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ABSTRACT 

In Papar I, we derived equations for the perturbfitions on an artificial satellite 
when the motion of the satellite is com~nensurablo with that of the earth. Tlds was 
done by first selecfing the tossers1 harmonics that contribute tho most to  tho per- 

turbations and then by applying Hori's metl~ocl by use of Lie series. IIere, wo intro- 

duce s ome modifications Lo the perturbations, which now result in better agreement 
with numerical integration. 



Part  I1 

If Wle gravitational potential of tho earth is expandad in toxmrj of Legendre poly- 
nomials and functions, then in order to  obtain a good npproximation in t l ~ e  clete~mina- 
tion of the orbit of an artificial satellite, it is uaually sufficient t o  consiclor tho zonal, 
longitude-free terms of the expansion. Ilowevor, the influence of tho tesseral t e r n s  
becomes important when the moan mution of the satellite and the rate of rotation of 
tho earth around i r;s axis a r e  in a simplo ratio; this is cnllccl to.cisez%l-11armc1.nics 
res onance . 

In Paper I (IXomanovricz, 1075), a theory was clorivcd to compute an:llytically the 
perturbations on the mol,ion of an artificial satellite in tho case of tossoral-11amnonic~ 
resonance. In a coinparis ~n with a numerical integration, however, some discropnn- 
cies appeared in the analytical  neth hod. After some modifications wore made t o  tho 
pexturbation expressions, which we derive herein, the theoxy has proved to agree much 
befAer with numerical integration. 

* 
This work was supported in part by Grant NGlit 09-015-002 from the National Aaro- 
llautics and Space Administration. 

l '~esearoh  assistant, Srnithsonian Astrophysical Observatory, September 1973 to  June 
1875. Currently at Institut de Physiclue du Globe, Univcrsitd Paris 6, Paris, France. 
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2. NEW EXPRESSIONS OF TIIE PERTURI3ATIBNS 

2 .1  Perturbing Function and Equations of Motion 

The gravitational potential of the earth at exterior point8 can he rjxprossed as 

follows [cf. equations (3) and (2) of Papor I]: 

whore (r, 0, A) arc spherical polar coortlinatos relative to the center of mafia of tho earth, 
the rwia of rotation being the pole of coortlinatos; 11 is thc gravitational constant G  time^ 

the mass of the earth; 11 is the mean equatorial radius of the earth; Pn (z )  is  the n th 

Lcgoivlro polynomial; Pn2, (B) are associ:itcd Lcgcndra functions: 

nnil .Tn mcl Jn., nro dimensionlcsfi coofficientfi i+clate(l to tho normnlizc(1 coefficients 

In choosing thc perturbing function, we take tlie leading zonal ltzimonic (i. e., 
the one containing J2) and we select those tesseral bai~nonics that, in the particular 

resonance being studied, give rise to long-period effects with the largest amplitstdo. 



The gcnornl lossernl harn~onic can bo clcvclop~tl in torme of the osculating elliptic 

elements (a, o, I, $2 ,  a, M), referred to the equator of the earth, jn tho form (liauln, 

19636): 

wherc t1 is the nngaiar velocity of the rotation of the ertrtlz, t is the time, and F 
n, m, P (1) 

md G (e) are, respectively, t11e inclination :md eccentricity functions as defined n, P, q 
by I<auYa (1966). The functions G (e) are  of order lql in eccentricity. 

"7 P, q 

Rcsonnncc occurs wllcn a pair (a, p) of ~nutunlly prime integers exists such that 

the satellite performs fl nodal periotls while the aarth rotates a times relative to file 

precessing satellite's orbit plane, This can be expressed by 

. . 
where w, M, and i2 are tho rates of change with lime of w, M, and 12, respectively. 

The corresponding slowly varying arguments are of the form 

wherc 

is called the resonant variable and kl = 1,2,3,. . . . 

Conaidering that ; is a small quantity and that the general argument in a tesseral 

harmonic is 



9 - (n - 2p)+ f (n = 2p 4 q ) A l  4 n q r  - at = An, m) , 

we shall kssp thuse tettssral hnrnlmfcs tlmt e m t ~ i n  nqpmonttt aueh that 

Since n "*m 'and ~incs l(wor ardor tc,cseertzl ham~snice are bound to have 1arp;sr 
offocte bcauae of the factor (~t/r)", whore R/r < 1, it can be n~surned that it ia suffi- 
cient to conelcler only tho caetles kl = 1, 2, and 3. In a gonoral manner, tho to~hornl 
hamnonics to  be kept a re  

--- where kl = l ,2,3, . . . a d  fw ore& 1: I$ tlio !nth k talie~ vuluos ~ , l ,  2, . . . , wo 0 
then write each V in tilo form 

n,m 

where Rn, m, the I1resomt t t  part of the tesseral harmonic, c~nsists of all the t e n r ~ s  
that contain the resonant argm~ents, obtainotl by solving ecluaticnzs (5) for p and y 
[cE. equations (6)) Paper I]. Thus, the resonant part of the tcnncral harmonic 'In, nl 
is 



The residwrJ part of V Is Vb, ,, whoee effects arc  much smaller than those from 
n, 

"h, mb 

In Papor I, we then doiincd D(kl) and Ol(ltl) by 

R - C D(kl) oos 201(kl) , n, m 
lil 

the sum over k0(kl) meaning th:lt wc Imvo taken into account a11 tho value8 of bo when kl 

has n given value. In ornlor to ol~tnin n(kl) and O1(ltl), we c m  write 

If we write 



then (aoo Appendix A) 

Finally, the po,anl.ial ill which tho ~ntellite, rnst.68 is 

the sums being taken over all ijie t a~aorn l  hamloi~ic,.r soloctetl, 

If we cornidor the canonicnl set  of DeImuy variables, 

L .=%qIn , D GD-- )/lfi(l-e2) , IID C; D "OH i , 
b g M ,  gD t s  w 9 hD :- I! > 

then the IIamiltmimi of the problem ie 

1i2 F1 = -J2p -P  (cos 0) , 
r 3 2 



Ta rvoicl tlto dspndsncs rrrr tima of the Ihmiltonian, we, pr form at canon3cml tmra- 
fomntion, so that the new variELbl0~ [err ~yltlltigns (12) of P a p r  I] am 

nnd the nslv IIamiltanim i a  

The squations r jE mt&im nro than 

in thc above, u :: g t f, mrl I: is t l~c tmo :ii~omaly. 



The IIamiltcrmlun i~ nuw oxpantlccl in tcrnln of powera of ale uninll paranlotor J,: 
Y 

To ~implify tllo writing, we ~ l x ~ l l  now consider only ono vnluo of hl, : ~ s  cI(tfinc(1 
in Sactian 2. 1, :md drop tila indox kl in oxprousion8 ~ u c h  nu l)(lcl) ~mnd Ol(kl) The 
IImiltoniarr, is then suoll that 

We clofinu 0 by 

To clcrivc tho complete porturl~ations, we shall sun1 the indivitlual oxyre~sions ol>tnincd 
for  cnch vnluc o i  kl. 

In tho proccss of rcmcming slzonl,-porioti ternls from tho JIai~iltonian in Paper I, 

we applictl IIorils mothot1 by Ida sovios (IIori, 19GO) :mtl consirlcrctl n cnnonicnl 

tmnsfomn:llion 

(19 G, 11, P , g, h) ---+ (L', G', ITf, B ', g', 11') 

1"- It'' 



S 1 / ~  and Z1 are tlie purturl~ations clue only to  regonant Baxmnntc~, SJ fhe perturba- 
tions due only to  J2 (or to the zonals, if 0t11er zom18 nro also comiclerecl), and Z2 

thc pert~?rbntions (lue to the intoraction of J2 with t110 resonant tesserals. 

lin, order to avoid small divirjo~s, S iEt devclaped in temis of powers of fhe Etquare 
root of the small par,meter J2, as is the custom in resonance problems (Papper I). 

Wo reintroduce the cl~aracteristic small parameter of tho problem: 

To find S ,,2, Z and Z2, we gather terms of tho s a n e  order relative to J2 from 
(Hori, 1966) 

where '1;" is tho now Iiarniltonian, and y is assumed to be of order 1/2. 



In comparing this tlieory with numerical integration, we found good agreement for 
Eli@ perturbations of highest order due only to the resonant tosserals. The relevant 

part of the determining function is S In Appendix A, we repeat tl.e derivation of 

S1,~, expressions of the derivatives of this function with r e s p o t  to the modified 

Delaunay variables, and definitions of the quwtities A, 12, Io, k, nnd A. 

Some problems developed, however, when the J2 tesseral-interaction terms 
were considered. It turns out (cf. Paper I) t l a t  the detemhing functiol? Z2  cannot 

be defined by 

where 

since he!re we have neglected the contribution of ale socula,~ xate to the variable g. 

To the highest order, then, let us consider instead the following equation as a 
definition of Z2: 

We assume that Z2 is a fundion only of Lf, Gf, IIf, and 0, where we recall 

20 = al' -t- P(gf -t hf) -t $(gf) - n . 

Then we obtain 



az2 - = - {F S 1 = -0c2y (A- 1) - b2a4c2y (I2 -Io) , 2 ao 1, 112 

where 

CT= b la+  b2d+ b3P 

and 

[cf. equation (44) of Paper I]. Hence, 

where 



The derivatives of Z2 with rcspect to the modified Delaunny variables are  as  

%llowa. I f  X is a modified Deh , m y  varia.ble, then 

whew 812/OX and M/Bx are given in Appendix A, and 

in which 

and 

The relevant express ions are as in equations (44) and (6 5b) and Appendix A of Paper I; 

they are  repeated ill Appendix B herein. 

2.3  Second-Order Pel$urbations 

Instead of considering the second-order ped~trbations due to the resonant 

tesserals separately from those due to the interaction terms, let us define a determin- 

ing function Z by 

This yields, assuming Z3 = Z3(Lf ,  G', Hf, O), 



which, aPc&r some algebra, gives 

OZ 3 
2 2 

-= R1 (A - $) (A-1) + R2 (I2-lo) k sinOcos0 + R  (I k sin0 cos O 
€lo A 3 2-O) A 

where 

In equations (24)) terms of higher order were neglected and the following were used: 



Ai'ter some algebra, then, we obtain 

The derivatives of Z3 with respect to the modified Delaunay variables ax0 as follows: 

where 

2 2 
83 k2 sin 20 

Q=-  ax ( 1 - T + ~ C O E 2 ~ ) - $ p ( O - 2 )  

In equation (26), the derivatives a12/iXX, 80/8X, and ~ I ~ / D X  are given in AppendFY A 

Now we get 



In conclusion, the detemnining function for tllo canonical trunsfomnat;ion user1 to 

remove short-period terms from the IIlarniltonian is  

s = SIl2 C z2 C Z 3  , 

and the new IIamiltonian is 

F;)(Lt, H') = BO(L', IIr) , 

l?&(Lf, Gt> Hf, gt) = - D(lc1) (Lt, Gt, XIf, gf)  . 
Ir l  

The new equations of motion a re  then 

CIL' aFf - = - = o  
dt' at t  3 

and the long-periocl variablo gt  ~*t'omrtins t o  be removed, folloiving the procedure givon 

In Section 5 of Paper I. 



3, CORIPARISON OF TI# TEIEORY WTEI A NUMERICAL INTEGRATION 

The theoretical computations have been compared wit11 a numerical integration 

provitlocl by tho rautine D W .  Tlle satellite comidered was G ~ O R  1, which passes 

througl~ the a = 1, P = 12 rcsonsnco with the following orbital elements: 

semirnajor ax:!: 8 a. = 8.074 X 10 m , 
eccentricity e O =  0.973 , 
inclination I. = 59* . 

We hlce the constants of the problem to  be 

L i = 4 i t i O  , 
2 G;; = L;; (1 - e0) , 

11;; = G;; cos IO , 
1 ; = 0  , 

g;=o  , 

h;;=O . 

2 In this case, k is of the order of lom4, go the motion of the satollito is d the cil-cula- 

tion type, Tho porioci of the short-tonn prturbations is approximately 7 days. 

Alter removing the short- and long-period perturbations, wo obtain e r rors  in 

the Delaunay variables I,, G, and I1 for a period of 8 days, with computations per- 

formed every 0.5 day. The results aro shown in Table 1. 



Table 1. Errors  1?7 f : ~  &tion variables as computed wer a period 
of 8 day:. 

Amplitucle of * Helative e r ror  
Variable perturbation X 2* Error  (96) 

* 0 
The semimajor axis is expressed in units of 10 m. 

We obtain the following e r rors  in tbe Delaunay angular variables: 

1 = 7.79 X mad in 8 days, corresponding to  ~ 0 . 8  m per day in the 
ascending n d e  of the orbit (a = 8.074 X 106 m), 

g = 7.05 X lom7 mad in 8 days, corresponding t o  0.75 m per day in the 
argument nP per ig~e  (,t = 8.074 X lo6 mjj 

h = 8.7 X lo-' rad in 8 days, corresponding to  0.002 rn per day in the 
satellitets position in the orbit (a = 8.074 X lo6 m), 

Moreover, the) errors  in 1 and g have opposite s i p s ,  so  f ia t  the e r ror  in 1 + g is  of 

the order of 8 X lom8 rad in 8 days, or lom8 racl per day (see F i y r e  1). 

We concluclc that there is satisfactory agreement in all variables excopt G. 

Adding or removing the contributions of second-order perturbations (the generating 

function Z3) does not affect the results. We suggest a tentative explanation for the 

large error  in G. In the process of rornoving thc variables 1 and h from the 

Hamiltonian, we have written 

where 





We took ZZ from equation (4), where we nsaumod that 2% depend8 on gt only through 
tho resonant variable 0. IIowevor, after obtaining Z2 and its drrivativea, we get 
[see equation (20)] 

2 where d l  p + $(gf )  and a* ;- (l/k2) (B /agt) are functim of Lt, Gr,  lit, and g f ,  and 
both liavo significant derivatives wit31 respect to gr .  Honce, there ie an haccuracy in 

the dependence of Z2 on gt. Tho corxoct ~yuation for Z2 is 

z2 = Z,(IJ, r G, II, 0, g) 

Another factor in support of this explanation iin that, when J2 io set equal to zero 
(and, hence, B F I / E f  ;- 0), the error in the variable G is of tho ardor of 0.2%, as it 
is for the variables L m d  EI. 

It seems that, to obtaln better agreement in the varkl~le G, we must tako into 
account the intricate clepcndence of Z2 on g' and solve equation (31) more accurately. 



I woulrl lilm t o  tlllank Drn. I i .  A k ~ n o ~  and E, &I. Gaposchkfn for tho encourage- 
ment tlloy gave mu for thie work. 



Page intentionally left blank 



I~IORI, G, 
1900. T l ~ o r y  of goncsral part;urbal;ione with unspscifiod caulmica1 variablenr . 

Publ, Astron, Sot, Japm, vol. 18, pp, 287-204. 

ICAULA, W, 

1900. Thsory of Satallito Cfe&rryt Blaisd@ll P&l, Go.,  Waltbm, Mnlss., 
124 pp. 

ROMANOWICZ, 33, A, 
1975. On tho teuetoral-harmonics roaonnnco problom in nrtificiul-satallilo 

theory. SrnitboninnAstr~pl~ya. Obs. Spc. Rop. No. 305, 51 pp, 



The fimction Sib l a  oblainotl by nolvlng tho reamunco otluation 



then, salving equation (A-1) and applying soma r;;;;;tiriuity arguments yield 

wllere we define 

I2 = E (0, k) . 
UI; us also define 

I,=P(G,k) , 

EIere F(0, Ir) and E(0, k) are the elliptic integrals of tho f i rs t  and second kind, respec- 
+. dveiy. The derivativen or" S are then 

1/2 

as!/2 = c 2 ~ p 2  (A- 1) + c2y'L2 (I2 -IO) , 
(X; 



whore cl, c2, al, a2, a3 axo as given in equations (24), 

1 aD 
"4=155f7 ' 

Wo also have 

and, if X is a m odifierl Dclaunw variable, 

0 
ax 2 

I - ~ ( ~ ) = J  T =  + (I2 - I: sin 0 cos €I 
A 1-1: A 0 ) 



In the above, 

4 2 
1L -7-- 1 L ac2y  if X = I,' 



APPENDIX B 

DFIIIVATIVES OF bl, b2, bg, AND ;Il(gf), AND SECOND 

DEIIIVATIWS OF $(gf) 

We recall the definitions of D and $, inf;roclucing the quantities B and C: 

Dcos $= I3 , 
DsinJ ,=  C . 

Then, if X is any of the variables bf, Gf, XIf, o r  g*, we get 

If X $ g', we l-&-l.vo 

C ~ [ ~ ( ~ l , ~ O ) ~ ( l c l , l c o , ~ )  sin ( 1 ~ ~ - 2 x ) g - ~ ~ ~  , 
lc, x=o 

I [ 1' 0 1 



and if X =: gr,  we got 

For tho derivatives of $, wo have 

s o  that 

ac OD -= D-!& cos $ +  sin $1 ax 

and 

We also have 
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