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Summary

A theoretical method is established for determining the aero-
dynamic characteristics of over-wing~blowing configurations.‘ The
method accounts for both jet entrainment and jet interaction effects
because of the differences in freestream and jet dynaﬁic pressures
and Mach numbers. The predicted lift increments agree well with
available data. It is shown that the 1ift is underpredicted with

entrainment effect alomne when the jet is close to the wing surface.



1. Introductlon

The over—-wing engine installation has recently: been 1nyest1gated _
as an alternative of iﬁstalling high by-pass ratio turbofan:enginas; b R i
With the coaventional under-wing installation, these big englnes‘ﬁ#y |
have ground clearance problem and adverse aerodynamic effects on the wing.
In addition to solving the ground clearance problem, the ovér—wxﬁq*mnw
stallatlon has the advantages of. reducing jet noise because of w1ng shleld— “f \
ing effect and improving the aerodynamic performance. In some experxmen—K‘_'
tal investigations, Bagley and hlS associates tested a moael w1th rectangu—'7'
lar jet nozzle at high subsoni¢ freestream Mach numbers [Rafs. L and 2] |
7 Similarly, extensive experimental study ef varicus conflgurathns has.been
made at VFW-Fokker in connection with the VFW-614 project [Ref.ré].' In
the test configurations mentioned above, the nacelles were installed direct-
iy above the wing. Therefore, the nacelle~pylon solid-body interferégce on  _
the wing flow will be significant. On the other hand, Seidei [Ref;.ﬁ]'and
Putnam [Ref. 5] measu?ed wing aerodynamic characteristics with the jet_exit
shead of the wing leading edge. Seidel also allowed the blowing jet to be
inclined relative to the freestream. From these limited experiments, the
favorable aerodynamic effects of the over-wing blowing jets have been con-
firmed.

In general, when a turbulent jet is blowing above the wing, the wing
upwash will be increased due to jet entrainment. Ihe_jet entrainment ef-
fect on the wing can be simulated by using sink distributioﬁ;éibng the jet
axis. Tor this purpose, Squire and Trouncer [Ref. 67 derived a thecoretical .
sink strength distribution for incompressible, non~heated jets., This theory

has been used to estimate the jet effects on the horizbntai tail [Ref. 7]

|
|
|
?



Ribner extended Squire - and Trouncet s.analySLe fo heafed but lecompre551b1e;
jets [Ref. 8]. TIn Lhese early 1nvest1gatlons the prlmary'obgect1Ve has
~ been the study. uf Jet entralnment effects on the tall. On the other hand
Putnam [Ref 9] Has recently appiled Squlre and Trnuucer 'S, theory to the
1nvest1get10n of the wing aerodynamlc characterletlcs due to overﬁWlng
blowing JEtS at moderate to hlgh subsonlc Mach numbers.; Because the Eheoryfi.
is applicable only to 1ncompre551ble flow, ?utnam used equlvalenf-uncomr:f‘“
pre551b1e jet parameters 1n hlS appllcetlons._ Llne 51nk dlstributlon Wae
used in eongunctlon Wlth the vortex~1att1ce method.~ Another apploach usediiz
- at VFW%Fokker was to use 51nk panels over'tne Jet surface [Ref._3] Both-=
the sink’ strength ‘zmd the: jEL boundery'for the veloelty rafio V /V‘ of 1/7°
were based on the statlc JEt prcpertles, S0 that the entralnment used in -
the computetlou is expected to be higher than the actual magnltude. Iin
both Investlgatlons, it has been 1nd1cated that when the Jet is close tao
the w1ng surface, the methods WDuld he 1nadequate. Iﬁ'fact the predicted
}ifr due to entralnment alone would be too low ag compared Wﬂth the experl—
ments [Ref. 9]. Therefore, addltlonal 11ft,mechanlsm must ‘be examined.

In the pre5ent 1nvest1gat10n, the 1ift induced by the over~w1ng
blowing jets will be shown to be attributable to the jet entrainment
and the inviscid jet-wing interaction due to ehe higher dynamic pressure
in the jet. The latter effect is particularly important when the jet is
close to the wing surface. To extend phe capabiiity of ekisting methode_
for computing je; entrainmentrtq coﬁpreseible heeted jets, Kleinsteip:s
theory for static campressible jets [Ref. 101 is_ex#ended to the eeSe
of external stream, with the eiﬁpiiciﬁy efrﬁie.thenry_being retained.
The wing—-jet interaction.theery wiﬁh Mech nuﬁbei nonuniformity reborted
earlier [Ref. 11] will then be used to treat the interaction between the

wing and a rectangular or a round jet.



.1;2;5 LlSt of Symbols
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Wlng aspect ratlo B

nondlmen51onal turbuleﬂt jef hé1f Width.defined”in Eq. A.21

. local chord length, m (£ft)

-réfefenée chord length, m (£t} .

leading-edge singularity par meter (see Eq. 27y ..

sectional induced drag coefficient

' :flaﬁ;chbrﬁ'length, m.(ft)

.sectiqngl 1ift coefficient.

difference in lift-éoefficients‘with jet on and off
éectiunai pitching-moment coefficient about y-axis
Pressufe.coefficient, or specific heat at constant‘p?essure
sectional leading-edge thrust coefficient

initial jef diémetef, w (ft)

unlt vector tangent to Jet path and 1s taken to be i in the
shallow jet approxlmatlon :

entrainment function defined in Eq. A.65

a function defined by Eq. A,11
a funection defined by Eqa_A,lz =

a'functioh‘defined by Eq. A.SS

st&gnation”enthalﬁ?

unmt vector along x—, y~ and’ z—axas respectlvely

a constant in rerr1 s turbulent eddy V1sc051ty model
~(see Eq. 4A.20) - :



m mass flow rate, Kg/sec (slugs/sec)

' ‘slope

M Mach number, or momentum

N number of chordwise integration points

[N} . normal velocity influencé—coefficient matrix

) unit vector normal to the jet surface

n,s jer axis system with n normal to the surface and s
tangential to it

P free stream static pressure, N/m? (Ib/£t?)

Py jet stagnation pressure, N/m2 (1b/ft2)

Pu(x) a function defined by Eq. A.16

Py(x) a function defined by Eq. A.10

5

P5(x) a function defined by Eq. A.13

q entrained volume flow rate, m3/sec (ft3/sec)
T radial coordinate, wm (ft)

?5 equivalert jet radius, m (£t)

T, initial jet radius, m(ft)

R average gas counstant for the air-jet mixhture
Rj gas constant for the jet

S wing area, m® (£ft?)

s8] tangential velocity influence-coefficient matrix
t airfoil thickness, m (ft)

T temperature, °K {°R)

T = folpj

T . jet stagnation temperature, °K (°R)
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free stream stagnation temperature, °K (°RY

veloeity in x-direction, m/sec (ft/sec)
= ufu,
J
equivalent jet velocity, m/sec (ft/sec)
velocity, m/sec (£t/sec)
unperturbed velocity vector, m/sec (ft/sec)
perturbed velocity vector, m/sec (ft/sec)
jet—entrained-flow velocity vector, m/sec {ft/sec)
= x/ro
nondimensional turbulent jet potential corve length based on r,

jet exit x- and z-coordinates

wing-fixed rectangular coordinate with positive x-axis along
axis of symmetry pointing downstream, positive y-axis pointing
+o right and positive z-axis pointing upward, m (ft) -

coordinate of camber surface, z_ = zc(x,y}, m (ft)

angle of attack, deg
3
= (1-M2)7
nondimensional vortex density, or ratio of specific heats

airfoil trailing-edge half angle, deg
jet deflection angle, deg

= rf/r,
N

It

T IT
3 e

angle of camber slope

sweep angle. deg




u = volvj, or ualuj

' = {;D.E/ﬁj i

p density, kg/m? (slugs/ft3)

7. equivalent jet density, kg/m3 (slugs/EL3)

oE nondimensional turbulent transfer;cqefficiant

) dimensional_pe;turﬁatiqn velocitylpqﬁentigl, mzlsecfift?fsec)-~f

[ nondimensional perturbation velocity potenﬁial,f_- | BT

v nondimensional additional éerturbatioﬁ'velbgitf,pdteﬁtialé.f
or stream function ' : e

Subscripts:

a additional

c jet centerline

e external or outer f£low

j jet flow

i jet vortices for jet flow

['A leading edge

o outer or external flow

ok} jet vortices for outer flow

t trailing edge

W wing

wa additional wing vortices

W] perturbation due to wing in jet flow

WO perturbation due to wing in outer flow

free stream



3. Mathematical Tormulation
3.1 Inviscid Interaction

In general, a jet will expand after 1eaving the nozzle and its s
axial velocity will decay downstream. The ?elocity distribution over
any jet section is nnnuniform;.with maximum value at the:center.- For
simplicitﬁ, an eqUivélent jetVSection with uniform ﬁélocity distri-
bution, to be defined l‘a.ter,' will be used in ﬁh-e pr-és'aut’-'formﬁlétiéﬁﬁ.-
Since the jet flow has hlgher dynamlc pressure.than the freestféém;
any dlsturbances created outside the Jet will be reflected and dlf":':
fracted at the_jet surface [Ref. 123. The dlsturbances in the preﬁent.
ap?lications are mainly due to the presence of the wing in the fraeﬂ'
stream and the jet-~entrained flow. This inviscid wing-jét interégﬁidq
is the subject 6f formulation in the“present section.

The perturbations of thg fldw-fiéld EEHEiOﬁEd‘EBOVE are deté?ﬁingd:
by satisfying the-boundary.:onditions. On the jet'éurféce;-it ié ?E;.'
guired that the slqpeé.of the streamlines_on both sideé §f tﬁ§_sur§%§§,_.
iare the same. When linearized, this conditioﬁ céﬁ bé.ég?fESsga_ééf 'H.
[Ref. 31] . . .

Vo3 (1=p)+ 3 -i}- B o fa‘h"‘

One addltlonal jet surface boundary condltlon 15 the statlc pressure “

continuity, Whlch in linearized version can be WIlttEﬂ as

In the above, e is 8 uﬁlt vector tangent o the Jet path and 19 t&ken5

o -
to“be A 1n the’ shallow Jet: appr031mat10n, an& 1ﬁ 15 the un1

normal‘to the surface, V is the unperturbed Jat v91031ty and V is-
the external velocltv vector before the W1ng 15 1ntroduced 1nto tha'

flow field.




With the vwing being assumed to be entirely in fhe outer—FloW’

region, the wing tangencty condition has the conventional forms

| j____(v 1Y% - VR o a3

" For. numerical c_o:__lv.enlen-ce., Egs. .'(:I.-)—-(B) will first be rewritten
in. a. nondimensional form. For this. purpose, def:l.ne the nondlmensz.onal

'.p_erturbatio'n'_p'utent.iai'_s“_ <!7° a‘r'i'a'_' <}>1 surh. that B
7 (}30 =.(.Va.‘ .é'h) ) . s ‘(!") : : ‘.
Intraduc:mg Eqs. (4) (5) into Egs. (1) (3) , it ds obtalned w:Lth ‘Some

;Qﬁ!

s:.mp'llflca..lon that -

3 Vu : "ac}:}' __‘_ V "'h (1" )

N - L T B . : | L : '_ . (6) R

g - S SRR PR

. “where .

Let -—1}1.e be the jét-entrained flow and V' the wmiform:freestrea

vectcr. Then 7 _ : S
V V + \r. _ - c R "‘-fl(}).

It is assumad that the Jet-—entTaJ.ned flow does not affec:t the Je.t stream

'surface cond:.tlcm (Eq. 6) in ..he. J.nte.:r:actlon rormulat: on.‘ It :mflueuces

| only the wing tangen.c:y condn.t:.on through BCJ.-_ (8) S:mce the. problem is

1:Lnear, :Lt J.S COTLV°1lE.nt to demmpcse 1t :Lnto the ng-alona case. and

the addltlonal Jet—:mduced perturbatn.on‘ Therefore, let

4’ S (M ) + “;,- (M )

- 4’ | ‘P (M ) t ‘P (M ) S (12) . .




whera ;lbm( Mo and ‘ij(M-J) are the wing-alone perturbation poten-

tials a_n‘:_resy_ective Mach numbers. Using Egs. (11)-(12), Eqs. (6)}-(8)

become
by TeB 00, TRt 2t g
2N N .- e n ETE
| 2%, (14
W Ty 5E j“" + Ty T | | )
fa\}ﬂ (15)

vhere c'ﬁw and ‘%5 satisfy the conventional tangency condition with

jet entrainment:

28 (M) _ L Vark asy

foz = _— - Tanct V;,o_wsv:( . ; 4

d?c}i (H’) %s L Tanol —7 ‘M ‘ \ (1N
12 B X o Yy eosel ‘

Because of Mach numbet nonunz._ormlty, two vorte# sheéts are
ntroduced on the ;]et surface, one W:Lth strength 3’:3 ‘to accéunt for
the outer £1ow perturbatlon and the - other w:-.th strength j'é’;‘ o ac- -
_‘.ount for the 3et flow perturbat:.on. Let 'b’ be the addltlonal w:n.ng

_. vartex strength. ’l‘hen Eqs. (13) (15) can be reduced Lo [Ref. 11]

t'\!m]@ i?{wi e [Nﬂ]@%ﬁgai EMH}(@)“’::X

g - TR g PRy - T *’W(M )15 (18)
V& '

”T(ﬂ) [S;wl‘g%_iun}i T(/“I) [SIS ‘lc)'i {ﬂ;-i + L 333-](3)%1;!'3}: ) :
L b i “**’w; e 'rw" '5*""’3 e

S ]

[N"""] {i’"‘“k + [ r\[\«;!}(uj i 3/03 1 o '- N - :'-(';'.’-,.0) — . :

"'Where [N] at'd [S] are the :Lnfluance coefflclent matrz.ces for. :Lnduced

L Inormal and tangentlal veloc:.ty campnnents, m.th the *Flrst subscrrpt

-';':denot:mg the eontrol pu:.n!: locatlons and t:ha seccnd fm: the 1nf1uenc1ng

: .‘~_1"vorte:c'1ocatmns» When the JEt 13 ClGaE eaoucrh £o- the wing, it: nay-

10




attach to the wing upper surface due to the Coanda effect. As a
result, the jet may deflect at the wing trailing edge. This jet
flap effect can be included in accordance with methed described in
Ref. 11L. Both [N] and [5] matrices are formulated with the Quasi
Vortex-Lattice Method (Quasi VIM) (Ref. 13). Since the Quasi VLM
is one type of the discrete—element methods, care must be taken in
evaluating [S] matrices for better accuracy (Ref. li).

Once Egs. (18)-(20) have been solved, the total wing vortex
strength is given by

‘(w = %+ 'b’,m ' (21)

The sectional wing aerodymamic characteristics can be computed by
properly resolving the pressure force acting on the camber surface

into appropriate directions. It follows that
g

! —
e Toyma ) S (L) 400 o (- By + &uin -5
k -—
e Sx ti(w(x) cos (ot - Be)da + Sy Sim(ot~ B, {(22)
£
Ca: = “"*“"S () Sin(ol- o) dx ~ G cos(ed=Bp)  (23)
1
[=N
S = Efs'— S .6 7 o5 (= Bew) &% (24)
where "
B(x) = ‘f"am { dzc (25)

The sectional leading-edge thrust coefficient c, is computed

as (Ref. 13)
. = ( 1— M WSZA£> (26)

= 1@05(&

. where the leading-edge singularity parameter C is defined as

¢ = lim 7{._"3’(9) s5in g 27

-0

11



According to the Quasi VLM, C can be determined by summiné the total
induced normal velocity at the leading edge and subtracting the right-
hand side of Eq. (17) or (20), depending on whether the effects of
wing alone or the jet interaction is being considered.’ If the induced
nermal velocity at the ith leading edge control point is denoted by 2
sul.script i, then the singularity parameter C; in the wing alone case

with flap deflection can be computed from the expression:

-, \ _
MG [ gle] Crangh 05 TN, o} - 1B hunsc}, (28)
Similarly, the singularity parameter, C, due to the'jet~induced pexr-

turbation can be computed from Eq. (29):

M Cal (/€] G b A= 1T 4

% wiwd: 4 fwa LN“"?"]@E% X"E'} (2%)

In the above, N, is the chordwise numbex of vortex elements on
the airfoil section,The integrals in Eqs. (22)—-(24) are computed with
the midpoint trapezoidal rule after the § -transformation. The over-
all aerodynamic chara;teristics of the wing are then determined by
spanwise integration of the sectional characteristics (Ref. 11).

3.2 The Jet Entrainment Model

The jet entrainment affects the wing aerodynamic characteristics
by creating additional upwash on the wing. This additional wpwash is
represented by the last term in Eq. (16).or {i7). The ability of pre-
dicting the jet-entrained flow in subsonic compressible flow is im~
portant in the present investigation. Although it is.poésibie ;d-
solve the jet problem by numerically ij.tegrating th;‘ébvéiﬁiugnééuér
tions (Ref. 14), such an approach would gfeaﬁly increase the totél con-

puting time. With the idea of having a method being simple, géneral

12



and accurate in mind, it appears that Kleinstein's theory (Ref. 10)
is the best choice. However, Kleinstein presented his theory for
free jets only. In Appendix A, a method is described to extend
Kleinstein's theory to compressible jets in an external stream, with
the primary end results being the prediction of jet entrainment.

As shown in Appendix A, the entrained mass flow rate is computed
as ?”V%x(See Eq. A.42). Let the entrainel volume flow rate be de-
noted by q:

‘t’s‘—'-g{:-% (30)
The effects of the jet entrainment on the nearby lifting surfaces can
be simulated by a line sink distribution on the jet axis with strength
equal to the entrained volume flow rate. The induced velocity com—

ponents due to this sink distribution can be computed as (Ref. 15)

:.']-,. Sty q(-. d-
2¢ £ g F(3)2}¥ (1)

T

¢ & e E-7dE ' (32)

Instead of using q directly, it is convenient to use the nondimen—
sicnal entrainment functiom E(x) defined as (Ref. 16)

_( >/z."a‘h1 -_'-Ef,z‘.') (33)
Hence

5 s Ve x (34)
%—~Ec> (3) = Ty (8 Ew)
In applicatlons, Eqs. (31) and (32) can be integrated by dividing

the jet axis into segments within each of which E(%) is assumed to

vary linearly. Let

E(

Lt

)= a4, + b§ (35)

13
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in the ith interval. Then

2 _ .
= AT T wn (R ZS Cast bi§ )45
. LG gl

or, (g v. ; i )

NG S e) AT S " L4t b ¥ )43

W, o7 [ty pr)% (36)
Similarly,

Wy, X » % X

%, L[&=%)+ F’FFIJ%

The integrals in Egqs. (36) and (37) cam be exactly integrated to give

Ef)

Sm (a+b§)d§ o BtbE

Xy E(X "j‘)_i_P'&:(-. J}/z, F:--"f‘-:‘. it e “lz g (38)
5

S il M- J)A't = (a:+bX)6G,; ~b; &,

A .i Pr_]/ﬂ.

- S —
= x€+1+-/(x‘xe+,f+.‘3 L

-L
v
»e
5=
)

{39)
R~ Rk JR-Row AT
where 1/ XXt £
G}\'-:' -’E_- ;?l:'f-l — 55'—24: .
G, AT f(Rm T (40)
& I _ 1
2i ‘:H)z._‘.ﬁ:. P -\/_(3(—- 5&—‘ )v.+ F:_.F.a. - (41)

T

-G Rl

Note that only

-s-\

—component will contribute to an upwash on the m.ng.
To find vi?_o-% in Eqs. (16) and (17), this. %% ~component, which is
always pointed toward the jet axis, must be decomposed at the wing
plane to produce the upwash. The x-induced velocity %% is small in
genera_l and is neglected in the present application-s.

3.3 An Fquivalent Inviscid Jet in the Interaction Theory

As described in Appendix 4, the velocity and température distri-

butions in the turbulent jet vary not only im the axial directiom but

14



also radially. The propagation of any disturbances iﬂ such a nonhomo~
geneous region would be governed by a partial differential equation
win non-constant coefficients. To find a solution of sqch an equa-
tion would be difficult. To make the solution tractable, an equiva-
lent homogenecus jet must be defined. In the present analysis, an
equivalent jet ﬁith constant cross section and jet properties is as—
sumed to be one which satisifes the conservation of mass, momentum
and heat content and is evaluated at the midchord of the wiﬁg if

the jet exit is ahead of the leading edee. The use of an equivalent
jet in the wing-slipstream interaction problem has been sﬁown to yield
reasonably good results (Ref. 16). The detail of determining the
equivalent jet properties is described in Appendix B.

Let ?% be the equivalent jet radius. It is assumed that if the
turbulent jet as defined in Appendix A intersects the wing sufface and
follows it to deflect at the traiih1g edge (to be discussed in more
detail later), an upper-surface-blowing rectangular jet with lateral
extent equal to :z?; can be used for interaction computation. The
main reason behind this assumptionm is that a jet washing the wing sur-
face most 1ikely has a cross section of half ellipse rather than a circle
(Ref. 17). A rectangular jet would be most convenient to use. In this
case, the situation would be that of upper-surface blowing, so that the
theory of Ref. 11 can be directly used.

On the other hand, if the jet does not wash the wing, or if the
jet is strong enough to go straight, the eircular shape for the equiva-
lent jet is retained. In the compufation, the ¢ircular jet is in tumm

approximated by an inscribed polygon. This is shown in Fig. 1. To see

how well this polygon can approximate the circle, a 2-D case is con-

15



strﬁcted. in the 2-D case, the exact sclution can be obtained by

Koning's image method(Ref. 18). According to the image method, a

vortex of unit strength situated outside of the circular jet will in-
duce, due to Interaction, additional perturbation iIn the outside fio-
field which can be represented by an image vortex A of strength-{éﬁd)ﬂwﬁd)
at the inverse point and a vortex B of strengﬂh(étfyﬁﬁH)at the center,
where s=V;/V,, This is described in Fig 2. ,

In the present model, two vortex sheets are used on the jet sur~
face, as described in Section 3.1. Through numerical experimentation,
it was found that one choxd length of jet each ahead of the leading
edge and behind the trailing edge would be sufficient for numerical
convergence. Seven vortex elements for each streamwise vortex strip
of the jet ahead of the leading edge and only one element for the jet
behind the trailing edge were used, in order toc reduce the computing
time. It appeared that the trailing jet had negligible effect on
the indiuced downwash near the leading edge. Therefore, in the follow-
ing comparison, the additional induced downwash near the leading edge
is plotted and compared with the results by the image method, This
is done in Figs. 3(a) and 3(b) for two different originating vortex
locations. As shown, the present approximation appears to be reasonably
good, Further improvement of the accuracy seems to be limited by the
accuracy of sidewash computation which is needed in calculating the

induced normal velocity on the jet surface.

Control Point

Wing Plane

Figure 1 Gedfietric Approximation Figure 2 Image Method
fotr a Citcular Jet

16
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4, PNumerical Results and Discussions
4.1 Some Observations of Falk's Experimental Data

For convenience, the jet—-wing geouwetry parameters are defined in

Fig. &.

z
A
.
d . R - -
o ~p
e
/’_—’_\ S K
IQL! XET
l X,

Figure 4 Wing-Jet Geometry

Before applying the above theory ta eny configurations, it is
necessary to know what the jet deflection angle is when it washes the
wing. The deflection would occur even if rhe flap angle is zero. This
is because the jet has the tendency to follow the airfoil upper surface
and leaves the trailing edge at &an angle equal to or less than half
the airfoil trailing-edge angle. However, since the jet is thick, its
deflection will not be expected to be at full trailing edge angi: at
all times. Intuitively, at a given jet exit location, if the jet veloc-
ity is high relative to the freestream, the jet will have the tendency

to go straight. Therefore, the deflection angle will be small. On the
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other hand, the deflection angle will be larger if the jet axis is
moved toward the wing surface. Furthermore, if the jet exit location
is moved forward away from the leading edge, the measured 1lift seems
to be increased according to Falk's data. This is illustrated in
Figure 5. Theoretically, the jet entrainment would be lower near
the wing region when the jet exit is farther away from the leading edge
(i.e., xjfdo = ~6). However, the measured lift increment is higher
with zj/do:é 1. This seems to imply that the jet will deflect at a
larger angle. TIn summary, the jet deflection angle for the thick jet
under consideration is a function of M , xj/d0 and zj. -Without deter-
mining its correct variation, it would not be pessible to predict the
interaction effects. Since a theoretical analysis of this problem is
beyond the scope of the present investigation, empirical relations would
be useful alternatives. The effects of M and xj/do can be combined by
using the equivalent velocity ratio M (i.e., uelﬁg) defined in Appendix
B. The following procedures are then used to derive such empirical
relations.

(1) Three u 's (0.333, 0.4 and 0.5405) in Falk's experiments for
a rectangular Wing of AR = 2 at xj/do = =1 and zj/d0 = 1 are used for
correlation. The deflection angles are taken to be these which would
produce the correct AsGL. If &, is the maximum possible deflection
angle, then the actual jet deflection angle obtained through the above
correlation using i computed at the wing midchord can be written as

§ =T % (42)

vhere

£=-29.5428 A%+ 33.73TIA - 5.9148 | K €0.633%9 (43)
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Figure 5 Effects of Jet Exit Locations
on Falk's Experimental Lift
Increments, p=0.333, o=0"

vhere M = 0.6339 is the equivalent velocity ratio for M = 0.5405. For
j. » 0.6339, linear interpolation between f at J =0.633% and £ = 1 at
B =1 is used. If £ is negative by Eq. (43), f is to be replaced by zero
and the equivalent jet is assumed to be circular, instead of a rectangular
one.

(2) For zj/do % 0.75, full deflection angle and rectangular jets
are assumed irrespective of M values.

(3) Linear interpolation is used for 0.75 < zj/d0 < 1.0.

Further assumption is made that even if the jet is deflected, no
jet reaction forces (i.e. Coanda forces) will be produced. This is based

on the observation of static data which rhow that the 1lift force will
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still be produced ever if the jet is moved away from the wing. There-
fore, the 1ift is not produced by jet reaction. Also, the fact that the
jet tends to attach itself to the wing surface is mainly due to the jet
entrainment, the effect of which has already been inciuded. The statie
1ift force may be explained as produced by the jet suction effect (or
entrainment effect) which is called "Lagally force" in hydrodynawics

{p. 215, Ref. 19). The Lagally force is neglected in the following ap-—,

plications.

4.2 Comparison of Predicted Results with Experiments

Falk's experiments represented an early investigation of over—wiﬁg—
blowing aerodynamics. Systematic measurements of lift increments
due te jet blowing have been made for different jet exit locations wvaried
both vertically and horizontally. For his rectangular wing of AR = 2,
which will be used in the following comparison, the airfoil section was
a symmetric modified Joukowski airfoil of 16% thickness ratio. By "modi-
fied," it is interpreted here as a Joukowskil airfo?l with straightened
trailing edge by drawing tangents to the surface from the tra.ling edge,
instead of the usual cusped shape. The trailing edge half angle can
therefore be obtained in the following way. According to Glauert (p. 75
of Ref. 31), the symmetric Joukowski airfoils can be approximately repre-

sented by the following equations:

x= -‘Ei cos® _ {(4ba)
k . |
i& = % %-3(\?)(1 + 0s ) sin@ | (44b)

where ¢ is the chord length. The slope is therefore given by

,_ 44 %(%)E- sin*e + cos§ + cos™0
M = o=, -
ax Sing

(45}
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The trailing edge is at x = -c/2. The equation for the straight line
which passes through the trailing edge and is tangent to the airfoil is
then

%:m'(x-l--g‘i-)- _ (46),

The tangent point location ©, can be obtained from the following equation:

i'-(.._i:.,)f_usin"e 4 cosB, 4 tos*f 3
: ] 1
Y L e )

S = (E) (1 +080,) singy =

*

sinB,
from which cosP= %; . Hence, m' = ~0.0918 from Eq. (45) for t/c - G.16.
It follows that &, = 5.25°.

The predicted results for Jm’s at two differemt jet exit x-locations
are compared with Falk's experiments in Figure 6. TFrom this comparison,
the following points should be noted. Firstly, the present theory with
entrainment alonme agrees very well with Putmam's calculation for M = 0.333
and xj/do = -1, However, the entrainment-alone theory tends to underesti~
mate the 1lift for zj/do-é 1.5, as has been noted by Putnam (Ref. 9). Sec-
oudly, for zj/do:é 1.5, the present resulits with both interactiou effects
and entrainment agrees reasonably well with experiments. For ~ = 0.25,
xj/do = -1 and zj/do = 0.75, the prediction appears te be too high, prob-
ably because it was assumed that the jet was deflected at the full trail-
ing-edge half angle. Thirdly, as the nacelle is raised upwards, the the-
oretical method ten%s to overpredict the lift, even without interaction
effects. One possible explanation is that the wing night have been af-
fected by the low dynamic-pressure viscous 1éyer from the nacelle which
is ahead of the leading edge. Such effect has been noted by Stuper in
his experiments on wing—slipstream interaction [Ref. 32].

To test the theory with compressibility effect, Putnam's experiments

on a swept wing with the engine pfeSsure:ratio of 1.9 are compared. The
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experimental data are shown on Figure 18 of Ref. 5. 8ince the velocity
ratio, temperature ratio and the jet Mach number are needed, they will

be computed in accordance with isentropic relations. (See Chapter 2 of

Ref. 33):
R 'Fm 5 )
Mi - .’/_} ) - (4'7:'
g -1 (48)
— = bt M
¥
T Lz
%3" =1+ 5 Mo (49)
If the jet is not heated, it may be assumed that T . = Tt w® It

follows that at the jet exit,

T Se l+g'Mf;

F|
T 5 o+ 2Ly (50)
\Y M
~ =M =M, [[E (51)
3 3 Tm
Using the above relations, it is found that for P, j/pw = 1.9, Mj = 1.003,
. ’ .

S./ §; = 0.85914 and M = 0.43026. Note that M, > 1 is allowed in the
entrainment computation. In the interaction computationm, the jet Mach
number used in the program is given by
e = )
=M, (..%)(%‘;jfl (52)

wiere 515and §§ are equivalent values evaluated at midchord. The equiva-
lent jet Mach number will be much less that one in the present applica-
rion. The trailing-edge half angle for NACA64A006 airfoil uzed in the
experiments is found to be 3.6°. The results are shown in Figure 7.
The agreement with experiments is good.

Finally, Seidel's experiments will be examined and compared. In his
test set-up, the jet exit was at least cne chord length ahead of the lead-

ing-edge. Since the test speed was iow, the freestream and jet Mach
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aumbers can be assumed tc be zero. Tae trailing-edge half angle for
NACA 0010 is found to be 6.67°. The predicted results are compared with
the measured data in Figure 8. The computed magnit?de of & CL is slightily
lower than the measurement probably because part of the wing may be im-
mersed in the jet as indicated by the present turbulent jet theory.
When part of the wing is immersed in the jet, the wing-slipstream inter-
action theory (Ref. 34) should bé used. However, this has not been done
in the pr=sent preliminary investigation.
‘5. Concl ysions

A theotitical method has been described for determining the‘aero—
-dynamic chara-teristics of over-wing-blowing configurations. The method
accounts for not only the jet entrainment but also the jet interaction
effects due to the differences in freestream and jet dynamic pressuwres
and M:ch numbers. The jet entraiuoment is determined by a new wmethod
which is an extension of Kleinstein's free turbulent jet theory. Com~

parison of the theoretical results with some available data indicates

26



Lo .
1 c [\ C | '5

© Experiments
- —f&— Present Thaory
0.1 - - —~Present Thzory, Entrainment

o]
2
3

Figure 8 Comparison of Predicted Results with
Seidel's Experiments. M =0, M,=0,
it J

z./d =1 and a=0°

j' o
reasonably good agreeuent. From the examination of some experimental
data and the theoretical entraimment functionm, it appears that the en-
trainment~induced 1lift can be maximized by pi&cing the wing in the re-
gion of maximum entrainment. However, any favorable wing-jet interaction
“jncluding the jet flap effect should also be examined for an optimum

engine locatiom.
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Appendix A
An Extension of Kleinstein's Compressible Turbulent Jet Theory

to the Computation of Jet Entrainment

A.1l. Turbulent Jet Model
The momentum integral relation for the jet can be written as
f; T> ’
w - d = :',_g. . - . - (A-l
Jsuru-oydr= M= 2 g Cug - uy) )
where rj is the radius of the jet boundary amd r, 1s the jet radius

at the exit. For the fully developed region, it may be assumed that

(Ref. 21, p. 306)

U= e+ (U= UHCI - BRY (A.2)
T=Tet (Te- T(=%) (A.3)
. A4
n - T/T;S (A-4)

Define the nondimensional variables:
§=sfs, , o=wfug, Be= = e fug (A.5)

It follows that Eq. (A.2) can be written as

- - 3 x,
W= Mt (R - )= 574) (4.6
Assuming constant pressure mixing, the density can then be written as
5=l G ! (A.7)

RT ~ TeR )+ (= -1)(1- §)

where RJ and R are the gas consfants of the exit jet and the jet-air
mixture, respectively. It follows that Eq. (A.1l) can be reduced to
C R | - -
Siuir? S Suf(U~myds =M

= TRy 0 A P (R ~U-T" 5
'LL}T' i = S /u| .n,.((bf.\'r, l‘)>(| EE/L)E (W~ (i~ % 3/‘-) tiii (A.8)

where R is the average gas constant for the mixture.

The integrals invovled in Eq. (A.8) can be integrated exactly. How-
ever, the results are difficult to evaluate numerically whenQ?? ~1
e

is small. Since (%; =1 )} is, in general, not large in the fully-
<

developed region, it is convenient to develop the integrand im a
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power series with respect to (-;—:‘:— -1 ) and integrate the results exactly.
<.

In order to accelerate the series convergence, Shanks' Transformation

(Ref. 22) can be used. When the above-ientioned process is applied to

Eq. (A.8), it is obtained that (see Appendix C for one example)

=~ 2 TiRe -

SU G SE(RAE + B R) =M (4.9)
where

Fx) = R (%) — A (4.10)

1 _ miaN
R ""'8 S giz,g,)
o I+, U-%%4)

012857 + 0.0161T B, —0.00607 'E;-f-o,op[ﬂ:.'t’:

d‘§|

- 1+ 6.81217 R N
_ S‘ g, Ci= 3707 as
=
2 l’\‘ﬁ“"f?‘/‘) )
. 0.064774 + 0.0045AT, ~ °;°°2°+'E‘-1+D'DD°75E3 (A.12)
140835716 T
Py = T;(x) ~1 (A.13)
e .

Eq. (A.9) gives a relation between the jet radius rj and the axial
flow properties. Here, the axial flow properties will be obtained by an
extension of Kleinstein's theory (Ref. 10).

Extension of Kleinstein's theory

Kleinstein's theory is based on the linearization of the jet flow
equations on von Mises' plane. The lonmgitudinal velocity = u./u;- at

any X is expressed in terms of the P-function as

W= U BPTCE/GrYE, ¥ /(23)%) (A.14)

where P* is the normalized P-function and Po is related to . by
L, = 4 + U=-2)TF, (A.15)
B o= - e - ey) (416
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The% - variable is related Lo x

%—E—'::'z:ﬁ

= x/ro by
(A.17)
where §¢ is the non-dimensional turbulent transfer coefficient.

The relation between Y, the stream funection, and the radial coordi-~
nate r is given by

{A.18)
s i
where °

<1
<~
53

(A.19)
According to TFerri's turbulent eddy viscosity model SE in the

fully developed region can be assumed to be

Se =& by (S-S ) (A.20)
where b/:. is the raidus at which the flow properties satisfy
A f - — — -
Si =L (8% + §m) , F=by (a-21)
To use the above expressions, consider the asymptotic expansions for §~»oo
i.e., far downstream.

In this region, §—Ew§e and § -3
Eq.

Hence,
(A.21) becomes

=—é.a(_/u.+ 'M_,c_)

, '?"-—'- E\/
From Eq. (A.14)

-

st Q=) B P (S «ry,_)

= Re) R ELATATOR]
or,
F '\{‘ ’
12 £y = — (4.22)
P ( m)
Now, — P% ( ) » _'q}/"'i and T, ——> m} . r'le_'nc.e)
° ) HTmRr &) M‘i’(l/ugpe VY
KA
= .;5{7. S& eﬁ 2y 4 =03 g "*(:i)?.,e S
e ,,,ue 'f"U/“)in zi/u_ - N

— et

Q=)
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But
W,

R?ﬁ-(%: —7%':_%%‘ 'Fp"'s'?.l"‘

by Eq. (A.22). Hence

- 2% M
b; = Releret N (A.23)
- S M 1+ —-I"-u_'_';-z.i

Using Eq. (A.15), Eq. (A.20) can be written as, whem §—><%.
=% £ 1 Sy Yo 1
gg — / l_,u _
[ e "_'g-l S (1o

——= 1M z?m,_‘f_‘_/_“‘._?. A.24
\/,u L % -

Eq. (A.24) is valid only far dm-mstream. To extrapolate this result to
the near field, it is most convenient to use Po(§). That is, E“%‘ in
Eq. (A.24) is to be replaced by P . According to Egs. {4.10) and (A.15),
'ﬂ(g)-.:ft,g-/-& =(-) T, IE follows that (1-A) 3 ——- in Eq. (A.24) is to be re-

placed by B, ('§). Hence,

V-;
ST R T
= %, J5, 42 [Rm H{;j (A.25)
For m=0, Eq- (A.25) is reduced to Kleinstein's results for free jets:
= %IE-Q » M 0.

Integrating Eq. (A.17), a relation between § and X can be obtained:

d.% '
% JZ = +C
e 4

>
RD=0- 0T =G [ 1 - e‘""?]= T—m  (A.262)

Forp=0, Eq. (A.26) gives

’3‘%:EE=§+C|

Comparing this equation with Kleinstein's, it is obtained that C,= 0.35

which was obtained from experimental correlation.
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The constant k, will be chosen later for correlation with expefimental
data. Eq. (A.26) may be regarded as a nonlinear algebraic equaﬁion for
§ (x). TFor a given %, the corresponding % , and therefore &, , can be
obtained by Newton's method. Ed. (A.26) also shows that the potential

core length is given by

Xo = <, .t 1 (A.27)
28 Y B 1o 2%, 4 8a 1o

The integral involved in Eq. (A.26) can be evaluated as follows.

For large E s the integrand becomes 20§ /ﬁf(p;@)ﬁhﬂ Hence ,
'J—S J—'—' H__y_un_ S[J—‘/—\_‘i'_— 1’ 1]&3’&' g ’-:-3‘;
-].. e

H-.&
]sm@ +J— 34—; (4.28)
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5
™ ’ H-
where l J_— L‘

e~ | A
ng ?s(l-cos&g.) ) 9&—"-12” w (.29)

To complete the evaluation of flow properties on the jet axis,

it is necessary to determine T . According to Kleinstein's theory,

the stagnation enthalpy on the axis 13 given by

"1 -~ H?. _— - 2.'%3‘

H3 - H = Ho( %%) } (A-30)
4% = 2 §E (A.31)
X%

2.
where Pr is the turbulent Prandtl number. From Eq. (A.31), it is seen

that Eq. (A.26) can be modified to give
L4

*y 1= S
2 d S fom B

/M AE +o.3%
J?(-)‘/gm i+ = =2 (A.32)

"P(D
Once Ho is obtained, TC can be obtalned from the definition of the

stagnation enthalpy:

=CT+ twu (4.33)

1t follows that
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CpTe + Ll - (G + TUZD

He—
'-‘-‘ = H"’ 2
i "H‘ Coprdws - (Qu+tuid
= CplTe-Ted) ¥ L meue){ Ut Ued
Col T~ + =( ty = U U; +4ed
Cola ( Te
e (T =D+ RO TRE + 243
CPT&" T 1 .
EF(A D)t Ci—a)
But % ¢ Te DA -
C‘?Te — ___Tq-_

w o oM
where MJ is the jet Mach number. It follows that

1
RDLT o)+ ERUR+ M) _E
goagsco- )t E () ’ Te

Solving for T /T , it is found that
T -1=TRep= (o1 o Cioue b BIH, - S OR TR +24) (a3
A.2. Entrainment
v
m:z'rrs SUTLY , Y74
(-
‘l’.'&- A3
=2'rr{ S surdr + Sr geugrdr.&
5 .
5 ’ .
=’?'"T§S surdr+ L Su - Lsuet 15

= 277§ S (- Sue)vdT + L e §
The entrainment is the increase in the mass flow rate per unit distance.

(A.35)

Hence,
?;; Entrainment = 1'77 g (su - U rdr (4.36)
Tet

T= S (SU - B UDVAr = U & S (3-8, 45,45,

'Tg‘ AL u;/“){l 5, )
5% :S[ I+(Te ‘)_(l §13/=-) }‘i'

—S{ug TR: ERF!. /"‘"F Fs—.\

where R is the average gas constant for the mixture and may be assumed

(A.37)

to be B_, and
e
F =

S 5, (=57

L1+ RO~ f&)

0.21429 + o.04 06} B~ ~0.01249 B +00035l'F;. (A.38)
1+ 0.789%3 T,

ik
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| in Eq. (A.37) can be eliminated by using Eq. (A.9).

The factor §u, T :’R_’

eR
Hence, o
M BRoARE (A.39)
2m 2'71-'-?-— M Th "'J*'E-.Fs)
2% TR W\ ARRT R (8-40)

According to Ricou and Spaldimng (Ref, 23) and Hill (Ref. 24),
da ‘Sé 3 >'m

7 (F) T = emshand for =0
Therefore, Eq. (A.40) can be written as
__d_g_(gi y"'am U PR N 2 BE ~~RF
Bl wx T oMY (3)”" % MTR PR,

But
M _"_'.L g&”"(u: - Ue) _1__‘ )
DT T e
It follows that

- 9 Th ol v
(8B -0 gy aien

=202 5 RE -ARF
3 X MRE+RF

L2 WRIRE AR - ARR
5. ATR+ R

(4.41)

(BRI TE R REN 45
(MRE+ PR Y & (442
vhere / -'-‘-7;-"_-%- . In consistence with the turbulent jet model, the

derivatives in Eq.{A.42) will be zvaluated far downstream and then

extrapolated to the near fieid. Hence,

1 _ AR Arl-pmn_ =pa =R
o= "‘E( )T s (A.43)

B0~ 14 S0 d(F- My 81 Rolle) ~
- Epmie [ Rep) Faa)

‘FJG{) =[ -1+ - (-0 8] Hits) -

§-
R MR [ R aas) - —-—T’lt%)r“i CHAEH (A.44)
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Heh) = (7_"‘) =mae 2 };ifm (A.45)

B g §RO- A4S,
° [ I+?~ct-*"’=)]

x_p 22830l o pdoo5 P to. 0!’7?2-? * 0.00646T;

(A4
I+ l.o500| T,
' % (- 3%)° a5,
R=- 2
LR~
% _p' 005270 —0: 02886'?,.-!—0.0!4-78'%-"000&8?? (A.47)
I+ Le2869 P,
R = (B O- 32N,
o [ 1+ RO-32T
z.p' 012857 ~ 00 253, +0.0[ 82 g~ 0.00 <99, (A.48)

1+ LLozz272 T

One special application of Eq. (A.42) is the isothermal mixing

so that P, = 0. Eq. (A.42) is reduced to

_‘_"."_I_SL ‘Al‘"_\, - 7—('-}‘0{ T

™Mt S/ 2x JE (MRE+R*R
20— —R'RRR 43
/3 C/AP.F.FP"F)‘ ax
..1“—/“) -7 E (" ) !+ A,
= 2k, ( ____:EL__
T ek SRR

|+_ﬁ..

_ (RRYPRE+2RR F;)E as
(#RE+R*RY LY

-P'L __&_ \é
=8¥&FF. — r; + 1[,2.,., e (A.49)
(MFTRRY Y 1 A
This expression is independent of density ratio is k, is also inde-

pendent of it. As §—h o, the entrainment at the end of the potential
core can be obtained:

(ga hoam _ BRER (1op) § 1+ m
PR (R HUR TR

P (A.50)
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A special case is o= 0 . It can be shown from Eq. (A.50) that the

entrainment function is a constant and is equal to

—-f';‘g'(%_)z'_?l-;_-g%‘ﬁ_ - BE 20, 12857 (A.51)
tE Fa 006676
which depends on the value of k,. Therefore, to complete the theory,
it is necessary to choose k; such that best correlation with experi-
mental data can be obtained.

It is of interest to note that different values of k, have been
used by different authors in the past (Refs. 25 and 26). In Prandtl's
model for uniform density mixing, it is assumed that

€= & LA( W, — Ue) (A.52)
and k, has been taken as 0.022. 1In Ferri's model,

St = %, by, (51U, - Selle) (4.53)
and k, was chosen as (.025. In correlation with experimental data of
free jets (with quiescent surrounding), Kleinstein found that k,; = 0.0185.
Recently, Witze (Ref. 27) re-correlated free~jet data and found that

F= 0,02 (1= 0 1EMCEY (A.56)
Unfortunately, if Eq. (A.54) is used in Eq. (A.51), it would result in
the entraimment function depending on the density ratio, contrary to
the experimental conclusion by Ricou and Spalding (Ref. 23). A more

compiicated model was proposed by Boyle and Viets (Ref. 25):

€ = b e e Se " S,‘U“"S’eu-.-_ A
St = Kby (St~ % ue)( ) [ )

o = 2te (A.55)
S
where K = 0.022 in the main region of the jet. According to this model,
the effective mixing length in the far field is greater for jets in a
coflowing stream than for free jets because of the last factor in Eg.

(A.55). Comparing (A.53) with Eq. (A.SS),'it is reasonable to assume

that k, in Eq. (A.53) increases with the velocity ratio UefUy (=1 .
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To keep the method as simple as possible, it is assumed in the present
method that k, = 0.0185 for M = 0, as used by Kleinstein. At M =
different values of k, have been tried and the results for the centerline
velocity decay compared with experimental data. Reasonably good agree-
ment was obtained if k, = 0.024. This is shown ia Fig. A.2. For other
values of 4 , a linear interpolation or extrapolation gives
&, = 0.0185 + 0,01 M (A.56)
To show the accuracw of Eq. (A.56), comparison with experimental data
and the computation of Boyle and Viets is presented in Figs. A.1 - A.9.
The turbulen:t Prandtl number is assumed constant and taken to be 0.72.
It is seen that the iesults of the present method are reasonably good,
except Fig. (A.52) where the experimental data show different trénd
from those of Fig. A.2, even though the density ratio is only slightly
different. |
With Eq. (A.56), Eq. (A.51) shows that for M = 0,40 o (%) = (.285.

This is to be comparéd with the experimental value of 0.32 by Ricou and
Spalding (Ref. 23) and Hill (Ref. 24). This difference may be attributed
to the assumed form of S% , as has been discussed by Ricou and Spalding.
To see how the assumed velocity profiles would affect the egtrainment,
let

U~ e

Ue-Ue ‘
Eq. (A.57) was used by Bquire and Trouncer (Ref. 6). 1If Eq. (A.57} was

=L+ ws‘h"g") (A.57)

used, Eq. (A.51) would become, for M =0, & =1, §, =1

8o _9_ oom _ B n0l4-868 (A.58)
m; 2K 0.086{8
The ratio F,/F. would be 1.725, instead of 1.926 in Eq. (A.51). This

would further decrease the value of the entrainment function. BSince

. R R 2
F, is proportional to (u - ue), while F, is prc.ortional to {(u - ue) .
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it seems reasonable to assume that F should be replaced by SF, and F.
by S‘Fz, where S may be called the shape factor of the velocity profile.

If this assumption is made in Eq. (A.51), then
_e_l_n_(_;;'éy_n__ gk x0.12857
'm1 A

CF- 0.066T6S
With k, = 0.0185, this value is to be equated to 0.32 to give S = 0.8907.

The reasonableness of the shape factor can be demomstrated by using Squire
and Trouncer's velocity profile. If Eq. (A.57) is used, F, = 0.14868.
This can be reduced to the present value of 0.12857 by using a shape
factor of 0.865. Then F, = 0.08618 by Eq. (A.57) will be reduced to
(0.865)2 x 0.08618 = 0.0645 which differs only 3% from the correct value
of 0.06676. It may be summarized that for the present application, in
all expressions developed so far,

F; be re]oia.ceci Ly 0,8907 F' R and T Ly (O.E‘i‘(:ﬁ‘?)?']-‘-=L , (A.59)
Fi remains unchanged; i.e., the temperature profile will be assumed to
be correct.

Entrainment in the initial region

The entrainment function will be assumed to vary linearly in the
initial region. At the end of the potential core regiom, the valune of
the entrainment function is obtained by the above theory. At the exit,
it will be obtained by Abramovich's theory. Since the latter does not
accour.t for compressibility effeets, it will be applied in the following
manner . For a free jet with uniform density and isothermal mixing. the
entriaament at the jet exit can be obtained by Abramovich theory. Under
other conditions, the entrainment at the exit will be changed proportion-
ally in the same way as that at the end of the potential core being changed

relative to the free jet value.
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According to Abramovich's theory, the inflow velocity at the exit
for uniform density and isothermal mixing in a free jet is given by

[p. 306 of Ref. 21]

(7

-ﬁ% = 0,27 (B~A) . (A.50)
§

where A = 0, 316 and B = 0.450 (p. 282 of Ref. 21). Hence,

oM
sx T ETLRI U

(3; Vogm _(2)2T%S
£ X SY; wr*
A.3 Comparison with Known Results

x0,27 (0,98 ~0.316) E 0145 (A.61)

It should be noted that the present method is applicable to non-
uniform density and/or non~icothermal mixing with compressibility effects.
The compressibility effects are accounted for through Kleinstein's theory.

The model of Squire and Trouncer in uniform density and isothermal
mixing is compared with the present one in Fig. A.10. For a free jet, the
Squire and Trouncer's results are computed by using the data shown in
Tahle 1 of Ref. 6; while the other two curves are constructed with the
information given in Tables 2 and 3 of the same Reference. Note that
to convert Squire and Trouncer's resulcs to the present notation, the

following relation is needed:

m_ CA o
v 'Trge'ax (A.62)

Since ?n-:.-qf;;*giui , it follows that for §.= 55 s

u\e(‘f, f’»'am _ 4o 2m =4 (] e ol

e oA Ty (A.63)

It is seen frum Fig. A.10 that Squire and Trouncer’'s model gives
higher entrainment in the initial region of the jet and lower values in
the fully developed portion. The difference with the present method be-
comes small as A4 is increased.

To find the effects of entraimnment on the aerodynamic characteristics,
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a line sink distribution is placed on the jet axis with strength equal

to the entrained volume flow rate:

Q_L,___*ﬂ, (A.64)
5 ox
Let
Jil Sy Ve o o
m; %/ @x = E(%) (A.63)
Then

My - S Ly
3 =-§-_~ E®) 3§ :E(i)m(ge)ﬁ
i ° 257
= Fwrn (5 Ew) (460

The corresponding induced velocity components due to the sink distribu-

tion can be computed as (Ref. 13)

¢ ﬁ_‘_s“" 35D 4% (A.67)
2% EMY VI

% S'” S (E-T) 48 (A-68)
X

dix = T =03
> [CR-F e g™
In application, the jet axis is divided into segments within which %(%)

or E(}) is assumed to vary linearly. Let

EEy=a, + b, § (A-69)

in the ith interval. Then

2¢ - I A *""‘(a +b‘—§)°‘§
= == BT W (S) S
27 +r 3 € E
(%-3 )+ g 71
or, y z ¥) P
| 24 (§)* (o:+ b:3D4%
L A ZX 23 (4.70
W, ?F 11 1 {,x e ,.)34_ )
Similarly, -
IR = : = S’Ccn (a:+b:3)(Z-5)4% (A.71)
R ¥, oK 8’ < [x-Fy+ a7

The integrals in Eqs. (A. 70) and (A.71) can be exactly integrated to
give

&m = - y -

S (a,+b §)4§ _ _ Getbil

124E G,y ~ by Gy (A.72)
%, LZ3g e prTE
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5 ® (b DEDF = (a, 4 b X)Gy ~bi G +
, [gy gyt

b o ot (=TT 127> (A.73)
R—Ryt [(R-F P+ T

- (A.74)

—-—

6 s = =
S dw-w, e JERTEE

(A.75)

The above formulation is now applied to find the pressure distri-
bution due to entrainment on an infinite plane wall with a cold jet ex-
hausting normally from it. The wall boundary condition can be satis~
fied by using an image sink distribution. The results of using this
image system is to cancel the wvelocity component %g% atx =0 (i.e.,
on the r.all) and the velocity 2%} on the wall is doubled over the value
when the wall is non-existing. Using the present model, the induced velo-

city on the wall is given by

| 24 (a+bx) L7 0.3z
Wy oF g i{ - P =1 WE_&: 76)
where =
a=o0l45 , b=o0r088 , X =746
6. = =2 e S S . (A.77a)
VI GR AP R ET
! L (A.77b)

For the Squire and Trouncer's model, the initial region is divided
into 4 segments in accordance with the results shown on Table 1 of Ref. 6.
The entrainment data are then computed by the method indicated there.

The results are as shown below:
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E(x)= 01823 + 0.0l8)2X , O0=X=sL49
=0032594+0.01796%, 199 =2 X £ 2,99
= 6.17999 +0.01398 X , 297 =& < 4% (A.78)

= 015733 + porz34dpx , 448 =X = 6,09

= 0,249 ANl
et _ axL. a, +1-,. 0,299 X~ Xe
T e Z[ R Gt fb T G+ 7 [1+J(£'T~:{f-f-:]}
- = .09 (A.79)

The pressure coefficient expressed in terms of jet dynamic pressure is

given by

"( 0% 'ar {A.80)

The results are compared in Fig. A.1l. The experiment was done

by Gentry and Margason {(Ref. 28) and Wygnanski's analytical results are
given in Ref. 29. Both curves were taken directly from Fig. 1 of Ref.
(30). It is seen that higher entrainment in the initial region in Squire
and Trouncer's model yields slightly higher C_ than the experimental re-
sults and the present method. On the other hand, the present results are

gererally lower than the experimental values away from the jet boundary.

It should be noted that small values of C_ are being corpared which are
very sensitive to the change of entrainment values near the jet exit.

Away from the wall, the inflow veloeity can be computed as follows.

Using the image sink distribution, it is obtained that
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G,“' Rt Xe X (A.823)
- -v.h- = 1 * a
bV RFE SR AT
' : ! (A.82b)
TR SR T

The results on vertical planes normal to the jet axis and at x = 10

and x = 40, respectively, are shown in Figs. A.12 and A.13. As expected,

the lower entrainment in the far field in the Squire and Trouncer's

model results in lower inflow velocity.
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Appendix B

Properties of an Equivalent Inviscid Jet

A turbulent jet has its propertiec varying not only in the axial

direction but also in the radial direction. The perturbation in such a

nonhomogeneous flow region would be governed by a partial differential

equation with non-constant coefficients. To simplify the matter, an

equivalent inviscid jet with uniform properties is used in the inter-—

action computation in the present investigation. Such an equivalent jet

is defined in accordance with the conservation of momentum, mass and heat

content.

Let the equivalent jet properties be denoted by §’3_ 5 ﬁ;‘ and 7'3- .

It follows from these conservation principles that

y"g""( ')r (r,. =-‘.!,_' 5;1: (.51. 1)( ) (5.1)
e . .
VO - =2 ( 2 -0y (A 6.

Sf S'iue( ‘)r ‘*(r,) S ( gete F4(%)

=E(%§ Seue)( ) ®-3)

The left-hand side of Eg. (B.1l) can be written as

N

0

—
_—

shere Eq

T8y w x §’,u > ‘eu
AR L G el ( v S;g‘-‘ﬁ;(’tf:; 5, 43,
LU A .
L (L (Prr ?, a)-;:;; (®-6)
. (A.9) has been used . Hence, Eq. (B.l) becomes

S ZF(RAE + 7 F.‘J—"—s’—‘ E-00E) (B.5)

2

if ST 'Ra-/ (ST. RD = 1. Similarly, the left-hand side of Eq. (B.2)

can be written as

) S ( §e "')‘}‘ﬂ“},=(%)1$S’(§ﬁ’§eﬂ)§.“s
TR, (8.6)
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where Eg. (A.37) has been used. Tt follows that Eq. (B.2) becomes

Loty v
#ETCRR - AR E)=L(ES (kY e
To integrate Eq. (B.3), note that

S(""“ S‘eue)r (5 = (“)S --@-% ?M,)§d§

\

A e - S 4

Il
/4
f\eg o ¢! .
=(7:)§i‘5,w+ﬁ(’-f’") Iyt - 2 B CnA-am )<L ]

f‘,o - .
:(-—E>§(;ﬁ—'j— "‘/“!I(’ﬁﬁ '/"?;F;)} (B.8)

Hence, Eq. (B.3) becomes

T e _ W Selyn\eTev (B9
#(TT Uagh= CRR -~ hf 3] =2 (51 - 22

To solve Eqs. (B.5), (B.7) and (B.9) for the equivalent jet

properties, let

5:""‘}'3(%)1(73#F, +P"R) (B.10)
i T oo

=}:‘(-$:) (AR -ATF) (B.11)

bt ¢
L= 2 (EV LR (nR-sRE)) (2.12)
%y = R (B.13)
Seue _

Fa = '%f; (B.14)
(Y

xy = ) (B.15)

Then,
5= & (- Ox, (3.16)
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28 = (- 1) %o (8.17)

2§, = (Rom )2y ‘ (B.18)

Solving Eqs. (B.16) - (B.18), it can be shown that

- (B.19)
1= T,
£ £, _
- L I R (B.20)
==5 ( £ 45, ) fo+5s
- z'g'-x. (5o 'g:s) _ {B.21)
: 'S'| = %1 - %3

For non-heated jets, Tj = Te' In this case, Eq. (B.3) is not needed.
The above solutions, Eqs. (B.19) — (B.21), are still applicable if fh

is eguated to =zero.



Appendix €
Applications of Shanks' Transformation to Evaluation of Series

Consider the evaluation of the integral:

l s-
O NS o e
° 1+'P.(;vf/)
Assuming small B, , the following series can be obtained:

R

Hd

(c.1)

il
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By Shanks' transformation, F, can be rewritten as

-~ T S: {C.3

F = )

Supt Sy ~ 2 3n
where S, is the sum of the first n terms in Eq. (C.2). Since (nt+l)

terms are needed, n will be taken as 4 in Eq. {€.2). Therefore,

o L
SM‘I = 0,{2385 T} ~0. 0830} Yo 1—o.o55758?1 —~ gozz2Tet T, +o.o+3f:~.]’}’:

After simplification, Eq. (C.3) gives
Dl_’357+0n|é,? _P.z_"'C‘OCéO'?’P +G c"fﬂ Fﬁ- (C l)

=

' 1Y o.2l217 R
Eq. (C.1) can be integrated exactly to give Y,
| R MY
. - __ + ("'T}flu . s
T % Tt [ Epps " ?/34_?/3 T}’"‘hh 2t PP
L L - (C.5)
naﬁ?;""jﬁ , Ts=id o

Using Eq. (C.5) as the standard for comparis.., Eq. (C.2) gives error

of 22% while only 0.2% for Eq. (C.4) with P, = 1.0,
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