades are averaged with each sample lined up at the
start, As an exrmple, we show pnsition and velocity plots of a typical
saccade in Figure 5 and the averaged plots from 25 saccades of one
subject in Figure 6. The saccades observed agree with thnse reported
by other researchers in all aspects such as duration, overshoot,

response delay, etc.

In order to mcnitor and predict the saccadic eye movements, we intend
to fit the model output to the saccade position data by estimating the
model parameters from the data. The endpoint of the saccade can then be
predicted from the model output by using these parameters,

Let the horizontal position r_ at time ti after 1he onset of

the saccade be

(1)

X, = G(al:a reen @

‘ ;ti) +n

2 k i

WDerT 3 ,4_,.04,@

1’39 are the model parametevrs and ni is the noise

k
term which represe.ts the errors introduced by the instrument, the datsz

collection errors, the inherent random nat-'re of the bicliogical system,

etc. We shall use the least-squares estimation to cetermine al,az,...,

14
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a . They are determined by minimizing the mean-square error
n 2
S = 1§1lxi - 6(31’32' oo.%;ti)]

where n is the number of samples observed; i.e., Ly sol .ag t".e set of

equations
33_ _,
BN
S _ o,
gaz - (2)
B _,
-

In the case when @ 1is a linear function of the parameters al,az,...,ak,
Eq. (2) is reduced to a set of linear equations which can be solved to
obtain the parameter estimates, If § is noalinear, then an iterative

process has to be applied in order to solve for a

1,32, ...ak .

1f we assume the noise n_1 to be white Gaussian, the least squares
estimiies are known to be identical to the maximum likelihood estimates
which are unbiased, consistent, and asymptotically efficient., With the
above assumption, we can also estimate the variar :s of tl: parameters
and use X?-test and t-test for goodness of fit, This gives us a
quantitative measure of the goodness of our model.

The functional form for @§ is determined by the particular model
used. It undoubtedly relates to the dynamics of the eye-movement

system. We have chosen to use Robinson's model for its simplicity.

This model is block diagramea in Figure 7,

17
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Figure 7 A model characte’i~ing
dynamic properties of saccadic
eye movement

Here we have shown the dynamic part of the model omnly; the conirnller
part is left out. The input to the system is a pulse of height h and
width T ., This rroduced a saccade of amplitude equal to the area under
the pulse; i.e., ht ., NI is the neural integrator and MLF the medial
longitudinal fasciculus which is a feed forward path in parallel with
the integrator and provides a lead network to compensate for the plant
lag. R represents the oculomotoneuron firing rate, For a pulse input,
we see that R is a pulse step as desired. The plant is a second-
order vver-damped system with time constants T and T_, . Robinson

1 2

chose the MLF gain T_=T

3 1 However, he suggested that in order to

1 and T3<< T1 ,

respectively, should be used. Ftor our purpose, we have decided to

produce the observed overshoots and undershoots T3 > T

retain '1'3 as a geparate parameter. The output § is the eye position.

The complete transfer function is then

Tss +1 1

8 (T1s+1)(T28+1) °

L .
v

For the assumed pulse input, the output g (t) becomes
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T,-T, -t/T,
e(t) = hlt + (ra -T, - 'rl) t = Tpe +
1 2

(1'2- 3) . e-t/'r2 X

T T 2 » 27
2 1

T,-T ~t/T.  -(t-7)/T

=hl1 +—(,r1—,F3-)-'l‘ (e l-e 1) +

1T 1

-,(Tz—.Tsl- T (e-t/tz- e-u-:)/'rz)l L t>1 .

3)

The position and veloc:ty curves Ziven by the above for h = .5 deg/ms
and 1T = 20 ms corresponding to a 10° saccade are shown in Figure 8,

The values of the other parameters used are T = 150 m8 and T, = 7 ms.

1 2
(These values are suggested by Robinson.) Curves are shown for T3 = 190 ms,
150 ms8, and 110 ms. Note the overshoot and undershoot for T3 >-’l'1 ,
and T3'< Tl , respectively.
Note that there are four unknown parameters, h , T1 » 12 , and T3 -

For estimation, we have to solve Eq. (2) for k =4 , However, from the
theoretical evaluation of the parameter variances, we found that the
estimate of ‘l‘1 will have a very large variance, Thus, the estimate
will not be very meaningful and hence, a fixed vzlue of T1 = 150 ms
will be used. As will be seen later, this does no: affect the

results significantly. We have also found that, for reasons of numerical

calculation, it is better to estimate T“/‘r1 th. T, itself., Thus,
o

3
three parameters a =h, a, =7,, and a, = T3/T1 were estimated by
using the data from to to to + 1, where tO is the time of the onset

of the saccade and T is the input pulse width which is estimated from
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the saccade velocity by noting that the velocity reaches a maximum at
to + 1 as shown in Figure 8, The egtimated parameters are then
substituted into Eq. (3) to obtain the complete saccade curve and the
prediction ot the finul position is made simply by extrapolation.

Typical results irom the parameter estimation and predictiomn
schemes are shown in Figures 9 and 10. The model output matches the
actual data quite closely. The goodness of fit has been tested using the
X?-test on the sum of the squares of the residuals, S , and the t-test
on the individual residuals at significance level P = ,05. Mote that
the estimates of Tz are 10.9 ms and 13.6 m8 as opposed to the value
suggested by Robinson. This result 1s typical and the mean value of
12 is nbout 13.0 ms, although it varies between subjects, It is,
however, significantly diffcrent from 7 ms, 'l‘3/'1'1 > 1 is observed in
most cases, although the difference is not significant as far as
the final value prediction is concerned. The values of h and =
depend on the saccade size which implies that the size is controlled
by both the amplitudc and the width of the pulse. The exact relationship
1s being investigated,

In most responses, an overshoot of the final position was observed.
This overshoot is not produced by the model, as can be seen in Figures
9 and 10, Even if we vary T3 , the overshoot could not be produced.
This is because for T_> T_  , the overshoot decays with a time constant

3 1
T1 ., Whereas the actual overshoot decays much faster (at about the same
rate as the initial rise). In addition, we could not fit the model
response beyond 1 to the c¢bserved data within the chose: significance

level P = .05, This indicates that the model must be modified to
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produce the right response. The fact that the overshoot decays with a
time constant of about T2 and the input to the agonist and the antagonist
muscles used by Clark and Stark suggests that the input to the model
consists of a combinatjon of pulses rather than a single pulse. A

study of the velocity curve in Figure 6 also suggests that a positive
pulse followed by a negative pulse can produce the desired output,

Thus, our model input is changed to two pulses as shown below:

h1 11 H
b

where the saccade amplitude = hltl + h212 . More generally, we can use p

pulses with saccade amplitude equal to

p

1231 hiti .
In practice, we found that no more than three pulses were ever necessary.

The results of this modification are seen in Figures 11 and 12,

For all multi~pulse input fits, T3 = T1 = 150 ms was assumed. Figure
11 shows the results of estimation from a single pulse input. Figure 12
shows the same saccade with the model output from a two-rulse input
keeping other parameters the same as before, The fit in the second
case is clearly much better. Figure 12 also shows the fit of the
velocity curves from the data and from the model, Thus, excellent fits
are obtained to both the position and velocity curves with this model.
Figure 13 shows a much more dramatic result where a three-puise input

to the model is used. The justification for using such an input can be

clearly seen from the velocity curve which first rises to a maximum
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value, then approaches a steady positive value, folloved by a rapid

fall to a negative maximum and decay to zero., This identifiez four

distinct regions, suggesting four different input levels or three p.ises

(one level being zero). In fact, for the fitting, the pulse widths are

identified by the instants where the velocity signal changes character,

This would lte easier to identify on a more noise-free system where the

second derivative or acceleration can be observad. Fowever, it is

clear that the input is more complex than a single pulse, At present,

we are trying to investigate the relationships between the heights and

widths of the various input levels for different saccade lengths for the

purpose of predictioan. Similar responses are observered for equal

iength saccades which indicates that some identifiable relations exist.

We are also trying to extend the results to vestical ' sblique saccades.
The above approack is useful fcr prediction of the final position

of the saccade, given a part of the saccade; i.e.,, we can use it for

prediction only rfter a certain time has elapsed since the onset of

the saccade., However, we also need to know when a saccade will occur

in respcnse to a stimulus. Normally, there is a delay of between 150

ms to 25C ms from the presentation of the stimulus to the saccadic

response., If we can predict t-2 actual delay, we can predict the

course of the eye wovements following the presentation of the stimulus

by usin~ this delay in conjunction with the above model, We decided

to use information in the EEG alpha rhythm to predict the onset of the

saccade, Gaarder et al. have shown that fixation saccades are initiated

during a particular phase of the alpha, This is in accordance with

Wiener's hypothesis that the alpha cycle serves &8 a clock which
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provides timing for the data gathering and processing portions of the
visual system. This result was obtained from microsaccades occurring
during fixatiw, We want to determine if it applies for the large
saccadic movements as well., If so, we can use an EBG-alpha-wave
predictive scheme to predict the phase of the waveform and then use
this information for estimating the onszc of the saccade,

The same expcriment as described earlier for studying horizontal
saccades and in addition to record simultaneously the CEG signals coll -
as described in subsequent sections has teen performed. The EEG was
filtered in the alpha range. Two methods were used to determine the
relation between the saccade onset and the alpha phase. lirst, the
gquadrant of alpha during which the saccade started was determined.

The Xz-test was used to test the distribution of saccades in each of the
four quadrants, which was fuund to be significantly different (p < .05)
from a uniform distribution. This test is idantical to the one used by
Gaarder et al, In addition, the alpha was averaged with the saccade
onsets liued up. Results indicate that there is indeed a preferable
ghase of the alpha rhythm .r onset of the saccade. This fact can be
exploited for the prediction of the onset of saccades if a scheme can

be found for predicting the EEG alpha waveforms; espeically, their

phasic variations. Such a method will be described in the next section,
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I1I. MODELING OF EEG SIGNALS
DURING VISUAL STIMULATION AND PREDICTION
OF A WA

In order to determine the temporal cues that are important in visual
mewdry, it is necessary to understand the relation between the temporal
structure of visual perception and the EEG alpha cycle. To this end,
we have investigated the changes produced in the EEG signal by simple
visual stimnli. In particelar, we are modeling and investigating the
various EEG entraimment phenomena caused by periodic photic stimuli
and the phasic changes in EEG due to photic stimuli. This will enhance
our knowledge in several areas: it cnables us to unify several seemingly
different EEG phenomena under one principle, prcsides a wmodel for the
phase-dependency of stimulus efficiency, and enables us to study the
phase-dependencies of onset times of saccades. A number of researchers
have suggested that the alpha cycle is phase locked with a clock signal
which provides the time base for a sampled-data system consisting of
the eve, its coutrol mechanism, and the visual cortex. The evidence
for this has been accumulated slowly; it is known that visual perception
times and reaction times are on the order of one alpha cycle and dependent
upon the phase of the stimulus, In addition, some recent work has
shown that a saccade is most easily iniiiated on certain phases of the
alpha rhythm, which coupled with the fact that vision :s blocked
during a saccade, suggests that the alpha cycle delineates visual data
sampling and processing periods.

The above discus-ion outlines the motivation for modeling the EEG
signal during simple visual stimulation; the modeling efforts to date
have been based on a simple nonlinear oscillator which is amenable to
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analysis and simulation.

1. A Nonlinear Mathematical Model for Entrainment of EEG Signals by
Periodic Photic Stimulation

The model is a van der Pol oscillator representing the behavior of
a subject's EEG during periodic visual stimulation by a stroboscope or
a set of LED goggles. The stimuli are delivered for 20 seconds at
some fixed frequency followed by a 10-second stimulus-off period. This
sequence is repeated for each desired stimulus frequency.

The van der Pol oscillator can be represented by
.. 2\. 2. ~2E
x-p(l-x)x+‘0x—¢o (t)

where x(t) denotes the EEG signal; 0 is the unstimulated alpha
frequency; E(t) is the external excitation (stimulus); and u  is the
nonlinear coupling coefficient.

When E(t) is a sinusoid, a first approximation to the solution
x(t) can be made by a classical technique, such as harmonic balancing.
The possible svlutions can be classified in the following way when
E(t) = Eosin(ult + Eo):

(1) natural oscillation (Eo is small):

x(t) = A sin(- t +9) ;
(2) harmonic entrainment («0 = wl):
x(t) = A(t) Sin(wlt + 0(t));

(3) mth-order subharmonic entrainment (mx_= u _):

i

x(t) = A(t) sin ( t + o(t))

(4) nth-order superharmonic entrainment (w_ = nml):
x(t) = A(} sxn(nwlt + 2(t));
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(%) combined frequency oscillations (all other cases):
x(t) = Ao(t) stn(wot + oo(t)) + Al(t) sin(mlt + 01(t)).
Some initial data have been collected with a set of snecially
constructed LED goggles which provide a sinusoidally modulated intemsity,
and the results agree well with the above solution classes, However,
since the experirental stimulus iS often a train of flashes, we have
developed an analysis technique for approximating the solution of the
van der Pol equation when E(t) is a pulse train.
We assume that the unperturbed oscillation (E(t) = 0) 1is correctly
represented by
x(t) = a) sin g(t)
where the angular displacement can be written in terms of frequency and
phase:
a(t) = wot * at) .
We wish to examine the result of E(t) being a series of impulses of

strength q at a frequency w

1
Following a method due to Blacquiére, we can assess the perturbation
caused by one impulse, At an angular displacement
en = wotn + ¢
we apply the nth impulse. Its effect will be seen directly in k(t) ,

causing a small step change

over time At . However, x will be continuous, so Ax =0,
To a first approximation, we can expand Ax and AX as below:

Ax = Aa sin en + aoAO cos en =0
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. 2
AX = Aauo <08 en - aowo A%8in en = qwo

where A2 represents the charge in amplitude and A¢ represents the
change in phase of the system. Solving the above equations simultan-
eously for Aa and A¢ , we cobtain

Aa=q‘ﬂocosen ’

quw

A. = - sin an .

%o
In Figure 14, we demonstrate the amplitude and phase perturbatioans as

a result of an impulse falling on angular displacement en .

=
’d
|
i
t
6n+l
Aa (Gn) = quo cos en
quw
0
A 4>(9n) = - ao

Figure 14 Phase and
agplitude perturbations

The unperturbed solution would have followed the dashed line, and the
perturbed solution follows the solid line.

In order to deal with a series of these impulses, Aa will be
assumed to be negligible. This is reasonable since a more detailed

analysis shows that the amplitude change decays exponentially with

time, Let 'l‘o = zn and ’l‘l = 2x be the alpha and stimulus periods,
0 1
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respectively. Then referring again to Figure 14, we See that applying
the nth pulse a: disrlacement en results in a new displacement

en + Ao(en) . Since the pulses are spaced T_, Seconds apart, the

1
{(n+1)th pulse will arrive at displacement

) - en + Ao(en) +T

n+ ) S

Clezrly, for entrainment to occur, we must have the congruence relation

en+l = en (modulo To)

or

8, + Ao(en) +T, =8, (modulo 'ro)

1

Hence

Ao(en) + Tl =k To » k=0,1, 2, ... .
When k = 0 , we have the unlikely situation of resetting the phase of
oscillation; the required phase change AO(en} is very large. We will
not consider this case here,

For k =1 , the solution is called harmmonic entrainment, and for
ke 2, it is called kth—order superharmonic entrainment, where k

represents the number of alpha periods elapsed per stimulus impulse, It

is casy to show that this is stable near

1}
o

le
n
mod To

As one would expect from the form of 7% .

In a similar fashjon, for svbharmonic entrainment to occur,

@
It

nm = en (modulo TO)
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or

ntm-1
o, + i)3 8%(e,) +uT) =g  (wodulo T ) .
=n
Hence,
n+s-1
) “(91) +-1'1 = 'ro .
1=n

th
When m =1 we have harmonic entrzinment again, and for m> 2 , m -

order subharmonic entraimment occurs. The stability of this solution
is currently being investigated, but it appears that for m =2 a
small stable range exists.

In summary, when the stimulus frequency is near the alpha frequency,
harmonic entraimment is possible. When the alpha Irequency is near an
integer multiple of the stimulus frequency, superharmonic entrainment
is possible., And when the stimulus frequency is near an integer multiple
of the alpha frequency, subharmonic entraimment is possible,

¥hen the stimulus frequency is not ir one of the above ranges,
combined frequency oscillations exist. Thus, we have the same five
solution classes for both sinusoidal and impulsive stimuli, The major
differences lie in the amplitudes required to produce the various effects,
and in the fact that the impulsive stimulus will produce integer harmonics
of its fundamental frequency due to its inherent harmonic content.

Results obtained froe EEG data on the model are described and compared

in the next section.

2. Model Simulation

It is8 necessary to simulate the nonlinear oscillator model to
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obtain reasonably accuraie solutions since nonlinear analysis is by
nature approximate, We are using a variable o:der differential equation
solver (DVDQ) which has an Adams-Faulkner predictor and an Adams-
Moulton corrector, It provides for up to twentieth order interpolation
of output values positioned independently of the changing stepsize,
which greatly facilitates signal processing of the simulated solution

by allowing a constant sample period.

The sine wave stimulus is handled in a straightforward fashion, but
the impulse train is treated specially, Since it is known analytically
that the exact change in Xx(t) is qwg (by integration) at the time
an impulse is called for, the state vector is perturbed and the integration
restarted. The management of impulse arrival and sample output is
performed by a discrete event-queuing scheduler on a priority basis;
impulse arrival has priority over all events to avoid frequency shifts
in the impulse train. Error propagation as a result of restarting
the integration is linear with the requested error tolerance and
adequately small.

Figures 15 and 16 show the phase and amplitude perturbations caused
by a single flash landing on phases of 0 , n/2 , n , and 3x/2 radiams.
The simulations macch the first order aporoximations developed in the
previous section very well. These perturbations produce appropriate
entrainment phenomena, as seen in the spectra of Figures 17 and 18;
there is one spectrum for each stimulus frequency, representing 5.12
seconds of impulse driven simulation at a 100-Hz sampling rate, The
five phenomena predicted in the previous section can be clearly seen;

viz,, harmonic entrainment, subharmonic entrainment, superharmonic
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entrainment, combined frequency oscillations, and stimulus harmonics,
These effects can again be seen in Figures 19 and 20 which are spectra
from 5,12 seconds of sine wave driven simulations. These spectra will
be compared with those obtained from experimental data in a section

below; the next secti.n discusses data collection and processing.

3. Data Collection and Processing

The data collected to test the model have been obtained from a
very simple experimental paradigm. Subjects are presented a series of
stroboscope flashes or sirusoidally modulated intensities through closed
eyelids; the stimulus is delivered for 20 seconds at some fixed frequency,
followed by a 10-second rest period. This sequence is repeated for each
desired frequency, typically .5 Hz through 25 Hz in .5 Hz steps. The
frequency pattern can be selected arbitrarily., The EEG signals are
obtained from left and right occipital ¢lectrodes referenced to yoked
earlobes; the ground electrode is on the mastoid. The Grass preamp
bandpasses the signal between 1 Hz and 300 Hz, and the A/D analog
prefilter is a 6-pole Bessel with a 100 Hz lowpass cutoff frequency,
Dizitizing is at 1000 Hz, and subsequent filteiing is done by a trans-
versal filter to avoid further phase distortion. Power spectra are

suted by Fast Fourier Transfon: on 5.12 seconds of i(he data, forming
the power spectrum and then averaging three such spectra 4.0 seconds
after the start of the stimulus. ™' ' , ..’ adure substantially reduces
the roise, which is furthe. reduced for viewing a.st etics by the non-
causal recursive filter

z2 + 2z + 1

H(z) = iz .
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The resulting spectra may be superimposed with hidden lines removed by
classical graphics techniques; a small amount of information sust be
saved after each spectrum is plotted.

The stroboscopic stimuli are produced by a Grass PS-2 strobe lamp
i a scund--proof enclosure, It is drivem by a relay coatact, The
sivtusoidal iy modulated intensity stimuli are produced by a pair of
hesispher;cal goggles, each contajning ten LEDS, driven by a curremt
source controlled by a D/A comverter on the PDP-15. The voltage supplied
1s proportional to exp (sin ult) since the LED amplitude is linear
wvith current and sinusoidal intensity is desired. Both stimuli are

delivered through closed eyelids to ensure &8 uniform visual field.

4. Comparisun of Model Simulations and Experimental Data

The compariscn of model simulated resvlts with experimentzl results
is subject to difficulties arising from the noise in the data and the
random nature of much of the EEG signal. The alphg frequency is not
fixed and is in fact nonstationary; it is influenced by the subject's
level of alertness and other uncontrollable factors, The response
of the EEG to a stimulus is only measurable in the average, since
individual responses are masked or corrupted by noise., Averaging can
also mask certain characteristics of the response, dependi.: upon the
scheme used,

The best comparison of model-produced results and data ior entrainment
phenomena is a comparison of their power spectra, This allows the data
speccrum to be re’atively free of noise by averaging successive spectra

from the same stimulus epoch. Examples of stroboscopically stimulated

44



data spectra may be seen in Figures 21 through 24. PXote the excellent
match overall with the simulated spectra discussed previously. The

last subject has virtually no alpha rhythm, but exhibits all of the
entrainment phenomena predicted, so the model accounts surprisingly well
for extreme cases, Fi ares 25 and 26 show spectra for a sinusroidally
stimulated subject. Note the reduction in harmonic amplitude as predicted
by the simulation. Some detailed comparisons of each type of phenomena
follow, Figure 27 shows the unstimulated case with the model parameters
adjusted to match the subject (records were selected from Figures 21
and 22 ). Figure 28 illustrates harmonic entrainment, with subhammonic
and superharmonic entrainment treated in Figures 29 and 30, Figure 31
is an example of combined frequency oscillation, The mod21l simulations
agree well with the data. Additional comparisons may be found in
previous reports,

Further comparisons are in progress, especially the comparison of
phase 2nd awmplitude changes induced by the stimuli., Preliminary results
indicate that the model predictions are reasonable first order approxima-
tions to the data, but that revisions in the model will likelv be
necessary to fully account for the observed phenomena. The excellence
of match in the frequency domain bears out the goodness of the phase
shitt predictions for small phase shifts, but it appears that larger
shifts are occurring than predicted for certain cases,

In sum, a nonlinear model for the bekavior of the EEG during visual
stimulation has been analyzed and compared with actual EEG data, The
model accounts for several phenomena well in a unified fashion, and

suggests other phenomeia of interest, The model specifies a trigonometric
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form for the excitability of the EEG as 2 function of phase, which
explains well the various entrainment phenomena seen in EEG data,
Detailed phase analyses are in progress which indicate that the model
prediction is good to a first degree, but needs some revision. One
possibility at this point is the existence of an excitability function
at half the alpha frequency. The phase-dependency of the model response

has consideratbtle bearing on the phase-dependency of saccade onset.

5. Prediction of EEG Alpha Waveforms

In order to present the visual stimuli to coincide with the most
favorable brain state and to predict the onset of saccadic eye movement,
it is necessary to have the capability to predict the EEG alpha waveforms,
in particular, their phasic features. In conjunction with the EEG model,
we have developed and implemented an EEG-waveform predictive scheme by
using aut -egressive processes, The development and implementation of
this scheme will be aescribed in detail. Our discussiorn will be
centered around the modeling of EEG data by an autoregressive process
and its uvse for forecasting.

The Jitting of time-series models to EEf signals has been treated
in the literature. They have been specifically applied to LEG analysis
in tne following areas: use for EEG spectral analysis; use of the
mixed mode) to define certain parameters for describing the stationary
parts of the EEG sigual; and use of the one-step ahead prediction
error to compare two diffeven models. Our interest lies in the p-ediction
of the alpha activity in the EEG for a longer lead time.

Aithough autcregresriv> prucesses have been used rer prediction
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of time series in general, they have n~t been used for prediction of
EEG data, In those general cases, the signal or time series is assumed
to be stationary. EEG signals are, in genersl, nonstationary, For
expedience, they may be considered piecewise-stationary; i1.e,, stationary
over short intervals of time. Hence, in our application, we are
restricted to limited sample lengths, This restriction creates certain
problems which we shall discuss later.

To model a discrete time series xi , 1i=1, 2, ..., by an auto-

regressive process of order p , we ma:r write

X =aX + X + vee X
t 1 t-1 ° 25 t-2 T hTt-p Tt

where al.az,..., ap are the parameters of ‘he process to be cstimated
and €, is a zcro-mean white Gaussien noise, It is generally assumed
that the process xt has zero zmean; otherwise, the mear is subtracted
from the entire series. 1In general, the autocorrelation tunction of an
autora2gressive process consists of two camponents; viz., decaying
exponential and damped sinusoidal waveforms., It has been recognized
that the real roots of the characteristic equation of the -.utoregressive
process, 1.e.,

2 P
P - cee = B =0
2 ap ’

1 - aIB -a
give rise to the decaying expoentials and its complex-conjugate-root
pairs are respc.sible for the damped siausoids in the autocorrelation
function. We show in Figure 32 the autocorrelation function of an EEG
sample filtere in the alpha range. It is seen that the EEG autoccrrelation

func*ion may be we (]l approximated by a sum of decaying exponentials and

damped sinuso‘ds., In ligure 32 , we superimpose the autocorrelation
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function of an autoregressiv: rocess fitted to £EG data to show our
assertion, This leads naturally to the teaptation of modeling EBEG signals
by autoregressive processes, Since autocorrelation function is not

8 unique process, there are other processes which will give rise to

the same autocorrelation function. We chose an autoregressive process
based on its simplicity in implementation.

To accomplish our aim iu prediction, we have broken down the problem
into two parts:

(1) Estimation of the autoregressive parameters;

(2) Generation of "good"” forecasts according to some criteria

using the above estimation.

Since the EEG process is consider:d piecewise statiomavy, the parameter
estimates have to be updated continuously. Thus, a scheme is needed

for updating the parameter estimates as new data arrive. For estimation
of the parameters, we have used the least-squares principle. These
estimated parameters are then used to generate the minimum mean-square
error forecasts for a specified lead timc. We developed a new modified
scheme fur .“is purpose,

To furnish the basis for our modified scheme, we shall describe a
scheme ordinarily used., The development and implementation of a modified
scheme to suit our needs will then be presented, Results have been
obtained by applying our scheme to real EEG data. We will present these
results to show the utility of our prediction method.

We will concentrate our discussion to a parameter estimation
method. Later we will present our modifications to this method in

order to improve the performance for our purpose. Let us consider
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the pth-order process

= + eee
xt alxt-l + azxt_2 + .pxt_p + e,

where e, is white Gaussian noise, The order of the autoregressive
process ¥s estimated by successively fitting malels witkh higher order
to the data and determining when the last parameter ap becomes small
enough,

The least-square estimates of the parameters can be shown to satisfy
the following set of linear equations

8)Qp 8,9 *eee YA R, 0T Yo

alQ23 + a2Q33 + e0e + ast'p+1 = -le

Q

+
2,9, p+1 T 20

30m1 T T4 Y0n T Ypn

wvhere the Q 's are given by
1]
n
- o2
Q, = _Z x]
i=1

O
1}

XX +XX +...+X _x)
1j ( 1 2 jrl n-j+1l' n
and

XX +X

a + tes + X
Qii i i+l j+1

X
n-j+1 n-i+l ’
1£#1 . jgl

Knowing Qi 's , we solve the set of ~onations to obtain the least-

J

square estimates of the parameters a a casy ap « The least-

2.

square estimate of the noise variance is giver by

1'

‘\2 - 1 l)
’Je = n" - (Qll + lQ121Q131 ""Ql,p*'l‘ ‘81,82,...,3p| .

Previcus discussions furrish us a numerical procedure for estimation of

the parameters al, a2, coes ap and % in the least-sguare sense from

the data (xl, xz, eees Xn) . Based on this procedure, one can model
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a weakly stationary process by a pth-order sutoregressive process,
Since EEG data exhibit nonstationarity, this method has to be modified
for our problem. Besides, our interest is in the use of the parameter
for prediction rather than modeling.

Having obtained the estimates of the parameters, we turn our
attention to the problem of prediction. We need a scheme whereby the
prediction can be made for a certain lead time and then when a new
data point becomes avajilable, the forecast can be updated without
repeating the original process all over agiin,

We will consider here minimum mean-square forecasts only. Denote

obtained at time t by X

the estimation of Xt . At time

+1

t , the values of the samples up to time t are known. The minimum

t+g|t

mean-square error forecast is given by (using the projection theorem):

X +

t+lt - alxtﬂ]t M ilz"tﬂ-zh; Toees °pxt+l.-p|t ’

which provides the forecasts in the form of a difference equation.

Given the sample values Xt » X » We can progressively

t-1 " xt-p+1

calculate X «so by using the above equation. Using

t+1]t * xt+2|t !

this procedure, we can generate forecasts for any lead time utilizing
the parameters estimated earlier, However, tne forecasts at each point

have to be updated as soon as the sample Xt+1 becomes available.

It is rather cumbersome to do in the above form, Hence, a different
approach is required.
Instead of writing the original equation as

X =aX + a X + ... + +e ,

a X
p t-p t

we will express Xt in a weighted infinite sum of e e

t ? Ce-1r cec 8
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X = i)b e

- [
t §=0 J t-J
vhere the bJ's can be expressed as
hb =1
= a
bl 1bo
b_=ab +ab

2 11 20

57 2% T %P,

(-4
1]

+ o0 @ +ab 2 *
D J-p v J P

The minimum-mean-square-error iorecast is

»

z
J=t

@

Xtﬂ‘t = bjetﬂ-.j .

This form lends itself easily to updating. This can be demonstrated

by xt+t|t+1 after X . arrives, We may write
o©
X = 2, b.e
t+i| t+1 © . t+4-
i g1 3 tHA=

and hence

Xeettr1 ™ Xentje = P21 (%)

Thus, at time ¢ + 1 , the forecasts for lead lengths up to £ -1
can be easily obtained from the predicted values at time t for lead

lengths up to £ by using Eq. (5) and by recognizing

Cer1 = Xerr T Xenrje

This provides a convenient scheme for updating forecasts ..; =ore
data become available,

The variance of the forecast error may be easily oiLta.ned from

Eq. (4). Since the £-step ahead forecast error at time t i given by
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i-1
Cet|t = Fewr T Xewsfe T }30 Pytee-y -

The variance V(f) may then be expressed as

£4-1
V(L) = 2, b2 o: (6)
j=0 I

This varisnce gives us a measure of the goodness of fit for the model.
Since we heve assumed the e's to be normal, the conditional probability

density function P(X  ,|X , X, _, ... ) s normal with mean X

t+2]t

and variance V(f£) . Based on this information, we can obtain confidence
intervals for the forecasts, For example, 95% of the normal distribution
mass lies within + 1,96 0 of the mean where ¢ is the standard deviation.

Hence, * 1.96/V is the 95% confidence interval for the forecast,

Xl
i.e., the probability that the actual value will lie in that range is
.95,

The previous formulation gives the forecasting procedure to predict
values £ samples ahead from any time t . 1In order to increasec the
lead time for forecasting, one has to increase the value of £ , It is,
however, evident from Eq. (6) that the error variance becomes larger
as £ increases and the confidence interval fcr a giveh level of
confidence will also increase accordingly. Another way to increase
the lead time would Ye to increase the sampling interval and thus keep
the value of £ as low as possible so that the level of performance
of the predictor may be maintained, However, the sampling rate or
sampling interval for a signal is determined by the bandwidth of the

signal. If the signal is furnished in digital form, then one has

little cioice in altering the sampling interval, Cne could, of course,
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increase this interval by dropping everyv kth block of data points, In
any event, the increase in sampling interval means reduction in the
number of data po2ints in a given interval of time. This reduction in
data points leads to a higher variance for the estimates, Besides,
the number of data points may be so much reduced, since the EEG signal
is considered stationary omly for a short period of tim~, that the
estimstes are not statisticsliy significant, For these reasons, we
refurulate the autoregressive model in a more general form as

X +alX + e

= alX + a X + eee
t 1 t-k 2 t-2k p t-pk t
which, when k = 1 , reduces to the case discussed earlier, Th: >
equivalent to an autoregressive model for the time series

(Xt. X ) .

t-k* Ft-2x
T'e least-square estimates of the parameters can be obtained by a

logical extension of the earlier results; viz.,

+ ce s =
2@y * 3,85+ taQ e - Y2
+ + see =
8,93 T 8,9, taQ; o T s (7)
+a +c.o + =
3,9 o1 T %% o0 2%, pr1 = U, ph
where the Qij's are now redefined as
n
2
Q.= 22X
un- N
- - X
) (xlx(J-l)k+1 toeee F X G-Dk n)

.00 +x

U5 = Xa-nen*Gonxn T n-(j-1)Kn-(i-1k °’

1#1 , J#£1.

The least-square estimates are the solutions of this new set of equations,
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The forecast equations are modifield in a similar manner to give

Xere£]t = 21%erke-n1t ¥ 22X eakg-2y )0 T 000

X
+ 2, t+k(l—p)|t

and Eq. (4) becomes
[ -]
Z: b.e

X =
t+klt Py J t+k(£-j)

with the bj's defined in terms of the aJ's as before, In essence,
the scheme processes the available data in such a regrouped fashion by
resampling the data in k multiples of the origina) sampling interval
that the level of performance is not degraded. The performance of this
scheme 0. "G data will be discussed next., The usefulness of the scheme
is demonstrated by our results,

We developed a computer program to implement an algorithm for
recursive estimation of parameters and forecast of future values by
using the new modified scheme. The program was written in FORTRAN for
a PDP-15 computer, As an example for illustration, we applied our
scheme to real EEG data, which were recorded while the subjeccts with
closed eyes were stimulated by stroboscopic flashes for 50 seconds at
the rate of 10 flashes per second, then no stimulation for 50 seconds,
then ./nother 50 seconcs of stimulaticn, etc, The signals were sampled
at an interval of 1.2 msec., Since we are mainly interested in the
alpha component of the EEG, the data were filtered to obtain the
components around the alpha range (7-13 Hz) through a transversal filter,
The computer program reads .his EEG data as its input. Other required
information such as the num%er of sample points N for which the process

is considered stationary, the order of the process P , the resampling
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value K , the prediction lead length L and the window width NWND

for updating the parameters are also read in as input. (For efficiency,
the parameters are not updated with each new data p2int, but only after
NWND new data points have been read in.) A flow chart of the program
is shown in Figure 33. As soon as the above variabies and the initial

N points are entered, the program computes the least-square estimates
of the parameters by solving the set of linear equations (7). The error
variance cz is also estimated. These estimates are then used to
generate minimum mean-square error forecasts up to L steps anead;
i.e,, forecast of t + KL is obtained at time t . The variance of

the forecast errors and the confidence interval for a certain eignificance
level are also calculated, At this time, the next data point is read
in; the residual is calculated as the difference between the actual
value and the forecast; and the forecasts for the remaining points are
updated by using Eq, (5). A new forecast for the value L staps

ahead is produced. This process is repeated until NWND new points
have been exhausted. The procedure will repeat again starting with

the recalculatjon of the parameter estimates,

Results of the »rediction for various lead times are shown in
Figures 34 through 38, In order to compare the predicted waveforms with
the actual EEG, we plotted the predicted waveforms and then superimposed
the actual EEG on top of them. The order of the autoregressive process
was chosen as p = 7 by examining the partial autocorrelation function
of EEG data for k = 10 . The effective lead time in seconds 1s
kLT where T is the sampling interval and £ denotes the lead time

in number of samples, In Figures 34 through 38, the waveforms were
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Figure 33 A flowchart for the realizatjon
of the prediction scheme
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plotied against the sample numbers and the lead time £ was indicated
at the lower right corner. For instance, in Figure 36, £ = 5 means

a lead time of 10X5 X 1,2 = 60 msec., since k =10 and T = 1,2 msec;
hence, th¢ length in..cared for £ = 5 represents 60 msec. The amplitude
scale is relative. Tne so0lid curves represent the actual EEG and the
dotted curves are the predicted waveforms, In Figur. 34, we s_e that
for a lead time of 24 msec., the tw¥o curves practically coincide with
each other, This indicates a prediction with little error. V¥e progressive-
ly increased the lead time from 48 msec. in Figure 35 to 120 msec.

in Figure 38, 1It 1s observed from this series of figures that the
coincidence of{ the predicted a2nd the actual waveforms worsens, This
indicaticn oI increasing error as lead time increases is expected,

For a quantitative comparison, we computed the prediction error variance,
which is used as a performance measure of the prediction scheme, for
various lead times, This forecast error variance is s“own in Figure 39,
The verticai scele gives V(i)/E(xf) which represents the prediction
error varjance relative to the variance of the signal to Lbe preuicted.
For exampie, for : = 5 (1.e., a .ead *ime of 60 msec.) the error
variance is 1% of the signal variance. This gives a measure of Low
close the predicted values will be to the actual values. We can see

at a glance from Figure 39 that the performance deteriorates as leaa

time 1ncreases., In using this schemne, one can determine a maximum

lead time { r any given t~lerance level. L}or our purpcses, this

scheme 1s satisf{a- *orv,
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IV, CHARACTERIZATION OF SCAN PATTERNS

One of the important aspects of the research done in this project
has been the development of techniques and tools for the automatic
analysis, characterization and display of scan patterns. In visual
tasks, the sequence of fixations used in scanning the visual rtarget
is called the "scanpath”, and we will refer to a ""scan pattern” as a
collection of information about the properties of one or more scan-
paths recorded by one or several different observers, XNatwvrally,
to Ye able to differenti.te a superior scan pattern which results in
superior visual memory from an inferior one, we must first be able to
characterize a scanpath 1n some terms other than just a list of (X,Y)
fixation coordinates.

A granhical il'ustration of a sequence of the foveal fixations
is shown 1n Figures 40 and 41. Figure 40 shows the outline drawing
cf a st1ll life scene which was 1nspected by a subject with his scanpath
superimposed. In lFigure 41 %¢ have plotted 1 sketch o! the visual
stimulus imprcssed on the fovea for each fixation point shown in
Figure 10, The sketches show a visual field of 6° 1n diameter, 2
region which 1acludes all of the fovez under practically 2ny definition.
These drawings, then, represent i tine Sequence of snapshots which are
the visual i1nput to the ovnse¢rver who must crent< a vnif:ed picture of
the scene being viewed 1rom the sequence of picture fragments shown in
the sketches,

One observation which itas often been made 1s that the fixation
poir‘s tend to be grouped 2round certain features or arcas of the

visual 1magc, and are relatively sparse elsewhere, Thus, we can measure
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the nearness of one fixation point to another and assign a similarity
measure to the two roints based upon this distance, The ability to
group or clu3ster a set of fixation points is an important step in the
characterization of a scanpath, and several different techniques hcve
been used to measure point similarities and to assign points to clusters,

The use of a "point similarity function" for clustering fixation
points has been reported earlier and will not be reviewed here.

¥We have also used two alternate algorithms for selecting cluster
centers, earh with jts own particular advani.ages and disadvantages.

*3" and "Minimum-Spanning-Tree-Clustering”

These algorithms are krown as "ISOL
or MSTC,
In the ISODATA methou, the number of clusters desired is given

an irput -rariable, and the algorithm partitions the fixation poaints

into subsets such that the total distance between the fixation points
in a ._:ster and the cluster center is minimized for all clusters,
The cluster center starting points are usually selected randomly, and
the algorithm keeps moving the cluster centers until the above
criter,on has been reached.

The MSTC algorithm automatically determine the number of clusters
in the data and assigns fixction points to the clusters., Three
variables given as input may be adjusted to c. .nge the criter.a by
which clusters cre sel=cted.

The chief advantages or disudvantages of these two algorithms are

sur.marized below:
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ISODATA

MSTC

(1) Required the desired number of clusters, which usually is not
known,

(2) Solutions often are not unique, but vary with starting conditions,
(3) The iterations can require a substantial amount of computing.

(4) Many points can be easily accommodated.

(1) The solution is unique, and the number of clusters is automacically
determined,
(2) The computation is quite fas<’.

(3) Many points requires a large amount of storage,

Our approach to characterizing scan patterns is based on

the following two assumptions:

(a) There are a discrete number of "fixation ceniers’ in the scene
being viewed and each fixation point in the scan can be assigned

to one of the fixation centers, This process of assignment or
clustering is done using the MSTC algorithm described above, The
center of the clusters should be in close agreement with tae
tenters of the fixation., Due to the random nature of the fixation
points, in any repetition (cycle) of the <canpath, the fixation

po.ats do not always coincide,

(b) A scanpatn then becomes @ sequence of transitions from one
cluster center to another, Any saccade with starting an¢ ending

points in the same cluster is discarded.
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From the set of all saccades leaving a given cluster center, we
can find the transition or transitions which have the highest probability.
These transtions are termed the "most-probable-saccades”. The "most-
probable-scanpath” is then defined to be the set of all most-prolLanle-
saccades, The most-probable-scanpath depends on how the clusters are
chosen, and is not necessarily a closed path through the cluster centers,
Its usefulness is that it concisely summarizes the most important aspects
of the scanpath used by the observer in viewing the given visual target,
A scan pattern is some set of most-probable-scanpaths for a given observer
viewing the same ur different targets, or for sSeveral observers viewing
the same target, etc,

Figures 42 and 43 illustrate how these methods may be employed to
reduce scanpath data to a more concise form, Figure 42 is a graph of a
scanpath superimposed upon a line drawing representing the still life
scene which the observer was viewing. The first recorded fixation
(1) is in the center of tke avocado. The last fixation (45) is in the
m ddle of the carrot. The viewing time required to create this
scan totaled 20 seconds, Figure 43 represents the same data after
processing by the MSTC program, The program partitior=d the fixation
points into 11 subsets or cluster: (using certain criteria supplied by
the pregrammer) and then c2mpu ed the most l}ikely transitions from
cluster to cluster, Clusters contain.ng only one fixotion point were
ignored. The resulting plot shows the most likely saccades between areas
containing large numbers o1 fixations, and pres ts the oririaal data
in a highly condensed format,

In order to compare one set of fixat >3 or one Scanpattern
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against another, criteria must be established which can be used to

evaluate subtle differences in the following characteristics:

(1) Total number of clusters - The MSTC algorithm partitions
all the fixation points into some number of clusters, very
rarely will the number of clusters in two diffcrent sScans be
the same, Rules must be established for eliminating or merging
clusters which complicate the analysis, For example, clusters

containing a single point can usually be removed.

(2) S:imilarity between clusiers - The geometrical center of
two clusters will usually be different, and yet it may seem
obvious that both clusters are associated with or centered on

some feature >f the picture,

(3) The most probable saccades between clusters will cften be
different in two scans, even if the cluster centers are nearly
alike. The similarity of two scans is judged by their transition

probabilities,

The above criteria are dependent upon the type of ea.~riment beiny run
and no fixed set of rules will te suggested here., Based on the above
criteria and using statistinal methods, we are able to show from our

preliminary results that the scan patterns of the same visual material
by the same subject who scored very high on Marks' Vicsual-Memory Task

are consistent,
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V. TECHNIQUES FOR THE PRESENTATION OF VISUAL CUES

The measurement und prediction of eye movements and related EEGC
potentials are necessary prerequisites for the control of visually
displayed material which can enhance an oLserver's perception or memory
of a scene or visual environment. This section describes some means
to couple the measurement of eye movements with the control of a
computer-driven graphical uisplay.

The task undertaken was to provide a facility for dynamically
controlling the toveal or peripheral field of view of an observer. Such
a facility would provide a flexible method for studying interaction
betwecen eye position and changes in the visual field., Some of the ob-
Jectives of this research are:

(a) to uevelop techniques for dynamically controlling the visual

field in humans without any restrictive mechanical attachment to

the eye;

(b} to obta:n a subjective feeling for percep*ion without use of

the normal visual field; and

(2) o quantitatively measure changes in the observer's pevformince

(and scanpath characteristics) as a function of field size and type.

The system works as follows: At the start ot each refresh ef the
display (30 times per sceond), the position of the eye is measured and
the corresponding point on the display is computed. Parameters within
the grogram determine what portion of the visual 1ield will be displayed--
fovea only, periphery only, and the size &” ithe field 1n eitaer case,

Then, each point 1n the display list 1s cheuked, and if 1t 1swithan the



required field, it is displayed, Figures 44 and 45 depict the stimulus
for the two modes of display. The box (which was used instead of a
circle to sinplify computatirns) remains centered on the fovea, no matter
where on the screen the observer looks,

The visual scenes used in these experiments were outline drawings
of simple, still scenes, No text or highly detailed pictures were
involved., A new scene could be entered iuto the computer through use
of a graf/pen digitizer, Once entered, the points in the picture were
stored by X,Y positicn, and a display l1ist was created for later use
by the real-time inte.active program,

Aftor adjusting the eye tracker and calibrating the instrument,
the observer would be presented with a field of view which could be
either a fovea-only presentation or a periphery-orly presentation,

The size of the field (width of box boundary) was also adjustable, from
less than one degree to the maximum width of the display., Use of this

program has produced, so far, these results:

Impaired perception for fovea-only vision - If orly a two or three degrec

wide foveal field is displayed (wvhen the display itself spans twenty

or more degrees), the observer finds it difficult, if not impossible, to
per~eive the display, What the cbserver seec are gfhort line .egments,
and sometimes junctions Letween line segmen:: The only way to perceive
an object is to consciously follow the contours and meatally reconstruct
the path followed, Simple objects take several minutes to d:tect. lew
observers get a complete idc: of tha entire sceie, Far more use of

peripheral visual infoom.-.lion . made than was anticipated, Large
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saccades must be forced, and the observer becomes very conscious of having

to manipulate his own eye movements.

Perception with peripheral vision - If the foveal region is blanked,

little perceptual loss occurs until the window size approaches roughly
107, that is, the scenc is still nerceived even when the window is
cuite large. Our stimuli did not include text or other material shere
high visual acuity was essential, This result is somewha! surprising
in view of the general assumption of the importance of foveal-high
acuity field. The peripheral field apparently aakes an important

cor. ribution to the overall perceontion of 2 scene, even the visual

acuity may be quite low in the outer regions.

I=portance of closed contours - If the fovea-only visua! field is being

displayed, little improvement in perception of objects within the

field occurs uncil the window size is large enough to include the complete,
closed contour of an object. The absclute size of the foveal region seems
to be less important than the fact that complete objects are visible,

at least . r the line drawings we used. This result supports another
observation we have made, which is that fixations tend to be centered

on the main surfaces of a simple object, and are not as often t-»und on

the edges or corners of the object,

Appearance of a phaniom window - After about ten seconds of viewing, and

especially for the fovea-only condition, a phantom window with pronounced
grey-black edges appears. The subject sees a grey background with a
black window cut 1n the center, through which the white lines may be

viewed, The window, of course, is fixated on his eye lik.. an atierimage.
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Two causes for the window are evident., Only the foveal region receives
stimulation, and the rods and cones adapt to a higher ambient light
level than in the periphery, which adapts to "visual grey”. Also, the
sharp truncation of many contours along & straight line reinforces the

perception of an edge. Similar effects have been noted before by Yarbus.

These preliminary experiments with an eye-movement controlled
visual display have proved quite interesting and useful. The next Step
is to incorporate the predictive algorithms discussed in other previous
sections of this report to present the visual cues at the desired

locat:ons of the visual field at the desired moments.
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VI. CONCLUSIONS

Our aim has been to develop and use bioc—-bernetic techniques for thre
enhancement of visual memory, To this end, we have designed a closely-
coupled man-machine system for implementatijon. W%e have developed and
completed the models for saccadic eye movements and EEG signals in this
man-machine systen. The models are used for monitoring and prediction of
eve positions and brain states. With the continuously up-dated information
concerning the eye position and brain state for adjusting the stimulus
parameters 2nd the monitoring and prediction schemes, we can guide the
eves to fixate at the specified locations of the visual field at the
specified instants oi time through a technique we developed, If these
specified locations and instants are the optimally required for superior
visual memory, then the vividness and persistence of the desired
after-image will be enhanced. We have approached the problem of
determination of these optimal locations and time instants by monitoring
e.e movements and EEG signals through the models ahich we have developed.

Through the FEG model, we have obtained a be.ter assessment oi EEG's
role as the timing mechanism for visual information acquisition and
processing. #e¢ have also shown that the scan pattern is more consistent for

individunls with good visual memoryv (as scored by lJlarks' Visual-Memory
Task) than those with poor visual memory. This comparison 1s made possible
by our method of characterization of scan patterns, With these results,

1t 1S possible to determine the optimi:l locations in the visual field

and the optimal time 1nstants for presen:ing visual stimuli. We conclude



that the approach for visur~l memory enhancement as proposed is a feasible
one. At the termination of this project, we have implemented all of
the parts shown in the closely-coupled man-machine system but the
feedback path.

Significant accomplishments made during this research have been
published or presented in international or natiomnal scientific conferences

and two Ph.D. dissertations are aear completion.
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APPENDIX A

ELECTRONIC INTERFACE SYSTEM

We shall describe here the interface system for eye-movement data
acquisition only. We are presently using a double Purkinje image eye
tracker developed at Stanford Research Institute (SRI) for measuring
eyvc movements, It relies on measuring the motion of the reflections
from the front surface of the cornea and from the back surface of the
lens of the eye (the first and fourth Purkinje imares). The instrument
is discussed in an article: "Accurate two-dimensional eye tracker
using firs:t and fourth Purkinje images”, by T. N. Cornsweet ard H. D.

Crane in the Journal of the Optical Society of America, vol. 63, no. 8,

pp. 921-928, August, 1973. Figures A.1 and A.2 show the set up of this
eye tracker,

The first ard fourth Purkinje images are generated by positioning
a narrow beam of infrared light on the subject's pupil. The image of
the eye and its attendant Purkinje image reflect off the infrared mirror
in front of the subject, through two large collimating lenses and on to
a movable mirror. A four-quadrant photodetector senses the position of
the first Purkinje image, Signals from these four quadrants are used
to drive two nigh-speed servo motors to detect the movable mirror in
altitude and azimuth. The function of this servo system is to position
the image of corneal reflection when the eye moves so that the reflection
is always in the same position; thus, a stable reference of the eye is
provided. As the eye moves, the image reflected by “‘he movable mirror
will remain stationary, A second optical system in tandem consisting of

ar.other movable mirror and quadrant photcdetector tracks the fourth

89



Pieure Yiew of sobiect in itbe hesd

A
posilioner wilh eve~tracker slectironics

Figure A2 View ol eve-iracker
aptick andg suniery




Purkinje image and measures its movement relative to the first image.
The two-dimensional motion of this image derived from the position of
this mirror system is used as the output signal of the subject's eye
movements, The system is designed to measure eye movements with an
accuracy of up to two minutes of arc. The overall system has a flat
frequency response of up to 100 Hz,

To assure the proper use of the eye tracker requires elaborate
procedures for alignment of subjects and calibration of the eye tracker.
The calibration is done through a computer program (MAP?) we developed.
This calibration prugram serves tc:

(1) provide a way of relating the output voltages of the instrument

to the stimulus positions;

(2) give an estimate of the size of the visu=! field over which

the instrument is able to trac: the eye movements; and

(3) indicate whether the eye tracker is correctly adjusted.

It has been a major problem to relate the measured eye positions
to the actual locations on the scene. This difficulty arises mainly
from the distortion introduced in measuring eye movements, To alleviate
this difficulty, w»e have developed and implemented a scheme which maps
automatically the eye fixations onto the scene without distortion, This
is achieved by expressing both the fixations and the line drawing of
the inspected scene in terms of visual degrees relative to a calibration
slide. Since both are on the same coordinate system, they can be easily
superimposed without any fear of distortion.

Our scheme consists of the following computer programs: MAP,

FIXFIL, OVLAY, and PFIX. MAP produces a calibration file relating
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eye tracker voltage with the visual angle subtended by the eye. FIXFIL
analyzes the data collected by the DIGIT program. It reduces the data
into fixations and, with the aid of the calibration file produced by
MAP, it translates the location of these fixations into units of visunl
angle. The origin of this visual coordinate system :s assumed to be

the center point of the calibration slide, OVIAY is a variaticn of the
DRAW program which uses the graf/pen to digitize pictures., OVLAY is
used to digitize an outline of the inspected scene on a slide. Some
additional data are added to the file to enable it to be eventually
translated into units of visual angle with the exact coordinate system
used by FIXFIL, PFIX plots the fixations and superimpose the outline of
the scene. This can easily be done since the fixstion locations and the
outline are expressed in the same visual angle coordinate system.

To illustrate the effectiveness of this scheme, we show an example
in Figures A,3 and A.4. The observer was asked to fixate at those
circled points of a scene as shown in Figure A.3. The eye-movement data
taker were then processed by the mapping scheme, The result was plotted
as shown in Figure A4, It is seen that the measured eye fixations
correspond very closely to those circled points in Figure A,2 in the
right sequence,

It should be emphasized that the process described is fully automatic
and will compensate for different subjects and any of the permissible
variations in the experimental set up <uch as size of stimulus, distance
between the screen and the observer, etc. With this system, we are
capable of processing massive amounts of eye-movement data with re ative

ease,
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(1) LIST OF PERSONS WHO HAVE CONTRIBUTED TO TH1S 2ROJEC{

Since the i ception of *his project in 1972, the following persons
have parilicipated in this resesrch project. Their present addresses
are indicated.

Dr. J. E. Anliker, Research Scientis:, NASA/Ames Research Center,
Moifett Field, California

Mr. T. E. Atwwvood, Scientific Programmer, CMX, Sunnyvale, Califormia

Ms., K. Dilley, Project Secretary, Stanford University, Stanford,
C-lifornia

Dr. M. Ein-Gal, HResearch Associate, Information Systems Laboratory,
Stanford University, Stanford, California

Mr. R. Floyd, Graduate Student Research Assistant, Neuroscience
Program, Stanfcrd Unjversity, Stanford, California

Xr. A, Huang, Scientific Programmer, Stanford University, Stanford,
California

Mr. K. H. Jacker, Computer Science Comsultant, Environmental
Protection Agency, Chapel .dill, North Caroiina

Dr. H. S. Magnuski, Engin-zering Manager, Gamma Technology, Palo
Alto, California

*Mr. J. R. Nickolls, Graduate Student Research Assistant, Electrical
Engineering Department, Stanford University, Stanford, Califorria

*Mr, A. Shah, Graduate Student Research Assistant, rlectrical
Engineering Department, Stanford University, Stanford, California

Mr. M. Stauffer, Engineer, Time-Data, Inc., Palo Alto, California

T. L. D. Stricklan, Scientific Programmecr, Stanford University,
Stanford, California

Mr, A, Yang, Student Technician, Stanford University, Stanford,
Califcinia

*bh,D. dissertations on topics relevant to the project are near
completion,
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of Electroencephalographic Signals”, D. C. Lai aud K. L. Lux,
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{9] "A Nonlinear Model of E£G Entrainment by Periodic Photic Stimulation”,
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