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ABSTRACT

In Paper I, we derived equations for the perturbations on an artificial satellite
when the motion of the satellite is commensurable with that of the earth. This was
done by first selecting the tesseral harmonics that contribute the most to the per-
turbationg and then by applying Hori's method by use of Lie series. Here, we intro-

duce some modifications to the perturbations, which now result in better agreement
with numerical integration.
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ON THE TESSERAL-HARMONICS RESONANCE
PROBLEM IN ARTIFICIAL-SATELLITE THEORY "

Part II

Barbara A. I’»omanowiczT

1. INTRODUCTION

If the gravitational potential of the earth is expanded in terms of Legendre poly-
nomials and functions, then in order to obtain a good approximation in the determina~
tion of the orbit of an artificial satellite, it is usually sufficient to consider the zonal,
longitude-free terms of the expansion. However, the influence of the tesseral terms
becomes important when the mean motion of the satellite and the rate of rotation of
the earth around ifs ax:s are in a simple ratio; this is called tesseral-harmonics
resonance.

In Paper I (Romanovsicz, 1975), a theory was derived to compute analytically the
perturbations on the motion of an artificial satellite in the case of tesseral-harmonics
resonance. In a comparison with a numerical integration, however, some discrepan-
cies appeared in the analytical method. After some modifications were made to the
perturbation expressions, which we derive herein, the theory has proved to agree much
better with numerical integration.

e
This work was supported in part by Grant NGR 09-015-002 from the National Aero-
nautics and Space Administration.

1.Research assistant, Smithsonian Astrophysical Observatory, Septeriber 1973 to June
1975. Currently at Institut de Physique du Globe, Université Paris 6, Paris, France.
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2. NEW EXPRESSIONS OF THE PERTURBATIONS

2.1 Perturbing Function and Equations of Motion

The gravitational potential of the carth at exterior points can be expressed as
follows [ef. equations (1) and (2) of Paper IJ:

o n e n
:.:.E 1 .:.[j‘. ) 3 -B-' -
U, 0,0 = & i Z 3, (r> P (cos 0) 4 Z Z Jn,m(r 2, 205 0) cos ma-h
n-=2 n=2 mwl (1)

where (r,0,\) are spherical polar coordinates relative to the center of mass of the earth,

the axis of rotation being the pole of coordinates; ;1 is the gravitational constant G times
the mass of the earth; R is the mean equatorial radius of the earth; Pn (z) is the nth

Legendre polynomial; Pn m (z) are associated Legendre functions:
]

(/) o (1 1"‘ m/z d...i[.)-_..f:l .
(lz

and J and J m are dimensionless coefficients related to the normalized coefficients
,‘

:n,m’ Sn, oy
Jn,m = Jn’m V2@ntT) (p-m)i/@im)t m#0
._Jn o= Cn’ 0 = 2an+ 1 Cn, 0 (2)
Jn, m €08 mO\-")\n, m = Cn,m cos m\ + Sn, m Sinmh .

In choosing the perturbing function, we take the leading zonal harmonic (i.e.,
the one containing JZ) and we select those tesseral harmonics that, in the particular
resonance being studied, give rise to long-period effects with the largest amplitude.
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The general tesseral hirmonie can be developed in terms of the osculating elliptic
elements (a, ¢, I, 82, w, M), referred to the equator of the earth, in the form (Kaula,
1966):

R n+l

= (BY(2 : 00w + (N ~Tht
‘In,m It)(a n,m'z 1n, ,P(DZ n, p, q(e) cos[(n 2p)w + (n~2p+ )M

Fm(2-vt -\ (3)

n, nm);]s !

where v is the angular velocity of the rotation of the earth, t is the time, and I‘ m p(I)
’ H
and G \, b, q (e) are, respectively, the inclination and eccentricity functions as defined
by Ixauh (1966). The functions Gn p q(e) ave of order |q| in eccentricity.
2 ¥

Resonance occurs when a pair (a, f) of mutually prime integers exists such that
the satellite performs g nodal periods while the earth rotates o times relative to the
precessing satellite's orbit plane. This can be expressed by

(o + M) = = B(v-$2) (4)

where <.o, M, and 2 are the rates of change with time of w, M, and 2, respectively.
The corresponding slowly varying arguments are of the form

klrba F3+ const ,

H

where

& = afet+ M)+ B2 - wt)

a,B

is called the resonant variable and k =1,2,38,.

Congidering that w is a small quantity and that the general argument in a tegseral
harmonic is



b (n=2p)e t (N-2p M+ m(§2 "'L“)‘n,m) s
we shall keep those tesseral harmonica that contain arguments such that

n-zp»q*kla >

Ko 52,8, . (5)
m - klf‘» s

Since n *-m and sines lower order tesseral harmonics are bound to have larger
effects hecause of the factor (R/r)n, where R/r < 1, il can be assumed that it g guffi-
cient to consider only the cages k 1= 1, 2, and 3. In a goneral manner, the tesseral
harmonies to be kept are

v
LB
lxlp kO’ klp
where k1 =1,2,3;... and for each k 12 the index ko takes values 0,1,2,... . We
then write each V. in the form
n,m
= 4 4+ T
Vn,m Vn,m I”n,m ’

where R, the '"resonant" part of the tesseral hurmonic, consists of all the terms
t]
that contain the resonant arguments, obtained by solving equations (5) for p and ¢
[ef. equations (6), Paper I]. 'Thus, the resonant part of the tesseral harmonic Vi m
14
is

pk l~'~k0

n

Rom= Mt miTd E : I ) G (e) cos (k,® , - -
n,m " niln,m o mm, b Pnp g (la,fi Q. mxn,m) ,
(6)

where

q, = ki@-p) - kO + 2%

Lade i



and
Pyt % .

The residun’ part of Vn,m is

Vi, m» Whose effects are much smaller than those from
7
R

n,m’

In Paper I, we then defined D(kl) and 0 1(kl) by

Rn,m-“Z D(k,) cos 20, (k)
k
1

where

D(k,) cos 20, (k,) = E B p kg, Ty
ko(kl)

the sum over ko(kl) meaning that we have taken into account all the values of ko when k

1
has a given value. In order o obtain D(kl) and 0 1(kl), we can write
]an

a

AlpkpX) = Fy o @Gy o @ )
Xon
D(kl) exp 2101‘1‘1) = Z S(kl’ kO) Z A(kl’kO’ X) exp i(qu)a,ﬁ - qw = klp)‘n, m
k()(kl) x=0
If we write
A = 1 A
ke kg P Mgk, g



and
261(1{1) l‘l‘l’u,p -kl(n.--ﬁ)w ik

then (see Appendix A)

X n
Dk.,) exp ¥ (k,) =~ Stho, k) A,k %) exp ik, ~2%)w - A 1. ®
1 1 z: 1’02; 19 %2 [ %%]
ko(kl) x-0

Finally, the po.sntial in which the satellite moves is

2
B R ‘
Vv T p&‘z ;?3-1’2(005 0) FZRn,m i va'l,m ) (V)

the sums heing taken over all ihe tessoral harmonics gelected,

If we consider the canonical sel of Delaunay variables,

LD =4l GD = ‘/lm(] - e2) s IID GD cosi , 10)
Iy =M , Bp =@ hyy =8,

then the Hamiltonian of the problem is
Fp= =g+ ¥+ F, (11)

ZLD

where

| R
Fl; ~J2[1;—3—P2 (cos 0) ,

FZ - Z Vn, m



To avoid the dependence on time of the Hamiltonian, we perform a canonical trans-
formation, so that the new variables [cf. equations (12) of Paper I} are

L:LD 3 ('"’ID »
G"GD ] g*“[) 2

it oL . 11“‘.
=X h=h, -~ , Iuﬂ i

D L) D Uh“,&‘x"xi. x"‘\nu. i 1")“R
and the new Hamiltonian is

F=lpyovl

The equations of motion are then

@w o g at  h ?
(12)
dt ~ AL ? it oG ! di T oH 2
with ¥ = 1‘04- 1«1 ! 1«2:
2
I, = *—E—- F v
o r) ’ ,
0 21"
2 2 2
R4 0 3 H .
Fo==doh=m 757 <l--—;-)cos 2u| , (13)
1 2 r3 1 GZ 4 GA

1‘12 B E Vn’ m $

in the above, u= g + f, and f is the true anomaly.



The Hamiltonian s now expanded in terms of powers of the small parameter J o'
Fio OWy)

T - (y12
1‘2’ Q(J:Z) ’

2.2 First-Order Perturbations

To gimplify the writing, we shall now consider only one value of kl, as defined

in Section 2. 1, and drop the index k1 in oxpressions such ag Dk ) and Ol(k 1). The
ITamiltonian is then such that

I«‘2 = I) eos 201 .

We define 0 by

L
0 'E"'Ol .

To derive the complete perturbations, we shall sum the individual expressions obtained
for each value of kl'

In the process of removing short-period terms from the Hamiltonian in Paper I,

we applied Iori's method by Iie series (Ilori, 1966) and considered a canonical
transformation

(L, G, I, #,g8,h) = (I, G, 11,07, 5", 1)

T¢ E——— (4

such that
oS 1 |08 ] TP |
Lo 1 o g g st o fGmshsp
oS 1 §08

9



n=n'«%§w%{%s;ns} Feee (14)
R & .71 BT

as described by equations (32) in Paper I.
The transformation involves a generating function
Sﬁsl/2 +8J + SR,
where

SR:'Jl'!‘ 22 [

Sy /2 and Z, ave the perturbations due only to res onant harmonics, SJ the perturba-
tions due only {0 J o (OF to the zonals, if other zonals aro also considered), and 22
thie perturbations due to the interaction of J 9 with the resonant tegserals.

In order to avoid small divisors, S Is developed in terms of powers of the square

root of the small parameter J gy A8 is the custom in resonance problems (Paper I).
We reintroduce the characteristic small parameter of the problem:

Y:v(ﬂ)-g— .

To find S] /93 Z1s and Z,, we gather terms of the same order relative to d 9 from
(Hori, 19686)

F'=F+{F,s}+-2l{{1«",s},s}+ e, (15)

where T’ is the new Hamiltonian, and vy is assumed to be of order 1/2.

10



In comparing this theory with numerical integration, we found good agreement for
the perturbations of highest order due only to the resonant tesserals. The relevant
part of the determining function is S1 /o In Appendix A, we repeat thi: derivation of
5, /3 expressions of the devrivatives of this function with respect to the modified
Delaunay variables, and definitions of the quantities A, I, I, k, and A.

Some problems developed, however, when the J, tesseral-interaction terms
were considered. It turns out (cf. Paper I) that the determining function 7,2 cannot
be defined by

0% 3] B3] Y]
2 (b 1/:z+b 1/2+b 1/2>’

YAgF = - \Py B¢ 2 B’ 3 T

where

BFl or 1 aor 1
b, = o b, = mm— by = =
1 oL ! 27 9G" 3 o’

gince hére we have neglected the contribution of the secular rate to the variable g.

To the highest order, then, let us consider instead the following equation as a
definition of ZZ:

{F6+Fl,zz}+{F1,Sl/2}=0 . (16)

We assume that Z is a function only of L/, G/, H’, and 0, where we recall

2
20=af +pE+h) +PE) - 7T

Then we obtain

11



02, g 0%,
oh 20990 °?
with
d=ﬁ+—g-§, )
which yields
wto -E-)—Z-‘?'-=—-{F S, o} = =0c,y (A~1) ~boa, ey (I, ~1)
2 o0 r-1/2 2 274727 V2 700
where
0‘=—‘blo,+b2d+b3[3
and

1D
Dog

-
=

Ay
[cf. equation /44) of Paper I]. Hence,
Zz = B(Iz -0) ,

where

20'c2y
- ay+ O

=

12

(17)

(18)

(19)



The derivatives of 22 with respect to the modified Delaunay variables are as
follows, If X is a modified Deli.unay variable, then

07 . oI )
y _em, 2 20
K X~ 9*B (aﬁ =/ (20)

where 8I,/8X and 80/8X are given in Appendix A, and

2e,y
o3 0¥ a0 (o \, g 20 1.y
X~ T ay+o 8X(l—ay+c>+€(ay+0'> (4.01Y+a a\/+0‘> )

Lo>]

in which

E=1 if X=1' ,
€=0 if X#IL' ,

and
ob,  Ob,  ob 2
LT T DL S
X I P TP spex

The relevant expressions are ag in equations (44) and (65b) and Appendix A of Paper I;
they are repeated in Appendix B herein.

2.3 Second-Order Perturbations

Instead of considering the second-order perturbations due to the resonant
tesserals separately from those due to the interaction terms, let us define a determin-

ing function 23 by
1 -
{F0+I‘1, z3} +5 {{1«*0+Fl,sl/2+z2}, Sy/9* zz} =0 , 21) ;

This yields, assuming Zg= Z3(L', G',H',0),

13



8Z
i) ._.__-3 == .!'- 0 0
55 -3 {{ro + F a8y o+ Dok By + Zz} ’

:

(22)

which, after some algebra, gives

where

0Z 2 2
3_ 1 k™ 8in 0 cos 0 k™ gin © cos O
W"R1<A"Z)(A"l)+R2 Ty ~To) A + Ry (,-0) X
2
+Ry (A-1)7 (23)
2.2
R1=Rz=-(o.02y) X,
2 (Pp
RS=—aczy ) +4acly+l ) (24)
2 .3
a”eqy

n

Ry= - m (3ay + 20)

In equations (24), terms of higher order were neglected and the following were used:

2 2
o = L2 o = A
- ) - )
! 3|12a 2 3]120.
a, =+ 2D o =100 , = 18D
1" DL 2°- D 3G ° 3" DoH
_ 8B 9B 9B
By=agritdoe  Pgp

REPROHCHETY OF THE
14 OuaceaAt, 0o 1 POUR



After some algebra, then, we obtain

[ 12 2
= X k- - '

where

Pl=2R1+R4+R3 s

P, =R, + 2R, + Ry + ARy +Rg)

2° 4

P,=R, - 2R + AR,y ,

P,=Ry(l+4) .

The derivatives of Z3 with respect to the modified Delaunay variables are as follows:

aza=apl [1_15:2- G+1§_‘91_‘.-.-m _apzT L8P30+8P4r
X ox |\ "2 4 PHET T 2T X X 0
ol ol
2 90 0
-Pya Py v P F P (26)
wheze
2 .2 2 /
- 00 ¥ k¥ kK" sin 20
Q—aX <l-2+2coszo> 2ax(o---——-—-—2 > .

In equation (26), the derivatives 8L,/8X, 90/0X, and 81,/ 0X are given in Appendix A.

Now we get
oR
1 2 x

T-N]'é

ORy Bp 2( 1
T € -2y (Zacly+ l)(z‘ + 4ncly+ 1) - 4.aczy (TT+



H

2.2
(— -°—‘——Y—-) (12a01Y2 + 0y + 8c,y0 +892 ——Q‘L—)

ayt o a aytko

where

E=1 i X=1L',
E=0 if XzL' .

In conclugion, the determining function for the canonical transformation used to
remove short-period terms from the Ilamiltonian is

S=8,,,+ 2, +%, ,

1/2 2 3

and the new Hamiltonian is

F/=TFy+Fi+F} (27)
where

FoL, 0y = Fo(L, 1)

F{(L/,6¢",H") = F(L/,G, H") ,

F4(L, &', B, g') = = D Diiy) (L, G/, I, g)

kl

The new equations of motion are then

dL’ _ oF’ _ 0 e’ OF

@ "ur 0 @* "

dGg’ _ or’/ dg’ oF/

® "o dr " " ea (28)

dH’.—:?E_:—-O .g_h.:,._aF,

@& T Y e dt” " T eH’

and the long-period variable g’ remains to be removed, following the procedure given

in Section 5 of Paper I.

16



3, COMPARISON OF THE THEORY WITH A NUMERICAL INTEGRATION

The theoretical computations have been compared with a numerical integration
provided by the routine DVDQ. The satellite considered was Geos 1, which passes
through the ¢ = 1, p= 12 resongnce with the following orbital elements:

semimajor axis a,=8.074 X 108 m s
eccentricity 0y = 0.073 ,
inelination I0 = 59°

We take the constants of the problem to be

LY = viid,
G’ = TL” (1= 2
0 0 ( 00) H

I = G cos Iy »

(29)
=0,
g6= 0,
h6=0

4

In this case, 12 is of the order of 107", so the motion of the satellite is of the circula-

tion type. The period of the short-term perturbations is approximately 7 days.
After removing the short- and long-period perturbations, we obtain errors in

the Delaunay variables I, G, and H for a period of 8 days, with computations per-
formed every 0.5 day. The results are shown in Table 1.

17



Table 1. Errors in the action variables as computed over a period

of 8 dax:,
Amplitude of * Relative error
Variable perturbation X 2 Error %)
~5 . -7
L 48X 10 9.75 X 10 0.2
G 67X 107 8.86 X 107° 13
H 57X 1075 1.14X 1070 0.2

*The semimajor axis is expregsed in units of 106 m.

We obtain the following errors in the Delaunay angular variables:

£=7.7X 10_'7 rad in 8 days, corresponding to ~0.8 m per day in the
ascending node of the orbit (a= 8.074 X 106 m),

g=T.05X 10"7 rad in 8 days, corresponding to 0.75 m per day in the
argument: of perigee (4= 8. 074 X 10° m),

h=8.7x10"9 rad in 8 days, corresponding to 0.002 m per day in the
satellite's position in the orbit (a= 8.074 X 108 m),

Moreover, the errors in £ and g have opposite signs, so that the error in £ + g is of
the order of 8 X 107 rad in 8 days, or 1078 raa per day (see Figure 1).

We conclude that there is satisfactory agreement in all variables except G.
Adding or removing the contributions of second-order perturbations (the generating
function Z3) does not affect the results. We suggest a tentative explanation for the
large error in G. In the process of removing the variables £ and h from the
Hamiltonian, we have written

&S
G=G'+—a—g7 3

where

S=Sl/2+Z + Z

18
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We took ZZ from equation (4), where we assumed that Z2 depends on g’ only threcugh
the resonant variable 0. However, after obtaining Z, and its derivatives, we got
[see equation (20)]

07 a ]
2 d
e G0 FBlgA-D g L) (0

where d= B + §(g’) and By~ (l/kz) (61&2/ag’) are functions of L./, G/, I, and g’, and
both have significant dexivatives with respect to g’. Honce, there is an inaccuracy in
the dependence of 22 on g’. The correct equation for 22 is

07 oF., 0Z
(ay+cr) 2 1 Y42 (31

) w we  ~ FrSie o

where

Zy = % (L, G, 1, 0,8)

and
(1'22= 02299_’+ OZZ
dg” 0 og’ g

Another factor in support of this explanation is that, when J2 is set equal to zero
(and, hence, OF l/ dG’ = 0), the error in the variable G is of the order of 0,27, as il
is for the variables L and H.

It seems that, to obtain better agreement in the variable G, we must take into
account the intricate dependence of Z o on g’ and golve equation (21) more accurately.

20
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APPENDIX A

EXPRFSBIONS OF S 1/2 AND I'TS DERIVATIVES WITH RESPECT TO TIIE
MODIFIED DELAUNAY VARIABLES

The function S 1/2 is obtained by solving the resonance equation

; 2
, 8 ‘
{F g8y o} 4*2‘- &, (WM?‘-) P2D ain® 0= 0 (A-1)
where
2
Y - ﬁ v - j:l.-—-
a L'3
and

zs
. - 1/2
Fosypt=vyg7—=
If
4
A e ....2.%..1."..._
3 nkl
2. 12D
AZ
Y
and

a= Yi-xtgin?o

A-1



then, solving equation (A-1) and applying some continuity arguments yield

&
%32=Am~1> REPLE O 12 OF TI)
Oivuisal, PAGL L3 Pour

and

SL/Z=A(12 -0) ,
where we define

I, = E(©,k)
Let us also define
Io =F@O,k) .

Here F(0, k) and E(9, k) are the elliptic integralis of the first and second kind, respec-
tively. The derivatives of Sl /o 8T€ then

a8
1/2 :
L= acyy (a-1)

(A-2)

2
Tir o= Tg=0) +8eyy (I,-0) + CoPY(A-1) +(cgyay ~4c;v) (Ih~-15)
2
G T Cy YDy (A-1) +egvay (Ip-1g)

2
TS YCPg (A=) teyvag Iy -1

[ e ad



whexre ¢ 1> Cos &) By, 8 QXe as given in equations (24),

= 08
Py =5

We also have

where

0 P

Caxd

oL’ %

0 _P2

GI

ro]

w P

-2

o

favs

X 2 A X 2

oL a

2 00 pY

B3 -a_}zA"‘_Q—(Iz“‘Io) s

aIO::.‘L.—.Q..}.E(I "I)

X AX 2 V-2 0 ?
4 2

I_Z(O)nj‘ d—-§= 12 (Iz_k SlnAO cos O
0 A 1-k

- & gL
Py " 5G P35
0 g
U2 0
o0 _ Py
®E
30 _
Wy s

2 gin © cos 0 90

)

(A-3)

(A-4)



In the above,

if
if
if
if
if

X=4"orh’

X= @
X= 1



APPENDIX B

DERIVATIVES OF by, by, bg, AND {(g’), AND SECOND
DERIVATIVES OF {(g’)

We recall the definitions of D and ¥, introducing the quantities B and C:

D?‘~~»='.!32+c2 ’

D cos ¢=B R

Dging=C .,
Then, if X is any of the variables I/, G’, H’, or g’, we get

oD oB aC
D'{,zf'»‘-‘Bﬁ'i‘C——.‘; . B~1)

L e

If X #g’, we have

kl[3+ko ,. ‘
-QB-~Z Z 2 [S(k k) Ak,,k x)] cos lk -2%)g - A ]
X X Sy ko) Adky, Ky, (oo = 2308 = By x| 2
k0 x=0
kl{.’nhko |
_8_Q=Z P [S(k k) Ak, k x)] sin [k -2%)g - A, .
X ax (P10 %) A1 Kgo (8o~ «X)8 kp, kol
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and if X = g’, we get
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ko x=0
(B-3)
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0 L]
TFor the derivatives of ¥, we have
C=Dsiny |,
so that
= _1 2D -
8X D cos P+ 54 sin ¢ (B-4a)
and
8 _1(sc 1 o -
X B 8X D aXC ) (B-4b)
We also have
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