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A necessary condition for a real valued Frechet differentiable function

of a vector variable to have an extremum at a vector x is that the Frechet
0

derivative vanishes at x0. This paper establishes a relationship between

Frechet differentials and matrix derivatives obtaining a necessary condition

on the matrix derivative at an extrema. These results are applied to various

scalar functions of matrix variables which occur in statistical pattern

recognition.
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Applications of Matrix Derivatives To

Optimization Problems in Statistical

Pattern Recognition

1. Introduction.

Let S be a transformation on a normed space X to a normed space Y.

If for , x e X ,there is a bounded linear operator A P S(X,Y) such that

1.1)	 lim	
IIS(x+h) - S(x) - A(h)II . 0

jjhjj+O	 11h1l

then S is Frechet differential. at x. Th: vector A (h) is referred to as the Frechet

differential of S at x with increment h and A is denoted by SS(x, )

or S'(x).

We list below some important properties of the Frechet differential.

For proofs and a detailed treatment of Frechet differentials see [6 ,pp.175-178]

Theorem 1 . 1: If S has a Frechet differential, it is unique

Theorem 1 . 2: If S has a Frechet differential at x, then S is continuous

at X.

Theorem 1 . 3: Let f be a real valued function which is Frechet differentiable

at xo a X. If f has an extreme at xo , then df(xo ,h) = 0 for all h e X.

Example 1 . 4: Let X = Rn where R is the field of real numbers and let

f(x) = f(xl,... ,xn) be a real valued function on X having continuous partial

derivatives existing with respect to each variable xi . 'Then the Frechet
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differential is

n
Sf(x,h) ° F axi hi.

v	 x

We denote by Mr Xs the vector space of real rXs matrices. For

A e MrKS we denote the element in the ith row and jth column of A by
n

<A>ij . Let tr(A) = i—El<A>11, the usual trace of A, and let AT denote

the transpose of A.

The set MrXs is a normed apace with

I I AII _ (tr(AA X 1 1/2 
= I E E (<A> ij ) 2 1 1/2 for

i=1 j=1

A e M
re	

An inner product compatible 	 with this norm is giveu by

(A , B) = F, F, <A>ij 9 <B>ij = tr(A.BT).
i=1 jml

Let A e pxq have each entry a function of the entries of X e Mm%

a<A>
and leta<X>—î  exist for all 1 5 1 5 p, i 5 j 5 q, 1 5 y 5 m, 1 5 6 5 n.

a<A,
We define H<X>y6 e MpX q and ax i^ a Mmxn by

/aA	
= a<A>^	 a<Ail

\ a<X>Yd ij	 a<X>Ya	 aX	
yd

We make the convention that all partials are taken considering the entries of X

f..itW ,'



as being independent unless otherwise specified. For example

Example 1.5: aXX> d - JYd , the m n matrix with

Y

1 if y- i and d= j

<JYd> ij

	

	 The above holds even in the

0 otherwise

symmetric case due to our convention. For future reference we denote by Kij
1 if i=y and j = d

the pxq matrix with <Kij/

\ 

Yd	
I	 and by
0 otherwise

J' the n%1 vector with 1 in the jth component and zero elsewhere.

Example 1.6: Let Y = tr(X) and X 
e mKn' eII 8X = Imxn' the identity

in MMXn.
8<Y>

One writes 
X 

instead of ax ii or 
a<X>	

if and only if X or Y is
yd

a scalar.

Example 1.7: Let IXI denote the determinant of X. Then a<X>	 cof(<X>Yd).
Yd

Thus ax cof(X) and ifs X is full ranks aXX = jXjx T, whe y s: -T = (g'1)T.

Several equations are listed below which are easily verified using com-

ponent-wise arguments.

Let y - f(X) be a scalar function of X e Mmxn and u(y) a scalar function

of Y.

1.2)	 2 ay • 2 if au and aX exist

Example 1.8: If X is full rank and t c R, then

8 x t= 
tlXlt-1 

a R = t I X ItX T.

3

t:
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Let Y(X) E Mks and W(X) E	 , Then

i'•

a WY	 ay	 aw
1.3)	 a<X>Y6 ° W a<X>Y6 + 

a<X>Y6 Y

If 
ay 	 and 

aw	
exist .

Ys 	Y6

If £(X) is full rank and as,XL exist, then by equation 1.3) we have
Yd

	

1	 _

1.4)	 a<.X> X ' -f 1(X) a<X> f 1(X)
y6	 Y6

Example 1.9: If X is full rank, then

a(X 1) 	 1
8<X>Y6

 ` -i-1 JY6X

Let Y = Y(X) E MAM and w = w(Y) E MrKs

indicated derivatives exist , then

with X E Mmvn. If the

aw	 m E E aw	
a<Y

11

1.5)	 3<X>Y6 i=1 j=1 a<Y>ij a<X>y6

and) if w is scalar valued

aw	 p q aw	
a<Y>U

aX = E ^-r a<Y>ij ax

F

F



8f X a	 AT, BT +	 Dh. Ch.
8X	 q q q	 h
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In his excellent paper on matrix derivatives Dwyer proves an extremely useful
8<Y>li	 8 Y

theorem establishing a procedure for calculating 2X 	
when B<X>	

is of a

Yd
certain form. We state the theorem without proof. For a proof of this

theorem see Dwyer 14, p 612].

Theorem 1.10: Let X e MmXn and Y e M pXR . Then

2<X: _ m

 Y;--A Jy6 Bq + E Ch JY6 Dh

if and only if

a< _ Z Aq.Kij.BQ + E %Ki Ch.

All matrix multiplications must be defined when applying this theorem. This

condition must also be observed in applying the following corollary which is a

restatement of the theorem-for the scalar valued case.

Corollary 1.11: Let f be scalar valued. Then

2<X> a E A- J 6O B+ E Ch J
Y6 • Dh

y6	 q q Y 9	 h

if and only if
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2. The Frechet Differential of Matrix Valued Functions of a Matrix Variable.

The following theorem establishes a relationship between the Frechet

differential and the matrix derivatives.

3<f(X)>1i
Theorem 2 . 1: Let f be an operator from Mmxn to Mpxq with B<X>

Y6

continuous for 1 5 1 5 p, 1 5 j 5 q, 1 5 Y 5 m, 1 5 6 5 n, with all entries

of X independent. Then f is Frechet differentiable and

Sf(X,H) . E af (X) <H>yd.
Y,S	 YS

Proof: Sf(X;H) is obviously linear in H.

	

I I Sf (X,H) I I `II	 a<X>yd <x>YS II 5	 I 
<H>YS I )I 

a`X>yd 
11

Applying the Cauchy inequality,

I l sf (x.H)II 5 (E.I < 
>YS12)1/2 (Ell If

	
11 

2)z ` IIHII E ^^N	 112)i .
Y 6	 YES	 YS	 Yja	 YS

Thus Sf(X, •) is bounded with operator norm

2

	

18f (X,	 E 11 a<X> " )1/2.
Y. S	YS

Let H e Min. For 1 5 1 5 m, 1 5 j 5 n let

i
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nnc
G	 °	 L <ti> Rk KRk +	 Ea ik Kike Let G1,0 ° 0 and G1 '0 Gi-1,n
i '

j	
Rcf. k=1	 ktj

^	 m m
e for 1 < i s V. For X E M	 , f(X+ll) - f(X) ° ^	 f(X+G) - f(X+Gi,j_1)mrn	 i°1 j -1

and (X+G) - (X+Gi>j-1)
	

<B> ij iij .

a<f(X)>kZ

Using the mean-value theorem and the continuity of 8<X> ij 	
f we have

for each e > 0j a d > 0 such that IIHII < d implies

8<f(X)
>k% 	EIIH II

I<f(X+Gi
>
j)>kR <f(X4Gi

>j- 1)>kR a<X>ij	 <H>ijI < 4pq' mn

for all 1515m, 15 j 5n, 15ksp, 15R 5q.

Let e > 0 and IIHII < d for 6 > 0 described above. Then

f(X+tl) - f(X)-df(X.H)^) 5	 1 II^ f (X+(;	 )-f(X+G	 )_ af(X),<H> II

II H II	 IIHII "Jij
i >j	 i.j-1 a<x

> 	
ij

s YII f (X , Gi ^ j )-f (X+Gi
>
j_1)- af(X) 

<H>ijll

°
 i	
j(<f(X+Gi.j)-f(X+Gi.j-1) >kR- a<X>	 H ij ) J

k,R	 ij

E	
2 1/2 < e. Thus

4<	 R ( pqmn ) J

lim IIf(X+H) - f(X) -_6_f(X H) 	 - 0 and the theorem is proved.

IIHII+O	 IIHII

L, Mw
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If the entries of X are not independent then a parallel argument will

^ is, 	show that df(X	
a ux)

,H) _ .^ a<X>Yd <H>yd where the summation is over all y,d

for which <X>yd is independent and 
a<R^ 

is taken Ath the entries of X

not being considered as independent.

If f is a scalar valued function of a matrix X and is Frechet differentiable

at X, where all entries of X are independent the conclusion of the theorem

aqg
can be stated as df(X,tl) a (F:W 	,H), the inner product of H with the

matrix derivative of f at X. It is shown below that this relationship holds

in certain cases in which the enr ,:ies of X are not independent.

Theorem 2.2: Let f be a scalar valued Frechet differentiable ' function of a

symmetric matrix. Then for symmetric H,

df(X,H) - 1%2f 
X 

,H).

Proof.. From the statement following Theorem 2.1 we have

df(X,H) = 3'j a<X>ij • <H>ijl where a<X>ij

is taken without the usual convention of treating the entries of X as being

X) _	 <- x> iindependent. From elementary calculus ^	 1Z a

a
<X
>yd i,j a<

x>ij a<X>Yd when

of X	
is taken by treating all entries as being independent. When X is

a<X>yd

symmetric and 6 ¢ y,
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E' ^ - 3f(_ + a21 - and
a<X>Yd 2<x>ya 3<X> yd

31LXL a f X

a<x>>YY = 3<x>Yr

since it is assumed that symetery is the only dependency condition. Thus

n

df(X,H) =
of X	

<H>	 +
of X

( 3<X>
+ af(X)	

<H>iLl a<X> ii 	ii i<j a<x>ji)	 ij

rn- 
u 3a 	<H>
	

+X>	 ii <N>ij + u	 <X>	 <H>ij3
i=1 ii iej 3<X> 

ijij i>j	 ij

j a<X>ij <kl>ij

of X ,H) and the theorem is proved.t% ax

If f satisfies the hypothesis of Theorem 2.2 and X and H are diagonal

then a similar argument proves that df(X,H) =(af H).

The matrices A,B a mxn are orthogonal if (A,B) = 0. The only matrix

Mmxn which is orthogonal to every matrix in 
mun 

is 0, the zero matrix.

The only symmetric matrix orthogonal to every orthogonal matrix is 0, and the

only diagonal matrix orthogonal 'to every diagonal matrix is 0. An immediate

consequence of the above facts and Theorem 2.2 is

Corollary 2.3: Let f be a scalar valued function of a matrix X which has 	 r

3
all entries independent, is symmetric , or is diagonal and satisfies the hypothesis

	
i

i

a

^^	 3
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of Theorem 2.2. If f has an extreme value at X0 , then the matrix derivative

of f vanishes at X0.
i

iM

3. Applications to M SESE, tII.EST, and PDIC.

In the remainder of this paper the following notation will be used. Let

{xk 
}k=1,...,N be a collection of N samples each having n features

(xk a 0), with the samples taken from a mixture of m classes. Let

{ai 
'ui'Ei}i^l,...,m be signature parameters where a  a R, u i a Rn and E  a % n

are respectively, the arp iori probability, the mean vector, and the covariance

matrix for observations from the ith class. The distribution p(x k) is nor.-.al

with
m

P(xk) = L ai Pi(xk)
i=1

where the conditional density function, pi (xk), is given by

1	 e-1/2  ri
Pi(xk)	 (2R)n/2IE

1 

I1/2

where

ri = (xk - uI)TEil(xk - ui)•

If some of the signature parameters are known , a maximum likelihood signature

estimate (NQSE) is a choice of the remaining parameters which maximize the

IM-likelihood function

N
L = F, log (p(xk)).

k=1
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We now obtain the likelihood equyLi(jns by taking the matrix derivati.ve  of

L with respect to the means and covariance in each class and applying

Corollary 2.3.

81,	 N	 a..	 -
1/2r i 31E 1-1/2
	 1	 -1/2r	

1 81'1

BE  - = P(xk) Ie 	8Ei	 + IE I1%2 a
	

(- 2 BEi)l

1

From Example 1. 8,

3 I E iI
-1/2 

= _ 2 I E 1 I
-1/2E

iT.
BE

Since

ar

B^Ei>yB = 
(xk - Pi )T (-Ei l J y6 Ei l)(xk - Pi).

then by Corollary 1.11,

BE, = -EiT(xk - V i)(xk - Ni) T E iT. Thus

BL = N 	 pi(xk) I-1
i E T + 1 E T (x - u )(x - u ) T E T]•Ti—i kG=•1 i p(xk)	 2	 2 3 k	 i k	 i	 i

Applying Corollary 2.3 and the symmetry of Ei, we have

c
N 	 _	 p. (x )	 _

( F, pP(xk) )E il = E il ( F P(xk)(xk - 11)(xk - ui)TlEil.
k=;l	 xk	 k=1	 k
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f

and hence

a

I N pi (xk)	 T	 I N Pi(xk)
3.1)	 Ei (p F P(xk) (

xk - Ili)l'xk - Ui) )	 (—N — P(xk))

at extrema.

Next

where

N	 a	 ar

aui 
v 

kFl p(xk) 
Pi (xk) (- 2 2ui)^

I

a<vl
	m (xk - ui) TE il (-Jj ) + (-iT -1 (xk - ui)•

Hence

aui = 2E11 (xk - ui) .
i

and

N	 ( )

au	
F ai 

p 

P(xk)^Eil(xk - ui))•
i k=1	 xlc

At extrema we obtain

N p (x)	 N p (x)

3.2)	 ui	 (N	 P(xk) 
xk)	 (p	 i

k-1	 k	 k°l. p(xk)
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m
By use of a Lagrange multiplier to enforce the constraints	 ai 1

and ai k 0, the following expression is obtained at extreme:

(X

i 
N Pi(xk)

3.3)	 01, a 
N kr p(Xk)

Equations 3.1), 3.2) 0 3.3) are the likelihood equations which serve as

a point of departure for the results on MLSE by Walker and Peters in [8].

Maximum likelihood estimation of signature transformation (MLEST) is

a procedure that adjusts signatures from a training segment to compensate for haze and

sun angle assuming that the adjustments are given by an affine transformation

xk a Ayk + b, where A is an nXn non-singular matrix and b is an n-vector

which transforms yk, the kth pixel from the training segment to xk, the

kth pixel in the recognition segment. Using this transformation ) a set of

parameters for the recognition setment is .,otained as follows:

ui=AUi+b

Ei . AL1AT

The conditional density function of the transformed itiL class is

1	 .-1/2P1

PI(xk)
	
(211) n/2JAE1AT11/2 e

where



14

q ° (xk - Ap i - b) T (AE1AT)-1 (xk - Api - b).

i

The transformed likelihood function is

N
F, log (p,(xk))/
k°1

where

EPI(xk) m 1 l ai pi(xk).

Throughout the remainder of this discussion the primes will be suppressed.

3L	
N m a 	 3pi(xk)

Now	 3A° E E I
kal i=1 p (xk) 'C"

where

'pi(xk)
	 1	 -1/2I'i 8jAE1A 

T -1/2^	 1	 -1/2ri 1 ari
WA— (2H

)
n/21e	 2A	 + IAE ATI1/2 a
	 (- 2 2A ))'

i
Also,

ar
a<NY6 ° -pi J,6(AEiAT) -1(xk - Ap

i - b) + (xk - Api - b )T(AEiAT) 1(-JY6pi)

+ (xk - All, - b ) T(-AE1AT)-1(JY6EiAT + AE iJy6) (AE1AT) -1(xk - Ap i - b).

Thus

L*: ,. _.
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ar..
yi = -2(AE 1AT) - '(xk - Alii - b)[ui + (xk - Aui - b)TA T)

-2(AE1AT)-1 (xk - Aui - b)(xk - b)TA T.

aIA£ ATI-1/2i	 = _ 1 AE AT -1/2 (A£ AT) -1 [A£ JT + J	 AT],
a<A>Yd 	2 J 1 ^	 1	 1 y&	 y6 £1

Thus

T 1/2

	

a^a1A I	 . _ JAE iAT I -1/2 (AZ iAT) -lAEi = - IAE1ATI-1/2A T/

since A is invertible. Thus

8A a
	

= ai 
Pi(xk)-T

[-I + E IA 1(	 Au	 b) (x	 b)TA T)'k=l . i=1	 p(xk)	 i	 xk	 i	 k

At extrema we have

N 
r
m 	 pi(xk)	 N m	 Pi(xk) -1 -1	 TT.

(	 ` ai pl"x ) )I = [^	
ai 
	
Ei A 

(xk - Aui - 
b)(xk - b) JA

k=1 1=1	 k	 k=1 i=1 	 P(xk)

Hence

N m

	

3.4) A = N F
iF ai 

Pi (
(
 xk))

	
- b)(xk - Aui - b)TA-TE11,

L
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aL= N	 a Pi (xk)	
1 ari

Next,	
ab	 i	 (- — i -),ca _	 k=l,i=1,	 P(xk)	 2 8b

where

ar
arbi^j = (xk - APi - b)T (AE 1AT ) -1 (Jj ) + (-Jj)(AE1AT ) -1 (xk - Ali i - b)

and hence

ar
abi ° -2(AE1AT)-1(xk - Au

i - b).

Thus

N m
m a Pi(xk)	 T -1,	 N m
	 Pi(xk)	 T -1

k=1 i=1 i P(xk) (AE
1A) Jb E E ai P(xk) 

(AE1A) (xk - Alai)]

at extreme and

3.5)	 b = A [	 si PP(xk) E i
l)-1 [ E F, E11A-1L. L.	 (xk - Aui)]•

k=1 i=1	 xk	 k=1 i=1

Equations 3.3), 3.4), and 3.5) are the transformed likelihood equations

wnicth serve as a starting point for recent results on MLEST obtained by McCabe

and Solomon in [7].

In [5] Walker and Guseman show that probability of misclassification

(PMC) of a transformed observation is a differentible function of the kxn

feature selection matrix B which transforms normally distributed observations

in Rn to normally distributed observations in R k . Calculating the differentials

of the PMC is a direct result of calculating the differentials of the transformed

density function. By making use of previous calculations we give an abbreviated
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version of these calculations.

The transformed density function is

p (x , B) =	
1	 e-1/2r

where

r = (x - Bu ) T (BEBT)-1(x - Bu).

From the calculations in the MLEST problem,

a BEBT —1/2,w _ {BEBT I -1/2
(BEBT) 1BE

aB

and

ar	 2(BEBT)_1(x - Bµ)(µT
) - 2(BEBT)- 1(x - B11)(x - BP) T(BEBT)-'BE.

Hence

BpaB B = - p(x,B)QBEB
T)-1 (BE) - (BEBT)-1 (x - BU)[PT + (x - BP) T (BEBT)-1 BE]

The Frechet differential of p at (x,B) with increment C is (a aB 
B ,C)

and using the above expression for a 2BB ) it.is easy to show that

^IIA
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I k	 r

(dp(x,B),C)	 p(x,B){tr[CEBT(BEBT)-1

(x-B) T (BEBT) -1 [CU + 2(CEBT + BECT) (BEET)-1(x-BP)]),

which is the form of the differential obtained.in  [5].

4. Matrix Derivatives of traces and applications.

We beg".n this section with the main theorem.

Theorem 4.1: Let u = u(Y) be a scalar valued function of Y = Y(X) where

C Mpxr and X e MmXn. If 
8Y 

and 2<g>	 exist and
Yd

a<
ay

 - F, A J d B + F Ch J-jS Dh,
Y d 

q q Y q	 h

then

au e F, AT (au )BT + E D (au)TC .
ax q q aY q	 h h aY h

(Remark: As in previous theorems on matrix derivativessit is essential to

determine if the aforementioned side condition concerning matrix multiplication

is satisfied.)

Proof: From equation 1.5,

au	 au	 a!Y	 oan	 a<Y>ij
ax ' 

191
a<Y>i^
	

ax	BY i^ ax
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By applying Theorem 1 . 10 to the hypothesisj we have

A

aaX>j -
F Aq Ki	 +jBq Dh Ki	 Ch..j

Thus

au
2X E 2Y ij ( E AT KijBT + G Dh Kij Ch)

191	 q	 h

Aq( 	 ay ij KiJB +	 Dh (	 2Y	 Kij)0h
ij

q Aq(aY	 h)Bq +	 Dh(aY)T Ch
h

and the theorem is proved.

The following result (due to Dwyer in [21) is the most useful form of

the above theorem especially in applications to multivariate statistical analysis.

Corollary 4.2: Let f(X) be a matrix valued function of a matrix X. If

	

a<X>Y6	Aq Jyd	 Bq + I Ch JY6Dh'

then

atr f W = [^ ATBT + E D C.

	

ax	
q 

q q	 h h h

Proof: From Example 1 . 6 we have atraY = I. Now apply the theorem.
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The Corollary above provides an effective tool for solving optimization

problems dealing with the trace function. To illustrate the strength of the

corollaryowe obtain some short cuts to finding necessary conditions for extrema

for some important trace functions.

In [10) Quirein, using extensive and tedious calculations, obtained the

derivatives of

^ - tr(BABT) - tr{MT {(BAST )
-I
 - (BDBT ) -I - Ik))

with respect to B and Dj where B is a kKn matrix of rank k, A is an

nxn positive definite, symmetric matrix, D 1s a positive definite diagonal

matrix, and I  is the k%k identity matrix. We present a less painful method

of calculating these derivatives.

Since

2

(	 T)

<B>B 
Yd	

T
JYd 

AB + BA JYdf

and

8 MT ((BABT)
-1

 - (BDBT) -
1 Ik) - MT[-(BAST)-1ji AB  + BAJYd](BABT)-1

8<B> Yd

+ (BDBT) -1PYdDBT + BDJ,T61(BDBT)-1}.

then by Corollary 4.2,
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aB a 2 B + 2'(BDBT) ^MT (BDBT )BA - 2(BDBT) 1MT (BDBT)-1BD

e 2[Ik + (BDBT) iMT (BDBT) -1 JBA - 2 (BDB
T
) lMT(BDBT)-1Bn.

Since

aM7 [(BAB7)
-1 - (BDB7 )

-1
 - Ik]	 T	 T) 	 T	 T -1

ya89D>	
= M (BDB) B 

Jy6 
B (BDB)

then

aD ° - BT (BDBT) 1M(BDBT)-1B.

In [9] Quirein extremizes the B-average interclass divergence

DB = 2 tr (Q) - m 
2 

1 k; with

Q =	 (BAiBT) -1(BSiBT)
i=1

where B is kxn of rank k, A i is symmetric n%n of full rank, and Si is

symmetric for i=1,...,m. (Actually, Ai is the covariance matrix for the

ith class and S i =	 [Ai + 6ij6ij]w here 6ij Pi - uj , the difference
m.

j=1jo i.
the ith and jth class means.)

We again present an abbreviated version of the calculation.

.

i
j

.....	 a
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Since

aq--- a t (BA1BT )-1 [J.YaSiBT + BSi JYa] -
Y6
	 i=1.

(BA1BT)-1
[Jy6AiBT

 + BAi 7T6)(BA1BT)-1(BDBT),

then

a2B =

	
(BA 1BT)-1[BSi - (BSiBT) (BA 1BT)-'BA

i=1

The next application will be in the problem of extremizing B-average

interclass divergence in a reduced feature space with respect to the generator

of a single Householder transformation, B, which compresses n-feature data

to k features. In [2] Decell and Mayekar addressed this problem in

modified form and Decell and others (see [1] and 13]) have made significant

progress in the area of feature selection. The result below suggest another

possible approach to the feature selection problem.

UUT
Let DB	be as in previous example and	 B e (Ik 17) ( I - 2 T )^ where

UU
(Ik IZ)	 is kXn	 with Ik,	 the kxk	 identity, in the first k%k block

and zeroes eis^:where, and	 U	 is a non-zero	 n%1 vector.

First

UU 
T

aUTU	 -	 I 2 {UTU[UJT + JUT
] - UUT [JjU + UTJj]},

(U
T
 U)	 i
	 j

F

L._
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Using the fact that A, JjU, and UTJj are scalars, we can write

M

aBe- 2(1klZ)	 T T	 T	 T	 T T	 T T
8<U>	 T 2 {LUJ i

U U + U UJ
i
U J - [UJ

i
UU + UU JjIJ ]}.

j	 (U U)

Thus by Theorem 4.1,

aD	
2

aUB 	T 2
{ [UTU(24B) T ( IkIZ ) U + UTU ( Ik I2)T (-Z )UJ

(u u)

aD	 aD
-[UUT( $)T(Ik^Z)U+ WT(IkiZ)T(BB)v]

Thus at extrema we have

T aD	 aD
(UTU) [I - UTU]L(BB)^( IkI Z) + (IkIZ)T(BB)]U = 8.

Thus,to extrewize D. 9  it is necessary to solve the equation
aD	 aD

(I - UU) A(U) U = Br where A(U) _ [(BB )T (IkIZ) + (IkIZ)T ( BB)], the nxn
T 

matrix of rank k. The above equality is equivalent to

A(U) U - XU for some a e R

T
since 

UW projects in the U direction.
U U

The eignevalue problem A(U) U = XU suggest possible iteration schemes,

but a scheme with good convergence properties is yet to be determined and the

question remains open.
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