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ABSTRACT

An investigation is made of the problem of predicting
the attitude of satellites under the influence of external
disturbing torques, The attitude dynamicé are first
expressed in a perturbation formulation which is then
solved by the multiple scales approach. The independent
variable, time, is extended into new scales, fast, slow,
etc,, and the integration is carried out separately in
the new variables. The rapid and slow aspects of the
dynamics are thus systematically separated, resulting
in a more rapid computer implementation, The theory is
applied to two different satellite configurations, rigid
body and dual spin, each of which may have an asymmetric
mass distribution. The disturbing torques considzared
are gravity gradient and geomagnetic. A comparison
with conventional numerical integration shows that our
approach is faster by an order of magnitude.

Finally, as multiple time scales approach separates
slow and fast behaviors of satellite attitude motion,
this property is used for the design of an attitude
control device. A nutation damping control loop, using
the geomagnetic torgue for an earth pointing dual spin

satellite, is designed in terms of the slow equation.
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CHAPTER 1

INTRODUCTION

1.1 General Background

The problem of predicting a satellite attitude motion,
under the influence of itsenvironmentaltorqueé, iz of
funaamental importance to many problems in space research.
An example is the determination of reguired control torque
as well as the amount of fuel or energy for the satellite
attitude control devices. Similarly, a better prediction
of the satellite attitude motion can be helpful in vielding
more accurate data for many onboard experiments, such as
the measurement of the geomagnetic field or the upper
atmosphere density ete., which depend on the satellite
orientation,

Yet, the problem of satellite attitude prediction
is still one of the more difficult problems confronting
space engineers today. Mathematically, the problem con-
sists of integrating a set of non-linear differential
equations with given initial conditions,such that the
satellite attitude motion can be found as functions of
time. However, the process of integrating these
equations by a direct numerical method for long time inter-

vals, such as hours, days (which could be even months or
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years), is practically prohibited for reasons of compu-
tational cost and possible propagation of numerical
round-off and truncation errors. On the other hand, it

is even more difficult, if it is possible at all, to

have an exact analytic solution of the problem, because

of the non-linearity and the existence of various external
disturbing torgues in each circumstance.

A reasonable alternative approach to the above problem
seems to be to apply an asymptotic technique for yielding an
approximate solution. The purpose of this approach is
to reduce the computational effort in the task of attitude
prediction for long intervals, at the cost of introducing
some asymptotic approximation errors. Meanwhile, the
asymptotic approximate solution has to be numerically
implemented in order to make it capable of handling a
broad class o% situations.

We found the problem is interesting and challenging
in twe ways. TFirst,because it is basic, the results
may have many applications. Second, the problem is very
complicated, even an approximate approach is difficult

both from analytic and numerical points of view.
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1.2 Problem Description

The subject of this thesis is the prediction of
satellite attitude motion under the influence of various
disturbing torgues. The main objective is to formulate
a fast and accurate way of simulating the attitude rota-
tional dynamics in terms of the angular velocity and
Euler parameters as functions of time, The formulation
has to be general, it must be able to handle any orbit,
;nitial conditions, or satellite mass distribution. Fur-
thermore, it must predict the long term secular effects
and / or the complete attitude rotational motion, depending
on the requirement., Because of this built-in generality
it is intended that the program can be used as a design
tool for many practical space engineering designs. To
achieve this desired .end the problem is first expressed
as an Encke formulation. Then, the multiple time scales
(MTS) technigue is applied to obtain a uniformly wvalid
asymptotic approximate solution to first order for the
perturbed attitude dynamics,

Two different satellite configurations are considered,
a rigid body satellite and a dual spin satellite, each of
which may have an asymmetric mass distribution. In the
latter case, it is assumed that the satellite contains a

single fly wheel, mounted along one of the satellite

10



body~principal-axes, to stabilize the satellite attitude
ﬁétion. These models are considered typical of many
classes of satellites in operation today. The disturbing
torques considered in this dissertation are the gravity
gradient and the geomagnetic torques. For a high~orbit
earth satellite these two torgues are at least a hundred
times bigger than any other possible disturbance, though,
of course, there would be no difficulty inserting models
of other perturbations.

Both the gravity gradient and the geomagnetic torques
depend on the position as well as the attitude of the sate-
llite with respect to the earth. Therefore, the orbital
and attitude motion are slowly mixed by the actions of
these disturbances, However, the attitude motion of the
vehicle about its center of mass could occur at a much
faster rate than the motion of the vehicle in orbit arocund
the earth. Directly integrating this mixed motion, fast
and slow together, is very inefficient in terms of com-
puter time, However, realizing that there are these
different rates, then the ratio of the averaged orbital
angular velocity to the averaged attitude angular velo-
city or equivalently the ratio of the orbital and attitunde
frequencies (a small parameter denoted £ ) may be used in
the MTS technigue to separate the slow orbital motion

from the fast attitude motion. 1In this way the original

11
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dynamics are replaced by two differential equations in

terms of a slow and a fast time scale respectively.

The secular effect as well as the orbit-attitude coupling is

then given by the equation in the slow time scale,while-

the non-biased oscillatory motion is given by the second

equation in terms of the fast time scale, In addition,

a method for handling the resonance problem is also discussed.
In some situations the slow egquation for the secular

effects can be useful in the design of an attitude control

system, The vehicle environment torques, if properly

used, can be harnessed as a control force. However, to

design such a control system it is often found that the

control force is much too small to analyze the problem

in the usual way. In fact, the design is facilitated in

terms of the equation of the slow variable because only

the long term secular motions can be affected, This

application is demonstrated by mean of a nutation damping

control loop using the geomagnetic torgue,
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1.3 Historical Review and Literature Survey

The problem of attitude dynamics of an artificial
-satellite, rigid body as well as dual spin case, is
closely related to the branch of mechanics of rigid body
rotational motion. The subject is regarded as one of
the oldest branches of science, starting from middle of
the eighteenth century. Since then it has interested
many brilliant minds for generations. The literature
in this area, therefore, is rich and wvast, Thus, we have
to focus our attention on only those areas which are
immediately related to this research.

The classical approach to the rotational dynamics
mainly seeks the analytic solutions and their geometric
interpretations. By this approach, many important and
elegant results have been obtained. Among them, the
fPoinsot construction' of L, Poinsot {11], gives a geo—
metrical representation of the rigid body rotational
motion, The Euler-Poinsot problem,faor a torque-free
motion, was first solved by G. Kirchhoff[12] by means of
Jacobian elliptic functions, On the other hand, F,

Klein and A. Sommerfeld [13], formulated the same problem
in terms of the singularity-free Buler symmetric para—.
meters and gave the solution., Recently, H. Morton, J.
Junkins and others [1l5] solved the equations of Euler
symmetric parameters agaln by introducing a set of complex

orientation parameters, Kirchhoff's solution as well as

13



the solution ofEuler symmetric parameters by H., Morton etc.-
play an important role- as a reference trajectory~ in our
- study.

This approach,however, because of its nature can
not handle a general problem for various situations. This
difficulty is substantial for the case of an artificial
satellite, A more flexible alternative,widely applied in
the engineering world, is the asymptotic technique for
evaluating an approximate solution. Among them, the
averaging method by N. N. Bogoliubov and Y. Mitropolsky
[14] is the most commonly used. For example Holland and
Sperling[l16] have used the averaging method for estimating
the slow variational motion of the satellite angular
momentum vector under the influence of gravity gradient
torque and Beletskii [17] formulated perturbation
equations using the osculating elements for a dynamically
symmetric satellite. F., L, Chernous'ko (18] derived
the eguations of variation of parameters for angular
momentum vector and the rotational kinetic energy for
an asymmetric satellite, However, the averaging method
is most easily applied for a problem which normally has
a set of constant parameters, such that the slow variational
behavior of these parameters can be established in a
perturbed situation. For example in a simple harmonic
oscillator, the frequency and amplitude are two para-

meters which characterize the dynamics described by a

14



second order differential equation. Unfortunately,
rotational motion in general,does not immediately lead
"to a complete set of similar parameters, Although, it
has constant angular momentum vector and kinetic energy
as parameters it is a six-dimensional problem, Besides,
an elliptic integral is involed in its solution. Never-
theless, this difficulty can be overcome by casting the
problem in a Hamilton-Jacobi form,from which a variation-—
of-parameter formulation can be derived in terms of
Jacobi elements. This approach is reflected in the works
of Hitzl and Breakwell [19] Cochrani20], Pringlef{2l] etc.
OQur dissertation is éifferent from the others
mainly in three aspects, First, it is a new approach,
using the multiple time-~scales method [1-7] with the
Encke perturbation formulation [22], for predicting the
complete satellite attitude motion without involving the
Hamilton-Jacobli equation. Second, we are interested in
the secular effect of the disturbing torgues as well
as the non-secular oscillatory effect. By combining
them, we have the complete solution., Further we know

that the former‘gives the long term behavior and the
latter indicates the high-frequency motion of the sate-
llite attitude dynamics., Third, our immediate objective
is numerically oriented for saving computer time, Thus
the difficulties we encounter could be analytical as

well as numerical .

15



1.4 Arrangement of the Dissertation

Chapter 2 reviews the multiple time scales asymptotic
technigque ~ a basic tool in this research, Two examples
are used for illustrating the fundamental procedure,one
represents the secular type of almost-linear problem
and the other represents the singular type of slowly
time-varying linear system.

Chapter 3 develops the asymptotic solution tc the
attitude motion of a rigid body satellite under the influ-
ence of known small external torques., It shows that,
the original equations of attitude dynamics can be repre-
sented by two separate equations - one describing the
slow secular effects, and the other describing the fast
oscillatory motion. The latter can be analytically
evaluated. Numerical simulation using this approach is
also presented for the class of rigid body satellites
under the influence of grévity gradient and geomagnetic
torques.

In chapter 4, the previous results are eXtended
to the case of dual spin satellite, in which .a fly-wheel
is mounted onboard., Two sets of numerical simulations,
one for a dual-spin satellite in the earth gravity
gradient field and the other influenced by the gecmagnetic

field, are given.

16



Chapter 5 represents an application of the fact that
MTS method separates the slow and fast behaviors of a satel-
"lite attitude motion. We demonstrate that the slow equation,
which describes the secular effects, can be useful in the
design of a satellite attitude control system., A
nutation damping feadback control loop,using the geomag-
netic torgue for an earth pointing dual-spin satellite,
is designed in terms of the slow equation.

In chapter 6 the conclusions drawn from the results
of this study are summarized, and some suggestions for

future research are listed,

17



CHAPTER 2

REVIEW OF MULTIPLE TIME SCALES (MTS) METHOD

2.1 Introduction

multiple time scales (MTS) method is one of the
relatively newly developed asymptotic technigques. It
enables us to develop approximate solutions to some
complicated problems involving a small parameter é P
when the exact solutions are difficult, if not impossible,
to find. The basic concept of MTS method is to extend
the independent wvariable, usually time, into multi-dimen-
sions. They are then used together with the expansion of
the soclution (dependent variable) such that an extra degree
of freedom is created and the artificial secular terms can
be removed. Thus a uniformly wvalid approximate solution
is obtained [1-7].

An unique feature of the MTS method is that it can
handle secular type as well as singular type of perturbation
problems in a unified approach. By this method, the fas£
and slow behaviors of the dynamics are systematically iden-
tified and separated, The rapid motion is given in terms
of a fast time scale and the slow motion in terms of a
slow time scale, each of which, 'in most cases, has a
meaningful physical explanation. A comprehensive refer-
ence on this subject is by Ramnath[3]. The textbook by

Nayfeh [7] has also been found informative.

18



2,2 MTS and Secular Type of Problems

A secular perturbation problem is one in which
the nonuniformity in a direct expansion occurs for large
values of the independent variable, We consider systems
with a small forcecing term. The forcing term changes
the dynamics gradually and has no appreciable effect in
a short time. However, the long time secular effect of
the small forcing term may significantly influence the
overall behavior of the dynamics. From a mathematical
point of view, a secular type of prcblem has a singularity
at infinty in tﬂe time domain,

Since perturbation problems and the asymptotic
technigque for solving them can be most easily understood
by solving a demonstration case, let us consider a simple

example of a slowly damped linear oscillator [7],

X+ X=-28% ; o<g<<l (2.2.1)
where € is a small parameter. The simplicity of the
forcing term -2£X allows us to interpret the approximate
solution, developed later. The exact solution is available,
but the generality of our asymptotic approach will not be
lost in spite of the simple form of the forcing term.

We first solve the problem by Poincaré type of .
direct expansion method [33], such that difficulties of
non-uniformity and secular terms can be illustréted;

Then the same problem is solved by MTS method, which
19
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yvields a uniformly valid asymptotic solution to first

“order.

We expand X{X) into an asymptotic series in €1

‘x(t)=Sc+Si+Sz+""

= %, Y R S
() + € xpit) + €%, (%) + (2.2.2)

An asymptotic series is defined [9] as one in which
the magnitude of each term is at least one order less than
its previous one [i.e 5,1 /1Spal= [£"%nt /1€ %y} ""’E,]_’
Therefore 8 decreases rapidly as the index 1 increases.
This simple fact allows us to approximate the solqtion by
calculating only a few leading terms in the series expansion.
Substituting (2.1.2) into (2.1.1l) and equating the

coefficients of like powers of ¢ , we have: -

£° -
Kot Xo =0 (2.2.3)
EI
:)2_ + Pl ‘;U
| X < (2.2.4)

20



The solution for X.{(%) in eguation (2.2.3) is

X, = & tat + b Am* (2.2.5)

Whera 'a' and 'b' are two constants. Substituting

%o into eq. (2.2.4) of x

(4
with I.cC, *(o)= A, (o) =0

The solution is I
Yy = Gk txk —b X At + AKX
. (2.2.7)

The approximation of =z(t) up to first order is

therefore:

x“ﬂ’[*)z xcf.?l')"l' i'x;(){')
= (& ert 4 bdant)

4+ ¢ (-ak iRk = bk Ank + adint)
{(2.2.8)

Above approximation, however,'is a poor one because
"of the occurrence of two terms = A%¢ ¢mA  and —bx Egujt,
which approach infinity as A-*e _, They are referred
to as secular terms. We know the true x(t) has to be
bounded and asymptotically decaying, for x(t) is a
damped” harmonic. oscillator. The secular terms

21



make the series expansion X(t)=X,+ &xX,+" in
eqg. (2.2.8) a non-asymptotic one, since —%L-z-gééL-ao(n
as % »o0 ., 1In the process of finding a so;ution by series
expansion, there is no guarantee that the higher order terms
can be ignored in a non-asvmptotic series expansion. On the
other hana, if an asymptotic series is truncated, the error
due to the ignored higher order terms will be uniformly
bounded in a sense that |error| / | approximate solution|
~ ¢ . BAn approximate solution is said to be ‘'uniformly
valid' if its error is uniformly bounded in the interval of
interest. We see -that the loss of accuracy
by straightforward Poincaré type of expansion is due to the
occurrence of the secular terms and'therefore the approxi-
mation is not uniformly wvalid.

In the following, the same problem will be studied in
the context of multiple time scale method, which yields a
uniformly valid solution.

For convenience, we rewrite the dynamics

The solution X&) is first expanded into an asymptotic

series of © , same as before

X)) = X R+ E XYy + - (2.2,10)

The concept of extension is then invoked, which

22
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expands the domain of the independent variable into a space
" of many independent variables. These new independent
variables as well as the new terms that arise due to
extension are then so chosen that the non-uniformities

of direct perturbation can be eliminated [3].

Let

A= [, ¢, T ooee ) (2.2.11)

For an almost linear problem, as the one we are studying

T, =X
7a =&k
T, =¢"T
5o

The new time scales, in general, can be non-linear
as well as complex, which depend upon the nature of the
problem [4]. However, for this particular problem, a set of
simple linear time scales works just as well.

The time derivative can be extended in the

space by partial derivatives as follows.

A 3 dT 3 dy Y dw
ax = 2T, dx T ov, Ak T 3G Ak
= .2 _ v x 2 (2212
g, tEee U )

23



And 3 2 -
d* >* 3 2 2 2

= — o+ +
Ax* o2 TEE T, ¢ ( e 9Ty 9":1)

(2-2:13)
Substituting equations (2.2.12), (2.2.13) and (2.2.10)

- -

into equation (2.2.%), and equating coefficients of Tike

powers of & , we have

£° 2

? Xo

3T
¢

T 2
3 X A ¥e 7 X,
+xy = 3T

3 —Cf:z -x’ BTQ 2 a-{-‘u-’) L'l
: (2.2,15)
2l

The original equation has been replaced by a set of
partial differential equations.

The solution for X.(#)
from (2.2.14) is

Xo= @G (—tr,Tz.' ) MF (zl ) + b(T,,TL" ) —Ed!o(—v‘:.fc)

{(2.2.16)
where a,b are functions of T,y T, r+..etc., and are
yet to be determined. Substitute X. from (2.2.16) into
{2.2.15), and solve for X, .

R
éxl _ v 1 _ s aa‘
5o x = Mxp (L) (~2Aa 25T
' ] . ab
+ 2Ap (ATe) (2br+24 3 )

(2,2.17)
24 ’



Equation (2.2.17) represents a harmonic oscillator
“driven by an external sinusoidal function. The

X (%) could become unlimited, since the external force

has the same natural frequency as the system itself,

In order to have |X,/Xo! bounded, the terms to the right
hand side of the equal sign in (2.2.17) have to be

set to zero, which will result in a bounded X,{£) . Note
that, this is possible, because there is a freedom of
selecting functions 'a' and 'b' from the extension of the

independent variable. By doing so , we have,

A
2@ +2 5 =
2k (2.2.18)
2b T2 AT, o
oy
Q - (10 MF (" _C‘)
(2.2.19)

b = bo Mfo ('—"C’)

where @, and b, are two constants,. Combining

(2.2.16) and (2.2.19),the approximate solution for (&)}
up to first order of £ by MTS method is
X(x) =%Xo + €%y
= Qo oxp ({d—E€L) + by txp (-Ak—£%)
(2.2.20)
25



The exact solution for (2.2.9) can be obtained,
"which is

XMM(‘;C)":- ¢ Mp(ijl—zz- x~-et)

+ by wtp (A TTE -th)

{2.2.21)

The error/solution ratio in this case is

|

X exact = Kapprox

error l —
Solution

= 0 (g'%t)
Xaxact

It is interesting to note that by the MTS method,
we have reﬁlaced the original dynamics (2.2.9) by an

equation (2.2.14) in the fast time scale T, ,'

VX,
+ Xg =0
) T2 c (2.2.14)
and two slow equations in the slow time scale T, .
at,
(2.2.18)
2k 4 p =0

The fast equation gives the undisturbed oscillatory
motion and the slow equations represent the slow varia-

tional change of the amplitude of the oscillation caused

26



by the damping term.

2.3 MT5 Hethod and Singular Perturbation Problems

-There is a class of perturbation problems in which
the behavior of the reduced system - by setting &
equal to zero - could be dramatically different from the
original. This phenomenon occurs because the reduced
system, described by a lower order differential equation
can not satisfy the given boundary conditions in general,
We call this kind of problem a singular perturbation
problen,

Singular perturbation problems have played an
important role in the engineering field, most notably,
in fluid mechanics, for eg. the boundary layer theory.
This problem was solved by introducing the inner (Prandtl's
boundary layer) and outer expansion [32]. However,
the same problem alsc can be solved in a more straight-
forward approach by the MTS method. This approach was
first noted in the paper by Ramnath [4] in studying the
behavior of a slowly time-variant linear system by
employing non-linear time scales. In the following, let
us use an example, which is adopted from [3], for demon-

stration.

27

- I8
RIGINAT PAGE: 3
%1-; POOR QUALITY



Consider a second order singular perturbation problem -

Vs widy =o
7 (2.3.1)
Where o< £ r €. is a constant small parameter.

Expand the time domain X into two-dimensions

= [ Te, T, )

and define 7Te, ¥; as -follows

Te = .
(2.3.2)
-1 (% .
T ‘*‘{,’J A () dL
Ac
where 4%Gﬂ is yet to'be determined.
' . . . A a2
The time derivative = and = can be extended as
d ") 2
rri i L R
& Loy, PPN
1e - e g} £ (%) +2 37,07, % (o)
4 ! 2 4 + 2>
£ 37 9% >y

Substituting (2.3.3) into (2.3.1) and separating terms

according to the pover of € , we will have the set of

equations,

28



&2325 + Wit y =o

37

i
£ =

'&atf 2'7%31091,"_
)
(S

32} = 0

3T

(2.3.4)

(2.3.5)

(2.3.6)

By assuming that g(to;t}) has a solution in the form

Yite. T) = &L(To) 2xp (T )
substitution into (2.3.4), yields
l"‘\-’

’é Te) +W(T)=0

]

or ’é_‘ziwz'

4

ﬁ2=*sz

Similarly put (2.3.7) into (2.3.5), we have

24 3¢
X + 2R =~ =0
2Ty & 2T,

oy }

-

L= % -

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

The approximate solution up to first order can be

constructed as
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4 .

- , = , 2
=C w# MF[;_ijéauJ + G w¥ eap [T-Eifw"di]

(2,3.11)

We obtain (2.3.11l} from (2,3.8) and (2.3,10).
Note that in our approximation the frequency variation
is described on the “r{ scale and the amplitude variation
on the ¥, scale. The success of this approach depends
on the proper choice of the nonlinear clock. While in
the past this choice was made on intuitive grounds,
recent work {2 ] has been directed towards a systematic
determation of the clocks. Ramnath [3 ] has shown that
the best nonlinear clocks can be determined purely in
a deductive manner, from the governing equations of the
system. With a judicious choice of scales the accuracy
of the asymptotic approximation is assured., A detailed
error analysis of the approximation was given by Ramnath
[3]. These questions are beyond the scope of the
present effort and reference [3 ] may be consulted for

more information.
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CHAPTER 3

PREDICTION OF ATTITUDE MOTION FOR A RIGID BODY SATELLITE

3.1 Introduction

In thig chapter, a multiple time scales asymptotic
technique is applied for the prediction of a rigid body
satellite attitude motion disturbed by a small external
torgue.

The attitude dynamics of a satellite, described in
terms of the Euler's equations and Euler symmetric para-
meters, are first perturbed into an Encke formulation,
in which the torque-free case is considered as a nominal
solution. The multiple time scales technique is then
used for the separation of the fast attjtude motion from
the slow orbital motion in an approximate, but asymptotic
way. Thereby, the original dynamics can be replaced by
two sets of partial differential equations in terms of a
slow and a fast time scale. The long-term secular effects
due to the disturbing torgque are given by the equations
in the slow time scale, which operate at the same rate as
the orbital motion. A non-biased osgillatory motion is
given by the second set of equations in terms of the fast
time scale, which basically describes the vehicle attitude

oscillatory mation., These fast and slow motions, combined,
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give us a first order asymptotic solution to the Encke's
“perturbational equation, which,therefore,can be regarded
as the second order asymptotic sclution to the original
satellite attitude dynamics.

Finally, the fast non-biased ecscillatory motion
can be analytically evaluated if the external torgques
are not explicitly functions of time. Thus numerical
simaulation of a satellite rotational motion by this
new approach requires only the integration of the slow
equation which can be done with a large integration
time step., This fact leads to a significant saving of
computer time as compared to a direct numerical inte-
gration. Two examples, one with gravity gradient torque
the other with geomagnetic torgque, are demonstrated in

section. 3.6 and 3.7.

3.2 Rigid Body Rotational Dynamics

(A}. Euler's Equations

Newton's second law for rigid body rotational motion
in an inertial frame can be written as

dRr =

Where ﬁ.and!q are the angular momentum and the -

external torgue., By Corielis law, the motion can be

A
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expressed in any moving frame 'b', as:

-4
ol H - “b b
';7;*'+ Wy XH” =M {3.2.2)

Where E&b is the angular velocity of the 'b'
frame with respect to the inertial frame. In case the
'b!' frame is selected to coincide with the body fixed
principal axes {x,v,z), then the angular momentum can be
written as

N ~

’1&‘ 0 o I Wx| [ TxWx

T
I
)
¥
£
i
n

o Iy o [jWy (T ¥y

o o Wi [T
\ J

(3.2.3)

where Ix'Iy ,Ig are moments of inertia about x, v, z axes.

Combining (3.2.2) and {(3.2.3) we have Euler's equations

I

y wy = (Igm I) iy = My (3.2.4)

*

I wjm (1~ 13) W, wg = Mg

In vector notation, they are !
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M (3.2.5)

b %
3
Sl
+
&3
»®
%
s

&1
i}

Euler's equations give the angular velocity of a
rigid body with respect to an inertial space though this
angular velocity is expressed in the instantaneous body

fixed principal axes [35].

{(B). Euler Symmetric Parameters

The role of Euler symmetric parameters are
similar to Euler angles, which define the relative
orientation between two coordinates. From either of
them, a transformation matrix can be calculated and a
vector can be transformed from one coordinate to another
by pre-multiplying with the transformation matrizx.
However, from an application point of view, there are
notable differences hetween Euler symmetric parameters
and Euler angles. The important ones are listed as follows.,
1. Euler angles (8; ,=1,2,3) have order of three,
whereas Buler symmetric parameters { ﬁi;i=cbiﬂb3)
have order of four with one constraint,
2, pBp are free from singularity,where 8. are
not. Since é,) =X , 83 are the z-x-z rotations,

in case that &, =¢ , one can not distinguish &,
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from 6y .

3. f:. propagate by a linear homogenous differential
equation; @, are by a non-linear differential
equation.

4, ©; have a clear physical interpretation, -i.e,
precession, nutation and rotation. S can not

be immediately visualized,

By considering above differences, we feel that
Euler symmetric parameters are more suitable for numerical
computation because they are propagated by a linear
equation and free from singularity, even though they add
one more dimension to the problem. On the other hand,
Fuler angles are easier to understand. In this chapter
we select Buler symmetric parameters for the satellite
attitude prediction problem, And in c¢hapter 5, for a
satellite attitude control system design, we use Euler
angles,

The concept of Euler symmetric parameters is based

vt
upon 'Euler Theorem', which says that a completely general
angular displacement of a rigid body can be accomplished
by a single rotation ¢ about a unit vector f:(ﬁ,,.@z,ﬁs) ,
A

where £ is fixed to both body and reference frames.

The /£t are then defined as :
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[3‘:' ﬁ___ COQ_L
2
.2.6)

. Y : = 1,2,3 O

Br & L e S
with a constraint

3 z

Z, Bio= (3.2.7)

*
If Cyb is the transformation matrix from the

reference frame 'r' to the frame 'b',

_— # —_

x
Then C,p, can be calculated in term of £ as [35]

r 2 2 2 2 \
Bot 8 -8B , 2(RB4P:S) , 2(Pifstore)

2 (B.r ,Bz “ﬁc ﬁs ) P /3.;,2-—-’ﬂ, l—f- I/";L" [232, = (ﬁz/% -ﬂggﬁ‘)
. 2 (ﬁ‘ ‘93 + B fa) , 2 (ﬁl /33 #ﬁ‘/g‘); ﬁo&‘ﬁiz'ﬁ:"‘l F;/

{(3.2.8)

O%
|

rb

Also Ei satisfy a homogeneous linear differential

equation [35] !

~ /7 3

b r
[ ) 0o -w, -ty -us]fB,
d (P | X o W =w B (3.2.9)
d% 2
B w), """3 0 Wy B,
w
L Wy Wy o L Ps)



—b
where w, is the component of Wy, in =x direction, etc.

3.3 Euler-Poinsot Problem

Closed form solutions for a rigid body rotational
motion with external torgque are usually not possible
except for a few special cases. A particular one, named
after Euler and Poinsot, is the zero external torque
case, This is useful here, since the disturbing
torques acting on a satellite are small, the Euler-Poinsot
case can be taken as a nominal tfajectory.

It is Kirchhoff [12] who first derived the complete
analytic solution for Euler's equation (& ) in terms of
time, in which an elliptic integral of the first kind is
involved, In the following, we will review the Kirchhoff's
solution along with the solution of Euler symmetric
parameters ( § ) by Morton and Junkins [15]. Also,
by defining a polhode frequency, we f£ind that the solution
for B; can be further simplified, such that it contains
only periodic functions.

(a) EKirchhoff's Solution

Without external torque, Euler's equations are

IX’ WX —(I -— Ié)wa '-'\)J =0 (3.3.1)

1,3 Wa (- Ix) W3 wy =0 £3.3.2)
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Iy w -—.(‘Ix—-lt"a)bdx wy =0 (3.3.3)
Above equations are equivalent to a third ordef
homegeneous ordinary differential equation and its solu~
tion involves three integration constants.
Multiplying above three equations by wy , Wy and ué
respectively, and integrating the sum, we obtain one of
the integration constants for the problem, called T, which

is the rotational kinetic energy of the system, that is:
2 2 2
W W = 2
Iq Wy + Ig 4 + I3 4 i (3.3.4)

Similarly, by multiplying the three Euler's equations
by Tyuwy ‘ ;y“? and Jgug ) respectively and inte-
grating the sum, we have H, another integration constant,

that is the angular momentum of the system.

Ixawx?— + I?.w'z- +%Lw3% =HZ-

d 4

Having rotational energ? T and angular momentum H

(3.3.5)

given, a new variable ¢ can be defined in terms of time
4 by an elliptic integral of the first kind ,
¢ de
[ YR (3.3.6)
o A 1= R 4 ()

Alri-T) =
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where A, Tt and Xk are constants, and k is the
modulus of the elliptic integral.

Kirchhoff's solution can be written as follows

4 )
w, = & (I-h*sn>p)* (3.3.7)
w),: b Mcp i (3.3.8)
w3 = ¢ Cug (3.3.9)

where constants a,b,c,k, and T are defined as follows.

2 Hz—QI}T

& o= : (3.3.10a)
2 _ 2L, T~H
b™ = - (3.3.10b)
y (Iy-T)
>
¢ = iIXT_‘H (3.3.10¢)
3 (L= 1)
A= (BT (o225 7) (3.3.104)
I T I
KA
£ Z= I . 2T H (3.3.10e)
Ix - Iy H*-21; T
T = - <Po d <
A Jo G- RPse)? (3.3.106)
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P, = Ain! [.i)L(’E".)-—] (3.3.109)

Signs of a,b,c and )\ should be picked, such that

they satisfy the eguation

Iy- I, _ —CA
B ab

(3.3.11)

The validity of above solution can be proved by

direct substitution.
Kirchhoff's solution is less popular than

Poinsot construction in the engineering world. One
reason is that it involves an elliptic integral,
the solution becomes rather unfamiliar to the engineering
analyst, However, for ocur long term satellite attitude
prediction problem, Kirchhoff's solution seecms to be a
powerful tool,

(B) Solution For Fuler Symmetric Parameters

Euler symmetric parameters satisfy a linear differ-

ential equation, which relates W; and B¢ [35]

/ ~ (" ) 19 3
o R I 1 I R
d [B{_ L1 o wy o —wy By
-d—:;— =2 (3.3.12)
8. wj -3 c Wy fgz .
, p3' L U‘}} Wg -—WX (8] RS [3_-5)



The constraint is
2
2 P =1

A set of complex numbers C{kti) can be introduced

as follows

xo - ﬁ:’ + “L ﬁl

\ (3.3.13)
dz‘ — pa — A ‘62:
o3 = ﬁ% + Ay
where
A = }-—'
and ; satisfy a constraint of
Ko oy — & L3 = | (3.3.14)

In matrix and vector notations, {3.3.12) and (3.3.13})

are

= M-
—
&
JF J—
ey

7

(3.3.15)

N
1

(3.3.16)

41



where
d )

(W3 Wy mWe 0
and
‘I o} A = )
X o A o} -1
A = I - S o
o A © |
Substituting (3.3.16) into (3.3.15), we obtain:
‘:'_.’ % A-—;_
X =3z A [w] (3.3.17)
or
[} ) .
°¢e=-£(x +(1uux_w)._]ozo
¢ ' » LY
0¢,=:[Aw,+(&wx*w’3) ]°‘-:
y N 3.3.18
®y = 4 [=A Wy 4 (4 Wx+“"3)"—*-]o< ( )
-‘ _ I N
o = 5 [-a Wy 4+ (A wy 4w ]a{,
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For a torgque -~ free rigid body rotation, the

angular momentum vector H remains constant. If we assume

one of our inertial axes (say Qz) pointing in H direction

and name this particular inertial frame by 'n’, then

) I's)
-—n
H =1 H (3.3.19)
1%}
Since
- b +#* -~
H = C,, H (3.3.20)

combining (3.3.19), (3.3. 20} and (3.2.8) we have:

-

H, EXCYRTY >
B - ARY N A (3.3.21)

*"13‘ I l(ﬁ-’-ﬂ?_'ﬁaﬁ')v/

Using the relations

Ty why)

— .._I___-.

H Iy w, and B =A%
.Ij W(aj
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http:H(3.3.20

{(3.3.21) can be written in W and o« as

Iy Wy = W (=~ + Kz oly )

Iy w, = )
97 = v oty + Xy ) (3.3.22)
1 .
I Wy = AH (&%, + ol o5 )
Also o ; satisfy the constraint
Hooly —e¢y aly = | (3.3.23)

As equations (3.3.22) and (3.3.23) are linear in
Kooly 7 Aowy 4 oo and %,«; , they can be solved

in terms of by ,wy, W‘é and H, i,e,

o ) = T (T, w4 A T )

Lyol, = (Iy—}“_;L-H) (3.3.24)
Xy %y = "i"(—IZgE’—"’) |

X, oAy = E’;T (_,;1541,,%)

DRIGINAT PAGE I8
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The ratio X3 and EEE can be easily calculated
= - O‘:-;
el - H—Iy ‘:‘Jy = wax"‘{'l}&’} (3.3.25)
1
Lo ZHoBYy . it (3.3.26)

Substituting (3.3.25) and (3.3.26) into equation

(3.3.18), we have

d[.‘xo ::-‘;j- [/‘L 2T+ H W, & (Ié-—Ix') NXW'3 J

ot H+ Ty wy H + jb u3

oty L [,i -27T+H Wy __(13-1})“%(ué ] o,

Aot [k ATy Byrda) W | e

A X H + I, uh, H—#Igwj j

Ay _l_[_*i 2THHey | (@rywew |

o H-Zywy  H-wy )
(3.3.27)

Now we have four decoupled, time~variant homogenous

linear equations. Their solutions are immediately
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available in terms of quadratures.
Alsoc because (3.3.27) have periodic coefficients

(w are periodic), by Floquet theory [36], the

X,wy,wz
solution can be expressed in the form Q{(t) exp(st), where
Q(t) is a periocdic function and s is a constant. With

this in mind, solutiong for (3.3.27) are

lolk) = E; 2ap (dp) sup (irt) Xelk,)
£ (k) = By 2xp Lap) exp (AR & (X,)

of, () = E‘ 2 p ("’LP!) axp (ciRrt) dz(;t(g).S.ZB)

oLy (k)= B, sap(ip) w4pirt) &;l4k,)

where
1
2
£ o H* Iy Wy(4)
\ H+ Iy Wyfi})J
.t
. 2
H = Iy (%)
E, =
H— Iy W&fﬂh{
V2T H _x X
P == [T -3, ].[w(x) = ) P
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Py = (-4 [7i6) —Z- iz + %}iﬂ*}}

- __!___ H (2T H 7 (7o)
R= 2 [ 4.l H - ;& ) T

e
and
*
Tffk):f dr
' o V= 2V sk
< k)AM1<?

H(t)‘is an elliptic integral of the third kind. T,
is the periocd of W, wy, and @, 3 ¢ and t are re-
lated by equation (3.3.6). 3also ¥{t}) is given by

Note there are two frequencies involved in the
solution of Euler symmetric parameters :the first one
is the same as the angular velocity Wy , W and
with period of Tw , and the second is related to exp(fir#)
with period of %%L . The latter one can be explained

as due to the motion of the axis of the instantaneous

angular velocity vector Ehb . In Poinsot
E
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construction, the tip of the W,, vector makes a locus on
the invariant plane called the herpolhode gnd also a
locus on the momentum ellipsoid called polhode. The time

required for the vector w:b to complete a closed

polhode locus 1is f%%L . We call 'R' the polhode freguency.
From ’“é':z";( , the general solution for Ex
is:
¢ N g . 1l )
)| [ER(AHRA) , o, _EmlA+RE}, O Pet#o)
B, (#) © , E,®R(ptRy) , ° ., E An(BRE) [ B
B |E Am(perD), © . E Ripirt), © p. )
B, (%) o , ~Eydim(part) , 0 . Ejca(P+Ri) ‘ﬁittt?)
. ) o
(3.3.29)
*
{(C) The Transformation Matrix Cup
X
The transformation matrix C,, in terms of B
is

e BB . 2Pt ) , 2(AFsFele)
Crp = | 2(AB =Bl , BIpifa o, 2(BBAP )
2B fofe) | 2(BPoF). B BAE ]
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where Bi is given by (3.3.2%2), Bv direct substitution, we

_have !
X %, ®, X,
€y = G (2Rt) & + din (2RT) G+ G (3.3.30)
where
4 2
cazp Bl (Ao [a00) 2 E plopyter ev>Fz
~2 dumap, E\2 Blo) Bal®) 0 FAm 2P B ( ‘B;on—/sf‘{og
seaap B piw-Ae] 7 ~2 @ BRAL Ao
2 Sinap, Ef P19 Bulo) ~din2f B] [ Be) B0
2€,8,{ o (prpa) [Bilo) 265, enlprems) (Bt B49)
. Baloy~fet o) B3(2)] O YR Pilel] o (k)
/ N ?
¢, = | TARrP At o) 7 (a2 F‘(o)w/;,(p)p;(o;]}
t Bio) (3,,;0)}} '
e {2 w2p, punfyio) Gy & (Ao A
+ A 2P, [P}{v)-[;(ﬂ]) 0 w2 A zp B Bl fale)
z ) z
G {2 86) polo) ca2p o ¥ cmzcp, B[R fit)
B ( [ﬁnZ(O)“ﬂzz(fﬂj' -2 2P E; ) Byle)
i 5
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with

1.

) . *l *.r *
Note that matrices Cl' C, and C

/ . .
2 3 are periodic functions

period of Ty only.

Summary of the Section

Without external torque, both Euler's equations and
Euler symmetric parameters can be éolved analytically,
The solutions are given by equations (3.3.7) to
(3.3.10) and (3.3.29).

The angular velocity @it s a periodic function,
that is W+ )= wd) s whereas E(t)
contains two different frequencies: they are the W -
frequency and the polhode~freguency.

#
The transformation matrix Cpp, is given by equation

(3.3.30), in which the & «frequency and the

polhode-frequency are factored,
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3.4 Disturbing Torgues on a Satellite

“ 0f all the possible disturbing torques which act

on a satellite, the gravity gradient torque {G.G.T.)

and the geomagnetic torgque {G.M,T.) are, by far, the

most important. Fig. 3.4.1 illustrates the order of
magnitude of various passive external torgques on a typical
satellite [17], in which torques are plotted in terms of
altitude. Note that, except for véry low orbits, the
G.G.T., and the G.M.T. are at least a hundred times as

big as the others,

Hdyne.cm
J»z;"E \\
m‘
[g-’ \ ‘33 -
nt #,

N .
wt 4 0 2000 i

Vi F = \";:1

Figure 3.4.1.
Torques on a sateflhite of the Earth 25 2 function of
the orhit heaght £: Mg gravicy torque; A, aerodynamic torque,

M,,magneuc torque; M; solar radsation torque, Mp,
micrometeorie impact rorque.

ORIGINAL PACE B
QOF POOR QU
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(p) Gravity Gradient Torque On A Satellite

In this section, we first derive the equation for
the G.G.T.; second its order of magnitude is discussed;
third, by re-arranging terms, we express the G.G.T. equation
in a particular form by grouping the orbit-influenced
terms and the attitude-influenced terms separately, so
that it can be handily applied in our asymptotic analysis.

1. Equation for Gravity Gradient Torque

with ﬁ,F' and ¢ as defined in Fig. 3.4.1,

let R = |R| , and further define T = R+F , and r = ix¥l,

satellite

pol]

N L

C- center of mass

R- position vector

+

s

Fig. 3.4.1
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The gravity attraction force acting on the mass dm by
the earth is:
af = -u am z/r° (3.4.1)
where u is called the gravitation constant (u =

1.407639 1016 ft3/sec2). The corresponding torgue generated

by dF with respect to center of mass ¢ will be:

di = deE

—~AL dm

——— (P x¥)

]

i
i
‘-—D
x
.
Al
+
\m
N
v

= g (P xR) (3.4.2)

We note that:

v = Y F =(§+F)-€§+F)

H

— 2
Rz[l+-2.RR'2)D I;:z.j'f""

-3 3R
=R [I- e 4+ a3

-+

2 "3/2_

o= ()

We have omitted all the terms smaller than l/R*.

The total torgue acting upon the satellite using (3.4.2)

and (3.4.3) will be:
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Le ""f ‘”-Gr
[1- i ](fx.q)dm
fx‘R dm

AL (R = ey
R3 J'MB ;Zf) (fXR){,{’Wl

By definition, because ¢ is the center of mass, the

first term in the above equatioﬁ has to be zero, therefore:

_ , o
Lo = e | (RP)(FaRydm (3.4.0)

If L is expressed in body principal axes, let:

'_b.h Ra *4>“ ﬂ
R = | Rx J9 - fz
R3 ! f;
Then, -
" RR P, + R Pr+ RESLF
. TRRA S T RR AR - RR Y
3L
LQ ='E?- Rmﬁ + &ﬁg '+%%g dm

R&H - RREL - &ffs
RRafT + RRL + RRAS
m LTREL - RRET -RRET, ]

Using the fact that, in body fixed principal axes, all

the cross product moments of inertia are zero,

N I— L i )
jmﬂfa 0 FooA% )
We have, therefore,

R2R3 (I3~ Iy)

— sa | ™ 3 (43— dy

Ler TR R Ry (I Tg) (3.4.5)
re! RL(IY—.I)‘)
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In wvector notation :

= Sb
TP - 3"’{' Rb A (....g__- 3
Le = 3 [_i:\;_.x] Im|—g ) (3.4.6)
where
Ix o ¢
% is the matrix of
I — o] I-y C . .
m = moment of inertia
o] o Ié
and
z 2
I, = f(fl_fj)dm

I_y = I(f’l" ﬁz.) dm

o
t

2 2
[opi- g2y dm
(3.4.6) is the equation for the gravity gradient tor@ue;

it has a simple format.

2) Order of magnitude considerations

Since G.G.T. is the major disturbing torgue for satellite
attitude motion, it is important to know its order of magni-
tude. As a matter of fact, this inférmation - order of mag-
nitude — plays an essential role in our analysis of the dy-
namics by asymptotic methods.

From orbital dynamics [37], the magnitude of the posi-
tion vector R, can be expressed in terms of eccentricity e
and true ancmaly £, that is:

R= a(""e-z‘)
|+ & er

(3.4.7)
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where 'a' is the orbit semi-major axis. The orbit period

'p' is:

40-,-__.-_.__“" B (3.4.8)
AL

wer}uf

Combining (3.4.6), (3.4.7), and (3.4.8) we have:

s

Lo -3 Yo (Hem-ﬁf( R ) 1,,(R”)

("_e’l)_a - R R
2
= O (wWoup ) (3.4.9)
We can say that the G.G.T. has the order
of the sguare of the orbital frequency, if the eccentri-

city e is far from one (parabolic if e=l1), and if the moment
*
of inertia matrix Im is not approximately an identity matrix

(special mass distribution).

3) Re—grouping Terms for G.G.T.

We find that R - the orbital position vector expres-—

sed in the body fixed coordinates -~ contains both the orbital
and the attitude modes. Inspecting the G.G.T. equation
(3.4.6), it seems possible to group the orbital and the atti-
tude modes separately.

Since

' ter
_FE‘L = R c
- Aint

where 'i' denctes perigee coordinated, we write
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g « *

R*= C,, ¢ R"

I‘_b - 3 (.\J:__,m i+ ELG_Q‘F)l é‘b C::{- X Imé'b C:+
& (1-€ A sing —tind

(3.4.10)

* k3 =
Let us define a linear operator OP(B}) on & matrix B by:

%
OP(B) = —.5_23 c B_z_,

Bis =By -B,+By (3.4.11)

O Bz; .-‘323

Y

It is straightforward to show that:

Ca ) |, [T . [BeF
o |x|Bl o 4= CP{B)| ca’ 5 (3.4.12)
—Ainf e pint cof

Substituting (3.4.12) into (3.4.10) we have:

—b i * % | * x
Le = [ Cip ©P ( Cpi Tm Ciy)]

3 R T ’

3w o y(i+ew A

:"’“’tg)s 1) (coq‘-f ) (3.4.13)
1-e

dont Cad
From the above equation-it is clear that the first

group contains terms influenced by the attitude motion with
higher frequency, and the second group is influenced by the

orbital motion with relatively lower frequency.
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(B) Geomagnetic Torque

A satellite in orbit around the earth interacts
with the gzomagnetic field and the torque produced by

this interaction can be defined as a vector product

by = Vm * B (3.4.14)

g

where B is the geomagnetic field and GM is the
magnetic moment of the spacecraft. The latter could

arise from any current-carrying devices in the satellite
payload as well as the eddy currents in the metal structure,
which cause undesirable disturbing torqueg. On the other
hand, the vehicle magnetic moment could also be generated
purposely by passing an electric current through an

onboard coil teo create a torque for attitute control.

If the geomagnetic field B is modeled as a dipole,

it has the form [38].

~ Mg . 2o T . S\3
5="%1R ee_.g(eﬁ-;z)aj (3.4.15)
where Eﬁ is a unit vector in the direction of the

gecnagnetic dipole axis, which inclines about 11.5
degrees from the geophysical polar axis. Vector R
represents the satellite position vector, “g is the

[
magnetic constant of the earth ( Mg = 8.1.><102 gauss-cnﬁ).
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Combining eguations (3.4.14) and (3.4.15) and expressing

LM in body fixed coordinates, we have
Tb VAR I =% A =iy z4

(3.4.16)

Although neither the geomagnetic field nor
the body magnetic moment can be determined precisely
in general , modeling both of them as

dipoles will be sufficiently accurate for our purpose.

Sumﬁary of the Section

1. Gravity gradient torque (G.G.T.) and geomagnetic
torque (G.M.T.) are by far the most influential disturbing

torgues on satellite attitude motion.

2. The basic equation for G.G,T. is:

f_:r = %[*’E—X] fm (’E‘) (3.4.6)

For G.HM.T. is

) . s E«‘
— s """9 ® AL - X 4‘ A .
Ly = (VMX)C:‘b Qf [68 -3(&g R ) R J

(3.4.16)
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3. G.G.T. and G,M.,T., have the same order
‘as évoiﬂt , if the eccentricity is not too high
and if the satellite mass distribution is not too nearly
spherical.
‘ 4. By re-grouping, we separated terms of attitude

-.-b —
frequency and terms of orbital frequency in L.& and LM

the results are (3.4.13) and (3.4.16).
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3.5 Asymptotic Approach for Attitude Motion With Small

Disturbances

(a) Euler's equations

Euler's equations in wvector form are ;|
= it — - L2 3 .
IMW"I‘EW"]IMW“'EE"' T, +* " (3.5.1)

assuming  the initial condition is

W (%) = du,

where E?T] + ¢3 Ty b represent the dis-

turbing torques. The order of magnitude of these dis-

turbing toryues are discussed in the previous section. The

small parameter & is defined as the ratio of orbital

and attitude frequencies.

Let a&ﬂ*) be the torgue-free Kirchhoff's

solution which satisfies the particular initial condition

that is
* 2 —_ -
T Wy +[ Wyx] Tm W =0 (3.5.2)

I.¢. L:j_N (k)= W,

By Encke's approach [37], let

WlA) = Way(4) + £ Swit) (3.5.3)
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Substituting (3.5.3) into (3.5.1) and subtracting

(3.5.2), we have the equation for $Sw(t)
¥ 2. — * — — *
T, 5w+ [Wnx] T, $W + [Swx] Im iy
— x —
FE]SWX) Ty §W = ETHE T+

3 (3.5.4)
Swit,)=0

Note that Encke's perturbatioconal approach is not an
approximate method,., Because by combining (3.5.4) and
(3.5.2) the original equation can be reconstructed.
Neverthelesg, performing the computation in this perturba=-
tional form, one has the advantage of reducing the numeri-
cal round-off errors.

For simplifying the notation, a periodic matrix

*

operator A((X) with period of Tw can be defined as 3
* # -1 - * % -

AF)=— I [(Wyx) Im“"(Imwa)] (3.5.5)

Eg. (3.5.4) can be re-written as

il * — * — * _

fw — AG) $w + € Tow ($wWx) I, SW
e Xt 2 %4 e
S €T T 4L T It

(3.5.6)
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We see that the above equation is a weakly non-linear
‘equation, because the non-linear terms are at least one
order smaller than the linear ones.

Further, by Floguet theory , a linear esquation with
periodic coefficient, such as Ktk) in (3.5.6), can

be reduced to a constant coefficient equation, as

follows.
% -X-_‘
Let matrices Rp and Py (+£) be defined as
* P
= 2 §§ (WEU,O)J
F%A Tow [ A
{3.5.7)
*
X . -Ra £
Pa (#) = &,(%,0) €
> *
where i%(iuo) is the transition matrix for A{%) ,
It can be proven that [36] ,
* .
(1) T l('k) ig a periodic matrix

*__l - *_4
Pa. (£+ Tw)="Fa (%)

* ¥ - Bk Ao
@ B AW Pa k) + SR By,

¥
= RA a constant matrix
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Let  Swi(t) be transformed into ((#) by
— —
= PR SW (3.5.8)

Then

- * —_ * 2
W = Py s+ Py Sw
% X~ _ x ¥ ¥ - *
Fa Py «+ PA[Asw"g L (5&0)()1',,"503
T — -
e LI T 4 25T T, 4]
- X X ¥ X X
o (PA PA -+ ];;_\ A PAI Uu
—-¢ XX -y Xy * *_i_
By Tow (B dx) Tm (Pa w)
L *_,‘_-.

* *__l -
+ ¢ FAIW\ T + EZ?A I ‘T'z.{.....

Xy -
Ba B - 2By Tl (B Gx) T (P2 )

X X - R - B
TEPL T T, + © P Im T+ (3.5.9)
These results can be proved by using eq.{3.5.5) and

the property (2).
*®
Moreover, in our case, the constant matrix QA
is proportional to 1/7w, therefore it can be considered

*
to be of order & . Also, for simplicity, RA can
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be transformed into a diagonal (or Jordan} form

Such as:
*y
*,..| * »* * f%; c o
M R,M =N = .
0o A, O (3.5.10)
0 o A3
Let — % -I -
V=M (3.5.11)

- A
(e + €T+ (3.5.12)
where
4 *_ » -¥_,I
=M P Im (3.5.13)
A
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MTE Asymptotic Solution

For solving {3.5.12), we apply the linear multiple
time scales asymptotic technique {3]. We first expand

the time domain X into a multi-dimensional space,

I 4 (ﬂ;) ’Q I {a-»'”' >

and G, T ¢ ...etc, are defiped as |

To=Kh [ T=ex Ty = 8K J v ke,

The time derivatives in the new dimensions are

transformed according to

A
- a - dT a 04-[2‘ el
dx 735, I ax T 3T Ak ¢
(3.5,14)
P 2 LD
= -+ —_—— Ve s

Also we assume that the dependent variable U (L)

can be expanded into an asymptotic series of & !

Vi) = UglG, 0~ )+ £ Vit 1)+ - (3.5.15)

67



Substituting (3,5.14) and (3.5,.15) into (3.5.12)

‘we have :

2V G 7 2 atf
——°+€(3“+9"?)+£( e )+
37, 2T | 27, 27, ‘aq aro

By equating the coefficients of like powers of € on

both sides of (3.5.16), we have:

Coefficient of ¢°!

2Vo _
2T, (3.5.17)

Coefficient of g! :

¥

alf av'u * — X - ¥ - ) —
Y 2% AV -alrnl @ mx]at
afo B'C[ ° [ " ° ]
X —
+Q‘ﬁ {3.5.18)
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2,
Coefficient of £ .

2% _ 2Y . 3 . W PRI RPN
3T . 3% 3 +Av, Q[(Im S

Solving the partial differential equation (3.5.17),
we have
U = Us (T, T ) (3.5.20)
where U; is not a function of 7, and the initial condi-
tion is '

Ue(o) =0

and Vo (i ; Ta ) is vet to be determined.
Note, (3.5.20) implies that the zeroth order solution
for Euler's equation with small disturbances is the
Kirchhoff's solution.

Substituting (3.5.20} into (3.5.18), we have

Y U7, X~ XXl g — Xo) -
-_— = v — & (T UD Vs
X —
+QT1 (3.5.21)
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This equation with the initial condition Vilo)= 0o

can be solved as,

oo 2% i 0
vi=(-52-+ AU')To -—J 8T & x)Q vy d'T,
+ (%5
jo &T,_al'co (3.5.22)

The term @ fIm Q_Iv'o")o\ U in the above equation

can be written, as shown in Appendix A,as follows:

* ¥ Xq - Xy —
A (T & U5x) RV,
* - * - % _
= Fl (,-Co) \fi‘)l .U.t_) + LL-Q) U';Z o + Fg(._o) U;); o
_ 3 =% —_
- 4‘2-1 ) U;{; o (3.5,23)
«# S *®
where F,- +F and F; are periodic matrices

with period of Tw , and Y, A=1,2,3 are three
—_ *
components of the vector V; ., If we expand FE ’

*
F, and F; into Fcurier series
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we have ¢

—-] -

* * _ o - #
Q\(Imia—tlﬁ,?‘) a U

=5 3 [ By e (B4 F cm(lﬂi'fo)]u;.&
- gr-l d=o *d Tw Ki T !
(3.5.25)
- * * .
where EiJ and FI‘ are constant matrices.

Also, in case that the external torque T, is not an
*
explicit function of time, then O T, can be transformed

into a particular form as,

X

— — * —
& —rf. = 6" (-t‘, Ta“' ) "+ &P(Tb) 6‘2 (_C]J T?. ‘)
(3.5.26)
where . E;! . &, are functions of slow variables
*-
T, Ty, only,and 8p (%) is a fast time-varying

function., The expressions of (3.5.26) for gravity gradient
torque and geomagnetic torgue are given in the following
sections.

Substituting (3.,5,.,25) and (3.5.26) into (3.3.22},

T, 3 " ¥ . . % 11T,
[ 5 (B B Ry e CTF)



S

T -
U31 aL’t'o + Jc ¢ a‘,('&,) G, () AT (3.5.27)

For'achieving a uniformly valid approximate solution,
it is required that EASIRAT P LA G R be bounded
uniformly for all time . Applying this condition to
(3.5.27), it reguires the first bracket to the right
of Fhe equal sign to be zero since, otherwise, it will

linearly increase withT,. This leads to the equation:

T * 3 X — —
L= NV =T R, YU + G (7))
. (3.5.28)
tith X, ¢,
Ij?;t‘o):o
Also eg. (3.5.27) becomes
Tod 3 [ E.oaon|20iT)
Ui (o) - (8 3 [ By
A=] d=

X ] -
+ .o 271-!0" U-_ U
Ry e ( Teo )J © AT 35.20)

T, * =
4 L a, (¢) G, () Avo
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Bgs. (3.5.28) and (3.5.29) yield the first order
multiple time scales asymptotic solution to the equation
of U{£) , (3.5.12). Once U(#) is obtained, the
asymptotic solution of Euler's equation (3.5,1) can be

+

constructed as
Dey= Wy+§W
_ *_op o#* '
= L) +E Py M(GHEV])  (3.5.30)

Lk *
The matrices Fy and ™M are given by (3.5.7) and

(3.5.10).

The above approach gives us an alternative way of
evaluating a satellite angular velocity w(t) instead of di-
rect integration of Euler's equation, By this new approach we
integrate (3.5.28) directly and evaluate (3.5.292) analyti-
cally. Since (3.5,28) is in terms of <) (%,€) '
it allows us to use a large integration time step,
thus saving computer time. Also, we note that (3.5.29)'
describes the oscillatory motion and (3.5.28) describes

the secular motion of the satellite angular velocity.

73



(B)

Solution Foxr Euler Symmetric Parameters

Buler symmetric parameters are kinematically related

to the angular velocity by a linear differential eqguation
(3.2.9)

F=L(®F

(3.5.31)

From. (3:5.30)

Y,

1

&jM +‘S:U

— # - % — -
= Wy tep, MY V)

Hence

= * * —
B o=t {tdhi+ersw]}p (3.5.32

Again by linear multiple time scales method

= [T ”tll v J
_-Co"-'-"t,

Tl:i*

we have

= + el L
dt~ 27To ER (3.5,33)



Asgume that

Bty = ol b + & By {oa T )4

(3.5.34)

Substituting (3.5.33) and (3.5.34) into (3.5.32),

and arranging terms in the power of &

Coefficient of £° :

. i * =
5T, T % [wn] Bo

, we have

-
-

(2.5.35)
Coefficient of &' =
X o= 3B ! X315 3
2P - = [Wy]f - Fraal s [sw] B, (3.5.36)
Bto i
Coefficient of £ -
g i a-ﬁ‘e aEl ] -y
— - - [Sid
3T, 'if‘”w]gz Tt L
: (3.5.37)

The expression for <I"ﬁ (%, £0)

(3.3.29), that is from the solution of ;%L
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approach, Similarly, iﬁ (£, 40) can be also achieved
by using the Floguet theorem, although the latter one
is more numerically oriented anq requires several trans-
formations.

The solution for the &° order equation (3.5.35) is

e * ——
‘BO [_"C;J"Cl) = éﬁ (T’-’,O) PCN (Tu‘tz"') (3.5.38)

with I.C.  _ _
P (0) =B (0)

and ﬁ;;N (qq,ftf“) is yet to be determined.
Substituting eq. (3.5.38) into (3.5.36), we have

3Py oKX= T B oA, X o=
S = L] A Fa 3R 41 [sl] 25 B

(3.5.39)

The solution to the above equation‘is:

—

X T,
B =2, (to.e)ﬁ [~

- -X_ x ¥
;ﬁ:’ui_— i’(;‘(oz o) [§w] 3, (70

B de .
= ﬁﬁ (T,.0) [-:f“” . +£—L °§;(¢o) (5u)) B4(7%) Boy AWJ

(3.5.40)

where SWw(%,7) , given by (3.5.30), is a function
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of T, and T, , ond é,e (7,,0) is a function of -,
.bnly. By re-grouping terms it is possible to write

x * £
é;; [sw] c:Eﬁ P.ON ags follows (appendix B):

*_4 ¥ * x> * %
2, [sw] & = R () + Plt) R,(T)
(3.5.41)

Substituting (3.5.4%) into (3.5.40),

— x ’ g * —
pr = (T, e] [- iﬁ”’ 4 5 R, b Pugtt) Te

ﬁtl
| (T X % = (e
“‘”3:[ P {7 R:_(T:Jﬁm“r)‘ic"] (3.5.42)
c

In order to have "Eﬂb/ﬂﬁe” . bounded in-w, it is
necessary that B, should not increase with time

faster than B, . Therefore in eq. (3.5.42), those
_terms which increase linearly with r_ have to be set to

zero, That is

X —
R' (’T])_BON (T}) = ¢ (3.5.43)

—

x
() R,%) Bon gy d o
(3.5.44)
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Equations (3.5.43) and (3.5.44) give an asymptotic

solution to the equation of Euler symmetric parameters,
* A— —

B(T,T) = ép (To,0) Bon (T + £ B (To, Ty )+

(3.5.45)

where Bon (7)) from (3.5.43) gives the secular

variation of the perturbational motion

gives the non-biased oscillatory motions,

Summary of the Section

(A) The rigid body satellite attitude dynamics

are described by:

———

* * . _
Ty 4+ [wx] Tp W = 7T+ (3.5.1)

(3.5.31)

AF=1187

which can be replaced by the asymptotic approximate

t
L

formulation

—_ X 3 * —
LA A G- Fo VW U+ GT) (3,528

A

n X i d jo -
s . anjo
= (&) am BT+ By e (25T
T » —
vl + L &p (7) &, ()dr (3.5.29)
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— 'x_,l ® — ——
W)= Wyt)+ € Py M (Up+ €Y7 ) (3.5.30)

a‘c( (3.5.43)

_— X PR _
B, = é,s (T, 0)- 'i' fo PB(W)éz(T,) B, ) do
(3.5.44)

R = B,(k,0) B, )+ €p, (£)

(3.5.45)

(B} The secular ;qs. (3.5.28) and (3.5.43) have to
be integrated in ’Z‘,(i‘, £) , or eguivalently, in
a very large time step in & . The oscillatory eguations
(3.5.29) and {(3.5.44) can be analytically calculated if
the external torques ;i are not explicit functions of
time,

3.6 Attitude Motion With Gravity Gradient Torque

- b
The gravity gradient torgue l_G , given by {(3.4,13),

~b ¥ % x X % oy (M ecaf)
L%.:[ciboP(Cb,(Imcnb)]'{s M( «f)

(1-e*? -
Aon? £
Y| S (3.6.1)
Ao Ceaf
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where . e, £ and W, ..t are the satellite orbit
éccentricity y true anomaly and averaged orbital angular
velocity, respectively. O*P is a linear operator given
by eq. (3.4.11) .

From (3.3.30)

* * ¢
Cre = ( coa(2rt) + c:,_ A (2Rt) + C; (3.6.2)
and
X * *
C;B = C Cﬁ‘h
% 2 X5 % . x ! ¥
= C’ Cin ¢t (2rtY+ €, C,;hadzlm(lnt)'l' ¢ Cin
* * . *
= () calRt)+ G A (2R1) + (5
(3.6.3)
2 ¢
where C; + C, and C; are three periodic matrices

with period of T, .

Substituting (3.6.3) into (3.6.1)

A

A%

A

=a (¢ (G Cro(art) + gzm (2Rt) + G )

{ Op (&) & () Cor2rt

0 (C,, Im ,_).Mn 2rt +op (Cs Imci)
4 O (T & + &7 I, ¢,) s 2R ab2RE
+o*p (aTém 53 + E; T E,) oo 2RT
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W:w (14 € caf)
U-e*)?

X H{rx * X X, X . b3
+ Op(Cy Im Cp G I, ) Am2R T <

Al £
e’ £
At G L

oy

o—

¥ b -* * . *
Qlg = { S0+ S, ain(erty + 5, 4 cart)

= *
+ Sy tt ) Anlgkt) + S () €9 (4RT)

+ §6t>*) Ao (6RT) + 3#) cm(ékt)}

j 3 Wk (14 ecaff [ An"f

(i—e*)? o f
At e2f] [(3.6.4)
where.
X x x % ,aTr X ¥Tx A
In € T+
Si= & ¢ op ( G Im G LIl +G -T-m%)
2 2
E S X % X % *
!
+3 RGP (G I, G+ G T &)
t2Q G (G ING + G Tn ()
X
Sz = ~ v
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L]

Because -3/:_ , A=1,2,~T are periodic matrices

with period T, , they can be expanded into Fourier

serigs with period of Tw . That is
% " * . *
¥y . z_n,;x
. M Coo (22420 ) + N; ]
%4 }:—o[ 4 ( Tw ) AJ )
(3.6.5)
With that, G Eé can be expressed in the form:
* — * —
A Lq— = G’g (Tl) -+ &P‘.’Co) GZ(T;) (3.6.6)
‘___ 2 3 -2
Gy (<) = 3wy Ut erf) | Adof
| (1-e%)? ca* §-
- ~ (3.6.7)
G ("C = X g (T
1) =M G ) (3.6.8)
* "
— 2.an 2713y K
&FLTD)N‘?';I[M o (24 i (2212
L -Jf“ J.'!TJ‘I » . Z.WJ* MZQ*
+JZ::0[MLJM( Teo )TNZJ/.LW\- » }

A g" (l;x/!;a cm(:m"x +N AM'\( )] cn2rl
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tA) # M .
+ X [k, —J— ' i‘liit]
£, Mgy (2 )+ Nt ain ( L s

(3.6.9)

x —
and QT(T%)Qth) can be analytically integrated.

Resonance
20T
In special cases, if the tumbling frequency—-.—r—- and
£2 %)
the polhode frequency R are low order commensurable,

that is, there exist two small integers n and m such

that

( L7 — D =
Tou R =0 (3.6.10)
then resonance will occur. For handling resonant situations,

for example, if 3_;—_’-7—-—12 =0 , then in equation '(3,6.9)

0
¥
of QT,(T») , terms such as ME-TEMJ. Rt , o (mﬂc—;zpf

etc. will produce constants (i.c. Ain 2 ;’_ £ Azt = Acn>(2kt)
. (%)

= E‘-—;‘_—C{;ﬂ'q.nf , Comak = —zl- ). These constants should

be multiplied by Z-";,_f'q) and grouped into E, {t;,7 in (3.6.6}.

Then our theory. with the same formulation enables us to

predict the attitude in the resonant case as well.
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A Numerical Example

A rigid body asymmetric satellite in an elliptic
orbit is simulated. Here, we assume that the satellite
attitude motion is influenced by the earth-gravity gradient
torque only.

The numerical values used in this example are the
followings

Satellite moment of inertia:

I, = 39.4 sll.ug--:f.’“l::‘L
I, = 33.3 slug-ft*
I, = 10.3 slug-ft*

Orbit parameters of the satellite:
ecéentricity e = 0,16

inclination i = 0

orbital period 10,000 sec

Initial conditions are:

Wy = 00,0246 rad/sec
Wy = 0 rad/sec
u% =0 rad/sec

Satellite starts at orbit perigee and its initial

orientation parameters are

8, = 0.7071
Bi =0
g, =0
B =0.7071
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In this case, the small parameter £ is about

w

£ = orbit

~ 0,03
W ottitude

With the above initial conditions, the satellite attitude
dynamics are first directly integrated using a fourth
order Runge-Kutta method with a small integration time
step size of 10 sec for a total interval of 8000 sec. This
result is considered to be extremely accurate and referred
to as the reference case from here on. The other simulations
are then compared to this reference case for
checking their accuracy. A number of runs have been
tried, both by asymptotic approach and direct integration,
with different time step sizes. They are summarized in
Table 3.5.1. The errors in each case — i.e., the differences
between each simulation and the reference case, = are
plotted in terms of time and given by Fig. 3.6.1 through
Fig. 3.6.12. Fig. 3.6.13 is a plot of the maximum
numerical erroxs as funétions of the step size. From
this plot, we see that with direct integration the
step size AT should ke no greater than 25 sec. On the
other hand,for asymptotic simulation, the step size can

be as large as 500 sec although the first order asymptotic
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approximation errors approach zero as £ -> 0 but not

‘as At-> 0, Fig. 3.6.14 is a plot of the required
computer time in terms of the step size AT . We note
that for extrapolating a'single step, the asymptotic
approach requires about double the computer time using
direct simulation., BHowever, since the former

allows use of a large time step, overall, this new approach
will have a significant numerical advantage over

direct simulation. In our particular case, the saving

is of order 10. Although, in this comparison, we did not
include the computer time requiréd for initializing an
asymptotic approach by calculating Kirchhoff's

solution and gome Fourier serie; expansions etc.) we

argue that this fixed amount of computer time

regquired for initializing (about 40 sec for —

the above example} will become only a small fraction of

the total, if the prediction task is long. For example, with

the. above data, if we predict the satellite attitude motion

for an interval of three days, the direct integration
with & step size AT = 20 sec requires 1700 sec of computer
time, while the new approach with 4T = 500 sec needs

about 170 sec plus the initialization of 40 sec.
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3.7 Satellite Attitude Motion With Geomagnetic Torque

The geomagnetic torque acting on a satellite can

be written as, (3.4.16)

L= (W) G 22 W& a(ed RHRY]
{(3.7.1)
where C;f is the vehicle magnetic moment and
éB is the geomagnetic dipole axis. The latter ,
for simplicity, is assumed to be co—-axial with the
earth north pole.
Substituting the expression of éﬁ from
(3.3.30) into Lo, we £ind ET_:," can be written
in the form of
* o * —_
Bl = @ (w) 6, (T) (3.7.2)

wnere
x * '__b *
&y (T.) =0(Vm X) Cib
*I *,
:3( W x) [é{ Coo (2r1) + C;_,dw‘n(:’.R't)“'C;]
-~ AL —_ 1 —a ALk
GulT) = ¢ [R&;-3 (& RHR*]

(3.7.3)
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X X *,

By expanding C; . Gy, €3 into Fourier series,
x'_.
" we see that QL can be analytically integrated in terms
of To. Eqg. (3.7.2) corresponds to (3.5.26) in section 3.5

and the asymptotic formulations can be eagily applied.

Numerical Example

A rigid body satellite perturbed by the geomagnetic
torque is simulated with the same satellite which flies in
in the same orbit as given in section 3.6. 1In addition,

we suppose that the vehicle carries a magnetic dipole Y, ,

whichh is aligned with the body x-axis,

VP =(3,00) ft-amp.sec

At mean time, the wvalue of the geomagnetic

field is assumed to be !

24 — 1%
My =22,2 xl0 Sleg — 44
Secsm Amp

Using the above numbers, we simulated the satellite
dynamics by direct integration and by the asymptotic
approach, Table 3.7.1 lists all the runs tried. The
errors of each case are plotted in Fig, 3.7.1 through
Fig. 3.7.12, Similar conclusions as given in the gravity
gradient case can also be reached for the case of geomag-

netic torque,
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CHAPTER 4

PREDICTION OF ATTITUDE MOTION FOR A CLASS OF
DUAL SPIN SATELLITE

4,1 Intrecduction

In chapter 3, a technique for speeding up the pre-
diction of a rigid body satellite attitude motion was
developed. However, the limitation that requires the
satellite to be a rigid body seems severe, because many
satellites in operation today have one or several high
speed fly-wheels mounted onboard for the control or
stabilization of their attitude motion. The combination
of the vehicle and its flywheels sometimes is referred to
as a dual spin satellite. Therefore, it seems desirable
to expand our prediction method for handling the dual
gpin case as well.- In doing so, it turns out that—it
igs not difficult to modify our formulations to include
the dual spin satellite, if the following conditions
hold:

1. The angular velocity W is a periodic function

when there is no external torque.

2, A torgque—-free analytic solution of the system

is possible.

3. External torques are small.:
However, the dynamic characteristics of a dual spin
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satellite in general are not clear yet as far as conditions
‘one and two are concerned. Although we believe condition
two might be relaxed by some further research, they are
beyond the scope of this effort.

As a demonstration example .for handling a dual spin
case, we consider a sgpecial class of dual spin satellites:
that is, a vshicle having a single fly-wheel which is
mounted along one of the vehicle body principal axes.

The satellite is allowed to have an arpitrary initial
condition and to move in an arbitrary elliptic orbit.

In what follows, the rotational dynamics of a dual
spin body are first discussed., Anr excellent reference
on this subject is by Leimanis [22]. Later, the torque
free solution - which serves as a nominal trajectory -
for a class of dual spin satellites is presented. This
torgue-free solution was first given by Leipholz [23]
in his study of the attitude motion of an airplane with
a single rotary engine. Then, in section 4.4,an asymptétic
formulation for a dual spin satellite is discussed and

two sets of numerical simulations are presented,

¢o



4,2 Rotational Dynamics of a Dual Spin Satellite

For a dual spin satellite, we assume that the
relative motion between fly-wheels and the vehicle do
not alter the overall mass distribution of the combination.
Thus, for convenience, the total angular momentum of
the system about its center of mass can be resolved into
two components. They are: H , the angular momentum
due to the rotational motion of the whole system regarded
as a rigid body, and Ew the angular momentum of the
fly-wheels with respect to the satellite.

The rotational motion of a dual spin satellite

is, therefore,'described by:

i _ — “\
2 (F+ Hy)=R*

A%
. {(4,2.1)
oy 0{ * — — _— A
—_— (L, v+ H = M
A (B A
%* .
where T is the moment of inertia of the combina-

.

tion (vehicle and wheelg), and M* is the external
disturbing torgque,
Applying Coriolis law, we can transfer the above equation

into body fixed coordinates 'b‘',

wb — b
+ + WX H,
= &° (4.2.2)
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Further, by assuming that the wheels have constant

angular velocities with respect to the vehicle,

AHy _
Ak
Hence
;’ "tﬁb_;p(wbx)(; L?b—fﬁ%):ﬁb (4.2.3)
e " “
This eguation is equivalent to Euler's eguation

in a rigid body case.

For satellite orientations, because Euler symmetric
parameters and the angular velocity w are related
kinematically, the equation remains the same for a dual

spin satellite, that is,

A8 | (X% (4.2.4)
_ - L Tw .2,
o L {w]p

4.3 The Torque-free Scolution

The motion of a dual spin satellite with a single
fly-wheel mounted along one of the body principal axes
can be analytically solved if there is no external torque

acting on the vehicle,
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{a) Solution to Euler's equations
Without loss of generality,suppose the fly-
wheel is aligned with the principal x-axis. By
{4.2.3), the Euler's eguations are

= - ‘ (4,3.1)
I, W, = (Ig 13) wg w§

d} (4.3.2)
Iy- y = (I.S" L) wy Wy —uh A

® (4.3.3)}
I§1U35= (15("-13) UJXL02.+(HH e

where 'h' is the angular momentum of the wheel with

respect to the vehicle,

If eq, (4,3.2) is divided by (4.3.1), we have

I' e
y{Ty~ Iy wydwy = [T T0) Iy wy- A1) d ),
Integrating this equation and solving for w,, in

terms of ; the result is ‘!

wﬁ} -+ (T3- Ix) Iy Wi-2 AT, Wy

+C (4.3.4)
p

where .Cy is a constant which is yet to be de-

termined,
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Similarly, using eq.(4.3.3) and {(4.3.1), u% can

‘be also expressed in terms of Wy 5 the result is;

L)

W, = + (ix”gﬂixwf+%1f&“&
5"'.-—-

“+ Cg {4.3.5)
Ty (Zy~I33)

where C§ is another constant.

In case that there is no external torque, we know

that the rotational kinetic energy T and the total

angular momentum Hy of the system must remain constant.

ie€.,
Tx W' d Ty w) 2
+ ; 1< =
r Wiy y Wyt Islug + 14 woo =T
(4.3.6)
and 4
U. 2. 2,2 Lo >
(4.3.7)
Equations (4.3.6) and (4.3.7) can be derived by integra-
ting

{ Wy (430) + Wy (4.3.2)+ w3(4-3-3)]

IM -0: ! Y4 v
g LI (30 + Iy @y (0302) + Ty (w337)
respectively.
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Having determined the angular momentum H+ and kinetic
“energy T, one ¢an calculate the constants cy and c,
by substituting (4.3,4) and (4.3.5) into (4.3.6) and

(4.3.7)5 they are :

Cp = Hy =R =Ty (R7T-2u,,,)
a N (4.3.8)
Cé = HT“"}?\, -IJ (Q.T‘”’ﬁ,l{)‘bw)
or Mﬁ and Mf can be rewritten as ;|
e
(4,3,9)

_ Ay- Xy 2 24 ¢ 3z - Iy
e R A S

"(4.3.10)

To find Wx , one can use (4.3.9), the solutions

u% and ﬁd} , Wwith (4.3.1l) to eliminate u? and
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v

w) , such that an equation for can be obtained.

&

dwy 4;f‘“_""
a3 =R P
o % = (4.3.11)
or
A
g o=x (X Atk .
W L) ,J-—P),. Py {4.3.12)
Suppose that --F:'V Pé has roots of W, , W, , W}

and iy in a descending order, then

7(‘: ‘.i j e G’l w)(
wxior] - ( IVI‘;"} (55,_,; B (-t (W, Yty 44

(4.3.13)
'Phis integral can be easily transformed into an

elliptical integral; i.e. eg. (4.3.13) is equivalent to

‘P o[q,
‘FGJ‘i- &Z_Aa.&cp (4.3,14)

r=m

where

™ o= ‘ZJIy—I—‘j

(4.3.15)
J (Iy'lx) [Ig =T ) (W~ ) (U'Jrf."' L, )
,&2:’ wq--* w; ) W, — W,
Wy- Wy Wy~ (4.3.16)
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http:ply(4.3-.12

and if Wy € Wi(oy 2w, then

wx_ = Wy (W - W:)—f-w, (U}¢“W3)M2¢

(4.3.17)

and if W, S Wyle) £ Wy, tnen

Wa (Wt ) — Wy (W — &) ) S <b

(B) Euler Symmetric Parameters
Since the equations of Euler symmetric parameters

remain unchanged whether a space vehicle has fly-wheels

or not,
— i * —

Once the angular velocity i/ is obtained, this
equation for the Buler symmetric parameters can be solved
by a similar procedure as discussed in section 3.3. The

result can be summarized in follows.

/ ' ‘\rﬁo(o)\
Cam) [ BB © . -EBampurx) O
. By (o)
gy | o E;cR(B+RY) o Ao (RAREY [
_ E

P () E, AlnlP+RE) o B R (PRY) o )
A ) | . ° “Ea A (Poret) © B, to{ part)|| P49
~ LA J

f (4.3.20)
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http:jjjj(4.3.19
http:j(4.3.18

where

and

1
£ = [ HrtI “’7(*)]2
‘ Hy +Iy wy(o)

i

E : HT '—Iy w);{;{—) Z
* Hoy— I y(o)

P = 0§ m(*)-R%

P, = 05 U#)-REA

= T (Td
2 Tw

V) = S* (A7= HyWytAwd
e Hp- Ty,
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T (%) and (%) are two elliptic inte-
Jgrals, T and Hy are the kinetic energy and angular
momentum of the system, and they are given by equations

(4.3.6) and (4.3.7). ; T,

W is the period of

the angular velocity W , and h is the angular momen-

tum of the fly-wheel with respect to the vehicle.

4.4, Asymptotic Solution and Numerical Results

Once the torquetf;ee{nominal solution for a dual
spin satellite is ogéained, the basic procedures of the
asymptotic approach, described in section 3.5 for a
rigid body satellite, can also be applied to a dual
spin case. In order to include the gyro effect due to
the £ly-wheel, a few eguations in section 3.5 have to
be changed.

Eguation (3.5.1) has to be replaced by

.

k3 —_ * — —— 3
T o + (wx][Tmw + Huw] =£1Tl+i Ty Ao

(4.4.1)

———

where H,, is the angular momentum of the flywheels
with .respect to the vehicle.

Equation (3.5.2) is replaced by

x = - X - -
T Wy + [Wex]) (I +Hy) =0 (4.4.2)
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and equation (3.5.5) has to be changed .
* * - * T — -
AR = = Ty [ (%) T~ (T Wy + P )¥ ] (4.4.3)

0of course, Wy (1) and the transition matrix
ip{i, o) arise from (4.3.9), (4.3.17) and (4.3.20).

They are the reference trajectory for a dual spin case.

Numerical Simulations

For demonstrating the correctness and accuracy of
predicting the attitude motion in the case of a dual
spin satellite, we select a numerical example with the
following data;

Satellite moment of inertia

I, -= 30 slug—ft}
I, =25 slug-£ft
I3 = 16 slug-ft*

A fly-wheel is mounted along the body fixed x-axis
of the vehicle with an angular moméntum h with respect
to the vehicle,

h = 0,2 slug-f€/3ec
We assume that the satellite is in an elliptic ic

orbit with

eccentricity e = 0,16
inclination i=0
orkital period = 10,000 sec
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The initial conditions are:

Angular velocity /(o)

Wy = 0,03 rad/sec
Wy = 0,01 rad/sec
u@ = 0,001 rad/sec

—

Fuler symmetric parameters pglo)

B, = 0.7071

@1 = 0,1031
B, = 0.1065
ﬁa = 0,6913

For these numbers, the small parameter & of the
problem, defined as the ratio of orbital and attitude

frequencies, is about

g = orbital froguemcy _ _2T/iowo .

attitude frequency am/aeq

This dual spin satellite is first assumed to be
disturbed by the gravity gradient torque only. The
dynamics are simulated both by direct integration and the
asymptotic approach. The results are summar;zed in
Table 4.4.1. Also the simulation errors are presented
in Fig, 4.4.1 through 4.4,10; they are given in the same

way as in section 3.5 for a rigid body satellite.
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Next, the dual spin satellite is assumed to be
disturbed by the geomagnetic torgue only. A magnetic
dipole is placed onboard, with a stFength of ﬁg =
(3,0,0) ft - amp- sec, which interacts with the earth's

magnetic field of strength

4 cfug-£2%
Sed- amp

Uy = 22,2 X106

Similarly, the attitude dynamics are simulated by
direct numerical integration and the asymptotic approach
The results are summarized in Table 4.4.2 and Fig. 4.4.11
through Fig. 4.4.20,

These two Seés of data, one for gravity gradient
torque the other for geomagnetic torgue, show that
our asymptotic approach is equally useful for a dual
spin satellite as for a rigid body case, if the conditions
listed in section 4.1 can be satisfied. The numerical
advantage of saving computer time and the approximation
error introduced by our asymptotic approach are of
similar character as discussed for a rigid body case.

The details are not repeated again.
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CHAPTER 5

DESIGN OF A MAGNETIC ATTITUDE CONTROL SYSTEM
USING MTS METHOD

5.1 Introduction

The interaction between the satellite body magnetic
moment with the geomagnetic field produces a torgue on
the satellite. This torque, however, can be harnessed
as a contrel-force for the vehicle attitude motion.

By installing one or several current-carrying coils
onboard, it is possible to generate an adjustable
magnetic moment inside the vahicle and thus a control
torque for the satellite, This magnetic attitude control
device, using only the vehicle-enviroment interaction,
needs no fuel and has no moving parts, it may conceivably
increase the reliabiltiy of a satellite. In recent years,
it has received considerable attention.

To design such a system, nevertheless, is difficult,
because the control torgque is very small, Since the elec-
tric currents available to feed through the onboard coils
are limited, the magnetic torque generated in
this way is not large enough to correct satellite attitude
motion in a short period of time. In fact, it is realized
phat one has to depend on the long term accumulating

control effort of the geomagnetic interaction to bring
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the vehicle into a desired orientation, For this reason,
the system can not be studied readily by classic control
design techniques.
However, this problem can be more efficiently
analyzed in terms of the slow variational equation
from the MTS approach, By casting the dynamics of the
above system into an YIS formulation, the fast motion
(attitude nutational oscillation) and the slow motion'
(amplitude variation of the nutation) can be separated.
Even though the effect of the magnetic torque on the
dynamics is very difficult to observe and comprehend in
real time t , still, using the slow secular equation
in terms of a slow clock, the control effect on the
nutation amplitude change immediately beccmes transparent,
In this chapter, we will analyze a magnetic attitude
control system for a duaal spin, earth-pointing satellite,
For more imformation, the reader may refer to the works

of Renard{39], Wheeler [40] and Alfriend {[41}.

5.2 Problem Formulation

The Problem

A dual spin satellite mowves in a circular orbit;
its antenna is required to point toward the center of

the earth. A momentum wheel is assumed to be mounted
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along the satellite pitch axis for control of the

" pitch motion.

quatorial plane

— orbit plane

Pig, 5.1 Roll, yaw and pitch axes

For the above satellite a roll-yaw oscillation,
called nutation, is possible, This is because its
angular momentum vector may not be perfectly aligned
with its angulaf veloc?ty vector due to external dis-
turbance or initial misalignent etec..

A magnetic control device, using the geomag-

netic interaction, is to be designed +to damp out

the nutational oscillation as well as to keep vehicle's
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angular momentum perpendicular to the orbit plane.

Equations of Motion

The Euler's equations for a dual spin satellite

are given by (4.2,3), they are !
Ity + (T3 ~Ty) Wy Wy + Ly =My

R Wy + (Ty—T3) W, Wy~ f W, =
1, w3»(1y~ Ix) W, wy = My

where 'h' is the angular momentum of the fly-wheel
and M is the external torque on the vehicle,
Assuming ¥ ,¢ and £ are the Euler angles which

correspond to yaw, roll and pitch for concatenated

X—Y - 32 rotations, indicated by
(trajectorﬂ
frame /{gtation about X rotation about Y,
(XIYIZ) ______________ -'b'(xipyi fzi } mmmmmm e —p
by amount of VY by amount of ¢
body
rotation about z, .frame)
(XZ."Y}.’ZZ) ——————————————— %(beyb 'zb)

by amount of &

Then, a kinematic relation between the angular velo-
city and the derivatives of the Euler angles can be

written as [42]:
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— LI LI ) * “~
w:ye,‘-pqae/‘-i-e Jz-f-%ie(; (5.2.2)

A ¥ o~
where ex e& are unit vectors, €y is in the

A
direction of wvehicle position vector and e} is normal

~
to the orbital plane. The term (& X) ea describes

the rotation motion of the satellite in a circular orbit,
e A

A
Transforming €x , € and eg| into the body

fixed coordinates and using small angles assumption,

equation (5.2.2) can be written as:

~

2 ] M % + ~
5P| W RP A+ Pand - Cap AP Caa B+, dintf s

R AnD+ P CRE +Wo CAY Mnep ind + Wy iintf L

| dind + 6+ W Cay P

v

\ (5.2.3)
¥ -
>+ W

= | (5.2.4)
& + W J

Substitute (5.,2.4) into Euler's equation (5.2.1),

we have

[
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Ix(‘f WLCP)-I-(IJ-Iy)(?*wc‘#)(“’"‘ &) Mx‘

I,.X
3™
(? + w W)‘* (z,- 1 } ot B
EJ" 2 x— 13 (v P w, s )'Mg
1 (21 = M
3 3 (5.2.5)

Earth's Magnetic Field

The geomagnetic field B can be approximately
represented by a magnetic dipole as discussed in section
3.4.

B = ZE[RE-3(5 ROR | (5.2.6)

where My is a constant of the geomagnetic field

( Mg = 8.1 x 10*% gauss—cmﬁ Ye ég is the unit
vector along the dipoie axis and R is the vehicle

position vector. Using Fig. 5.1, QB can be expressed

P Fag A
in the axes of €y, ey , e} (called trajectory

axes) . A R
€y = A Wo X M x € + €A Wok _dun s ey
Py

-+ Coo A EJ (5.2.7)

where'i' is the inclination of the orbit. Substitute

{(5.2.7) into (5.2.6), we have:

-— "tmj
B

—
n——

' A
o< Cﬂ.wor‘d«!;\.l. e},

A A
+ ol eé] (5.2.8)
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Further, because the satellite is in a circular orbit

4 2
' T

-and if the vehicle is well controlled, the body axes of
the satellite should be closely aligned with the trajac~

tory axes, therefore,

N

=b ~te WwEaup | =2 Amet AL
B B Y= 2R |
Conw, X A
or €l A )
(5.2.9)
—'.b r"l ~ h
B = Bn Ao w X
Bo Coa L, %
{5.2.9')
B, -
LU&LkQ
> M «
Bo*‘ WGM B Arne A
2z AL N
By = we 78 ¢ A
AL
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The Control Torque
Assuming ii, to be the magnetic moment of the
vehicle, the torgue experienced by the satellite due to

the geomagnetic field is
M=V, x B (5.2.10)

For the control of the vehicle's attitude, let us pre-

specify the control torque M as

Ty ) EX;

Mlsbod = ~ Ra | Ty P |- %y |-ty (5.2.11)

¢ | . ©
Myoatned represents a desirable control law,
which may not be possible to implement, M Losned

is two-dimensional, because the pitch motion is controlled
by the momentum wheel, which is excluded in this analysis,
The first term in the above equation, *ﬁz(lx*;/,:tycf;, o)
reflects elimination of excessive angular momentum due
to the perturbed vehicle body rotational motion. and
thus damps the nutational motion. The second term
is to control the vehicle orientation through the gyro
effect of the momentum wheel.

Let us take the cross product of equation (5,2.10)

by B,
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2 — — .
"V =B (Vm- B) (5.2.12)

"
‘I

v, = BxF_
M 5.2,13)
|8 |* (

——

In this case ‘GM will be perpendicular to B and
also to M . It can be proved that this ;M is

the smallest magnetic moment required for generating a
known torque M. Substitute (5.2.11) into (5.2.13) to

give:

_ (28, (hy Ty 5 + A A )

Bé (-+%, I,(\}.""ﬁzﬁ-cp) (5.2.14)

BX (”'kz Ig ‘i; + ﬁ"&.'f")
"‘By ("“‘&1 Ix \i’ -’ﬁ;"ﬁ\.qb)

is three dimensiocnal. Thus in

We see that VM
order to implement the above control law, it reguires
three electric current-carrying coils and their supple-
mental egquipment to be mounted orthogonally to each other
in the wvehicle.

However, let us suppose that there is a weight and

space restriction., We have to limit ourselves to use

one coil only. By putting a single coil along the pitch
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axis, the first and second components of eguation

(5.2.14) are eliminated; the control law now is

o
C b
= —_ o
T .
By (- &, Iy P + Ry bo) — By (-Fn I - £, A9)

(5.2,15)

The corresponding torque generated by this control

law will be:

FP = Vo xB
= [B koL, $-2,£.9) -8y £, T+ .7 By
IBI* |-y
¢
(5.2.16)

By substituting (5,2.16) and (5.2.9) into the equation

of motion (5,2.5) we have:

Ix{},'_i_(efmzw,,t ézrx) - By Aw2Wek K, I,

I, w
IBI* HE X
F (G Ty 2] 4 [‘B:M?‘aff:‘* b g wi(L-T,)
4&“’0]‘}’ + B:Cﬂzc‘-‘vf‘t 702;&4, = 0
[B}* (5.2.17a)

112



and

Vi o B:&,_I)ndx\-r\zw-)t .

= P
I5]*

2, ). &
+ [-—-LU: (Ix-Ig‘)‘i' wnﬁ-"i" By A2 W% ‘ﬁ' ] c,|>

pegirn- %
131
= 2
4 By bk _ :
== by =o0 (5.2.17b)
| Bl
These equations are linear, but can not be exactly

solved, since the coefficients are time-varying. The
quantities ¥; and k, should be picked such that

the above system is stable,

5.3 S8ystem Analysis

Free Response Solution

The roll-yvaw dynamics (5.2.5) are first determined
without considering external torques. We see that
the dynamics contain a fast nutational mode and a slow
orbital mode,

The system (5.2.5), without the external torque ",
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has the characteristic equation:

2 (- ==
?\lL‘{' [ LUGZ_ (L -3y (Ix-I3) (wv+;:3_xg) (wv -'_I:K"J,';)Jl?’
T 13

A
WOZ‘(IJ-— Iﬂ)(j-x_ls)(wc-i‘-i%%?’)(WB“ IX'I,'{) - O
Iy %; ¢

(5.3.1)
The four characteristic roots are:

t 4 Wy orbital mode

+x j (-2 wors ) H’L-c.t,-'_t; yw.]

" nutational mode
I« I?

"Singe &, (the orbital angular velocity) is much
smaller than kﬁmaa

(4= Iwm W,zes ), the angular

velocity ©f the fly wheel, therefore the nutational

mode can be simplified into i-ﬁf&L . We
x T
note that the frequency ratio of orbital mode and

nutational mode is a very small numberj that is

£
N

Order of Magnitude Consideration

Let £ -be a small parameter which is defined as

the ratio of orbital fregquency to the nutational
frequency,

7 1 <<l

(5.3.2)



Assume h, IK'I/ and Ié are of order one,

then
the following terms are ordered as:

“ﬁt.:: OCr)

"‘J(_): O(E)

Be = w? Mo Minl/w = O(e?*) (5.3.3)

B, = w uly cad /M = O(E)

[By= o (&)

The control gains kI s k

, are limited by the small
current generating the torque and is therefore, necessari-

ly small. We assume that

43( , As = ocg)

For convenience, & and its power can be used to

indicate the order of each term.

For instance Wp
will be replaced by €W .

By 'doing so, equations (5.2,17)
are :

I,(ty-i- E[Bo@zwtﬁzxx‘]q/i»ﬁ%

+5 [ Bl Aim LEW,E Ry Iy

£ - TG T)w] §
I8
~Bo don 2800k By A , 2 (Ts-
t e [ = 2Ry, h+ £l (T :%)Jy

]
b

+ ¢ [ BrewEwx
[ IB1* 2 %, ]4} (5.3.4)
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Typ+e |48 b Tydi'e e ] § - 2§
1B1*

2t Y
4 i[ B Tg\,tiwcx ﬁzIx ¥ _I), wy +M’C(IX-15)]‘1V

+lwed — ¢ wi(Ie-TH+
+ -4 Bch:i“%z'J%I&_] ?J =0
- gl

B 2wtk % &—} $
IBi*

(5.3.5)

From these equations, it ig easy to see that all
the control terms are at least ene order less than the
system dynamics; therefore the control does not influence
the fast dynamics.

To simpiify the notation, {5.3.4) and (5.3.5) can be

re-written as:

Tap 42 Gup+ (A+ED) P+ EELY
TEFy P =0 (5.3.4")

LP+2G, ¢ +(-A+EDp) P+ L E, P

+ € EP‘]U =0 (5.3.5')

where C'np '.d¢ ,3)?, ..s.etc. are defined by

comparing (5.3.4 )to(5.3.4) and (5.3.5') to (5.3.5).
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Multiple Time Scales Approach

/ /
For solving equation (5.3.4) and (5.3.5), we use
the MTS method as outlined in section 2.2, by

expanding the dependent variables ¥ and ¢

into
asymptotic series in &
2z
Y=Yo + ¥ +E 4+ (5.3.6)
P=PtiP TP E (5.3.7)

Further, the dimension of the independent variable
t (time) is also expanded into multi-dimensions as given
by (2.2.11), (2.2.12), and (2.2.13). Expressing equations

(5.3.4') and (5.3.5') in new time dimensions, we have:

2z
(35"0 ia(}'o +ia*\bf.+...-.)
> T2 30T 372
2 ¥ _J
+ (atkb . a\flo + i. S
¢ d? S + € 5T, T,

s 4o 2P
t (A4 z:Dq,)(a‘?»- j_‘z +e St )

o+ T E'-f’ (\.,Jv-{- s LP] eresen )_ E_ F*(?a’t' E(‘,b"*""')'

= O
{(5.3.8)
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and

2 2
I (a‘P';_.f. 28 2P0 4 £ 3K +)

IT,3T, 92
~+ T 2 Py 2 Pe 2F e
Go (M__p et TS )
t (Rt eppy (2% o 3% L 2%,
- Iy a't! 3 Ts

TELE (Pteqp+) + € Fp(totey,+ )

= 0 (5.3.9)
By equating the terms of like powers of € in the
above equations, we have:

o
Terms of €

7 3P
T X A 2P
2 T4 o Ty

(5.3.10)

2 _ 2% _
Ly > T,* ‘&'QTD =0

The solutions-are !

AT

Vo = -1 Ts
’f: ..oxxlo [——_——Ingv J + Z-Mla [M_Ixig + 7T

= AIxp -AA T ]_ 134 £.iTo
Fo = JZ3, M[J:x:g-J RERES > IWJM

(5.3.11)
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Where p, 9, ¥, and s are not functions To ; but
they may be functions of 7, ¢,--etc. They are yet to
be determined.

Terms of El:

P2
3T,

z 2
2 ¥ 3% X
I)( 3 _CL._,_ -+ ‘2\4 2T = -2 -Ix 3T, d ¥

p 2% _p, 2%

*Eupl{/o - Fv.[/crc

N N (5.3.12)
T, X8 _p 2% o 2B 2%
VAFRX 3T, T 5wt T e ot

3 ¥ 2\
_4- o - o
ﬁ 27, P?’ 7T,
- ECP CFO - F‘F LVD
Substituting the solutions of ¥y, and ¢, from

{5.3,11) inte (5.,3.12), we have:

3Py 3 P ‘ \
I‘K—a—-_az—- -+ ‘Eg—s—i—- = MF [—A. Nw Tol u;r

+MP[.LNU_“CO] ’V:I',+‘W;,

2 (5.3.13)
> 2w ,
Ty S o - R = 4 [FANWT [ Yy

+ sp [,‘L Ny To } "\F? %—W?
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where

£

JTx Ty
_1_ Pa.ny* Eu,A \ ]
wy =N [T+ G R T N

N

. DIL \
o 2l 2 )

Wy = -£.24 -
¥ &3 T Epr—Fy (5.3.14)
- p 2 2 Dy Nuk g, EaTet
g = &3%‘(‘:9*5;"’.‘ Fo— "% """ mm /f

Eﬂ‘t A
V -«-& (d? = + F«P :D‘?N'*L_ Ix;;)%

Note Wy TV ++. etc, are all functions of T, T,
only. And p, g are yvet to be determined.

In order that H"; /¥| and H’. / cpal be bounded,
the terms that produce secular effects in \}/’ ' <Pi

must be eliminated. Bgquations (5.3,13) are

linear;, the transition matrix $ (t,0) for
29 and 2 in (5.3.13) is
27T, 2Ty
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é(r D)::FCQ Nu.To ""Af""\.ul-&.rb\

[ 2xp(iNgT) A eAp(ANGT)
} . .
= 3| TFPting AP (-4 NLT)
—A B4p (ANLT) 2P (AN T )
~ '+ A MF('-A‘-N&TD) +MF (..A‘Mu.ru) )
(5.3.15)
The solutions for %—%;_ , %%B with zero initial
conditions are v
O S
Y T [ \ - 7
..a__Et 22p X Ny ) Ty fR—XP(ANuojV?.+W9,
= $ (w,7)
‘ 3 - .
a_‘i! . | 24p (AN ) Ugs +22p(iNuT) Vit W J
~ Vs
vdo
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Pt
———

P (T, o)
=

(£ +4 Wy) 22P(240,%) 1y, +V°P)”‘EM1(°}3N“T")
i 28

ZNR

(2

+(1w+..w¢) Sop (~ANaTo) (W;P + 2 Wq,)’ﬁﬂ_!i_Nu__T._"l
Ny,

TV, + Uy +Vor - Us k) T,

18y, + L W) WHp(—24A NeT) . bp (2 ANWT,)
(g +i 1) DP(ANTY | () DApL2iNS

2 Ny 2 Nu_.
-4 x _.N Tv . .
(_W_\i,.pAW?)MP(N“ u®) | (Wi — 4 W) 2P ik
u NLJL'

,.l_ 1 A
l\ (ch -i-u?"‘)( V‘F‘,-A u‘{,) ’.Co

(5.3.16)

Notice, the terms ( 'VW.;.’L{‘P{-'{'/;; A—Ug A ) “To

and (Vg AU =A VYt AWy ) T, will increase
linearly with time. In order to have ¥ ?ﬁ bounded,

are

these two secular terms have to be set to zero. They

vw+u?,+v§,i-u?; =0

. N (5.3.17)
V;P+ u?""‘"\’vr*““‘}’ =0
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which are equivalent to

. (5.3.18)
V;P — A V‘i’ =0
Also, using the freedom of choosing r and s ,
we can set "W‘{,z W?-:o, oy
‘W"q/:—-'gn_:i‘ F‘{,/i =0
(5.3.19)

We = H 2K - A“FTY =0

P

substitute for U, V;f, . W:i“ ...etc, from (5.3.14);

equations (5.3.18) are, then:

4 : T
(A+ Nu:r,()%’g +(( c’.?—i;— + Fp ~Dp NuA +EL_* )

Ix Iy

+ N - Iy p‘l’IX"i E‘Pk‘] =0

(5.3.20)
C(A+ N T az Eo Iy 4
x) 2 [(q +F +D Ny A = H)
+ Nu (¢ - ~DeIxAr _ Ew]
(5.3.21)

where 'p' and 'q' are complex conjugate.
A first order MTS asymptotic solution for (5.3.4)

and {5.3.5) thus has been constructed by using (5.3.11);
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tnat is

Y= axp (-NwdTo) + ¢ 2xp (Nud T) + ¥

(5.3.22)
_ ile N A‘IX% .
= ekl [Ny ATo) — =P oy N, A To
cf) IxI){ P( wt ) l—-Ix-:!i)' P( wh )+/'L

where p, q are given by (5.3.20), and 1r, s are given by
(5.3.19}. All these equations are in terms of “(; - the slow
time scale. In order to make ¥ and ¢ decay in time, the con-
trol torgue has to be selected such that it forces p,q,x,s
to zero through the slow equations, The general éroblem in
chapter 4 (with magnetic torque) is simpler in the present
case because the perturbed motion is kept small by the con-
trol., Linearization therefore, seems adequéte, leading to

analytical solution.

Selection of Feedback control gains

We wish to select feedback gains k‘ and k,
in system (5.3.4) and (5.3.5), such that the system is
stable. However, because the cohtrol torque is small
and the system is time-varying, the effect of the control
upon the dynamics is not clear.

The above problem was then cast into an asymptotic
formulation. By the MTS method, an approximate solution has
been achieved as given by (5.3.22), through which
the design problem can be interpreted in a more éonvenient
way. That is because the approximate solution (5,3.22}

describes a constant frequency oscillatory motion with
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slowly time-varying amplitude p,q and biases r, s.
p,g9,xr,and s are functions of the control torque and are
given by (5.3.1%) and (5.3.20). The problem can be con-
sidered differently in that the control torgue is used

to force the amplitude p , g and biases r, s to zero.
In this way, since the fast nutational oscillation has
been separated out, the selection of the feedback gains
k; and k; in the slow equations (5.3.19) and (5.3.20)
becomes much easier,

The solution for p (7 ) [ oxr g(~ )] from (5.3.20)

is
F Gy, FeX
-Gp . Fa _ +
(R e e e
]+ Iy
Jl%%r
+ Imaginary.part {5.3.23)

-

Thus p and g will approach zerc if

~Gs  Fa _ Gy + FeIx o
I)/ "eL_ -'IXI)J 'ﬁ,JIxy

where C¢ , [ etc. are given by (5.3.4") and

(5.3.5'). By substitution, (5.3.22) becomes.

I)( COQZ (737 r

iIxx),

4 slwek (-, )+ (8,-£,)<0
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or equivalently, for p and g to be decaying, we

regquire

4, < Ry (5.3.24)

Also r and s are governed by (5.3.19}, which is
a second order linear differential eguation with pericdic
coefficients, The necessary and sufficient condition
for such a system to approach zero as 7. approaches

i
infinity is that the eigenvalues of & (x+T, T,)

lie in a unit disc [aI<] where &(t,%t,) is
the transition matrix of the system and ‘T’ is the period

of the periodic coefficients., Equations (5.3.19) can

be written asz:

247 (R B[4
37 4 o £ :
LRe Eg¢ , _Fe

” N

(-8~ mzwofq -2y Bozﬁfi;vzwctl 7%! __w; r/i \
= |BI* ’ jB‘L
o4 BeAmOT R -4 Blanltwit, B '
- F) = L y,
L {81 | B) JAN
N .
= A(T) (4) (5.3.25)
%
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Note that ﬁi(i/*c) does not depend on k, .

5.4 An Examgle

With the problem described in section 5.2, suppose
we have a satellite with parameters as follows:

Moment of inertia

Iy = 120 slug - £t
Iy = 100 slug - £t
Iz = 150 slug - £t*

Angular momentum of the fly-wheel (along pitch
axis)
z
h = 4 slug - £t~ / sec
and satellite is in an orbit of:
eccentricity e =20
(4]

inclination i= 20

period 10,000 sec

|

The small parameter % , by (5.3.3), is then

o bk
€= —— = o0017

/'J I,(I)f

The value of § c¢an give a rough indication

as to the degree of accuracy of the approximate solution.
Since the roll-yaw motion can be approximated by

(5.3.22)
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Y = p sup (-Nult) +1 sop(Naa ) + ¥

$ = ﬂfgr_:f;m,, (-Nui x) - i_f%_iri st (Nuit Y4

where p, q are given by (5.3.21) and r, s are
given by (5.3.25). For p, g to decay, we require:
k, < K
and for r, s to be decaying, the eigenvalues ™ Ay
of the transition matrix of the system (5.3.253),
é C,+T, ) 5 must be less than unity. The eigenvalues
A; and A, are plotted in terms of k, in Fig. 5.4.1
and Fig.5.4.2. We see that if 0<k<.1l, then X<l
and Az < , that is r,s will be damped.
We select k, =4 x 10 and k, =8 x10%,
Implementation of the contreol law of (5.2.15)
with the above k) and ko, requires electric
power of about 10 watts,
We numerically integrated the equations (5.3.,4)

and (5.3.5) with the above k and k; for an initial

1

condition of WY(e)=03°, l;‘[ojzo.fa/;e,c, 7 P{e)= 0,2.°
L3

P (e)=0.1° /sac . The roll-yaw motion is plotted in

Fig, 5.4.3 and Fig., 5.4.4. With the same numerical

values, we also simulated the approximate solution as
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given by (5.3.22). The roll-yaw motion by this new
approach is also plotted, in Fig. 5.4.5 and Fig.
5.4.6. Comparing Fig. 5.4.3 to Fig. 5.4.5-and Fig. 5.4.4
to Fig. 5.4.6, we found our asymptotic solution to be
very accurate, Further, the system is stable in the

way we expected and the variations of p, g and r, s

can be clearly identified.

5.5 Another Approach: By Generalized Multiple Scales

(GMS) Method Using Nonlinear Clocks

It was pointed out by Dr., Ramnath that system
{5.3.4) and (5.3.5) can be regarded as a linear system
with slowly time-varying coefficients. That is, the
coefficients of the equations change at a much slower
rate ghan the dynamic motion of the system ([3,4]. This
kind of problem, can be easily transformed into a
singular perturbation problem by letting -t=g¢k
and changing the independent variable + into" T .

Then, another approximate solution by general multiple
time scales approach using a set of non-linear time
scales is immediately available,

The solution for a second order singularly perturbed
system is reviewed in section 2.3 and a similar solution

for an n-th order singularly perturbed system is given

in [3,4]. To illustrate, equations (5.3.4') and (5.3.5")
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can be decoupled and i VY satisfy an equation of the foxm: -
4_ s
S asery V=0
A=0

. The 6MS solution for this equation is [3,4]:
N & SF 3
ol (k,e) = E.l C, (3—1-%-:) MP(’t};(z,a))
4' : .
Flt,w)z 5 a; ()K"
=p

where

A=
Tl [RLak amd R Adbipy F=o

This GMS solution employs nonlinear scales -T,; in contrast

with the linear scales of the MTS solution, The GMS app-

roach subsumes the MTS method and could lead to more
accurate description of the dynamics.

The advantages of this alternative approach are
twofold. First, it treats the whole class of problems
of linear slowly time-varying systems and thereby it
can, conceivably, deal with a more complicated problem.
Second, it is fairly easy to numerically implement
this approximate solution which needs much less computer
time than straight direct integration. Thus it might
be helpful in the area of simulating a system if the
design task has to be carried out by trial and error.

The same numerical example as discussed in the pre-
vious section is used. This time, the solution is approxi-
mated by the GMS method. The result is given by Fig. 5.5.1
for roll motion and Fig. 5.5.2 for yaw motion, The accur-
acy is found to be excellent. Also for demonstrating that
the new approach can save computer time, several cases have

been tried, and the results are summarized in Table 5.5.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Conclusions

A general method has been given for fast prediction
of a satellite attitude motion under the influence of
its environment disturbances. An approximate solution
to the problem is developed by using the multiple time
scale asymptotic approach, such that the digital imple-
mentation of these apbroximations would give a significant
saving of computer time as compared to direct simulation.
Furthermore, because the new approach has been designed
to be very general it can handle any orbit, initial
condition or satellite mass distribution, and so it could
potentially become a valuable tool in satellite engineering.

The attitude motion of a rigid body asymmetric
satellite is first considered. By the MTS asymptotic
technique, the slow secular and the fast oscillatory
effects of the disturbing torque on the attitude motion
can be immediately separated and then be evaluated indivi-
dually. These slow and fast behaviors, combined, give
the complete motion while divided, each describes a
different aspect of the phenomenon.

Similarly, a class of dual spin satellites is then

studied. A dual spin satellite represents a vehicle
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carrying sizable fly-wheels on-board., This model may
resemble many satellites in use today, since the fly-
wheel has been a common device for attitude control and
stabilization., We have studied a special case of dual
spin satellite with a single fly-wheel mounted along
one of the vehicle body principal axes. However, the
problem of a general dual spin satellite with multiple
fly-wheels mounted in different directions seems still
to require further research,

The new approach is then npmerically similated
for two environment disturbances. One is a satellite
disturbed by the gravity gradient torque and the other
is by geomagnetic torgque. The results show that the
new method has a significant advantage over the conven-
tional direct integration. In some situations it can
be faster by an order of magnitude while the approxima-
tion errors are still well bounded and acceptable,

-A way of handling resonant situations is also dis-
cussed, Attitude resonance will occur if the satellite
has a mass distributién such that a low-order commensur-
ability exists between the polhode frequency and the
angular velocity frequency. Then there will be a sub-
stantial increase in the secular effect due to the dis-

turbance. We found that the resonant situation can be
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easily detected and handled in our approach.

Finally, as the MTS formulation separates the
slow and fast behaviors of a satellite attitude motion,
we use this property for the design of an attitude control
device. In the problem, the control torque from geomag-—
netic interaction is very small. Nevertheless, its in-
fluence on the dynamics becomes clear if we look at the
secular behavior on a slow clock. This idea has also
been explored in [41]. However, we believe that the
complete solution to the problem is achieved for the

first time and the contrel law is new.

-

6.2 Suggestions for Future Research

This research concerns the attitude motion of a
satellite which is operated in a passive mode. It is
therefore essential for us to consider all the possible
major disturbances., We know, besides the gravity gra-
dient and geomagnetic torques, there are also other
disturbances which are important in particular situations,
as for instance, the atmospheric drag in a low orbit
case and solar radiation pressure for a satellite with
large surface area., The latter is found to be important
and worthy of rasearch because more and more satellites,

especially the long-lived ones, have panels to collect the
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sun'’s radiation for their energy supply. This problem,
however, is a difficult one, siﬂée the motion of the
earth around the sun, which changes the direction of

the sun light, represents an even slower mode on top of
the fast attitude rotation and the slow satellite orbital
motion, Furthermore, the earth shadow could give a
discontinous change of the radiation disturbing torque.

The second area is involved with the generalization
of the prediction method for all dual spin satellites;
that is, satellites which contain multiple fly-wheels.
The difficulties of the problem have been listed in
chapter 4., We believe that by further research, these
difficulties could be overcome.

In chapter 5, we have applied an asymptotic technique
for a classic control design problem. The asymptotic
approach seems very helpful in that particular case.

We believe that a similar sitmation, whenever the control
force is small, could also occur in other fields such
as orbit transfer by a low thrust engine. Therefore a
systematic study of the role of asymptotic methods in

control theory could be very interesting and useful,
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APPENDIX A

¥ -1

* - *] =
EXPRESSION FOR Q(Im

S-lax) Qv

*
If I is the moment of inertia, then for arbitrary matrix
* - e % ke
A and vector v, the expression of (Avx) ImAv can be
re~grouped as follows:
E * x -
(AVx)YIm AV
. e
".1'5-1;] o o Az A3 Az Az Payfn
T A, Ai! t Aaz A

I - - o
0 X" "3 Ay, Az Aufn  Aphs Y

I

o o I +AAn Az A
L / LA“ A Ay A An Azz
21 !
+ A, Az + A Az »
” ’ ' \1 )
(o Azz A31 AJ_?_ Ag; 1 (o] O Azg A?’:’)
Fha ez} v\ v
UJ‘
+ ¢ Az Asz A Az * °© © Ais A3 ’
+Ay Ag,
o A A, Az Az e o Aphy
“+ AI% AZ.?-) L J

ol * X X -
- I, [+ om @+ M)
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* * *
where IS and OP. (A), i = 1.2.3 are defined by comparing the

.above two expressions and v;, 1 = 1,2,3 are three

components of the vecror v. With these definitions,

L A &'
- A [Ga k)T I (BN & T
& I [Op (L&) vi+op(an a) v
- O% (;m‘*a") u}] v (A.2)
In case if 5 is a periodic matrix, we can expand
* % % *

...l:k_l
Q I_ OP, (Im Q ™)

l..l

into a Fourier series} that is

'*_l__ *_’._
U—x) Q\ Vs

- *

]
"MMuw F L

e (

mx
>
[«
+
STME

E'M(M";* ) + ES w(ma'x)J
O R EE T

} ViV (a.3)

136



APPENDIX B

% w] % *
EXPANSION OF ¢ [dw] ¢

8 8 Bin

The transition matrix @ (t,o) has been given by (3.3.29);
if we substitute that into the expression of Eg éuﬂ iaﬁu«,

we will have

%y oa X =
é{r_)’ {3&\1] i;?a [3’”

-

-E; - o B un(p-
_ [ o & «(p %), , __éslm(ﬁ )
E E LD —
Scat), o , g40R), o
B, . e ov
o ‘E-:‘;M(Ff Pz); e, -é-; e (Py-F2)
B E
T, o Beation), o
3 T v —§, ©
swy ¢ $ W o © © § s
~§ud
4 2
P SW} c éwg + o o f;
iN
swy, ¢ ~dw, c fw, © ¢ 4
o ~5w, ¢ Sw, o $w, ¢ ¢
/ L, /

(B1)

where E E P P, are defined in Section 3.3. They
l’ 2] l; 2

are all periodic functions with period of T .
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Substitute §w from (3.5.30), and expand all the
« periodic matrices by Fourier series, It is tedious but

% _ P
straightforward to have @P’ [ 5w} é,c Bilt) written as

X 4 5 =
&' [sw] 5 Pn(T)

— * g
= Ri(_q) -+ PB(T") I22 (_Ci) . (B‘Z)
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Table 3.6.1 Rigid Body Satellite Disturbed By Gravity
Gradient Torque :

Computer Max., Errors Figures
RUns Description Time*
(sec) o I
Jrad/sec) { _ﬁ_ -
Direct Integra-
1l tion 106 0 0
AT =10 sec
(reference case)
Asymptotic Pig.
Approach -
2 288*%% [0,5 x 10 .01 3.6.1
AT = 10 sec 3.6.2
Direct Integra- . Fig.
3 tion 22 1.2 % 105 .08
3.6.3
DT = 50 sec ) 3.6.4
Asymptotic Fi
_s‘ lgo
. Approach 31 {1.0 x 10 .01
3.6.5
AT = 100 sec 3.6.6
Asymptotic Fi
- g.
> Approach 16 1.0 x 167 .01
3.6.7
AT = 200 sec 3.6.8
Asymptotic v Fig.
6 Approach 6.5 2,0 x 10 .03
3.6.9
AT = 500 sec '3.6.,10
Torgue~free Sol. o
Subtract Ref, < Fig.
7 Case (Effect of 5.0 x 10 .05
G.C.T,) 3.6.11
L l 3.6.12
® IBM 360/75 run time.

k% Does not include initialization time - for nominal solu-
tion and Fourier transformations - in this case is about
40 sec.
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Table 3.7.1 Rigid Body Satellite Disturbed By
Geomagnetic Tozgue

Computer Max., Errors Figures
Runs | Description Time — -
{sec) W ﬁ
S . Srad/sec) ]
Direct Integra-
1 tion 112 0 0
. AT = 10 sec
(reference case)
Asymptotic - Fig.,
2 Ap}};{)rgach 204 0.2 x 101 .002 g
AT = 10 sec 3,7.1
3.7.2
Direct Integra- . Fig.
3 tion 45 3.0 x 10 .005
3.7.3
AT = 25 sec 3,7.4
Asymptotic
Approach -1 Fig.
4 31 0.2 x 10 .002
AT = 100 sec 3,7.5
: 3.7.6
Asymptotic =1 Fig.
3 Approach 16 .25 x 10 .003
3.7.7
AT = 200 sec 3.7.8
Asymptotic
Approach -1 Fig.
6 6.5 .30 x 10 003
AT = 500 sec 3.7.9
: 3.7.10
Toraque~free Sol. -
Subtract Ref,. -7 Fig.,
7 {Case (Effect of 100 x 10 ,003
G.M.T.) 3.7.11
3,7.12

202




Table 4.4.1

Dual Spin Satellite Disturbed by GraV1ty

Gradient Torque
Computer Max, Errors - Figures
Runs Description Time
sec - ey
(sec) = A
{rad /sec}
Direct Integra-
1 tion 109 0 0
AT = 10 sec
(reference case)
. 4 .
Agsymptotic 0.2 x 10 Fiqg,
2 Approach 4.4.1
297 .305
AT = 10 sec 4,4,2
Direct Integra-' Fie,
! 22 10 x 10 .20
AT = 50 sec ! 4,4.4
Asymptotic Fién
Approach 4,4.5
4 AT =100 sec| 31 0.3 x107| .006 |4.4.6
Flé.
Asymptotic _4 4.4,7
5 | Approach 6.5 0.5 x 10 .008
4.4.8
AT = 500 sec
Fia,
Torque-free Sol, -4 4,.4.9
6 Subtract Ref, 1.5 % 10 .020
Case (Effect of 4,4.10
G.G.T.)
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Table 4.4.2 Pual Spin Satellite bisturbed By
Geomagnetic Torque

Computer Max., Errors Figqures
Runs Description Time — —
{sec) LY £
(rad/sec)
Direct Integra-~-
tion
1 102 0 0
AT = 10 sec
(reference case
Figqg.
Asymptotic -5 )
2 Approach 290 (0.5 x 10 L0010 4,4,11
A T = 10 sec . 4,4,12
Fig.
Direct Integra- -5 .
3 tion 42 10 x 10 .0150 4.4.13
A T = 25 sec —1i4,4,14
: Asymptotic Fig.
4 Approach i
30 0.5 x 10 .0015 4,4,15
AT = 100 sec
4.4-16
Asymptotic Fig.
Approach -5
3 6.4 0.6 x 10 L0017 | 4.4.17
AT = 500 sec
4,4,18
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Pable 5,5 GMS Approximation*and birect Solution

. . Computer
Case Description Fig.
time (sec)
GMS Approximation 2.9 5.5.3
l L]
A t=1000 sec 5.5.4
GMS Approximati 5.5.5
9 Iy pproximation 1.6
At=2000 sec 5.5.6
Direct integration 5.4.3
3 _ 57.9
A t=10 sec 5.4.4
Direct integration 19.2 3.5.7
4 At=30 sec 5.5.8

* General multiple scales with nonlinear clock.
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