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A SIMULATION STUDY OF CURVED, DESCENDING, DECELERATING, 

LANDING APPROACHES FOR TRANSPORT AIRCRAFT 

James  E .  Dieudonne, Randall D. Grove, 
and George G. Steinmetz 
Langley Research Center 

SUMMARY 

During recent years  the problems of congestion, noise pollution, and safety in the 
vicinity of a i rports  have indicated that changes must be made in the operational aspects 
of a i rcraf t  landing approaches. Suggested changes include curved approaches, steep 
approaches, decelerating approaches, and combinations of these. This paper describes 
a system which is capable of controlling an aircraf t  automatically along a curved, descend- 
ing, decelerating approach. A simulation study w a s  conducted to determine the necessary 
modifications to the basic flight-proven control system. 
being used to accomplish straight-in automatic landing approaches on a short-haul t rans-  
port a i rcraf t  (B-737 terminal configured vehicle). This study shows that both 3' (normal) 
and 5' (steep) approaches could be accomplished with only minor modifications to the 
basic control system. 

This basic system is presently 

INTRODUCTION 

Aircraft  operations in the terminal a r e a  have been the topic of many studies in recent 
years.  
the future require that changes in terminal area operations be made. At present, a i rcraf t  
are usually vectored along straight-line paths to a common point; the ai rcraf t  are then 
sequenced to follow each other down a shallow flight path for a straight-in approach to the 
runway. Present  procedures a lso dictate that the entire final approach be flown a t  the 
desired landing speed and in a landing configuration. 

The increased traffic in the terminal a r e a  and the projected further increase in 

As pointed out in reference 1, these paths often result  in low-altitude flying over 
densely populated a r e a s  a t  relatively high power settings. The additional noise pollution 
and the safety hazards of flying a t  low altitudes make the procedure objectionable. 
flight paths and two-segment final approaches (ref.  1) have been proposed as solutions to 
these problems. Curved approaches (refs.  2 ,  3 ,  and 4) have also been proposed as an 
alternative to these procedures. The steep curved approach has certain advantages: it 
keeps the aircraf t  a t  relatively high altitude, except in  the immediate a r e a  of the airport ,  
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and it routes traffic away from densely populated a reas .  A deceleration to landing speed 
during the final approach has also been recommended (ref. 5) as an aid in  the reduction of 
noise pollution. This paper proposes a steep-curve, decelerating final approach which 
combines all the advantages of the flight paths recommended earlier. 

The paper describes the design of a system to control an aircraft  along this approach. 
This design is a modification of a flight-proved inertially augmented automatic landing sys- 
tem designed to accomplish a straight-in approach using the standard instrument landing 
system (ILS). 
presently being flown on the B-737 aircraft  as part  of the terminal configured vehicle (TCV) 
program. 

The unmodified or  basic system is documented in references 6 and 7 and is 

The paper describes a simulation study which investigated the design of a system 
capable of controlling an aircraft  along a curved, descending, decelerating path. 
ulation of the B-737 is very complete in that it contains a nonlinear aerodynamics package 
together with realistic representations of onboard avionics, guidance and control systems, 
and actuators; such realism enhances confidence in the results obtained. Results a r e  pre- 
sented for the curved decelerating approaches along both 3' and 5' glide paths. The tes ts  
included the simulation of turbulence, winds, and noise representing very high frequency 
omnirange and microwave landing system er rors .  

The sim- 
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SYMBOLS 

acceleration e r r o r  signal, m/sec2 

knob input for Vc, knots 

path distance to threshold, m 

glide-slope angle, deg 

glide-slope e r r o r ,  deg 

gravity, m/sec2 

radio altitude, m 

1/100 of desired glide-slope angle (0.03 and 0.05) 

tangent of glide-slope angle to be flown (0.0524 and 0.0875) 

distance of glide-slope location from runway threshold, m 



Qr 

Qt3 

(2 

R 

sP 

S 

t 

V’ 

VC 

vcd 

vg 

V i  

Vt 

VY 

length of runway, m 

distance between runway threshold and point 3, m 

body pitch rate ,  deg/sec 

radius of turn, m 

flight spoiler position, deg 

Laplace operator 

time, sec 

autothrottle wind shear  compensation command, m/sec2 

calibrated airspeed, knots 

desired calibrated airspeed, knots 

groundspeed, m/sec 

indicated airspeed, knots 

t rue airspeed, m/sec 

crosstrack velocity, m/sec 

XR,YR,ZR local coordinate system 

XT ,YT ,ZT 

X,Y ,Z  

XAT,YAT ,ZAT 

a! 

P 

turn center coordinate system 

aircraf t  position relative to  local coordinate system 

aircraft position relative to turn center coordinate system 

aircraft angle of attack, deg 

angle for determining flight-path segment, deg 
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Y flight-path angle, deg 

Ah,AY 

Ahnor ,Aynor 

vertical  and lateral e r r o r s  from path, m 

normalization variables for glide-slope and localizer e r r o r  signals, m 

decrab command to aileron, deg 

track-angle e r r o r  between aircraf t  and path, deg 

aileron command, deg 

elevator command, deg 

glide-slope e r r o r  command, deg 

flap position, deg 

rudder command, deg 

commanded change in  throttle position, deg 

localizer e r r o r  signal, deg 

variable limit on localizer e r r o r  signal 

pitch attitude, deg 

roll  angle, deg 

roll-angle command, deg 

roll-angle e r r o r ,  deg 

lateral  e r r o r  signal, deg 

nominal bank angle (curved path), deg 

roll rate limit, deg/sec 



Q aircraft heading, deg 

Qr path heading, deg 

aircraft t rack  angle, deg Qt 

Abbreviations : 

AGCS 

DME 

HDG 

HPC 

ILS 

INS 

MLS 

ONCOR 

RSFS 

TCV 

VOR 

VPC 

automatic guidance and control system 

distance measuring equipment 

runway heading 

horizontal path command 

instrument landing system 

inertial navigation system 

microwave landing system 

on-course logic 

research  support flight system 

terminal configured vehicle 

very high frequency omnirange 

vertical  path command 

A dot over a symbol denotes a time derivative; the symbol I I denotes an absolute 
value. 

DESCRIPTION OF SIMULATION 

This study was conducted by use of a simulation of the research  support flight sys- 
tem (RSFS) described in  reference 8. The simulation w a s  conducted on the real-t ime 
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simulation subsystem (ref. 9) at the Langley Research Center;  the simulation included a 
representation of the major  components shown in figure 1. 

The aircraft mathematical model was a representation of a B-737 aircraft. The 
model included a nonlinear data package fo r  all flight regions,  a nonlinear engine model, 
and nonlinear models of servos,  actuators,  spoiler mixers ,  and other associated flight 
hardware. The simulation of the basic a i r f rame was verified as realistic by comparing 
simulation data with actual aircraft response data and by pilot evaluation. Approxima- 
tions of VOR, DME, and MLS models were  used. 

The functions of the navigation-guidance and flight control computers are shown in 
more  detail in figure 2 and are described in references 6 and 7. A complete represen-  
tation of all the flight control systems (control wheel steering, navigation, autoland) and 
associated logic is in the simulation. The mode of the simulation is controlled by the 
AGCS mode select  panel. Inputs to the navigation computer are made by the navigation 
control and display unit (NCDU) f rom which the flight plan can be initiated or altered.  
(The NCDU was not used in this study.) 

The pr imary displays include an electronic attitude direction indicator (EADI) and 
a n  electronic horizontal situation indicator (EHSI). These displays are generated by an  
Adage graphic system and a r e  sent  by closed circuit  television to the cockpit to be dis- 
played on cathode r ay  tubes. These displays were not necessary for this particular 
study. The displays were  used as monitoring devices and were  included to show the 
totality of the Simulation. 

FLIGHT-PATH DESCRIPTION 

The approach path is shown in figure 3 and can be defined by the navigation-guidance 
equations in reference 6. These navigation equations were modified to meet the require- 
ments of the autoland control system fo r  this flight path. The functional aspects  of the 
path are: (1) a deceleration from 200 knots to an  approach speed of 120 knots requiring 
automatic deployment of flaps,  flight spoilers,  and actuation of the throttles; (2) a constant 
radius turn with a heading change of 180°; (3) a short  (1524 m) final leg to threshold; and 
(4) a steep, constant descent during the entire approach. 

The flight path was divided into segments, and logic was developed to  determine the 
particular segment as a function of the current  a i rcraf t  position. The required a i rc raf t  
position (x,y,z) was  determined relative to a local coordinate system. The local coordi- 
nate system (XR,YR,ZR) chosen for  this  study was  located at the threshold of the runway 
and was oriented as shown in figure 3. During the study, it was  assumed that the aircraf t  
position (x,y,z) was obtained by regular radio navigation means from point 0 to point 1 
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and by MLS f rom point 1 to touchdown. 
point 0 represent  errors in reaching the flight path by other means. 

Initial offsets of the aircraft from the path at 

The origin of the turn center coordinate system (XT,YT,ZT) was  located at the cen- 
ter of the turn and was oriented as shown in figure 3. The a i rc raf t  position relative to 
this coordinate system is calculated as 

The particular segment of the flight path is determined from the angle p where 

1 'AT 180 p = tan- - - 
Z~~ 7T 

(-360' < p 5 0') 

The lateral  e r r o r  between the a i rc raf t  and the path is defined as that distance along 

(See fig. 3.) With this position known, the path heading and 
The vertical  e r r o r  is calculated from a i rc raf t  altitude 

Hence, given the a i rc raf t  posi- 

a groundpath projection vector where the vector is perpendicular to the path and passing 
through the a i rc raf t  position. 
the distance to go a r e  determined. 
compared with path height as a function of distance to go. 
tion and a prior defined path, the lateral  e r r o r  Ay, vertical  e r r o r  Ah, distance to go 
Dtg, and desired heading Gr can be determined. 

however, for  the autoland system the deviations have to be normalized o r  scaled in t e r m s  
of glide-slope and localizer e r r o r s .  The simulated ILS beam shapes a r e  shown in  fig- 
u re  4. The effective beam shapes a r e  cylindrical f rom point 0 to point 2, where the 64-m 
glide-slope e r r o r  is 0.7O and the 351-m localizer e r r o r  is 2.5O for full-scale deflections. 
F rom point 2 until touchdown the beam narrows as a function of distance to go. The nor- 
malization variables for  the glide slope and localizer are constant between point 0 and 
point 2 where Ahnor = 64 m and AYnor = 351 m ,  respectively. These variables 
decrease  in  value f rom point 2 until touchdown as a function of distance to go. 

The la teral  and vertical  deviations a r e  suitable for  a navigation-guidance system; 

The equations used for each segment of the flight path follow. 

Point 0 to point 1: 

00 2 p > -900 
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Dtg = Qt3 + BR + XAT 

+, = 270' 

Ay = -y - 2R 

Ah = h - (Dtg + Qgt) tan (GSA) 

Aynor = 351 

Ah,,, = 64 

Point 1 to point 2: 

-90' 1 p > -180' 

+, = 360' + p 

Ah = h - (Dtg + Qgt) tan (GSA) 

Aynor = 351 

Ah,,, = 64 

Point 2 to point 3: 

-180' 2 p > -270' 
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Ah = h - (Dtg + Qgt) tan (GSA) 

Ahnor = tan (0.70)(Dtg + Po) 

Point 3 to  threshold: 

-270' 2 p > -360' 

uJr = 900 

AY = Y 

Ah = h - (Dt, + Pgt) tan (GSA) 

AYnor = tan (2.5')(Dtg + E r )  

The glide-slope and local izer-error  equations are 

Ah 
Ahnor 

GSE = 0.7 ~ 

and 

AY 7 = 2.5 - 
AYnor 
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RESULTS AND DISCUSSION 

The f i r s t  attempt to fly the simulated curved approach used the basic autoland con- 
t ro l  algorithms with continuous desired t rack angle replacing runway heading and with the 
simulated glide-slope and localizer-error signals. (See figs. 5 to  8.) The simulation 
was flown with no regard for  the deceleration requirement, and the resul ts  exhibited the 
problem of a path standoff e r r o r  during the curved portion of the task.  The problem 
occurred because the existing autoland system was designed for  a straight-in approach 
and the bank angle $ necessary for  the turn could only be generated by a nonzero local- 
i ze r  e r r o r .  The nonzero localizer e r r o r  keeps the track-angle e r r o r  nulled whereas the 
reverse  is not true.  A solution was to provide the control system with the nominal bank 
angle required to fly the turn of radius R a t  the current  ground speed The equa- 
tion used fo r  the calculation of the nominal bank angle was (ref. 6) 

Vg. 

A s  shown in figure 5, is summed with t rack angle and localizer e r r o r s  to form a 
commanded bank angle This signal is then combined with the actual roll  attitude of 
the aircraf t  to form an  e r r o r  signal @er commands a change in aileron posi- 
tion to roll  the ai rcraf t  to the correct  attitude. With the addition of the 
the simulation was  run for  a 120-knot, full-flap, 3' curved approach, and the resu l t s  are 
shown in figure 9. I t  should be noted that the on-course logic (ONCOR) shown in figure 5 
was not allowed to be se t  f f t rue7T until the short  final leg. This  modification prevented the 
switching to the long-time constant in the localizer e r r o r  circuit  and to the lower bank- 
angle limit. A s  shown in the figure, the ai rcraf t  followed the desired groundpath very 
closely. The only noticeable e r r o r  occurred a t  the initiation of the turn. 

@c. 
$er; the 

$nom signal, 

This transient e r r o r  is more pronounced in a 200-knot, zero-flap, 3' curved 
approach. (See fig. 10.) This e r r o r  occurred because a s tep input w a s  placed into the 

signal at the turn initiation. The aircraf t  could not follow the step; therefore,  the 
overshoot shown in the figure occurred. To reduce this overshoot in the early stages of 
transition from the straight segment to the curved portion of the path, the s tep of @nom 
was introduced before the aircraf t  reached the actual point of turn initiation. 
of time necessary to roll  to the desired q5nom is approximately equal to the nominal 
bank angle divided by the roll  ra te  limit of the control system (ref.  6) 

The amount 

h o m  

@limit 
At = 7 
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The roll command is then initiated when the distance to go is equal to the distance to go 
at point 1 (Dtg 1) added to A t  multiplied by the groundspeed 

Dtg = Dtg,l + (VgAt) 

The same approach could be used for the initiation of the roll-out maneuver; however, 
this computation w a s  not included since,  at this point along the path for  a decelerating 
approach, Gnom would be smaller .  

during the final turn.  As can be seen in the figure, the control system required almost 
the complete turn to  null the initial overshoot e r r o r .  
bank command limit of the control system is *30° whereas the nominal bank angle for  
this 200-knot approach was -26'; thus, only 4O of bank command w a s  left to nulf the ini- 
tial e r r o r .  If deceleration had occurred prior to the turn, Gnom would have only been 
-12' and 1 8 O  of bank command would have been left to null the overshoot. 

Figure 10 also shows the importance of decelerating to approach speed prior to o r  

This condition occurred because 

The deceleration of the aircraf t  from 200 knots to the desired landing speed of 
120 knots was to be accomplished during the flight path. 
ation was to begin was chosen a t  a specified path distance from the runway threshold. 
This distance was determined by minimizing flight time in the path while st i l l  allowing 
the performance of a satisfactory automatic landing approach. The specified distances 
used were 6858 m for  the 3' path and 13  904 m for the 5' path. 
deceleration task required the automatic deployment of the flaps and flight spoilers and 
the actuation of the throttles. 

The point at which the deceler- 

Performance of the 

The throttles were controlled by using the "Indicated Airspeed Select/Hold" cir  - 
cuit shown as part  of figure 8. 
0.61 m/sec2 to 1.22 m/sec2 in order  to increase the deceleration capabilities for this  
study. 
(Dtg = Specified value), the desired airspeed vcd was set to the desired landing speed. 
(This signal generated a deceleration command A, which caused the throttles to re ta rd  
continuously until a prescribed lower limit was  reached. The thrott les remained in the 
position until Ac 
craft a t  the desired landing speed. 

The acceleration command limit was changed from 

Once the aircraf t  reached the point on the path where deceleration was to begin 

changed sign, and then the throttles moved forward, tr imming the air- 

The deceleration command A, w a s  a lso used to deploy the flight spoilers as speed 
brakes and to increase the deceleration capabilities of the aircraf t .  As shown in figure 11, 
the flight spoilers were deployed and retracted at a predetermined rate (6O per  sec)  as a 
function of A,. It should also be noted that for  safety reasons the flight spoi lers  are not 
deployed below some minimum altitude. This  limit prevents a possible hardover situation 

11 



caused by a spoiler failure at a lower altitude where recovery is questionable; the limit 
also allows the aircraf t  to t r im prior to the initiation of the flare maneuver. 

Although the throttles and flight spoilers are being driven, the flaps a r e  also being 
deployed automatically as a function of indicated airspeed. 
be consistent with recommended flap placards. 

This function was designed to 
(See fig. 12.) 

When turn anticipation was added and a deceleration from 200 knots to 120 knots 
carried out, the performance in flying the prescribed flight path was improved. 
histories of figure 13 and the tabulated resul ts  in table I show that a very satisfactory 
curved, decelerating 3' approach can be accomplished with minor modifications to the 
basic automatic control systems in the perfect environment. The same is true for a 
5' approach (fig. 14 and table 11) under the same conditions. The modified system was 
then tested in the presence of moderate turbulence and wind, beam discontinuities when 
switching from VOR and DME to MLS guidance information, and sensor noise. Several 
simulation runs were made with crude approximations to these e r r o r s  added into the 
simulation. Figures 15 and 16 and tables I11 and IV depict candidate 3 O  and 5O runs, 
respectively, and show that the modified system performed satisfactorily even in the 
presence of the disturbances listed in table V. 
in figure 15 and table IV was caused by the high ground speed of the aircraft. 
conditions, performing the deceleration sooner would probably be advisable. 

The time 

The relatively large lateral e r ror  Ay 
For these 

A possible autoland configuration for curved, descending, deceleration approaches, 
shown in major block form in figure 17, includes the proposed modifications to the pres-  
ent system. These relatively minor modifications are:  

(1) Coupling of the navigation-guidance computer to the flight control computers 
during the autoland 

(2) Addition of an algorithm to the navigation-guidance package; such an addition 
would convert microwave landing system position information into usable 
glide-slope and localizer e r r o r s  

(3) Replacement of the static runway heading signal with a continuous desired track 
signal 

(4) Addition of a nominal bank-angle signal to the lateral  autoland control system 

(5) Addition of "turn anticipation" to path definition 

(6) Addition of an automatic flight spoiler control system 

(7) Addition of an automatic flap control system. 
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CONCLUDING REMARKS 

This study was made to  determine a candidate guidance-autoland control system 
which would functionally meet the requirement of performing a fully automatic landing 
approach along a curved, descending, decelerating path. Such a system was obtained by 
modifying the basic control laws  and could be implemented, hardware interface permit- 
ting, on the research support flight system with the present onboard computers. A pos- 
sible autoland configuration for  curved, descending, deceleration approaches includes the 
proposed modifications to the present system. These relatively minor modifications are: 

(1) Coupling of the navigation-guidance computer t o  the flight control computers 
during the autoland 

(2) Addition of an  algorithm to the navigation-guidance package; such an addition 
would convert microwave landing system position information into usable 
glide-slope and localizer e r r o r s  

(3) Replacement of the static runway heading signal with a continuous desired track 
signal 

(4) Addition of a nominal bank-angle signal to the lateral  autoland control system 

(5) Addition of "turn anticipation" to path definition 

(6) Addition of an  automatic flight spoiler control system 

(7) Addition of an  automatic flap control system. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va.  23665 
March 4, 1976 
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TABLE 1.- CURVED PATH RESULTS FOR 30 GLIDE SLOPE 

Path distance Lateral Vertical Calibrated Pitch Flap Roll Ve rt ic a1 Track 
to threshold, e r ror ,  e r ror ,  airspeed, attitude, position, attitude, speed, e r ror ,  

Dtg, m AY, m Ah, m vc,  knots 0,  deg 6 ~ ,  deg @, deg h, m/sec A++.., deg 

13 904 

8 418 

4 971 

1 524 

219 
~ 

152.40 -134.11 

-5.79 .85 

16.06 

1.37 

-11.12 

-12.92 

-5.97 

-5.12 

-4.21 

.49 

-5.43 

-4.32 

-2.66 

-2.57 

-2.47 

-2.72 

205.8 

205.0 

187.2 

127.1 

123.9 

122.8 

122.1 

121.6 

121.2 

3.8 

1.1 

2.9 

-0.0 

1.1 

.4 

.6 

.5 

.9 

2.5 

2.3 

7.6 

40.0 

40.0 

40.0 

40.0 

40.0 

40.0 

0.0 

-10.9 

-22.5 

-11.3 

6.7 

1.7 

-2.2 

0.0 

1.4 

0.00 

-5.50 

-5.18 

-3.23 

-2.86 

-3.25 

-3.20 

-3.29 

-3.32 

0.0 

-2.4 

-.3 I 

-. 1 

-.4 



Path distance 
t o  threshold, 

Dtg, 

13 904 

8 418 

4 971 

1 524 

1 2 1 9  

9 14 

6 10 

305 

0 

TABLE 11. - CURVED PATH RESULTS FOR 50 GLIDE SLOPE 

Lateral  
e r ror ,  
AY, m 

152.40 

-46.02 

4.27 

3.35 

-8.53 

-13.41 

-5.18 

.30 

-3.05 

Vertical 
e r ro r ,  
Ah, m 

-23.77 

-8.23 

-4.27 

-.61 

-.61 

-.61 

-.61 

-.61 

-.61 

Calibrated 
airspeed, 
Vc, knots 

212.1 

189.1 

162.0 

122.1 

121.6 

121.8 

121.7 

12 1.4 

121.1 

Pitch 
attitude, 

0 ,  deg 

3.5 

.9 

-.6 

-1.0 

-.7 

-1.5 

-1.2 

-1.3 

-1.3 

Flap 
position, 
6F, deg 

2.5 

8.8 

29.2 

40.0 

40.0 

40.0 

40.0 

40.0 

40.0 

Roll 
attitude, 

$ 9  deg 

0.0 

-11.3 

-18.2 

-10.8 

4.5 

3.8 

-. 5 

-2.5 

1.7 

Vertical 
. Speed, 
h, m/sec 

-0.04 

-8.69 

-6.61 

-5.39 

-5.21 

-5.61 

- 5.43 

- 5.46 

-5.43 

0.0 

-3.3 

-. 5 

-. 1 

-2.4 

.6 

1.9 

-. 2 

-.4 



TABLE III. - CURVED PATH RESULTS FOR 3O GLIDE SLOPE WITH DISTURBANCES 

Path distance Lateral Vertical Calibrated Pitch Flap Roll Ve rt i c a1 Track 
airspeed, attitude, position, attitude, speed, e r ror ,  to threshold, e r ror ,  e r ro r ,  

Dtg, m AY, m Ah, m Vc, knots 0,  deg 6 ~ ,  deg @, deg h, m/sec A$C/tr, deg 

13 904 

8 418 

4 971 

1 524 

1 2 1 9  

9 14 

6 10 

305 

0 

152.40 

-74.98 

272.19 

10.67 

-.91 

-1.52 

-.46 

-2.13 

-.65 

-134.11 

18.29 

-9.14 

-1.22 

.30 

.91 

-.30 

.30 

.30 

205.7 

202.0 

186.2 

120.5 

121.4 

121.4 

118.7 

119.0 

119.0 

3.8 

.2 

3.2 

2.3 

1.1 

.4 

1.7 

1.3 

1.4 

2.5 

3.0 

5.2 

40.0 

40.0 

40.0 

40.0 

40.0 

40.0 

0.0 

-9.5 

-29.4 

-7.6 

4.2 

-1.0 

-. 1 

-.8 

. 3  

0.00 

-5.79 

-4.18 

-2.26 

-2.77 

-2.90 

-2.77 

-2.68 

-2.71 

0.0 

-1.8 

-.6 

-.6 

-1.7 

.7 

-.4 

-.3 

. 3  



TABLE 1V.- CURVED PATH RESULTS FOR 5 O  GLIDE SLOPE WITH DISTURBANCES 

Vertical 
speed, 

6, m/sec 

0.00 

-10.00 

-7.47 

Path distance Lateral 
t o  threshold, e r ror ,  

13 904 152.40 

8 418 -12.80 

4 971 11.28 

1 524 2.13 

1 2 1 9  -6.71 

Track 
er ror ,  

AQtr, deg 

0.0 

-1.9' 

-1.1 

er ror ,  airspeed, 
Vc, knots 

I 

-23.77 1 211.9 

-17.07 198.0 

-6.10 ' 168.9 

-1.52 121.4 

-1.22 122.0 

9 14 -4.27 -.91 122.3 

6 10 2.44 -.91 119.8 

305 -.91 -1.22 119.5 

2.5 

.3 4.6 

1.4 20.5 

-.6 40.0 

-.9 40.0 

-.8 40.0 

-.l 40.0 

-.l 40.0 

0 -.91 -.61 i 120.3 -.2 ' 40.0 

Roll 
attitude, 

$ 7  deg 

0.0 

-10.6 

-17.4 

-8.9 

4.8 

-1.4 

-1.4 

.8 

0.0 



TABLE V.- DISTURBANCES USED FOR CURVED PATH 

Wind Navigation MLS noise , 1 Discontinuity Discontinuity Turbulence, Wind Glide noise, 
'lope, standard deviation, at point 1, at point 1, deviation, mean, deg deviation, , 

standard in glide slope in localizer standard magnitude , heading, 
deg deg deg m/deg deg I deg deg 8 
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Figure 1. - Major components of research support flight system simulation. 
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Figure 3. - Curved, descending, decelerating flight path. 
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Figure 4. - Equivalent instrument landing system beam shapes. 
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Figure 6. - Concluded. 
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Figure 9.- Ground track for 3 O  glidepath at 120 knots using control system 
without "turn anticipation." 

30 



- - - - Desired path 
- Actual a i rc raf t  path 

0 

Figure 10.- Ground t rack  for  3 O  glidepath at 200 knots using control system 
without "turn anticipation." 
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Figure 13 . -  Aircraft-performance and control variables for 3 O  glide slope using 
modified control system. 
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Figure 14. - Aircraft -performance and control variables for 50 glide slope using 
modified control system. 
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(a) Deceleration task variables. (b) Performance variables. 

Figure 15. - Aircraft -performance and control variables for  3 0  glide slope with 
disturbances using modified control system. 
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Figure 16. - Aircraft-performance and control variables for  50 glide slope with 
disturbances using modified control system. 
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Figure 17. - Autoland configuration modified f o r  curved, descending, decelerating approaches. 
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