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Abstract

A necessary condition for a real valued Frechet differentiable function
of a vector variable to have an extremum at a vector ko is that the Frechet
derivative vanishes at Xy This paper establishes a relationship between
Frechet differentials and matrix derivatives obtaining a necessary condition
on the matrix derivative at an extrema. These results are applied to various
scalar functions of matrix variables which occur in statistical pattern

recognition.




Applications of Matrix Derivatives To
Optimization Problems in Statistical

Pattern Recognition

l. Introduction.

Let S be a transformation on a normed space X to a normed space Y.

If for ,x ¢ X, there is a bounded linear operator A ¢ B(X,Y) such that

|ISCxeth) -~ sG0) ~ am|] _
| In}]+0 |1n]|

1. 1)

then S 1s Frechet differential. at x. Th2 vector A(h) is referred to as the Frechet

differential of S at x with increment h and A is denoted by d&5(x, )

or S'(x).
We list below some important properties of the Frechet differential.

For proofs and a detailed treatment of Frechet differentials see [6 ,pp.175-178]
Theorem 1.1t If S has a Frechet differential, it is unique

Theorem 1.2: If S5 has a Frechet differential at x, then 8 1s continuous

at x.

Theorem 1.3: Let £ be a real valued function which is Frechet differentiable

at X € X. If £ has an extrema at X, , then Gf(xo.h) =0 for all h ¢ X.

Example 1.4: Let X = R® where R is the field of real numbers and let
f(x) = f(xl,...,xn) be a real valued function on X having continuous partial

derivatives existing with respect to each variable x ‘Then the Frechet

il




differential is

o LY
(x,h) = Z o h:l'
i=1 %3

We denote by Mr the vector space of real 1rXs matrices. For

g
A€ Mrﬂﬂ we denote the element in the ith row and jth column of A by

<A> the usual trace of A, and let Al denote

n
Let tr(lA) = i§1<A>

13" 11?

the transpose of A.

The set erg is a normed space with

r B8
1al] = eeaaD 12w (T 3 a0, 0212 for
=1 ju1 M

A e Mre + An inner product compatible with this norm is given by

T 8
T
(4,B) = 3 3<a>,, e+ <B> . = tr(AB).
=41 B4

Let A ¢ Mpxq have each entry a function of the entries of X ¢ M.m

X
3<A,:-:L
and let YT p ex%st for all 1<sisp,1i€3sq,lsysml1lsd <,
Y
2 d<A>y
We define EER;;E € MPXq and 3K € men by
A y - a<A>1j g<a<Aij> .
a<X>Y(5 13 3<X>Y6 X 6

We make the convention that all partials are taken considering the entries of




as being independent unless otherwise specified. For example

9X
Example 1.5: WE JYG' the mn matrix with

1 4f y=1 and § = j
<J76> 1 = . The sbove _holds even in the

0 otherwise

symmetric case due to our convention, For future reference we denote by Ky
1 if 4=y and j =26

the pxq matrix with <Kij) ¥8 = and by
0 otherwise

J the nXl vector with 1 din the jth component and zero elsevhere.

k|

Y
Example 1,6: Let Y = tr(X) and X ¢ men' Then % " Imun’ the identity

in M .

oxn 3<Y>
One writes 3 instead of ES| T 8y if and only if X Y 1
3% X of ; and only or 8

a scalar.

3|X|

Example 1.7: Let |X| denote the determinant of X. Then YT cof(<x>16).

Yé
Thus %}l{-}-{l’- cof(X) and if, X 1s full rank, %J](-}_{l = |X|X.T, whers :*"T = (X"l) T,

Several equations are listed below which are easily verified using com-
ponent-wise arguments.

Let y= £(X) be a scalar function of X ¢ me“ and u(y) a scalar function

of vy.
) du 9 du ]
u 92U Sy gu o'

Example 1.8: If X 4s full rank and t € R, then

t
XL . pyx|tt %L}’%L = tx| %"

0 X




Let Y(X) eM!xB and W(X) e ~+ Then

3(WeY) aY oW

1.3) =W + Y
3<x>Y6 a<x>Y6 B<K>Y6
oY oW
if e and _——  a%xis t .,
3<X>Y 5 a<x>Y s

If £(X) 1s full rank and g_;f%.L exist, then by equation 1.3) we have

)
-1
1.4) %{i;if) = -£"1(x) %%ﬁ%l; 1
Py Y

Example 1.9: If X d4s full rank, then

agx‘lz

3<X>_Y S

1 1

Let Y =Y(X)¢ Mpxq and w = w(Y) ¢ Mru.s

indicated derivatives exist , then

P 4
3w Y, ) w . T

1.5) 3<x>76 {=1 j=1 3<Y>1_-| 3<X>Y5
and)if w is scalar valued,
A - LS
X & jz-"i 8<Y>ij aX

with X € men' If the

G T T 2

e et i e s i i P



In his excellent paper on matrix derivatives Dwyer proves an extremely useful

9<Y>
9 Y
theorem establishing a procedure for calculating 52———1- when 3K is of a

2 1)
certain form. We state the theorem without proof. For a proof of this

theorem see Dwyer [4, p 612].

. Then

Theorem 1.10: Let X ¢ M,mx“ and Y ¢ Mpxﬂ,

3 Y

3<K>Y 8

T

=ZAqJYGBq+Z Cp Iys Dy
q h

if and only if

<>
3 X

K

N T T T
%: AeKygB + 21:, KT

All matrix multiplicatiohs must be defined when applying this theorem, This
condition must also be observed in applying the following corollary which is a

restatement of the theorem ‘for the scalar valued case.

Corollary 1.11: Let £ be scalar valued., Then

136,90 . gt
T %: B dystBy + Zh: Cyr 26Dy
if and only 1if

AE(X) T T
i :‘; Aq.Bq + }_E D+ Cpe



2. The Frechet Differential of Matrix Valued Functions of a Matrix Varlable,

The following theorem establishes a relationship between the Frechet

differential and the matrix derivatives.

8<f(K)>i

Theorem 2.1: Let £ be an operator from to M with
. men prg a<X>Y(5

continuous for 1S 1i<p,1<3JSq,1s5YSm 1586 S'n, with all entries

of X independent, Then f is Frechet differentiable and

SExH) = 9, LX) oy,
¥:8 "Pys

v8

Proof: OSf(X,H) is obviously linear in H.

[8£¢x,0) || = "Z B<X> 5" s E|<H> 5' "a<x>

Applying the Cauchy inequality,

21
||5f(xnﬁ)|| s (Z [<> 5|2)112 (Z' a<x> " 2)2 = ||al] 2' a<x> " )2

Thus 6£(X,*) 13 bounded with operator norm

2
|16£¢x, .)||s<2:||a<x> )} HY2,

Let H ¢ men' For 1s1sm, isjsn let




Gy 4= Y Z <H>, Koy * z g Kype Let Glore and 6, =0y 4

get k=l

for 1<1isp For Xe M, £(H) - £(X) = }: Z £(14G

j) - £(X+C
i=1 j=1

and (X4G - (X+G = <H> J,. .
nd (K46, 4) - (WG 4y) 1y V15
9<E(X)>
Using the mean-value thcorem and the continuity of e ! we have
x>1j
for each € >0, a & >0 such that ||H|| <& dimplies

3<£{X) 1%

e |ln
1,1-17Kp T 3 <H>

) g = <E(KHG ] 1;1' < Toqmn

| <£Cx+6, 4

for 811 1<i<m1s3j<$n lsks<p,1s8sq.

Let € >0 and ||H|] <8 for & > 0 described above. Then

LleGetD - £O0-S£XW|1 ||
|ali I IHI |

)= Of(X)_
1,j-177 3<%,

f(X-I-Gi’j)-f(X-I-G

3£ (X)
1,51 34>, <H>

< E;I If(x,Gi.j)-f(}HG o

i3

1,§-1)

<H>

I

9<£ (X) 14

> Itihds™
i3 [kz',sz,(<f(x+Gi.J)—£(x+Gi.J'1)>k9‘ Ry

13

e 2,1/2
< :l,zj [k,ﬂ, (#ﬁpqmn) ] < €, Thus

1lim JIgCum) - £0X) - SECID]] = 0 and the theorem is proved.

1] 140 el
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If the entries of X are not independent then a parallel argument will

3L <H> 5 where the summation is over all ¥,6

show that &8f(X,H) = a<X>YG y

for which <x2"Y6 is indcpendent and %gégl- is taken with the entries of X

not being considercd as independent.
If f is a scalar valued function of a matrix X and 18 Frechet differentiable
at Xy where all entries of X are independent the conclusion of the theorem
can be stated as GOf(X,H) = (%%gﬁl ,H), the inner product of H with the
matrizx derivative of f at X. It 1s shown below that this relationship holds

in certailn cases in which the entvies of X are not independent.

Theorem 2.2: Let f be a scalar valued Frechet differentiable function of a

symmetric matrix. Then for symmetric H,

secxm = GER .,

Proof. From the statement following Theorem 2.1 we have

-

_ af of
8f(X,H) = i=i a<x)1j o<n>ij, where 3<%1]
is taken without the usual convention of treating the entries of X as being

3 _ D 2E® Xy

independent, From'elementary calculus, = when
| 3<x>,ws i,] ?J<x>:|'j 3<X.>Ya

%%é%l- is taken by treating all entries as being independent. When X 1is
vs

symmetric and & ¢ v,




JE(R) L BECQ) -, BE(X)
3(}{>Y6 B<X>Y6 3<x>Y6

and

3F (X) 3 £(X)

;K> . B>
" Yy YY

since it is assumed that symetery is the only dependency condition. Thus

n
df (X f (X) of (X)
SE(X,H) = JE(X) <HY,, + E [ + ] <H>
' R T I S T S
o .
-Z M).._qp +Z .3.2@__<H> +ZM<H>
= a<x:-j.le ii 7Y a<x>1j i} o a<x>ij 1)

-2 A 4,
?.:j E)<x>1:I ij

= (_3%{}52_ ,H) and the theorem is proved.

1f f satisfies the hypothesis of Theorem 2,2 and X and H are diagonal,
then a similar argument proves that G&f(X,H) = (%,H).

The matrices A,B e Mmun are orthogonal if (A,B) = 6. The only matrix
Mm X which is orthogonal to every matrix in Mm n is @, the zero matrix,
The only symmetric matrix orthogonal to every orthogonal matrix is 6, and the
only diagonal matrix orthoponal to every diagonal matrix is ©. An immediate

conscquence of the above facts and Theorem 2.2 is

Corollaxy 2.3: Let f be a scalar valued function of a matrix X which has

all entries independent, 1s symmetric , or is diagonal and satisfies the hypothesis
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of Theorem 2.2, 1f f has an extreme value at xo, then the matrix derivative

of £ wvanishes at XO.

3. Applications to MLSE, MLEST,. and BEMC.

In the remainder of this paper the following notation will be used. Let
{xk}kﬂl,...,ﬂ be a collection of N samples each having n features
(xk € Rp), with the samples taken from a mixture of m classes. Let
' n
{ai ’ui’zi}iﬂl,...,m be signature parameters where a, ¢ R, y; ¢ B and I, ¢ M)
are respectively, the a priori probability, the mean vector, and the covariance

matrix for observations from the 1th class. The distribution p(xk) is nornal

with
)ﬂi
p(x,) = a, p,(x)
A AT A

where the conditional density function, pi(xk)’ is given by

~1/2 Ty

p,(x) = L
b X xk (zn)nlzlz 1/2

il

where
T.-1
Ty = O = W) 270k = 1y

If some of the signature parameters are known,a maximum likelihood signature

estimate. (MLSE) 1s a choice of the remaining pérameters which maximize the

log~likelihood function

N
L= 2 log(p(x)).
k=1
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We now ohtain the likelihood equations by taking the matrix derivative of
I, with respect to the means and covariance in each class and applying

Corollary 2.3.

-1/2
a . ;,‘_5; s tary BIE Ny My 1y
321 k=1 p(x BZi lzil1/2 2 321
From Example 1.8,
BIZ | -1/2 1 |Z -1/22-T
..........._... == P i‘ {
321
S5ince
or
i _ _ T, 1
¥é
then by Corollary 1.11,
o
1_ .~T, _ 3T T
321 Ei (xk ui)(xk ui) 21 . Thus
N p, (%)
Ay, Py 1T 1T T ~T
L. -2 5, +5 5 (x, = 0 (x, - u)" I
BLi =1 %1 p(xk) 2 7i 271 Yk i’k i i
Applying Corollary 2.3 and the symmetry of Zi’ we have
N p,(x) Nopy(x)
i k T,.-1
(1{2::'1 p(xk) 5 (k); p(x y g = M Gy — v IR



L o I

and hence
N (x) : N p,(x)
= -1-‘- ’ - T _1. i xk
3.1) I = G %;31 p(x )(x YA Y )/(N El plx, 1Tk
at extrema.
N o« aT
L i 11
Next e 2wy P C g
ex aui =1 p(xk) 1Yk 2 aui ’
where
ar
. - _ T-1 _ - T.o~1 -
3‘“1’j (=, ) B Jj) + ( Jj)!:1 (x, =¥ )
Hence
ar '
A o=l _
and
{L‘ py (%) P - (
o - u,)
aui =t p(x.k) i 1
At extrema we obtain

3-2) bt G X T;T')' AR Y p(xk))

12




A Gaeat®
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m
By use of & Lagrange multiplier to enforce the constraints I:cxi =1
i=1
and @, 2 0, the following expression is obtained at extrema:
¢, N p.(x)
3.3) o = i E: 1V,

i 'ir'k ¢ 0o

Equations 3.1), 3.2), 3.3) are the likelihood equations which servé as

a point of departure for the results on MLSE by Walker and Peters in [81].
Maximum likelihood estimation of signature transformation (MLEST) is
a procedure that adjusts signatures from a training segment to compensate for haze and
sun angle,assuming that the adjustments are given by an affine transformation
x = Ayk + b, where A 18 an nx¥n non-singular matrix and b d1s an n-vector
which transforms Yier the kth pixel from the training segment to Xy s the
kth pixel in the recognition segment. Using this transformatiomya set of
parameters for the recognition setment 1s .otained as follows:

:
My = A, + D

'
T
Ei = AEiA

The conditional density function of the transformed i1tk class is

'

-1/,
1/2 € ’

1
|az, A7)

pi(xk) n/2

(2m)

where
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T T.~1
'B - - - - .
['i (xk Aui b) (AEiA) (xk Api b)
The transformed likelihood function i1s

L' = f: log(p' (x,))s
k=1

where

m

P T O Py,

Throughout the remainder of this discussion the primes will be suppressed.

Now o, & & % dry(x)
'5— = Z Z ( ) oA !
k=1 i=1 PV%/  ©
where
P T 2|az,aT| "1/ . -1/21*1( . ari)]
e e s - 2 =),
A (ZH)nIZ 2A lAZ A |1/2 2 8A
Also,
ik WY Az, Ah e, - aug - b) + G - an - DTz AN )
a<A>Ya i 76 *x i k i i yé i
+ 0r - Ay - b)T(-A'BiAT)_l(J z,AT + Az”s)(m: AD e - A - B,
Thus




;
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al,

i T.=-1 T T,=-T
el -Z(AZIA) (xk - Aui - b)[ui + (xk - Aui - b)'A 7]

- -Z(MiAT)_l(xk - Ay, -.b)(xk - T T,

T-1/2
8|Az, A% \
1 _1 T\-1/2 T,~1 T T
5 s 5 ]AziA | (AZ,A") [AZiJYG + Jyﬁ‘i“ 1.
Thus
|~1/2
3]az, A%
"'_31'1.""_ ‘AZ Al 1,2(AZ A) 1A2 IAX ATI 1/2 T)
since A 1s invertible., Thus
N m
oL Y p(x)
=2 s 1\ 1.
aA ] o4 p(xk?A Ti-1 + z 14" (xk - Ay, =~ b)(x, - b) N
At extrema We have
N p, (x,) N m  p,(x)
1\ ¥ Py -1 -1,
[ o 11 = [ o ( -Au-b)( 'b)]A
ééi =1 1 p(x géi =11 (xk) T M xk
Hence

- b)(x, - Au, - b)TAszzl.
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N m
Next, -g-i)]'-'-= Gip(x) (__];ar)
C k=1 i=1 p(? ) ab *
where
My . (x. - Au, - 0)T(az, A1) + (@ Ah  x, - Aan - b)
35, xe T By 4 j 3 B8y kT Ay
and hence
ar
i S -1, _ -
55 Z(AEiA 3 (xk Aui b).
Thus

(x,) N m (x,)
[E Ea Lsha'd (AZA) S Zagi——-ax—k—(Az

T,-1
k=1 421 * Tp(x) R R

at extrema and

Pylx) 4.
35 beAlY ¥ oo kg 1M 1[2 Z‘lz e, - aupl.

Equations 3.3), 3.4), and 3.5) are the transformed likelihood eguations

which serve as a starting point for recent results on MLEST obtained by McCabe
and Solomon in [7].
In [5] Walker and Guseman show that probability of misclassification
(PMC) of a transformed observation is a differentible function of the kxXn
feature selection matrix B which trancforms normally distributed observations
in  R" to normally distributed observations in Rk. Calculating the differentials
of the PMC 1is a direct result of calculating the differentials of the transformed

density function. By making use of previous caleculations we give an abbreviated




17

version of these calculations.

The transformed density function 1s

i -
(2m®/ 2|zaT| /2

p(x,B) =
where
I e (x - BT (ems") " Hex - By).

From the calculations in the MLEST problem,

T\-1/2.
e R R >

and
g% = -2(8289) " 1x - By (D) - 2¢828T) " (x - Bw) (x - By Tz laI.
Hence

BplxuB) o - (k3 ((B28T) mn) - (BT Hex - B W'+ (x - B (sz8h) 'BE1 1,
The Frechet differential of p at (x,B) with increment C is CQR%%LEL,C)

and using the above expression for ERS%;EZ, it . is easy to show that

S P T T S P A, S -L R COT TR LI LN T E T e
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(8p(x,B),C) = ~p(x,B){er[czst(aze’)™?
- -8 T (ez8H) " ion + Leezs” + B2cT) (18" (w-Bw 11,

which is the form of the differential obtained.in [5].
4., Matrix Derivatives of traces and applications.
We beg'n this section with the main theorem.

Theorem 4.1: Let u = u(Y) be a scalar valued function of Y = Y(X) where

du Y ‘
YeM and XeM . If %5 and exist and
113 men 9y a< >Y5

then

%§ -y A? (gg)n + §: p, &%%,
q

(Remark: As ir previous theorems on matrix derivatives, it 1s essential to
determine if the aforementioned side condition concerning matrix multiplication

is satisfied.)
Proof: From equation 1.5,
9<Y> 8<Y>i

_?_‘_J,-Z au ij GE 'B_U" :!
T 4 R X Lj<“>“ ax
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By applying Theorem 1.10 to the hypothesis,we have

Thus

du Ju
wT AW 4y (2 Aq KijB + 2 1_1 Cp)
T du T
- %:Aqi% W 4 Kijnq+2£ Dh(iz: aY inj)c
- T au
q )B + 2: h BY

and the theorem is proved.
The following result (due to Dwyer in [2]) 1is the most useful form of

the above theorem)especially in applications to multivariate statistical analysis.

Corollary 4.2: Let f£(X) be a matrix valued function of a matrix X. If

X T
s s " L A, 36 B +2h:ch.1760,

then

atr(f(X
(k) EAB +}E, D, C,-

Proof: From Example 1.6 we have Eit_ré%l = I, Now apply the theorem.
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The Corollary above provides an effective tool for solving optimization
problems dealing with the trace function. To illustrate the strength of the
corollary,we obtain some short cuts to finding necessary conditions for extrema
for some important trace functions.

In [10] Quirein, using extensive and tedious calculations, obtained the
derivatives of

¢ = tr8ABY) - eeidT((sABT)Y - BORTY)™! - 1 )}

i)
with respect to B and D) where B 13 a kkn matrix of rank k, A is an
nxn positive definite, symmetric matrix, D is a positive definite diagonal

matrix, and I, 1s the kkk identity matrix. We present a less painful method

k
of calculating these derivatives.

Since

a(BABT)

a<B>Y5

T T
= 376 AB” 4 BA JYS’
and

T T,~1 — A |
9 M [(BABY)"t ~ (BDB)™- 1 )
5 KL o T Ty
2 ()

T T T,~1
JYGAB + BAJYal(BAB )

T

T, -1, T T.-1
+ (BDB") [JY5DB + BDJYG](BDB ) 7},

then by Corollary 4.2,



D - P
o b -2y e Rsai

BN

9B

21

3¢ . 254 +2(spBTy” T (0aT)BA - 2 (8DBY) 1T (8DBT) " 1BD

- 21, + (oY)~ 1¥ (eoB®) 11eA - 2¢Bor’) T’ (8DBT) "lBM.

Since

st ((ABT) "L - (spBT)"L - 1

"

a<n>Y6

then

oD

= MT(BDBT)'lﬁ Jyg BT (8DBY) "L,

3 __ BT(BDBT)"lM(BDBT)'ln.

In [9] Quirein extremizes the B-average interclass divergence

B
Q::

where B 13 kxn of rank
symetriec for 1i=l,...,m.

m
ith class and S, = Y 1A

3=1
120

D, = -%- tr(Q) - E@;;l)- k 5 with

L T.-1 T
1);1(31\13 ) T(BS,B)

k, Ai is symmetrie n¥n of full rank, and Si

(Actually, Ai ie the covariance matrix for the

T
3 + 5115151 where Gij =Hy - uj’ the difference

the 4ith and jth class means.)

We again present an ab

breviated version of the calculation.

is
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Since

T
33?§- EE%‘BA BYy” [J 5B + BS, JYGI

T.~1 T T T.=-1 T
(Bﬁin ) [JYGAiB + BAi 3751(3“13 ) “(BDB"),
then

_a__ -3 (sh, 8T " (ss, - (88" (A BH) B, ).
i=1

The next application will be in the problem of extremizing B-average
interclass divergence in a reduced feature space with respect to the generator
of a single Houscholder transformation, B, which compresses n-~feature data
to k features. In [2] Decell and Mayekar addressed this problem in
modified form and Decell and others (see [1] and [3]) have made significant
progress in the area of feature selection. The result below suggest another
possible approach to the feature selection problem.

Let Dy be as in previous example and B = (IEI‘ZD (L -2 %U.fz-); where

(1k|z) is kxn with I the kwxk d4dentity, in the first kxk block

k’

and zeroes elsc<ithere, and U 1s a non-zero nXl vector.

Firsty
ot
3(—*)
vy . 1 T T T T, .T T, -
= - —5— UU[uI, + J,U7] - UL [JjU +U Jj]}.

3 (u'v) i3
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ﬂsing the fact that UTU, J§U§ and UTJj are scalars,we can write

2(1, | 2)
oB k! T T T T, _ T
330>, == P {[03,Uy + UTU3,U7) [wjuu + vyt lel 1}.
Thus by Theorem 4.1,
e o AL ( 1, <|)<D>1
= - U U ) I, |2)u + u Ui, |2 U
U (UTU) 0B k oB
an 3D

-t R a1, | o+ whir, | 2) T D)

Thus at extrema we have

By T
(uTmu UTUJI( |z + @ |»* ( 5 )lv

Thus, to extrewize DB’ it is necessary to solve the equation
T BD 3D
(- —-—0 A(U) U = 8, where A(U) = [(———0 (1j2z) + a |z) e--)1. the nxn
U L]

matrix of rank k. The above equality is equivalent to

A(U) U= AU for some A ¢ R

T

since -U-%— projects in the U direction.
u'u

The eignevalue problem A(U) U = AU rcuggest possible iteration schemes,

but a scheme with good convorgence properties is yet to be determined and the

question remains open.
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