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Multidimensional Stochastic Approximation

Using Locally Contractive Functions

b 1. Summary. A Robbins-Monro type multidimensional stochastic approximation

algorithm which converges in mean square and with probability one to the fixed

point of a locally contractive regression function is developed. The algorithm

is applied to obtain maximum likelihood estimates of the parameters for a mixture

of multivariate normal distributions.

2. Introduction. Let E  be.real k-dimensional Euclidean space with inner

product denoted by < , > and norm denoted by 	 Corresponding to every

positive definite real k xk matrix B we define the B-inner product

<x,y>B = <x,By> and the B-;-norm 11 X 11 B 	<x,Bx>1/2 , for x,y e Ek . A

function F:D	 Ek, where, D is an open subset of E k , is locally contractive

at a point eo e D if there. exists a B-norm on E  and a number a,

0 < a < 1 such that

(2.1)_Ile° - F (e) 11 B <<- ^ Jl e - elIB

whenever 6 is sufficiently near a	 If the above inequality holds for every

6 in some neighborhood W of Ef , we say F is X-locally contractive at

8 0 throughout W. Clearly, e o will be a unique fixed point in -W for T.

For amy kxk matrix A, let the spectral radius of A be denoted by

p (A) = sup{Ia i:a is an eigenvalue of Al. The Frechet derivative of F, if

it exists, will be denoted by F. The .following result, a consequence of

Taylor's theorem and the theory in [2; section 2.3], will be used in part
j
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4 of this paper.

c
(2.2) Lemma If QF exists and is continuous in a neighborhood of 8 0 , a

necessary and sufficient condition for F to be locally contractive at eo

is that F(8°) = 8 0 and p(VF(8o)) ' < 1.

Let {Y(8):8 E D} be a family of random variables with values in E 

satisfying the following conditions

(2.3)	 supp E( Y(8) 2 ) < - .(E denotes conditional expectation with 6 fixed)

(2.4)

	

	 the regression function of {Y(8)}, denoted by M(8) = E(Y(8)), can

be expressed as M(8) = 8 -T(0) where F(8) is locally contractive

0
at 8 E D.

In part 3 of this paper we develop an algorithm which, given the conditions

above and given a sufficiently close approximation to 60, yields a sequence

of recursively defined random variables with values in E k which converges to

8' in mean square and with probability one.

In part 4 of this paper, this algorithm is used to formulate a stochastic

analog of the iterative procedure developed by Peters and Walker in [3] for

obtaining maximum likelihood estimates of the parameters for a mixture of

normal distributions.

(3) Derivation of the Algorithm

-
(3.1) Lemma Let pl	 (p(B-1)) 

1 and p2 p(B) where B is a positive

r	 definite kxk matrix, and let rl ,r2 be positive real numbers such that
r

i

i
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Arl < 1. Let e° , 6 E Ek such that I10r - 811 < r  and .let
c.	 2	 P2

S = {8 E Ek :116 	 5 r2 }. Define a function I:Ek--ter S as follows

a

0 if e E S
(0)r

(1-t)0 + t0 where t

	

	 2 =	 if 6 S
Il a-e II

Then the following inequality holds for every e E E 

Ile - (e)i1B < Il e - 6I1B

r
Proof. We may assume t 	 2 < 1 for otherwise e E S implying

0e-eN

V
e) = 0. By the fundamental theorem of calculus:

37

d

eqB = Ike° - (e)I(B +

	

	 a—s[tie - (1-s)6 - s0`+sIds

S=t

It suffices to prove that the integrand is nonnegative for all s, t _< S <_ 1.

Consider	 j

a—s[Ile - (1-s)e se^rB] = 2<e - e,e° (1-s - se>B

= 2.s<e - 6,6	 a>B-+ 2<e	 6,e° - 6>B.

}
9

Since t 5 s 5 1, by the principle axis theorem for real symmetric matrices,

a
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the left side of the above expression is bounded below by 2 rZl`6 —e1I Pl'

Similarly, the right hand side of the above expression is bounded, in absolute
<. c

value, by 2 r1116 -el)p 2 . The result follows from the hypothesis concerning

r l ,r2 ,P1 and p2.

For the remainder of part 3 we adopt the notation and assumptions stated

previously. Furthermore, we assume that F is locally contractive at 66

throughout S and that S c D. Define a family {Y(6) :6 e E 
k 
I of random

variables by

(3.2)	 Y(e) = Y(I(e)) - q(6) + 6

Then the following inequality is valid for every E > 0.

(3.3) Corollary	 inf	 E(<e-e , Y(e)> ) > 0

Proof. Since E(Y(e)) = q (6) - F(c^(e)) - ?(e ) + e, the expression above =

inf	 f<6-E° ,e—e° B+ <e—e ,e F(Ve))>B 1. The first term above = 110—e°il B,
E<_ U0-e

`^

and the second term is bounded above in absolute value by

qe- Ek 11 F (1( 0)) - 0 11B

s wile— e% 111(e)	 a II B	 (by (2.1) )

s x119-6°112 	 (by (3.1) )

Therefore	 _inf	 E(<e-6* ! Y(.e) >B) z (1	 a)E2*> 0•
F-:5 de-611B
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(3.4) Definition. A gain sequence is a sequence {a R} of positive numbers

CO	 00

= CO and a2 < 0O•is	 satisfying	 a
Q Q

Q-1 Q -1 6

(3.5)	 Remark.	 For any	 C > 0,
{aQ

= Q}	 is a gain sequence since

•	 limit 2_k = limit c log K = OO and
a2 = Or	

.
k -} oo Q=1	 k -* co Q=1

(3.6) Theorem. Let {Y(8):8 E Ek} be as in (3.2) and let {aY,} be a gain

sequence. Then the following sequence of recursively defined random vectors

(3.7)	 8R+1 = 8Q - a.Y(8Q), 8 1 arbitrarily chosen converges in mean square

and with probability one to 8

Proof. We refer the reader to the algorithm described in [l,pp 332-333] and

the convergence proof given in the appendix to [l,pp 350-352]. Replacing

their gain sequence {pk} with the gain sequence {a,}, and replacing their

norm 11•11 and inner product <V,W> = V W where V denotes the transpose

of the vector V and V W denotes matrix multiplication) with the B-norm

and B-inner product respectively, the theorem will follow once we verify that

n	 conditions (Al) - (A3) in [l,pp 332-3331 are satisfied.

•	 (Al) Since E(Y(A)) = 8 - F(q(8)), this result follows from (3.3) since B

positive definite implies lie- ell B = 0 if and only if 8	 8'

(A2) Follows from (3.3)

(A3) E(IIY(8)I{ B) = E(<Y(1(8)) - ^(0) + 8 ^ Y(^(e)) - Ve) + 6>B)

< h(1 + [I8-AIt2) for sufficiently large h > 0 since S c D and by (2.3) 	 j

sup	 2) < 00.

eED

r
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4. Application to Maximum Likelihood Estimation
ti

Let D = {(ai' ui' E i)} i=1	
m where each ai > 0 with > ai = 1,

,...,	
i=1

each ui E Rn and each E  is a positive definite real symmetric n xn matrix.

We consider D to be realized as an open subset D of E  where

k = m(n+1)2 (n+2) - 1. For each 8 = (ai' ui' E i) i=1	
m let x(6) be a random

,...,
4	

variable with values in Rn and with distribution function

m
P(8,x) _

	

	 ai pi (x)	 for x E Rn
i=1

where

Pi(e,x) 
= ( 27r) -n/2 1Eij -1/2exp{- 2( x-ui) TE il (x_p. }

for each i = 1,...,m.

Fix e E D and let {xk }k=1,...,Nc R
n be an independent sample of observations

—

of x(8'). A maximum-likelihood estimate of eo based on {xk} is a choice

Of 8 E D which locally maximizes the log-likelihood function

N
L	 log p(8,xk)

k=1

In the appendix to ['3], Peters and Walker prove there exists a'sufficiently a

small neighborhood of 8 o , such that with probability -> l as N-* -, there

exists a unique maximum-likelihood estimate of 8 ` in that neighborhood.

Furthermore, with probability -} 1 as N 	 this estimate + 8' This

estimate will be called the consistent maximum-likelihood estimate (which we

abbreviate by c.m.l.e.)



Equating DeL = 0 and performing algebraic manipulation of the resulting

0
equations, yields the following necessary conditions for a m.l.e. e of 6

8 = Z (e) where TD -} D is defined by

((ai' ui' ^i ) i=1, ... ,m) - (a, ui' ^i)

where, for each i = 1,...,m

	

a c	 P ( )

	

= i L	 i xk(4.1)	 ai 
N k=1 xk 

p (x,,)

1	
1 

N	 pl(xk)	
1 
N pi(xk)

(4.2) 'Pi - {N	
xk P( )}	 {N	 P( )}

1 N T pi(xk)	 1 SSN p,(xk)(4.3)	 Ei = {N l ( — i) (xk- i)	 P(xk) }	 {N	 p(xk) }
i
a
a

3
where each p i and p is evaluated with respect to the parameters

E) = (ai $PV E )i=1	 m j will be called the likelihood function.

In [3], Peters and'Walker-develop an iterative procedure which, starting

with any initial estimate e' which is sufficiently close to 8` , yields a

sequence in D converging to the c.m.l.e. of e" based on {xkj=1	 N'

Their technique consists in proving that, for s <	 4	 ' the functionm(n+1) (n+2) '.

(4.4)	 E(e) = (1-6)e + e	 (e)

is locally contractive (at the c.m. l. e. of e ) throughout a neighborhood of
a

i
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ĵ 	 6	 Thus, for any e' in this neighborhood of 6 , the sequence {e^} defined

z
c	 recursively by	 j

(4.5)	 ek+1 -	 E (e^)., e l = e'

a

converges to the c.m.l.e. of 6 .

In concluding, they discuss the computational advantages of this procedure

as compared to classical numerical techniques such as Newton's method or the

method of scoring. In particular, the procedure satisfies the following con-

ditions.

(4.6) At each stage of the..iteration in (4,5), the constraints on the

parameters in e are satisfied.
`

(4.7) The 'step size' € depends only on n and m and not on 6
e .

(4.8) The procedure does not.require the inversion, at each stage of the
i

iteration, of a kxk matrix.
i

We will present a stochastic approximation analog of the iterative procedure

defined by (4.5). In contrast to the classical stochastic method of scoring,

our procedure satisfies the conditions *(4.6) and (4.7). A step size E

R
will not appear explicitly in our algorithm.

a

Fix e e D and let{ }	 be an infinite sequence of independent
xk k=1 , ., ,^

samples of observations of x(e°). For any function g from R n to any real

vector space V, let
1

3

E (g)

	

	 g(x)p(6',x)dx

Rn

i
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e

be the expectation, if it exists, of gox(e°). (o denotes composition of

:I	 functions). Then, by the strong law of large numbers, with probability one
^ b

as N 4. 00 , the equations (4.1) - (4.3) converge to

P

R	 (4.9)	 ai = aiE(pi)

Pi	P
(4.10)	 ui = E(x p)/E(Pi)

Pi	P(4.11)	 ^i = E((x-pj) (x-p i) T P)/E( pi) .

We denote the corresponding limiting value of the likelihood function by 	 .

Clearly ,T(e) is a continuously differentiable function of e and( 8u )	 8`;

also by (4. 4) 	 E (e) _ (1-e)e + E	 (e) is locally contractive at A
0
	 By

(2.2), p(0 Z E (e o )) < 1, implying that the eigenvalues of P 1(0 0 ) have real

parts strictly less than 1. Now define a function d:D + D by

(4.12)
	 , m)	 (cci ,ot

iui'ai^i i=1, ... ,m.

Clearly d is a differentiable function from D -> D such that d-1 exists

and is differentiable. Define a function' 	 :D } D by 	 (e) d	 d l(8).
By the chain, rule for Frechet Derivatives,

-_.	 V f' (d(e°))	 [vd(e°) ] [a j ( e°) ] [od(e °) 
]-1

i

_f
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hence the function

(4.13)	 ^'	 _ ( 1-e) © + e' (6)E (6)

is locally contractive throughout some neighborhood	 W of	 d(6').

Define a family	 {Y(6):6 E D}	 of random variables with values in	 E 	 by

Pi' Pi 11
ui ) T pl)Pi,(4.14)	 Y(6)	 = e(a.-a. 	 }t. -a.x(6^)	 ,	 E .-a. (x(6°i	 i 	 i	 i )-	 (xA- .p	 p ai ai	 i.=1,p	 ... ,m

where	 pi = pi (d 1(e),x(e"))	 and	 p' = p (d 1(6) ,x(6p))•

Then	 E(Y(6)) = 6	 Therefore, the family {Y(6):6 E D} satisfies

conditions	 (2.3)	 and	 (2.4).

Let	 {Y ( 6) :e E EkI	 be constructed from	 {Y(6):6 E D}	 as in	 (3.2) and

let	 {aQ}	 be any gain sequence. 	 Then by	 (3.6),	 the sequence in (3.7)

0
converges in mean square and with probability one to 	 d(6 ).	 Since {eaQ }	 is

a gain sequence whenever 	 {a!C}	
is a gain sequence,	 a need not appear explicitly

in the sequence in(3.7).	 -
s

i

i
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