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ABSTRACT
 

An investigation is made of the problem of predicting
 

the attitude of satellites under the influence of external
 

disturbing torques. The attitude dynamics are first
 

expressed in a perturbation formulation which is then
 

solved by the multiple scales approach. The independent
 

variable, time, is extended into new scales, fast, slow,
 

etc., and the integration is carried out separately in
 

the new variables. The rapid and slow aspects of the
 

dynamics are thus systematically separated, resulting
 

in a more rapid computer implementation. The theory is
 

applied to two different satellite configurations, rigid
 

body and dual spin, each of which may have an asymmetric
 

mass distribution. The disturbing torques considered
 

are gravity gradient and geomagnetic. A comparison
 

with conventional numerical integration shows that our
 

approach is faster by an order of magnitude.
 

Finally, as multiple time scales approach separates
 

slow and fast behaviors of satellite attitude motion,
 

this property is used for the design of an attitude
 

control device. A nutation damping control loop, using
 

the geomagnetic torque for an earth pointing dual spin
 

satellite, is designed in terms of the slow equation.
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CHAPTER 1
 

INTRODUCTION
 

1.1 General Background
 

The problem of predicting a satellite attitude motion,
 

under the influence of its environmental torques, is of
 

fundamental importance to many problems in space research.
 

An example is the determination of required control torque
 

as well as the amount of fuel or energy for the satellite
 

attitude control devices. Similarly, a better prediction
 

of the satellite attitude motion can be helpful in yielding
 

more accurate data for many onboard experiments, such as
 

the measurement of the geomagnetic field or the upper
 

atmosphere density etc., which depend on the satellite
 

orientation.
 

Yet, the problem of satellite attitude prediction
 

is still one of the more difficult problems confronting
 

space engineers today. Mathematically, the problem con­

sists of integrating a set of non-linear differential
 

equations with given initial conditions,such that the
 

satellite attitude motion can be found as functions of
 

time. However, the process of integrating these
 

equations by a direct numerical method for long time inter­

vals, such as hours, days (which could be even months or
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years), is practically prohibited for reasons of compu­

tational cost and possible propagation of numerical
 

round-off and truncation errors. On the other hand, it
 

is even more difficult, if it is possible at all, to
 

have an exact analytic solution of the problem, because
 

of the non-linearity and the existence of various external
 

disturbing torques in each circumstance.
 

A reasonable alternative approach to the above problem
 

seems to be to apply an asymptotic technique for yielding an
 

approximate solution. The purpose of this approach is
 

to reduce the computational effort in the task of attitude
 

prediction for long intervals, at the cost of introducing
 

some asymptotic approximation errors. Meanwhile, the
 

asymptotic approximate solution has to be numerically
 

implemented in order to make it capable of handling a
 

broad class of situations.
 

We found the problem is interesting and challenging
 

in two ways. First,because it is basic, the results
 

may have many applications. Second, the problem is very
 

complicated, even an approximate approach is difficult
 

both from analytic and numerical points of view.
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1.2 Problem Description
 

The subject of this thesis is the prediction of
 

satellite attitude motion under the influence of various
 

disturbing torques. The main objective is to formulate
 

a fast and accurate way of simulating the attitude rota­

tional dynamics in terms of the angular velocity and
 

Euler parameters as functions of time. The formulation
 

has to be general, it must be able to handle any orbit,
 

initial conditions, or satellite mass distribution. Fur­

thermore, it must predict the long term secular effects
 

and / or the complete attitude rotational motion, depending
 

on the requirement. Because of this built-in generality
 

it is intended that the program can be used as a design
 

tool for many practical space engineering designs. To
 

achieve this desired end the problem is first expressed
 

as an Encke formulation. Then, the multiple time scales
 

(MTS) technique is applied to obtain a uniformly valid
 

asymptotic approximate solution to first order for the
 

perturbed attitude dynamics.
 

Two different satellite configurations are considered,
 

a rigid body satellite and a dual spin satellite, each of
 

which may have an asymmetric mass distribution. In the
 

latter case, it is assumed that the satellite contains a
 

single fly wheel, mounted along one of the satellite
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body-principal-axes, to stabilize the satellite attitude
 

motion. These models are considered typical of many
 

classes of satellites in operation today. The disturbing
 

torques considered in this dissertation are the gravity
 

gradient and the geomagnetic torques. For a high-orbit
 

earth satellite these two torques are at least a hundred
 

times bigger than any other possible disturbance, though,
 

of course, there would be no difficulty inserting models
 

of other perturbations.
 

Both the gravity gradient and the geomagnetic torques
 

depend on the position as well as the attitude of the sate­

llite with respect to the earth. Therefore, the orbital
 

and attitude motion are slowly mixed by the actions of
 

these disturbances. However, the attitude motion of the
 

vehicle about its center of mass could occur at a much
 

faster rate than the motion of the vehicle in orbit around
 

the earth. Directly integrating this mixed motion, fast
 

and slow together, is very inefficient in terms of com­

puter time. However, realizing that there are these
 

different rates, then the ratio of the averaged orbital
 

angular velocity to the averaged attitude angular velo­

city or equivalently the ratio of the orbital and attitude 

frequencies (a small parameter denoted S ) may be used in 

the MTS technique to separate the slow orbital motion 

from the fast attitude motion. In this way the original 
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dynamics are replaced by two differential equations in
 

terms of a slow and a fast time scale respectively.
 

The secular effect as well as the orbit-attitude coupling is
 

then given by the equation in the slow time scale,while
 

the non-biased oscillatory motion is given by the second
 

equation in terms of the fast time scale. In addition,
 

a method for handling the resonance problem is also discussed.
 

In some situations the slow equation for the secular
 

effects can be useful in the design of an attitude control
 

system. The vehicle environment torques, if properly
 

used, can be harnessed as a control force. However-, to
 

design such a control system it is often found that the
 

control force is much too small to analyze the problem
 

in the usual way. In fact, the design is facilitated in
 

terms of the equation of the slow variable because only
 

the long term secular motions can be affected. This
 

application is demonstrated by mean of a nutation damping
 

control loop using the geomagnetic torque.
 

ORICGIktPk~'OF POOR 
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1.3 	Historical Review and Literature Survey
 

The problem of attitude dynamics of an artificial
 

-satellite, rigid body as well as dual spin case, is
 

closely related to the branch of mechanics of rigid body
 

rotational motion. The subject is regarded as one of
 

the oldest branches of science, starting from middle of
 

the eighteenth century. Since then it has interested
 

many brilliant minds for generations. The literature
 

in this area, therefore, is rich and vast. Thus, we have
 

to focus our attention on only those areas which are
 

immediately related to this research.
 

The classical approach to the rotational dynamics
 

mainly seeks the analytic solutions and their geometric
 

interpretations. By this approach, many important and
 

elegant results have been obtained. Among them, the
 

'Poinsot construction' of L. Poinsot (11], gives a geo­

metrical representation of the rigid body rotational
 

motion. The Euler-Poinsot problem,for a torque-free
 

motion, was first solved by G. Kirchhoff[12] by means of
 

Jacobian elliptic functions. On the other hand, F.
 

Klein and A. Sommerfeld [13], formulated the same problem
 

in terms of the singularity-free Euler symmetric para­

meters and gave the solution. Recently, H. Morton, J.
 

Junkins and others [15] solved the equations of Euler
 

symmetric parameters again by introducing a set of complex
 

orientation parameters. Kirchhoff's solution as well as
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the solution of Euler symmetric parameters by H. Morton etc.­

play an important role- as a reference trajectory- in our
 

study.
 

This approach,however, because of its nature can
 

not handle a general problem for various situations. This
 

difficulty is substantial for the case of an artificial
 

satellite. A more flexible alternative,widely applied in
 

the engineering world, is the asymptotic technique for
 

evaluating an approximate solution. Among them, the
 

averaging method by N. N. Bogoliubov and Y. Mitropolsky
 

[14] is the most commonly used. For example Holland and
 

Sperling[16] have used the averaging method for estimating
 

the slow variational motion of the satellite angular
 

momentum vector under the influence of gravity gradient
 

torque and Beletskii [17] formulated perturbation
 

equations using the osculating elements for a dynamically
 

symmetric satellite. F. L. Chernous'ko [18] derived
 

the equations of variation of parameters for angular
 

momentum vector and the rotational kinetic energy for
 

an asymmetric satellite. However, the averaging method
 

is most easily appied for a problem which normally has
 

a set of constant parameters, such that the slow variational
 

behavior of these parameters can be established in a
 

perturbed situation. For example in a simple harmonic
 

oscillator, the frequency and amplitude are two para­

meters which characterize the dynamics described by a
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second order differential equation. Unfortunately,
 

rotational motion in general,does not immediately lead
 

to a complete set of similar parameters. Although, it
 

has constant angular momentum vector and kinetic energy
 

as parameters it is a six-dimensional problem. Besides,
 

an elliptic integral is involed in its solution. Never­

theless, this difficulty can be overcome by casting the
 

problem in a Hamilton-Jacobi form,from which a variation­

of-parameter formulation can be derived in terms of
 

Jacobi elements. This approach is reflected in the works
 

of Hitzl and Breakwell [19] Cochran[20], Pringle[21] etc.
 

Our dissertation is different from the others
 

mainly in three aspects. First, it is a new approach,
 

using the multiple time-scales method [1-7] with the
 

Encke perturbation formulation [22], for predicting the
 

complete satellite attitude motion without involving the
 

Hamilton-Jacobi equation. Second, we are interested in
 

the secular effect of the disturbing torques as well
 

as the non-secular oscillatory effect. By combining
 

them, we have the complete solution. Further we know
 

that the former gives the long term behavior and the
 

latter indicates the high-frequency motion of the sate­

llite attitude dynamics. Third, our immediate objective
 

is numerically oriented for saving computer time. Thus
 

the difficulties we encounter could be analytical as
 

well as numerical
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1.4 Arrangement of the Dissertation
 

Chapter 2 reviews the multiple time scales asymptotic
 

technique - a basic tool in this research. Two examples
 

are used for illustrating the fundamental procedure,one
 

represents the secular type of almost-linear problem
 

and the other represents the singular type of slowly
 

time-varying linear system.
 

Chapter 3 develops the asymptotic solution to the
 

attitude motion of a rigid body satellite under the influ­

ence of known small external torques. It shows that,
 

the original equations of attitude dynamics can be repre­

sented by two separate equations - one describing the
 

slow secular effects, and the other describing the fast
 

oscillatory motion. The latter can be analytically
 

evaluated. Numerical simulation using this approach is
 

also presented for the class of rigid body satellites
 

under the influence of gravity gradient and geomagnetic
 

torques.
 

In chapter 4, the previous results are extended
 

to the case of dual spin satellite, in which .a fly-wheel
 

is mounted onboard. Two sets of numerical simulations,
 

one for a dual-spin satellite in the earth gravity
 

gradient field and the other influenced by the geomagnetic
 

field, are given.
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Chapter 5 represents an application of the fact that
 

MTS method separates the slow and fast behaviors of a satel­

lite attitude motion. We demonstrate that the slow equation,
 

which describes the secular effects, can be useful in the
 

design of a satellite attitude control system. A
 

nutation damping feedback control loop,using the geomag­

netic torque for an earth pointing dual-spin satellite,
 

is designed in terms of the slow equation.
 

In chapter 6 the conclusions drawn from the results
 

of this study are summarized, and some suggestions for
 

future research are listed.
 

17
 



CHAPTER 2
 

REVIEW OF MULTIPLE TIME SCALES (MTS) METHOD
 

2.1 Introduction
 

multiple time scales (MTS) method is one of the 

relatively newly developed asymptotic techniques. It 

enables us to develop approximate solutions to some 

complicated problems involving a small parameter S I 

when the exact solutions are difficult, if not impossible, 

to find. The basic concept of MTS method is to extend 

the independent variable, usually time, into multi-dimen­

sions. They are then used together with the expansion of 

the solution (dependent variable) such that an extra degree 

of freedom is created and the artificial secular terms can
 

be removed. Thus a uniformly valid approximate solution
 

is obtained [1-7].
 

An unique feature of the MTS method is that it can
 

handle secular type as well as singular type of perturbation
 

problems in a unified approach. By this method, the fast
 

and slow behaviors of the dynamics are systematically iden­

tified and separated. The rapid motion is given in terms
 

of a fast time scale and the slow motion in terms of a
 

slow time scale, each of which, in most cases, has a
 

meaningful physical explanation. A comprehensive refer­

ence on this subject is by Ramnath[3]. The textbook by
 

Nayfeh [7] has also been found informative.
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2.2 MTS and Secular Type of Problems
 

A secular perturbation problem is one in which
 

the nonuniformity in a direct expansion occurs for large
 

values of the independent variable. We consider systems
 

with a small forcing term. The forcing term changes
 

the dynamics gradually and has no appreciable effect in
 

a short time. However, the long time secular effect of
 

the small forcing term may significantly influence the
 

overall behavior of the dynamics. From a mathematical
 

point of view, a secular type of problem has a singularity
 

at infinty in the time domain.
 

Since perturbation problems and the asymptotic
 

technique for solving them can be most easily understood
 

by solving a demonstration case, let us consider a simple
 

example of a slowly damped linear oscillator [7],
 

X + X =- x 0 (2.2.1) 

where E is a small parameter. The simplicity of the 

forcing term -ZE.% allows us to interpret the approximate 

solution, developed later. The exact solution is available,
 

but the generality of our asymptotic approach will not be
 

lost in spite of the simple form of the forcing term.
 

We first solve the problem by Poincare type of,
 

direct expansion method [33], such that difficulties of
 

non-uniformity and secular terms can be illustrated.
 

Then the same problem is solved by MTS method, which
 

19
 

QUAL4T 



yields a uniformly valid asymptotic solution to first
 

order.
 

We expand X(*) into an asymptotic series in E:
 

'X(*) -- + S i + Sz+ ... . 

S ) it)(*)...(2.2.2) 

An asymptotic series is defined [9] as one in which
 

the magnitude of each term is at least one order less than
 

its previous one lie. ISni /IsI = /Xn -IXt- I A ,It/Ixi 


Therefore S) decreases rapidly as the index i increases.
 

This simple fact allows us to approximate the solution by
 

calculating only a few leading terms in the series expansion.
 

Substituting(2.1.2) into (2.1.1) and equating the 

coefficients of like powers of E , we have: 

a,
 

o (2.2.3) 

(2.2.4)
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The solution for % (*) in equation (2.2.3) is 

.)1--- CA- 4 I (2.2.5) 

Where 'a' and 'b' are two constants. Substituting 

%Yo into eq. (2.2.4) of x, 

+%I + y-| -2 6 (2.2.6) 

kifh I.C,. 

The solution is Z
 

aeI0* =CC * bt (2.2.7) 

The approximation of x(t) up to first order is 

therefore:
 

= (O Oa*+bA4j (-. 4 tat-12*2-At*4 -,-A,,k;t) 

(2.2.8)
 

Above approximation, however, is a poor one because
 

of the occurrence of two terms - ASf CaA and - 6; F , 

which approach infinity as X-O. They are referred 

to as secular terms. We know the true x(t) has to be 

bounded and asymptotically decaying, for x(t) is a 

damped' harmonic, oscillator. The secular terms 
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make the series expansion Xt)=z4-1-E%1+ in
 

eq. (2.2.8) a non-asymptotic one, since _ _ = F_/,_
3, X6 

,as * -*o . In the process of finding a solution by series 

expansion, there is no guarantee that the higher order terms 

can be ignored in a non-asymptotic series expansion. On the 

other hand, if an asymptotic series is truncated, the error 

due to the ignored higher order terms will be uniformly 

bounded in a sense that lerrorl / (approximate solution 

SE An approximate solution is said to be 'uniformly
 

valid' if its error is uniformly bounded in the interval of
 

interest. We see -that the loss of accuracy
 

by straightforward Poincare type of expansion is due to the
 

occurrence of the secular terms and therefore the approxi­

mation is not uniformly valid.
 

In the following, the same problem will be studied in
 

the context of multiple time scale method, which yields a
 

uniformly valid solution.
 

For convenience, we rewrite the dynamics
 

X +- ZX% 
 (2.2.9)
 

The solution %(U) is first expanded into an asymptotic
 

series of £ , same as before
 

X(-k) Xot)+ (2.2.10)
 

The concept of extension is then invoked, which
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expands the domain of the independent variable into a space
 

of many independent variables. These new independent
 

variables as well as the new terms that arise due to
 

extension are then so chosen that the non-uniformities
 

of direct perturbation can be eliminated [3].
 

Let
 

t- CL-r., rI 1 . . . . . . 3 (2.2.11) 

For an almost linear problem, as the one we are studying
 

rtt 

The new time scales, in general, can be non-linear
 

as well as complex, which depend upon the nature of the
 

problem [4]. However, for this particular problem, a set of
 

simple linear time scales works just as well.
 

The time derivative can be extended in the
 

space by partial derivatives as follows.
 

oA o=d.+a OLt, ; 

-C at1 OL*d 
_ 
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And
 

__- 7 I 

Substituting equations (2.2.12), (2.2.13) and (2.2.10)
 

into equation (2.2.9), and equating coefficients of like
 

powers of E. we have
 

4 ­ (2.2.14)
 

(2.2.15)
 

The original equation has been replaced by a set of
 

partial differential equations. The solution for -/(A)
 

from (2.2.14) is
 

(2.2.16) 

where a,b are functions of ti,-q ,...etc., and are 

yet to be determined. Substitute Y- from (2.2.16) into
 

(2.2.15), and solve for x
 

-F 

4 -k-irp(-Ax 0 ) (Zb1i -&) 

(2.2.17)
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Equation (2.2.17) represents a harmonic oscillator
 

driven by an external sinusoidal function. The
 

Xl(* ) could become unlimited, since the external force
 

has the same natural frequency as the system itself.
 

In order to have 1X1/X0 l bounded, the terms to the right 

hand side of the equal sign in (2.2.17) have to be 

set to zero, which will result in a bounded X1 (*) . Note 

that, this is possible, because there is a freedom of 

selecting functions 'a' and 'b' from the extension of the 

independent variable. By doing so , we have, 

(2.2.18)
i Zb +2 ___Zcf 

or
 

(2.2.19)
 

where 6L0 and , are two constants. Combining 

(2.2.16) and (2.2.19),the approximate solution for X(t)
 

up to first order of E by MTS method is
 

Y=0 +o Ep - 0I4b op 

(2.2.20) 
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The exact solution for (2.2.9) can be obtained,
 

which is
 

4- bKt~'l(-XYWW iit)7 (2.2.21) 

The error/solution ratio in this case is
 

xa 0error I Xe~t Xaproi O(et) 
IX
 

It is interesting to note that by the MTS method,
 

we have replaced the original dynamics (2.2.9) by an
 

equation (2.2.14) in the fast time scale T
 

+ + n XC = 0 (2.2.14) 

and two slow equations in the slow time scale Z 

tI
T 
6b 6 0 (2.2.18) 

The fast equation gives the undisturbed oscillatory
 

motion and the slow equations represent the slow varia­

tional change of the amplitude of the oscillation caused
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by the damping term.
 

2.3 	 MTS M4ethod and Singular Perturbation Problems
 

.There is a class of perturbation problems in which
 

the behavior of the reduced system - by setting 6
 

equal to zero - could be dramatically different from the
 

original. This phenomenon occurs because the reduced
 

system, described by a lower order differential equation
 

can not satisfy the given boundary conditions in general.
 

We call this kind of problem a singular perturbation
 

problem.
 

Singular perturbation problems have played an
 

important role in the engineering field, most notably,
 

in fluid mechanics, for eg. the boundary layer theory.
 

This problem was solved by introducing the inner (Prandtl's
 

boundary layer) and outer expansion [32]. However,
 

the same problem also can be solved in a more straight­

forward approach by the MTS method. This approach was
 

first noted in the paper by Ramnath [4] in studying the
 

behavior of a slowly time-variant linear system by
 

employing non-linear time scales. In the following, let
 

us use an example, which is adopted from [3], for demon­

stration.
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Consider a second order singular perturbation problem'
 

!2,y + W (t)'Y(2.3.1) 

Where O< FC<<I , -is a constant small parameter. 

Expand the time domain t into two-dimensions 

and define Z0, Z,2 as -follows
 

(2.3.2)
 

'at
 

where 4(t) is yet to be determined. 

The time derivative - and can be extended as 

Sc' - ' azAe (2.3.3) 

At2 +2 t4 (Zr) 

44
 

Substituting (2.3.3) into (2.3.1) and separating terms
 

according to the pover of F , we will have the set of
 

equations,
 

28
 



4 fl + W L) zo (2.3.4) 

6':
 

+ 

y -- (2.3.6) 

Y I-V(2.3.5) 

=0 

By assuming that has a solution in the form 

=) oL"z) P.x(zI ) (2.3.7) 

substitution into (2.3.4), yields 

+t- W(-Cc) ­

(2.3.8)
 

Similarly put (2.3.7) into (2.3.5), we have
 

4- Z;< + k(2.3.9) 

o - (2.3.10) 

The approximate solution up to first order can be
 

constructed as
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-I -I 

f k j 2C, Ai%tptf ftJ ti%.r(tw 

(2.3.11) 

We obtain (2.3.11) from (2.3.8) and (2.3.10). 

Note that in our approximation the frequency variation
 

is described on the 'tI scale and the amplitude variation
 

on the XC scale. The success of this approach depends
 

on the proper choice of the nonlinear clock. While in
 

the past this choice was made on intuitive grounds,
 

recent work [2. ] has been directed towards a systematic
 

determation of the clocks. Ramnath [3 ] has shown that
 

the best nonlinear clocks can be determined purely in
 

a deductive manner, from the governing equations of the
 

system. With a judicious choice of scales the accuracy
 

of the asymptotic approximation is assured. A detailed
 

error analysis of the approximation was given by Ramnath
 

[3 ]. These questions are beyond the scope of the
 

present effort and reference [3 1 may be consulted for
 

more information.
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CHAPTER 3 

PREDICTION OF ATTITUDE MOTION FOR A RIGID BODY SATELLITE 

3.1 Introduction
 

In this chapter, a multiple time scales asymptotic
 

technique is applied for the prediction of a rigid body
 

satellite attitude motion disturbed by a small external
 

torque.
 

The attitude dynamics of a satellite, described in
 

terms of the Euler's equations and Euler symmetric para­

meters, are first perturbed into an Encke formulation,
 

in which the torque-free case is considered as a nominal
 

solution. The multiple time scales technique is then
 

used for the separation of the fast attitude motion from
 

the slow orbital motion in an approximate, but asymptotic
 

way. Thereby, the original dynamics can be replaced by
 

two sets of partial differential equations in terms of a
 

slow and a fast time scale. The long-term secular effects
 

due to the disturbing torque are given by the equations
 

in the slow time scale, which operate at the same rate as
 

the orbital motion. A non-biased oscillatory motion is
 

given by the second set of equations in terms of the fast
 

time scale, which basically describes the vehicle attitude
 

oscillatory mQtion. These fast and slow motions, combined,
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give us a first order asymptotic solution to the Encke's
 

perturbational equation, which)therefore~can be regarded
 

as the second order asymptotic solution to the original
 

satellite attitude dynamics.
 

Finally, the fast non-biased oscillatory motion
 

can be analytically evaluated if the external torques
 

are not explicitly functions of time. Thus numerical
 

simulation of a satellite rotational motion by this
 

new approach requires only the integration of the slow
 

equation which can be done with a large integration
 

time step. This fact leads to a significant saving of
 

computer time as compared to a direct numerical inte­

gration. Two examples, one with gravity gradient torque
 

the other with geomagnetic torque, are demonstrated in
 

section 3.6 and 3.7.
 

3.2 	Rigid Body Rotational Dynamics
 

(A). Euler's Equations
 

Newton's second law for rigid body rotational motion
 

in an inertial frame can be written as
 

A 	 (3.2.1)
 

Where H and M are the angular momentum and the 

external torque. By Coriolis law, the motion can be 
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expressed in any moving frame 'b', as:
 

o (3.2.2) 

Where V is the angular velocity of the 'b'
 

frame with respect to the inertial frame. In case the
 

'b' frame is selected to coincide with the body fixed
 

principal axes (x,y,z), then the angular momentum can be
 

written as 

q6= Ix 0 o WX TX Vj ( 

my 0 lo T W( 

(3°2.3) 

where xI, ly I IS are moments of inertia about x, y, z axes. 

Combining (3.2.2) and (3.2.3) we have Euler's equations 

Y t 9 ( 3 1M (3.2.4) 

In vector notation, they are
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I, 	4Ux I(FV M (3.2.5) 

Euler's equations give the angular velocity of a
 

rigid body with respect to an inertial space though this
 

angular velocity is expressed in the instantaneous body
 

fixed principal axes [35].
 

(B). Euler Symmetric Parameters
 

The role of Euler symmetric parameters are
 

similar to Euler angles, which define the relative
 

orientation between two coordinates. From either of
 

them, a transformation matrix can be calculated and a
 

vector can be transformed from one coordinate to another
 

by pre-multiplying with the transformation matrix.
 

However, from an application point of view, there are
 

notable differences between Euler symmetric parameters
 

and Euler angles. The important ones are listed as follows.
 

1. 	Euler angles (. , = I3 2,3) have order of three, 

whereas Euler symmetric parameters ( 2= 1,2,3) 

have order of four with one constraint.
 

2. pi are free from singularity,where Gez are
 

not. Since 19 ) 2 ,0 are the z-x-z rotations, 

in case that =o , one can not distinguish.G 
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from 03 

3. 	1fl propagate by a linear homogenous differential 

equation; 9. are by a non-linear differential 

equation. 

4. 	Oz have a clear physical interpretation, -i.e. 

precession, nutation and rotation. 9 can not 

be immediately visualized. 

By considering above differences, we feel that
 

Euler symmetric parameters are more suitable for numerical
 

computation because they are propagated by a linear
 

equation and free from singularity even though they add
 

one more dimension to the problem. On the other hand,
 

Euler angles are easier to understand. In this chapter
 

we select Euler symmetric parameters for the satellite
 

attitude prediction problem. And in chapter 5, for a
 

satellite attitude control system design, we use Euler
 

angles.
 

The concept of Euler symmetric parameters is based
 

upon 'Euler Theorem', which says that a completely general
 

angular displacement of a rigid body can be accomplished
 

by a single rotation 4) about a unit vector (j 
A 

where 2 is fixed to both body and reference frames. 

The , are then defined as 
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A L4i 3 ( 3 . 2 . 6 )PZ. 

with a constraint
 
3 

/J(3,2.7)= = 

If CYb is the transformation matrix from the
 

reference frame 'r' to the frame 'b',
 

=Vb cv 6 VY
 

Then Crb can be calculated in term of as [35]
 

2 (A 3)C~~'---' -f-/3-10
2.(p,1 : 3 - - - jpt/t,), a(4l-/t#J 

=~21Pp ~ 2 A3 2. z (l AA 

(3.2.8)
 

Also Pi satisfy a homogeneous linear differential 

equation [35] * 

0 WX WJ 'V 3 

__ X , (3.2.9) 

-W, Po 
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-b
 

where tx is the component of WAi in x direction, etc.
 

3.3 Euler-Poinsot Problem
 

Closed form solutions for a rigid body rotational
 

motion with external torque are usually not possible
 

except for a few special cases. A particular one, named
 

after Euler and Poinsot, is the zero external torque
 

case. This is useful here, since the disturbing
 

torques acting on a satellite are small, the Euler-Poinsot
 

case can be taken as a nominal trajectory.
 

It is Kirchhoff [12] who first derived the complete
 

analytic solution for Euler's equation (&*1) in terms of
 

time, in which an elliptic integral of the first kind is
 

involved. In the following, we will review the Kirchhoff's
 

solution along with the solution of Euler symmetric
 

parameters ( g ) by Morton and Junkins [15]. Also,
 

by defining a polhode frequency, we find that the solution
 

for& can be further simplified, such that it contains
 

only periodic functions.
 

(A) Kirchhoff's Solution
 

Without external torque, Euler's equations are
 

Wx : 3 W L.) 0 

J JA (3.321) 
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tJL~xx) ~ 03 (3.3.3) 

Above equations are equivalent to a third order
 

homogeneous ordinary differential equation and its solu­

tion involves three integration constants.
 

Multiplying above three equations by Wx , Wy and W
 

respectively, and integrating the sum, we obtain one of
 

the integration constants for the problem, called T, which
 

is the rotational kinetic energy of the system, that is:
 

-A jz+ 4- 4=2 (3.3.4) 

Similarly, by multiplying the three Euler's equations 
by Ix X , ty and x respectively and inte­

grating the sum, we have H, another integration constant,
 

that is the angular momenbum of the system.
 

x _ + ? + Ha -- I(3.3.5) 

Having rotational energy T and angular momentum H 

given, a new variable + can be defined in terms of time 

t by an elliptic integral of the first kind, 

T-) (3.3.6)
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where A , T and k are constants, and k is the
 

modulus of the elliptic integral.
 

Kirchhoff's solution can be written as follows
 

Wt -X I- 4 A- rq-) (3.3.7) 

LOY (3.3.8) 

W 3 - Cod (3.3.9) 

where constants atb,crk,x andtr. are defined as follows.
 

(3.3.10a)
 
IX ( X - T 

z
2 ZIxT--H
 
b 

_ 

-(3.3.10b)
 

72.2 
(3.3.10c)
 

2- ( 3 H(3.3.10d)
Ix ly :r 

42 9- £jJ: " xT- (3.3.10e) 

-I"
e : H3 

x.-( 2 " ,)'( 3.3.1l0 f )
a., 

39 k 
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=fj (*) ] (3.3.10g) 

Signs of a,b,c and % should be picked, such that
 

they satisfy the equation
 

- - -x (3.3.11) 

The validity of above solution can be proved by
 

direct substitution.
 

Kirchhoff's solution is less popular than
 

Poinsot construction in the engineering world. One
 

reason is that it involves an elliptic integral,
 

the solution becomes rather unfamiliar to the engineering
 

analyst. However, for our long term satellite attitude
 

prediction problem, Kirchhoff's solution seems to be a
 

powerful tool.
 

(B) Solution For Euler Symmetric Parameters
 

Euler symmetric parameters satisfy a linear differ­

ential equation, which relates W i and j [35]
 

jP _ i o W03 - W,~ 
z. (3.3.12) 

P3 L40 0 
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The constraint is
 

A set of complex numbers <00 can be introduced
 

as follows
 

=I -P3 + Pi 
(3.3.13) 

0(3 1% 4-A 13i 

where 

=IT ­

and c' satisfy a constraint of 

CY0 0,q -j Oe! o (3.3.14) 

In matrix and vector notations, (3.3.12) and (3.3.13) 

are 

L 13 (3.3.15) 

= A #(3.3.16) 

41 



where 

*X 

oX 

0 

ALoJO 

(103 

- tA) 

-W 

and 

A 

a 

1 

xL 

0 

A 

0 

o 

-1 

0A 

or 

Substituting (3.3.16) into 

A Lw] A 

(3.3.15), 

a 

we obtain: 

(3.3.17) 

- i 4 

W I,2vy 

324%42x 

WY 

W 

-

) 

.4 1 
1\04* 

1C3 

ct 

0(3 

(3.3.18) 
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For a torque - free rigid body rotation, the 

angular momentum vector H remains constant. If we assume 

one of our inertial axes (say %) pointing in H direction 

and name this particular inertial frame by 'n', then 

H j (3.3.19)
 

Since
 

6 
= C6 H(3.3.20) 

combining (3.3.19), (3.3. 20) and (3.2.8) we have:
 

-b
 

H P 4 fi,4Pz (3.3.21) 

Using the relations
 

-H 
 an4d
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(3.3.21) can be written in Wj and oe; as 

:E i-,_(4 & -I o(o ) (3.3.22) 

Also o4 satisfy the constraint
 

0/i 0-2. - - 3 = f (3.3.23) 

As equations (3.3.22) and (3.3.23) are linear in
 

/0"l '/&o0 2 G3 and 402 03 , they can be solved 

in terms of to),( )Waand H, i.e. 

&' (z4 L -) (3.3.24) 

OCZ._( ,W -

L 3 74 4 ) 

DIGNA] PAGE IS
 
OF POO} QUAIMTW
 



The ratio and 
 oL1 can be easily calculated 

f-Y
H( - Wy T3(3.3.25) 

-- H T,) - -Id ,k42 3js (3.3.26) 

Substituting (3.3.25) and (3.3.26) into equation
 

(3.3.18), we have
 

Aoet zA' H2w 

'L01_-t 7- -2T-H (x-tx: W)( Ic 

ZLy 4u I ' 

Wow we have four decoupled, time-variant homogenous
 

linear equations. Their solutions are immediately
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available in terms of quadratures.
 

Also because (3.3.27) have periodic coefficients
 

(Wx, z the
oWc are periodic), by Floquet theory [36], 


solution can be expressed in the form Q(t) exp(st), where
 

Q(t) is a periodic function and s is a constant. With
 

this in mind, solutions for (3.3.27) are
 

o(Ot) E, -ao pA' ) -wpfr)(Ak 

(* = U. -,)siq'>Pz) AX ej oto) 

(-19) 	 (3.3.28)o4043- Et E, A' r (-Zgt)A 	 KPI) 'Pat) d'* (ko) 

where
 

E = 	 H4 XY LJy(f-)
 

H+ J:y wy,(to)
 

2. 

2. -I '") J 
{H -	 y Vy (to) 

H 	 -WH
-Pi z 	 -Y 
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XI,.Z.T P 

and
 

Ott 

2H

11(t) is an elliptic integral of the third kind. T, 

is the period of wx, Wy, and z * and t are re­

lated by equation (3.3.6). Also '(t) is given by 

6bAA+tf* A* 
H 

Note there are two frequencies involved in the 

solution of Euler symmetric parameters :the first one 

is the same as ,the angular velocity W0 , WY and Ii 

with period of T , and the second is related to exp(-rt) 

with period of 2 1 The latter one can be explained
R 

as due to the motion of the axis of the instantaneous
 

angular velocity vector WIb In Poinsot
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construction, the tip of the Ui-Jb vector makes a locus on
 

the invariant plane called the herpolhode 4nd also a
 

locus on the momentum ellipsoid called polhode. The time
 

required for the vector Ujb to complete a closed
 

polhode locus is --- . We call 'R' the polhode frequency. 

From =A the general solution for -

is: 

E.,) c~zp+* Ejsw(fl4Rf Ez 

o0 E: (+.) /Af( 
pP) 0~ CZP) R) wittnCi+t, 

(3.3.29) 

(C) The Transformation Matrix Chb
 

The transformation matrix C,1b in terms of P2 

is 

t-p 2 + ) 
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where Si is given by (3.3.29), By direct substitution, we
 

have:
 

+ ,
Ceb e lztt) (tzt) C+ C3 (3.3.30) 

where 

Z~Z,E 0,. 3-o,Az) +, , P,)) 

C1 ACut..) ,)II/sz2)/3cE)l 

+ ,( o 
ZE fz 'C,2Cp+;v433 ) Z lI,' (ItV N 

(0)~ ~~ P3 fE , 4Y9Pz(OA o Zf {9]?&, 

2- (o e42P,+E 

.,fl-+,*-{ -2 ,a,.o-,. E~ N)PfEo) 
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+ C2 2 P1 E ftofg)-Cc 2Pd pc f 

. E2. A~g0) -2E 2~ &-

X2 1 pi~tCc )3czo +p. p,+p) f.~jio]+c~~ 

[l-2At,., ~~Wso -412-Pj E1'[fPJ9-lo 

P,Cc1ript o)Aj o -2 iq2:p i('~c, o) 

c0 ()2~~~~2CQ~ Ef&MP),IpE.23 P /o4 4 

C (p-PJ @))PoOt)o Z C-1E j , 

+ AV;,~)tpspo~~)13o2 
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Note that matrices C1, C2 and C3 are periodic functions
 

with period of T only.
 

Summary of the Section
 

1. 	 Without external torque, both Euler's equations and
 

Euler symmetric parameters can be solved analytically.
 

The solutions are given by equations (3.3.7) to
 

(3.3.10) and (3.3.29).
 

2. 	 The angular velocity (*) is a periodic function, 

that is T(V t+-Tw> (A) whereas P(*) 

contains two different frequencies; they are the t­

frequency and the polhode-frequency.
*
 

3. 	 The transformation matrix Chb is given by equation
 

(3.3.30), in which the L -frequency and the
 

polhode-frequency are factored.
 

ORJOIIVAZ5 
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3.4 Disturbing Torques on a Satellite
 

Of all the possible disturbing torques which act
 

on a satellite, the gravity gradient torque (G.G.T.)
 

and the geomagnetic torque (G.M.T.) are, by farthe
 

most important. Fig. 3.4.1 iliustrates the order of
 

magnitude of various passive external torques on a typical
 

satellite [171, in which torques are plotted in terms of
 

Note that, except for very low orbits, the
altitude. 


G.G.T. and the G.M.T. are at least a hundred times as
 

big as the others.
 

#dyne-crn 

to,, 

J0 

2?W /000 000 0 kin 

Ia
 

Figure 3.4.1.
 

Torques on a satellite of the Earth as a function of 

the orbit heigbt Is: afl gravity torque; Af aerodyarmic torque. 

Mf,, magnetic torque;Ar solar radation torque, M. 

micrometeonie impact torque. 
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(A) Gravity Gradient Torque On A Satellite
 

In this section, we first derive the equation for
 

the G.G.T.; second its ordertof magnitude is discussed;
 

third, by re-arranging terms, we express the G.G.T. equation
 

in a particular form by grouping the orbit-influenced
 

terms and the attitude-influenced terms separately, so
 

that it can be handily applied in our asymptotic analysis.
 

1. Equation for Gravity Gradient Torque
 

with Rf and c as defined in Fig. 3.4.1, 

let R = IRI , and further define r = R +P , and r In. 

satellite . 

Xi
 

C- center of mass
 

R- position vector
 

Fig. 3.4.1
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- --

The gravity attraction force acting on the mass dm by
 

'the earth is: 

dF = -u dm r/r3 (3.4.1) 

where u is called the gravitation constant (u = 

1.407639 1016 ft3/sec 2 ) . The corresponding torque generated 

by dF with respect to center of mass c will be: 

-A)L r3CUn (fxP) 

r
 

tLd (3.4.2) 

We note that:
 

2F 
x 

- R E.R ­
y7 
 ' : ] + .. (3.4.3)= -


We have omitted all the terms smaller than i/i. 

The total torque acting upon the satellite using (3.4.2) 

and (3.4.3) will be: 
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L - J f fxZ m t f3(?t)_.X)
=--5 [ R2 R3 g2 

By definition, because c is the center of mass, the
 

first term in the above equation has to be zero, therefore:
 

f kf-T OY (3.4.4) 

If L is expressed in body principal axes, let: 

PIZ (f2)
 
Then,
 

3Z P1, fJ + RzR, f ' - R ' . f,
R1 F3 + PzLf + 

tRI~+ RU.+ Rpyy 3 

Using the fact that, in body fixed principal axes, all
 

the cross product moments of inertia are zero,
 

We have, therefore,
 

Lq = -WT R3 , (I --s ) I .3.4.5) 
F1 RAZ(Ty - )l 
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In vector notation 

- 3_ A (3.4.6) 

where 

Mis the matrix of 

i _moment of inertia 

and 

x = f ( P i . 

(3.4.6) is the equation for the gravity gradient torque;
 

it has a simple format.
 

2) Order of magnitude considerations
 

Since G.'G.T. is the major disturbing torque for satellite
 

attitude motion, it is important to know its order of magni­

tude. As a matter of fact, this information - order of mag­

nitude - plays an essential role in our analysis of the dy­

namics by asymptotic methods.
 

From orbital dynamics [37], the magnitude of the posi­

tion vector R, can be expressed in terms of eccentricity e
 

and true anomaly f, that is:
 

q -(3.4.7) 
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where 'a' is the orbit semi-major axis. The orbit period
 

'p' is:
 

-, -(3.4.8) 

Combining (3.4..6), (3.4.7), and (3.4.8) we have: 

6 3 dost (14P6Cc4T2 rPI , 

(3.4.9)
 

We can say that the G.G.T. has the order
 

of the square of the orbital frequency, if the eccentri­

city e is far from one (parabolic if e=l), and if the moment
 
, 

of inertia matrix Im is not approximately an identity matrix
 

(special mass distribution).
 

3) Re-grouping Terms for G.G.T. 
We find that Rb - the orbital position vector expres­

sed in the body fixed coordinates - contains both the orbital
 

and the attitude modes. Inspecting the G.G.T. equation
 

(3.4.6), it seems possible to group the orbital and the atti­

tude modes separately.
 

Since
 

R ( 

where 'i' denotes perigee coordinated, we write
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*-6 
R C k> CZN RA 

--.= 3 X -IM C.nb 

(3.4.10) 

Let us define a linear operator OP(B) on a matrix B by:
 

-X -) -

A -B 3i -%,,+B33 (3.4.11) 

B -B- 3 

It is straightforward to show that:
 

oI+ °PPe / I-t - 'Gi xlV Jc(B~)(C+ )(3.4.12) 

Substituting (3.4.12) into (3.4.10) we have:
 

-b = cbo~ b t Z ~ )

6-')'- "- X XLGC ;6C OP(Cb nxkmCl6 

2, 33 CU',,,,(l+ecQ) 3 

• "-r- 1(3.4.13) 
0 -f '>m{ 

From the above equation it is clear that the first 

group contains terms influenced by the attitude motion with 

higher frequency, and the second group is influenced by the
 

orbital motion with relatively lower frequency.
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(B) Geomagnetic Torque
 

A satellite in orbit around the earth interacts
 

with the geomagnetic field and the torque produced by
 

this interaction can be defined as a vector product
 

L "VMXS (3.4.14)
 

where 1 is the geomagnetic field and VM is the
 

magnetic moment of the spacecraft. The latter could
 

arise from any current-carrying devices in the satellite
 

payload as well as the eddy currents in the metal structure,
 

which cause undesirable disturbing torques. On the other
 

hand, the vehicle magnetic moment could also be generated
 

purposely by passing an electric current through an
 

onboard coil to create a torque for attitute control.
 

If the geomagnetic field B is modeled as a dipole,
 

it has the form [38].
 

i L~ze- (3.4.15)RZ) 


where i is a unit vector in the direction of the 

geomagnetic dipole axis, which inclines about 11.5 

degreesfrom the geophysical polar axis. Vector R 

represents the satellite position vector, 4AS is the 

magnetic constant of the earth ( /S = 8.lX1i02 gauss-cm ). 
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Combining equations (3.4.14) and (3.4.15) and expressing
 

in body fixed coordinates, we have
 

-v)j j6iae5 (e.PSF4)RA] 

(3.4.16)
 

Although neither the geomagnetic field nor
 

the body magnetic moment can be determined precisely 

in general , modeling both of them as 

dipoles will be sufficiently accurate for our purpose. 

Summary of the Section
 

1. Gravity gradient torque (G.G.T.) and geomagnetic
 

torque (G.M.T.) are by far the most influential disturbing
 

torques on satellite attitude motion.
 

2. The basic equation for G.G.T. is:
 

4
 
-r -X]'J 'R (3.4.6)
 

For G.1,j.T. is
 

tM ( Ci b 3 -8 3 B ­

(3.4.16)
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3. G.G.T. and G.M.T. have the same order 

as Worbit , if the eccentricity is not too high 

and if the satellite mass distribution is not too nearly 

spherical. 

4. By re-grouping, we separated terms of attitude
 

frequency and terms of orbital frequency in L q and Li 

the results are (3.4.13) and (3.4.16). 
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3.5 	Asymptotic Approach for Attitude Motion With Small
 

Disturbances
 

(A) Euler's equations
 

Euler's equations in vector form are
 

" LO,. x . f- Tj t .... 5. 1) + ×] j 	 Tz ­

assuming the initial condition is
 

where e2 F rz +± represent the dis­

turbing torques. The order of magnitude of these dis­

turbing torques are discussed in the previous section. The 

small parameter E is defined as the ratio of orbital 

and attitude frequencies. 

Let WN(*) be the torque-free Kirchhoff's 

solution which satisfies the particular initial condition 

that is 

t 0  EIM 	 N+(JX] Ir,. tON =n0 (3.5.2) 

By Encke's approach [37], let
 

+ 	 (3.5.3)
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substituting (3.5.3) into (3.5.1) and subtracting 

(3.5.2), we have the equation for SW(i) 

Sj+ 4 1 k Wo IMI" W-C + [ix 

+i- [j -_ +cxTZ 

(3.5.4)
 

Note that Encke's perturbational approach is not an
 

approximate method. Because by combining (3.5.4) and
 

(3.5.2) the original equation can be reconstructed.
 

Nevertheless, performing the computation in this perturba­

tional form, one has the advantage of reducing the numeri­

cal round-off errors.
 

For simplifying the notation, a periodic matrix 

operator Att) with period of Tw can be defined as 

A ) -.t [( X) .r u,, (3.5.5) 

Eq. (3.5.4) can be re-written as
 

-*x ".-I"
 

-w Act CLd + ~(i~)t S 

(3.5.6)
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We see that the above equation is a weakly non-linear
 

equation, because the non-linear terms are at least one
 

order smaller than the linear ones.
 

Further, by Floquet theory , a linear equation with
 

periodic coefficient, such as A(*) in (3.5.6),-can
 

be reduced to a constant coefficient equation, as
 

follows.
 

Let matrices IA and A() be defined as
 

P'A Tvf ~ATW ) 

~(3.5.7) 

*A '( c(t) -RA 

PA (*= 

where iA (*a) is the transition matrix for A(t) 

It can be proven that [36] 1 
&-i
 

(i) A t) is a periodic matrix 

PA(-) ,t+ T) PA 

A(t) PA(-) +I 
P-1
 

= A a constant matrix
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Let W(t) be transformed into LMC*) by
 

lit 'PFA(*) 8W (3.5.8) 

Then
 

= PA w+ PA tv 

-* AG __­" PA t4 PASAWP+ .,,T,+ ,i+ .. 

PA -I P4 

- X 
 PA
R A - ( - I XPA -)'C"X 

-


4 *4 *-;--'S LV 
-& 1 -AP 2hi+ . (3.5.9)" PA I , 

These results can be proved by using eq. (3.5.5) and
 

the property (2).
 

Moreover, in our case, the constant matrix RA
 

is proportional to IT, therefore it can be considered
 

to be of order E Also, for simplicity, RA can
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be transformed into a diagonal (or Jordan) form
 

S-uch as: 

I )* '?- 0 0
 

0 
 0 
 (3..5.10)
 

0 ?L3 

Let 

l--Md-- (3.5.11) 

Substitute 'X into (3.5.9); finally we have
 

, -x A * -1 -I c 'I 

-- QJ -j+e- +.... ) (3.5.12) 

where
 

&k=W-'PA x (3.5.13) 
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MTS Asymptotic Solution
 

For solving (3.5.12), we apply the linear multiple
 

time scales asymptotic technique [3]. We first expand
 

the time domain * into a multi-dimensional space)
 

and o , IC , ...etc. are defined as 

The time derivatives in the new dimensions are
 

transformed according to
 

A 4 d* ,___7I j_ + 

(3.5.14)
 

a-CO0 

Also we assume that the dependent variable U-t) 

can be expanded into an asymptotic series of a 

v(*) O&t-o,t-1-.)-- Thecx,V (3.5.15) 
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Substituting (3.5.14) and (3.5.15) into (3.5.12)
 

'we have 

M rt
 

0, xO O-2- J-F.- (3.5.16) 

By equating the coefficients of like powers of S on 

both sides of (3.5.16), we have: 

Coefficient of i
 

+¢ (3.5.17)
 

Coefficient of 
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Coefficient of
 

2- a--4 r. 

L t ] + T (3.5.19) 

Solving the partial differential equation (3.5.17),
 

we have
 

o.(3.5.20)
 = , 

where u is not a function of r,' and the initial condi­

tion is
 

1J, (o) = 0 

and &orij ;'Z- ) is yet to be determined. 

Note, (3.5.20) implies that the zeroth order solution 

for Euler's equation with small disturbances is the 

Kirchhoff's solution. 

Substituting (3.5.20) into (3.5.18), we have
 

a TCO 0)T 

+ a.T (3.5.21) 
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This equation with the initial condition 0j(0)= 0
 

can be solved as,
 

4ITO -X

4J'TI.& (3.5.22) 

*-I1 
The term , q x in the above equation 

can be written, as shown in Appendix A as follows:­

* -;
 

F, ;3+ series 

O(3.5.23)
 

where P1 , 2 and 3 are periodic matrices 

with period of lb and ~ 2~,3~ are three 

components of the vector tJ, .if we expand F 

F, and F3 into Fourier series 
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we have
 

3 Xn A 

(3.5.25)
 

where EIj and F-I are constant matrices.
 

Also, in case that the external torque TI is not an
 

explicit function of time, then Q-T1 can be transformed
 

into a particular form as,
 

(3.5.26) 

where , are functions of slow variables 

only,and tp (t 0 ) is a fast time-varying 

function. The expressions of (3.5.26) for gravity gradient 

torque and geomagnetic torque are given in the following 

sections.
 

Substituting (3.5.25) and (3.5.26) into (3.5.22),
 

71 F WI 4 (r-j(I 
AI 
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For achieving a uniformly valid approximate solution, 

it is required that " (tfl)[I/I UstoUoII be bounded 

uniformly for all time Applying this condition to 

(3.5.27), it requires the first bracket to the right 

of the equal sign to be zero since, otherwise, it will 

linearly increase withTr.. This leads to the equation: 

A V .X Fxc bU L,4 TtO)@1

(3.5.28)
 
Wur/h . C,
 

Also eq. (3.5.27) becomes
 

(27T4 " (3.5.29) 
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Eqs. (3.5.28) and (3.5.29) yield the first order
 

multiple time scales asymptotic solution to the equation 

of 1(t) , (3.5.12). Once Lt) is obtained, the 

asymptotic solution of Euler's equation (3.5.1) can be 

constructed as
 

WFt) 0, S 

( +E PA +F-V) (3.5.30) 

The matrices A and M are given by (3.5.7) and
 

(3.5.10).
 

The above approach gives us an alternative way of 

evaluating a satellite angular velocity w(t) instead of di­

rect integration of Euler's equation. By this new approach we 

integrate (3.5.28) directly and evaluate (3.5.29) analyti­

cally. Since (3.5.28) is in terms of i (*"Fa) 

it allows us to use a large integration time step, 

thus saving computer time. Also, we note that (3.5.29) 

describes the oscillatory motion and (3.5.28) describes 

the secular motion of the satellite angular velocity. 
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(B) Solution For Euler Symmetric Parameters
 

Euler symmetric parameters are kinematically related
 

to the angular velocity by a linear differential equation
 

(3.2.9)
 

, - L I V (3.5.31) 

Hence
 

=N (3.5.32) 

Again by linear multiple time scales method
 

To= 

we have
 

a iL.ft.. (3.5.33) 
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Assume that
 

jS(~ (3.5.34)
Ott 1930c, ; t3 i + 

Substituting (3.5.33) and (3.5.34) into (3.5.32), 

and arranging terms in the power of e , we have 

Coefficient of 6­

2Co (3.5.35)
 

Coefficient of L'
 

±PL,,-~[ N o (W] 0 (3.5.36) 

Coefficient of £2: 

-= 3j--2 92 2- -t j(JN3 ­

(3.5.37)
 

Let be the transition matrix for
 

2 ,7Jthat is
 

The expression for '0) is given by
 

(3.3.29), that is from the solution of 1; by Morton's
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approach. Similarly, I (tjko) can be also achieved 

by using the Floquet theorem, although the latter one 

is more numerically oriented and requires several trans­

formations. 

The solution for the S' order equation (3.5.35) is
 

-eL--C,) = _{To, (-CCNTd--) (3.5.38)
 

with I.C.
 

and PON (Z,%) is yet to be determined. 

Substituting eq. (3.5.38) into (3.5.36), we have 

7o z 1 O 

(3.5.39)
 

The solution to the above equation is:
 

±pftQ. r 4tf st'w) 0 oljPONr. 067) 0,(o),

(3.5.40)
 

where S (trr,) given by (3.5.30), is *afunction 
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of ' and It, I Oand to ('4,o) is a function of t5
 

only. By re-grouping terms it is possible to write
 

' I0I4 4 o as follows (appendix B)-'
 

o 


~ 


(3.5.41)
 

Substituting (3.5.4,1) into (3.5.40),
 

3,= C&,o0 r ,0.ICo. R,(1,)PON.,.C,) -c 

-r Pa(r) R2U(l pIN (L) dj (3.5.42) 

In order to have 1#lfi11/ll1oI 1 bounded in-%, it is 

necessary that should not increase with time
 

faster than ., Therefore in eq. (3.5.42), those
 

.terms which increase linearly with "r.have to be set to
 

zero. That is
 

R, -CI PO -C 
j( ) (3.5.43)
 

and (3.5.42) becomes
 

(3.5.44)
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Equations (3.5.43) and (3.5.44) give an asymptotic
 

solution to the equation of Euler symmetric parameters.
 

1 CC1) C 0 ) PPN tri) + j 3 ~o 1 )+'S 
(3.5.45) 

where Pa, from (3.5.43) gives the secular 

variation of the perturbational motion and 

gives the non-biased oscillatory motions. 

Summary of the Section
 

(A) The rigid body satellite attitude dynamics
 

are described by:
 

- j + fwx] W £e T+'"" (3.5.1) 

iS = -i. (3.5.31) 

which can be replaced by the asymptotic approximate
 

formulation .
 

A u- X FV, > u + Q,-,) (3.5.28) 

bEA =1 ~o * jT 

- 4of%&-) "-(-yd (3.5.29) 
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W-*+E PA 	 ) (3.5.30)
 

tC1 	 (3.5.43){ 	 2(Tho 	Y 

(3.5.44) 

(3.5.45) 

(B) The secular eqs. (3.5.28) and (3.5.43) have to 

be integrated in C ( t $) , or equivalently, in 

a very large time step in t The oscillatory equations 

(3.5.29) and (3.5.44) can be analytically calculated if
 

the external torques -T, are not explicit functions of
 

time.
 

3.6 	 Attitude Motion With Gravity Gradient Torque 

The gravity gradient torque , given by (3.4.13), 

is 

(3.6.1)
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where e, f and t are the satellite orbit
 

eccentricity, true anomaly and averaged orbital angular
 

velocity, respectively. OF is a linear operator given
 

by eq. (3.4.11) .
 

From (3.3.30)
 

i =C 1 Czqz2t) + C,. (2Rt) + C3 (3.6.2) 

and 

o Cz2 " (2Pt ) += )V Cn (2Zt) + C' h A C3 CIh 

C C c(2P(Cz Ch d)RC3I +k)t) 


(3.6.3)
 

where C1 , C2 and C3 are three periodic matrices 

with period of TW 

Substituting (3.6.3) into (3.6.1)
 

- i)t - :x 

A 4t T * 

- CI-ThC' c) C':r3 )t80
CL -+C2_ Cv2It4+ o Csl, c1),tC, 

80
 



2­

+ op1c4I,,ct cr1 4je)AA.2,z- 4)e ) 

3 Ihe-el) 

CeJZ 

+or: (C2( Jm C CTt + . 6­

6 C 

a SP() + Sj(*) ~a~~(~)+ S3 (4) LC2s~Rt) 

+ S ) .4 vt tfrt) + S.t Ct (4Rt) 

4~~~~~~~a S6& ~(6RfyJAL )+S~* 

6Z C3 Or C1 1h Ci 4 cl. X. z 3 ) 
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Because i,' 7 are periodic matrices 

with period TW , they can be expanded into Fourier 

series with period of T . That is 

TTW
 

(3.6.5)
 

With that, G LT can be expressed in the form:
 

L C Cx 4X+ p(Xo) GL(tCl)(3.6.6) 

2. 3 

@r(1)=3 W"tWu (I+ C4ck) I 4A 24 

, ) A (3.6.7) 

'T " (3.6.8)
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QM7a CO (ZIT4)+ f 7 JA(d ~ cl 

(3.6.9) 

and &(LuLtt) can be analytically integrated. 

Resonance
 
ITT 

In special cases, if the tumbling frequency-n and 

the polhode frequency R are low order commensurable, 

that is, there exist two small integers n and m such 

that 

= o (3.6.10) 

then resonance will occur. For handling resonant situations, 

for example, if aI - 2 =o , then in equation'(3.6.9) 
cof terms such as 4 2 P't )-r 2iz j 

etc. will produce constants (i.c. /A! ztt
 rw 
-I_ -cz-d4ft cad = ) These constants should 

be multiplied by Q) and grouped into -j in (3.6.6). 

Then our theory.with the same formulation enables us to
 

predict the attitude in the resonant case as well.
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A Numerical Example
 

A rigid body asymmetric satellite in an elliptic
 

orbit is simulated. Here, we assume that the satellite
 

attitude motion is influenced'by the earth gravity gradient
 

torque only.
 

The numerical values used in this example are the
 

following:
 

Satellite moment of inertia:
 

IX = 39.4 slug-ftt
 

I =33.3 slug-ft2
 

I = 10.3 slug-ft
 

Orbit parameters of the satellite:
 

eccentricity e = 0.16
 

inclination i 0
 

orbital period = 10,000 sec
 

Initial conditions are:
 

Wx = 0.0246 rad/sec 

WV = 0 rad/sec 

b = 0 rad/sec 

Satellite starts at orbit perigee and its initial
 

orientation parameters are 

0= 0.7071
 

S= 0
 

p =0
 

p =0.7071
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In this case, the small parameter S is about
 

W acrbJt 0 3 
w attitudle 

With the above initial conditions, the satellite attitude
 

dynamics are first directly integrated using a fourth
 

order Runge-Kutta method with a small integration time
 

step size of 10 sec for a total interval of 8000 sec. This
 

result is considered to be extremely accurate and referred
 

to as the reference case from here on. The other simulations
 

are then compared to this reference case for
 

checking their accuracy. A number of runs have been
 

tried, both by asymptotic approach and direct integration,
 

with different time step sizes. They are summarized in
 

Table 3.5.1. The errors in each case - i.e., the differences
 

between each simulation and the reference case, - are
 

plotted in terms of time and given by Fig. 3.6.1 through
 

Fig. 3.6.12. Fig. 3.6.13 is a plot of the maximum
 

numerical errors as functions of the step size. From
 

this plot, we see that with direct integration the
 

step size AT should be no greater than 25 sec. On the
 

other hand,for asymptotic simulation, the step size can
 

be as large as 500 sec although the first order asymptotic
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approximation errors approach zero as £ -> 0 but not
 

as mt- 0. Fig. 3.6.14 is a plot of the required
 

computer time in terms of the step size AT We note
 

that for extrapolating a single step, the asymptotic
 

approach requires about double the computer time using
 

direct simulation. However, since the former
 

allows use of a large time step, overall, this new approach
 

will have a significant numerical advantage over
 

direct simulation. In our particular case, the saving
 

is of order 10. Although, in this comparison, we did not
 

include the computer time required for initializing an
 

asymptotic approach by calculating Kirchhoff's
 

solution and some Fourier series expansions etc. we
 

argue that this fixed amount of computer time
 

required for initializing (about 40 sec for
 

the above example) will become only a small fraction of
 

the total, if the prediction task is long. For example, with
 

the.above data, if we predict the satellite attitude motion
 

for an interval of three days, the direct integration
 

with a step size AT = 20 sec requires 1700 sec of computer
 

time1 while the new approach with 6T = 500 sec needs
 

about 170 sec plus the initialization of 40 sec.
 

86
 



-- 

3.7 Satellite Attitude Motion With Geomagnetic Torque
 

The geomagnetic torque acting on a satellite can
 

be written as, (3.4.16)
 

(3.7.1)
 

where 6 is the vehicle magnetic moment and
 

e, is the geomagnetic dipole axis. The latter
 

for simplicity, is assumed to be co-axial with the
 

earth north pole.
 

Substituting the expression of Cjb from
 
* , 6--6 


(3.3.30) into LM , we find a LM can be written 

in the form of 

LM - (--O) G V,) (3.7.2) 

where
 

6LP (-ED) = ( X,,)C, b 

r_ xtX Coo (i-t) + Cz '6 ( 2 Rzt)tC 

Jt 3 ( efRA 

(3.7.3)
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By expanding C1 , cJ, cJ into Fourier series, 

we see that &LM can be analytically integrated in terms 

oft 0 Eq. (3.7.2) corresponds to (3.5.26) in section 3.5Co. 


and the asymptotic formulations can be easily applied.
 

Numerical Example
 

A rigid body satellite perturbed by the geomagnetic
 

torque is simulated with the same satellite which flies in
 

in the same orbit as given in section 3.6. In addition,
 

we suppose that the vehicle carries a magnetic dipole V. ,
 

which is aligned with the body x-axis,
 

At mean time, the value of the geomagnetic
 

field is assumed to be :
 

=/ 5i~i Io S'. - a ~ 

Using the above numbers, we simulated the satellite
 

dynamics by direct integration and by the asymptotic
 

approach. Table 3.7.1 lists all the runs tried. The
 

errors of each case are plotted in Fig. 3.7.1 through
 

Fig. 3.7.12. Similar conclusions as given in the gravity
 

gradient case can also be reached for the case of geomag­

netic torque.
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CHAPTER 4
 

PREDICTION OF ATTITUDE MOTION FOR A CLASS OF
 
DUAL SPIN SATELLITE
 

4.1 Introduction
 

In chapter 3, a technique for speeding up the pre­

diction of a rigid body satellite attitude motion was
 

developed. However, the limitation that requires the
 

satellite to be a rigid body seems severe, because many
 

satellites in operation today have one or several high
 

speed fly-wheels mounted onboard for the control or
 

stabilization of their attitude motion. The combination
 

of the vehicle and its flywheels sometimes is referred to
 

as a dual spin satellite. Therefore, it seems desirable
 

to expand our prediction method for handling the dual
 

spin case as well. In doing so, it turns out that-it
 

is not difficult to modify our formulations to include
 

the dual spin satellite, if the following conditions
 

hold:
 

1. 	The angular velocity t is a periodic function
 

when there is no external torque.
 

2. 	A torque-free analytic solution of the system
 

is possible.
 

3. 	External torques are small.
 

However, the dynamic characteristics of a dual spin
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satellite in general are not clear yet as far as conditions
 

one and two are concerned. Although we believe condition
 

two might be relaxed by some further research, they are
 

beyond the scope of this effort.
 

As a demonstration example.for handling a dual spin
 

case, we consider a special class of dual spin satellites:
 

that is, a vehicle having a single fly-wheel which is
 

mounted along one of the vehicle body principal axes.
 

The satellite is allowed to have an arbitrary initial
 

condition and to move in an arbitrary elliptic orbit.
 

In what follows, the rotational dynamics of a dual
 

spin body are first discussed. An excellent reference
 

on this subject is by Leimanis [22]. Later, the torque
 

free solution - which serves as a nominal trajectory ­

for a class of dual spin satellites is presented. This
 

torque-free solution was first given by Leipholz [23]
 

in his study of the attitude motion Of an airplane with
 

a single rotary engine. Then, in section 4.4,an asymptotic
 

formulation for a dual spin satellite is discussed and
 

two sets of numerical simulations are presented.
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4.2 Rotational Dynamics of a Dual Spin Satellite
 

For a dual spin satellite, we assume that the 

relative motion between fly-wheels and the vehicle do 

not alter the overall mass distribution of the combination. 

Thus, for convenience, the total angular momentum of 

the system about its center of mass can be resolved into 

two components. They are: H , the angular momentum 

due to the rotational motion of the whole system regarded 

as a rigid body, and H. the angular momentum of the 

fly-wheels with respect to the satellite.
 

The rotational motion of a dual spin satellite
 

is, therefore, described by:
 

I I 

dt 
(4.2.1)
 

where Im is the moment of inertia of the combina­

tion (vehicle and wheels), and M is the external
 

disturbing torque.
 

Applying Coriolis law, we can transfer the above equation
 

into body fixed coordinates 'b',
 

-b IZ b++ -h j1 

6 (4.2.2)
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Further, by assuming that the wheels have constant
 

angular velocities with respect to the vehicle,
 

o0
 

Hence
 

- -( x) (4.2.3) 

This equation is equivalent to Euler's equation
 

in a rigid body case.
 

For satellite orientations, because Euler symmetric
 

parameters and the angular velocity 0 are related
 

kinematically, the equation remains the same for a dual
 

spin satellite, that is,
 

O( _ I (4.2.4) 

ck*
 

4.3 The Torque-free Solution
 

The motion of a dual spin satellite with a single
 

fly-wheel mounted along one of the body principal axes
 

can be analytically solved if there is no external torque
 

acting on the vehicle.
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(A) 	 Solution to Euler's equations
 

Without loss of generality,suppose the fly­

wheel is aligned with the principal x-axis. By
 

(4.2.3), the Euler's equations are
 

L(4.3.1)
= 	 Wi Ki=(. 3 ~ 

to 	 (4.3.2)Iy' 	 LWX 

(4.3.3)
 

where 'h' is the angular momentum of the wheel with
 

respect to the vehicle.
 

If eq. (4.3.2) is divided by (4.3.1), we have
 

X%)yiW~. W g*)'x W4-&ix d4 

Integrating this equation and solving for Wuy in
 

terms of ; the result is
 

+C=t 	 Xe k -V (4.3.4) 

where .Cy is a constant which is yet to be de­

termined.
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Similarly, using eq. (4.3.3) and (4.3.1), LA can
 

be also expressed in terms of L)x , the result is;
 

- (3X--y)X.WW242z~ Ii.+ C3 (4.3.5) 
Tj (L-1y-T"3) 

where C is another constant.
 

In case that there is no external torque, we know
 

that the rotational kinetic energy T and the total
 

angular momentum HT of the system must remain constant.
 

i.e.,
 

(4.3.6)

and 


(x~&~q~jL+ jy? LU+ <=H 
(4.3.7)
 

Equations (4.3.6) and (4.3.7) can be derived by integra­

ting (4W.3,) +w.,. 4.- .3a) + W$ .33)]3 

and 

respectively.
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Having determined the angular momentum HT and kinetic
 

energy T, one can calculate the constants cy and cz
 

by substituting (4.3.4) and (4.3.5) into (4.3.6) and
 

(4.3.7). they are
 

(4.3.8) 

or W) and W can be rewritten as
 

(4.3.9)
 

where
 

p A ; J ­

- = - c, J S 5 WA 4 x 

(4.3.10)
 

To find X , one can use (4.3.9), the solutions 

Ut and Wj , with (-4.3.1) to eliminate WY and 
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VO3 , such that an equation for can be obtained. 

dw (4.3.11) 

Orx 

) W4,) /ply (4.3-.12) 2 P7 

Suppose that -y p3 has roots of W 1 £02 , WA) 

and LxA) in a descending order, then 

Jd ). I x 

t4a3J13) 

This integral can be easily transformed into an
 

elliptical integral; i.e. eq. (4.3.13) is equivalent to
 

IJ- W (4.3.14) 

where
 

2rI (4.3.15)1-n Q Y" rj 

Ixh j (W _42Ty L - 0-94 

W (4.3.16) 
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and if 144 <! £V(o) _SUJ3 ) then 

]X4 - .1(U+. W,)*w,(W w. 3 (4.3.17) 

and if tQ <W- JI , then
 

W- -O=(w'w W4 j(4.3.18) 

(B) Euler Symmetric Parameters
 

Since the equations of Euler symmetric parameters
 

remain unchanged whether a space vehicle has fly-wheels
 

or not,
 

~I12
jjjj(4.3.19)
 

Once the angular velocity tD is obtained, this
 

equation for the Euler symmetric parameters can be solved
 

by a similar procedure as discussed in section 3.3. The
 

result can be summarized in follows.
 

Po(o)f3j((*t 0 

0~t E.,ca.-C F+ 14t) a E AM-(,gRt)2 131o) 

E1 At(?I-R*) 0 E--Ctrq~* (&Jo) 

0 -E,4(P4Rt) 0 ~ c4 2 R)~o 

(4.3.20)
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where 

:- = fH-.±+.Y y*) 'I

ViT -4-Iy W&Jo) 

SHT - ly W (*) 

= oS- -r--)-R-

E =o,st (*)-Rt 
"-r ( -r-,.P.= 

and 

Z-"TW4wx"It*(-) - 0k 

50-HITr4 Ly Uy 

t(*Y (2T-HTWy-ttWO) Olt 
Hr - -'y WY 
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TT(W and t(.) are two elliptic inte­

grals, T and HT are the kinetic energy and angular 

momentum of the system, and they are given by equations 

(4.3.6) and (4.3.7). TW is the period of
 

the angular velocity W , and h is the angular momen­

tum of the fly-wheel with respect to the vehicle. 

4.4. Asymptotic Solution and Numerical Results
 

Once the torque-free nominal solution for a dual
 

spin satellite is obtained, the basic procedures of the
 

asymptotic approach, described in section 3.5 for a
 

rigid body satellite, can also be applied to a dual
 

spin case. In order to include the gyro effect due to
 

the fly-wheel, a few equations in section 3.5 have to
 

be changed.
 

Equation (3.5.1) has to be replaced by
 

Lwx [Tn w =eT, 4 z .... 

(4.4.1) 

where HL is the angular momentum of the flywheels
 

with respect to the vehicle.
 

Equation (3.5.2) is replaced by
 

0(4.4.2)
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and equation (3.5.5) has to be changed
 

I Lox-iti )YT_ (XW4 kwy(J (4.4.3) 

Of course, WtMt*) and the transition matrix
 

t (1, 0) arise from (4.3.9), (4.3.17) and (4.3.20). 

They are the reference trajectory for a dual spin case. 

Numerical Simulations
 

For demonstrating the correctness and accuracy of
 

predicting the attitude motion in the case of a dual
 

spin satellite, we select a numerical example with the
 

following data;
 

Satellite moment of inertia
 

I = 30 slug-ft 

1 = 25 slug-ft 

1 = 16 slug-ftZ 

A fly-wheel is mounted along the body fixed x-axis
 

of the vehicle with an angular momentum h with respect
 

to the vehicle,
 

h = 0.2 slug-fe/Sec
 

We assume that the satellite is in an elliptic ic
 

orbit with
 

eccentricity e = 0.16
 

inclination i = 0
 

orbital period = 10,000 sec
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The 	initial conditions are:
 

Angular velocity J(O) 

WX = 0.03 rad/sec 

wy = 0.01 rad/sec 

LU = 0.001 rad/sec 

Euler symmetric parameters (o' 

= 0.7071 

= 0.1031
 

. = 0.1065
 

Ps = 0.6913 

For these numbers, the small parameter E of the 

problem, defined as the ratio of orbital and attitude 

frequencies, is about 

a 	 orbital frequency Zii /oOO ­
attitude frequency ZT /)67o 

This dual spin satellite is first assumed to be
 

disturbed by the gravity gradient torque only. The
 

dynamics are simulated both by direct integration and the
 

asymptotic approach. The results are summarized in
 

Table 4.4.1. Also the simulation errors are presented
 

in Fig. 4.4.1 through 4.4.10; they are given in the same
 

way as in section 3.5 for a rigid body satellite.
 

101 



Next, the dual spin satellite is assumed to be 

disturbed by the geomagnetic torque only. A magnetic 

dipole is placed onboard, with a strength of 
-fl 

(3,0,0) ft-amp- sec, which interacts with the earth's
 

magnetic field of strength
 

,i Z2, zXo 10 

SeA- o-nf, 

Similarly, the attitude dynamics are simulated by
 

direct numerical integration and the asymptotic approach
 

The results are summarized in Table 4.4.2 and Fig. 4.4.11
 

through Fig. 4.4.20.
 

Conclusion
 

These two sets of data, one for gravity gradient
 

torque the other for geomagnetic torque, show that
 

our asymptotic approach is equally useful for a dual
 

spin satellite as for a rigid body case, if the conditions
 

listed in section 4.1 can be satisfied. The numerical
 

advantage of saving computer time and the approximation
 

error introduced by our asymptotic approach are of
 

similar character as discussed for a rigid body case.
 

The details are not repeated again.
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CHAPTER 5
 

DESIGN OF A MAGNETIC ATTITUDE CONTROL SYSTEM
 
USING MTS METHOD
 

5.1 Introduction
 

The interaction between the satellite body magnetic
 

moment with the geomagnetic field produces a torque on
 

the satellite. This torque, however, can be harnessed
 

as a control-force for the vehicle attitude motion.
 

By installing one or several current-carrying coils
 

onboard, it is possible to generate an adjustable
 

magnetic moment inside the vehicle and thus a control
 

torque for the satellite. This magnetic attitude control
 

device, using only the vehicle-enviroment interaction,
 

needs no fuel and has no moving parts, it may conceivably
 

increase the reliabiltiy of a satellite. In recent years,
 

it has received considerable attention.
 

To design such a system, nevertheless, is difficult,
 

because the control torque it very small. 8ince the elec­

tric currents available to feed through the onboard coils
 

are limited, the magnetic torque generated in
 

this way is not large enough to correct satellite attitude
 

motion in a short period of time. In fact, it is realized
 

that one has to depend on the long term accumulating
 

control effort of the geomagnetic interaction to bring
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the vehicle into a desired orientation. For this reason,
 

the system can not be studied readily by classic control
 

design techniques.
 

However, this problem can be more efficiently
 

analyzed in terms of the slow variational equation
 

from the MTS approach. By casting the dynamics of the
 

above system into an '4TS formulation, the fast motion
 

(attitude nutational oscillation) and the slow motion
 

(amplitude variation of the nutation) can be separated.
 

Even though the effect of the magnetic torque on the
 

dynamics is very difficult to observe and comprehend in
 

real time t , still, using the slow secular equation
 

in terms of a slow clock, the control effect on the
 

nutation amplitude change immediately becomes transparent.
 

In this chapter, we will analyze a magnetic attitude
 

control system for a dual spin, earth-pointing satellite.
 

For more imformation, the reader may refer to the works
 

of Renard[39], Wheeler [40] and Alfriend [41].
 

5.2 	 Problem Formulation
 

The Problem
 

A dual spin satellite moves in a circular orbit;
 

its antenna is required to point toward the center of
 

the earth. A momentum wheel is assumed to be mounted
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along the satellite pitch axis for control of the
 

pitch motion.
 

quatorial plane
 

plane
orbit 

Fig. 5.1 Roll, yaw and pitch axes
 

For the above satellite a roll-yaw oscillation,
 

called nutation, is possible. This is because its
 

angular momentum vector may not be perfectly aligned
 

with its angular velocity vector due to external dis­

turbance or initial misalignent etc..
 

A magnetic control device, using the geomag­

netic interaction, is to be designed to damp out
 

the nutational oscillation as well as to keep vehicle's
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angular momentum perpendicular to the orbit plane.
 

Equations of Motion
 

The Euler's equations for a dual spin satellite
 

are given by (4.2.3), they are
 

t- -t T "W3- (5.2.1) 

where th' is the angular momentum of the fly-wheel 

and M is the external torque on the vehicle. 

Assuming 1 , c and e are the Euler angles which 

correspond to yaw, roll and pitch for concatenated 

Y-WI- z rotations, indicated by 

trajectory) 

frame ,rotation about X rotation about ! 
(x,y,z)- ------ ---

by amount of ICbody 
---------­
by amount of C P 

rotation about z, _frame) 
(x z z ) ------------

by amount of 
(x y 

, 

Then, a kinematic relation between the angular velo­

city and the derivatives of the Euler angles can be
 

written as [42]:
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- e4e~ 1 + t , t E- (5.2.2)-

where ti , are unit vectors, egA is in the 

direction of vehicle position vector and P- is normal 

to the orbital plane. The term (cct) es describes
 

the rotation motion of the satellite in a circular orbit.
 
A A 

Transforming e.(, e, and ejl into the body 

fixed coordinates and using small angles assumption, 

equation (5.2.2) can be written as: 

++ + q, 

(5.2.3) 

(44' 
- (5.2.4) 

S+wo 

Substitute (5.2.4) into Euler's equation (5.2.1),
 

we have
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GR M(5.2.5)
 

Earth's Magnetic Field
 

The geomagnetic field B can be approximately
 

represented by a magnetic dipole as discussed in section
 

3.4.
 

" 
_-- te(Y (5.2.6)erNB- ] 

where s% is a constant of the geomagnetic field 

( tA = 8.1 x 10 gauss-cm ), 98 is the unit 

vector along the dipole axis and R is the vehicle 

position vector. Using Fig. 5.1, % can be expressed 

in the axes of e, e ,e (called trajectory 

axes) : 

% A 
4C CPJ (5.2.7)
 

where'i' is the inclination of the orbit. Substitute
 

(5.2.7) into (5.2.6), we have:
 

A 

+ A ej3 (5.2.8) 
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Further, because the satellite is in a circular orbit
 

and if the vehicle is well controlled, the body axes of
 

the satellite should be closely aligned with the trajac­

tory axes; therefore,
 

6Sb "B w,' tta -2 4 ,LWot AA.,A . 

CzOWt 2A'" 

or
 

(5.2.9)
 

-b6 - -1B0Aw 0 t 
5oOA4 oo
 

Co O~ (5.2.9') 

/19
 
ol IAIL 

w-log
 



The Control Torque
 

Assuming 'M to be the magnetic moment of the
 

vehicle; the torque experienced by the satellite due to
 

the geomagnetic field is
 

(5.2.10)1 

For the control of the vehicle's attitude, let us pre­

specify the control torque M as 

Mae"A represents a desirable control law, 

which may not be possible to implement. P 

is two-dimensional, because the pitch motion is controlled 

by the momentum wheel, which is excluded in this analysis. 

The first term in the above equation, -,(( 'j3y; 

reflects elimination of excessive angular momentum due 

to the perturbed vehicle body rotational motion.and 

thus damps the nutational motion. The second term 

is to control the vehicle orientation through the gyro 

effect of the momentum wheel. 

Let us take the cross product of equation (5.2.10)
 

by B
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13 	 = B ( ) 

=I~ VM B (VW" ) (5.2.12) 

The above equation may be satisfied if we pick
 

V" 	 (5.2.13) 

In this case will be perpendicular to B and
 

also to M It can be proved that this VM is
 

the smallest magnetic moment required for generating a
 

known 	torque M. Substitute (5.2.11) into (5.2.13) to
 

give:
 

lI B (- Iz' - t # (5.2.14) 

We see that V is three dimensional. Thus in
 

order to implement the above control law, it requires
 

three electric current-carrying coils and their supple­

mental equipment to be mounted orthogonally to each other
 

in the 	vehicle.
 

However, let us suppose that there is a weight and
 

space restriction. We have to limit ourselves to use
 

one coil only. By putting a single coil along the pitch
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axis, the first and second components of equation
 

(5.2.14) are eliminated; the control law now is
 

-b -- i o 

(5.2.15)
 

The corresponding torque generated by this control
 

law will be:
 

(5.2.16)
 

By substituting (5.2.16) and (5.2.9) into the equation
 

of motion (5.2.5) we have:
 

J, + WOt+ 4&O° =W 


+ 0____ 

1511 (5.2.17a)
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and 4 -Aigi1+S 

0 ~(5.2.17b)
-qB 


These equations are linear, but can not be exactly
 

solved, since the coefficients are time-varying. The
 

quantities k1 and k2_ should be picked such that
 

the above system is stable.
 

5.3 System Analysis
 

Free Response Solution
 

The roll-yaw dynamics (5.2.5) are first determined
 

without considering external torques. We see that
 

the dynamics contain a fast nutational mode and a slow
 

orbital mode.
 

The system (5.2.5), without the external torque
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has the characteristic equation:
 

N" + [wiO - (3 I -IT-I (w-+-) CUr xj 

WO T ),)Li s)(Lo0 -41 r)(- X, w 0 (j 

(5.3.1)
 

The four characteristic roots are:
 

S U, orbital mode 

- ",1(CI- 8 )w J, (k_ ixIs)wJ nutational mode 

Since U4 (the orbital angular velocity) is much
 

=smaller than W ,h0 (k I L 4 t. ) , the angular 

velocity of the fly wheel, therefore the nutational 

mode can be simplified into ± - - We
 

note that the frequency ratio of orbital mode and
 

nutational mode is a very small number; that is <<
«jo/l 


Order of Magnitude Consideration
 

Let F_ -be a small parameter which is defined as
 

the ratio of orbital frequency to the nutational
 

frequency,
 
W.
 

(5.3.2)
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Assume h, I ,I/ and I are of order one, then
 

the following terms are ordered as:
 

4= oC/E) 

t-c, = o (E)
8%=j- -"S 44t "L2. = 0( (5.3.3)' 
13 f aJ~tc. G/1 c(=o;CIA)
 

18 ) ( e)
 

The control gains kI I k. are limited by the small 

current generating the torque and is therefore, necessari­

ly small. We assume that At , =-- E) 

For convenience, F and its power can be used to 

indicate the order of each term. For instance W0 

will be replaced by u~o . By 'doing so, equations (5.2.17) 

are 

+ £ O 2 ' I + 
1617 

Ifl x4+(I4)j$ 

- £ -DfAA WLoot 4k+€,_+ f 

4 zL2 ± tt] + (5.3.4) 
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7j f B1y A;., t y +) 

- Ic4A41' ~ 7,t I b b O 

iI (5.3.5) 

From these equations, it is easy to see that all
 

the control terms are at least one order less than the
 

system dynamics; therefore the control does not influence
 

the fast dynamics.
 

To simplify the notation, '(5.3.4) and (5.3.5) can be
 

re-written as:
 

° +9, <P (5.3.4') 

17 <P+ E4'+f 

4Z Ft o (5.3.5) 

where L ' , ....etc. are defined by 

comparing (5.3.4)to(5.3.4) and (5.3.5') to (5.3.5). 
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Multiple Time Scales Approach
 
I / 

For solving equation (5.3.4) and (5.3.5), we use 

the MTS method as outlined in section 2.2, by 

expanding the dependent variables ' and into 

asymptotic series in f- , 

y=4'0 + q'I + e %1 + (5.3.6)
 

(5.3.7)
 

Further, the dimension of the independent variable
 

t (time) is also expanded into multi-dimensions as qiven
 

by (2.2.11), (2.2.12), and (2.2.13). Expressing equations
 

(5.3.4') and (5.3.5') in new time dimensions, we have:
 

I-t
 

+ 4 

ao . __ 

0 

(5.3.8)
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and
 

a CP 1 O + f 

( % ' ,4. 

4 at04 a(- 9 0 #tf+ .) 4 Fo(Yo+E ,+ ),. 

0 (5.3.9)
 

By equating the terms of like powers of - in the
 

above equations, we have:
 

Terms of t
 

o+ _ o
 

(5.3.10)
 

The solutions-are
 

_Txq: J;j 

(5.3.11)
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Where p, q, r, and s are not functions 'to , but
 

they may be functions of t,tC,-etc. They are yet to 

be determined. 

Terms of t 

T<;)Y, - -C-,, 
Y --;p 

-5 

(5.3.12) 

Y a< 2--L<- 5v 

-o and o from
Substituting the solutions of 


(5.3.11) into (5.3.12), we have'
 

+ ~-+ rHNt t 

(5.3.13)
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L 

where
 

-C J, -.t.. 

VY I, 

WY (5.3.14) 

Note - ... etc. are all functions of t "C 

only. And p, q are yet to be determined. 
In order thatt%/c j and ji /p j be bounded, 

the terms that produce secular effects in '9's' t| 
must be eliminated. Equations (5.3.13) are 

linear; the, transition matrix t,o) for 
andand in (5.3.13) is 

12Q
 



Aa, Ncr0 

-lpb r­" J t.p(. wo) 

2 

4 p(i 0 -).) 

(5.3.15) 

The solutions for with zero ini:tial 

conditions are-, 
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N-. ZNa 

N v-N 

(1 2XN A.e 2J 
+rL ' 4PAl'tJij t + NwY -Z<) k1i'iuta 

(5.3.16) 

Notice, the terms (4+%1C > ) .to 

and (V -7(-.4 -- 'T_ ) will increase. 

linearly with time. In order to have 4 'P I bounded,
 

these two secular terms have to be set to zero. They
 

are , 

V+-U + - =0 

(5.3.17) 
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which are equivalent to
 
I 

-TX. + . 
(5.3.18)
 

-V I r 

Also, using the freedom of choosing r and s
 

we can set -We '-- Or 

(5.3.19)
 

Aa-CI F 

Substitute for LPL, ...etc. from (5.3.14); 

equations (5.3.18) are, then: 

(- + NIa -TX(4+ PpFyA 

/XAX L)+Ng( <-p~+ Ng 
(5.3.20)
 

+ N,,) +, -D41 
____Na~ - ~Jt0 

(5.3.21)
 

where 'pl and 'q' are complex conjugate.
 

A first order MTS asymptotic solution for (5.3.4)
 

and (5.3.5) thus has been constructed by using (5.3.11);
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that is 

(5.3.22) 

where p, q are given by (5.3.20), and r, s are given by
 

(5.3.19). All these equations are in terms of ^C,- the slow 

time scale. In order to make * and P decay in time, the con­

trol torque has to be selected such that it forces p,q,r,s 

to zero through the slow equations. The general problem in 

chapter 4 (with magnetic torque) is simpler in the present 

case because the perturbed motion is kept small by the con­

trol. Linearization therefore, seems adequate, leading to 

analytical solution. 

Selection of Feedback control gains
 

We wish to select feedback gains k1 and k7
 

in system (5.3.4) and (5.3.5), such that the system is
 

stable. However, because the control torque is small
 

and the system is time-varying, the effect of the control
 

upon the dynamics is not clear.
 

The above problem was then cast into an asymptotic
 

formulation. By the MTS method, an approximate solution has
 

been achieved as given by (5.3.22), through which
 

the design problem can be interpreted in a more convenient
 

way. That is because the approximate solution (.5.3.22)
 

describes a constant frequency oscillatory motion with
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slowly time-varying amplitude p,q and biases r, s.
 

p,q,rand s are functions of the control torque and are
 

given by (5.3.19) and (5.3.20). The problem can be con­

sidered differently in that the control torque is used
 

to force the amplitude p , q and biases r, s to zero.
 

In this way, since the fast nutational oscillation has
 

been separated out, the selection of the feedback gains
 

kf-and k_ in the slow equations (5.3.19) and (5.3.20)
 

becomes much easier.
 

The solution for p (PC) [ or q(-tj )] from (5.3.20) 

is A __ Ix7 

-- -4 

+ Imaginary part (5.3.23) 

Thus p and q will approach zero if 

- 4 Jtpr <Fp Fy'X-Jx 
-fli
-&fMY 

where C+ , F etc. are given by (5.3.4') and 

(5.3.5'). By substitution, (5.3.22) becomes, 

A-wt IA,4CW.tR t)2 
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or equivalently, for p and q to be decaying, we
 

require
 

4-< 4 (5.3.24) 

Also r and s are governed by (5.3.19). which is 

a second order linear differential equation with periodic 

coefficients. The necessary and sufficient condition 

for such a system to approach zero as c approaches 

infinity is that the eigenvalues of I ('r +T -ri) 

lie in a unit disc jx<l where (ti) is
 

the transition matrix of the system and ' T I is the period
 

of the periodic coefficients. Equations (5.3.19) can
 

be written as:
 

A ( )((5.3.25) 
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Note that (t,t ) does not depend on k. 

5.4 An Example
 

With the problem described in section 5.2, suppose
 

we have a satellite with parameters as follows:
 

Moment of inertia
 

IX = 120 slug - ft
 

Iy = 100 slug - ftZ
 

13 = 150 slug - ft
 

Angular momentum of the fly-wheel (along pitch
 

axis)
 

h =4 slug - ft /sec
 

and satellite is in an orbit of:
 

eccentricity e = 0
 

i = 200
inclination 

period = 10,000 sec 

The small parameter £ , by (5.3.3), is then 

z0-017 

The value of E_ can give a rough indication
 

as to the degree of accuracy of the approximate solution.
 

Since the roll-yaw motion can be approximated by
 

(5.3.22)
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IxNJ*
NY=-Lj'r rxr( N- it lp)4rt 

where p, q are given by (5.3.21) and r, s are
 

given by (5.3.25). For p, q to decay, we require:
 

k k1 

and for r, s to be decaying, the eigenvalues 7t1 , 2 

of the transition matrix of the system (5.3.25), 

+ T ,
!('r -l%) 7 must be less than unity. The eigenvalues
 

I and 7 are plotted in terms of k I in Fig. 5.4.1 

and Fig.5.4.2. We see that if 0< k1<.l, then -i<I 

and a<I , that is r,s will be damped. 

We select k = 4 x 10- 1 and k = 8 x l0O-

Implementation of the control law of (5.2.15)
 

with the above k, and k,. requires electric
 

power of about 10 watts.
 

We numerically integrated the equations (5.3.4) 

and (5.3.5) with the above kI and ka. for an initial 

condition of t(o)= Lflo)zo.10 /se. ' 40,3=.o12? 

(o)=o. 10/. The roll-yaw motion is plotted in 

Fig. 5.4.3 and Fig. 5.4.4. With the same numerical 

values, we also simulated the approximate solution as 
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given 	by (5.3.22). The roll-yaw motion by this new
 

approach is also plotted, in Fig. 5.4.5 and Fig.
 

5.4.6. Comparing Fig. 5.4.3 to Fig. 5.4.5 and Fig. 5.4.4
 

to Fig. 5.4.6, we found our asymptotic solution to be
 

very accurate. Further, the system is stable in the
 

way we expected and the variations of p, q and r, s
 

can be clearly identified.
 

5.5 	 Another Approach: By Generalized Multiple Scales
 

(GMS) Method Using Nonlinear Clocks
 

It was pointed out by Dr. Ramnath that system
 

(5.3.4) and (5.3.5) can be regarded as a linear system
 

with slowly time-varying coefficients. That is, the
 

coefficients of the equations change at a much slower
 

rate than the dynamic motion of the system [3,4]. This
 

kind 	of problem, can be easily transformed into a
 

singular perturbation problem by letting -t==t
 

and changing the independent variable t intoX .
 

Then, another approximate solution by general multiple
 

time scales approach using a set of non-linear time
 

scales is immediately available.
 

The solution for a second order singularly perturbed
 

system is reviewed in section 2.3 and a similar solution
 

for an n-th order singularly perturbed system is given
 

in [3,4]. To illustrate, equations (5.3.4') and (5.3.5')
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can be decoupled and ' , 9 satisfy an equation of the form: 

YAOkt)OC
t0 

The GMS solution for this equation is [3,4]: 
4 -I 

~.(tt.) C z) 

where
 

,C=O 

This GMS solution employs nonlinear scales C, in contrast
 

with the linear scales of the MTS solution. The GMS app­

roach subsumes the MTS method and could lead to more
 

accurate description of the dynamics.
 

The advantages of this alternative approach are
 

twofold. First, it treats the whole class of problems
 

of linear slowly time-varying systems and thereby it
 

can, conceivably, deal with a more complicated problem.
 

Second, it is fairly easy to numerically implement
 

this approximate solution which needs much less computer
 

time than straight direct integration. Thus it might
 

be helpful in the area of simulating a system if the
 

design task has to be carried out by trial and error.
 

The same numerical example as discussed in the pre­

vious section is used. This time, the solution is approxi­

mated by the GMS method. The result is given by Fig. 5.5.1
 

for roll motion and Fig. 5.5.2 for yaw motion. The accur­

acy is found to be excellent. Also for demonstrating that
 

the new approach can save computer time, several cases have
 

been tried, and the results are summarized in Table 5.5.
 

130
 



CHAPTER 6
 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH
 

6.1 conclusions
 

A general method has been given for fast prediction
 

of a satellite attitude motion under the influence of
 

its environment disturbances. An approximate solution
 

to the problem is developed by using the multiple time
 

scale asymptotic approach, such that the digital imple­

mentation of these approximations would give a significant
 

saving of computer time as compared to direct simulation.
 

Furthermore, because the new approach has been designed
 

to be very general it can handle any orbit, initial
 

condition or satellite mass distribution, and so it could
 

potentially become a valuable tool in satellite engineering.
 

The attitude motion of a rigid body asymmetric
 

satellite is first considered. By the MTS asymptotic
 

technique, the slow secular and the fast oscillatory
 

effects of the disturbing torque on the attitude motion
 

can be immediately separated and then be evaluated indivi­

dually. These slow and fast behaviors, combined, give
 

the complete motion while divided, each describes a
 

different aspect of the phenomenon.
 

Similarly, a class of dual spin satellites is then
 

studied. A dual spin satellite represents a vehicle
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carrying sizable fly-wheels on-board. This model may
 

resemble many satellites in use today, since the fly­

wheel has been a common device for attitude control and
 

stabilization. We have studied a special case of dual
 

spin satellite with a single fly-wheel mounted along
 

one of the vehicle body principal axes. However, the
 

problem of a general dual spin satellite with multiple
 

fly-wheels mounted in different directions seems still
 

to require further research.
 

The new approach is then numerically simulated
 

for two environment disturbances. One is a satellite
 

disturbed by the gravity gradient torque and the other
 

is by geomagnetic torque. The results show that the
 

new method has a significant advantage over the conven­

tional direct integration. In some situations it can
 

be faster by an order of magnitude while the approxima­

tion errors are still well bounded and acceptable.
 

-A way of handling resonant situations is also dis­

cussed. Attitude resonance will occur if the satellite
 

has a mass distribution such that a low-order commensur­

ability exists between the polhode frequency and the
 

angular velocity frequency. Then there will be a sub­

stantial increase in the secular effect due to the dis­

turbance. We found that the resonant situation can be
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easily detected and handled in our approach.
 

Finally, as the MTS formulation separates the
 

slow and fast behaviors of a satellite attitude motion,
 

we use this property for the design of an attitude control
 

device. In the problem, the control torque from geomag­

netic interaction is very small. Nevertheless, its in­

fluence on the dynamics becomes clear if we look at the
 

secular behavior on a slow clock. This idea has also
 

been explored in [41]. However, we believe that the
 

complete solution to the problem is achieved for the
 

first time and the control law is new.
 

6.2 Suggestions for Future Research
 

This research concerns the attitude motion of a
 

satellite which is operated in a passive mode. It is
 

therefore essential for us to consider all the possible
 

major disturbances. We know, besides the gravity gra­

dient and geomagnetic torques, there are also other
 

disturbances which are important in particular situations,
 

as for instance, the atmospheric drag in a low orbit
 

case and solar radiation pressure for a satellite with
 

large surface area. The latter is found to be important
 

and worthy of research because more and more satellites,
 

especially the long-lived ones, have panels to collect the
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sun's radiation for their energy supply. This problem,
 

however, is a difficult one, since the motion of the
 

earth around the sun, which changes the direction of
 

the sun light, represents an even slower mode on top of
 

the fast attitude rotation and the slow satellite orbital
 

motion. Furthermore, the earth shadow could give a
 

discontinous change of the radiation disturbing torque.
 

The second area is involved with the generalization
 

of the prediction method for all dual spin satellites;
 

that is, satellites which contain multiple fly-wheels.
 

The difficulties of the problem have been listed in
 

chapter 4. We believe that by further research, these
 

difficulties could be overcome.
 

In chapter 5, we have applied an asymptotic technique
 

for a classic control design problem. The asymptotic
 

approach seems very helpful in that particular case.
 

We believe that a similar situation, whenever the control
 

force is small, could also occur in other fields such
 

as orbit transfer by a low thrust engine. Therefore a
 

systematic study of the role of asymptotic methods in
 

control theory could be very interesting and useful.
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APPENDIX A
 

* * -1 -
EXPRESSION FOR Q(1 Q vx) Q V 

If Im is the moment of inertia, then for arbitrary matrix
 
* *.- * *-

A and vector v, the expression of (Avx) ImAv can be
 

re-grouped as follows:
 

(A VX) i, A V
 

Ts 0- 0A 21 A31 A2±1 A~. A
f2
,
A)
A
3 
33A31
+ Az A31 

o A " )An AllAA f A,, o All A33 

+ AaAA, + A13 A)I 

Alio Au Ak 3 Az3 

0 A22. A A2 A3 o 0 A13 A33 
-f A12. A.A jA32
 

+ o A" A2 +"AtA31 oA13 A3
 

0 Amz A2, A,2 Ax o o A13 A2-3 

4A1, Az . 

=op, ( op 2 (A) - op, A) L5J V (A.1) 
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where Is and OPi (A), i = 1.2.3 are defined by comparing the
 

,above two expressions and v i = 1,2,3 are three
 

components of the vecror v. With these definitions,
 

4* .fM-1 
trxo a r +Oz(X. ')V 

-4 (A.2) 

In case if Q is a periodic matrix, we can expand
* * I - * I* * m 


QI s OP (I Q into a Fourier series; that is
 

t" .X,4i X * --j 

IJ- X- ().Q 

3(A.3)
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APPENDIX B
 

EXPANSION OF 4) [6w] lN
 

The transition matrix 0s(to) has been given by (3.3.29); 

if we substitute that into the expression of J(3 1.aP,4 , 

we will have 

Is swl• -­is J 
4 -Xip-P))~ -I C~PP C 

a, o f ot (p.-PJ 

jW 0 0 01 


where El, E2, PI, P2 are defined in Section 3.3. They
 

are all periodic functions with period of T .
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Substitute 6w from (3.5.30), and expand all the 

,periodic matrices by Fourier series, It is tedious but 

straightforward to have ts I J 4)p P &r- written as 

4-P)- IQt) + pCC-0 ) R) (B,2) 
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t 10 sec 

3.0 

a) U, 0 

-1.5 

-3.0 

sec 

-4.5 

-6.0, 

-7.5 

-9.0 Fig. 5.5.1 Roll Motion 41.3 



9.0.
 

.7.5 	 Yaw Motion
 

By GMS Method
 

6.0 	 At = 10 sec 

4.5
 

3.0
 

1.5
 

"0 

-3.0 

-4.5­

-6.0-

Fig. 5.5.2 Yaw Motion
 
-9.0J 



9.0 

7.5' Roll Motion 

6.0 

4.5 

By GMS Method 

A t = 1000 sec 

3.0 

- 1.5 

-3.0 

0 

g -1.5 sec 

-3.0 

-4.5 

-6.0 

-7.5­

-9.0 
Fig. 5.5.3 Roll Motion 413" 



9.0 

7.5 

6.0 

4.5 

Yaw Motion 

By GMS Method 

t 1 000 sec 

3.0 

1.53.0 

0 HU 

-1.5 sec 

-3.0 

-4.5 

-6.0 

-7.5 

-9.0 

Fig. 5.5.4 Yaw Motion 4137 



9.0 

7.5-
Roll Motion 

6.0 By GMS Method 

A t = 2000 sec 
4.5" 

0-3.0 

-4.5' 
-1. 30 00 00050000 

sec 

-6.0. 

-7.5 I 

-9.0] Fig. 5.5.5 Roll Motion 4138 



9.0­

5 

6.0 

4.5 

Yaw Motion 

By GMS Method 

t =2000 sec 

0 

H 

-1.5 sec 

-3.0 

-4.5 

-6.0 

-9.0 

Fig. 5.5.6 Yaw Motion 
4138 



9.0" 

7.5- Roll Motion 

6.0 By Direct Integration 

L t = 30 sec 

4.5 

3.0 

1.5-

I-0000 00 0 0 - 50000 

sec 

-3.0. 

-4.5 

-6.0 

-7.5 

Lg. 5.5.7 Roll Motion 4164 
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9.0­

7.5	 Yaw Motion
 

6.0-	 By Direct Integration
 

4 t = 30 sec
 

4.5
 

3.0
 

-4.5 

-7.5
 

•Fig. 5.5.8 Yaw Motion 	 4164
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Table 3.6.1 Rigid Body Satellite Disturbed By Gravity
 
Gradient Torque
 

omputer 

Runs Description Time*
 

(sec) 


Direct Integra­
l tion 106 

T = 10 sec 
(reference case) 

Asymptotic 
Approach 

2 ?88** 
4T = 10 sec 

Direct Integra-

3 tion 22 


A T = 50 sec 

Asymptotic 

Approach 31 


4 

T = 100 sec 


Asymptotic 

5 Approach 16 


'AT = 200 sec 


Asymptotic 


6 Approach 6.5 


A T = 500 sec 


Torque-free Sol.
 
Subtract Ref. 


7 Case (Effect of 

G.G.T.) 

Max. Errors Figures
 

.. ..
 

0 0
 

Fig.
 

_5
 
0.5 x 10 .01 3.6.1 

3.6.2
 

- Fig. 
1.2 x 10 .08
 

3.6.3
 
3.6.4
 

Fig.
 
1.0 x 10 .01
 

3.6.5
 
3.6.6
 

Fig.
 
1.0 x 10 .01
 

3.6.7
 
3.6.8
 

I Fig. 

2.Q x 10 .03 3.6.9 

3.6.10 

Fig.
 
5.0 x 10 .05 

3.6.11 
3.6.12 

* IBM 360/75 run time. 

- for nominal solu-Does not include initialization time
** 
in this case is about
tion and Fourier transformations ­

40 sec.
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Table 3.7.1 	 Rigid Body Satellite Disturbed By
 

Geomagnetic Torque
 

Figures
Computer Max. Errors 


Runs Description Time
 
(see) 	 /3 

(rad/sec) 

Direct Integra­
0
l tion 112 0 


- d T = 10 sec
 
(reference case)
 

Fig.
Asymptotic

2 Approach 294 0.2 x 10 .002
 

3.7.1
AT = 10 sec 
3.7.2 

Fig.
Direct Integra-

3 tion 	 45 3.0 x 10 .005 

3.7.3
 

3.7.4
AT = 25 sec 

Asymptotic
Approach 	 Fig.

31 0.2 x 10 .002


4 

3.7.5
A T = 100 sec 


_ _3.7.6 

-1 	 Fig.
Asymptotic

5 Approach 16 .25 x 10 .003
 3.7.1
 

A T = 200 sec 	 3.7.8
 

Asymptotic	 -i Fig.Approach 	 F
.003
6.5 .30 x 10 


6 
3.7.9
T = 500 sec 

Toraue-free Sol.
 
-7 	 Fig.
Subtract Ref. 


7 Case (Effect of 100 x 10 .003
 
3.7.11
G.M.T.) 

3.7.12
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Table 4.4.1 Dual Spin Satellite Disturbed by Gravity
 
Gradient Torque
 

Computer Max. Errors Figures

Runs Description Time
 

(sec) 

(rA/sec.)__ _ 

Direct Integra­

l tion 109 0 0
 
A T = 10 sec 

(reference case)
 

-4
 
Asymptotic 0.2 x 10 Fig.
 

2 Approach 4.4.1
 
297 .005 

= 1T0 sec 4.4.2 

Direct Integra­
3 tion 
 -4- 4.4.3 

i 22 110 x 1 .20 
T = 50 sec 4.4.4
 

Asymptotic Fi, 
Approach 4.4.5
 

AT = 100 sec' 31 0.3 x 10 .006 4.4.6
 

Asymptotic -4 4.4.7
 
5 Approach 6.5 ).5 x 10 .008
 

4.4.8
 

A T = 500 sec 

Torque-free Sol. 4 4.4.9
 
6 Subtract Ref. 1.5 x 10 .020
Case (Effect of 4.4.10
 

G.G.T.)
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Table 4.4.2 	 Dual Spin Satellite Disturbed By
 
Geomagnetic Torque
 

Computer Max. Errors Figures 
Runs Description Time 

(sec) (A( 
_(rad/sec)
 

Direct Integra­
tion
 

102 0 0
 
A T = 10 sec
 

(rePerence case
 

Fig.
 

Asymptotic -V
 
2 Approach 290 0.5 x 10 .0010 4.4.11
 

A T = 10 sec 	 4.4.12
 

Fig.
 

Direct Integra­
tion 
 42 L0 x 10 .0150 4.4.13
 

A T = 25 sec 	 4.4.14
 

Asymptotic 	 Fig.

Approach 	 ­

30 
 0.5 x 10-
 .0015 
 4.4.15
 

A T = 100 sec
 
4.4.16
 

Asymptotic Fig.
 
Approach -S
 

6.4 0.6 x 10 .0017 4.4.17
 
&,T = 500 sec
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Table 5.5 GAS Approximation*and Direct Solution
 

Case Description 

I GMS Approximation1 

At=1000 sec 

1 2 
GMS Approximation 

At=2000 sec 

I 
3 

4 
4 

Direct integration 

A t=10 sec 

1 
1 Direct integrationI At=30 sec 

Computer 

time (sec)
 

2.9
 

1.6
 

57.9
 

19.2
 

Fig.
 

5.5.3
 

5.5.4
 

5.5.5
 

5.5.6
 

5.4.3
 

5.4.4
 

5.5.7
 

5.5.8
 

* General multiple scales with nonlinear clock. 
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