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Abstract

A representation is describes whose basis levels combine the important phy-

sical aspects of a finite set of I.lane waves with those of a set of Bloch tight-

binding levels. The chosen combination has a particularly simple dependence on

the wave vector k within the Brillouin Zone, and its use in reducing the standard

one-electron band structure problem to the u:;ual secular equation has the advan-

tage that the lattice sums involved in the calculation of the matrix elements are

actually independent of k. For systems with complicated crystal structures, forN

which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Ortho-

gonalizeP-Plane Wave (OPW) methods are difficult to apply, the present method

leads to results with satisfactory accuracy and convergence.
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1. Introduction

The method described below evolved from an attempt to obtain the band struc-

ture of a system such as molecular hydrogen in a relatively complex crystal struc-

ture, and in a variety of density regimes. For certain regions of the density it

is expected on general grounds that neither the low density tight-binding approach

(with a representation of linear combinations of atomic orbitals MCAO) Blocb

functions), nor the methods using a representation with a basis of simple plane

waves (PW), are physically adequate.

For reasons principally connected with the structure, the other standard

methods are also not entirely adequate. 
1,2 

The Korringa-Kohn-Rostoker (KKR) and

Augmented-Plane Wave (APW) methods not only require an extraordinary amount of

computational effort, but are based on a muffin-tin approximation to the actual

one-electron potential. 
3,4,5 

This means a "sphericalization" (taking the average

over angles) of the potential arising from the contents of a unit cell, a pro-

cedure which is difficult to ,justify when the molecules in the crystal have no

obvious spherical symmetry. Although such models yield useful physical informa-

tion especially at lower densities, it is difficult to estimate their accuracy,

particularly at higher densities, where steric effects and the requirements of pro-

per crystal symmetry may become important. The effects of the latter on the resulting

band structure may well be important.

Furthermore, there is often no clear cut separation between core levels (actually

non-existent for hydrogen) for which tight-binding is adequate, and the rest of

band levels (valence and conduction), which would make an orthogonalized plane

wave (OPW) method rnpropriate. Even if one makes an arbitrary separation between

valence and conduction levels, and treats the first with tight-binding and the

second with OPW functions, orthogonalized to the valence levels, 6 one still has

the possibility of significant overlap of these "core" levels in situations where

large variations in density are of physical interest.
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For these reasons it is natural to investigate alternative representations

whose basis levels combine in some way the advantages of both the LCAO functions

(with their physically correct atomic behaviour near the nuclei) and the PW which

are more satisfactory in the region between atoms. One such basis set was recently

used by Ramaker et al l in exact -exchange crystal Hartree -Fock-calculations of mole-

cular and metallic hydrogen. Another, based on a more general and flexible approach

is described below. It is a modification of an idea used successfully by Brown

and Krumhansl , S which was shown to be mathematically equivalent to but in fact

more general than the orthogonalized -plane wave method.

In the next Section the representation will be developed and its basic pro-

parties described. Section III is devoted to a discussion of the application

of the representation to the solution of the one electron problem in crystals.

—"---fin Se	 -briefly- the--possible applicationsof the method, which

although originating from the study of a specific material is of more general

interest and can be used to study the electronic structure of a wide class of

materials. The specific results for the band structure of molecular hydrogen will

be given in a following paper.9

II. Representation

The representation we introduce is formally incomplete but only in the

sense that it has a finite set of basis wave functions. This set is made up of a

finite number of PW and a set of specially constructed Bloch levels. It is con-

structed in such a way that the whole set is orthonormal, and although the set is

finite, linear combinations of them are expected to give variationally good approxi-

mations to the eigenfunctions and corresponding eigenvalues. This expectation is

based on the physical way the set is constructed, which will be explained in what

follovs.

Consider first a monatomic (for example, a simple cubic) lattice with lattice

constant s and LCAO-Bloch level hk (ir) defined with atomic orbital $(r) asN

follows:	 N
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h (r _ 1	 ik.R	 (1)

AN—
R

where N is the number of cells in a volume i1, R designates their position vectors,

and k is the Bloch wave vector. Expressing this Bloch level in its well known form
N

h (r	 1	 c	 ei(k- r^ •,,,r
k^ 3 TK k K	 (2)

i

where K is the set of reciprocal lattice vectors corresponding to R , it is
N

easy to see that

where ^ is the Fourier transform of §(r).
(f	 N

For the purposes of defining a trial function, §(^) may be any localized

orbital, and not necessarily an atomic one. This observation will be used to con-

struct a particularly convenient type of Bloch level. But instead of defining

it directly (i.e. in r-space) it is inferred from conditions imposed on c q . InN	 N

this way it is easier to enforce ( through them) the properties that one would like

the Bloch levels to have. First, some general observations:

One expects the eigenfunctions not to change too much very near ( and parti-

cularly inside, if there is a core) the atoms or molecules forming the solid from

the values they assume in corresponding free atoms or molecules. This remains true

even at fairly high densities. Thus one wants to include in the basis set, Bloch

levels built with atomic or molecular orbitals to obtain a good representation in this

region. But it is clear that for this purpose only those components ck-K with
N N

sufficiently large K are relevant (here k is assumed to be restricted to the first

Brillouin zone $0). On the other hand, if the itinerant or free electron charac-

ter becomes important (as it vM at high densities) plane waves with wave vectors

(about the origin) not too large in terms of 2Tr/a are obviously indicated. We now

construct basis functions incorporating these features. The Bloch level is first

modified by truncating its Fourier components of low wave vectors, say G in some

(3)

5
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finite subset G of the reciprocal lattice K. In tnis way the plane waver; with

wave vectors k-G have been set free to be included in the basis net as inuependentN N

members orthogonal to the Bloch l evels. (eor simplicity in some of the algebraic

manipulations the subset G may be chosen symmetrically to include both G and -G,.-	 N

although this is not required in general by the method.) For the simple cubic lattice

case, for example, we may choose G to be the set of all reciprocal lattice vectors

within or on the surface of a cube centered at the origin, and with faces perpen-

dicular to the axes. Further, let T be the complement of G, that is GnT is empty

and GvT = K. Next, the Bloch levels of the basis are tb be chosen to have as simple

a form as possible, a requirement for both analytical and computational purposes.

In particular, the most simple functional dependence on k is essential.

In the case of a Bravais lattice, a set of Bloch levels satisfying these

criteria can be taken to have components

0
 C

Ni s
(2) Z "B (q-9 xT (K) SK r 	 (4)

K	 oN

where the characteristic function XA(V is given by

)'A;Xo= j1, ifxeA,
5110 , otherwise.

Here f(r) is a localized orbital. Figure 1 shows a schematic one-dimensional

example of the procedure just outlined; there the dotted curve represents the Fourier

transforms I  of a localized orbital and the die , ontinuous curve the components

(0/N) kcq given by Eq. (4); note also that the set G contains by choice only the

reciprocal lattice vectors 0 and ± 2rr/a.

The levels defined by Eq. (4) all have the properties of Bloch levels, and

can of course be written as

h (r„) = 1	 c	 ei(q-K)•^
U	 K	 (5)
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This reduces, for = k E II o , to the standard form:

i.r (^) = ek N 

C 

.5

L

— L	
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	 (6a)
KBTN -

and is equivalent also to:

hk(z)_ I aik.N [ I O( ,rr-R)	 G eiG.^^

R	 GEG	 (6b)

where the quantity in [] clearly has the periodicity of the lattice. The pre-

factor in the expression for c1% is not important except to keep track formally,

and in a consistent way, of the various constants and factors involved. (It

cancels when normalizing the functions.)

The norm of hk(r), IIhII, is independent of k and is given by
N

	

IIhI12= N 	
I^KI 2 	

(T)
N

OT
N -

or equivalently by

IIh II 2= 	 0 (Z)I^(Z-R)> - 
^ ^eGifC12	 (8)

R	 NN

With the normalized levels (hk (r)/IIhII) the corresponding Wannier
N

function w(r) can be obtained, and is given by

	

w(r) = 1	 c ei^'r ,

II h II3 NTi 1	 1	 (9)
q(all)
N

which in this form is automatically normalized. It is, of course, orthogonal

to w(r-R) for VO. Substituting in Eq. (10) for c , one gets the more explicit
N N	 N	 /.

`N1

form:

/

Lk

ww(r)=	 h  N I
	 $K e	 OW

II

N 	 / N

II

(l0a)
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or

w(^	
^^ 1N ^l	

r C ^(^ R) - N
	 $G e iG.>rl w Q)	 (10b)

h	
I /	 N	 JJ o

^ 

where for the case of a simple cubic Bravais lattice

1	 a k.r
ow(r) _

kAND N d

(N)
	

sin(itx/a)	 sin(tiy/a)	 sin(itz/a)	 (11)
(1Tx a)	 717y 7a)	 (rrz a)

Is the empty lattice lowest band Wannier function.

It is clear from the form of hk(Z) and w(^:) that these functions have the
N

right behaviour near and at the lattice sites R, particularly if the finite set GN

does not contain large wave vectors. And for all G e G, h k(N) is automatically ortho_

gonal to the plane waves with wave vector k-G.	
N

In this way we have an incomplete but urthonormal basis set which would clearly

,be sufficient for a monatomic lattice if it were not necessary to use more than one

localized $(Z).

Except for small k, the Bloch level hk (r) just defined will in general not be a

good approximation to the solution `Y k (Z) of the one -electron problem of the crystal,

if G is empty (i.e. if no PW are included in the basis). The functions

hk (r) and T (r) can differ substantially for larger k, particularly near the bound-
N	 N
aries of the Brillouin zone, simply because the Fourier components of exp (-ik.ti)	 (r)

N	 g N
N

are functions of k, while those of exp( -ik.r) hk (N) are not. Nevertheless,N N

considering their expansions in reciprocal space, as K increases the differences in

their components decrease, since by construction both functions have the same form

inside the atoms. Therefore, by truncating the components of low K, and including

the corresponding PW with wave-vector k-K in the basis, we will increasingly improveN N

the approximation as the number of PW increases.

c. h



Certainly it would be a better approximation to start by truncating the

usual tight-binding Bloch level hkl ( r)(defined with 0 (r)) and choosing components

	

c,% ` ) ^^	 (12)

so that

	

S	 ei(k-K) r
hkB(r)	 _ ()	 L	 kiK	 (13)N

KeTN

But this would not have the immense computational advantages of form (6), which

permits all the terms there co be expressed in lattice sums independent of k.N

Nevertheless, for some cases higher accuracy requirements together with the

necessity to keep the number of PW within reasonable limits might make it mandatory

to use better Bloch levels than those defined by Eqs. (6). (One way of defining

these that would still give lattice sums independent of k, is to take

	

 ('kk-g	 1/	 -K/+(14)  k=0
N N

up to some order, but of course the higher the order chosen the more cumbersome and

time consuming become the computations.]

For the case where a set of more than one linearly independent localized

orbital must be used, a special Bloch level h k (r) must be included for each. If
N

the cell con tains several atoms, say M atoms, with position vectors B3(i=1,2,... ,M),

a set hk ( r-B3 ) (i=1,2,... ,M) of linearly independent Bloch levels, or M indepen-
N N

dent linear combinations of them, must be included in the basis set. All the special

Bloch levels are assumed constructed with a truncated set of plane waves of wave

vectors k-G with reciprocal lattice vectors G belonging to one and the same subset

G. The basis will then contain for the same k (other than the truncated set ofN

plane waves) a set of linearly independent Bloch levels orthogonal to them but not

in general to each other. An orthogonalization procedure must then be used to get

an orthonormal basis set. The use of this orthonormal basis ultimately results in

a secular equation with the energy eigenvalues residing only on the main diagonal,
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^vd has distinct analytical and computational advantages. The selection of one

particular linearly independent set of Bloch levels ( over other possibl, equivalent

sets) depends on a ,judicious evaluation ( as far as this is possible) of how well

they represent the true eigenfunctions of the cryr al, and how their form may help

the orthogonalization procedure in efficiently producing a physically convenient

orthogonal set.

Let the initial set of Bloch levels, before the orthogonalization procedure ,

be a set of linearly independent combinations defined by
M

	

fnk(Z) _	 anj hjk (z) ,	 n=1,2,... , M,	 (15)

J=1
where the constants and are d^termined in a moment. Here the h ik (N) are the

N
Bloch levels defined for simplicity ( but without loss of generality) with only one

localized orbital in one of the monatomic sublattiices of the basis. Hence:

	

hjk (^r,) = hk(r-By) .	 (16)

Now we use the Gram-Schmidt orthogonalization procedure to get from {fnk}
N

	an orthonogonal set { gnk)	 The gnk have the following recursion relations

	

N	

\

N

	

i glk> = Ifld	 r	 (17)
N	 N

Ifnk> n-1 	 Igmk>	 <gmkIfnk>

Ignk>= 
II ^k ll 	 %	

I1 gmk Il	 -	 Ilgmkll II f„k
ll ' for n=2,3...,M,

N f
N	 N	 N N

and the norms Ilgnkll are given by
N	

n-1 I <g I f > 12

nk 2
	

- ^	
mk nk

IIg N II	 1	
m-o	 Il gmk ll 2 Iifnkll 2	(18)

N	 N

These may be used in slightly modified form which subsequently reduce

Il



(19)

(20)

1 ( 11	 I ^
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the numerical work. Let gnk jr) be expressed first as linear combinations of
hjk 

(r) :	 N

Ignk> _	 b	 Ih	 ),	 for n=2,3,...,Mnjk J!S
N N

S
<mk I f nk>	L	 bmik an,j <hikl h,jk>

V N	 i j

a	 n-1	 `gmklfnk/
b	 =	

nj	
bmjk	

N n	
for n=?,3,...,M. (21)

N

	

n^k	
IIf„kI1	 m=o	 N 11gmk11211fnk1l

N	 N

(Note that in general these are functions of k.)

Further

*	 /

	

I1 fnkIl
2
 -	

7
L	 ani	 anj	 <hik Ibit> .	 (22)

i 'j	 (o)
Next let an orthonormal (incomplete) basis set{ Y'ak (r) a eA k e B 1/I	 —^ N	 e J

N

be defined by	 (o)	
1 

ei(k-2).r 	 for n,= G e G

Yak (r) =	 a^ N
	

3^
N

(e)

	

Ynk(r) - gnk(r)/Ilgnkll 	 for a=n ,ltrKh1.
N	 N	 N

	Then A = G V (n,1Qn-4M }	 The superscript zero indicates this is a basis in

which to expand the unknown variational approximations to the eigenfunctions

Y'k(r),	 i.e.
N

(0)	 (24)

	

Yk(rr) _	 xak Yak()
N	 N

aeA

Then

and

(23)
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Equation ( 24), ns an expansion of the one -electron function, will be used in the

next section as a trial function for the one-electron problem in crystals. Note

that, although incomplete, the finite basis set (23)is orthonormal and contains by

construction localized orbitals appropriate for the cores of the

molecules forming the crystal and plane waves adequate for the intermolecular

region. Therefore, we can expect linear combinations of them to Toe good approxi-

mations for the eigenfunctions of the lower bands, the accuracy improving as the

number of PW in G increasen^particularly for k near the boundaries of the Brilloui,. Zone.

III. Application to the solution of the one-electron problem in crystals

Substituting Eq• (24) into the one-particle Schrodinger equation for the

crystal, the band structure problem reduces to

I H	 k
x =E x	 Cor all aeA ,Ctsk ^k	 Rk	 —	 (25)

OeA

with

^y(o)) H IF(o)^

a^	 ak	
Olt
	 (26)

Here H is the single particle crystal Hamiltonian. The reason why only one k is

involved everywhere is that H is a linear operator invariant under the translation

group of the crystal, for which:

\YCtk)I H 
I^^kO)\ = bkk,	 \^ako)I H IySk)> .(27)

The matrix elements Hark are given by:
2	 ..

HG , Gk - 2m	 (k-G)2 bG , G + UG ,
-G '	 (28

HGnk -	 bn^k `y(0) I 	 Ih^ k^ I^pk^I-1	 (2
Gk
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itn'nk	 ^.	 bn' jk bnik \h^k l I^IIhIk> I1gn'kII-1 II6nNII-1 , 	 (30)

where, as usual, the plane wave matrix element of the local one-electron

crystal potential is given by

N
UR = VR 	 (31)
N	 N

with

VR = r dr a Mr WO	 (32)
N

and	 U( X) _	 V( r̂-R)	 (33)

N

	

Because of the special form ( 6) of hik (N) the products 
h̀ik lhjk /	

and the

matrix elements `V6k)IHIhjk >	 and	 `hikJHjhjk> , can be expressed in terms
N	 N

of reciprocal. (or reciprocal and direct) lattice sums which are independent of the

point in the Brillouin zone (all the k dependence being factored out). For the

case of only one localized orbital but with a basis of several atoms, we have

(h h	
__ N eik.(B -13 )̂ S
	

(34)
` ikI ik^	 -0 	 i,) r

C (o)	 \__	 N	 -ik.B

	

` YGk I Hlhjk/	 -ZF- e N
	

S21 '	 (35)

and

<h
	 _ N ik.(II -B ) [h2 	 ^	 '	 2	 D

	

ik l Blhjk^	
e N ^q N^	

2m (S 
ij - 21k.Sii + k S1j ) + S iJ
	 ,	 (36)

where

Sid _	 I^R 12 e1K.(-III)

ReT	
N	 (37)

kL
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S'	 AI$ I2 
eiK.(81-Pj )	 (38)

^i^	
- .'y ! N K

S„1j _

	
K2 I$K 12 

e1K.(-Bj )	 (39)

NN -

S _
	

$-K 
UG-^ e1K.B^

	

N N N	 I	

(40)

N

and

D _	 $*. $ U	 ei(K'.s4-K.S )
S	 K' K K'-K	 (41)
ij	 eT K eT

These lattice sums can be expressed in part as direct lattice sums, using the

convolution theorem or by npplicatiun of Eq. (6b). For example:

S i.)	
L owI$(r+B 	

I$GI2 eiG' lBi-BJ)
N y N^ N

R	 GeGN	 N -

From this, Su 
and S" ij can be obtained respectively by taking th-a gradient and

the negative of the Laplacian with respect to the spatial variable. A similar

result can be obtained with S and SDI , but here it would be of no advantage if only
the Fourier transform of the potential is available.

The number of different lattice sums that must be actually computed is greatly

reduced by exploiting crystal symmetries. First of all., the sums are invariant under

a transposition of indices, except for S' ij (which only chnges sign) and S
2
j. Ir.

geraral a simultaneous change of B4 , D
j 

and G ( in the case of S ) under the same

cubic or other symmetry will also leave Sij, 
S'ii, 

Sand SDI unaltered, and will
take Sid into the corresponding symmetric vector. In this way, for example, the sixty

(10)

four SDj sums of the Pa3 (or a-N2) crystal structure are reduced to only four, and

the S	 sums to only two for each G, and in both classes of sums this leads to an

(42)

s_ b
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enormous reduction in computational time.

once the lattice sums are evaluated, we can proceed to solve the secular

eigenvalue problem (25) for a particular k by first obtaining the corresponding

basis set (23) with the help of Eqs. (19)-(22), then the matrix elements HcL$k
N

with Eqs. (28)-(30), and finally diagonalizing Eq. (25). In this way we obtain

the valence and lowest conduction bands and the coefficients 
2S,k 

in the expansion
N

of the corresponding eigenfunctions in terms of the basis set (23).

IV. Summary and Conclusions

We have shown that subspace spanned by the orthonormal .finite basis set of

functions (23), can be expected to be u satisfactory approximation to the actual

eigenfunctions. The set is of manageable size and at the same time leads to good

convergence because by construction it contains orbitals which represent well

both the core and intermolecular features. This is accomplished in a rather simple

way, with a few plane waves and orbitals depending on k only through a factor

exp (ik.^. It leads to lattice sums independent of k when calculating the

matrix elements of the secular eigenvalue problem (25), to which the band structure

calculation has ' •een reduced. It is then necessary to evaluate these lattice sums

only once for a given lattice parameter and crystal structure. Finally, it is

straightforward to obtain the necessary matrix element for any k even for

complicated crystal structures.

The method is potentially more flexible than the KKR and APw methods, since

it does not require the muffin-tin approximation for the crystal potential, and

is readily adaptable to molecular and complex crystal structures. The level of

analytic complexity and computation difficulty does not exceed that of the

standard methods. When, compared specifically with the OPVY method its main

advantage is the simpler and more flexible formulation, which makes no particular

reference to core levels.

There is another sense in which we can also expect good convergence, namely

the evaluation of the lattice sums (37)-(41). Notice that with the present method
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the choice between the purely reciprocal space lattice sums or sums divided

between reciprocal and direct space will depend on the convergence properties of

the parti , alar case at hand. For examrle, in the case of solid molecular hydrogen,

^(r) can be taken as a Is-orbital, namely:

3

(n /j
	

e--Mr	 (43)
r

with Fourier transform:

CL 
3

I\ 
Tr	

(q 	 2

For the direct lattice sum in Eq. (42), we then find: 11

e-Mr (1 + ar + 1 a2r2) 	 (45)N N	 N /	 3

which leads to rapid convergence in direct space for the S ij , ^ij 
and S"1J . Since

SGisnd S 	 ^(r) (which falls exponentally with Z) and V(r) (which goes more

or less as r 1) a similar conclusion can be drawn about their convergence in

direct space. But note that in reciprocal space, the lattice sums of Eqs. (37)-

(41) alsn converge fairl y well, since K 
goes as K 4 , and UK approximately as K 2

N	 N
The method has been applied to solid molecular hydrogen in the CL-N 2 structure

for densities varying from the zero pressure value up to more than ten times that

value. The details and results will be published in a later paper. 9 it is

sufficient here to say that we obtain results with satisfactory accuracy and con-

vergence. They corroborate well with the results of other methods. However, as

mentioned earlier the method described above is of more general interest in the

context of band theory.

6... C	 _



b, h

Itcferences and footnotes

* Work supported in part by NASA (Grant NGR-33-010-188) and the National Science

Foundation through the facilities of the Materials Science Center (Grant DMR-72-03029) and

Technical Report #2634.

t Present address: Instituto de Fisica, Universidad Catolica de Chile, San Joaquin,
Santiago, Chile.

1. R. Monnier, E. L. Pollock an? C. Friedli, J. Phys. C7, 2467 (1974); for more details

and additional considerations: R. Monnier, Thesis, Universite de Neuchatel,

Switzerland (1974. unpublished).

2. C. Friedli, Ph.D. Thesis, Cornell University (1975, unpublished).

3.'F. S. Ham and B. Segall, Phys. Rev, 124, 1786 (1961)

4. F. S. Ham and B. Segall, Methods in Computational Physics, vol. 8: Energy Bands in

SGIlds (Academic Press Inc., New York, 1968), p. 251.

5. T. Loucks, Augmented Plane Wave Method (W. A. Benjamin,. Inc., New York, 1967).

6. G. Pastori Parravicini, I. Villa and M. Vittori, Phys. Stat. Sol. (b)67 , 345 (1975).

7. D. E. Ramaker, L. Kumar and F. E. Harris, Phys. Rev. Letters 34, 812 (1975).

8. E. Brown and J. A. Krumhansl, Phys. Rev. 109, 30 (1958).

9. C. Friedli and N. W. Ashcroft ( to be published).

10. C. J. Bradley and A. P. Cracknell, The Mathematical The ,)ry of Symmetry in Solids

(Clarendon Press, Oxford, 1972) pp. 133,377 and 416.

C. Slater, Quantunm Theory of Molecules and Solids, vol. 1 (McGraw-Hill, New York,

1963), pp. 23-25.

- 16 -



i

Figure Captions

Figure 1. Schematic one-dimensional example of components ((1/N) icq of a member

of the new representation given by Eq. (4) (discontinuous curve) in terms of the

Fourier transform §q of a localized orbital (dotted curve). The reciprocal lattice

vectors correspond here to q/(2R/a) = integer. Note that c
q 
is identically zero in

— 

the central zones (corresponding to a choice here of a set of reciprocal }nice

vectors G = ( -2tT/a, 0 , 2rT/a ) ) and constant within each zone corresponding

to the reciprocal lattice vectors falling outside G (set T).

- 17 -



t

^ow \\

i	 q
^	 1

/	 1
^(a/N)1/2aq

I	 I	 \I	 I

	

i	 I	 I	 \
^	 I	 1

^	 I	 i	 I	 I	 \ ^I
I	 I	 I	 ^	 ^	 1	 ^

1 I

	

I	 I

I	 1	 I	 I	 I	
I	 I	 ^	 I	 ^

7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

q / (27r/a )


	GeneralDisclaimer.pdf
	0015A02.pdf
	0015A03.pdf
	0015A04.pdf
	0015A05.pdf
	0015A06.pdf
	0015A07.pdf
	0015A08.pdf
	0015A09.pdf
	0015A10.pdf
	0015A11.pdf
	0015A12.pdf
	0015A13.pdf
	0015A14.pdf
	0015B01.pdf
	0015B02.pdf
	0015B03.pdf
	0015B04.pdf
	0015B05.pdf

