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A COMPARISON OF MATRIX METHODS FOR CALCULATING EIGENVALUES
IN ACOUSTICALLY LINED DUCTS

Willie Watson and Donald L., Lansing
Langley Research Center

SUMMARY

Three approximate methods — finite differences, weighted residuals, and finite
elements — have been used to solve the eigenvalue problem which arises in finding the
acoustic modes and propagation constants in an absorptively lined two-dimensional duct
without airflow. The matrix equations derived for each of these methods were solved for
the eigenvalues corresponding to various values of wall impedance. Two matrix orders,
20 X 20 and 40 x 40, were used, The cases considered included values of wall admittance
for which exact eigenvalues were known and for which several nearly equal roots were
present. Ten of the lower order eigenvalues obtained from the three approximate methods
were compared with solutions calculated from the exact characteristic equation in order to
make an assessment of the relative accuracy and reliability of the three methods. The
best results were given by the finite-element method using a cubic polynomial. Excellent
accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 X 20

order matrix.

INTRODUCTION

There is considerable interest in developing reliable methods for calculating the
propagation of sound along aircraft engine inlet and exhaust ducts. Research is being
directed toward identifying and implementing techniques which can account for turboma-
chinery noise source distributions, variable and irregular distributions of cross-sectional
area, realistic representations of flow fields including boundary layers and transonic flows,
and variable wall impedance. The inclusion of these effects is necessary to improve cur-
rent methods for predicting aircraft flyover noise, for designing acoustic liners carefully
matched to the sound source for optimal attenuation, and for understanding the acoustic
behavior of inlets containing high subsonic Mach number airflow. The purpose of this
paper is to make an initial attempt to assess the relative merits of several currently used
methods by solving the same problem by use of these methods. The methods to be consid-
ered are: finite difference, method of weighted residuals, and finite elements.



The finite-difference approach has been widely used for numerically analyzing sound
propagation in ducts. Alfredson (ref. 1) used the method to analyze sound propagation
within a closed circular cylinder driven at one end by a piston. He also analyzed the sound
field produced at a right angle bend in a rectangular duct treated with sound-absorbing
material. Baumeister and Bittner (ref. 2) use the method for calculating sound propagation
in a one-dimensional hard-wall duct and a two-dimensional soft-wall rectangular duct for
no mean flow. Baumeister and Rice (ref. 3) extended the method of reference 2 to include
a uniform mean flow. Baumeister (ref. 4), in an attempt to reduce the size of the matrices
used in reference 2, introduced a wave envelope method which reduced the matrix size of
the conventional finite-difference method by an order of magnitude under certain limita-
tions. Baumeister (ref. 5) removed some of the limitations of reference 4 and extended
the method to include stepped noise source profiles and stepped axial impedance. Quinn
(ref. 6) used the finite-difference approach to include variable cross-sectional area

distributions.

The weighted residual approach, in contrast to the finite-difference approach, has
been used in the literature mainly for calculating eigenvalues and mode shapes. The
approach is especially well adapted for handling smoothly varying axial impedances and
noise source profiles. Eversman et al. (ref. 7) use the weighted residual approach to cal-
culate the modes in a nonuniform two-dimensional duct without flow. Results for several
duct configurations were compared with a variational method, a stepped duct approxima-
tion, and an eigenfunction expansion method based on linearly tapered duct segments.
Unruh and Eversman (refs. 8 and 9) applied the weighted residual approach to rectangular
ducts of various widths having both hard and acoustically treated walls. A shear flow was
included in the analysis. Convergence of the method was checked by investigating limiting
cases of the rectangular duct for which exact results were known. They attempted to
ascertain the applicability of the method to more complicated geometries.

The application of the finite-element method to acoustic -related problems has been
very limited. Gladwell (ref. 10) used the method in conjunction with a variational approach
to calculate the natural frequencies of the one- and two-dimensional Helmholtz equation..
Both linear and cubic shape functions were used and rectangular elements were employed,
The effects of nonrigid walls were not considered in the analysis. Arlett et al. (ref, 11)
used the method to calculate the natural frequencies of the two- and three-dimensional
Helmholtz equation. Tetrahedrons and rectangles were used as elements and only linear
shape functions were considered. The results were compared with the conventional finite-
difference technique which it was regarded to supersede. Here again, the effects of non-
rigid walls were not considered. T. Shuku and K. Ishihara (ref. 12) use the finite-element
method in conjunction with a variational approach to calculate the normal frequencies and
modes of an irregularly shaped room. Triangular elements and cubic shape functions were
used. Only rigid walls were considered in the analysis. Dean (ref, 13) used the finite-
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element method to study the generation and propagation of small-amplitude acoustic waves
in a homogeneous, loss-free, compressible fluid. Isoparametric finite elements with cur-
vilinear boundaries were used, Steady-state pressure distributions were found for a
hemispherical region chosen to represent an infinite half space. Boundary reflections
were suppressed through use of a radiation condition. The results were compared with
exact solutions. Craggs (ref. 14) used the finite-element method to study the behavior of
a coupled plate acoustic cavity system. Rectangular elements and cubic shape functions
were used. Kapur and Munger (ref. 15) applied the method in conjunction with a Galerkin
method to derive a solution of the basic equations of acoustics in a very general form.
The resulting matrix equations included the effects of nonrigid boundaries and shear flow.
No calculations were presented.

The numerical methods which are studied in this paper include finite differences,
finite elements, and a weighted residual approach. These methods have been selected be-
cause they are useful not only for calculating eigenvalues and eigenvectors, but they can
be generalized for solving propagation problems involving variable geometry, complicated
mean flow fields, and variable wall impedance. Other analytical procedures with this dual
capability, such as the wave envelope method, have not been treated in order to limit the
scope of the present investigation. Moreover, since the emphasis here is on methods
which can be used for propagation problems, various techniques which are useful only for
calculating eigenvalues and eigenvectors, such as the integration of differential equations,
shooting methods, or functional minimization, are not included.

The methods considered differ in the types of approximations used, the processes
for deriving final equations, and the unknowns which must be calculated. Hence, it is use-
ful to try to assess their relative strengths and weaknesses. Such information would be
valuable in selecting a "best" method on which to focus effort for continued development
and for pinpointing problems with one method which do not occur in the use of another
method., The objective of this paper is to make an initial attempt at developing such infor-
mation for arriving at an assessment of relative merits by applying all three methods,
simultaneously, to the solution of the same problem. The problem that will be used is the
one-dimensional eigenvalue problem which governs the eigenvalues and eigenfunctions in
an acoustically treated rectangular duct,

Among the criteria which must be considered in selecting a best method are: com-
puter storage requirements, computation time, accuracy, and reliability. The first two
criteria will be touched on qualitatively by observing the structure of the final matrix
equations which must be solved. Primary emphasis will be on the reliability and the
accuracy. Accuracy will be ascertained by comparing the first 10 eigenvalues obtained
by each method with eigenvalues obtained from the exact characteristic equation. Relia-
bility will be measured by the ability of the methods to separate and calculate nearly equal
eigenvalues and to give accurate results consistently for a wide selection of impedance



values and frequencies. The simultaneous comparison of calculated results, although not
an infallible basis for judging a best method, gives considerable insight into the behavior
to be expected from each procedure under a wide variety of circumstances,

SYMBOLS
AB square matrices
Km,Xn vectors of unknown parameters
Ei,Bi polynomial coefficients defined after equation (12)
b duct width
c ambient speed of sound in duct
F(y) transverse acoustic pressure

G(KO,TO,Tl) = <7170 + Az) sin A + i('r1 + To)h Ccos A
I functional

Im() imaginary part of variable

K =w/c

Kx,Ky propagation constants in x- and y-direction, respectively
m,n,r,s integers

P acoustic pressure

P steady-state acoustic pressure

t time

X,y distances along X- and Y-axis, respectively
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arbitrary parameters
acoustic admittance of lower and upper wall, respectively
=nr (n=0,1,2,...)
length of subdivision of interval (0, 1)
first variation
=Y/b
= bKy
eigenvalue parameter
ambient density of air
70,71 = pochBO and = pgcKbBy, respectively
w frequency
Primes denote derivatives.
STATEMENT OF THE PROBLEM

The duct to be analyzed and the Cartesian coordinate system to be used are shown
in figure 1. The duct is a two-dimensional, infinite, parallel-plate wave guide of width b,
The X-axis points along the length of the duct. The transverse coordinate y has its
origin at the lower duct wall so that the interior of the duct corresponds to the interval
0 =y £b. Airflow through the duct is not considered. The upper and lower walls of the
duct are acoustically treated. The acoustic admittance of the lower wall (y = 0) is Bg;
the acoustic admittance of the upper wall (y = b) is B1.

The propagation of sound in such a treated duct can be expressed in terms of a set
of functions called ""normal modes' or '"characteristic functions.'” These functions are
building blocks for superimposing more general and more complicated sound fields. Asso-
ciated with each characteristic function is a "characteristic number' or "eigenvalue" which
must be found in order to compute the shape of the characteristic function and describe its
propagation and decay along the duct. The eigenvalues for the duct in figure 1 are calcu-
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Figure 1.- Infinite parallel-plate wave guide and coordinate system.

lated by several numerical methods and the results are compared to assess the relative

merits of these different methods.

ANALYSIS

Governing Equation and Boundary Conditions

The equations of momentum, continuity, and state for the propagation of sound in a
perfect gas inside the duct can be combined in the case of no mean flow, to yield the linear

two-dimensional wave equation

p
! &

in which p is the acoustic pressure, and c¢ 1is the ambient speed of sound inside of the
duct. The assumptions made in the derivation of equation (1) are given in most acoustic
texts and need not be discussed here.

The characteristic functions of the duct are steady-state solutions to equation (1).
Therefore, it is assumed that

pix,y,t) = D(x,y) e i@t




Equation (1) now becomes

2= 2=
%, 0%, as g
ax2  ay2

in which K = w/c. Since the duct under analysis is infinitely long (this leads to no re-
flected waves), it is convenient to separate out the x-dependence of the solution by assum-
ing that
— iK
p(x,y) = F(y) ' X%

where Kx 1is a complex propagation constant in the x-direction. This procedure leads
to the ordinary differential equation

2
d°F , KyzF =0 (2)
dy2

where Ky2 = K2 - KXZ.

The boundary condition relates the pressure and pressure gradients at each treated
wall to the specific acoustic admittance there. At the lower wall (y = 0 plane), the follow-
ing equation must hold:

e .
—a—% = -1Kp0cBOp]
y=0 y=0
or
F'(0) = -iKpgcByF(0) (3a)

Likewise at the upper wall (y = b plane), the following equation must hold:

ap] = iKp
- = ocﬁlp]
oy y=b y=b
or
F'(b) = iKpgcB1F(b) (3b)



Equation (2), together with the boundary conditions (eqs. (3)), constitutes an eigenvalue
problem, since there are only a discrete set of Ky values for which all the equations are
satisfied. It is convenient to nondimensionalize the variables in equations (2) and (3) by
introducing the nondimensional quantities: A =bKy, 7 =Y/b, 79 = pgcKbfy, and
T 1 = poCKbB 1-

In terms of these new quantities, the standard forms of the equations to be studied

here for calculating the eigenvalues are

F'" + A2F = 0 (42)
F'(0) = -itgF(0) (4b)
F'(1) =iT1F(1) (4e)

A finite -difference, a finite-element, and a weighted-residual method are used to
solve equations (4). All three methods lead to a common form of the matrix eigenvalue
problem which can be solved by standard computer subroutines. The results are com-
pared with eigenvalues obtained from the exact transcendental equation in order to assess
the accuracy of the numerical methods.

After a discussion of the transcendental equation, whose solutions are used as the
basis for comparison, a derivation is given of the final matrix equation for each method.
The reader who is interested only in the comparison of the final calculations may omit the
mathematical details with no loss of continuity and proceed directly to the ""Presentation

of Results."

The Exact Transcendental Equation

If F satisfies the eigenvalue problem defined by equations (4), then X has to sat-

isfy the following characteristic equation:
(717'0 + Az) sin A + i(’/"l + 70)7\ cosA =0 (5)

This equation is easily derived by finding the general solution to equation (4a) and then
applying the boundary conditions of equations (4b) and (4c).

Equation (5) must be solved numerically since exact solutions are generally not
known. It is of interest to note several circumstances under which there are exact solu-
tions to equation (5); A =0 is clearly always a solution to equation (5). It is, however,

e ke stk 5 et
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only acceptable as an eigenvalue to equations (4) when the additional condition

T9T1 +1i(7g + 71) = 0 is also satisfied. (This restriction is easily derived by setting

A =0 in equation (4a) and then applying the boundary conditions to the general solution

of the reduced differential equation F'" = 0.) When 7g = -71, equation (5) has exact solu-
tions: A =m, 27, 37, . . ., and Tq.

The solutions to equation (5) presented subsequently in the tables were obtained by
an iterative process based upon a Newton-Raphson root-finding method. These results
are used as a base against which to compare the other three methods which are discussed,
These eigenvalues are presented in the tables of results under the heading ""Exact," when
T1 = -TQ, since exact solutions to equation (5) are known. They are listed under the head-
ing ""Characteristic Equation" for all other values of 71 and 7.

Finite-Element Method

The finite -element method was originally designed as a tool for structural analysis.
The theory and formulation have been progressively so refined and generalized that the
method has been applied successfully to such fields as heat flow, seepage, hydrodynamics,
and rock mechanics. For a general description of the method, see references 16 and 17.

As used here, the finite -element method for solving equations (4) proceeds in two
stages:

(1) The reformulation of the problem as a variational problem, and

(2) The approximate solution of the variational problem using a polynomial repre-

sentation of F,

Variational formulation.- In order to formulate a variational problem, first multiply
both sides of equation (4a) by the variation of the function F, that is, 0F, and integrate

the results across the duct to obtain

1 9 1
§ o) ok dn +22 [ F () 6F () an = 0 ©)
0 0

2
The second integrand is the variation of %—[F(n)] 2. If the first integral is transformed by

integration by parts, it takes the form

[F'() 0% () ,(1) - S: F'(n) O (1) di



The integrand in this expression is the variation of %[F'(n):f 2. Thus, equation (6) becomes

1

1 2 2 ol
e S pwmd e o

The last term of equation (7) represents the natural boundary conditions of the duct. If
the duct has hard walls, 7g =71 =0 so that by equations (4b) and (4¢), F'(0) = F'(1) =0
and this additional term vanishes. If the boundary conditions (eqs. (4b) and (4c)) are in-
corporated into equation (7), it takes the form

81 =0 (8a)

where

_ 1
- ()’ - 2] o - rolro]? Tl[mﬂz} (@)

The presence of the boundary values F(0) and F(1) in the functional is a some-
what unusual feature of this problem. In higher dimensions these terms will take the form
of line or surface integrals over the boundary of the duct, These terms may be interpreted
as accounting for the dissipation of energy at the treated walls.

Finite-element solution to variational problem. - To solve the variational problem by
the finite-element method, the interval 0 =7 =1 corresponding to the width across the
duct is subdivided into N intervals or "elements' of equal length A = 1/N as shown in
figure 2, Within the ith element the unknown function F is assumed to be approximated
by a polynomial in 7, Fj(n) which has several arbitrary parameters . The 5
parameters which define F in the different elements are allowed to be different, The
@; parameters are determined from the boundary conditions (egs. (4b) and (4c)) at n =0
and 7 = 1, the continuity of F and, perhaps, some of its higher derivatives at the adjoin-
ing ends of adjacent elements, and the stationarity of the functional 1 (egs. (8a) and (8b)).
This latter condition is imposed by requiring that % =0 for each @j accounting for

the fact that all the @ parameters are not independent as a result of the boundary and
continuity conditions. The higher the order of the polynomial approximation used for F,
the higher the order of the derivatives of ¥ which may be kept continuous. In acoustics
problems the velocity components, which must be continuous from physical considerations,
are proportional to derivatives of the pressure field. Hence, it is desirable to require in
the finite-element method that pressure gradients, F' in the present problem, be contin-

uous across elements,

10
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Figure 2. - Subdivision of interval for the finite-element
and finite -difference approximations.

Linear approximation: The simplest approximate solution for the variational prob-
lem is obtained by assuming that in the ith element, F has the linear form

F(n) ~ Fi(n) = Fi_1 + kAF—i'-l—(n - Mi-1) (-1 =1 =) ()

where Fj_; and F; are the values of F at the left and right end points of the element,

respectively, nj_1= (i - 1)A is the value of 7 at the beginning of the element, and A
is the length of the element. The acoustic pressure F will then be continuous across
the duct, but may have discontinuous derivatives at the end points of the element which
implies discontinuities in the transverse velocity component. In order to render 1 sta-
tionary, it is required that

I
|
|
[

al _ oI _ ol _ JRc) S (10)

9aFg 8Fy o8Fg " oFy

This requirement leads to N + 1 equations and N + 1 unknowns of the form
[A]{F} = u[BI(F) (11)
N

where A = e

11



and the matrices A and B are given by

ag; -6
6 12 -6
6 12

-6

where

ajp =6(1 - i ATq)
aN+1,N+1 = 6(1 - i ATj)

12

-6
12 -6
-6

-6

AN+1,N+1

1L

i, A
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2 1 }
1 4 1
1 4 1
1 4
B =
1 4 1
L 1 2

Cubic approximation: A more accurate solution to the variational problem (egs. (8))
may be obtained by demanding that F and F' be continuous everywhere, This is done
by taking F to be a cubic polynomial in each element. Assume that in the ith element

F(n) = Fi(n) = Fi_1 + F{_1( - 7;_1) + & - n,_1? + bi(y - 13 (12)

where

_ _3(Fi-Fi1) 2, F
| = - _i
A2 A A
_ Fi Fll_l 2(Fi - Fi_1)
bi=—5+—3 3
A A A

In these expressions, Fj_j, Ffl_l, Fj, and F; are the values of F and F' at the two
end points 73_1 and 75j, of the element, respectively. This form insures the continuity
of both pressure and velocity in the calculated mode shapes. This cubic expression for
Fi(n) (egs. (12)) is then substituted into equations (8). After the integration, it is found
that I= T(FO,Fb,Fl,_F'l, .. "FN-I’FN’FN)' The boundary conditions are now built into
the expression for I. From equation (4a) one has Fh = -itgF(, and from equation (4b),
Fy =1i71FN. Two of the four uriknowns Fo, Fp, Fpn, and Fi can therefore be elimi-
nated from the expression for I. The authors choose to eliminate Fp and Fy. Then,
one obtains I = I(FO,FI,F'l, .- .,FN_l,F'N_l,FN) in which all parameters are now inde-
pendent. In order to render 1 stationary, it is required that

13
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These relations lead to 2N linear equations in

[a]{F) = n[BI{F}

where X = ﬁ

(¥ =

(Fow
Fi
Fy

Fg

and the matrices A and B are given by

a1 212
agg 24/5 A
ais 0
0 -12/5 A
1/5
A =
14

a13

0
8 A/15
-1/5
-A’15

0

0
-1275 A
-1’5

24,5 A

-12/5 A
1/5

175
-A 15

0
8 A, 15

-1’5

0

-12/5 A
15

15

-A 15

2N unknowns of the form

-A /15
0
0 8 A/15
29N-2,2N  42N-1,2N

0
a9N.-2,2N

agN-1,2N

42N,2N |
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where

5A 5 15

19 12iTy 4 ATy

2

aZN-‘,ZN: 5 A - 5

1 iATO
34135+ 15
_ 12 179
2758 TS
1 iATl

42N-1,2N = -5 - ~15

12  ing
a2N-2,2N = -5 A t 5~

’Vbll b b13 0
byg 52 A/35 0 9 A/35
13 0 4 a3/105 13 a%/210
0 9 A/35 13 A%/210 52 A/35
B = s13a%210 -a%/70 0
0 9 A/35
-13 a2/210
where

15

-13 a2/210
-a3/70

0
4 A% 105

13 A2/210

_ 26 A 22i AZTO 2 A37'02

b11 =35 105

105

0
9 A/35 13 A%/210
13 a2/210 -a¥70
-a3/70 0
0 boN.2,2N

-a3/70
0

4 A3/ 105

baN-1,2N

0

boN-2,2N]

baN-1,2N]

baN, 2N

15



b _26 A 22 AziTl 2 A3712
2N,2N = “35 105 105

A3
1342 iAY%7
P18 =-S5+ o

9A 13 AziTo

P12 =35 210
. A3
13 AZ iA T1
baN-1,2N = 210 " 70

b _9A 13 AziTl
2N-2,2N = 35"~ 7210

A Weighted Residual Formulation

The method of weighted residuals is another general purpose method which has been
widely used to obtain approximate solutions to the equations of mathematical physics.
(See ref. 18.) In this paper a variant of the method is used to solve the eigenvalue prob-
lem. The unknown function F(n) is expanded in a series of specified trial functions with
adjustable coefficients which are chosen to give the best solution to the differential equa-
tion and boundary conditions in a global sense, The trial functions used do not satisfy the
boundary conditions, a choice which is at variance with the usual practice. The boundary
conditions are built into the equations in the manner described below. It is convenient to
refer to this method of solution as MWR.

Define the function R, known as the '"residual," by the equation

R = F'" 4+ A\2F (14)

If F and A are solutions of the eigenvalue problem, the residual is identically zero.

In the MWR one seeks to adjust the coefficients in the series representation of F in such
a way that the residual is forced to be zero in an average sense. This adjustment is made
by requiring that the weighted integral of the residual across the width of the duct vanish:

1
go R(7) Wp(n) dn = 0 (15)

16
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where the W; functions are a prescribed set of weighting functions. Equation (15) may
be interpreted as requiring that R be orthogonal to each Wy,

It is obvious that compatible sets of values of the constant A and the function F
which satisfy equation (15) are not necessarily approximate solutions to equations (4) since
in its present form equation (15) takes no account of the boundary conditions. That is,
equation (15) is satisfied for any x» and ¥ which make F" + A2F = 0. Thus, equa-
tion (15) must be manipulated in some manner to include the influence of the boundary
conditions before it can be used to find approximate values of A and F satisfying
equations (4).

For the present problem, this is done as follows. In explicit form, equation (15) is

1
g‘ (F" + >\2F)Wn dnp=0
Y0

1
By integrating the term S‘ F'"W, dn  twice by parts, the equation becomes
0

1
=0
0

1
(Wi + 22Wo)F an + (wyF' - Fwg)
0

Using the boundary conditions (eqs. (4b) and (4c)) finally gives

1
SO (Wi + \2W)F an - (FW'n)‘(l) + [171 F(1) Wp(1) + iTg F(0) Wn(O)] =0 (16a)

This equation is the basis for finding approximate solutions for the eigenvalues and char -
acteristic functions.

It is convenient to use as the trial functions for representing F, the set of functions
cosyqn, Yn=n1 (n=0,1, 2 .. .). These functions are easy to handle mathematically;
they are complete in the interval 0 <7 <1 so that an infinite series of them which actu-
ally converges to the true eigenfunctions does exist, and they are the exact solutions of the
problem for a hard walled duct, 77 = 79 =0. Thus, it is assumed that the unknown F in
equation (16a) can be represented in the form

o0
F(n) = z Km COS ¥y (161)
m=0

17



where the Km elements are constants. Assume also that Wp(n) = cos ynn. Substituting
these choices into equation (16a) and carrying out the indicated operations gives the follow-

ing equations:

), Km{(xg - 702)Crmn + i[70 + (-1>m+“r1]} =0 (17)

in which
1 (n=m=0)
1
Cmn=5 cos nT 77 cos mm 1 dn = % m=m=z1)
0
0 (n# m)
In equation (17), n 1is a parameter which takes the values 0, 1, 2,3, . . . . Thus, equa-
tion (17) represents an infinite number of linear equations for an infinite number of un-
knowns Ay (m=0,1,2 3, ...). Obviously, when 71 = 7 = 0, the exact solutions are
A=y, for n=0,1,2,. . . corresponding to Ap arbitrary; all other Apm values are

0, and F = Ap cos yu7. These modes are, of course, the hardwall duct modes.
Approximate solutions to the system (eq. (17)) can be obtained by assuming that
AN = ANyl = AN42 . . . = 0, and writing out the equations for n=0,1,2,. .. N -1,
The result is a set of linear homogeneous equations for Ko, Kl, Kz, c ey KN-I- Such a
system of equations has a nontrivial solution only if the determinant of the coefficient
matrix vanishes. Therefore, the problem is to find those values of A which make the
determinant of the coefficient matrix vanish. The solution for the Km values is then
substituted into equation (16b) to obtain an approximate analytical representation of the

corresponding eigenfunctions.

The analysis therefore leads to N equations and N unknowns of the form
[A{(&) = u[E] (&) (18)

where A =/ and

18
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Ax-y

AN_3

AN_2

The elements of the A and B matrices are defined by the equations:

b11

bss

a1l

ars

ags

1]

l

1
% (2=s=N)
0 (r # s)
-i (70 + 71)
-i [TO + Tl(-l)r+s:' (r + s)
2
= ay1+ L (s - 1)2 (2ss=N)

2

Finite -Difference Formulation

The finite-difference method for solving eigenvalue problems such as equations (4)
has been well documented (ref, 19) and need not be discussed at length here. Briefly, the

interval 0 =7 =1 is subdivided into N intervals of equal length A = 1/N as in fig-

ure 2. Let Fj
derivative of F

(i=0,1,2, .. . N) be the values of F() at n=(i)A. The second
is replaced by the central difference approximation

19
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Then equation (4a) becomes

2

Fy_q + (A27\2 - 2>F'1 +Fi;1=0

(19)

This equation is applied to points i=1, 2,3, . . ., N -1, The result is a set of matrix
equations with N + 1 unknowns but only N - 1 equations. The two remaining equations
are formed from the boundary conditions.

By using a forward difference approximation for F' at 7 =0 and a backward dif-

ference for F' at 7 = 1, the following equations obtained from the boundary condi-
tions (4b) and (4¢) must also hold:

(-3 + 2 AiTg)Fg +

4F1 - F9=0

(3 -2 AiT))FN - 4FN.1 + FN_2 =0

By using these two relations,
obtained from equation (19).
of the form

[Al{E} = (&)

where X = /i

LFN—IJ
20

(20)

(21)

Fp and Fy are eliminated from the matrix equations

The analysis leads to

N -1 equations and N - 1 unknowns

(22)

{
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and the A matrix is given by

where

la11 aiQ
agy -2ag2 agQ
agg -2a99 agyQ
agy -2a99
A=
22 = -—5
4 AiTn - 2
ajy = 2***0
-3 A% + 2i A3TO
2 - 2i ATO
127 2 g At
-3 A+ 2i A 70
-2 + 21 ATl
AN-2,N-17 53
3 A - 21 A 'Tl
2 - 4 AlTl
aN-1,N-1=

342 _2ia87;

2292

aN.2,N-1

a22

aN-1,N-1

21
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The finite-difference formulation has the simplest matrices of all the methods tried.
However, the shape of the solution between the discrete values F;j is not specified,
whereas functional expressions for F are obtained from the finite-element method and

the MWR,

PRESENTATION OF RESULTS

Equations (11), (13), (18), and (22) were solved by using a standard eigenvalue sub-
routine from the Langley library of subroutines for selected values of 79 and 77 for
the purpose of obtaining some insight into the relative accuracy of the three approximate
methods for calculating eigenvalues — finite element, method of weighted residuals, and
finite differences — by comparing the first 10 eigenvalues obtained from these methods
with results extracted from the exact transcendental equation. The results are given in
tables I to XIV. Based on the error criterion used, the roots obtained from the character-
istic equation are believed to be accurate to five significant figures. Each of the three

approximate methods produces a system of matrix equations of the form [A] {x} = ,u[B] {x}

The same solution algorithm and same order matrices were used in solving this standard
form to make the comparison. The order of the A and B matrices studied was 20 X 20 and
40 X 40. The results for these two different matrix orders give some indication of the
improvement in accuracy to be expected as the size of the system of matrix equations is

allowed to increase.

Since the eigenvalues are a function of the real and imaginary parts of 71 and 7g
and the order of the A and B matrices, it is impossible to cover exhaustively every possi-
ble circumstance. Some selectivity must be exercised in the cases to be considered., The
values used for |70 1| = pOCKblBO,ll fall in the range acceptable for real liners in air-
craft engine nacelles. Although negative real parts of 75 and 71 do not normally occur
in noise reduction applications (this situation describes energy insertion at the walls), the
equations and calculations remain valid. Several calculations using negative real parts of
70 and 73 are discussed, In general, the values of 79 and 71 were selected to be
representative of conditions under which some knowledge of the nature of the roots can be
deduced from the characteristic equation such as when the roots are known exactly or
when several roots are nearly identical.

In comparing the results obtained from each of the methods used in this study, it
must be kept in mind that each method is subject to a number of variations or refinements.
For example, higher order difference approximations to F" could be used in the method
of finite differences or a different set of trial and weighting functions could be used in the
MWR. The different variations within any one method could possibly produce a modified
set of conclusions. However, it is not possible here to investigate all the many variations
which are available.

22
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The approximate methods investigated in this paper were selected because they are
applicable to solving propagation problems in ducts including variable cross-sectional
areas, variable wall impedances, and realistic mean flow fields for which exact methods
(usually based upon separation of variable techniques) do not exist. Hence, establishing
the relative merits of these approximate methods is of considerable interest. There are
at least four criteria to be considered in the selection of a ""best” method: storage re-
quirements, computation time, accuracy, and reliability. The first two criteria, which
depend upon the order and structure of the matrices used and the number of nonzero
elements, are discussed qualitatively in the next section. The principal concerns of the
remainder of the paper are the accuracy of the methods (determined by comparing
approximate eigenvalues with solutions of the exact characteristic equation) and the re-
liability (determined by the consistency with which a method gives acceptable results as
the distribution of eigenvalues in the complex plane varies). With regard to both of
these criteria, values of 73 and 73 which give nearly equal eigenvalues are of par-
ticular concern. This situation occurs frequently in routine duct propagation studies
and has frequently been the source of frustrating computational problems.

Solution Technique, Storage Requirements, and Computer Time

The result of the analysis for each approach is the generalized eigenvalue problem,
[A] {x} = n[B {x}. These equations are readily solved by high-speed digital computers.

The eigenvalues for such systems of equations are extracted by numerical schemes
that are either direct or iterative. The direct methods are more general and are com-
monly employed, although the iterative schemes are suitable for computations when only
one or a few eigenvalues are needed. The four sets of eigenvalue equations generated in
the text were solved by using a Langley program library subroutine which employed a
direct method to extract the eigenvalues. The subroutine first reduced A to an upper
Hessenberg matrix and at the same time reduced B to an upper triangular matrix by sta-
bilized elementary transformations. The Lz algorithm is then applied to simultaneously
reduce A and B to upper triangular form. The numerator and denominator of the eigen-
values are then the diagonal elements of the A and B matrices, respectively.

Storage requirements and computer time are factors to be considered in choosing a
method for obtaining eigenvalues of matrix equations. The final matrix equations for the
methods studied in this paper have their own special properties such as diagonal, sym-
metric, or banded form and number of nonzero elements. Storage requirements and solu-
tion time can be minimized by using solution techniques which take advantage of the special
properties of each set of matrix equations. Unfortunately, the subroutine which was used
to solve the eigenvalue equations for the results presented in this paper was very general
and did not take advantage of any special characteristics of the equations. In particular,
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all zero elements had to be individually stored. Hence, no effort was made to compare
them quantitatively.

The minimum time required to extract the eigenvalues of a set of matrix equations
is not only related to the special character of the equations but also to the number of non-
zero elements and the number of operations that must be carried out on each element of
the matrix. Hence, the minimum computing time for a particular set of matrix equations
is a very complex question and cannot be easily answered quantitatively.

However, since minimum computing time is a function of the number of operations
that must be carried out on each element and the special character of each set of matrix
equations, it is of interest to point out briefly the special structures of the A and B matri-
ces for each method and to count the number of nonzero elements in each matrix. This is
done in the accompanying table in which N is the order of the system of equations. If
the matrix is symmetric, only the upper or lower triangular part of the matrix would have
to be stored in an efficiently written program and if the matrix is banded, only the rec-
tangular banded matrix needs to be stored.

e

- " Finite - Linear Cubic
Method difference MWR finite element | finite element
A matﬁx Form Nonsymmetric| Symmetric Symmetric Symmetric
Tridiagonal Full Tridiagonal 7 diagonal
Complex Complex Complex Complex
Nonzero 3N %(N2 +N) 2N 4N
elements
B matrix Form Unit matrix | One diagonal| Symmetric Symmetric
Real Tridiagonal 7 diagonal
Real Complex
Nonzero N N 2N 4N
elements
Total storage requirements 4N % N2 4+ 37N 4N 8N

Calculations for 79 = -71

Eigenvalues calculated for 71 = -7g9 = 0.0, 1.0i, 3.0i, 5.0i, 5.0, and 10.0 are pre-
sented in tables I to VI. As can be seen from the characteristic equation, equation (5), the
exact eigenvalues in this case are n7m, n=1,2,3,. . ., and 7. Zerois also an eigen-
value if 79 =71 =0.0. If 71 is equalto an integral multiple of 7, the characteristic

24



| | L[ [T | IO 1 | ||, L A e e

included as subroutines in linear optimization programs based upon segmented duct con-
cept (ref. 21). These programs require hundreds of eigenvalue calculations that must be
made in a swift, efficient, reliable, mechanical manner. Thus, the ability of the three
approximate methods to handle multiple or nearly equal eigenvalues is of special interest.

It may be shown by methods similar to those employed in reference 20, that when
To = 71 = 4.120 - 3.301i, equation (5) has a double root at A = 4,212 - 2,251i and that when
70 =0 and 71 = 2.060 - 1.651i, there is a double root at A = 2.106 - 1.125i. Tables X
and XI show the results obtained for slightly different admittance values which in each
case would be expected to produce a pair of nearly equal eigenvalues. For both of these
combinations of admittance values, the exact characteristic equation has complex roots
with nonzero real and imaginary parts in contrast to the simpler structure of the roots
encountered in previous examples.

Tables X and XI show, as before, that the finite-difference method gives the least
accurate results for the higher order eigenvalues. The imaginary parts, in particular,
are very inaccurate. The accuracy improves considerably as the order of the system in-
creases. The nearly equal roots are picked out with no difficulty.

The MWR gives least accurate values for the lower order roots, which includes the
nearly equal pair. As before, better results are obtained for the higher order eigenvalues.
The accuracy of the lower order eigenvalues does not improve substantially by going to
larger order matrices.

The cubic finite-element method gives excellent results for all 10 eigenvalues using
20 X 20 matrices. There is no substantial improvement in accuracy by using a larger
order system.

Tables XII and XIII present some additional calculations for values of 7g and 7y
which give nearly multiple roots. Table XII, which uses 40 X 40 matrices, is concerned
with the nearly equal roots which occur when 7g = -7 =Integral multiple of 7. The ten-
dency of the MWR to give complex conjugate roots which only poorly approximate the exact
answer is again evident. The ability of the cubic finite-element method to sort out the
roots and to give excellent results is reconfirmed.

Table XIII pertains to values of 73 and T7; even closer to the multiple-root con-
ditions investigated in tables X and XI and, in addition, some values which are close to
higher order multiple-root conditions. Table XIII was obtained by using 20 X 20 matrices.
The superiority of the cubic finite-element method is again clear.

Calculations for a True Zero Eigenvalue

As pointed out in the discussion of the exact characteristic equation, zero is a bona-
fide eigenvalue if 7971 + i(79 + 71) = 0. This equation is obviously satisfied for the hard
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walled duct, 71 = 7g = 0, for which the corresponding eigenfunction is the plane wave. In
general, the eigenfuﬁction corresponding to the eigenvalue zero is a linear function of 7
across the duct, that is, (1 - i7g7n); when normalized to unity at the wall, 7 =0. Table XIV
lists eigenvalues for the special case 79 = 1.0, 77 = -0.5 - 0.5i for which zero is a true
eigenvalue, All solution methods calculate the zero root to five decimal places except the
MWR which gives a small nonzero complex number,

CONCLUDING REMARKS

Three approximate methods — finite differences, weighted residuals, and finite ele-
ments — have been used to solve the eigenvalue problem which arises in finding the acous-
tic modes and propagation constants in an absorptively lined two-dimensional duct without
airflow. The final equations derived for all three methods assume a common matrix form,
These equations were solved for the eigenvalues corresponding to various values of wall
impedance. Two matrix orders, 20 X 20 and 40 X 40, were used in the calculations. The
cases considered included values of wall admittance for which exact eigenvalues were
known and for which several nearly equal roots were present. Ten of the lower order
eigenvalues obtained from the three approximate methods were compared with solutions
calculated from the exact characteristic equation. The cases studied permit an assess-
ment of the relative accuracy and reliability of the three methods.

In general, it was found that the finite-difference and linear finite -element methods
gave the least accurate results. High-order systems of equations are needed for good
accuracy in the high-order eigenvalues. The method of weighted residuals gave better
results than either of these two methods, Although the method of weighted residuals gave
poor results for the two or three lowest order eigenvalues, it has the characteristic of
yielding uniformly good accuracy for all the higher order eigenvalues. When nearly equal
roots occurred, the method of weighted residuals was not found to be reliable or to give

accurate results.

Best results in terms of both accuracy and reliability were judged to be given by the
finite -element method by using a cubic polynomial. Excellent accuracy was obtained by
using a 20 X 20 order matrix. The ability to use low-order matrices implies savings of
computer time and storage. F¥or the cases tested, nearly equal roots were consistently
located and accurately calculated. This is a very favorable result as calculating multiple
roots has been a stumbling block in analytical duct acoustics.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

February 11, 1976
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TABLE I.- EIGENVALUES FOR 7 = -7 = 0.0

Exact Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix

0.00000 | 0.00000 0.00000 | 0.00000 0.00000 | 0.00000 0.00000 | 0.00000 0.00000 | 0.00000

3.14159 .00000 3.14032 .00000 3.14159 .00000 3.14517 .00000 3.14159 .00000

6.28319 .00000 6.27253 .00000 6.28319 .00000 6.31185 .00000 6.28319 .00000

9.42478 .00000 9.38647 .00000 9.42478 .00000 9.52168 .00000 9.42486 .00000
12.56637 .00000 12.46860 .00000 12.56637 .00000 12.79648 .00000 12.56690 .00000
15.70796 .00000 15.50214 .00000 15.70796 .00000 16.15824 .00000 15.71001 .00000
18.84956 .00000 18.46721 .00000 18.84956 .00000 19.62877 .00000 18.85560 .00000
21.99115 .00000 21.34251 .00000 21.99115 .00000 23.22905 .00000 22.00589 .00000
25.13274 .00000 24.10610 .00000 25.13274 .00000 26.97799 .00000 25.16422 .00000
28.27433 .00000 26.73628 .00000 28.27433 .00000 30.88963 .00000 28.33534 .00000

Eigenvalues for 40 X 40 matrix

0.00000 | 0.00000 0.00000 | 0.00000 0.00000 | 0.00000 0.00000 | 0.00000 0.00000 | 0.00000

3.14159 .00000 3.14105 .00000 3.14159 .00000 3.14244 .00000 3.14159 .00000

6.28319 .00000 6.27881 .00000 6.28319 .00000 6.28998 .00000 6.28319 .00000

9.42478 .00000 9.40993 .00000 9.42478 .00000 9.447173 .00000 9.42478 .00000
12.56637 .00000 12.53088 .00000 12.56637 .00000 12.62080 .00000 12.56638 .00000
15.70796 .000660 15.63793 .00000 15.70796 .00000 15.81434 .00000 15.70801 .00000
18.84956 .00000 18.72713 .00000 18.84956 .00000 19.03352 .00000 18.84972 .00000
21.99115 .00000 21,79427 .00000 21.99115 .00000 22.28353 .00000 21.99160 .00000
25.132'74 .00000 24.83493 .00000 25.13274 .00000 25.56958 .00000 25.13378 .00000
28.27433 .00000 27.84450 .00000 28.27433 .00000 28.89690 .00000 28.277649 .00000

TN ML ) e



(A3

TABLE II. - EIGENVALUES FOR 71 = -79 = 1.0i

Exact Finite difference MWR Linear finite element | Cubic finite element

Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary

Eigenvalues for 20 X 20 matrix

0.00000 | 1.00000 0.00000 | 1.00082 0.00000 | 0.98663 0.00000 | 0.99989 0.00000 | 1.00000
3.14159 .00000 3.14017 .00000 3.14775 .00000 3.14517 .00000 3.14159 .00000
6.28319 .00000 6.27223 .00000 6.28634 .00000 6.31185 .00000 6.28319 .00000
9.42478 - .00000 9.38607 .00000 ' 9.42703 .00000 9.52168 .00000 9.42486 .00000
12.56637 .00000 12,46820 .00000 12.56799 .00000 | 12.79648 .00000 12.56690 .00000
15.70796 .00000 15.50166 .00000  15.70935 .00000  16.15824 .00000  15.71001 .00000
18.84596 .00000 18.84668 .00000 18.85066 .00000 19.62877 .00000  18.85560 .00000
21.99115 .00000  21.34209 .00000  21.99216 .00000  23.22905 .00000  22.00590 .00000
25,13274 .00000  24.10572 .00000  25.13359 .00000  26.97789 .00000  25.16422 .00000
28.27433 .00000  26.73594 .00000  28.27515 00000  30.88963 .00000  28.33535 .00000

Eigenvalues for 40 X 40 matrix

0.00000 | 1.00000 0.00000 | 1.00022 0.00000 | 0.99333 0.00000 | 0.99997 0.00000 | 1.00000
3.14159 .00000 3.14103 .00000 3.14459 .00000 3.14244 .00000 3.14159 .00000
6.28319 .00000 6.27877 .00000 6.28476 .00000 6.28999 .00000 6.28319 .00000
9.42478 .00000 9.40987 ' .00000 9.42587 .00000 9.44773 .00000 ' 9.42478 .00000
12.56637 .00000 12.53180 .00000 12.56717 .00000 12.62080 .00000 12.56638 .00000
15.70796 .00000 15.63784 .00000 15.70863 .00000 15.81434 .00000 15.70801 '  .00000
18.84956 .00000 18.72702 .00000 18.85010  .00000 19.03352 .00000 18.84972 .00000
21.99115 .00000 21.79415 .00000  21.99163 .00000 22.28353 .00000  21.99160 .00000
, 25.13274 00000 24.834381 .00000 25.13315 .00000  25.56958  .00000  25.13378 .00000
£8.27433 ' .00000 ' 27.84437 .00000 t 28.27471 .00000  28.89690 ~ .00000  28.27649 .00000
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TABLE III. - EIGENVALUES FOR 7 = -79 = 3.0i

Exact Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 x 20 matrix
0.00000  3.00000 0.00000 3.02128 0.00000  2.90910 0.00000  2.99690 0.00000  3.00000
3.14159 .00000 3.13953 .00000 3.17354 .00000 3.14517 .00000 3.14159 - ,00000
6.28319 .00000 6.27027 .00000 6.30684 .00000 6.31185 .00000 6.28319 .00000
9.42478  .00000 9.38312 .00000 9.44340 .00000 9.52168 .00000 9.42486 .00000
12.56637 .00000 12.46469 .00000 12.58028 .00000 12.79648 .00000 12.56689 .00000
15.70796 .00000 15.49796 .00000 15.72003 .00000  16.15824 .00000 | 15,71002 .00000
18.84956 .00000 18.46311 .00000 18.85930 .00000 . 19.62877 .00000 | 18.85562 .00000
21.99115 .00000 | 21.33869 .00000 | 22.00014 .00000 | 23.22905 .00000 | 22.00593 .00000
25.13274 .00000 | 24.10267 .00000 | 25.14037 .00000 | 26.97790 .00000 | 25.16429 .00000
28.27433 .00000 | 26.73328 .00000 | 28.28163 .00000 | 30.88963 .00000 | 28.33550 .00000
Eigenvalues for 40 X 40 matrix
0.00000  3.00000 0.00000  3.00577 0.00000  2.95435 0.00000  2.99926 0.00000  3.00000
3.14159 .00000 3.14094 .00000 3.15716 .00000 3.14244 .00000 3.14159 .00000
6.28319 .00000 6.27849 .00000 6.29500 .00000 6.28998 .00000 6.28319 .00000
9.42478 .00000 9.40941 | 00000 9.43380 .00000 9.44773 .00000 : 9.42478 .00000
12.56637 .00000 | 12.53018 .00000  12,57326 .00000  12.62080 .00000 | 12.56638 .00000
15.70796 = .00000 15.63709 .00000 15.71374 .00000  15.81434 .00000 15.70801 .00000
18.84956 .00000 18.72619 .00000 18.85431 .00000 | 19.03352 , .00000 18.84972 .00000
21,99115 .00000 | 21.79325 .00000 ; 21.99537 .00000 | 22.28353 .00000 | 21,99160 .00000
25.13274 .00000 | 24.83386 .00000 | 25.13637 .00000 | 25.56958 .00000 | 25.13378 .00000
28.27433 .00000 | 27.84340 .00000 | 28.27767 .00000 | 28.89690 .00000 | 28.27649 ’ .00000
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TABLE IV.- EIGENVALUES FOR 171 = -7¢ = 5.0i

Exact Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix
0.00000 | 5.00000 0.00000 | 5.09554 0.00000 | 4.75362 0.00000 | 4.98572 0.00000 | 5.00000
3.14159 .00000 3.13914 .00000 3.18996 .00000 3.14517 .00000 3.14159 .00000
6.28319 .00000 6.26'715 .00000 6.33263 '+ .00000 6.31185 .00000 6.28319 .00000
9.42478 .00000 9.37834 ©  .00000 9.,46922 .00000 - 9.52168 .00000 9.42486 . 00000
12,56637 .00000 ' 12.45844 .00000  12.60162 .00000 ' 12.79648 = .00000 12,56690 .00000
15.70796 .00000 15.59103 .00000 15.73952 .00000 16.15824 .00000 15.71003 .00000
18.84956 .00000 18.45613 .00000 18.87547 .00000 19.62877 .00000 18.85565 .00000
21.,99115 .00000 21.33208 .00000 22.01536 .00000 , 23.22905 .00000 22.00599  .00000
25.13274 .00000 24.09667 .00000 25.15330 .00000  26.97789 = .00000 25.16441  .00000
| 28.27433 .00000 26,72802 .00000 28.29423 .00000 30.88963 - .00000  28.33569 .00000
Eigenvalues for 40 X 40 matrix

. 0.00000 | 5.00000 0.00000 | 5.02609 0.00000 | 4.87503 0.00000 | 4.99658 0.00000 | 5.00000
3.14159 .00000 3.14089 .00000 3.16508 .00000 3.14244 .00000 3.14159 .00000
6.28319 .00000 6.27813 .00000 6.30787 .00000 6.28998 .00000 6.28319 .00000
9.42478 .00000 9.40867 .00000 9.44631 .00000 9.44773 ' .00000 = 9.42478 | .00000
12,56637 .00000 12.56357 | .00000 12.58382 .00000 12.62080 .00000 12.56638 .00000
15.70796 |  .00000 15.63574 .00000 15,72306 .00000 | 15.81434 .00000 15.70801 .00000
18.84956 .00000 18.72461 .00000 18.86220 .00000 19.03352 .00000 18.84972 .00000
21.99115 .00000 21,79151 .00000 22.00250 .00000 22.28353 .00000  21.99160 .00000
25,13274 .00000 24,83201 .00000 25.14257 .00000 25.56958 .00000  25.13378 .00000
28.27433 .00000 217.84150 .00000 28.28341 .00000 28.89690 .00000  28.27649 .00000
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TABLE V.- EIGENVALUES FOR

T1=-70=5.0

Exact Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix

3.14159 | 0.00000 3.13756 | 0.00000 3.26246 | 0.00000 3.14517 | 0.00000 3.14159| 0.00000

5.00000 .00000 4.89803 .00000 5.08994 .00000 5.01458 .00000 5.00000 .00000
6.28319 .00000 6.29129 .00000 6.02015 .00000 6.31185 .00000 6.28319 .00000

9.42478 .00000 9.39993 .00000 9.34471 .00000 9.52168 .00000 9.42486 .00000
12.56637 .00000 12,48188 .00000 12,51781 .00000 12.79648 .00000 12.56688 .00000
15.70796 .00000 15.51499 .00000 15.66934 .00000 16.15824 |  .,00000 15.70999 .00000
18.84956 .00000 18.47932 = .00000 18.81981 .00000 19.62877 .00000 18.85555 .00000
21,99115 .00000 21,35356  .00000  21.96440 .00000  23.22905 .00000  22.00578 .00000
25.13274 .00000 24.11589 .00000 25.11059 .00000  26.97789 .00000  25.16400 .00000
28.27433 .00000  26,74473 .00000 28.25326 .00000  30.88963 .00000 28.33496 .00000

Eigenvalues for 40 X 40 matrix

3.14159  0.00000 3.14068 | 0.00000 3.19779 | 0.00000 3.14244 | 0.00000 3.14159( 0.00000

5.00000 .00000 4.97206 .00000 5.04046 .00000 5.00343 .00000 5.00000 .00000

6.28319 .00000 6.28175 | .00000 6.16375 .00000 ' 6.28998 | 00000 6.28319 .00000

9.42478 .00000 | 9.41213  .00000 9.38612 ‘ .00000 9.44773 .00000 9.42478 .00000
12,56637 .00000 12,53327 .00000 12.54231 © .00000 12,62080 .00000 12.56638 .00000
15.70796 .00000 15.64057 .00000 15.68945 .00000 15.81434 .00000 15.70801 .00000
18.84956 .00000 18.72998 .00000 18.83499 .00000 19.03352 .00000 18,84972 .00000
21,99115 .00000  21.,79728 .00000 21.97856 .00000  22.28353 .00000  21.99159 .00000
25.13274 .00000 24.,83804 .00000  25.12211 .00000  25.56958 .00000  25.13378 .00000
28.27433 .00000 27.84764 .00000  28.26468 .00000  28.89690 .00000  28.27649 .00000
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TABLE VI.- EIGENVALUES FOR

T1 = -Tg = 10.0

Exact Finite difference MWR Linear finite element | Cubic finite element |

Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary .

Eigenvalues for 20 X 20 matrix .

3.14159 i 0.00000 | 3.13848 | 0.00000 3.21812 ‘ 0.00000 1 3.14517 | 0.00000 “ 3.1415911 0.00000
6.28319 : .00000 6.25076 { .00000 | 6.51050 .00000 1 6.31185 . .00000 6.28319  .00000
9.42478 .00000 , 8.97661 ; .00000 | 9.73502 | -1,19494 j 9.52168 i .00000 , 9.42489 |  .00000
10.00000 .00000 ! 9.77614 | .00000  9.73502 1.19494 | 10.12035 : .00000 ' 10.00000| .00000
12.56637 .00000 | 12.56031 i .00000 : 12.08912 .00000 ] 12.79648 |  .00000 - 12,56683 +.00000
15.70796 .00000 : 15.56898 . .00000 15.47475 .00000  16.15824 , .00000 15.70989 ,  .00000
18.84956  .00000 | 18.52336 , .00000  18.69690 ‘ .00000 ! 19.628717 .00000  18.85533 ‘ .00000
2199115 .00000 |, 21.39083 . .00000 | 21.86445 .00000 | 23.22905 .00000 22.00536 .00000
25.13274 .00000 24,14750 .00000 25.03269 .00000 ; 26.97789 .00000 | 25.16325 .00000
28.27433 .00000 26.24124 .00000 | 28.18200 .00000 | 30.88963 .00000 | 28.33368 .00000

Eigenvalues for 40 X 40 matrix |
3.14159 | 0.00000 1 3.14080 | 0,00000 i 3.17833 W 0.00000 3.14244 | 0.00000 1 3.14159]; 0.00000

6.28319 .00000 f' 6.27585 .00600 | 6.39254 .00000 6.28998 | .00000 6.28319( .00000 -

9.42478 .00000 9.34727 | 00000 ! 9.74090 | -.71197 { 9.44773 . .00000 . 9.42478 .00000

10.00000 ., .00000 9.85846 | .00000 9.74090 I 71197 l 10.02766 .00000 ' 10.00000 .00000
12.56637 . .00000 ~ 12.55091 ' .00000 . 12.33204 | .00000 1 12.62080 : .00000 ' 12.56638  .00000
15,70796 ' .00000 ' 15.65309 | .00000 | 15.59519 .00000 115.81434 5 .00000 ; 15.70801 | .00000
18.84956 l .00000 i 18.74133 ! .00000 3 18.77409 .00000 ! 19,03352 ’ .00000 | 18.84972 .00000
21.99115 | .00000 | 21.80820 ; .00000 | 21.93096 .00000 | 22.28353 .00000 | 21.,99159 ( .00000
25.13274 .00000 24.,84871 .00000 | 25.08427 .00000 | 25,56958 .00000 | 25.13377 .00000
28.27433 .00000 27.85808 ,00000 | 28.23164 .00000 | 28.89690 .00000 | 28.27648 .00000
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TABLE VII. - EIGENVALUES FOR 71 = 79 = 1.0i

Characteristic equation Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix
1.30654 0.00000 1.30566  0.00000 1.31250  0.00000 1.30680 0.00000 1.30654  0.00000
3.67319 .00000 3.66623 .00000 3.67775 .00000 3.6'7892 .00000 3.67319 .00000
6.58462 .00000 6.56267 .00000 6.58769 .00000 6.61764 .00000 6.58463 .00000
9.63168 .00000 9.57706 .00000 9.63376 .00000 9.73520 .00000 9.63178 .00000
12,72324 .00000 12.60494 .00000 12.72493 .00000 12.96230 .00000 12,72381 .00000
15.83411 .00000 15.60416 .00000 15.83541 .00000 16.29575 .00000 15.83627 .00000
18.95497 .00000 | 18.54564 .00000 18.95614 .00000 19.74810 |  .00000 18.96127 .00000
22,08166 .00000 21.40374 . .00000 22.08262 .00000 23.33616 .00000 22.09669 .00000
25.21203 .00000 24.15425 .00000 25.21293 .00000 27.07664 .00000 25.24442 .00000
28.34486 .00000 26.77418 .00000 J28.34564 .00000 30.98270 .00000 28.40789 .00000
Eigenvalues for 40 X 40 matrix
1,.30654 0.00000 1.30631  0.00000 1.30944 © 0,00000 1.30660 0.00000 1.30654 0.00000
3.67319 .00000 3.67107 .00000 3.67546 |  .00000 3.67455 .00000 3.67320 .00000
6.58462 .00000 6.57706 .00000 6.58610 .00000 6.59245 | .00000 6.58462 .00000
9.63168 .00000 9.61208 .00000 9.63271 .00000 9.65618 .00000 9.63169 .00000
12,72324 .00000 12.68152 .00000 12,72405 .00000 12.77975 .00000 12,72325 .00000
15.83411 .00000 15.75647 .00000 15.83474 .00000 15.94309 .00000 15.83416 .00000
18.95497 | .00000 : 18.82367 .00000 18.95552 .00000 19.14208 .00000 18.95514 .00000
22.08166 .00000 21.87475 .00000  22.08212 .00000 22.37773 .00000 | 22.08212 .00000
25.21203 .00000 24.,90315 .00000 | 25.21245 .00000 25.65311 .00000 |25.21309 .00000
28.34486 .00000 27.90303 .00000 28.34523 .00000 28.97224 .00000 | 28.34706 .00000 J
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TABLE VIIIL. - EIGENVALUES FOR 71 =719 = -1.0i

Characteristic equation Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix
0.00000 1.54340 0.00000 | 1,54526 0.00000 | 1.53377 0.00000 1.54298 0.00000 | 1.54340
2,33112 .00000 2.33505 .00000 2.34163 .00000 2.33258 .00000 2,33112 .00000
5.95017 |  .00000 5.95028 .00000 5.95383 .00000 5.97450 .00000 5.95018 .00000
9.20843 .00000 9.18579 | .00000 9.21063 .00000 9.29873 | .00000 9.20850 .00000
12,40549 .00000 12.32763 ' .00000 12.,40724 .00000  12.62670 " .00000 12.40597 .00000
15.57977 .00000 15,39728 .00000 15.58110 .00000 ' 16.01870 .00000 15.58170 .00000
18.74295 .00000 18.38680 .00000 18.74412 .00000 : 19.50828 .00000 18.74875 .00000
21.89990 .00000 21.27982 .00000  21.90085 ' 00000  23.12121 .00000  21,91416 .00000
25.05295 .00000 24.05681 .00000 25.05385  .00000  26.87866 00000  25.08355 .00000
28.20345 .00000 26.69750 .00000 . 28.20422 ; .00000 : 30,79625 - .00000  28.26253 .00000
Eigenvalues for 40 X 40 matrix
0.00000 1.54340 0.00000 | 1,54391 0.00000 | 1.53868 0.00000 1.54330 0.00000 | 1,54340
2.33112 .00000 2.33205 .00000 2.33641 .00000 2.33147 .00000 2.33112 .00000
5.95017 .00000 5.94890 .00000 5.95196 .00000 5.95594 .00000 5.95017 .00000
9.20843 .00000 9.19822 .00000 9.20954 .00000 9.22984 .00000 9,20844 .00000
12,40549 .00000 ' 12.37610 .00000 12.40634 | .00000 12.45785 .00000 | 12.40551 .00000
15,57977 .00000 15.51717 .00000 15.58042 .00000 15.68354 .00000 15.57982 .00000
18,74295 .00000 18.62921 .00000 18.74351 .00000 18.92377  .00000 18.74311 - ,00000
21.89990 .00000 21,71283 .00000 21.90035 : .00000  22,18858 = ,00000 21.90032 .00000
25.05295 .00000 24,76600 .00000  25.05338 .00000 - 25.48555 ' .00000  25.05397 .00000
28.20345 .00000 - 27.78539 ; .00000 . 28.20389 .00000 . 28.82121 .00000  28.20557 . .00000




TABLE IX.- EIGENVALUES FOR 7= 7= -2.1i

Characteristic equation Finite difference MWR Linear finite element | Cubic finite element

Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary

Eigenvalues for 20 X 20 matrix

0.00000 0.77848 0.00000  0.78230 0.00000  0.58277 0.00000  0.77843  0.00000  0.77848

.00000 2.48273 .00000  2.49160 .00000  2.44420 .00000  2.48096 .00000  2.48273
5.56104 .00000 5.57053 .00000 5.57751 .00000 5.58088 .00000 5.56104 .00000
8.96457 .00000 8.95728 .00000 8.97436 .00000 - 9.04780 .00000 8.96462 .00000
12.22616 .00000 12.16851 .00000  12,23378 .00000 12.43768 .00000 : 12.22659 .00000
15.43756 .00000 | 15.27930 .00000 15.44333 .00000 | 15.86414 .00000 | 15.43937 | .00000
18.62500 .00000 18.29642  .00000 18.63010 .00000 19.37518 .00000 | 18.63054 .00000

21.79907 .00000 21,20934 | .00000 | 21.80325 .00000 | 23.00229 .00000 | 21.81285 .00000
24.96490 .00000 24,00133 .00000 | 24.96881 .00000 | 26.76935 .00000 | 24,99457 .00000
28.12528 .00000 26.65374 .00000 | 28.12862 .00000 | 30.69346 .00000 | 28.18238 .00000

Eigenvalues for 40 X 40 matrix

0.00000 0.77848 0.00000  0.77948 | 0.00000 0.68633 0.00000  0.77847 0.00000 | 0.77848

.00000 2.48273 .00000  2.48514 .00000 2.46383 .00000  2.48231 .00000 | 2.48273
5.56104 .00000 ; 5.56255 .00000 5.56914 .00000 5.56575 :  .00000 5.56104 .00000
8.96457 .00000 8.95900 .00000 8.96949 .00000  8.98431 .00000 8.96457 .00000
12.22616 .00000 12,20305 .00000 12.22988 .00000 | 12.27627 .00000 | 12.22617 .00000
15.43756 |  .00000 15.38277 .060000 15.44043 .00000 15.53849 .00000 | 15.43760 .00000
18.62500 .00000 18.52045 .00000 . 18.62745  .00000 18.80239 .00000 | 18.62515 .00000
21,79907 .00000 21.62247 .00000 | 21.80112 .00000 | 22.08373 .00000 | 21.79949 .00000
24.96490 .00000 24.68953 .00000 | 24.96674 .00000 | 25.39288 .00000 | 24.96589 .00000
28.12528 .00000 27.71983 .00000 | 28.12688 .00000 | 28.73777 .00000 | 28.12736 .00000

6¢
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TABLE X.- EIGENVALUES FOR 74 = 73 = 4.1 - 3.3i

Characteristic equation Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix
4.,05940 -2,38583 3.83750 | -2.21795 3.58022 | -2,83565 4,05883 | -2.39839 4,05939 | -2.38583
4,08004 -3.59351 4.13780 | -3.51721 3.86405 | -3.62235 4.06948 | -3.60879 4.08004 | -3.59351
4.35109 : -2.11202 466144 -2,18904 ! 4.61835 -1.65678 4.35390 1 -2.12420 4.35109 , -2.11202
~ 8.62554 -.96961 8.66603 -.92805 - 8.62339 -.89348 . 8.69659 , -.99469  8.62557 ' _.06964
12.00460 -.68969  11.99051 -.62532  11.99948 @ -.63752 | 12.20232 | -.72482  12.00492 -.68984
15.27002 -.54014 . 15.15506 -.45896  15.26517 :  -.50232 = 15.68049 | _.58540  15.27717 -.540564
18.48940 -.44525 | 18.20467 ~.35047 | 18.48483 . -.41264 119.22072  -.50102 18.49456  -.44612
21.68482 -.37922 21.13956 . -.27317 21.68084 -.35283  22.86611 = -.44604 21.69788 -.38097
24.86602 -.33048  23.94751 -.21498 - 24.86227 -.30598 ' 26.64518 -.40899  24.89434 -.33362
28.03804 -.29295  29,11508 -.13313 | 28.03473 i -.27217 i 30.57725 | -.38394 . 28.09212 - -.29953
Eigenvalues for 40 X 40 matrix
4.05940 -2.38583 3.98677 | -2.30773 3.78101 | -2.68000 4.05931 | -2.38870 4,05940  -2.38583
4,08004 -3.59351 4.09572 | -3.57183 3.97113 | -3.61134 4.07756 | -3.59716 4.08004 | -3.59352
4.35109 -2.11202 | 4.44705 | -2.16374 4.52468 | -1.81815 4.35176 -2.11502 4,35109 ' -2,11202
8.62554 -.96961 8.63367 -.95628 8.62367 -.93074 | 8.64244 | -.97553 8.62554 -.96961
12.00460 -.68969 11.99444 -.66899 12.00148 -.66398  12.05150 -.69789 12.00458 -.68970
15.27002 -.54014 15.22871 -.51343 15.26718 -.52118  15.36729 -.55058 15.27006 -.54015
18.48940 -.44525 18.39916 -.41323 18.48681 -.42947 18.66258 -.45793  18.48955 -.44527
21.68482 -.37922  21.52344 -.34242  21.68257 -.36622  21.96467 -.39416  21.68522 -.37927
24.86602 -.33048 24.60677 -.28937 24.86395 -.31870 25.28854 -.34771  24.86698 -.33057
28.03804 -.29295 211.64954  -.24797  28.03621 -.28296  28.64445 -.31251  28.04006 -.29310
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TABLE XI. - EIGENVALUES FOR 71 =2.0 - 1.6i and 79 =0.0

Characteristic equation Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix
1.83408 -1,21857 1.82413  -1.20386  1.77037 -1.31520 1.83385  -1.21979 1.83408  -1.21857
2.34205 -.98715 2.36291 -.99025 2.35621 -.89039 2.34274 -.98891 2.34205 -.98715
6.01206 -.33637 6.01261 -.32716 6.01042 -.32426 6.03691 -.34060 6.01206 -.33637
9.25048 -.21718 9.22650 -.20285 9.24918 -.20973 9.34188 -.22371 9.25055 -.21719
12,43718 ;  -,16120  12.35680 -.14264 12,43616 -.15573  12,65998 -.17007  12.43766 -.16125
15.60516 -.12836  15.41924 -.10624 15.60532 -.12400 16.04621 -.13966 . 15.60711 -.12847
18.76413 -.10670  18.40382 -.08160 18.76432 . -,10305 19,53210 . -.12054 | 18.76999 -.10694
21.91805 -.09130 | 21.29319 -.06380 ' 21.91743 -.08817  23.14256 -.10785 | 21.93240 -.09178
25.06885 -.07980 | 24,06740 -.05227 | 25.06830 -.07703 | 26.89830 -.09922 | 25.09959 -.08068
28.21760 -.07090 ~ 26.70580 l -.03960 | 28.21708 -.06839 | 30.81475 -.09334 | 28.27697 -.07277
Eigenvalues for 40 X 40 matrix

1.83408 -1.21857 1.83141 1.21460 1.80435 -1.27113 1.83403  -1.21886 1.83408  -1.21857
2.34205 -.98715 2.347749 -.98786 2.34716 -.93484 2.34222 -.98757 2.34205 -.98715
6.01206 -.33637 6.01085 -.33350 6.01118 -.33035 6.01795 -.33737 6.01206 -.33637
9.20516 -.21718 9.23981 -.21282 9.24980 -.21349 9.27214 -.21871 9.25048 & -.21718
12.43718 -.16120  12.40694 -.15539  12.43665 -.15851  12.48991 -.16327 12,43719 -.16120
15.60516 -.12836 | 15.54141 -.12120 15.60472 -.12623  15.70942 -.13096 15.60521 -.12836
18.76413 -.10670 | 18.64896 -.09830 18.76376 -.10493  18.94555 ;, -.10983  18.76429 -.10671
21.91805 -.09130 | 21.,72932 ; -.08179 |21.91773 -.08981 | 22.20746 -.09500 | 21.91849 -.09133
25.06885 -.07980 | 24.78000 -.06927 | 25,06857 -.07850 | 25,50228 -.08406 | 25.06987 -.07985
28.21760 -.07090 | 27.79743 -.05943 | 28.21734 -.06973 | 28.83629 -.07571 | 28.21971 -.07095
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TABLE XII, - EQUAL AND NEARLY EQUAL EIGENVALUES FOR 40 x 40 MATRICES

1

70

Exact

MWR

Cubic finite element

3.00000 + 0.00000i

-3.00000 + 0,000001

3.00000 + 0.00000i

3.06559 + 0,207031

3.00000 + 0,00000i1

3.14159 + 0.00000i

3.06559 - 0,20703i

.14159 + 0,00000i1

3.10000 + 0.00000i -

-3.10000 + 0.00000i

3.10000 + 0.00000i

3.11612 + 0.22473i

.10000 + 0.000001

3.14159 + 0.00000i

3.11612 - 0.22473i

.14159 + 0,00000i

3.14159 + 0.00000i

-3.14159 + 0.00000i

3.14159 + 0.00000i

3.13716 + 0.22846i

.14159 + 0,00000i

3.14159 + 0.00000i

3.13716 - 0.228461

.14159 + 0.00000i1

3.20000 + 0.000001

-3.20000 + 0.000001

3.20000 + 0.00000i

3.16674 + 0.23038i

.20000 + 0,000001

3.14159 + 0.00000i

3.16674 - 0,23038i

.14159 + 0,00000i

3.50000 + 0.000001

-3.50000 + 0.00000i1

3.50000 + 0.00000i1

3.31933 + 0.17317i

.50000 + 0.00000i1

3.14159 + 0.00000i

3.31933 - 0.17317i

.14159 + 0.00000i

3.60000 + 0.00000i

-3.60000 + 0.000001

3.60000 + 0.00000i

3.37047 + 0.109031

.60000 + 0.00000i

3.14159 + 0.00000i

3.37047 - 0.10903i

.14159 + 0.00000i

3.70000 + 0.00000i

-3.70000 + 0,000001

3.70000 + 0.00000i

3.31454 + 0.00000i

.70000 + 0.00000i

3.14159 + 0.00000i

3.52898 + 0.00000i1

Lol LO | WO LWL L W W] W] W W W W

.14159 + 0.00000i
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TABLE XII. - Concluded

1

70

Exact

MWR

 Cubic finite element

9.42480 + 0.00000i

-9.42480 + 0.00000i

9.42480 + 0.00000i .

9.40155 + 0.73519i

9.42479 - 0.00002i

9.42478 + 0.00000i

9.40155 - 0.73519i

9.42479 + 0.00002i

9.71240 + 0.00000i

-9.71240 + 0.00000i

9.71240 + 0.00000i

9.56896 + 0.74274i

9.71240 + 0.00000i

9.42478 + 0.00000i

9.56896 - 0.74274i

9.42478 + 0.00000i

9.40000 + 0.20000i

-9.40000 - 0.20000i

9.40000 + 0.20000i

9.40655 - 0.62671i

9.40000 + 0.20000i

9.42478 + 0.00000i

9.36659 + 0.85667i

9.42478 + 0.00000i

9.40000 - 0.20000i

-9,40000 + 0.20000i

9.40000 - 0.20000i

9.40655 + 0.62671i

9.40000 - 0.20000i

9.42478 + 0.00000i

9.36659 - 0.85667i

9.42478 + 0.00000i

9.40000 + 0.50000i

-9.40000 - 0.50000i

9.40000 + 0.50000i

9.43120 - 0.49952i

9.40000 + 0.500001

9.42478 + 0.00000i

9.33486 + 1.07274i

9.42478 + 0,00000i

10.00000 + 0,00000i

-10.00000 + 0.00000i

10.00000 + 0.00000i

9.74090 + 0.71197i

10.00000 + 0.000001

9.42478 + 0.00000i1

9.74090 - 0.71197i

9.42478 + 0.00000i
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TABLE XIII.- NEARLY EQUAL EIGENVALUES FOR 20 X 20 MATRICES

Characteristic equation MWR

1 70

Cubic finite element -

4.,12000 - 3.300001

4.12000 - 3.30000i

4.16304 - 2,24954i

3.60762 - 2.82417i |

4,16303 - 2.24954i

4,26194 - 2.25104i

4.60435 - 1.62190i

4,26194 - 2.25104i

7.44000 - 3.79000i

7.44000 - 3.79000i

7.45536 - 2.74214i

6.66647 - 3.89034i

7.45538 - 2,74235i1

7.54082 - 2.79492i

7.88682 - 1.84131i

7.54075 - 2.79473i

10.67000 - 4,12000i

10.67000 - 4.12000i

10.70633 - 3.01156i

9.53056 - 4.90826i

10.70795 - 3.01133i

10.71889 - 3.19771i

11.10472 - 1.83781i

10,71691 - 3.19828i

2.06000 - 1.65000i

0.00000 + 0.000001

2.08152 - 1,12477i

1.90829 - 1.33034i

2.08152 - 1.12477i

2.13097 - 1.12552i

2.25154 - 0,92042i

2.13097 - 1.12552i

5.33000 - 2.06000i

0.00000 + 0.00000i1

5.31568 - 1.61272i

5.01863 - 2.16940i

5.31568 - 1.61272i

5.39352 - 1.49162i

5.50883 - 1.03003i

5.39352 - 1.49162i

11.69000 - 2.43000i

0.00000 + 0.000001

11.66229 - 1,91260i

10.93670 - 3.67069i

11.66594 - 1,91233i

11.73692 - 1.94549i

11.84190 - 1.06593i

1

11.73343 - 1.94656i
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TABLE XIV,- EIGENVALUES FOR 79 =-1/2-i/2 and 7= 1.0

Characteristic equation Finite difference MWR Linear finite element | Cubic finite element
Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Eigenvalues for 20 X 20 matrix
0.00000 0.00000 0.00000 0.00000 0.06105 -0.11444 0.00000  0.00000 0.00000 0.00000
2,98610 -.19436 2.98634 -.19244 2.98236 -.19686 2.98914 -.19496 2.98610 -.19436
6.20341 -.08345 6.19575 -.08039 6.20174 -.08428 6.23098 -.08457 6.20341 -.08345
9.37164 -.05417 9.33760 -.04993 9.37049 -.05476 9.46688 -.05584 9.37172 -.05417
12.52654 -.04026 12,43416 -.03498  12.52572 -.04065 12.75442 -.04251  12,52705 . -.04027
15.67611 -.03207  15.47648 -.02594 15.67542 -.03242 16.12355 = -,03492 15.67813 -.03210
18.82302 -.02667 | 18.44757 -.01984  18.82246 -.02693 | 19,59875 -.03015 | 18.82800 -.02673
21.96841 -.02282 | 21.32723 -.01544 | 21.96790 | -.02308 | 23.20215 -.02698 | 21.98302 -.02294
25.11284 -.01995 | 24.09415 -.01211 | 25.11242 -.02015 | 26.95312 -.02483 | 25.14409 -.02018
28.25665 -.01773 | 26,72685 -.00952 | 28.25624 -.01793 | 30.86631 -.02336 | 28.31715 -.01822
Eigenvalues for 40 X 40 matrix
0.00000 0.00000 0.00000 0.00000  0.04325 -0.08094 0.00000 0.00000 0.00000 0.00000
2.98610 -.19436 2.98597 -.19384 2.98428 -.19558 2.98682 -.19450 2,98610 ; -.19436
6.20341 -.08345 6.19987 -.08259 6.20258 -.08388 6.20995 -.08372 6.20341 -.08345
9.37164 -.05417 9.35802 -.05294 9.37108 -.05446 9.39420 -.05456 9,37164 -.05417
12.52654 -.04026 12.49264 -.03867 12,52614 -.04046 | 12,58045 -.04078 12.52654 -.04026
15.67611 -.03207 | 15.60802 -.03014 15.67578 -.03224 | 15.78184 -.03272 | 15.67616 -.03207
18.82302 -.02667 | 18,70285 -.02442  18.82275 | -.02679 | 19.00620 -.02745 | 18.82318 -.02667
21,96841 -.02282 | 21,77407 -.02030 | 21.96817 -.02294 | 22.25986 -.02375 | 21.96885 -.02283
25.11284 -.01995 | 24.81783 -.17169 ’ 25,11264 -.02005 | 25.54862 -.02102 | 25.11388 -.01996
28.25665 -.01773 | 27.82985 -.01471 ‘ 28.25646 -.01782 | 28.87801 -.01893 | 28.25879 -.01773
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